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Abstract

Parser generators are code generator tools that generate code for a parser based
on an input grammar specification. However, problems can arise when one wants
to combine grammars. Grammars may overlap in ways that make the combina-
tion challenging to implement with a parser generator. In this thesis, I have
evaluated both commonly used parser generators and experimental tools from
an industrial perspective and the ability to connect to other code generation
tools. The generators have been tested by producing implementations for two
test languages and one industrial case. The results show that all evaluated gener-
ators can parse combined grammars in cases with clear separators between the
grammars. However, when it comes to languages where there are no clear sep-
arators, both the popular and experimental tools struggle; though experimental
algorithms can parse a larger portion of these cases.

Keywords: Parser generators, scanning, combined grammar, code generation, lexical
states
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Chapter 1

Introduction

One essential part of a compiler is the parser. The parser’s role is to organise the input code
text according to some grammar rules. One can often generate parsers using parser generator
tools. Such tools create the code for a parser based on an input grammar specification; thus,
allowing the developer to both construct the parser faster and with less e�ort. Moreover,
the parser becomes easier to understand and to change compared to if the parser would be
written by hand.

There are cases when one wants to combine di�erent languages in the same code. For
example, one might want to embed SQL into a general programming language [13]. However,
it then can become troublesome to use parser generators since often the grammars of these
component languages are incompatible. Furthermore, it is di�cult to know which parser
generator resolves this issue in the best way. For these reasons, this thesis is dedicated to
evaluating parser generators for the parsing of combined grammars.

To gain insight into how to best solve the problem of parsing combined grammars in
industry, I have also conducted a case study at a company called ABB. Here I have evalu-
ated the parser generators along factors determined to be important by ABB. I result with a
recommendation of the parser generator tool most suited for the company.

Since parsing is only one piece of a compiler, parsers must connect to other tools, for
example, JastAdd [15]. I have thus, also, explored how one can integrate the parser generators
with other compiler building tools.

1.1 An Industrial Context
A team at ABB, Malmö is in the process of evaluating parser generators for parsing IEC 61131-
3 [16] languages. IEC 61131-3 is a standard which outlines several programming languages,
both textual and graphical, for use in programmable auto controllers. These are Instruction
List, Structured Text, Ladder Diagram, and Function Block Diagram. Furthermore, ABB has also
specified their own graphical language. Due to how the developer tool is constructed, user-
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1. Introduction

specified code blocks in these languages are inserted into an XML document as XML ele-
ments. Other, relevant data, such as globally defined variables, is also stored in the XML. It
is these XML files that serve as the input to their compiler.

The company generated a parser for these XML files using the JavaCC parser generator
[8]; however, the team ran into issues. The grammar specification for the XML structure and
the grammar specifications for the embedded code blocks are not compatible. The developers
managed to solve this issue with the technique of lexical states. And even though this solution
works, ABB’s choice of JavaCC was unresearched. Thus, they want to determine if any other
parser generator is better suited for them. The factors that are most important for the team
are functionality, ease-of-use, performance, type of license, quality of error messages, ease
of altering error messages, and amount of available support. Moreover, the company uses
JastAdd for many compiler tasks running after the parsing. Therefore, a parser generator for
ABB must be able to integrate with JastAdd.

1.2 Goals
There are two main goals of this thesis:

1. Determine parser generators suitable for parsing combined grammars from an indus-
trial perspective.

2. Determine how parser generators can connect and integrate with other tools.

1.3 Delimitations
Before the start of this thesis I decided, in conjunction with my supervisor and the people
at ABB, to limit the evaluation to a few of the most popular parser generators (ANTLR 4
[25], JavaCC [8], CUP [23], JFlex [34]) and a few research projects with new experimental
techniques on how to solve combined grammar parsing (Copper [37], MetaLexer [6]). All
of the tools above generate Java code. We did this since we desired to connect the parser
generators to JastAdd, which also generates code in Java. Furthermore, all the selected tools
are open source.

1.4 Structure of Report
Presented next is Chapter 2 Background in which I describe the theory and background
needed to understand this work. The background topics include the compiler pipeline, ex-
planations of scanners and parsers, abstract syntax trees, an introduction to the tools used in
the thesis, and lastly an explanation of JastAdd. In Chapter 3 General Evaluation, I present
an evaluation of the generators. I describe how I constructed test languages and used the
tools to implement parsers for these. I outline the results of the implementations in terms
of functionality, ease-of-use, and how well the parsers were able to integrate with JastAdd.
After this, I also look into how much the tools are maintained and what kind of licenses they
have. This chapter concludes in an overview of the results of the evaluation. In Chapter 4
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1.4 Structure of Report

Industrial Case Study, I evaluate the tools selected from Chapter 3 on ABB’s use case. To do
this, I look into the customisation of error messages and a performance evaluation. I conclude
Chapter 4 with a recommendation for a tool for ABB. In Chapter 5 Discussion, I discuss the
methodology and results of the evaluation. I propose ways to improve the thesis, compare it
to related works, and discuss potential future work. Lastly, the report ends with Chapter 6
Conclusion, where I give a summary of the thesis and answer how well the goals have been
achieved.
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Chapter 2

Background

In this chapter, I describe the background necessary to understand this thesis. First I describe
the compiler pipeline to give the context of a parser role in a compiler. Then I go on to explain
how a scanner and parser work, and to describe why attributed syntax trees are used. Lastly,
I introduce the tools I will evaluate and explain how JastAdd works.

2.1 Compiler Pipeline
A compiler can be described as a pipeline of several di�erent components, where the output
of one component is the input into another. Aho et al. [2] divides these components as
follows:

Lexical Analyser: Also known as a scanner. This component uses the code as input in the
form of a character stream. Strings of at least one character are packed into tokens, for
example the string "+" is represented as an ADD token. The output of this stage is a
stream of such tokens. Considering a function call func(90 * 4 - 1);, the resulting
token stream would look like [IDENT(func) LPAR INTEGER(90) MUL INTEGER(4)
SUB INTEGER(1) RPAR SEMICOL] (where IDENT stands for identifier, LPAR stands
for left parenthesis, and RPAR stands for right parenthesis).

Syntax Analyser: Also known as a parser. Here the token stream is organised by constructing
a tree data structure, called a parse tree. This tree represents the grammatical structure
of the code. Leaf nodes in a parse tree are tokens, while the other nodes are more
general categories in the grammar. Such a category could be, for example, statements
or expressions. The token stream from above would result in a parse tree shown in
Figure 2.1.

Semantic Analyser: This step uses the syntax tree to check language semantic rules. Such
checks could, for example, include name-checking, where the compiler ensures that
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2. Background

Figure 2.1: An example parse tree for the function call statement
func(90 * 4 - 1).

identifiers are defined before use and that they are not doubly defined. Another ex-
ample would be type checking.

Intermediate Code Generator: Here the syntax tree is converted into an intermediate code
format. Intermediate code is often similar to machine code; however, it is hardware
independent.

Machine-Independent Code Optimiser: This step optimises the intermediate code. It is an
optional step, but can help to produce better machine code compared to using opti-
mised intermediate code.

Code Generator: Generates machine dependent code based on the intermediate code.

Machine-Dependent Code Optimiser: Optimises the machine dependent code to improve
performance. Technically, this step is optional as well.

To solve the problem of parsing combined grammars, the lexical analyser or the syntax
analyser usually make use of special techniques. Thus, these two steps of the compiler will be
the main focus of this thesis. Still, JastAdd is one way to do semantic analysis. So, since Jas-
tAdd will be used to test the parser generators ability to connect with other code generation
tools, also semantic analysis will be touched upon, though briefly.

12



2.2 Scanner

2.2 Scanner
The scanner transforms the code in the form of a character stream into a stream of tokens
[2]. Appel et al. [3] explain that regular expressions are one way to represent tokens. Regular
expressions can be acyclic, that is they can match finitely many strings, or cyclic, which means
they can match infinitely many strings [6]. Keywords and punctuation tokens tend to be
acyclic while identifiers and literals tend to be cyclic. See Table 2.1 for examples.

Token Regular Expression Acyclic / Cyclic Example Strings
FOR "for" Acyclic for
LPAR "(" Acyclic (
IDENT [A-Za-z][A-Za-z0-9]* Cyclic a, var, i2, aaggg444bbb

INTEGER [0-9]+ Cyclic 1, 4545, 05

Table 2.1: Examples of regular expressions for tokens.

Several regular expressions can match the same string. For example, both the regular
expressions for FOR and IDENT in Table 2.1 matches "for". There are two common rules to
solve ambiguities like this [3]:

Rule Priority: The regular expression that is defined first has priority. So, if FOR is defined
before IDENT, "for" will match FOR and vice versa.

Longest Match: The scanner always matches the longest token. So, for the string "for5",
IDENT is matched instead of for example [FOR INTEGER].

There are a few regular expressions that may be described as matching non-tokens [3].
Common examples of this are white space and code comments. These are not necessary for
parsing the syntax of the code; thus, when the scanner matches such a regular expression, no
token is passed to the parser, i.e. they are skipped.

Appel et al. [3] go on to explain that finite automata provide a framework for e�ciently
representing regular expressions in code. A finite automaton consists of states and edges.
The automaton changes state when the input character matches one edge. If the automaton
cannot pair with any edge, it throws an ERROR token. Typically, the user declares tokens with
their regular expression in a scanner specification. A scanner generator then generates finite
automata for all tokens in code from this specification.

2.2.1 Lexical States
Lexical states is a technique used in many lexical analyser generators, including several eval-
uated in this thesis. The method allows the user to specify which regular expression will be
active at what context in the input. Lesk’s and Schmidt’s [21] scanner generator Lex (an early
scanner generator that produces scanners in C or Ratfor) was one of the first tools that made
use of lexical states. Though it should be noted, in the case of Lex, lexical states are referred
to as start conditions.

The technique implies that every lexical rule in the specification can be given one or
several states. The lexical rule is then only active when the scanner is in the same lexical state
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2. Background

of said rule. Consider, the example specification below in pseudo-code, where <> denotes
lexical states:

<STATE_A > TOKEN_A = [a-zA -Z] -> CHANGE_STATE ( STATE_B );
<STATE_B > TOKEN_B = [a-zA -Z] -> CHANGE_STATE ( STATE_A );

Here, the state changes to STATE_B when a TOKEN_A token is produced and to STATE_A
when a TOKEN_B is produced. This shu�ing of the lexical state allows both lexical rules to
utilised at di�erent times even though they are identical. This phenomenon is noticeable
if assuming the scanner starts in STATE_A when the scanner encounters the string "aaa" the
following token stream will be produced: [TOKEN_A TOKEN_B TOKEN_A].

Lexical states can be beneficial when dealing with combined grammars. A lexical state
can then correspond to the entire set of tokens corresponding to one grammar. The lexical
state is changed when one wants to start parsing another grammar.

2.3 Parsing Algorithms
The parser’s role is to organise the incoming token stream into a data tree structure called
a parse tree [2]. For this purpose, there exists two di�erent main algorithms tend to be
used in parsers. These are left-to-right, leftmost derivation (LL) and left-to-right, rightmost
derivation (LR). Aho et al. [2] explain that both algorithms are based upon context free
grammars (CFGs). CFGs consists of a start symbol, production rules, terminals, and non-
terminals. Terminals are tokens and also leaf nodes of the parse tree. Non-terminals are the
categories that form the internal nodes of the parse tree. A production rule consists of a
left-hand side (LHS) which is a non-terminal and a right-hand side (RHS) which is a list of
non-terminals or terminals. A production rule for a while statement in Java could look like
the following:

while_stmt := WHILE LPAR expr RPAR stmt_list

The start symbol of a CFG refers to the LHS that the parser tries to construct first. The start
symbol also forms the root node of the parse tree.

Both LL and LR parsers have a specific number of lookaheads. Lookaheads are the next
coming tokens on the token stream. A parser can check the lookahead(s) to predict what to
do. Parsers with a k number of lookaheads tokens are denoted as LL(k) or LR(k) respectively.

LL: An LL parser builds the parse tree top-down [2]. It starts with constructing the starting
non-terminal and then the first child and so on in a depth-first manner. A common
way to realise a recursive parser is as a rcursive descent parser [3]. When an LL parser
has several alternatives, it can use the lookaheads to predict which rule to enter. For
example, if an LL(1) parser has X in its lookahead it knows to enter alternative (1) in
the following production rule:

a := X Z (1)
| Y a (2)

However, there are a few grammar constructs that LL(1)-parsers cannot parse. For
example, they cannot handle common prefixes. If the parser has Y in its lookahead it
cannot predict whether to choose an alternative (1) or (2) in the rule below:

14



2.4 Abstract Syntax Tree

a := Y Z (1)
| Y a (2)

Another construct that no LL-parsers can parse is left recursive rules. A left recursive
rule could look like:

a := a Y (1)
| Y (2)

Here LL parsers can become stuck in an infinite loop by selecting alternative (1) re-
peatedly.

LR: LR parsers are slightly more advanced than their LL counterparts. Appel et al. [3]
describe that the LR-algorithm utilises a stack where it pushes tokens upon. When
an entire RHS of a rule is present on the stack, these symbols can be reduced to the
corresponding LHS non-terminal. In this way, the parser builds the tree is bottom-
up. Furthermore, rules do not need to be entered, so LR parsers do not have the same
issues of common prefixes and left recursion. However, LR parsers can have problems
in terms of shift-reduce conflicts. These occur when the parser algorithm is not certain
whether to push a new token upon the stack or whether it should reduce the current
ones.

Aho et al. [2] describe that in practice, LR(1)-parsers tend to result in large state
transition tables. Therefore, it is often more reasonable to produce an LALR(1)-parser
instead. LALR(1) is a subset of LR(1) that has a less heavy implementation. The ex-
pressiveness lost from going from LR(1) to LALR(1) is usually not noticeable.

2.3.1 Combined Grammars
The purpose of this report is to examine the use of parser generators on combined grammars.
In this work, I define a combined grammar as a set of at least two CFGs, where at least
one CFG uses terminals or non-terminals of another CFG in its own production rules. For
example, one can combine a grammar for Java with grammars of Swul or XML as done in [5].

2.4 Abstract Syntax Tree
Parse trees carry unnecessary information and do not have the best structure for semantic
analysis. For example, the parenthesises and semicolons do not carry important information
in a while statement of the form while ( true ) i++;. Parsers can overcome this issue
by constructing abstract syntax trees (AST). In an AST the nodes represent programming
constructs rather than non-terminals like in a parse tree [2]. Consider the parse tree for the
following expression: 90 * t + 1 in Figure 2.2a. An AST of this might look as Figure 2.2b.

In the practical sense, an AST node is usually constructed as a Java object at appropriate
places in the parser code. The user can often add such code through the use of semantic
actions. Semantic actions are snippets of code in the target language of the generator that
can be embedded in a parser specification. These snippets of code are then executed when
the parser uses the rule corresponding to said AST node.

15



2. Background

(a) Parse Tree

While

BoolLiteral 
val: 'TRUE' List

Increment

IdentUse 
ID: 'i'

(b) AST

Figure 2.2: Parse tree and corresponding AST of the statement
while ( true ) i++;.

2.5 Tools
This section aims to give some background on the tools that are evaluated in the thesis. I
have evaluated the following tools: ANTLR 4, JavaCC, CUP, JFlex, Copper, and MetaLexer.

ANTLR 4: ANTLR is a popular parser generator, first developed by Terence Parr [25]. It
is now in its fourth version. ANTLR 4 uses a parsing algorithm called ALL(*) [27],
which stands for Adaptive LL-parsing with unlimited lookaheads. The adaptive part
refers to that the algorithm can perform more advanced rule predictions, compared to
regular LL algorithms, that are parser call stack sensitive and calculated in run-time;
however, as all LL algorithms, ALL(*) cannot handle left recursion. ANTLR 4 resolves
this by rewriting direct left recursive rules before parsing, thus allowing the user to
utilise these constructs in the specification. Furthermore, common prefixes will not
cause errors either, due to the unlimited lookaheads. From the parser specification,
ANTLR 4 generates both a scanner and a parser [32], thus taking care of both the lexi-
cal and syntactical analysis. ANTLR 4 parsers construct a parse tree and lack inherent
functionality to build an AST as it instead aims to use the visitor or listener pattern.
Lastly, it should be noted that ANTLR can generate code to several target languages,
but in this thesis, I only focus on the Java output.

JavaCC: JavaCC was first developed at Sun Microsystems Inc. but is now maintained as an
open-source project on GitHub [8]. It generates recursive descent parsers that are
LL(k) where k = 1 by default. Using LL parsers means that the user can have issues
with both left recursion and common prefixes at times. To overcome common prefixes,
JavaCC allows the user to increase the lookahead at places locally in the grammar.
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2.6 JastAdd

Additionally, JavaCC includes scanner generation, so the tool handles both the lexical
analysis and as well as the syntax analysis. Developers can easily add AST building
functionality by using JJTree. JJTree is a pre-processor to JavaCC which injects the
needed code for AST construction into the JavaCC specification.

CUP: Scott Hudson first developed the tool Construction of Useful Parsers (CUP); how-
ever, it is now maintained at the Technical University of München [23]. CUP is used
to generate LALR parsers from a grammar specification. As all LALR parsers, CUP
parsers will not have issues with common prefixes and left recursion. Instead, prob-
lems might manifest in the form of shift-reduce conflicts. In contrast to ANTLR and
JavaCC, CUP only generates a parser, i.e. a syntax analyser. Thus, if using CUP, one
needs to construct or generate a lexical analyser in another way. In this thesis, I use
the scanner generators JFlex, which is said to work particularly well with CUP, and
MetaLexer together for this purpose. Finally, one should note that CUP allows AST
building through semantic actions.

JFlex: JFlex is a popular scanner generator [34] inspired by the older tool JLex [4]. JFlex
generates a lexical generator from a specification of tokens and regular expressions.
The tool is designed to work together with CUP, which will be used together with
JFlex in the evaluation.

Copper: Copper generates LALR(1) parsers with specifications similar to CUP. It is devel-
oped and maintained by Van Wyk and Schwerdfeger at the University of Minnesota
[37]. Unlike CUP, Copper includes both a parser generator and a scanner generator
in one package. Copper is unique in that it has an experimental algorithm to resolve
combined grammar parsing issues. The context-aware algorithm works through a con-
nection between the scanner and the parser. The scanner takes as input a set of valid
lookahead tokens, determined by the parser, and is only able to return tokens in this
set. As output, the scanner can return a variable number of tokens. In case of zero
returned tokens, a parse error is thrown, in case of one token, this token is used by the
parser, and in case of several tokens, the parser must utilise so-called disambiguation
functions to choose which token to use. The scanner generator follows non-standard
priority rules to facilitate this algorithm. Specifically, it does not follow the first rule
declaration priority. Instead, these priorities are specified manually.

MetaLexer: MetaLexer was developed as a master thesis at McGill University by Andrew
Casey [7]. It is a pre-processor to JFlex that allows lexical analysers to use new experi-
mental features, such as inheritance. When using MetaLexer, the developer can easily
combine modules of scanners [6]. MetaLexer solely generates scanners and thus needs
to be used with a parser generator. In the evaluation, MetaLexer will be used together
with CUP.

2.6 JastAdd
JastAdd is a useful tool for constructing compilers. It is especially helpful for semantic anal-
ysis and intermediate code generation. The tool has been used in many compiler related
projects [33]. For example, the ExtendJ Java compiler is written with JastAdd [10].
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2. Background

The tool generates Java classes for the AST-nodes that are based upon a user-written
abstracted grammar. Here the user defines all the classes of AST-nodes by specifying the
classes of their children. Furthermore, object oriented inheritance can be used by extending
AST-nodes classes with others [14]. Consider the excerpt from an AST-grammar below. The
JastAdd generated classes from this excerpt will have the structure shown in Figure 2.3.

abstract Expr;
IntLiteral : Expr ::= <Value:Integer >;

abstract BinaryExpr : Expr ::= Left:Expr Right:Expr;
AddExpr : BinaryExpr ;
MulExpr : BinaryExpr ;

<<abstract>> Expr

<<abstract>> BinaryExpr

left : Expr
right : Expr

IntLiteral

Value : Integer

MulExpr AddExpr

Figure 2.3: UML class diagram for JastAdd AST-specification.

The power of JastAdd lies in its ability to define properties declaratively, called attributes,
of the nodes. There are di�erent kinds of attributes: synthesised and inherited. Synthesised
attributes are defined in the node it is accessed in, while inherited attributes are defined in
ancestor nodes [14].

Reference attributes point to other AST-nodes. They can be of both the synthesised and
inherited variety. Reference attributes can be useful during di�erent parts in the semantic
analysis. Instead of using a symbol table as Aho et al. [2] describe, one can simply point to
the node where the variable of the other construct is defined [14].
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Chapter 3

General Evaluation

This chapter presents the method and results of a general evaluation of the tools. The evalu-
ation investigates the tools in terms of functionality, ease-of-use, how widely used the tools
are, and the type of license. First, the test languages used in the evaluation are presented, fol-
lowed by a showcasing of the implementations. Lastly, there is an investigation of the usage
of the tools and their licenses.

3.1 Test Languages
To test the parser generators, I have constructed two languages. I have then implemented
parsers for these languages to determine the tools’ functionality and ease-of-use. One lan-
guage, which is inspired by ABB’s set up, consists of code blocks embedded in an XML struc-
ture. This test language is referred to as XML Blocks. The code blocks in XML Blocks are
either Oberon-0 code [38] or State Machine Language (SML) code [14]. The other language
is a combination of Oberon-0 and an extended version of SML (ESML). This test language is
referred to as the Mixed Language.

Oberon-0 is a subset of the language Oberon, which is inspired by Modula-2 and Pascal
[38]. Furthermore, only a smaller subset of Oberon-0, as defined by L0 and L1 in the LDTA
2011 Tool Challenge [36], is implemented. This subset includes constants, types, variables,
expressions, assignment statements, while statements, and if statements. It is not vital to
implement the entirety of Oberon-0 since it is not the amount language features themselves
that are of importance, but rather the combination of and the switching between grammars.

SML is a small example language that describes state machines, used to highlight JastAdd
features [14]. I have constructed an extended version of SML called ESML by adding OBJECT
and WHEN statements. ESML is used to introduce more di�cult parsing cases in the Mixed
Language.
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3.1.1 XML Blocks
XML Blocks consists of an outer XML structure that can contain code blocks of either Oberon-
0 or SML. In XML Blocks the borders between the di�erent components are clear, so the main
parsing problem is how to determine which grammar to operate in and at which points to
change grammars. Furthermore, to complicate things, XML cannot be represented as one
grammar by itself, but rather a combination of inside- and outside-tag grammars [24]. One
example of XML Blocks with a simple SML and a simple Oberon-0 block is:

<Program >
<Name >One SML and One Oberon -0 Block </Name >
<Description isEmpty =" true "/>
<Variables />
<CodeBlocks >

<CodeBlock >
<Name >CodeBlock1 </Name >
<Language >SML </ Language >
<Code >

state S1;
state S2;
trans t1: S1 ->S2;
trans t2: S2 ->S1;

</Code >
</CodeBlock >
<CodeBlock >

<Name >CodeBlock2 </Name >
<Language >Ob0 </ Language >
<Code >

MODULE EmptyModule ;
END EmptyModule .

</Code >
</CodeBlock >

</CodeBlocks >
</Program >

I have constructed a set of tests in XML Blocks to be used to evaluate the functionality of
the parser generators. The tests cover a multitude of cases but can be categorised as follows:

• A1: XML with no code blocks.

• A2: XML with Oberon-0 code blocks.

• A3: XML with SML code blocks.

• A4: XML with both Oberon-0 code blocks and SML code blocks.

• A5: SML keywords used in XML tag element text.
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3.1.2 Mixed Language
Mixed Language is a direct mixture of ESML and Oberon-0. There are no clear separations
upon where one language starts and the other one ends. The issue here will be to notice when
the switch between component language occurs. Mixed Language is purposely designed to
introduce complex parsing situations. This complexity is highlighted by that the user can
nest languages inside one another. A straightforward example of the Mixed Language looks
like:

1 MODULE NextToModule ;
2 VAR x : INTEGER ;
3 BEGIN
4 STATE s1;
5 STATE s2;
6 TRANS t1 : s1 -> s2;
7 TRANS t2 : s2 -> s1;
8 OBJECT o1 {
9 START = s1;

10 END = s2;
11 };
12 WHEN o1 IS IN s1 THEN {
13 NEXT_TRANS = t1;
14 };
15
16 IF 1 < x THEN
17 x := x + 1;
18 ELSE
19 x := x - 1;
20 END;
21 ;
22 x := x * 2;
23 WHILE x < 1 DO
24 ;
25 END
26
27 END NextToModule .

In the example above, row 4-14 is ESML, and the rest of the code is Oberon-0. It might be
possible to write the Mixed Language as a single grammar, but in the implementations, the
grammars will be separated to allow investigation of the issues of combining grammars.

Like for XML Blocks, a test set with di�cult cases has been constructed for the Mixed
Language as well. The categories of these tests are presented below:

• B1: ESML or Oberon-0 keywords are used as identifiers in the other language.

• B2: ESML and Oberon-0 code is mixed next to each other.

• B3: No semicolons at the transition between ESML to Oberon-0 or vice versa.
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• B4: Recursion, meaning Oberon-0 code can be constructed inside an ESML code block
and vice versa.

• B5: ESML and Oberon-0 share the same keyword.

• B6: ESML and Oberon-0 share the same operator.

3.2 Implementations
To evaluate the functionality of the parser generators, I compare the ability of the implemen-
tations to parse the test sets composed by the test languages. Any tests that cannot be parsed
counts against the parser generator’s functionality. Furthermore, to measure the ease-of-use
of the tools, I count the lines of code (LOC) of implementations. The more LOC, the more
di�cult the implementation is perceived to be. The repository with all the implementations
is available at [18].

3.2.1 Handling Combined Languages
The implementation can be organised into three categories: plain lexical states, semantic
action-driven lexical states, and context aware scanning. Plain lexical states solutions change
lexical states when tokens are matched. These transition between states are usually imple-
mented through specific statements in the lexical specification. Semantic action driven lex-
ical states implementations are very similar to plain lexical states, the di�erence being that
lexical states are changed with semantic actions. This allows custom logic in the form of code
to give more control over lexical state transitions. The last type, context aware scanning, is a
custom algorithm means once does not need to specify state transitions. Which tool is what
type is shown in Table 3.1.

Implementation Category
ANTLR 4 Plain Lexical States
Copper Context Aware Scanning
JavaCC Plain Lexical States

JFlex/CUP Semantic Action-Driven Lexical States
MetaLexer/CUP Plain Lexical States

Table 3.1: Category of implementations.

Implementing a parser for XML Blocks was straight forward for the tools that use lexi-
cal states because there is a clear limit upon where one language starts and the other ends.
All plain lexical state implementations, make use of a token that may look like (for SML)
<Code>SML</Code>. When the scanner reads such a token, the lexical state changes to
another language (in this case SML). Though this is an easy solution, there are limitations
with this way of doing it. By representing that entire XML statement as one token, one
e�ectively removes this part from standard XML grammar. In real XML, arbitrary white
spaces are allowed at certain places. For example, the XML above should be equivalent with
<Code >SML</Code>; however, the scanner would not match that XML as token due to
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technically being another regular expression. This flaw makes the lexical state implementa-
tions fragile at these transition tokens. The semantic action driven lexical state implementa-
tion is observably a bit better. Due to JFlex’s ability to change lexical states through semantic
actions, rather than as a command, one can postpone the changes of lexical states with a bit
of added logic. Thus one can keep a larger part of the XML statements inside the actual XML
state.

For the Mixed Language, the lexical state implementations have a harder time. Here there
is no hard border for when a new language should start; ESML and Oberon-0 code can come
in any order possible. This means that there is no equivalent to a <Code>SML</Code>. To
try to circumvent this issue, I implemented an intermediate state which shall be referred to
as the ambiguous state. In the ambiguous state, the parser does not know what component
language it is currently trying to parse. However, based on the token that is parsed in this
ambiguous state, the parser deduces what language it is parsing and thus change lexical state
accordingly. Let us say for example, that an IF token is scanned; then one transfers the lexical
state to Oberon-0 as this is the only component language that has IF-statements.

In a reversed fashion compared to the lexical states implementations, Copper’s imple-
mentation struggled more with XML Blocks than with the Mixed Language. In particular,
for XML Blocks Copper must employ a disambiguation function. On the grammar level,
the Copper implementations were very similar to the lexical states’ parsers. However, in the
lexical specification, there are more considerable di�erences. Here, the transitions between
lexical states do not need to be specified, but instead, one must specify all the priorities be-
tween the tokens. Furthermore, one must implement disambiguation functions when these
priorities are not enough.

3.2.2 Results for XML Blocks Language
The Table 3.2 outlines which tests the implementations were able to handle in the XML
Blocks test suite. As the table shows, all implementations were able to handle all the tests
in the test set. This result indicates that all the categories of implementation are capable of
parsing combined grammars with clear borders between the di�erent languages.

Implementation A1 A2 A3 A4 A5
ANTLR 4 X X X X X
Copper X X X X X
JavaCC X X X X X

JFlex/CUP X X X X X
MetaLexer/CUP X X X X X

Table 3.2: Successfully parsed tests in the XML Blocks test set.

3.2.3 Results for Mixed Language
In Table 3.3, the results from the Mixed Language test suite are shown. Unlike XML Blocks,
the implementations were not able to parse all examples. Specifically, the implementations
struggled with B1 and B3.
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Implementation B1 B2 B3 B4 B5 B6
ANTLR 4 X X X X
Copper X X X X X
JavaCC X X X X

JFlex/CUP X X X X
MetaLexer/CUP X X X X

Table 3.3: Successfully parsed tests in the Mixed Language test set.

All the implementations struggled with the context-based preference of keywords in
ESML and Oberon-0. The parser cannot determine when a keyword in one language should
be considered as an identifier in the other. Below is one example that the implementations
struggle with:

1 MODULE IdentKeywordModule ;
2 VAR STATE : INTEGER ;
3 BEGIN
4 STATE := 2;
5 STATE s1;
6 STATE s2;
7 TRANS t1 : s1 -> s2;
8 TRANS t2 : s2 -> s1;
9 OBJECT o1 {

10 START = s1;
11 END = s2;
12 };
13 WHEN o1 IS IN s1 THEN {
14 NEXT_TRANS = t1;
15 }
16 END IdentKeywordModule .

On line 2 and 4 STATE should be considered an identifier in Oberon-0, while on line 5
and 6 STATE should be considered an ESML keyword. The ambiguous state approach does
not work here because one cannot know which state to transfer to when receiving a STATE
token as this changes depending on the type of statement. Furthermore, the Copper im-
plementation also fails here since the scanner returns both a STATE and an IDENT token;
however, there is no exact way to disambiguate between them.

Another example that only Copper can handle is when the semicolons are not after the
last statement in a block. Observe that Oberon-0 is one of those languages that have semi-
colons between statements instead at the end of them. This language property means that
the last statement does not need to end with a semicolon. One test testing this looks like:

1 MODULE NextToModule ;
2 VAR x, y : INTEGER ;
3 BEGIN
4 x := 1;
5 y := 2;
6 IF x < y THEN

24



3.2 Implementations

7 STATE s1;
8 x := y
9 ELSIF x # y THEN

10 x := y
11 ELSE
12 x := y
13 END;
14 OBJECT o1 {
15 START = s1;
16 x := y
17 };
18 x := y
19 END NextToModule .

Observe that there are no semicolons at the end of the statements on lines 8, 10, 12, 16,
and 18. The reason for this is that the scanner changes the state back to the ambiguous state
when it matches the SEMICOL token. So when this token is missing the state is remaining
in the Oberon-0 state. When the scanner is stuck in the wrong state, it can cause issues since
the following lines might obtain the other language. The Copper implementation was able
to parse this example, though.

The results seem to show that no tool is mature enough to generate parsers for a combined
language where there are no clear separators between them. Nevertheless, it should be noted
that context aware scanning seems to be able to parse more cases than implementations with
lexical states.

3.2.4 Results for Building ASTs
As stated in the background, generators such as Copper, CUP, and JavaCC all can construct
ASTs, either through semantic actions or the use of pre-processors. However, when it comes
to ANTLR 4, the tool constructs the parse tree instead of an AST. One could use the visitor
or listener pattern to construct an AST, but this solution results in much boilerplate code.
To circumvent this, I have implemented code that allows one to use a stack-based approach
to build the AST with semantic actions in ANTLR 4.

I have implemented an ASTBuilder class that contains a stack. The stack has entries
of tuples consisting of an AST node and an ANTLR parser context, which is a node in the
parse tree. Before a new node is pushed onto the stack, some nodes already on the stack may
be popped and added as children to the new node. Three di�erent categories determine how
many nodes are popped:

1. Nodes with a set number of children (this includes all user-specified nodes): will pop
o� the number of nodes that the new node is supposed to have as children.

2. List nodes: will pop o� nodes until it peeks a node that is not in the new node’s parser
context. Being in the parser context means that the node was created below the new
node in the parse tree.

3. Opt nodes: will pop o� one node if it is in the new node’s parser context.
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3.2.5 Results for Ease-of-Use
The LOC count is a measure of easy something is to implement. Table 3.4 presents the LOC
of di�erent scanner and parser specifications for the di�erent implementations. As observed,
ANTLR 4 has the most concise implementation compared to MetaLexer, which has the most
verbose. The results indicate that ANTLR 4 is the easiest to use, and the MetaLexer / CUP
combination the most di�cult.

XML Blocks Mixed Language
ANTLR 4 234 196
Copper 352 227
JavaCC 368 292

JFlex/CUP 411 303
MetaLexer/CUP 473 364

Table 3.4: The Line of Codes for the implementations of the di�er-
ent tools.

3.3 Usage of Tools
Investigating how much a tool is used is interesting since it is correlated to the amount of
support available for the tool. To determine this, I have studied how often the tools are
mentioned on Stack Overflow, how much they are used on GitHub and if the tool is regularly
maintained.

3.3.1 Stack Overflow
People can query Stack Overflow using SQL commands [17]. Furthermore, Stack Overflow
posts can have tags. So by querying for the posts that have tags belonging to the parser
generator tools, I can determine how many questions are asked about each tool. The result
of this querying is shown in Figure 3.1.

As seen, ANTLR 4 is asked about much more than the other tools. Compare this to Cop-
per and MetaLexer that did not have any tag belonging to them. Their relative unpopularity
is most likely due to that they are experimental tools implemented for research. Moreover, it
also indicates that they are not used much in practice.

3.3.2 GitHub
From GitHub, I was able to collect information by using the website’s search function and the
dependency graph function. I collected the number of code and repositories hits I got for the
searches and also recorded the number of repositories and packages that were dependent on
the tools. The system for searching this is by setting the search phrase until the 20 first results
were related to the tool in the 20 first search results. This methodology worked for every tool
except for CUP. It is estimated that 20% of the search results for CUP is false positives. The

26



3.3 Usage of Tools

2011 2012 2013 2014 2015 2016 2017 2018 2019
0

50

100

150

200

250

300

350

400

450

500
Stack Overflow Posts per Year

ANTLR 4
CUP
JavaCC
JFlex

Figure 3.1: Number of Stack Overflow posts per year for tools.

search results are not too reliable as often unrelated projects matched the searching phrase.
Thus, I tried to mitigate this issue by filtering out the most common false matches. The
results are shown in Table 3.5. Also here, as with the Stack Overflow survey, Copper and
MetaLexer gave no indications of use and are thus not shown in the table.

Tool JavaCC CUP JFlex ANTLR 4

Search Phrase JavaCC
java_cup NOT cups4j

NOT EE NOT IPP
NOT Marko NOT Android

jflex antlr4

Search Hits (repos.) 471 244 285 1 k
Search Hits (code) 393 k 129 k 158 k 446 k
Dependents (repos.) 427 N/A 281 1675

Dependents (packages.) 0 N/A 0 182

Table 3.5: Results of GitHub survey.

Since CUP is not stored on GitHub, the dependency graph function could not be used;
therefore, showing N/A in the table. Similarly to the Stack Overflow survey, ANTLR 4 is
shown to be the most used tool followed by JavaCC.
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3.3.3 Maintenance
Knowing how often a tool is maintained can be crucial in case one has questions or needs
a bug to be fixed. I have therefore looked at the repositories of the tools to see how often
updates occur:

• Copper: The latest release was in 2018-11-28 and there does not seem to have been
much development since. However, the developers seem to respond and fix the bugs
that are reported on GitHub [12].

• CUP: The last stable release, 11b, was released on 2016-06-15 and there currently does
not seem to be any active development [23]. The maintainer seems to have fixed a few
small bugs in the repository after this [28], but nothing major.

• JFlex: The scanner generator JFlex seems to be actively developed by a team on GitHub.
Their latest release, 1.8.2, being released on 2020-05-03 containing a set of bug fixes
[34].

• MetaLexer: There has not been any maintenance since the tool was developed. The
last release was in 2009-09-12 [22].

• ANTLR 4: The ANTLR project is actively maintained by a flourishing community
lead by Terrance Parr on GitHub [26]. The latest release was 2020-01-20.

• JavaCC: The project has a few active developers working from GitHub [8]. The latest
stable release, 7.0.9, was released 2020-06-26 and version 8.0.0 is in the making.

3.3.4 Conclusion
To conclude this survey I classify the use of the tools along four categories: no use, little use,
some use, and much use. I also use the same classifiers for the amount of maintenance. The
results of these classifications are shown in Table 3.6.

Tool Amount of Use Maintenance
ANTLR 4 Much Much
Copper Little Some
CUP Some Little

JavaCC Some Much
JFlex Some Much

MetaLexer None None

Table 3.6: Classification of Usage and Maintenance.

3.4 Licenses
All the evaluated tools are Open Source Software (OSS). This allows the tools to be used for
free as long as the terms of the tools’ licenses are honoured. But, as Schöttle [29] explain, if
the licenses are not uphold, the o�ender can face legal trouble.
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The parser generators generate Java files, but some like, for example, ANTLR 4 [25] and
Copper [30] also need run-time libraries to operate. The libraries are naturally covered by the
license of the tool, but as Kolassa et al. [19] explain the license of the generated code depends
on whether it is copied directly from the tool’s source code or if it is purely a product based
on the specification. Any copied code will be covered by the same license of the tool, while
the license of the purely generated code is up for the user to decide.

Of the tools that are evaluated CUP [23], JavaCC [8], MetaLexer [22], and ANTLR 4
[25] use either a BSD license or a BSD-like license . Under this license form the tools can be
used in any form, free of charge as long as the copyright notice is present and that the license
of the tool is distributed. Copper, on the other hand, is licensed under a LGPL license [12].
This is a more restrictive license. Under the LGPL, the source code needs to be disclosed, any
changes to the code needs to be disclosed and derivatives of the tool’s source code must be
of the same license. Using a run-time library does not make an application into a derivative
work [35]. However, one should be careful, as it is not clear whether the files generated from
Copper includes copied code and therefore should be covered by LGPL and all that it implies.

3.5 Conclusion
To summarise the results of the general evaluation can be condensed into a table that looks
like Table 3.7. The tool specific results are show in Table 3.8.

ANTLR 4 Copper JavaCC JFlex/CUP MetaLexer/CUP
XML Blocks
Test Cases 5/5 5/5 5/5 5/5 5/5

Mixed Language
Test Cases 4/6 5/6 4/6 4/6 4/6

XML Blocks LOC 234 352 368 411 473
Mixed Language LOC 196 227 292 303 364
Can connect w/ JastAdd X X X X X

Table 3.7: Summary of results for implementations.

ANTLR 4 Copper CUP JavaCC JFlex MetaLexer
Amount of use Much Little Some Some Some None
Maintenance Much Some Little Much Much None

License BSD LGPL BSD BSD BSD BSD

Table 3.8: Summary of results for tools.

The results indicate that all tools can parse XML Blocks, i.e. a language where there
are border known transitions between the languages. For, the Mixed Language it is more
complicated, here no language seems to have all the desired functionality, but the Copper
shows the most promise. The investigation has also shown that all tools can connect with
other code generation tools, for example, JastAdd.
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Chapter 4

Industrial Case Study

Based on the results from the general evaluation, my supervisors at ABB were most interested
in the tools ANTLR 4 and JavaCC. The combined language that they wanted to parse is
quite similar to XML Blocks; however, instead of Oberon-0 and SML, there are blocks of IEC
61131-3 [16] languages such as Structured Text. To choose between the two parser generators,
they wanted to test the parsers along di�erent dimensions. Other than the aspects explored
in the general evaluation, they were interested in how one might customise error messages
and how to change the row number in the error messages. Furthermore, they also wanted a
performance evaluation of the tools in the performance comparison. Based on the result of
these surveys, I come with a recommendation with the tool most suited for ABB.

4.1 Custom Error Messages
Since ABB’s XML language mix is only constructed in the back-end, the actual users of their
platform only concern themselves with the actual content of the code blocks. For example,
they might only see a Structured Text block. This causes a few complications when dealing
with error messages from the parser. If there is a syntax error in the code block, this will be
noticed by the parser and it will return an error message. This error message has an accom-
panying line number where the error occurs. However, since it is the XML file that is parsed
it will be the line number in the XML file that is returned. This is not the same as in the code
block. Thus, I will investigate how to change the error messages and change the error line
number to make it more appropriate for the end user.

JavaCC was di�cult to change the error messages. JavaCC throws ParseExceptions when
errors are found. The way these ParseExceptions are thrown are via a method called generate-
ParseException(). I override this method in by constructing a subclass of the parser class.
If the error is inside a code block I change the message of the exception. I can determine
this by utilising a boolean variable in the parser isInCodeBlock. I update the status of
isInCodeBlock with semantic actions in the grammar. In the new messages I just change
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the line numbers.

ANTLR 4 has more of a framework for customising errors. The scanners and parsers have
error listeners that one can define and add to the parsers. So I have defined my own. The
di�erence from the regular error listener is that it changes the line numbers to be relative
the code block. To know when to do this I utilise a isInCodeBlock variable similarly to
JavaCC.

Ideally you also want the new line numbers to be in semantic errors as well. Semantic
errors are handled with JastAdd. The line numbers to these errors are transferred from the
parser into JastAdd. I have thus added one line of code to give return the line number relative
to the code block instead. This is done as a JastAdd attribute.

Using these implementations both tools are able to give custom error messages. However,
even though both give good result, the implementation was more straight forward in ANTLR.
In case the implementations would be needed to be updated or so forth, ANTLR would
probably have the best way to do it.

4.2 Performance Test

To determine the performance of the implementations, I have conducted both a start-up and
steady state evaluation. The two methodologies measure slightly di�erent things. When run-
ning an invocation of the Java Virtual Machine (JVM) there are several factors that impact
run-time. Such factors can be Just-In-Time (JIT) compilation and class-loading. As Georges
et al. [11] explain, a start-up measurement is done by measuring the time of one JVM in-
vocation executing a benchmark once. This type of measurement includes JIT compilation
and class-loading, and is thus suitable for when you want to determine the performance of
Java program as a whole. On the other hand, I have also conducted a steady state evaluation.
Steady state measurements does not include JIT compilation and class loading. This achieved
by running a JVM invocation several times on a benchmark. Only the measurements were
steady state has been reached are recorded. This type of measurement is suitable when the
JVM will run for a long time, executing the same code repeatedly. As of right now, the way
ABB’s parser will be used is not certain and therefore it cannot be known whether a start-up
or steady state measurement is the most suitable for this case. Thus, both methodologies have
been used.

The performance evaluations were performed on a Windows 10 PC with an Intel Core i7-
8850H with 2.60 GHz clock frequency, 6 cores and 12 logical processors. The programs were
compiled and run using the Adopt Open JDK version 11.0.6 and each JVM invocation was
given 1024 MB of RAM. The start-up evaluation was done by determining the mean of 100
JVM invocation times and the steady state by the mean of 50 JVM invocation steady state
times, where each invocation parsed the benchmarks 25 times. Moreover, the confidence
intervals of the means were calculated using best standard practise as outlined by Georges et
al. [11]. In the following subsection I present how the benchmarks were formed and following
that I will present the results.
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4.2.1 Benchmarks
The benchmarks were composed of the parser tests obtained by team at ABB. To test the
impact of file length on performance, four di�erent benchmarks were constructed. These
benchmarks are referred to as All, Long, Mid, and Short. All encompasses all the test files,
Long consists of all files with more than 10000 lines, Mid has files between 1000 and 10000
lines, and Short is formed by the files with less than 1000 lines. The total number of lines
and the number of files per benchmark is presented in Table 4.1.

Benchmark Number of Files Lines of Code Size (MB)
All 120 140 k 4.89
Long 1 89 k 3.14
Mid 7 39 k 1.37
Short 112 12 k 0.37

Table 4.1: Number of files, lines of code, and size per benchmark.

4.2.2 Results
The results of the start-up evaluation is shown in Figure 4.1 and the result of the steady state
evaluation in Figure 4.2.

As seen JavaCC is performing better than ANTLR 4 in the start-up cases for all bench-
marks. The di�erence in execution time di�er with what benchmark was parsed. The dif-
ference is the largest for the Mid benchmark and the lowest for the Long benchmark. This
could be due to that ANTLR 4 does caching in run-time to improve execution time [27]. It
is possible that this will have a larger impact when parsing longer files. When it comes to the
steady state there is no significant di�erence between the two implementations.

4.3 Recommendation
Even though the performance of JavaCC seems to be better than ANTLR, all other things
point to that ANTLR 4 is superior than JavaCC, the amount available support, and ease-of-
use, also the way to alter the error messages. Therefore, I recommend that ABB use ANTLR
4 as their new parser generator.
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Figure 4.1: Mean start-up performance for implementations per
benchmark with 95% confidence intervals.
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Figure 4.2: Mean steady state performance for implementations per
benchmark with 95% confidence intervals.
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Chapter 5

Discussion

In this chapter I discuss potential limitations to the evaluation in 5.1 Limitations, compare
the results to any related works in 5.2 Related Works, and also discuss plans for future works
in 5.3 Future Works.

5.1 Limitations
To improve the evaluation, I could have evaluated more tools. There are more tools available
to examine, such as SableCC [9] and Rats! [1]. The reason why the tool selection was limited
as it was due to time restrictions; notwithstanding, including more tools would provide a
more complete picture of available tools. Furthermore, more experimental techniques that
could have been explored, for example, generalised parsing methods such as GLL and GLR,
PEG parsers and even functional parser combinators.

5.2 Related Work
The authors of ANTLR 4 [27] have also conducted a steady state performance evaluation on
several parser generators. Their results di�er from the results of the performance evaluation
done in this report. They show that ANTLR 4 outperforms JavaCC. Reasons for this di�er-
ence could be that the authors parse Java grammars and utilise more extensive benchmarks.
The results also indicate that parser generators that utilise generalised parser algorithms such
as GLL and GLR perform much worse compared to conventional parser generators such as
JavaCC and ANTLR 4.

Bravenboer and Visser [5] have spent time on researching how to best embedded lan-
guages into others. They have mostly focused on embedding domain-specific languages into
general-purpose languages. The authors recommend a scannerless approach to parsing com-
bined languages. Scannerless means that there is no scanner in the compiler pipeline. Instead,
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so are all characters in the text to be parsed counted as terminals in the grammars. The scan-
nerless approach is essential according to them since it avoids all cases of lexical ambiguities
when for example, one keyword in one grammar is supposed to be an identifier in another
as experienced in the general evaluation. Furthermore, the authors argue that generalised
parsing algorithms GLR is also vital to use. This is because di�erent components of a com-
bined grammar might be implemented in di�erent subsets of CFG, for example, LL or LR.
However, this does not seem to be the main factors to why the Mixed Language was di�cult
to parse but rather the lexical disambiguation aspect. One should also note that as Terrence
Parr has shown GLR parsers seem to be slower than regular parser generators [27].

Other techniques can be useful for parsing multiple languages. One such way could be
parsing combinators as this is a technique that allows for context-sensitivity [31]. Parsing
combinators allow the user to write parsers that look like grammars without having to use
external parser generators such as ANTLR 4 and JavaCC. Parser generators are often imple-
mented in functional languages, for example, Haskell. Like regular parser generators, one can
use CFGs. However, using parsing combinators, one can use the result of one parser com-
binator to construct another parsing combinator in runtime, which thus allows for context
sensitivity. One such example would be Kurs et al. [20] that have implemented a PEG parser
combinator that allows parsing of context-sensitive parsing for things such as XML using
top-down parsers. Their implementations utilise parsing contexts as inputs to the parsing
functions. This implementation allows for context-sensitive non-terminals to be defined.

5.3 Future Works
In the future, a formalism regarding lexical states needs to be established. In the relevant
literature, on compiler construction, [2, 38, 3], the forms of grammars that can be parsed with
lexical states are not explored. One needs to establish precisely when the lexical state method
can be used with full functionality. The rule of thumb, when there are specific separators use
lexical states, work fine; however, methods similar to the ambiguous state implementations
need to be fully fleshed out.

This work can form as a basis to produce a framework which people can use to determine
which tool might be best used for them based on the combined grammar they want to parse.
This could include step-by-step with criteria to fulfil.
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Chapter 6

Conclusion

In this chapter, I answer how well the goals of this thesis have been answered. The first goal
was to determine parser generators suitable for parsing combined grammars from an indus-
trial perspective. As seen by the evaluations, several tools provide su�cient functionality
if one needs to parse combined grammars where there are clear borders between where the
di�erent grammars start and end. These types of languages can easily be parsed with the
technique of lexical states. For cases like this, popular parser generators such as JavaCC and
ANTLR 4 provide excellent functionality. Furthermore, it should be noted that these more
popular tools also have more available support since they are used more than experimental
tools. The license they have also is suitable for use in industry. When it comes to more com-
plex combined grammars where there are not clear separators, then there is not any evaluated
tool that seems to be able to parse all cases. One could use the experimental tool such as Cop-
per. However, there is almost a complete lack of available support online since such tools are
barely used. Furthermore, one such also be careful with Copper due to that its generated
code might be having to be licensed as open source.

The second goal was to determine how the parser generators can connect to other tools.
This has been tested by building ASTs using JastAdd. All the tested tools can quite easily
integrate with JastAdd. This could be done via methods such as semantic actions, or in
the case of JavaCC using a pre-processor (JJTree). The tool that seems to have the hardest to
work with other tools was ANTLR 4. ANTLR 4 lacked inherent AST building functionality,
instead of relying on just constructing the parse tree. One could use the visitor or listener
pattern; however, this would result in a lot of boilerplate code. To circumvent this, one can
add some extra code that allows one to construct a parse tree via semantic actions.
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Parsergeneratorer för Kombinerade
Programmeringsspråk

POPULÄRVETENSKAPLIG SAMMANFATTNING Filip Johansson

Parsergeneratorer är verktyg som generar en parser baserat på en grammatik skriven
av en användare. Problem kan uppstå ifall man försöker kombinera ett flertal gram-
matiker som inte passar ihop.

Parsers tar text som input och organiserar den
så att innehållet är möjligt att tyda. Detta är
ett av de första stegen i en kompilator och därför
väldigt viktigt. Parsers kan relativt snabbt och
enkelt tillverkas med så kallade parsergeneratorer.
Dessa gör det oftast överflödigt med handskrivna
parsers. Parsergeneratorer kommer i olika typer
och kan använda ett flertal olika algoritmer. Dock
så tar de flesta en kontextfri grammatik som speci-
fikation till parsern den generar. Grammatikerna
kan visa sig att vara problematiska ifall man skulle
vilja kombinera två eller fler språk. Man skulle till
exempel vilja införa SQL kod i ett mer universellt
språk som Java eller Python för att användas i
databassammanhang.
I mitt examensarbete har jag utvärderat ett fler-

tal parsergeneratorer utifrån ett industriellt per-
spektiv för att se ifall verktygen är mogna nog
för att hantera kombinerade språk. Jag har tes-
tat parsergeneratorer som är både välanvända av
många och verktyg med mer experimentell status.
Verktygen har utvärderats enligt dimensioner som
funktionalitet av att kunna parsa sammansatta
språk, typ av licens, hur mycket verktygen an-
vänds, hur enkla de är att använda, hur enkelt man

kan ändra på felmeddelanden, samt prestanda.
För att testa parsergeneratorerna har jag kon-

struerat två testspråk. Genom att implementera
parsers för dessa testspråk har jag kunnat komma
fram till deras funktionalitet. Jag har även ut-
fört ett industriellt case study. För att mäta
hur mycket verktygen används så har jag under-
sökt GitHub och Stack Overflow. Sedan för att
mäta hur enkla verktygen är att använda har jag
mätt antalet rader för implementationsspecifika-
tionerna. Till sist har jag även undersökt hur gen-
eratorerna kan kopplas med andra verktyg genom
att granska hur enkelt det är att koppla dem till
verktyget JastAdd.
Mina resultat visar att alla av de testade verk-

tygen klarar enkelt av att parser sammansatta
språk där det finns klara gränser mellan de olika
språken. Dock, verkar det vara svårare i kom-
binationer där det inte finns någon sådan gräns.
Det finns fall som inget av de testade verktygen
klarar av att parsa men de experimentella verkty-
gen verkar kunna parsa fler fall. Resultaten kan
användas av personer som själva ska implementera
ett kombinerat programmeringsspråk för att välja
rätt parsergenerator.
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