
MASTER’S THESIS 2019

Refining Synthetic Images with
GANs: An Automated
Production of Object Detection
Training Data
Johan Andersson, Rickard Andersson

ISSN 1650-2884
LU-CS-EX 2019-13

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2019-13

Refining Synthetic Images with GANs: An
Automated Production of Object

Detection Training Data

Johan Andersson, Rickard Andersson

Refining Synthetic Images with GANs: An
Automated Production of Object

Detection Training Data

Johan Andersson

johan-andersson01@protonmail.com

Rickard Andersson

rickardandersson1993@gmail.com

June 27, 2019

Master’s thesis work carried out at Modcam AB.

Supervisor: Volker Krueger, volker.krueger@cs.lth.se

Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se

mailto:johan-andersson01@protonmail.com
mailto:rickardandersson1993@gmail.com
mailto:volker.krueger@cs.lth.se
mailto:elin_anna.topp@cs.lth.se

Abstract

With the rise of machine learning, there is an increasing demand for training
data but a lack of supply. Synthetic training data has become a common tool to
narrow this gap, but it often lacks complexity in order to fully approximate real
data.

In this thesis, we explore methods of refining synthetic images of humans
to look more realistic. Specifically, we perform the refinement with Generative
Adversarial Networks and then use the refined images as training data for an
object detection network.

While we do not succeed in creating realistic images, we do gain quantitative
improvements from using refined synthetic data as opposed to only real data,
when the size of the real training dataset is small.

With our best refined synthetic dataset, we find an improvement of 0.0165
in F1-score compared to real training data. Compared to unrefined synthetic
training data we find an improvement of 0.0289. Combined with real training
data, we find an improvement of 0.0225 compared with only real training data.

Keywords: generative adversarial networks, synthetic training data, object detection,
image-to-image translation, CycleGAN

2

Acknowledgements

We wish to express our deepest gratitude to our supervisor Volker Krueger whose encourage-
ment and insightful suggestions have been invaluable during the course of this thesis.

Special thanks to Marcus Leyman, Karl-Anders Johansson, and the team at Modcam for
their continuous enthusiasm, guidance, and support of our work.

3

4

Contents

1 Introduction 7
1.1 Purpose . 7
1.2 Background . 8

1.2.1 Company . 8
1.2.2 Problem Formulation and Goals 9
1.2.3 Previous Work . 9

1.3 Outline . 10
1.4 Contributions . 11
1.5 Workload distribution . 11

2 Theory 13
2.1 Generative Adversarial Network . 13
2.2 Conditional Generative Adversarial Network 18
2.3 Supervised Image-to-Image Translation: Pix2Pix 20
2.4 Unsupervised Image-to-Image Translation: CycleGAN 22
2.5 Unsupervised Attention-guided Image-to-Image Translation 23
2.6 GAN losses . 25
2.7 Architecture of Image-to-Image Translation networks 28
2.8 How we utilize GANs . 33
2.9 Object detection: SqueezeDet . 34
2.10 Evaluation metrics . 35

3 Method 39
3.1 Strategy . 39
3.2 Rendering . 40
3.3 Refiner . 42

3.3.1 Full size images . 42
3.3.2 Cropped images . 45
3.3.3 GAN networks . 47

3.4 Evaluation . 49
3.5 Implementation . 49

5

CONTENTS

3.5.1 CycleGAN and AGGAN . 49
3.5.2 SqueezeDet . 50

4 Results 51
4.1 Overview . 51
4.2 Visual results . 52
4.3 Quantitative results . 56

4.3.1 Fréchet Inception Distance . 56
4.3.2 SqueezeDet Performance Metrics 57
4.3.3 Correlation between F1-score and Fréchet Inception Distance . . . 59
4.3.4 PCA Plots . 60
4.3.5 Training Plots . 61

5 Discussion 63
5.1 CycleGAN . 63

5.1.1 CCP, CS
CP . 63

5.2 CycleGAN with VGG16 feature losses . 64
5.2.1 CCPCFIP, CCPCFIF , CCPCF , CS

CPCFIP, C
S
CPCFIF , C

S
CPCF 64

5.3 CycleGAN with a discriminator feature loss 65
5.3.1 D, DS . 65

5.4 CycleGAN with a mean feature loss of the target dataset 66
5.4.1 M , MS . 66

5.5 Attention-guided GAN . 68
5.5.1 A, AS . 68

5.6 Why the refinement increases object detection performance 72
5.7 Does real training set size matter? . 73
5.8 Which layers from VGG16 should be used 74
5.9 Skip connections . 76
5.10 Did we achieve photorealism? . 76
5.11 Reproducibility . 77
5.12 Shortcomings . 78

6 Conclusions 79
6.1 Conclusion . 79
6.2 Future work . 79
6.3 Ethics . 81

References 81

7 Appendix 87

6

Chapter 1

Introduction

1.1 Purpose
The purpose of this thesis is to explore methods, centered around Generative Adversarial
Networks (GANs), of generating photorealistic images. Specifically we generate synthetic
images that roughly approximate real fisheye images of humans (see Fig. 1.1) and then refine
the synthetic images with GANs to further approximate the real dataset.

Finally, we use our refined synthetic datasets as training data for an object detection
network and evaluate whether the network is able to generalize from our refined datasets to
real data.

Figure 1.1: A real image sample.

7

1. Introduction

1.2 Background
Since their revitalization during the last decade, deep learning techniques have always re-
quired large sets of training data in order to perform well. Collecting and annotating quality
training data is however a time-consuming task, typically performed by humans. Would it
not be great if we could let computers do it for us?

Synthetic data, i.e. computer-generated data, can be automatically generated with annot-
ations in arbitrary amounts and with high variance. With large training set size and high
variance, we aremore likely to have an accurate representation of the real world compared to a
real but smaller (and thus less varied) dataset - assuming that the synthetic data approximates
the real data well enough. Using synthetic data to train machine learning models is thus
enticing, but generating synthetic data that is good enough, i.e. data that looks real, is hard.

In this thesis, we therefore aim at refining annotated synthetic images to look real. We
call these resulting images refined synthetic images. Specifically, the real dataset we wish to
approximate is comprised of fisheye images of humans taken from above (see Fig. 1.1).

To refine the synthetic images, we use Generative Adversarial Networks (GANs). GANs
are well-known by now for their ability to generate new realistic images from relatively small
amounts of training data. Our approach follows two steps: First, we generate synthetic im-
ages using a graphics program. Since we generate those images, we also know the annotations.
Second, we refine these synthetic images by employing a GAN-based approach.

This thesis operates in an area of data approximation where the goal is to generate syn-
thetic images and then refine them for use as training data with Generative Adversarial Net-
works. Previous works in this area include [1] and [2]. Both of these works share the end goal
of creating training data of small realistic images of one object without context.

In contrast to these works, our thesis aims to develop an approach for creating large
realistic images where multiple humans are part of an environment, where each position of
the humans is annotated. These images are then used as training data for an object detection
network, where the end goal is to identify the locations of all humans in an image. We hope
to approximate a real dataset to such an extent that our refined synthetic dataset can be used
as training data for object detection on real images.

1.2.1 Company
This thesis was written at Modcam, a company based in Malmö, Sweden, that sells ceiling-
mounted sensor solutions for analysis of people flow (see Fig. 1.2). After installation at a
new location, the customer allows the company to take images during a setup period. These
images are then annotated and used as training data for human detection networks. The
networks are then deployed on the device and the setup period is completed.

After the setup period, neither customer nor Modcam is able to collect images from the
sensor. Inferences are run on the device and images are never stored.

This is beneficial in terms of protecting people’s privacy and ensuring that there cannot
be any surveillance activity. However, it also limits the company’s ability to acquire training
data. This is the problem that our thesis tries to solve: to automate and scale the production
of training data, while still safeguarding people’s privacy.

8

1.2 Background

Figure 1.2: Generated heatmap of people flow, using human detection
inferences.

1.2.2 Problem Formulation and Goals
The overall goal of this thesis is to refine synthetic images of humans with GANs, in order to
generate a training dataset of refined synthetic images that is able to replace a real training
dataset for use in a human detection task using SqueezeDet [3]. In order to replace real
training data, a detection network trained on refined synthetic data must, during testing on
real data, have equal or greater performance than a corresponding detection network trained
on real data.

Our evaluation method is to train human detection networks on synthetic, refined syn-
thetic, and real data respectively and then test these networks on real data. What we wish to
see is that the performance of a network trained on our refined synthetic data can measure
up to the performance of a network trained on real data. We also compare the performance
of networks trained on refined synthetic data with a network trained on synthetic data, since
negligible di�erences would make our approach superfluous.

We limit our human detection performance evaluation to using SqueezeDet [3], due to
time constraints. However, the refinement of the synthetic images is done independently
from the employed network. This way, our results should ideally generalize to other object
detection networks.

1.2.3 Previous Work
Augmenting training data with the help of Generative Adversarial Networks (GANs) is by
now an established and viable approach [4] [5] [6]. Another established approach of aug-
menting training data is to generate synthetic, annotated data with graphics software [7] [8]
[9].

These approaches, while succesfully employed in some scenarios, have their limitations
when it comes to generating object detection training data. GANs can produce realistic
data, but as of writing they can not (to our knowledge) produce corresponding ground truth
annotations of object locations. Computer graphics software can produce data with ground
truth annotated objects, but has di�culties in achieving realism. It is then an intuitive idea
to combine the two approaches. By first generating a synthetic dataset, we have a ground

9

1. Introduction

truth annotated set of training data. Then, by using GANs to make the synthetic dataset
look more realistic, we ideally have both ground truth annotations and realism.

Previous work in refining synthetic images include [1] and [2]. Below, we summarize these
works.

Learning from Simulated and Unsupervised Images through Ad-
versarial Training
To our knowledge, Shrivastava et al.’s paper [2] was the first paper that used GANs to refine
synthetic images for the purpose of training data. With the help of unannotated real images
they refine synthetic images using a GAN in order to approximate the real training dataset.
Specifically, this is done for a hand pose estimation dataset. Using real, synthetic and refined
synthetic datasets for training a hand pose estimation network they achieve an accuracy of
74.5%, 69.7% and 72.4% respectively. Using synthetic and refined synthetic datasets three
times larger in size they attain accuracies of 77.7% and 83.3% respectively, surpassing the
accuracy of the real dataset.

In their dataset domain, Shrivastava et al. thus manage to generate datasets that, when
used as training data, outperform a real training dataset [2].

Generation of Artificial Training Data for Deep Learning
InWessman andAndersson’s thesis [1], the goal was to render synthetic images of humans and
refine them with a GAN to increase realism and replace the need for real re-identification
training data. Their results show subjectively increased realism and quantitative improve-
ments compared to synthetic images, but not a quantitative performance increase, when used
as training data, compared to real data [1].

Their thesis led us to begin with CycleGAN [10]. However, we found its refinements to
be inadequate and moved on to defining our own loss functions and trying out another GAN
architecture, AGGAN.

1.3 Outline
In Chapter 2, we describe theory necessary for understanding our work. We begin with ex-
plainingGenerativeAdversarialNetworks (GANs) in Section 2.1 and relevant papers pertain-
ing to GANs in Sections 2.2-2.3. These sections serve as a foundation for understanding the
GANs used in this thesis. In Sections 2.4-2.5, we then explain CycleGAN and AGGAN,
the two GAN architectures used in this thesis. Section 2.6 then describes alternative GAN
losses that we utilize and Section 2.7 describes GAN implementation details. At last in Sec-
tion 2.9 and 2.10, we describe the object detection network SqueezeDet and our evaluation
techniques.

In Chapter 3 we describe ourmethod and approach. We begin in Section 3.1 by describing
the overall strategy of our approach. Sections 3.2-3.4 then describe the details of the strategy,
and at last the implementation details are described in Section 3.5.

In Chapter 4 we present qualitative and quantitative results. Chapter 5 then provides an
expansive discussion of the results.

10

1.4 Contributions

Final remarks are presented in Chapter 6 where we present our conclusion in Section
6.1. Section 6.2 then describes future work and Section 6.3 discusses the ethics of refining
synthetic images of humans to look real.

1.4 Contributions
In this work we show that a refined synthetic dataset can give quantitative increases in hu-
man detection performance when used as training data, compared to a small real dataset.
However, we are only able to show human detection performance increases when the real
dataset is su�ciently small, meaning that it does not capture as much variance as it would
have if it were as big as our refined synthetic dataset.

Further, we provide insights into di�erent GAN losses and try to provide answers to
problems we have encountered. We also include detailed algorithms and descriptions of our
method to assure reproducibility of our results.

1.5 Workload distribution
All our work is the result of our combined e�orts. There have been no dedicated responsi-
bilities as such and work has been evenly distributed.

11

1. Introduction

12

Chapter 2

Theory

2.1 Generative Adversarial Network
A Generative Adversarial Network (GAN) is a generative model that aims to approximate
the distribution of some dataset [11]. There are other such approaches for modeling distribu-
tions, as well, e.g. Generative Stochastic Networks [12] or Variational Autoencoders [13], but
what makes GANs unique is their adversarial nature. In this section we explain how GANs
work, based on [11] and [14]. As in [15], we first try to give an intuitive understanding of the
technique and then delve into the mathematical details that make it work.

Consider the common analogy of an art forger and an art critic: two natural adversaries.
The forger’s incentive is to produce realistic forgeries and the critic aims to distinguish au-
thentic works from forgeries. Whenever the critic discovers a new forgery, the forger is forced
to improve his technique such that the critic no longer can distinguish forgeries from authen-
tics. The critic is thus again forced to find new ways to distinguish authentics from forgeries,
and on it goes. This is the principal idea behind GANs: two adversarial players competing
against each other, where one’s advantage becomes a disadvantage to the other.

In order to be more exact, a GAN consists of a function G (the forger) and a function D
(the art critic), both of which can be implemented as artificial neural networks [11]. G, also
known as the generator, will try to model a distribution pg which will approximate the true
distribution pdata of which the dataset xreal is sampled from. To learn pg, a prior input noise
variable z is sampled from a noise distribution pz and the mapping G(z; θg) maps z into the
data space, where θg are the parameters of the neural network for the generator. D(x, θd),
also known as the discriminator, will have data x and a parameter vector θd as input and it
will output a scalar in the range [0, 1], which represents the probability that x came from
pdata rather than pg [11].

13

2. Theory

G

z

D

xreal

D(x) LD

LG

G(z)

Figure 2.1: Schematic overview of a GAN. G produces generated samples G(z)
from the noise input z. D takes batches of generated samples G(z) and real
samples xreal and predicts whether the samples come from pdata or not. D’s
predictions are then used in the adversarial loss functions LG and LD to

determine the weight updates of G and D.

D wants to maximize the probability of assigning correct labels to the training samples:
1 to xreal and 0 to generated samples fromG. For D to learn this behavior, it has to optimize
a loss function that reflects this: classifying generated samples as real or real samples as gen-
erated should give a high loss, while correct classifications should give a low loss. This is a
standard task of binary classification where we want to distinguish two distributions and as
such we can use cross entropy as our loss function. With this in mind, the discriminator loss
can be derived as follows:

Given an arbitrary classification task with C classes, the cross entropy of the predicted
distribution and the ground truth distribution can be expressed as

H(p, q) = −
C∑

i=1

pilog(qi)

where p is the distribution of ground truth labels and q is the distribution of predicted
labels.

The discriminator is tasked with a binary classification, i.e. C = 2.

H(p, q) = −p1log(q1) − p2log(q2)

Since p1 + p2 = q1 + q2 = 1, we can write

H(p, q) = −p1log(q1) − (1 − p1)log(1 − q1)
Denote y : Rn×n 7→ {0, 1} as a map from samples of size n × n to true binary labels, and

ŷ(i) = q(i)
1 as the i : th predicted label. Given samples N from the ground truth distribution p

and samples M from the predicted distribution q, where |N | = |M |, the average binary cross
entropy of the samples in N and M is computed as follows.

H(p, q) = −
1
|N |

|N |∑
i

y(N (i))log(ŷ(i)) −
1
|M |

|M |∑
j

(1 − y(M (j)))log(1 − ŷ(j))

14

2.1 Generative Adversarial Network

In the context of GANs with a discriminator D and a generatorG, we see that p must be
the distribution of real samples and q the distribution of generated samples. In the left sum,
ŷ(i) is replaced by D(x(i)

real), since N is a sample from the real distribution p. In the right sum,
ŷ(i) is replaced by D(G(z)(i))), since M is a sample from the generated distribution q.

H(p, q) = −
1
|N |

|N |∑
i

y(N (i))logD(x(i)
real) −

1
|M |

|M |∑
j

(1 − y(M (j)))log(1 − D(G(z)(j)))

Since y(N(i)) = 1 for all i and y(M(j)) = 0 for all j we can replace them with their
actual values. Since |N | = |M |, the expression is simplified by replacing |N | and |M | with K .

H(p, q) = LD = −
1
K

K∑
i

logD(x(i)
real) −

1
K

K∑
i

log(1 − D(G(z)(i)))

The above can then be expressed in terms of expectations:

LD = −
(
Exreal∼pdata(xreal)[logD(xreal)] + Ez∼pz(z)[log(1 − D(G(z))]

)
(2.1)

This final expression describes a cross entropy between real and generated samples, which
is used as the discriminator’s loss function, where the range of LD is [0,∞). It indeed enc-
ourages the discriminator to assign correct labels to xreal andG(z) respectively, since the left
term only approaches 0 when the discriminator is good at classifying real samples (assigning
labels close to 1) and the right term only approaches 0 when the discriminator is good at
classifying generated samples (assigning labels close to 0). Thus, in order to minimize the loss
function, the discriminatormust performwell in classifying samples from both distributions.

D(xreal) D(G(z)) Left term Right term LD
0 0 −∞ 0 ∞

1 0 0 0 0
0 1 −∞ −∞ ∞

1 1 0 −∞ ∞

Table 2.1: Asymptotic values ofLD and the left and right terms in Eq. 2.1, given
di�erent extreme behaviors of the discriminator. As seen, the loss is minimized
if and only if the discriminator is good at classifying xreal as real and G(z) as

generated.

Since the generator and discriminator are two adversaries, it makes sense to express the
loss of G as

LG = −LD = Exreal∼pdata(xreal)[logD(xreal)] + Ez∼pz(z)[log(1 − D(G(z))] (2.2)

This means that the network will maximize LD when trying to minimize LG (and vice
versa), which characterizes the zero sum game LD +LG = 0.

Defining the objective function to be V (D,G) = LG, the whole problem can be stated as
a min-max game

min
G

max
D

V (D,G) = min
G

max
D

(Exreal∼pdata(xreal)[logD(xreal)]+Ez∼pz(z)[log(1−D(G(z))]) (2.3)

15

2. Theory

According to the above, the discriminator minimizes a cross entropy whilst the genera-
tor maximizes the same cross entropy. Looking into this, we see that the generator has no
control over the first term in Eq. 2.2 since it is only dependent on D discriminating on real
samples. Thus we conclude that the first term is redundant. For the second term in Eq. 2.2
there is another problem regarding training: the generator’s gradient will vanish when the
discriminator rejects generated samples with high confidence, i.e. D(G(z)) is close to zero
(see the lower blue curve in Fig. 2.2) [14]. Instead the generator’s loss is defined as

L
new
G = −Ez∼pz(z)[logD(G(z))] (2.4)

With this loss, the generator tries to maximize the log probability of the discriminator
making a mistake rather than minimizing the probability of the discriminator being correct.
The motivation for this is to assert that each player will have strong gradients when that
player is losing the game. Consider the case where the discriminator is winning, then D(G(z))
will be close to zero, resulting in Lnew

G to grow big (see the upper red curve in Fig. 2.2),
meaning that it can not su�er from vanishing gradients. The same is not true forLG when the
discriminator is winning, i.e. D(G(z)) approaches zero. The loss will then be very small. Note
that the losses no longer define a zero sum game, meaning that the optimization problem can
not be described by one objective function [14].

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

D(G(z))

−log(D(G(z))))
log(1 − D(G(z)))

Figure 2.2: Graph demonstrating the di�erences in gradient for Lnew
G (upper

red curve) and the right term of LG (lower blue curve). Note that the gradient
of Lnew

G is much steeper than the gradient of the right term of LG when
D(G(z))→ 0.

With the new generator loss (Eq. 2.4), the schematic overview of the GAN in Fig. 2.1 is
changed to that of Fig. 2.3.

16

2.1 Generative Adversarial Network

G

z

D

xreal

D(xreal)D(G(z))

LD

L
new
G

G(z)

Figure 2.3: Schematic overview of a GAN with the improved generator loss
L

new
G . G produces generated samples G(z) from the noise input z. D takes

batches of generated samples G(z) and real samples xreal and predicts whether
the samples come from pdata or not. D’s predictions are then used in the

adversarial loss functions Lnew
G and LD to determine the weight updates of G

and D.

Algorithm 1 Training of a GAN using stochastic gradient descent

1: for number of train iterations do
2: for number of times to train the discriminator do
3: Sample K noise samples {z(1), . . . , z(K)} from pz
4: Generate K samples {G(z(1)), . . . , G(z(K))} from pg
5: Sample K real samples {x(1), . . . , x(K)} from pdata
6: Minimize the discriminator loss with respect to the weights θD using stochastic

gradient descent:

min
θD
{−

1
K

K∑
i

logD(x(i)
real) −

1
K

K∑
i

log(1 − D(G(z)(i)))} f

7: end for
8: Sample K noise samples {z(1), . . . , z(K)} from pz
9: Generate K samples {G(z(1)), . . . , G(z(K))} from pg
10: Minimize the generator loss with respect to the weights θG using stochastic gradient

descent:

min
θG
{−

1
K

K∑
i

log(D(G(z)(i)))}

11: end for

17

2. Theory

2.2 Conditional Generative Adversarial Net-
work

Like a GAN, a conditional GAN is trained on samples x, but with additional information y
(e.g. classes). This additional information narrows the output space and therefore helps both
adversaries in their e�orts to overcome the other: the generator is told what information
y its generated sample should have, and the discriminator is told what information y the
generator claims its generated sample has [16].

G

z, y

D

xreal, y

D(xreal |y)D(G(z|y))

LD

LG

G(z|y), y

Figure 2.4: Schematic overview of a conditional GAN. G produces generated
samples G(z|y) from the noise input z and the conditional label y. D takes

batches of generated samples G(z|y) with the corresponding labels y and real
samples xreal with corresponding labels y and predicts whether the samples
come from pdata or not. D’s predictions are then used in the adversarial loss

functions LG and LD to determine the weight updates of G and D.

The conditional adversarial losses of the discriminator and the generator are almost iden-
tical to the adversarial losses of the original GAN. The only di�erence is that they are con-
ditioned on y [16].

LD = −
(
Exreal∼pdata(xreal)[logD(xreal |y)] + Ez∼pz(z)[log(1 − D(G(z|y))]

)
(2.5)

LG = −Ez∼pz(z)[logD(G(z|y))] (2.6)

It is widely considered a good approach to use conditional information, if available, when
training GANs since it by empirical evidence greatly improves the subjective quality of gen-
erated samples. It is however not concluded if the generator’s approximation of the true
distribution actually becomes more accurate, or simply whether it becomes more biased to-
wards properties that the human perception focuses on [14, p. 30].

Fig. 2.5 shows samples generated by a conditional GAN trained on the MNIST dataset
[17]. Before any training, the generated samples are only noise, since the generator has not
adapted its weights at all. However, after a few epochs of training, results begin to show.

18

2.2 Conditional Generative Adversarial Network

When comparing Fig. 2.5e and Fig. 2.5f, one can conclude that the network can successfully
generate at least some samples that look real.

(a) 0 epochs (b) 5 epochs (c) 10 epochs

(d) 15 epochs (e) 75 epochs (f) real samples

Figure 2.5: (2.5a-2.5e): Generated samples from a conditional GAN trained on
the MNIST dataset [17], where each row is conditioned on one class. (2.5f): real

samples from the MNIST dataset.

19

2. Theory

2.3 Supervised Image-to-Image Translation:
Pix2Pix

(a) Input (b) Output

Figure 2.6: Image translation by Pix2pix trained on translating semantic
segmentation maps of facades to images of facades, as presented in original

paper [18].

Presented by Isola et al., Pix2Pix is a variation of a conditional GAN that can perform su-
pervised image-to-image translation [18]. By providing paired input and output data, e.g.
pictures of facades and corresponding semantic segmentation maps of the facade details, the
network is able to translate images from one domain X to the other domain Y (See Fig. 2.6).

For each conditional image x ∈ X there exists a paired output image y ∈ Y . In addition
to the adversarial loss, a new loss is defined which computes the L1 norm of the di�erence
between the transformed input G(x, z) and the output y

LL1(G) = Ex,y,z[||y −G(x, z)||1] (2.7)

where z is the input noise vector.
Another novel feature in Pix2Pix is the generator architecture. In image-to-image trans-

lation it is a common desire to translate colors and textures, whilst preserving structure.
Therefore, an encoder-decoder generator networkwith skip connections is encouraged, allow-
ing features that are shared between input and output domains to be shared directly through
these connections. For example, in Fig. 2.6 the two images share structure but not texture,
meaning that we want to draw a connection from the layers detecting structural features to
our output. Pix2Pix uses the U-Net architecture [19] where each encoder layer is connected
with their corresponding decoder layer (see Fig. 2.7).

20

2.3 Supervised Image-to-Image Translation: Pix2Pix

x

G(x)

Encoder

Bottleneck

Decoder

Figure 2.7: The conceptual architecture of the U-Net generator, where x is the
input image and G(x) image translation of x. The dotted arrows represent the
skip connections between the intermediate layers. The upper blocks represent
the encoder, the middle the bottleneck layer and the lower blocks the decoder.

A common problem in GANs are blurry generator samples. To alleviate this, Isola et al.
introduced PatchGAN, a discriminator architecture [18]. PatchGAN allows the discrimi-
nator to discriminate on local patches of size N × N of the image and thus capturing high
frequencies. It will only penalize structure at the scale of patches and run convolutionally
across the image, averaging all of its responses to produce a final output of the discriminator.

Varying the patch size N will have a great impact on the generated samples. Setting
N = 1 one achieves a so-called "PixelGAN" resulting in blurriness (see Fig. 2.8), but encour-
ages greater color diversity. N = 16 results in sharp images, with tiling artifacts. For N = 70,
there is a good trade-o� between producing sharp images and avoiding tiling artifacts. Scal-
ing beyond this does not seem to improve the visual quality and thus makes the discriminator
easier to train due to the decreased number of connections [18].

Figure 2.8: Comparison of di�erent patch sizes for the discriminator , as
presented in the original paper [18].

21

2. Theory

2.4 Unsupervised Image-to-Image Transla-
tion: CycleGAN

(a) Input (b) Output

Figure 2.9: Image translation by CycleGAN trained on translating horses to
zebras and zebras to horses.

We have now gone through the necessary material for understanding CycleGAN, one of the
GAN architectures used in this thesis. In this section we describe how it works, as explained
in Zhu et al.’s original paper [10].

CycleGAN is a GAN that performs image-to-image translation with unpaired images.
CycleGAN is fed two domains of images, e.g. horses and zebras, and is trained to translate
each domain to the other.

Unlike other GANs so far mentioned, CycleGAN’s architecture is cyclic: Given two do-
mains of images, X and Y , CycleGAN trains two generators, G : X 7→ Y and F : Y 7→ X .
There are then two discriminators DX and DY , where DX is trained to distinguish x ∈ X and
F(y) where y ∈ Y , and DY is trained to distinguish y ∈ Y and G(x) where x ∈ X .

The most novel feature of the network is its cycle-consistency loss. The loss is meant
to "capture the intuition that if one translates from one domain to the other and back one
should arrive at where one started" [10, p. 3]. In other words, after an image has gone through
a cycle in the network the output should still be consistent with the input, i.e. x → G(x)→
F(G(x)) ≈ x and y → F(y) → G(F(y)) ≈ y. More formally, the cycle-consistency loss can
be expressed as shown in Eq. 2.8 [10].

Lcyc(G, F) = Ex∼pdata(x)[||F(G(x)) − x||1] + Ey∼pdata(y)[||G(F(y)) − y||1] (2.8)

Since the cycle-consistency loss is a pixel-wise reconstruction loss, it will grow big if there
were to be any large changes in position of features e.g. morphing edge shapes, preventing it
from reconstructing the original input image. In order to keep a low pixel-wise reconstruc-
tion loss the generators are encouraged to only change the values of pixels i.e. color and as a
result the transformations retains shape. This is also why CycleGAN is not able generalize to
translation tasks where the domains have di�erent shape, e.g. transforming dogs to cats [10].

The full objective, shown in Eq. 2.9, is then the sum of the adversarial losses forG and F
and the cycle consistency loss (Eq. 2.8), regulated by λ.

L(G, F,DX ,DY) = Ladv(G,DY , X,Y) +Ladv(F,DX ,Y, X) + λLcyc(G, F) (2.9)

22

2.5 Unsupervised Attention-guided Image-to-Image Translation

However, the authors found that this loss can cause unstable training and blurry images.
To remedy this, they replaced the cross entropy loss with a least-squares loss. Then Ladv is
defined so that G minimizes Ex∼pdata(x)[(D(G(z)) − 1)2] and D minimizes Ey∼pdata(y)[(D(y) −
1)2] + Ex∼pdata(x)[(D(G(x))2]

Just like Pix2Pix, CycleGANuses a 70×70 patch discriminator. However, the structure of
the generator is di�erent inCycleGAN. Instead of usingU-Net, the authors of CycleGANhas
adopted a generator architecture from [20] . See Chapter 2.7 for a more detailed description.

G

x

DX F

y

DYG(F(y))

F(G(x))

≈ ≈

F(y)

G(x)

Figure 2.10: Schematic overview of CycleGAN. The generators G and F try to
fool the discriminators DY and DX , while still making sure that the cyclic

transformations G(F(y)) and F(G(x)) are similar to y and x.

2.5 Unsupervised Attention-guided Image-
to-Image Translation

(a) Input (b) Output

Figure 2.11: Image translation by AGGAN trained on translating horses to
zebras and zebras to horses.

The second GAN architecture used in this thesis is AGGAN: an attention-guided GAN. In
this section we describe how it works, as explained in Mejjati et al.’s original paper [21].

23

2. Theory

Comparing the input and output in Fig. 2.9, one sees that CycleGAN succeeds in trans-
lating horses into zebras. However, the background colors have also changed and even lost
detail. To mitigate this problem one would like to exclusively perform the style transfer
on the foreground, in this case the horses, such that original background information is re-
tained. This can be made possible with AGGAN. The approach is based on CycleGAN but is
extended by adding attention networks that select areas to style transfer by maximizing the
probability that the discriminator makes a mistake, i.e. selecting the best area such that the
image resembles an image from the target dataset. Denote AX : X → Xa and AY : Y → Ya as
networks producing attention maps from the datasets X and Y respectively. Each attention
map contains values in the range [0, 1] for each pixel. These attention maps can be thought
of as continuous masks filtering out relevant parts of the image. The following paragraph
will explain how the attention maps operate.

AX

x

G

� +

�

x′

xa

xg

xb

1 − xa

G(x)

AX

G x′ AY

F

x′′≈x

DYy

Figure 2.12: Schematic overview of the attention-guided GAN in one direction,
as outlined in the original paper [21]. Aside from the attention networks and
the operations detailed on the left side of the figure, the overall structure is the

same as in CycleGAN. Note that F and AY are symmetrical to G and AX .

Due to symmetry it is su�cient to describe the algorithm in one direction, namely G :
X → Y . Note that the following explanation is also illustrated in Fig. 2.12. Given an image
x ∈ X , an attention map xa and an inverse attention map 1 − xa are created. The image
is then fed to the generator G yielding G(x). After this, xa is applied to G(x) yielding xg
(the foreground of G(x)) and 1 − xa is applied to x yielding xb i.e. the background of x.
One could interpret xg as the style transferred foreground of the input image and xb as the
input image where the foreground is removed. Finally xg and xb are added together resulting
in a full image x′ where only the foreground has been style transferred. Defining � as an
element-wise product, the algorithm is summarized as

x′ = xa �G(x) + (1 − xa) � x (2.10)

The adversarial loss is similar to CycleGAN’s except that the discriminator will discrim-

24

2.6 GAN losses

inate on x′ rather than G(x)

L
x
adv(G, Ax,DY) = Ey∼pY (y)[logDY (y)] + Ex∼pX (x)[log(1 − DY (x′)] (2.11)

Similar to CycleGAN a cyclic-loss is defined

L
x
cyc(x, x′′) = Ex∼pX (x)[||x − x′′||1] (2.12)

where x” is obtained by applying F and AY on x’, similarly to Eq. 2.10. Combining the
adversarial and cycle-consistency losses for both the source and target domains the total loss
is obtained:

Ltot(G, F, AX , AY ,DX ,DY) = Lx
adv +L

y
adv +λcyc(Lx

cyc +L
y
cyc) (2.13)

where λ is the weight for the cyclic loss.
A problem with this loss is that after some training the discriminator will begin to dis-

criminate on di�erences in background instead of di�erences in foreground (since the back-
ground for horse and zebra images are not the same), leading to the attention maps converg-
ing to one (i.e the attention network attends the whole image). To prevent this, the authors
stop the training of the attention network AX after 30 epochs and one trusts that the atten-
tion maps have converged to correctly attend the foreground.

Another adjustment, made by the authors, to the algorithm after the 30:th epoch, is that
DY will discriminate on the foreground instead of the transformed image x′. The most ob-
vious way to do this is to let DY discriminate on xg. However, this would pose a problem
since then the discriminator would receive small pixel values (each pixel should be a rela-
tively "strong" pixel from either background or foreground). Instead, the attention map xa
is thresholded to only contain pixel values greater than the transition rate τ, which is set to
0.1. The discriminator now discriminates on x′new and ynew (see Eq. 2.14 and 2.15)

x′new =

G(x), i f AX(x) > τ
0, otherwise

(2.14)

ynew =

y, i f AY (y) > τ
0, otherwise

(2.15)

where x′new and ynew are masked versions of x′ and y respectively. The adversarial loss now
becomes

L
x
adv(G, Ax,DY) = Ey∼pY (y)[logDY (ynew)] + Ex∼pX (x)[log(1 − DY (x′new))] (2.16)

2.6 GAN losses
When training GANs one is not always satisfied with only having an adversarial loss. Some-
times one wants to impose restrictions on the GAN. In this case, defining additional losses
can be of use. The choice of these additional loss function is often dependent on the appli-
cation i.e. the dataset. Below we present some of these additional losses that we use in our
work.

25

2. Theory

Identity loss
In CycleGAN [10], the cyclic losses force the transformationsG(x) and F(y) to be reversible.
That is, there are no losses restricting G(x) (besides the adversarial loss) as long as F is able
to reverseG’s transformation, F(G(x)) ≈ x, and vice versa. For some datasets this could give
the generators more freedom than desired. One solution is to define a loss that penalizes
changes between the input of a generator and its output - known as an identity loss. In its
simplest form, it can be defined as the pixelwise L1 norm. Given a generator G it would be
defined as seen below.

LID = Ex∼pdata(x)[||G(x) − x||1] (2.17)

Due to the adversarial loss, G would still try to approximate its target datasets, but it
would now be restrained as to not deviate too far from the source dataset. Since the pe-
nalization is pixelwise and pixels represent color, this loss would make an e�ort to preserve
color. This is demonstrated in Fig. 2.13.

Figure 2.13: E�ect of using an identity loss on a Monet to photo mapping using
CycleGAN, as shown in [10].

Perceptual loss
Whenworking with images it oftenmakes sense to characterize an image in terms of features,
such as edges, corners, contrast, or di�erent objects. This makes it possible to describe images
in a more abstract space than just representing them with pixels. These image features are
also known as perceptual features, since they are supposed to capture what humans perceive
in images. For example, when adjusting the value of the contrast feature of an image, a human
will be able to perceive the transformation. However, when adjusting the value of a single
pixel, it is not evident that a human will register this change.

Summarily, perceptual image features give us a method of abstractly expressing the defin-
ing characteristics of an image.

A perceptual loss function penalizes changes in perceptual image features between an
input image and an output image. In computer vision tasks, it is common to utilize the
feature space of VGG16 [22], a convolutional neural network trained on ImageNet, as first
done by Johnson et al. [20]. The feature space is a multidimensional space of feature vectors,
i.e. vectors comprising feature representations of images. The idea is that similar images
produce similar feature vectors and therefore have a short euclidean distance between them.
Thus, given the assumption that our features can accurately represent images, it is a good
measure of image similarity.

26

2.6 GAN losses

In the context of image-to-image translation, we use this loss to preserve features of the
input images. For an architecture like CycleGAN, it can be utilized as either an identity loss
or as a cyclic loss.

Cyclic VGG16 loss
[23] proposed an extended CycleGAN network with a cyclic perceptual loss. This was done
by adding an additional cyclic loss in Eq. 2.9 with the same structure as Eq. 2.8, but modified
to measure distance in VGG16 feature space instead (See Eq. 2.18 below), where V is a map
that takes an image and produces the VGG16 feature representation of its input:

LCycV gg16(G, F) = Ex∼pdata(x)[||V (F(G(x)))−V (x)||2+Ey∼pdata(y)[||V (G(F(y)))−V (y)||2] (2.18)

In Eq. 2.18, feature vectors from the second and the fifth max pooling layer of VGG16 are
used. Since second max pooling layer filters detect simpler low level shapes and patterns such
as circles and stripes, and the fifthmax pooling layer filters detectmore complex features such
as faces and bodies [24], this forces the network to preserve both low and high-level features.

Identity VGG16 loss
Another application of the perceptual loss would be to use it in an identity loss between the
input image x and the generated image G(x)

LIdV gg16(x,G) = Ex∼pdata(x)[||V (G(x)) − V (x)||2 (2.19)

This forces the generated imageG(x) to be similar to the input image x in VGG16 feature
space. One might think that this restriction is too aggressive, resulting in no transformation
at all. This is the case if all the image features from each max pooling layer of the VGG16
network are included, but one can decide whether to use deep or shallow layers depending on
whether one wants to penalize changes of high level features or changes of low level features.

Aside from which layers are used, the aggressiveness of this loss naturally depends on its
relative weight compared to other losses.

Mean feature VGG16 loss
A third way to use perceptual di�erences is to compute the mean feature vector of the target
dataset in VGG16 space and try to force each generated image to have similar features to the
mean feature vector. Using an identity loss we can express this idea as follows.

Lmean(G,Y) = Ex∼pdata(x)[||V (G(x)) − V (Ey∼pY (y)[Y])||2] (2.20)

Discriminator feature cyclic loss
Since a perceptual loss is not tied to any specific feature space, we could also use the feature
space of the discriminator. We define a cyclic loss for the activations coming from the j : th

27

2. Theory

layer in the discriminator as follows.

� j
CycDisc(G, F) = Ex∼pdata(x)[||d j(x)−d j(F(G(x)))||2+Ey∼pdata(y)[||d j(y)−d j(G(F(x)))||2] (2.21)

From this the total loss is computed by summing over the di�erent activations from the
layers

LCycDisc(G, F) =
N∑

j=1

� j
CycDisc(G, F) (2.22)

Penalizing the network based on the discriminator’s perceptual di�erences is free of
charge since no additional nodes or weights need to be added, but unlike VGG16 the discr-
iminator is not pretrained.

While a perceptual loss in the feature space of VGG16 helps retain all features, a per-
ceptual loss in the feature space of the discriminator helps to retain the features that are
characteristic of the dataset, since that is what the discriminator’s activations are trained to
detect. One drawback of course is that the feature space of the discriminator is changing
throughout the training [25].

2.7 Architecture of Image-to-Image Trans-
lation networks

Minibatch discrimination
Since the discriminator lacks memory, it has no way of recalling how previously seen gen-
erated samples look. This means that the discriminator can forget di�erent features that
characterize the generated distribution, which the generator then can take advantage of.

To combat this, Shrivastava et al. introducedminibatch discrimination [2]. Instead of only
discriminating on the latest generated samples, the discriminator discriminates on a random
sample of recent generated samples. This provides the discriminator with a limited memory
of how recent generated images look and limits the generator’s ability of re-introducing ar-
tifacts that previously fooled the discriminator. Note that real samples are not handled this
way, since that distribution is constant. There is therefore no need for the discriminator to
have any memory of previously seen real samples.

This method is not to be confused with simply having a batch size larger than one. In
that case, the batch of generated samples would come from the same generator and would not
provide historical information. In the case of minibatch discrimination, the sampled images
come from di�erent generators.

This method was also implemented in CycleGAN, with a minibatch size of 50 [10] (and
by extension in AGGAN [21]).

Fractionally strided convolutions
In image processing there is often a desire to reverse the process of an image convolution.
Since a convolution reduces the dimension of its input it can not be an injective function

28

2.7 Architecture of Image-to-Image Translation networks

and therefore no unique inverse can exist. However, one can create a one-to-many mapping
by creating a pseudo-inverse. One approach is to use fractionally strided convolutions. It is
quite similar to a normal convolution in terms of operations, but instead of down-sampling
the input, it is instead up-sampled. A fractionally strided convolution will still perform a
convolution on the image, but it will do so on a zero padded one.

Consider a trivial example with an input image of dimension 2 × 2. To perform a frac-
tionally strided convolution one pads the input with a 2 × 2 zero padding, convolves this
with a 3x3 kernel with stride 1 and one ends up with an up-sampled image with dimension
4x4 (see Fig. 2.14).

Figure 2.14: Demonstration of a fractionally strided convolution, as illustrated
in [26].

In the context of GANs, this is desired in generators with an autoencoder-like architec-
ture, where the input image is down-sampled into a feature vector with repeated convolutions
and then upsampled with repeated fractional convolutions to produce an image. This was in-
troduced by [20], whose autoencoder structure is used in GANs such as CycleGAN [10]. In
their paper [20], they reason that instead of using a static upsampling function, e.g. bicu-
bic interpolation, a fractionally strided convolution is preferable since its transformation is
learnable.

Generator skip connections
In many image-to-image translation tasks one wants to preserve the structure of the input
image. As mentioned in Section 2.6, this can be achieved using an identity loss. Another way
to force the generator to preserve input image features is to use skip connections, as done with
U-Net in [18] where encoder layer outputs are fed forward and concatenated with decoder
layers. However, simpler solutions exist as well such as the one in [27], where an additive skip
connection is added between the input and output layer of the generator.

29

2. Theory

0.1 -1 0.1 0.3 0.2 1 0.2 0.4 -0.9 Input image

0.5 0.1 0.8 0.1 0.9 -1 0.2 0.4 -0.2 Upsampled image

+

0.6 -0.9 0.9 0.4 1.1 0 0.4 0.8 -1.1

ϕ

0.5 -0.7 0.7 0.4 0.8 0 0.4 0.7 -0.8 Output image

Skip connection

Figure 2.15: Conceptual architecture of a generator with a skip connection
between the input and output layer.

Residual network

x

W1

W2

+

W2 · ϕ(W1x) + x

ϕ

Figure 2.16: A ResNet building block. Wi are the weights of each respective
layer and ϕ is the activation function.

Proposed by He et al., ResNet [28] is a neural network structure built of components (ResNet
blocks) as seen in Fig. 2.16. These ResNet blocks allow deeper networks without introducing
degradation in training accuracy. Consequently they are able to increase learning, since they
allow gradients to take shortcuts, making them less likely to decay when being backpropa-
gated.

30

2.7 Architecture of Image-to-Image Translation networks

Generator
The generator architecture in CycleGAN is borrowed from Johnson et al.’s generator [20] and
comprises three parts: an encoder, a transformer, and a decoder. The purpose of the encoder
is to represent the input image in a condense space with high level feature maps. This is done
using a reflection padding and three convolutional layers. The encoded result is then sent to
the transformer. This is where the actual transformation of the image takes place, but it is
done in the high level encoded space. The transformer is composed of a series of nine ResNet
blocks each having 3×3 filters. Then this transformation is fed into the decoder which task is
to revert the feature maps back into image space. This is done using two fractionally strided
convolutions, a reflection padding and a convolution. A detailed description of each layer
can be found in Table 2.2 and an overview of the architecture in Fig. 2.17.

Layer type Filter size #Filters Stride
Reflection padding - - -
Convolution-InstanceNormReLU 7X7 64 1
Convolution-InstanceNormReL 3X3 128 2
Convolution-InstanceNormReLU 3X3 256 2
9 ResNet blocks - - -
Fractional-strided-Convolution-InstanceNorm-ReLU 3X3 128 1

2
Fractional-strided-Convolution-InstanceNorm-ReLU 3X3 64 1

2
Reflection mpadding - - -
Convolution-InstanceNormReLU 7X7 3 1

Table 2.2: Generator architecture of CycleGAN [10].

31

2. Theory

Input image 128 × 128 × 3

Reflection padding 134 × 134 × 3

Convolution 128 × 128 × 64

Convolution 64 × 64 × 128

Convolution 32 × 32 × 256

ResNet block 32 × 32 × 256

ResNet block 32 × 32 × 256

ResNet block 32 × 32 × 256

ResNet block 32 × 32 × 256

ResNet block 32 × 32 × 256

ResNet block 32 × 32 × 256

ResNet block 32 × 32 × 256

ResNet block 32 × 32 × 256

ResNet block 32 × 32 × 256

Fractional convolution 64 × 64 × 128

Fractional convolution 128 × 128 × 64

Reflection padding 134 × 134 × 64

Convolution 128 × 128 × 3

Transformer

Encoder

Decoder

Figure 2.17: The generator architecture of CycleGAN [10]. On the right hand
side of the figure, we see the dimension of each layer output.

Discriminator
Table 2.3 lists the di�erent layers of the discriminator described in Section 2.3. A more
intuitive image is also shown in Fig. 2.18.

32

2.8 How we utilize GANs

Layer type Filter size #Filters Stride
Convolution-LeakyReLU 4X4 64 2
Convolution-InstanceNorm-LeakyReLU 4X4 128 2
Convolution-InstanceNorm-LeakyReLU 4X4 256 2
Convolution-InstanceNorm-LeakyReLU 4X4 512 2
Convolutional layer that maps to a 1-dimensional output - - -

Table 2.3: Discriminator architecture of CycleGAN [10].

Input image 128 × 128 × 3

Convolution 64 × 64 × 64

Convolution 32 × 32 × 128

Convolution 16 × 16 × 256

Convolution 16 × 16 × 512

Convolution 16 × 16 × 1

Figure 2.18: The discriminator architecture of CycleGAN [10]. On the right
hand side of the figure, we see the dimension of each layer output.

2.8 How we utilize GANs
In our thesis, we use CycleGAN [10] and AGGAN [21] to refine our synthetic images.

CycleGANwas chosen due to its unsupervised approach and success with image-to-image
translation where the domain shapes are the same. Since our synthetic humans have motion
capture poses captured from real humans (explained in Section 3.2), we assume that the syn-
thetic and real domains have similar enough shape in order for this to work. In addition,
CycleGAN was also used by Wessman and Andersson in [1] with moderate success.

However, with CycleGAN we found two severe limitations for our application: 1) back-
ground was transformed heavily; and 2) synthetic humans were distorted. To solve the first
problem of background transformation, we tried using AGGAN since that is the exact pur-
pose for which it was introduced. To solve the second problem of distortion, we introduced
additional losses (described in Section 2.6) in order for the synthetic humans to retain struc-
ture and not distort.

Theory described in Sections 2.1-2.3 and Section 2.7 is provided to improve the reader’s
understanding of CycleGAN and AGGAN.

33

2. Theory

2.9 Object detection: SqueezeDet

Figure 2.19: SqueezeDet detections. Boxes in green are ground truth labels.
Boxes in red are the network’s predictions, along with the respective predicted

confidence scores.

To measure whether our refined synthetic data can replace real human head detection train-
ing data, we need an object detection network. Chosen for this task is SqueezeDet [3].

SqueezeDet is a neural network architecture that takes images as input and produces
labeled bounding boxes as output. It comprises three main components: a convolutional
neural network that extracts a feature map; a detection layer which takes the feature map
and produces bounding boxes and label predictions; and finally a filter that sifts through the
redundant labeled bounding boxes and outputs the final detections.

While there are many architectures that can be used for object detection, SqueezeDet
is particularly well-suited for embedded applications. The final network size is less than 5
MB, and the inference speed is fast enough for real time inferences. When published, it also
performed on par with other state-of-the-art architectures many times larger in network size
and slower in inference speed.

The loss function of the network is comprised of three parts: 1) a bounding box regression
which maximizes the spatial accuracy of predicted bounding boxes; 2) a confidence score re-
gression thatmaximizes the probability of a predicted bounding box containing an annotated
object; and 3) a class cross entropy which minimizes misclassifications.

34

2.10 Evaluation metrics

Input image Convolutional layers Feature map Detection layer Bounding boxes Final detections

Figure 2.20: Schematic overview of SqueezeDet. The image is fed through a
convolutional neural network which produces a feature map of the image. The
detection layer then predicts anchors for each spatial position of the feature
map. These anchors are then translated back to the coordinate system of the

original image and filtered to produce the final detections.

In our case, we have one class since we wish to identify human heads only. In practice,
our loss is thus comprised solely of the bounding box and confidence score regressions.

In order to predict bounding boxes, predefined bounding box dimensions are defined
manually and given to the network. These are called anchors. The detection layer convolves
the feature map and predicts for each position on the feature map if there any anchors that
are likely to contain a human head. The feature map predictions are then translated to the
original dimensions of the input image. Overlapping predictions are then filtered with Non-
Maximum-Suppression and predictions with a low confidence score are removed. What re-
mains are the final predictions of the network.

2.10 Evaluation metrics
Binary classification metrics
To evaluate the quality of a given binary classification model, one can measure its precision
and recall. Precision measures the accuracy of all positive predictions. This is done by nor-
malizing the number of true positives (TP) with the sum of the number of true positives and
false positives (FP), as seen in Eq. 2.23. Recall measures how many of the true positives were
positively predicted. This is done by normalizing the number of true positives with the sum
of the number of true positives and false negatives (FN), as seen in Eq. 2.24.

p =
TP

TP + FP
(2.23)

r =
TP

TP + FN
(2.24)

35

2. Theory

0
0.5

1 0

0.5

1
0

0.5

1

r
p

F 1

Figure 2.21: Harmonic mean of r and p (the F1-score), as seen in Eq. 2.25.

There exists an inherent trade-o� between these metrics, where it is hard to gain an
increase in one metric without a decrease in the other [29]. In order to find a model with
relatively good performance in each metric, one can use the harmonic mean between p and
r as a metric instead. This is known as the F1-score (Eq. 2.25).

F1 =
2 · r · p
r + p

(2.25)

As seen in Fig. 2.21, the F1-score approaches 1 if and only if both p and r approach 1.
Thus, when evaluating a model, the F1-score is a suitable metric to use in order to strike a
good balance between precision and recall.

While it is straight forward to calculate precision and recall given a classification task,
the calculations need to be adjusted when used for object detection. To account for the
spatial accuracy, a threshold value τ is introduced such that a predicted bounding box p is
only counted as correct if the intersection-over-union IOU(p, t) > τ, for any ground-truth
bounding box t ∈ TP (see Fig. 2.22 for an intuitive definition of IOU(p, t)).

A, B

A ∩ B

A ∪ B

IOU(A, B) = A∩B
A∪B

Figure 2.22: Visualization of the intersection-over-union IOU(A, B) of two
arbitrary bounding boxes A and B. The intersection of the bounding box areas
is normalized by the union of the bounding box areas. The range is [0, 1], since

0 ≤ A ∩ B ≤ A ∪ B.

36

2.10 Evaluation metrics

Fréchet Inception Distance
The Fréchet Inception Distance [30] (preceded by the Inception Score [31]) is a measurement
used for comparing the similarity of two multivariate Gaussians Xr ∼ N(µr ,Σr) and Xg ∼

N(µg,Σg):

FID(Xg, Xr) = ||µr − µg||
2 + Tr(Σr + Σg − 2(ΣrΣg)

1
2) (2.26)

where Xr and Xg are the 2048-dimensional activations from the pool3 layer in the Incep-
tion network [32], µr , µg the mean vectors and Σr , Σg the covariance matrices.

In the context of GANs, Xr represents the activations of real image samples and Xg the
activations of generated image samples. To compute the Fréchet Inception Distance between
these two sets of image activations one assumes that an activation is generated from a mul-
tivariate gaussian distribution. This allows us to to estimate a real distribution pr and a
generated distribution pg from Xr and Xg respectively i.e. computing mean vectors and co-
variance matrices. Since a multivariate gaussian is fully determined by its mean vector and
covariance matrix, we simply compare these two entities for the two distributions pr and pg.
This comparison is done by Eq. 2.26. If the mean vectors and the covariance matrices for the
two distributions were to align, we see that Eq. 2.26 would evaluate to zero, which makes
sense since it measures distance.

In our thesis we use this metric to compare visual similarities between the synthetic, re-
fined synthetic, and real datasets. Since the metric is measuring distances between estimated
distributions, we work to obtain results where the distance from the refined synthetic dataset
to the real dataset is low.

Principal Component Analysis
As mentioned in Section 2.6, images can be represented with perceptual features. When us-
ing VGG16, one often extracts thousands of these features from various max pooling layers to
achieve a good representation of the image. To get a better understanding of a dataset, visu-
alizing these features is often helpful, but plotting them is impossible due to the high dimen-
sionality. By using Principal Component Analysis (PCA) one can find a lower dimensional
representation of these features and at the same time preserve as much variance as possible
from the original features. These lower dimensional representations can then be plotted in
order to better understand the dataset. One normally reduces the number of dimensions to
two or three, to alleviate plotting.

In our thesis we use this metric to visualize how our datasets are distributed. The three
datasets (synthetic, refined synthetic, real) are assumed to be one dataset with di�erent
"classes". We then perform PCA on this combined dataset and visualize the images on a
scatter plot to see how the cluster of refined synthetic images relate to the synthetic and real
clusters. If we are successful, the refined synthetic cluster should be very similar to the real
cluster and not the synthetic cluster.

37

2. Theory

38

Chapter 3

Method

All computational work presented in this thesis was performed at a workstation with the
following specifications: an NVIDIA Geforce RTX 2070 graphics card, an Intel Core i7-
4790K CPU, and 16 GB RAM.

3.1 Strategy
We create a pipeline that produces refined synthetic datasets and evaluates the quality of
these. It comprises three steps as presented below. Input are background images of the en-
vironment(s) we want to produce synthetic images of and GAN parameter settings that are
used for the refinement. Output is a set of refined datasets and a comprehensive evaluation
of how useful these datasets can be as training data.

Thus, after a set of GAN parameter configurations have run through the pipeline we can
immediately see which of the configurations yielded the best detection performance. With
this, we can swiftly test new ideas and configurations and get automatic feedback on whether
the results are good or not. The process pipeline consists of three key building blocks (see
Fig. 3.1):

1. Renderer: we render a synthetic dataset S that roughly approximates the real dataset
Rtrain using the image rendering software Blender [33]. This is further explained in
Section 3.2.

2. Refiner: we use GANs to refine the synthetic dataset S in order to further approximate
Rtrain, producing a set of refined synthetic datasets S+. Note that we use Rtrain to train
the GAN that is then used to refine the synthetic dataset S. This is further explained
in Section 3.3.

3. Evaluation: we train SqueezeDet on S, Rtrain, and each member s+i ∈ S+ respectively.
We then evaluate their performance on Rtest . This is further explained in Section 3.4.

39

3. Method

The real dataset R has been splitted into three subsets: Rtrain, Rval, and Rtest . Rtrain is used
as the target dataset in the refinement step. Rval is used in the evaluation step to select the
best performing models, and Rtest is used to evaluate the real world performance.

Renderer

Refiner i

Ms+iMS MR

Evaluation on Rtest

Performance of Ms+iPerformance of MS Performance of MR

backgroundsmodels Rtrain

S

S+i

Figure 3.1: Schematic overview of our pipeline. For each refiner i, i ∈ {1 . . .N},
we produce a refined synthetic dataset S+i . In turn, for each dataset S+i we train
a SqueezeDet network MS+i . These results are then evaluated and compared
with the performance of MS (network trained on synthetic data) and MR

(network trained on real data).

3.2 Rendering
We use Blender 2.79 [33], a graphics software tool, to render 3D human models and super-
impose them on top of the background image. To avoid unrealistic placements of our human
models, we annotate the background with object locations, such as tables, and randomize the
human positions until there are no collisions with other human models or objects. Not only
does this let us avoid object collisions, but it also allows us to place models behind annotated
objects (notice for example in Fig. 3.4 that the legs of the sitting models have been cut at the
table edge, giving a sense of depth).

To realistically superimpose our models on the image, we adjust the size of the models de-
pending on the euclidean distance to the camera. We then randomize the lighting, add some

40

3.2 Rendering

slight motion blur to our models, and project model shadows on to the background image.
Further, the rendering is done with a fisheye lens, to accurately capture the deformations of
the real dataset.

To render human models, we use a Blender addon called ManuelBastioniLAB 1, which
allows us to vary di�erent characteristics of our human models (such as clothes, skin, and
hair) and to apply di�erent poses to our models. See Algorithm 4 (Appendix) for more
details.

For sitting poses, we use a default pose available in ManuelBastioniLAB and randomly
rotate the body tilt. For standing poses, we use motion capture data from CMU Graphics Lab
Motion Capture Database [35].

(a) (b)

Figure 3.2: Sitting models.

(a) (b) (c)

Figure 3.3: Standing models with randomly sampled motion capture poses.

1ManuelBastioniLAB is no longer maintained or publicly available at its website
http://www.manuelbastioni.com/, but is available from the Github fork MB-Lab [34]

41

http://www.manuelbastioni.com/

3. Method

+

Background Foreground

Foreground superimposed onto the background

Figure 3.4: Schematic overview of how the synthetic images are generated.

3.3 Refiner
3.3.1 Full size images
Webeganwith refining a dataset of synthetic people rendered on 40 di�erent o�ce locations.
The real dataset comprised images from the same locations with real people in them. We
resized our images to 448x336px (the maximum capability of our workstation due tomemory
limitations) and set λ to 10 (Eq. 2.9), in accordance with the CycleGAN paper [10].

42

3.3 Refiner

(a) Synthetic image (b) Refined image

Figure 3.5: A synthetic image sample refined by CycleGAN. Annotations are
not preserved and image quality is reduced.

Fig. 3.5 shows a sample of the results of this approach. Synthetic humans were categoric-
ally erased and replaced with background information and real humans were occasionally
drawn in positions where there was no synthetic human in the input image. Even if we had
managed to refine some synthetic humans, we would thus still have a problem of false neg-
atives - since having humans in unannotated positions would penalize the object detection
network.

In Fig. 3.5a, there is one synthetic human positioned in the right side of the image with
brown clothing. As seen in Fig. 3.5b, the synthetic human has been erased and replaced
with background information - while two "real" humans have been drawn in the middle of
the image. The observant reader may also notice that some of the computer screens have
been turned on. Aside from the annotation information not being preserved, we can also
observe that the image quality is drastically reduced (especially the lighting and contrast).
Background information is retained, but at much lower detail.

Due to the results, we did not perform a full pass through the pipeline and stopped the
refinement.

We then moved on to a synthetic dataset of people rendered on only one o�ce location
(S), and a real dataset of images from the same location (R). This was an attempt to simplify
the problem: intuitively the distribution of one location should be easier to approximate. λ
was again set to 10 (Eq. 2.9).

43

3. Method

(a) Synthetic image from S (b) Refined image from S

Figure 3.6: A synthetic image sampled from S refined by CycleGAN.
Annotations are not preserved and realism is questionable.

(a) Synthetic image from S (b) Refined image from S

Figure 3.7: A synthetic image sampled from S refined by CycleGAN with a
cyclic pixel (λ = 10) and feature loss (λ = 10−5). Annotations are more

preserved than in Fig. 3.6, but are still lost to some extent while realism is still
questionable.

This approach did not end well either, with frequent erasures of synthetic humans, and
unrealistic modifications of the background. In the sample in Fig. 3.6, we see that two out
of three synthetic humans have been erased and a fourth human seems to have been drawn
from scratch.

In Fig. 3.7, we see a sample using the same approach but with a cyclic feature loss and
skip connections. We observe that the GAN still wishes to erase some synthetic humans and
unrealistic drawings are added.

The images in R frequently contain people sitting at their computers (see e.g. Fig. 3.8).
The result of this is that our images consistently contain computers and they are thus a rep-
resentative feature of the dataset. It is thus not surprising that during refinement, the GANs
tried to draw computers from scratch - since many real images have them! This can be seen
in both Fig. 3.6 and Fig. 3.7. The realism of these computers is however questionable.

44

3.3 Refiner

It is likely that the erasure of synthetic humans was due to the discriminator’s architec-
ture. Recall that CycleGAN uses a PatchGAN as its discriminator (explained in Section 2.3)
and as such only discriminates on local patches of an image. Thus, given full size images,
the majority of real image patches would be comprised of background information and the
generator would therefore be incentivized to generate images comprising background infor-
mation. Further, the cyclic loss of replacing synthetic humans with background information
is quite low, since the synthetic humans amount to a small share of the total number of pixels.

We only later discovered that multi-instance transformation, where the desired fore-
ground is not explicit, is still a hard problem in this field, where progress has only recently
begun to take shape [36]. However, the technique presented in “InstaGAN: Instance-aware
Image-to-Image Translation” [36] is supervised and requires conditional masks of both do-
mains. While we could produce ground truth masks for the synthetic images, we naturally do
not have the capability to do so for real images. Of course, we could use a pretrained mask-
ing network such as [37], but whether it would perform well on fisheye images from above is
uncertain. We therefore moved on to the following approach.

3.3.2 Cropped images

(a) Image with annotated head positions (b)Masked bounding boxes of humans

(c) Crop of the human on the left (d) Crop of the human on the right

Figure 3.8: Given an image with annotated head positions, we extract bounding
boxes directed towards the center of the image and rotate them upright. We
then crop these bounding boxes and receive our cropped images used for

refinement.

45

3. Method

Due to the previous failed results, we decided to crop the images to isolate the humans as the
foreground.

The real dataset R comprises around 800 images annotated with human head positions.
Using these labels, we automatically cropped the images such that they always featured a
human head at the same location, as seen in Fig. 3.8. A more detailed description of this
cropping procedure can be seen in Algorithm 5 (Appendix).

Note that we now transition from an unsupervised approach to a semi-supervised ap-
proach, since we now need positional annotations of humans in order to create our real
dataset.

To create our synthetic dataset we again follow Algorithm 5 (Appendix) and perform the
same procedure as in Fig. 3.8, the di�erence being that the head annotations are automatically
generated at render-time.

We then refine the cropped synthetic dataset with a GAN. After refinement, the cropped
images are reinserted onto their original images, superimposed onto their original location,
and masked such that only the synthetic human is refined and not any background informa-
tion (see Algorithm 6 in Appendix). We then use this as training data for the object detection
network, as outlined in Fig. 3.1. Due to the added crop- and reinsert procedures, the Refiner
block in Fig. 3.1 is modified as shown in Fig. 3.10. Whereas it in our previous approach was
simply a GAN with S and Rtrain as input, it is now modified to encompass an image cropper,
a GAN, and an image reinserter. With our new approach it takes, in addition to S and Rtrain,
a dataset Sa as input, where each image sa ∈ Sa is a ground truth mask of an image s ∈ S.

As seen in Fig. 3.9, our early results showed generated computers (just like with the full
size images, but now a bit more realistic). To prevent this, we filtered the cropped real train-
ing set cRtrain to not consistently include computers. As expected, the GANs then stopped
drawing them.

In Table 3.1, we present the final synthetic and real datasets (cropped and uncropped)
that we have used. Since [2] only gained better performance with a synthetic dataset larger
than the real, we alsomake sure that our synthetic dataset is much larger than our real dataset.

(a) Input (b) Output

Figure 3.9: Synthetic and refined synthetic sample, where a computer has been
drawn from scratch.

46

3.3 Refiner

Dataset Size Description

Rtrain 102 Real train dataset
Rval 142 Real validation dataset
Rtest 575 Real test dataset
cRtrain 272 Cropped images from Rtrain
S 1498 Synthetic dataset
cS 5576 Cropped images from S

Table 3.1: A table of our synthetic and real datasets.

3.3.3 GAN networks
Having produced a set of "good" crops of real images we started training di�erent GANs
through the pipeline. Among them were the original CycleGAN, CycleGAN with various
combinations of feature and pixel losses, and AGGAN. For each configuration we also ex-
periment with skip connections connecting the input and output layer in the generator.

The complete list of used GAN models is seen in Table 3.2 along with their respective
refined datasets. We do not list the corresponding cropped refined datasets, but instead rely
on the following notation. For any refined dataset X , let cX denote the dataset of cropped
images from X . Note that the size of each refined dataset X is equal to that of the synthetic
dataset S and the size of each cropped refined dataset cX is equal to that of the cropped
synthetic dataset cS.

Also note that the right hand side subscripts of the dataset names indicate what losses
were used during training of the GAN.CP is a cyclic pixel loss (Eq. 2.8),CF is a cyclic feature
loss (Eq. 2.18), IP is an identity pixel loss (Eq. 2.17), and IF is an identity feature loss (Eq.
2.19).

A right hand side superscript S indicates that skip connections were used in the generator.
Thus, there exist two versions of each refined synthetic dataset: X , without generator skip
connections, and XS, with generator skip connections.

All weight variations (the values of λ) in Table 3.2 were done by trial-and-error. Most
loss- and architecture variations were performed by referencing literature in the field, such
as using VGG16 [23] and discriminator feature losses [25]. Datasets M and MS are of our
own invention, where we had the intuitive idea that a mean feature loss (presented in Section
2.6) would help to nudge the generator’s transformations towards the direction of the target
dataset.

We also include a dataset (CCP) produced by a default implementation of CycleGAN for
reference, to validate that our variations are better at this task than the default implementa-
tion.

47

3. Method

Dataset Size Refined with . . . Loss equa-
tion

VGG16
pooling
layers

Discriminator
convolutional
layers

CCP 1498 CycleGAN with a cyclic pixel loss (λ =
10)

2.8

CCPCF 1498 CycleGAN with a cyclic pixel loss (λ =
10) and a cyclic feature loss (λ = 10−5)

2.8, 2.18 2

CCPCFIF 1498 CycleGAN with a cyclic pixel loss (λ =
10), a cyclic feature loss (λ = 10−5), and
an identity feature loss (λ = 5 · 10−6)

2.8, 2.18,
2.19

2

CCPCFIP 1498 CycleGAN with a cyclic pixel loss (λ =
10), a cyclic feature loss (λ = 10−5), and
an identity pixel loss (λ = 10)

2.8, 2.18,
2.17

2

D 1498 CycleGANwith a cyclic feature loss in the
discriminator’s feature space (λ = 10−5)
and an identify feature loss (λ = 5 · 10−6)

2.21, 2.19 1, 2, 3, 4

M 1498 CycleGAN with a mean feature loss (λ =
10−5) and an identity feature loss (λ = 5 ·
10−6)

2.20, 2.19 2, 5

A 1498 AGGAN with a cyclic pixel loss (λ =
10−5)

2.12

CS
CP 1498 CycleGAN with a cyclic pixel loss (λ =

10)
2.8

CS
CPCF 1498 CycleGAN with a cyclic pixel loss (λ =

10) and a cyclic feature loss (λ = 10−5)
2.8, 2.18 2

CS
CPCFIF 1498 CycleGAN with a cyclic pixel loss (λ =

10), a cyclic feature loss (λ = 10−5), and
an identity feature loss (λ = 5 · 10−6)

2.8, 2.18,
2.19

2

CS
CPCFIP 1498 CycleGAN with a cyclic pixel loss (λ =

10), a cyclic feature loss (λ = 10−5), and
an identity pixel loss (λ = 10)

2.8, 2.18,
2.17

2

DS 1498 CycleGANwith a cyclic feature loss in the
discriminator’s feature space (λ = 10−5)
and an identify feature loss (λ = 5 · 10−6)

2.21, 2.19 1, 2, 3, 4

MS 1498 CycleGAN with a mean feature loss (λ =
10−5) and an identity feature loss (λ = 5 ·
10−6)

2.20, 2.19 2, 5

AS 1498 AGGAN with a cyclic pixel loss (λ =
10−5)

2.12

Table 3.2: A table of our refined datasets. Unless otherwise specified, feature
losses are defined in VGG16’s feature space. Datasets with a superscripted S
indicate that the respective generator had skip connections drawn between its
input and output layers. The last two columns describe which layers were used

in the respective feature losses.

48

3.4 Evaluation

3.4 Evaluation
Having rendered a synthetic dataset and refined it with di�erent GAN models (refiners),
we evaluate the quality of the refined dataset using it as training data for SqueezeDet and
test the performance on Rtrain. We then compare the test F1-score of all trained SqueezeDet
networks, to evaluate the quality of our datasets. Further, we measure the Fréchet Inception
Distance from the refined datasets to the synthetic and real datasets to get a quantitative
measure of how much we are able to approximate the real dataset. For some datasets we also
use PCA, as explained in Section 2.10.

The whole pipeline algorithm can be seen in its most distilled form in Algorithm 3. See
the Appendix for the subroutines called on in Algorithm 3.

It should be noted that the sizes of our refined synthetic datasets are not equal to the
size of the real training dataset Rtrain. We are however careful to make sure that the refined
synthetic datasets require exactly the same real images present inRtrain during the refinement
process. Thus, even though the dataset sizes di�er, the detection performance comparisons
are still fair since all datasets have required the same amount of supervised data to produce
(excluding the synthetic dataset S).

Algorithm 3 Our pipeline algorithm

1: collect a real dataset R. Split into Rtrain, Rval, Rtest
2: collect a set of background images B of the same environment as R
3: let S = RENDER(B)
4: let re f iner_con f igs = refiner configurations from Table 3.2
5: for r ∈ re f iner_con f igs do
6: let S+ = REFINE(S,Rtrain, r)
7: train SqueezeDet on S+
8: pick the training checkpoint i with the best F1-score by validating on Rval
9: evaluate the network using checkpoint i on Rtest
10: end for

3.5 Implementation
3.5.1 CycleGAN and AGGAN
For CycleGAN [10], we use a TensorFlow implementation [38] and modify it to support
custom image sizes and the losses described in Section 2.6. Further we add support for skip
connections between the generator input and output. The discriminators and generators
used are thus identical to that of Fig. 2.17 and 2.18, except for the added skip connection in
the generator.

For AGGAN [21], we re-implement the original paper by extending the same TensorFlow
implementation as before [38] and validate our implementation on the horse2zebra dataset.

The following training parameters were used for all GANs in Table 3.2. The batch size
was set to 1, so that for each iteration a discriminator would discriminate on one real and one
generated image. The number of training epochs used was 160, so that the network would

49

3. Method

in total process 160 ·min(|Rtrain|, |S|) number of images during training. The initial learning
rate was set to 0.0002 and then set to slowly decay after 80 epochs (as seen in Algorithms 8
and 9 in Appendix). In all networks based on CycleGAN, the number of filters in the first
convolutional layer of the discriminator and generator is 64. For AGGAN, the corresponding
numbers of filters are 64 for the discriminator and 32 for the generator. The discriminator
uses a minibatch discrimination size of 50. We use an Adam optimizer with a momentum
term of 0.5.

3.5.2 SqueezeDet
For SqueezeDet [3], we use a Keras implementation [39] that uses pretrained weights from
ImageNet [40] and modify it to support our problem. Specifically we change the anchor sizes
to reflect the sizes of human heads, add support for our annotation files, and configure it to
automatically integrate with the pipeline.

Cropper

GAN

Reinserter

Refiner

Sa S

Rtrain

S+

s ∈ Sr ∈ Rtrain

sa ∈ Sa

csi
cri

cs+i
cr+i

s+ ∈ S+

Figure 3.10: Schematic overview of the refiner block. Each real image r ∈ Rtrain
and each synthetic image s ∈ S is cropped, producing the cropped real image

cri ∈
cRtrain and cropped synthetic image csi ∈

cS. The GAN is then trained to
translate cRtrain →

cS and cS → cRtrain. After the training is complete, each
image csi is then refined by the generator G producing cs+i .

cs+i is then
reinserted into the original image s which then is masked by sa, producing the

full size refined synthetic image s+.

50

Chapter 4

Results

4.1 Overview
In this chapter we present our results. First, on pages 52-56, we present our visual results. We
then go on to show our quantitative results, on pages 57-62.

For our visual results, we show random and cherrypicked samples of both cropped and full
size images. In Fig. 4.1 and 4.2 we show unmasked generator outputs (unless otherwise stated)
to better present the nature of each refinement. Elsewhere, cropped images are masked such
that they accurately depict the end result.

In our quantitative results, we present our quantitative evaluations of the refined syn-
thetic datasets along with comparisons of how these results compare to the results of the real
and synthetic dataset. In summary, our quantitative results are the following:

• Comparison of the Fréchet Inception Distance from all refined synthetic datasets to
both the synthetic dataset S and the real dataset Rtrain.

• Comparison of test F1-score of SqueezeDet networks trained on the synthetic, real,
and all refined synthetic datasets (respectively).

• PCA plot of our best performing refined synthetic dataset, visualizing how it relates
to the synthetic and real dataset (S and Rtrain).

• Validation plots of SqueezeDet networks trained on our best performing dataset DS,
the real dataset Rtrain, and the synthetic dataset S (respectively).

• Analysis of correlation between the Fréchet Inception Distance and F1-score.

• Analysis of how the size allocation of refined synthetic and real images in a combined
dataset DS + Rtrain a�ects the detection performance.

As described in Section 3.3.3, datasets with a left hand side superscripted C indicate
that they are cropped. Datasets with a right hand side superscripted S indicate that skip
connections were used in the generator during training and refinement. Right hand side
subscripts, such as CP, describe what losses were used for the respective datasets.

51

4. Results

4.2 Visual results

Dataset 1 (masked) 2 3 4 5

cS

cCS
CP

cCS
CPCF

cCS
CPCFIP

cCS
CPCFIF

cDS

cMS

cAS

Figure 4.1: Randomly sampled refinements of the cropped synthetic dataset cS
for di�erent GANs with skip connections. The first column shows masked
refinements, and the second to fifth column show unmasked refinements.

52

4.2 Visual results

Dataset 1 (masked) 2 3 4 5

cS

cCCP

cCCPCF

cCCPCFIP

cCCPCFIF

cD

cM

cA

Figure 4.2: Randomly sampled refinements of the cropped synthetic dataset cS
for di�erent GANs without skip connections. The first column shows masked
refinements, and the second to fifth column show unmasked refinements.

53

4. Results

Fig. 4.1 and 4.2, seen on pages 52-53, show random samples from the cropped synthetic
dataset cS and corresponding refinements from all cropped refined synthetic datasets. In
both figures, the first column shows crops with their mask applied, whereas the second to
fifth columns show crops without masks. These results are discussed in Section 5.1-5.5.

For our quantitatively best performing dataset DS, we present more extensive material.
Fig. 4.3 shows cherrypicked samples from the cropped refined synthetic dataset cDS . Fig.
4.4 shows cherrypicked samples from the fullsize refined synthetic dataset DS . Randomly
sampled fullsize images of DS are presented in Fig. 4.5.

cS

cDS

cS

cDS

Figure 4.3: Subjectively cherrypicked samples from cDS along with the original
samples from cS

54

4.2 Visual results

S

DS

Figure 4.4: Subjectively cherrypicked samples from DS along with the original
samples from S.

S

DS

Figure 4.5: Random samples from DS along with the original samples from S.

In Fig. 4.6, we show generated attentionmaps of datasets cA and cAS that are produced by
AGGAN, since the quality of these is crucial to the ability of AGGAN. The brightness of the
attentionmaps reflects the attention of the network. High brightness reflects high confidence
that the area constitutes foreground and thus should be transformed by the generator. Low
brightness reflects high confidence that the area constitutes background and thus should
remain unchanged. We see that neither cAnor cAS have confident attentionmaps. A probable
explanation is discussed in Section 5.5.1.

55

4. Results

Dataset 1 2 3 4

Input samples from cS

Attention maps of cA

cA

Attention maps of cAS

cAS

Figure 4.6: Attention maps of cA and cAS, along with the input images from cS
and the respective refinements.

4.3 Quantitative results
4.3.1 Fréchet Inception Distance
Table 4.1 lists the Fréchet InceptionDistance from each cropped refined dataset to the cropped
synthetic dataset cS and the cropped real dataset cRtrain. Apart from cS itself, we see that cA
is closest to cS. The dataset furthest from cS is cRtrain. Apart from cRtrain and cDS + cRtrain,
we see that DS is closest to cRtrain. The dataset farthest from cRtrain is cCCP.

Note that the distances between cS and cS and cRtrain and cRtrain should theoretically be
0. However, due to small sample sizes of the datasets this is not the case [41].

56

4.3 Quantitative results

Distance to cS Distance to cRtrain

cRtrain
cS
cDS + cRC

train
cCS

CP
cCS

CPCF
cCS

CPCFIP
cCS

CPCFIF
cDS

cMS

cAS

cCCP
cCCPCF
cCCPCFIP
cCCPCFIF
cD
cM
cA

167.37 7.54
4.6 165.67
70.74 135.39
106.56 166.18
94.88 154.86
90.57 154.75
70.8 153.3
69.8 147.82
63.08 149.63
74.43 149.99
105.66 170.87
98.19 169.3
89.54 155.54
72.87 149.57
73.86 153.16
69.55 151.21
47.41 152.9

Table 4.1: Fréchet Inception Distances between the cropped synthetic dataset
cS, the cropped real dataset cRC

train, and the masked and cropped refined
datasets.

4.3.2 SqueezeDet Performance Metrics
Tables 4.2-4.6 show SqueezeDet test results in terms of precision, recall and F1-score for each
dataset, where the first column represents the epoch from which the SqueezeDet network
checkpoint was selected. Each of the datasets has been tested on the dataset Rtest .

Specifically, Table 4.2 shows the test results of the SqueezeDet networks trained on the
synthetic dataset S and the real dataset Rtrain which is used as a baseline when comparing
the performance of our refined datasets. Table 4.3 shows the test results of the SqueezeDet
networks trained on all the refined datasets created using a skip connection in the GAN gen-
erator. Table 4.4 is identical to Table 4.3, the only di�erence being that the refined datasets
were created without the use of a skip connection in the generator. Table 4.5 shows test re-
sults of SqueezeDet networks trained on the combined datasets Rtrain + S and Rtrain + DS .
Table 4.6 shows the performance of datasets where Rtrain has been combined with our best
performing refined dataset DS, where the size of DS is varying. Fig. 4.7 shows a plot of Table
4.6.

Epoch Precision Recall F1

S 24 0.875 0.832 0.853
Rtrain 89 0.9 0.833 0.865

Table 4.2: SqueezeDet test results on Rtest , trained on synthetic (S) and real
(Rtrain) datasets.

57

4. Results

Epoch Precision Recall F1

CS
CP 39 0.844 0.827 0.835

CS
CPCF 10 0.823 0.788 0.805

CS
CPCFIP 30 0.819 0.837 0.828

CS
CPCFIF 18 0.861 0.889 0.875

MS 26 0.879 0.812 0.844
DS 9 0.872 0.892 0.882
AS 16 0.844 0.883 0.863

Table 4.3: SqueezeDet test results on Rtest of refined datasets trained with skip
connections.

Epoch Precision Recall F1

CCP 9 0.841 0.788 0.813
CCPCF 12 0.777 0.851 0.812
CCPCFIF 21 0.788 0.834 0.81
CCPCFIF 21 0.845 0.886 0.865
M 30 0.889 0.843 0.865
D 7 0.781 0.88 0.827
A 3 0.777 0.89 0.83

Table 4.4: SqueezeDet test results on Rtest of refined datasets trained without
skip connections.

Epoch Precision Recall F1

Rtrain + S 7 0.861 0.856 0.858
Rtrain + DS 19 0.878 0.898 0.888

Table 4.5: SqueezeDet test results on Rtest , trained on Rtrain + DS and Rtrain + S.

Epoch Precision Recall F1

Rtrain + 0x 89 0.9 0.833 0.865
Rtrain + 1x 76 0.92 0.853 0.885
Rtrain + 3x 53 0.904 0.854 0.878
Rtrain + 5x 46 0.913 0.837 0.873
Rtrain + 7x 43 0.882 0.875 0.879
Rtrain + 10x 12 0.857 0.918 0.886
Rtrain + 15x 19 0.878 0.898 0.888

Table 4.6: SqueezeDet test results on Rtest , trained on Rtrain + DS, where the
size of DS is varied to be x times larger than Rtrain.

58

4.3 Quantitative results

0 5 10 15
0.85

0.86

0.87

0.88

0.89

N

F 1
-s
co
re

Figure 4.7: F1-score on Rtest , trained on Rtrain + DS, where the size of DS is
varied to be N times larger than Rtrain (Plot of Table 4.6).

4.3.3 Correlation between F1-score and Fréchet In-
ception Distance

In Fig. 4.8, we see that there exists a negative correlation between the Fréchet Inception
Distance from cropped refined data to cRtrain and the F1-score on Rtest .

In Fig. 4.9, we see that there also exists a negative correlation between the Fréchet Incep-
tion Distance from cropped refined data to cS and the F1-score on Rtest as well.

Table 4.7 shows the average Fréchet Inception Distance from the real dataset to all the
refined datasets who used a skip connection in the generator and all who did not.

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

150

155

160

165

170

F1-score

F
ID

to
c R t

ra
in

Figure 4.8: Linear regression of the F1-score on Rtest and the Fréchet Inception
Distance (FID) to the cropped real dataset cRtrain of all cropped refined datasets.

59

4. Results

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

50

60

70

80

90

100

110

F1-score

F
ID

to
c S

Figure 4.9: Linear regression of the F1-score on Rtest and the Fréchet Inception
Distance (FID) to the cropped synthetic dataset cS of all cropped refined

datasets.

Datasets FID F1
XS 153.79 0.847
X 157.51 0.832

Table 4.7: Average Fréchet Inception Distance (FID) to cRtrain and F1-score on
Rtest of datasets trained with skip connections (XS) and datasets trained

without skip connections (X).

4.3.4 PCA Plots
Fig. 4.10 shows a PCA plot of cDS, cS, and cRtrain. In Fig. 4.10a we see the plot for the second
max pooling features and in Fig. 4.10b we see the plot for the fifth max pooling features. For
4.10a, the cDS center is not significantly closer to the cRtrain center. In Fig. 4.10b, the cDS

center is closer to the cRtrain center than the cS center.

60

4.3 Quantitative results

−0.2 −0.15 −0.1 −5 · 10−2 0 5 · 10−2 0.1 0.15 0.2

−0.2

−0.1

0

0.1

0.2

Principal Component 1

Pr
in
ci
pa
lC

om
po
ne
nt

2

Refined
Refined center

Synthetic
Synthetic center

Real
Real center

(a) PCA plot of features from second max pooling
layer of VGG16

−0.25−0.2−0.15−0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−0.2

0

0.2

0.4

Principal Component 1

Pr
in
ci
pa
lC

om
po
ne
nt

2

Refined
Refined center

Synthetic
Synthetic center

Real
Real center

(b) PCA plot of features from fifth max pooling
layer of VGG16

Figure 4.10: Plots of the two principal components of the VGG16 features for
cDS, cS, and cRtrain.

cDS and cS have been randomly sampled to match the size
of cRtrain.

4.3.5 Training Plots
Fig. 4.11 shows validation loss, recall, precision and F1-score for three SqueezeDet networks
evaluated on the real dataset Rval . The first network has been trained on the dataset DS with
50 epochs of training. The second has been trained on the dataset Rtrain with 100 epochs
of training. The last network has been trained on the dataset Rtrain + DS with 100 epochs
of training. We see that the SqueezeDet network trained on DS quickly begins to overtrain
since its validation loss increases, whereas the network trained on DS + Rtrain has a constant
validation loss and thus does not overtrain. The network trained on Rtrain has much more
stable validation plots, presumably since it is trained on the same distribution it is tested
on (unlike the other networks). It is hard however to draw any conclusions from Fig. 4.11
since the dataset sizes di�er, meaning that the networks are trained on di�erent amounts of
images during each epoch.

Fig. 4.12 shows validation loss, recall, precision and F1-scores for two SqueezeDet net-
works evaluated on the real dataset Rval . The first network was trained on the dataset DS

and the second on the dataset S. Both networks are trained for 50 epochs. Inspecting the
validation plots, they are very similar and roughly follow the same trajectory. In general the
network trained on DS seems to consistently have a somewhat better recall and precision
(and consequently F1-score) than the network trained on S. We do not see significant di�er-
ences here, but analysing the test performances in Table 4.2 and 4.3, we see that the network
trained on DS has a significantly better F1-score - nigh on three percentage points higher
than the network trained on S.

61

4. Results

0 20 40 60 80 100

2

4

6

Epochs

Va
lid

at
io
n
lo
ss

DS

Rtrain

DS + Rtrain

(a) Validation loss

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

Epochs

F 1

DS

Rtrain

DS + Rtrain

(b) Validation F1-score

0 20 40 60 80 100
0.6

0.7

0.8

0.9

Epochs

Pr
ec
is
io
n

DS

Rtrain

DS + Rtrain

(c) Validation precision

0 20 40 60 80 100
0.6

0.7

0.8

0.9

Epochs

R
ec
al
l

DS

Rtrain

DS + Rtrain

(d) Validation recall

Figure 4.11: Plot of validation performance for DS, Rtrain and DS + Rtrain for all
epochs

0 10 20 30 40 50
3

3.5

4

4.5

5

5.5

Epochs

Va
lid

at
io
n
lo
ss

DS

S

(a) Validation loss

0 10 20 30 40 50

0.6

0.7

0.8

Epochs

F 1

DS

S

(b) Validation F1-score

0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

Epochs

Pr
ec
is
io
n

DS

S

(c) Validation precision

0 10 20 30 40 50
0.6

0.7

0.8

0.9

Epochs

R
ec
al
l

DS

S

(d) Validation recall

Figure 4.12: Plot of validation performance for DS and S for all epochs

62

Chapter 5

Discussion

5.1 CycleGAN
5.1.1 CCP, CS

CP
In Fig. 4.1 and Fig. 4.2, we see thatCS

CP retains the color scheme of the input images, whereas
CCP transforms the input into one color scheme. This illustrates the role of the skip connec-
tion, where CS

CP is able to preserve more of the original structure than CCP.
While none of these look truly realistic, we subjectively perceive CS

CP to look more real-
istic than CCP. This is also reflected by the Fréchet Inception Distance, where cCS

CP is closer
to cRtrain. In terms of SqueezeDet performance, we see that CS

CP has a 0.02 higher F1-score
thanCCP, which is in agreement with the negative correlation between F1-score and Fréchet
Inception Distance to cRtrain seen in Fig. 4.8.

WhyCCP has a lower F1-score is likely due to the fact that it does not preserve the original
image structure as much as CS

CP does. Good examples of this can be seen in the fourth and
fifth columns in Fig. 4.2, where the original structure of cS is hard to distinguish in cCCP.

Comparison with previous work
Compared to Wessman and Andersson’s results in [1, p. 71], we see that our refinements
made by a default implementation of CycleGAN (cCCP) are much more deformed than their
corresponding results. We suspect that this is due toWessman andAndersson spendingmuch
more e�ort on rendering, making their synthetic dataset better approximate the real.

In contrast, most of our e�ort in this thesis has been directed towards GANs and little
towards rendering settings, such as clothes and body shapes. We could therefore have ob-
served better results if we, like Wessman and Andersson, dedicated more e�ort to producing
a synthetic dataset that approximated the real dataset to a larger degree. Hypothetically, all
our di�erent GANmodels would benefit from this since the translation task would be easier
if the perceptual di�erences between the synthetic dataset and the real dataset were already

63

5. Discussion

small.

5.2 CycleGAN with VGG16 feature losses
5.2.1 CCPCFIP, CCPCFIF, CCPCF, CS

CPCFIP, CS
CPCFIF, CS

CPCF
Focusing on the three datasets trained with skip connections, we see that CS

CPCF is di�erent
fromCS

CPCFIP andCS
CPCFIF in terms of color. CS

CPCF seems to have attained a dark green color
palette characteristic of some images in Rtrain, while having lost realistic structure. This is
probably due to the fact that this is the only network without an identity-loss. In other
words, it is not forced to preserve the input image as much as the other two networks. For
example, the white hair color of the fourth column in Fig. 4.1 has been painted black in
cCS

CPCF , whereas it remains white for datasets with identity losses.
The same observations can be made of the datasetCCPCF , which also has attained a color

palette characteristic of Rtrain. CCPCFIF and CCPCFIP on the other hand manage to retain
the color palette of the original synthetic images, just like the corresponding datasets trained
with skip connections. We can thus observe that skip connections and identity losses in our
application are equivalent in function: they both try to retain the structure of the input image.
Identity losses are however a more hands-on approach, where the implementer decides the
importance of structure preservation by regulating the weight in the loss. Skip connections
on the other hand only nudge the network in a direction that encourages retained structure,
but the network is not forced to do so.

Looking at the Fréchet Inception Distance to Rtrain for the di�erent datasets, we see
that CCPCF is the furthest from Rtrain with a distance of 169.3. This is likely due to the
heavy transformations which can be observed in the row for CCPCF in Fig. 4.2, where e.g.
the image in the fourth column seems to have been replaced with a table and a stack of
papers. The corresponding dataset CS

CPCF is also heavily disfigured, arguably more so, but
has a significantly better Fréchet Inception Distance of 154.86.

When comparingCCPCF andCS
CPCF withCCP andCS

CP, we observe that the cyclic feature
loss is not enough to further nudge the GAN towards a good translation. Higher λ-values
could potentially prove this wrong, but in our experience we found that strong cyclic losses
swamped the adversarial losses resulting in no transformation at all.

Among the six datasets we compare SqueezeDet performances and conclude thatCS
CPCFIF

has the best F1-score of 0.875.
Comparing CS

CPCFIF and CS
CPCFIP in Fig. 4.1 we see that the latter su�ers from mis-

coloring artifacts, which can be explained by the locality of the identity pixel loss. This issue
is not present in CS

CPCFIF , since its identity feature loss preserves textures on a higher level
than pixels enforcing a more coherent transformation.

The dataset cCS
CPCFIP has a VGG16 loss penalizing changes in the second pooling layer.

Inspecting the PCA plot of the second max pooling layer for this dataset in Fig. 5.1 we see
that the refined cluster center has barely moved from the synthetic cluster center. Looking at
the PCA plot of the fifth layer, the refined cluster center has moved apart from the synthetic
cluster center and started heading towards the real cluster center. This suggests that our loss
penalization works.

64

5.3 CycleGAN with a discriminator feature loss

−0.2 −0.15 −0.1 −5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25

−0.2

−0.1

0

0.1

0.2

Principal Component 1

Pr
in
ci
pa
lC

om
po
ne
nt

2

Refined
Refined center

Synthetic
Synthetic center

Real
Real center

(a) PCA plot of features from second max pooling
layer of VGG16

−0.35−0.3−0.25−0.2−0.15−0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Principal Component 1

Pr
in
ci
pa
lC

om
po
ne
nt

2

Refined
Refined center

Synthetic
Synthetic center

Real
Real center

(b) PCA plot of features from fifth max pooling
layer of VGG16

Figure 5.1: Plots of the two principal components of VGG16 features for
cCS

CPCFIP,
cS, and cRtrain. cCS

CPCFIP and cS have been randomly sampled to
match the size of cRtrain.

5.3 CycleGAN with a discriminator feature
loss

5.3.1 D, DS

In terms of both Fréchet Inception Distance and F1-score, we see that DS performs best
among all di�erent datasets with an F1-score of 0.882 and a Fréchet Inception Distance of
147.82. The distinguishing feature of DS is that a cyclic discriminator feature loss was used
in the refinement.

Interesting to note is that D does not perform well at all in terms of F1-score (even worse
than S). This could imply that the skip connections between the generator’s input and output
layers were crucial to the success of DS, but we are not positioned to guarantee such a strong
statement. See Section 5.11 for more details on why.

Comparing cD to all other cropped datasets, we see in the second column of Fig. 4.2,
cD is the only dataset where green color has been added to an input image which was not
originally green. Comparing cS and cRtrain, we found that cS had more green-tinted images
than cRtrain. It is thus quite surprising that any of the refined datasets have added green color
to the transformation, since green color is more descriptive of the synthetic dataset than the
real. One possible reason could be that the cyclic loss is too strong, swamping the adversarial
loss. Meaning that instead of training the generator to refine the synthetic image to look real,

65

5. Discussion

it focuses on trying to restore to its original domain.
In our experiments, we used the same weight for the cyclic discriminator feature loss and

the cyclic VGG16 feature loss. This could however be a naive decision, since they are two
di�erent vector spaces and thus have no guarantee of having the same range of distances.
While DS was a success, we could thus perhaps have seen increased performance with a more
thorough parameter decision process.

5.4 CycleGAN with a mean feature loss of
the target dataset

5.4.1 M, MS

Themean feature loss datasetM had an F1-score of 0.865, which is highest among all datasets
without skip connections. Comparing F1-scores of M and MS we see that M outperforms
MS . We conclude that the skip connections are too restraining and will not allow for drastic
changes.

The unique characteristic of these datasets is that they were refined using a mean feature
loss, as described in Chapter 2.6. The image representation of the mean feature vector would
most likely be nonsensical since it would just be the mean of the whole dataset, so enforcing
the features of generator’s output to strongly resemble it would be a bad idea. However, we
thought it would make sense to penalize the distance to this vector slightly, such that the
feature vectors of the refined images can be guided in which direction to transform.

In terms of PCA one could think of the mean feature vector as the cluster center for
cRtrain. However, comparing M with DS (see Fig. 4.10), we see no indication of the cluster
center for M being closer to the cluster center of cRtrain than DS (see Fig. 5.3) - which could
imply that themean feature loss had no e�ect at all. It is however important to note that if the
mean feature for M has not approached cRtrain in 2D PCA space, it does not necessarily mean
that it is not closer, since our two principal components only accounts for approximately 20
% of the explained variance.

Assuming that the mean feature loss had no e�ect, the most probable cause is too small a
weight being used. To verify this we increased the weight a disproportionate amount (from
10−5 to 10−1) and created the new refined dataset cMnew which we performed PCA on. The
results are presented below.

Figure 5.2: Random samples from cMnew.

In Fig. 5.2 we see the results of this approach. The refined images have been washed out
in color resulting in a gray palette. Further, we see a grid-like texture on the bodies. While

66

5.4 CycleGAN with a mean feature loss of the target dataset

a somewhat constant transformation is what we expected, we did not expect the results seen
in Fig. 5.4. We expected the refined cluster center to gravitate towards the real cluster center,
since that is the only way for the network to avoid the penalization of the mean feature loss.
Instead, we observe the opposite. The refined cluster has moved away significantly from both
the real and synthetic clusters, especially for the fifth max pooling layer features in 5.4.

Unable to interpret the reason for this result, we inspected the loss function of the GAN
and observed that the mean feature loss increased during training! This explains the results
shown in Fig. 5.4, but we do not know why the loss increased during training. Since we
increased the weight dramatically, e�ectively swamping the other losses, we have no expla-
nation for why it increased. Intuitively it should have at least plateaued and not increased.
An immediate suspicion was that we had flipped the sign of the loss, meaning that we in-
centivized the network to maximize the mean feature distance. This would be a satisfactory
explanation, but upon inspection we saw no evidence suggesting that we had done so.

−0.2 −0.15 −0.1 −5 · 10−2 0 5 · 10−2 0.1 0.15 0.2

−0.2

−0.1

0

0.1

0.2

Principal Component 1

Pr
in
ci
pa
lC

om
po
ne
nt

2

Refined
Refined center

Synthetic
Synthetic center

Real
Real center

(a) PCA plot of features from second max pooling
layer of VGG16

−0.3−0.25−0.2−0.15−0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

−0.2

0

0.2

0.4

Principal Component 1

Pr
in
ci
pa
lC

om
po
ne
nt

2

Refined
Refined center

Synthetic
Synthetic center

Real
Real center

(b) PCA plot of features from fifth max pooling
layer of VGG16

Figure 5.3: Plots of the two principal components of VGG16 features for cM ,
cS, and cRtrain. cM and cS have been randomly sampled to match the size of

cRtrain.

67

5. Discussion

−0.2 −0.15 −0.1 −5 · 10−2 0 5 · 10−2 0.1 0.15 0.2

−0.2

−0.1

0

0.1

0.2

Principal Component 1
Pr
in
ci
pa
lC

om
po
ne
nt

2

Refined
Refined center

Synthetic
Synthetic center

Real
Real center

(a) PCA plot of features from second max pooling
layer of VGG16

−0.3−0.25−0.2−0.15−0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Principal Component 1

Pr
in
ci
pa
lC

om
po
ne
nt

2

Refined
Refined center

Synthetic
Synthetic center

Real
Real center

(b) PCA plot of features from fifth max pooling
layer of VGG16

Figure 5.4: Plots of the two principal components of VGG16 features for
cMnew, cS, and cRtrain. cMnew and cS have been randomly sampled to match the

size of cRtrain.

5.5 Attention-guided GAN
5.5.1 A, AS

In the second column in Fig. 4.1, we see an interesting phenomenon in cAS, which we show
in detail below in Fig. 5.5. The regularly occurring dots of pixels seen in the refined image are
a symptomatic sign of fractional stride artifacts [42], where the fractionally strided convolu-
tion layers have not learned to realistically upsample the image features into an image. Why
we only see this e�ect in cAS and not in any other dataset is unclear, but since the upsampling
procedure is learnable it is clearly due to the generator being inhibited in its learning. One
possible reason for the inhibition of the generator’s learning in cAS could be the correspond-
ing attention network. If we review the attention maps of cAS in Fig. 4.6, we see that there
is high uncertainty in the foreground attention. With low confidence in the attention map,
the generator would receive weak gradients which would then slow down the learning of the
generator, which could explain the artifacts.

As opposed to cAS, we see in Fig. 4.6 that the attention maps of cA are more confident
(even though the foreground is not correctly identified). We suspect that this is the reason
whywe do not see any fractionally strided artifacts in cA: its gradients have not been inhibited
by an uncertainty of its attention network.

Why the attention maps of cA are more confident than those of cAS is still up for dis-
cussion. The only di�erence between the two datasets is the additional generator skip con-

68

5.5 Attention-guided GAN

nection in cAS, but we fail to see why this would inhibit the learning of the attention maps.
Instead we suspect that the di�erence is due to di�erent weight initializations, which ac-
cording to the authors of [21] can play a major role in convergence [27].

Figure 5.5: Fractional stride artifact. The upper image shows the refined
synthetic human and the lower image shows the original synthetic human.

Why the attention networks failed
We see that the attention networks of A and AS somewhat reliably identify the synthetic
humans. However, compared to other datasets, such as horse2zebra, the confidence in the
attention masks is very low. For instance, compare the attention masks in Fig. 4.6 with Fig.
5.6 below. We see that the network trained on horse2zebra produces much more confident
attentionmasks (it does not attend any background) than the network trained on our dataset,
which can not confidently exclude the background from its attention.

69

5. Discussion

(a) Input (b) Attention mask

Figure 5.6: The attention network is confident. While it fails to attend the full
body of one of the horses, it does not attend any background information.

When prospecting common image translation datasets, e.g. horse2zebra and apples2oranges,
there is a lot of background variety. In contrast, our backgrounds are all 128x128px crops of
a single location.

Our hypothesis was that given a domain with lots of di�erent backgrounds, the network
is more confident in identifying the foreground since it is the only common feature between
the images. If however the foreground is not the only common feature in the domain, we
hypothesized that the attention networks are unable to confidently exclude the background
from their attention since it is too descriptive a feature.

To verify that a lack of background variety is the cause of the attention networks’ uncer-
tainty, we created toy datasets of circles. The circles were generated with varying size, color,
and position. For each dataset, we created two domains X and Y , where we were interested
to see where the attention network AX put its attention. In all datasets, X and Y share back-
ground colors but not foreground colors. Y has always white foreground color, while X has
either constant or varying foreground color.

Fig. 5.7 shows samples of both domains from all datasets.
We find that if X has constant background color and various foreground colors (X3 in

Fig. 5.8), the attention network AX learns to mask the background. Instead, if X has various
background color and constant foreground color (X1 in Fig. 5.8) AX correctly learns to mask
the foreground.

This is similar to what can be observed in our datasets. In horse2zebra, there is high
background variance (di�erent location in each image) and low foreground variance. In our
dataset, there is low background variance (128x128px crops from one location) and high fore-
ground variance (many di�erent human models with highly variant features).

As described in [21] in their paper, the attention networks give attention to features that
describe the dataset. While humans might say that circles, regardless of color, describe our
toy datasets, we find that this is not always in line with the attention network. Given constant
background color and varying foreground color, it is the background that is the describing
feature of the dataset. However if there is more background variety than there is foreground
variety, then the foreground will be the describing feature.

With this result in mind, we created a dataset of synthetic and real humans on various
backgrounds in order to increase the background variety. However, contrary to our expec-
tations, the attention networks could still not confidently mask our foreground. We are not
completely sure why, but suspect that it is because the human foreground still has too large

70

5.5 Attention-guided GAN

Dataset X Y

X1 and Y1

X2 and Y2

X3 and Y3

Figure 5.7: Samples from the toy datasets (Xi,Yi), i ∈ {1, 2, 3}. X1 has constant
foreground and varying backround, X2 has slighly varying foreground and
varying background, and X3 has highly varying foreground and constant
background. All datasets Yi have white foreground and the same sorts of

background as their corresponding domain Xi .

variance for the attention networks to cope.
We also tried replacing the attention network AX that tries to mask the synthetic humans

with the ground truth masks produced by Blender. This did not help the network in any
perceivable way, supposedly because it defeats the whole point of the architecture in [21]
where the authors make a point of continuous attention maps being necessary for learning.
With binary ground truth masks, the generator would receive a gradient of zero for all trans-
formations performed outside the mask, whereas for a continuous mask it would be nonzero.

Dataset X Xa

X1

X2

X3

Figure 5.8: Samples from Xi, i ∈ {1, 2, 3}, and their respective attention maps,
of di�erent variations on the toy dataset. Trained on AGGAN for 1 epoch.

71

5. Discussion

5.6 Why the refinement increases object de-
tection performance

As shown by Geirhos et al. in [43], convolutional neural networks (pre-)trained on ImageNet
[40] are biased to recognize textures rather than shapes. Following this insight, they style
transferred ImageNet to a set of di�erent styles for use as training data (let us call this stylized
dataset ImageNet+) in order to force the network to be more biased towards shapes rather
than texture (see Fig. 5.9).

They then trained ResNet [28] on ImageNet+ ImageNet+, and fine-tuned the training on
ImageNet. With this approach they were able to increase the accuracy of ResNet compared
to when trained only on ImageNet. They also showed significant performance increases on
the Pascal VOC object detection dataset [44], when using transfer learning from their ResNet
network trained on ImageNet + ImageNet+.

Figure 5.9: Result of style transfering an image of a cat with the texture of an
elephant’s skin, as presented in [43].

This could have significant ramifications for our thesis. With the results of [43] in mind,
the refined dataset could possibly perform well due to increased variance in texture forcing
the filters of the network to detect shapes rather than textures. If true, this could imply that
our well-performing refined datasets did not get closer to Rtrain.

To investigate whether it was increased variance rather than realistic texture that caused
our performance increases, we used the same set of paintings as used in [43] and blended
them with our synthetic humans. This resulted in a dataset Sstyle with extremely high texture
variance, but with very low texture resemblance to Rtrain (Fig. 5.10). Our hypothesis was then
as follows. If the test performance on Rtest of a network trained on Sstyle yielded good results,
we probably only increased the variance of the synthetic dataset and did not manage to get
the refined texture to look like that of Rtrain. Whereas if the results were bad, we probably
approximated the texture of Rtrain to at least some degree.

Note however that this simple test does not answer whether it could be a combination
of high variance and texture resemblance that is responsible for the performance increases,
which is the case in [43].

72

5.7 Does real training set size matter?

Figure 5.10: Random samples of cropped images from Sstyle.

Epoch Precision Recall F1

Sstyle 7 0.741 0.786 0.762

Table 5.1: SqueezeDet test results on Rtest , trained on Sstyle for 50 epochs. The
checkpoint was selected by maximizing the F1-score on Rval .

As seen in Table 5.1, the stylized synthetic dataset Sstyle has decreased performance: it has
a lower F1-score than the synthetic dataset S and all refined datasets. This implies that our
increased performance when using refined synthetic training data is due to increased texture
resemblance. This conclusion is also strengthened by the negative correlation between the
F1-score on Rtest and the Fréchet Inception Distance to cRtrain, seen in Fig. 4.8, which also
implies that texture resemblance yields better detection performance.

In Fig. 4.9, we see that there is also a negative correlation between Fréchet Inception
Distance to the synthetic dataset cS and the F1-score onRtest . We believe that this correlation
is misleading and that this does not hold in general. It only appears this way since all of
our refined datasets that are far from S have deformed drastically, leading to a low object
detection performance. Had we truly approximated Rtrain, the distance to S would naturally
be increased while the F1-score on Rtest would increase. Thus, theoretically, there should
exist a positive correlation between the Fréchet Inception Distance to S and the F1-score on
Rtest , assuming well-approximating refinements - not a negative!

5.7 Does real training set size matter?
In our experiments we used a very conservative dataset split, where |Rtrain| = 102, in order to
increase training speed and decrease our reliance on supervised data. For such a small dataset,
we showed improved performance by adding refined synthetic data. But what if Rtrain, the
dataset used for refinement as well as training the SqueezeDet network, is larger? Is there
still a performance increase?

To investigate this we inversed our data split, such that |Rvalnew | = 20, |Rtestnew | = 80,
and |Rtrainnew | = 719. We then refined S with the same configurations used in DS and tested
the performance of the new refined dataset DS

new with SqueezeDet. The number of training

73

5. Discussion

epochs for CycleGANwas adjusted, due to the increased training set size, such that the num-
ber of training steps was identical to before. We then trained SqueezeDet on Rtrainnew , DS

new
and DS

new + Rtrainnew .
With this approach we found no improvement when comparing the performance of DS

new
and DS

new+Rtrainnew with Rtrainnew (see Table 5.2). This suggests that our performance increases
presented in Chapter 4 were due to the small size of Rtrain and that our approach does not
generalize to larger datasets where the object detection performance of real data has already
saturated.

However, it is possible that our refinement parameters are dependent on dataset size, i.e.
the refinement parameters of DS are not optimal for DS

new. If true, this could imply that our
approach is able to generalize to larger datasets after all. But we do not investigate this, due
to time constraints.

Also interesting to note is that Fig. 4.7 implies that the performance of Rtrain + DS is
maximized when N = 15,N ∈ {0 . . . 15} where |DS | = N · |Rtrain|. In this investigation, the
size of DS

new is roughly 2 · |Rtrainnew |. The performance of DS
new +Rtrainnew could thus hypothet-

ically be increased if the size of DS
new is increased, assuming that the observations seen in Fig.

4.7 are independent of dataset size. But again, we do not investigate this.

Epoch Precision Recall F1

Rtrainnew 16 0.899 0.977 0.936
DS

new 26 0.847 0.888 0.867
DS

new + Rtrainnew 32 0.870 0.959 0.913

Table 5.2: SqueezeDet test results on Rtestnew , trained on DS
new, Rtrainnew , and

DS
new + Rtrainnew .

5.8 Which layers from VGG16 should be used
Engin et al. [23] and Zeiler and Fergus [24] both claim that shallow layer filters activate on
low-level features and deep layer filters activate on high-level features. In Fig. 5.11 we show
that this also holds true for our dataset.

(a) Synthetic input image (b) Second max pooling layer (c) Fifth max pooling layer

Figure 5.11: Visualized feature activations for di�erent max pooling layers of
VGG16 [45].

74

5.8 Which layers from VGG16 should be used

In Fig. 5.11b we see that the second max pooling layer’s activations are triggered by tex-
ture, edges and color. In Fig. 5.11c we see that the body and the wall edges are the most
prominent features, implying that the fifth max pooling layer’s activations are triggered by
more complex shapes.

In Chapter 4, all datasets with VGG16 losses used second max pooling layer activations,
except M and MS where second and fifth layer activations were used. As per [23] we originally
wanted to use the second and fifth layers for all datasets, but due to an oversight in our
implementation we ended up using only the second layer for most datasets.

In an attempt to remedy this, we present below the results of using the same configura-
tions as DS but with either only the fifth pooling layer or both the second and the fifth.

Figure 5.12: Samples from cDS
VGG5, where the VGG16 feature loss used the fifth

pooling layer.

Figure 5.13: Samples from cDS
VGG5−2, where the VGG16 feature loss used the

fifth and second pooling layers.

In Fig. 5.12 we see that using only the fifth layer activations was not restrictive enough.
The abstract shapes in the images are retained, but the texture is transformed unrealistically.
The lack of realism is also reflected by the quantitative SqueezeDet results where the F1-score
on Rtest was 0.824.

In Fig. 5.13 we see that the low level features are retained much stronger than in Fig. 5.12.
Subjectively, these look very similar to the results of DS, but quantitatively the results are
worse with an F1-score of 0.841.

It is important to keep in mind, in spite of these results, that we have optimized our loss
hyperparameters for the datasets presented inChapter 4. This comparison is thus not entirely
fair, since a di�erent set of parameters could increase the performance of these attempts.

Had we had the chance to redo this part, we would have optimized our hyperparameters
to only use the fifth max pooling layer activations in our cyclic and identity losses, since we
want to retain high-level features while transforming low-level features. In our datasets with
VGG16 losses, we have penalized the networks for transforming low-level features - which is
in conflict with our intuition of the problem.

75

5. Discussion

5.9 Skip connections
In our experiments we have used a very simple skip connection, demonstrated in Fig. 2.15,
connecting only the input and output layer of the generator. We find that convergence speed
is faster when the skip connection is added. This is quite intuitive, since the generator’s
task then becomes an additive transformation "on top" of the input instead of a ground-up
transformation of the input.

Aside from convergence speed, we find that datasets trained with skip connections on
average also have better quantitative results (Table 4.7). This is also in agreement with our
subjective perception where, in Fig. 4.1 and 4.2, structure is retained much better in datasets
trained with skip connections.

5.10 Did we achieve photorealism?
Compared to the synthetic images, we do (to our mind) increase the subjective realism for
our best samples. Lighting is more varied with more prominent shadows and the skin tone
looks less orange.

As for the question "did we achieve photorealism?", the answer is no. While some of our
refined images could possibly fool humans (see Fig. 4.3), we do not think any of the randomly
sampled images in Fig. 4.1 and 4.2 could fool a human.

The generated samples being far from real-looking is also confirmed by the quantitative
results. If we look at Fig. 4.11, we see that SqueezeDet quickly begins to overtrain on DS since
the validation loss increases after only a few epochs of training.

Further, with our crop-refine-reinsert approach we introduce two kinds of artifacts that
heavily reduced the perceived realism of our end results. First, when overlapping crops
have conflicting refinements. This produces sharp edges where the cropped images meet,
as demonstrated in Fig. 5.14. Second, when the 128x128px crops do not encompass the
whole body of the synthetic human, resulting in a sharp border between the original syn-
thetic human and the refined synthetic human (see Fig. 5.15).

76

5.11 Reproducibility

Figure 5.14: Reinsertion artifacts where overlapping image crops have
conflicting refinements, resulting in sharp borders.

Figure 5.15: Reinsertion artifact where an incomplete portion of the synthetic
human has been refined, resulting in a sharp border.

5.11 Reproducibility
Recall that training GANs is not an optimization of one function, but an attempt to opti-
mize a two-player game. GANs are thus notoriously hard to train, compared to othermachine
learning models, and can have quite unstable training procedures. In our discussion we op-
erate under the assumption that the di�erent results we have recorded are due to di�erent

77

5. Discussion

architectures and losses. It should however be noted that stochasticity can also play a major
role in our results, thus decreasing the confidence of our architectures’ contributions to our
results. To ensure reproducible results, we could run each training multiple times, but we
have not had time to do so for each configuration. Instead we only do so for DS .

Epoch Precision Recall F1

DS
reproduction 7 0.841 0.878 0.859

Table 5.3: SqueezeDet test results on Rtest , trained on DS
reproduction.

Table 5.3 shows the test results of DS
reproduction. The performance is significantly lower

than the performance of DS (see Table 4.3), but slightly better than S. With this result in
mind, we can conclude that there is large variance in the refinement result even with fixed
parameters. If we retrained all networks, we could therefore very likely observe di�erent
results.

5.12 Shortcomings
While an increase from 0.865 (Rtrain) to 0.888 (DS + Rtrain) in F1-score is a satisfactory
result, it is important to note that this is with di�erent training set sizes: DS comprises 1498
images while Rtrain comprises 102 images. One might think this is an unfair comparison,
since the refined dataset is roughly 15x larger than the real dataset, but recall that the only
supervised data required to produce our best performing dataset DS isRtrain and unpopulated
backgrounds of the same environment as Rtrain. Thus we think it is perfectly fair to let the
refined synthetic dataset use its advantage in size to make up for its lack of realism.

In order to do fair comparisons between our di�erent GANmodels, we tried to freeze as
many parameters as possible, e.g. number of training epochs (see Section 3.3.3). This helps
to ensure the integrity of our comparisons, but it is also unfair since it disregards di�erences
in convergence speed. The performance of our datasets could look very di�erently if we had
done a subjective approach where we investigated each model and picked the number of
training epochs manually. For future works, we recommend using a Wasserstein loss [46] in
order to ensure equal convergence for all models. For increased training stability, an archi-
tecture such as PGGAN [47] would also be preferable when comparing the e�ect of di�erent
losses.

78

Chapter 6

Conclusions

6.1 Conclusion
In essence, the purpose of this thesis was to transfer the style of the real dataset Rtrain to the
synthetic dataset S, while preserving the overall structure of S, in order to create new training
data.

We attempted to do this with various GAN architectures, all based on CycleGAN, and
achieved quantitative improvements with some of our GANmodels, when the size of the real
training dataset was small. We did however not achieve the original goal of synthetic photo-
realism. We believe that the underlying discriminator and generator architectures of our
experiments were too "weak" for our problem. For better results, we have two suggested im-
provements: 1) experimenting with other architectures (see Section 6.2 for some suggestions);
and 2) putmore e�ort on rendering a realistic synthetic dataset, such that the image-to-image
translation task becomes easier.

While we initially wanted a completely unsupervised approach, we ended up requiring
a semi-supervised approach since we need positional annotations of real humans to create
cRtrain. However, a benefit of using our approach with cropped images is decreased training
time and a decrease in memory usage.

While unfit for industrial use in its current state, our approach seems agnostic in terms
of which GAN is used in the Refiner block. Further research could thus be done easily by
simply replacing the GAN architecture.

6.2 Future work
In this thesis we have laidmuch focus on di�erent losses and variations of CycleGAN [10]. For
future work, it would be interesting to focus on how di�erent generator and discriminator
architectures can help in this field. One example is FUNIT [48], a recently proposed paper
where remarkable results are achieved with GAN image-to-image translation, without access

79

6. Conclusions

to large datasets. The code of FUNIT has yet to be published, but we have great expectations
for this architecture. In Fig. 6.1, we show samples generated by FUNIT with a synthetic
human as input. We see that structure is preserved, such as pose and face position, while
the texture is completely transformed. Note that this model has been trained on translating
animals and that it has never seen similar images.

(a) Input (b) Norfolk Terrier

(c) Bedlington Terrier (d) Sta�ordshire Bullterrier

Figure 6.1: Image translations by FUNIT [48] with a synthetic human as input.
The model is trained on close up images of animal faces and is able to

generalize to the synthetic human, without ever having seen similar images.

While we abandoned the concept of translating full-size images rather quickly, it could
also be interesting to continue on that path and see if it has any promise. One approachwould
be to decrease the memory usage by training the refiner on smaller full-sized images and then
use our trained refiner on original sized images. Since the architecture of the generator is fully
convolutional meaning that it can take any image size, this would be possible. However, there
is no guarantee that the refinement for the larger images would work as well as the refinement
for the smaller ones.

As for rendering, one interesting approach would be to utilize TensorFlow Graphics [49]
in order to estimate the rendering parameters based on how real images look. This could
potentially eliminate the need for GANs altogether, or at least provide synthetic data that
looks more realistic from the start.

Another approach could also be conditional image generation as opposed to image trans-
lation. The input would be a noise vector, a conditional background image, and conditional
bounding boxes. The output would be an image with humans generated on the background
at the positions specified by the conditional bounding boxes. This approach would however
also require an annotated set of real data, in order for the discriminator to learn the relation

80

6.3 Ethics

between bounding boxes and humans.

6.3 Ethics
It is common hearsay that data is the new oil [50]. Accepting that premise, it is not a big
leap to draw parallels between the internet giants of today and Big Oil. The concentration
of power that can be observed in companies such as Google, Facebook, and Amazon also
implies a concentration of data. Users give companies data in exchange for services. The
companies then use it to improve their services which in turn attracts more users, who in turn
give more data. Small companies are thus hard-pressed to compete with large companies in
services based on, or enhanced by, machine learning, since they can not compete in amounts
of training data.

One way to reduce this concentration of power is to democratize data. This could be
done by publishing existing private datasets, but such an approach seems economically and
legally unfeasible. A more promising alternative is to generate data instead of collecting it. If
the generated data approximates the real to the degree that it can not be distinguished from
real data, it can then can be used to train machine learning models. This would give anyone,
regardless of their current amount of data, the power to utilize machine learning techniques.

Data democratization could thus prove useful for competition, but it could also enhance
destructive actors’ ability to produce harm. A recent example is the occurrence of "deep
fakes": videos of humans where generative models have been used to swap faces. As soon as
the technique was released, degrading videos appeared where faces of celebrities had been
inserted. While such a technique could be very useful in e.g. replacing expensive CGI ani-
mations, there is a plethora of harmful uses: faking video evidence, defamation, and mis-
information to name a few. In Fig. 6.2 we show an example of this technique, where the face
of one person has been replaced by another’s.

Figure 6.2: A "deep fake" translation, as seen in [51]. The left image is the
original and the right is the translation result.

With synthetic data, the above could also be performed, but with a synthetic source video
instead of a real video. While realism in synthetic-to-real video-to-video translation has not
yet publicly been shown, we believe that it is plausible in the near future. If realistically pro-
duced, this could have significant ramifications for society, since the production of e.g. fake
news could then be automated without human supervision, enabling an arbitrary production
speed.

81

6. Conclusions

82

Bibliography

[1] D. Wessman and P. Andersson, Generation of artificial training data for deep learning, eng,
Student Paper, 2018.

[2] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning
from simulated and unsupervised images through adversarial training”, in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2242–2251. doi:
10.1109/CVPR.2017.241.

[3] B.Wu, F. Iandola, P. H. Jin, andK. Keutzer, “Squeezedet: Unified, small, low power fully
convolutional neural networks for real-time object detection for autonomous driving”,
in Proceedings of the IEEEConference on Computer Vision and Pattern RecognitionWorkshops,
2017, pp. 129–137.

[4] F. Pollastri, F. Bolelli, R. Paredes Palacios, and C. Grana, “Improving skin lesion seg-
mentation with generative adversarial networks”, in 2018 IEEE 31st International Sym-
posium on Computer-Based Medical Systems (CBMS), 2018, pp. 442–443. doi: 10.1109/
CBMS.2018.00086.

[5] C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. N. Gunn, A. Hammers, D. A. Dickie, M.
del C. Valdés Hernández, J. M. Wardlaw, and D. Rueckert, “GAN augmentation: Aug-
menting training data using generative adversarial networks”,CoRR, vol. abs/1810.10863,
2018. arXiv: 1810.10863. [Online]. Available: http://arxiv.org/abs/1810.
10863.

[6] D. Kornish, S. Ezekiel, and M. Cornacchia, “DCNN augmentation via synthetic data
from variational autoencoders and generative adversarial networks”, in 2018 IEEE Ap-
plied Imagery Pattern Recognition Workshop (AIPR), 2018, pp. 1–6. doi: 10.1109/AIPR.
2018.8707390.

[7] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Vasude-
van, “Driving in the matrix: Can virtual worlds replace human-generated annotations
for real world tasks?”, in 2017 IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 746–753. doi: 10.1109/ICRA.2017.7989092.

83

https://doi.org/10.1109/CVPR.2017.241
https://doi.org/10.1109/CBMS.2018.00086
https://doi.org/10.1109/CBMS.2018.00086
http://arxiv.org/abs/1810.10863
http://arxiv.org/abs/1810.10863
http://arxiv.org/abs/1810.10863
https://doi.org/10.1109/AIPR.2018.8707390
https://doi.org/10.1109/AIPR.2018.8707390
https://doi.org/10.1109/ICRA.2017.7989092

BIBLIOGRAPHY

[8] J. Tremblay, A. Prakash, D. Acuna,M. Brophy, V. Jampani, C. Anil, T. To, E. Cameracci,
S. Boochoon, and S. Birchfield, “Training deep networks with synthetic data: Bridging
the reality gap by domain randomization”, in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2018, pp. 1082–10 828. doi: 10 .
1109/CVPRW.2018.00143.

[9] S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Konolige, “On pre-trained image fea-
tures and synthetic images for deep learning”, CoRR, vol. abs/1710.10710, 2017. arXiv:
1710.10710. [Online]. Available: http://arxiv.org/abs/1710.10710.

[10] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using
cycle-consistent adversarial networks”, in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 2223–2232.

[11] I. Goodfellow, J. Pouget-Abadie,M.Mirza, B. Xu, D.Warde-Farley, S.Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets”, inAdvances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger, Eds., Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available: http:
//papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

[12] Y. Bengio, E. Laufer, G. Alain, and J. Yosinski, “Deep generative stochastic networks
trainable by backprop”, in International Conference on Machine Learning, 2014, pp. 226–
234.

[13] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising auto-encoders as
generative models”, in Advances in Neural Information Processing Systems, 2013, pp. 899–
907.

[14] I. J. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks”,CoRR, vol. abs/1701.00160,
2017. arXiv: 1701.00160. [Online]. Available: http://arxiv.org/abs/1701.
00160.

[15] E. Sjöstrand and J. Jönsson, Cell image transformation using deep learning, eng, Student
Paper, 2018.

[16] M.Mirza and S.Osindero, “Conditional generative adversarial nets”,CoRR, vol. abs/1411.1784,
2014. arXiv: 1411.1784. [Online]. Available: http://arxiv.org/abs/1411.1784.

[17] L. Deng, “The mnist database of handwritten digit images for machine learning re-
search [best of the web]”, IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142,
2012.

[18] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with condi-
tional adversarial networks”, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1125–1134.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedi-
cal image segmentation”, inMedical Image Computing and Computer-Assisted Intervention
– MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., Cham:
Springer International Publishing, 2015, pp. 234–241, isbn: 978-3-319-24574-4.

[20] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and
super-resolution”, in European conference on computer vision, Springer, 2016, pp. 694–711.

84

https://doi.org/10.1109/CVPRW.2018.00143
https://doi.org/10.1109/CVPRW.2018.00143
http://arxiv.org/abs/1710.10710
http://arxiv.org/abs/1710.10710
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784

BIBLIOGRAPHY

[21] Y. A.Mejjati, C. Richardt, J. Tompkin, D. Cosker, andK. I. Kim, “Unsupervised attention-
guided image to image translation”, CoRR, vol. abs/1806.02311, 2018. arXiv: 1806.
02311. [Online]. Available: http://arxiv.org/abs/1806.02311.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale im-
age recognition”, in 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556.

[23] D. Engin, A. Genç, and H. Kemal Ekenel, “Cycle-dehaze: Enhanced cyclegan for single
image dehazing”, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018, pp. 825–833.

[24] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks”,
in European conference on computer vision, Springer, 2014, pp. 818–833.

[25] C. Wang, C. Xu, C. Wang, and D. Tao, “Perceptual adversarial networks for image-to-
image transformation”, IEEE Transactions on Image Processing, vol. 27, no. 8, pp. 4066–
4079, 2018.

[26] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning”, arXiv
preprint arXiv:1603.07285, 2016. [Online]. Available: https : / / arxiv . org / abs /
1603.07285.

[27] Y. A. Mejjati, C. Richardt, J. Tompkin, D. Cosker, and K. I. Kim, Unsupervised attention-
guided image to image translation, https://github.com/AlamiMejjati/Unsupervised-
Attention - guided - Image - to - Image - Translation, Accessed: 2019-05-29,
2018.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–
778. doi: 10.1109/CVPR.2016.90.

[29] M. Buckland and F. Gey, “The relationship between recall and precision”, Journal of the
American society for information science, vol. 45, no. 1, pp. 12–19, 1994.

[30] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained
by a two time-scale update rule converge to a local nash equilibrium”, in Advances in
Neural Information Processing Systems, 2017, pp. 6626–6637.

[31] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-
proved techniques for training gans”, inAdvances in neural information processing systems,
2016, pp. 2234–2242.

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions”, in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2015, pp. 1–9.

[33] B. Foundation, Blender, Accessed: 2019-02-26. [Online]. Available: https://www.
blender.org/.

[34] MB-Lab-Community, Mb-lab, Accessed: 2019-02-26. [Online]. Available: https://
github.com/animate1978/MB-Lab.

[35] C. M. G. Lab, Cmu graphics lab motion capture database, Accessed: 2019-02-26. [Online].
Available: http://mocap.cs.cmu.edu/.

85

http://arxiv.org/abs/1806.02311
http://arxiv.org/abs/1806.02311
http://arxiv.org/abs/1806.02311
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285
https://github.com/AlamiMejjati/Unsupervised-Attention-guided-Image-to-Image-Translation
https://github.com/AlamiMejjati/Unsupervised-Attention-guided-Image-to-Image-Translation
https://doi.org/10.1109/CVPR.2016.90
https://www.blender.org/
https://www.blender.org/
https://github.com/animate1978/MB-Lab
https://github.com/animate1978/MB-Lab
http://mocap.cs.cmu.edu/

BIBLIOGRAPHY

[36] S. Mo, M. Cho, and J. Shin, “Instagan: Instance-aware image-to-image translation”,
CoRR, vol. abs/1812.10889, 2018. arXiv: 1812.10889. [Online]. Available: http://
arxiv.org/abs/1812.10889.

[37] “Mask r-cnn.”, 2017 IEEE International Conference on Computer Vision (ICCV), Computer
Vision (ICCV), 2017 IEEE International Conference on, ICCV, p. 2980, 2017, issn: 978-1-
5386-1032-9.

[38] X.Hu,CycleGAN-Tensorflow, https://github.com/xhujoy/CycleGAN-tensorflow,
Accessed: 2019-04-04, 2018.

[39] C. Ehmann, Squeezedet on keras, https://github.com/omni-us/squeezedet-
keras, Accessed: 2019-05-26, 2018.

[40] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hi-
erarchical image database”, in 2009 IEEE conference on computer vision and pattern recog-
nition, Ieee, 2009, pp. 248–255.

[41] TensorFlow, Frechet_classifier_distance_from_activations, Accessed: 2019-06-25. [Online].
Available: http://www.tensorflow.org/api_docs/python/tf/contrib/
gan/eval/frechet_classifier_distance_from_activations.

[42] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts”,
Distill, vol. 1, no. 10, e3, 2016.

[43] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel,
“Imagenet-trained cnns are biased towards texture; increasing shape bias improves ac-
curacy and robustness”, CoRR, vol. abs/1811.12231, 2018. arXiv: 1811.12231. [Online].
Available: http://arxiv.org/abs/1811.12231.

[44] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal
visual object classes (voc) challenge”, International journal of computer vision, vol. 88,
no. 2, pp. 303–338, 2010.

[45] F. S. Bhagyesh Vikani, Cnn visualization, https://github.com/InFoCusp/tf_
cnnvis/, Accessed: 2019-05-26, 2017. doi: 10.5281/zenodo.2594491.

[46] M.Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan”, arXiv preprint arXiv:1701.07875,
2017.

[47] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved
quality, stability, and variation”, CoRR, vol. abs/1710.10196, 2017. arXiv: 1710.10196.
[Online]. Available: http://arxiv.org/abs/1710.10196.

[48] M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and J. Kautz, “Few-shot
unsupervised image-to-image translation”, in arXiv, 2019.

[49] TensorFlow, Tensorflow graphics, https://github.com/tensorflow/graphics,
Accessed: 2019-05-26, 2019.

[50] E. author, “The world’s most valuable resource is no longer oil, but data”, The economist,
2017. [Online]. Available: https://www.economist.com/leaders/2017/05/06/
the-worlds-most-valuable-resource-is-no-longer-oil-but-data.

[51] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: A compact facial video
forgery detection network”, in 2018 IEEE International Workshop on Information Forensics
and Security (WIFS), IEEE, 2018, pp. 1–7.

86

http://arxiv.org/abs/1812.10889
http://arxiv.org/abs/1812.10889
http://arxiv.org/abs/1812.10889
https://github.com/xhujoy/CycleGAN-tensorflow
https://github.com/omni-us/squeezedet-keras
https://github.com/omni-us/squeezedet-keras
http://www.tensorflow.org/api_docs/python/tf/contrib/gan/eval/frechet_classifier_distance_from_activations
http://www.tensorflow.org/api_docs/python/tf/contrib/gan/eval/frechet_classifier_distance_from_activations
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
https://github.com/InFoCusp/tf_cnnvis/
https://github.com/InFoCusp/tf_cnnvis/
https://doi.org/10.5281/zenodo.2594491
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
https://github.com/tensorflow/graphics
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

Chapter 7

Appendix

Parameter Value
Phenotypes 18
Facial expressions 43
Skin age 350
Skin bumb U(0, 1)
Skin oil U(0, 1)
Skin hue U(0.49, 0.51)
Melanin U(0.2, 1)
Fabric saturation N(0, 0.3)
Fabric value N(0.5, 0.2)

Table 7.1: Parameters for rendering synthetic human models whereU(a, b) is a
uniform distribution with min and max values a and b respectively. N(µ, σ) is

a normal distribution with mean value µ and standard deviation σ.

Parameter Value
#Backgrounds 300
#Scenes per background 5
#Sitting models per image U(1, 5)
#Standing models per image U(0, 4)
Render samples 350

Table 7.2: Parameters for rendering synthetic images whereU(a, b) is a
uniform distribution with min and max values a and b respectively.

87

7. Appendix

Algorithm 4 Our rendering algorithm.
bgs: array of unpopulated background images.
N: number of scenes per background
Returns S: array of annotated synthetic images.

1: procedure render(bgs)
2: let S = []
3: for background b ∈ bgs do
4: for i ∈ 1..N do
5: let pmodels = Randomized parameters for human models according to Table

7.1
6: let models = rendered human models using pmodels
7: let pimage = Randomized parameters for image rendering according to Table

7.2
8: let image = models superimposed on b using pimage
9: let a = annotations of image
10: append (image, a) to S
11: end for
12: end for
13: return S
14: end procedure

Algorithm 5 Our cropping algorithm.
D: array of images with annotated head positions; W : width of crops; H : height of crops.
Returns DC : array of cropped images with size W × H .
1: procedure crop(D, W , H)
2: let DC = []
3: for image d ∈ D do
4: for annotation a of d do
5: let c = box of of size W × H at the position (x, y) specified by a
6: set center position of d as origin for c
7: let θ = atan(x, y)
8: rotate c around the origin by θ
9: let dc = d cropped using c as a mask
10: if x ≤ 0 then
11: let θinv = −θ − π

2
12: else
13: let θinv = −θ + π

2
14: end if
15: rotate dc by θinv to regain an upright position
16: save dc with annotations of its original image d, position (x, y), rotation θ
17: append dc to DC
18: end for
19: end for
20: return DC
21: end procedure

88

Algorithm 6 Our reinsertion algorithm.
DC : array of cropped images (as obtained by Algorithm 5); S: array of the original images of
DC .
Returns S+: array of images where each image dc ∈ DC has been reinserted into S.
1: procedure reinsert(DC , S)
2: let S+ = []
3: for image s ∈ S do
4: let s+ = s
5: let m = mask of s
6: for cropped image dc ∈ DC do
7: if s not original image of dc then
8: continue
9: end if
10: let p = original position of dc in s
11: let θ = original rotation of dc in s
12: let dc = dc rotated by θ
13: let s+ = dc superimposed at p on s+
14: end for
15: let s+ = s+ · m + (1 − m) · s (Use foreground of s+ and background of s)
16: append s+ to S+
17: end for
18: return S+
19: end procedure

Algorithm 7 Our refinement algorithm
X,Y : Image domains
r: Training configuration object
Returns X+: array of refined annotated images
1: procedure refine(X , Y , r)
2: let crop_X = CROP(X, r.crop_width, r.crop_height)
3: let crop_Y = CROP(Y, r.crop_width, r.crop_height)
4: if architecture of r is CycleGAN then
5: let model = TRAIN_C(crop_X, crop_Y, r)
6: else if architecture of r is AGGAN then
7: let model = TRAIN_A(crop_X, crop_Y, r)
8: end if
9: let crop_X+ = model.predict(crop_X)
10: let X+ = REINSERT (crop_X+)
11: return X+
12: end procedure

89

7. Appendix

Algorithm 8 CycleGAN training algorithm
X,Y : Image domains
r: Training configuration object
1: procedure train_c(X , Y , r)
2: let learning_rate = r.learning_rate
3: for e in epochs do
4: if e ≥ epochs

2 then
5: let decay = epochs−e

epochs
2

6: let learning_rate = r.learning_rate · decay
7: end if
8: for x, y in batches of X,Y do
9: let x′ = G(x)
10: let x′′ = F(G(x))
11: let y′ = F(y)
12: let y′′ = G(F(y))
13: add (x′, y′) to minibatch pool
14: update weights of G according to r.losses of x′, x′′, and y′′
15: update weights of F according to r.losses of y′, y′′, and x′′
16: sample x′pool and y′pool from minibatch pool
17: update weights of DX according to r.losses of DX(x) and DX(y′pool)
18: update weights of DY according to r.losses of DY (y) and DY (x′pool)
19: end for
20: end for
21: return trained model
22: end procedure

90

Algorithm 9 AGGAN training algorithm
X,Y : Image domains
r: Training configuration object
1: procedure train_a(X , Y , r)
2: let learning_rate = r.learning_rate
3: for e in epochs do
4: if e ≥ epochs

2 then
5: let decay = epochs−e

epochs
2

6: let learning_rate = r.learning_rate · decay
7: end if
8: for x, y in batches of X,Y do
9: let x′ = translate(G, AX , x)
10: let y′ = translate(F, AY , y)
11: let x′′ = translate(F, AY , x′)
12: let y′′ = translate(G, AX , y′)
13: add (x′, y′) to minibatch pool
14: update weights of G according to r.losses of x′, x′′, and y′′
15: update weights of F according to r.losses of y′, y′′, and x′′
16: if e < r.switch then
17: update weights of AX according to r.losses of x′, x′′, and y′′
18: update weights of AY according to r.losses of y′, y′′, and x′′
19: end if
20: sample x′pool and y′pool from minibatch pool
21: if e ≥ r.switch then
22: let x = threshold(x, AX(x))
23: let y = threshold(y, AY (y))
24: end if
25: update weights of DX according to r.losses of DX(x) and DX(y′pool)
26: update weights of DY according to r.losses of DY (y) and DY (x′pool)
27: end for
28: end for
29: return trained model
30: end procedure
31: procedure translate(generator, attention_net, img)
32: let a = attention_net(img)
33: if e ≥ r.switch then
34: let img = generator(img) · a
35: let img′ = threshold(img, a)
36: else
37: let img′ = generator(img) · a + (1 − a) · img
38: end if
39: return img′
40: end procedure
41: procedure threshold(img, a)
42: let P = number of pixels in img
43: return [img[i] if a[i] > 0.1 else 0 for i ∈ {0 . . .P}]
44: end procedure

91

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2019-06-11

EXAMENSARBETE Refining Synthetic Images with GANs
An Automated Production of Object Detection Training Data
STUDENTER Johan Andersson, Rickard Andersson
HANDLEDARE Volker Krueger (LTH)
EXAMINATOR Elin Anna Topp (LTH)

Att få datorgenererade bilder av
människor att se verkliga ut med AI

POPULÄRVETENSKAPLIG SAMMANFATTNING Johan Andersson, Rickard Andersson

Med maskininlärning på framfart finns det en ökande eferfrågan på träningsdata, men
en brist på tillgång. Datorgenererad träningsdata har således blivit ett vanligt verktyg,
men det saknar ofta komplexitet. I vårt arbete har vi utforskat hur man med Generativa
Adversiella Nätverk kan få datorgenererade bilder av människor att se verkliga ut.

Sedan deras uppsving under det senaste decen-
niet, har många tekniker inom maskininlärning
alltjämt krävt stora mängder träningsdata för att
ge bra resultat. Att samla och annotera tränings-
data är dock en tidskrävande uppgift, vanligtvis
utförd av människor. Vore det inte därför fan-
tastiskt om vi skulle kunna låta datorer göra det
åt oss?
Generativa adversiella nätverk (GAN) är en

teknik där två artificiella neurala nätverk tävlar
mot varandra i ett nollsummespel. Föreställ dig
en konstförfalskare och en konstkritiker. Förfal-
skaren har ett incitament att producera målningar
som ser äkta ut, medan kritikern gärna vill kunna
urskilja ifall en målning är förfalskad eller ej. Ifall
kritikern upptäcker en förfalskning, måste förfal-

skaren förbättra sin teknik så att hens målningar
inte längre upptäcks av kritikern. Därefter måste
kritikern bli bättre på att upptäcka förfalskade
målningar, och igen måste då förfalskaren bli ännu
bättre . . . Det blir alltså ett slags evigt spel, där
förfalskaren och kritikern hela tiden försöker bli
bättre än den andra.
Denna slags situation är huvudidén bakom

GAN, där en generator (konstförfalskaren) för-
söker lura en diskriminator (konstkritikern) att
dess genererade data är verklig.
I vårt examensarbete har vi använt GAN till

att få datorgenererade bilder av människor att
efterlikna verkliga bilder. Vi utgår från render-
ade bilder som i grova drag efterliknar ett verkligt
dataset av bilder. Vår generator tar då dessa ren-
derade bilder som input och målar om dem så att
de ska efterlikna det verkliga datasetet.
Efter att generatorn har tränats, använder vi

dess förfalskade bilder som träningsdata för att
detektera människor. Jämfört med små mängder
verklig träningsdata lyckas vi med våra förfalskade
bilder få bättre träffsäkerhet. I framtiden tror vi
att en sådan här metod kommer att bli allt mer
vanlig och därför revolutionera området, eftersom
vem som helst då kan generera egen träningsdata.

	Introduction
	Purpose
	Background
	Company
	Problem Formulation and Goals
	Previous Work

	Outline
	Contributions
	Workload distribution

	Theory
	Generative Adversarial Network
	Conditional Generative Adversarial Network
	Supervised Image-to-Image Translation: Pix2Pix
	Unsupervised Image-to-Image Translation: CycleGAN
	Unsupervised Attention-guided Image-to-Image Translation
	GAN losses
	Architecture of Image-to-Image Translation networks
	How we utilize GANs
	Object detection: SqueezeDet
	Evaluation metrics

	Method
	Strategy
	Rendering
	Refiner
	Full size images
	Cropped images
	GAN networks

	Evaluation
	Implementation
	CycleGAN and AGGAN
	SqueezeDet

	Results
	Overview
	Visual results
	Quantitative results
	Fréchet Inception Distance
	SqueezeDet Performance Metrics
	Correlation between F1-score and Fréchet Inception Distance
	PCA Plots
	Training Plots

	Discussion
	CycleGAN
	CCP, CCPS

	CycleGAN with VGG16 feature losses
	CCPCFIP, CCPCFIF, CCPCF, CCPCFIPS, CCPCFIFS, CCPCFS

	CycleGAN with a discriminator feature loss
	D, DS

	CycleGAN with a mean feature loss of the target dataset
	M, MS

	Attention-guided GAN
	A, AS

	Why the refinement increases object detection performance
	Does real training set size matter?
	Which layers from VGG16 should be used
	Skip connections
	Did we achieve photorealism?
	Reproducibility
	Shortcomings

	Conclusions
	Conclusion
	Future work
	Ethics

	References
	Appendix

