
FEATURE EXTRACTION AND

CLASSIFICATION OF

MEDICATION-INDUCED

HYPERKINESIA DURING

TREATMENT OF
PARKINSON´S DISEASE

ERIK LILJEROTH

Master’s thesis
2020:E76

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M



FEATURE EXTRACTION AND

CLASSIFICATION OF

MEDICATION-INDUCED

HYPERKINESIA DURING

TREATMENT OF
PARKINSON´S DISEASE

ERIK LILJEROTH

Master’s thesis
2020:E76

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M



Master’s Theses in Mathematical Sciences 2020:E76
ISSN 1404-6342

LUTFMS-3399-2020

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/



Master’s Theses in Mathematical Sciences 2020:E76
ISSN 1404-6342

LUTFMS-3399-2020

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/



Abstract

The recent progress in wearable sensor technology, signal processing and machine
learning enables novel applications in fields such as automatic disease symptom
tracking and classification. In this project, data from an ongoing Parkinson’s disease
study at the Lund University Hospital is gathered and analyzed, and classification
models of varying complexity for symptom severity are evaluated. The accelerom-
eter and gyroscope data is provided by a single mobile phone fastened around each
patient’s trunk and is complemented by a certified specialist’s score labels, in clin-
ical dyskinesia rating scale (CDRS). Out of four available tasks performed by the
patient during measurement, the two tasks “walking” and “sitting and describing a
picture” were cut out and analyzed in-depth.

The most practically usable simulation scenario was found to be forming in-
dividual models for the patients, with the best performing model proving to be an
unsupervised feature extracting autoencoder combined with a linear discriminant.
We could with descent accuracy distinguish between whole test signals in a binary-
class scenario for a majority of patients and perform skillfully in the multi-class
scenario, although not well enough for practical usability. The total patient-average,
mean macro f1-score and accuracy obtained for binary-class classification of short
(2 second) signal segments from the “describe picture”-task were 0.74 and 0.81 re-
spectively. The corresponding mean macro f1-score and accuracy for the multi-class
classification case were 0.52 and 0.65 respectively.
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1
Introduction

1.1 Introduction

Parkinson’s Disease
Parkinson’s disease (PD) is a progressive neurodegenerative disorder of the central
nervous system with an annual incidence of approximately 2000 patients in Sweden
[Odin et al., 2019]. It is called neurodegenerative because it causes dysfunction of
nerve cells with eventual cell death. These nerve cells are of the kind that produce
dopamine, which is a neurotransmitter that the brain uses to control movements in
the body. The progression of the disease is slow, with eventual motor symptoms (for
example tremor, freezing and rigidity) that are characteristic for PD. The medical
term for the slow movement, rigidity and inability to move the body swiftly on
command is bradykinesia. Figure 1.1 shows an illustration of the degeneration of
dopamine production for a Parkinson’s disease patient.

Normal
neuron

Parkinson's
affected neuron

Trasmitting Receiving

Normal
movement

* Tremors
* Slow movement
* Rigidity

Receptors
Dopamine

Figure 1.1 How Parkinson’s disease affects dopamin producing neurons.

Treatment of PD is symptomatic, i.e. the treatment relieves the symptoms but
does not affect the underlying disease. The standard treatment is dopamine replace-
ment in tablet form. Most patients respond well to the treatment, but eventually
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Chapter 1. Introduction

develop motor fluctuations and “dyskinesias” within 5-10 years of disease progres-
sion [Odin et al., 2019]. Dyskinesias are abnormal involuntary movements that are
not part of the primary PD symptoms, but rather appear from long-time treatment
with the tablet medication (interacting with the effects of the progressing disease).
This means that increased rigidity during the disease progression results in higher
doses of medication which might trigger more severe induced dyskinesias. The term
dyskinesia can be further divided into the following groups:

• Dystonia: slow twisting movements and/or abnormal postures, which are
most common in the trunk, legs and feet

• Hyperkinesia: chorea (fast movements that seem to rapidly flow across body
parts), ballism (abrupt large movements of the upper limbs) and myoclonus
(brief irregular muscle twitching)

Description of Parkinson’s Disease Study
A research project with title “An exploratory study on the impact of D2/3 receptor
agonists on the phenomenology of dyskinesias in patients with Parkinson’s disease”
is being conducted at the department of neurology at Lund University. In the study,
the subjects are given two different medications on different occasions. These med-
ications are both dopamine-based, but acting on different receptors. The main ob-
jective of the study is to compare localization, maximum severity and time frame in
which hyperkinetic or dystonic abnormal involuntary movements occur after chal-
lenge doses of the different medications.

The symptoms are rated according to a severity scale, the “clinical dyskine-
sia rating scale” (CDRS) [Hagell and Widner, 1999]. Doctors can use this scale to
give symptoms a “severity score” as an integer ∈ {0,1,2,3,4}, where 0 represents
“no dyskinesia” and 4 represents “incapacitating dyskinesia which prohibits some
postures and voluntary movements”. As an exploratory extension to the research
project, it is of interest to determine how the CDRS scores correlate with measure-
ments of movements and acceleration as obtained using available accelerometer and
gyroscope.

Project Goals
The goal of the project is to determine if it is possible to use annotated data to train
classification models, and if possible, get a performance measure of how well this
can be accomplished. The results will later, in collaboration with doctors, be used
to plan further studies and possibly be implemented as an application. If the work is
successful, it could lead to improved symptom monitoring and perhaps medication
through feedback of the patient’s current state.

10



1.2 Previous work

1.2 Previous work

The area of automatic symptom classification for Parkinson’s disease is currently
very active. In the work by Lonini et al. (2018), the dataset consisted of 20 individ-
uals with Parkinson’s disease. The patients performed similar tasks as for example
walking, or sitting down and drawing on paper while being recorded by accelerom-
eter and gyroscope sensors. One key difference is that the subjects only took their
ordinary medication dose in connection with the experiments and only 8% of the
obtained dataset had annotated dyskinesias. In our dataset, we can expect a higher
proportion of dyskinesias due to deliberately higher medication doses intended to
trigger dyskinesias. The work by Lonini et al. (2018) continued to form patient-
generic classification models only for bradykinesia (slowness of movement, rigid-
ity) and tremors experienced in the “off”-medication state due to the low prevalence
of dyskinesias. With a single sensor on the back of the hand, the group were able
to detect bradykinesia and tremors in the upper extremity. The work concluded that
PD symptoms can be detected using a single sensor and that it is best modeled by
using a dataset incorporating many individuals.

Another approach is to use speech impairments from PD subjects as done in
the work by Caliskan et al. (2017), where a deep neural network (DNN) classifier
is evaluated on two standard datasets with the purpose to distinguish healthy peo-
ple from people with PD. In their methodology, they filter out the noise from the
speech signals and segment the data with time-windows. The hidden layers in the
DNN are trained by repeatedly training autoencoders with only one encoding layer,
to then stack the trained encoding layers in the DNN to form a “stacked autoen-
coder”. The reported results are just barely better than a reference support vector
machine (SVM) model. In this approach, specific PD symptoms are not targeted,
instead the data is labeled as either PD patient or not. The noise-filtered speech
data is fed directly to the autoencoders to perform automatic feature-extraction. In
contrast to this approach, our work utilizes other preprocessing and feature extrac-
tion methods, such as computing spectral estimates. Our approach also specifically
targets medication-induced hyperkinesia for a group of PD patients which is a key
difference. However, the article might still provide some inspiration for approaches
to try out since the underlying problem is to find PD characteristics in the data.

Another recent work utilizing accelerometer and gyroscope recordings for au-
tomatic PD symptom classification is the article by Goschenhofer et al. (2019). The
measurement device was in this case a wrist-band collecting accelerometer and gy-
roscope data with a sampling frequency of 62.5 Hz, later downsampled to 20 Hz.
The data was annotated by a medical doctor minute-wise and the segmentation win-
dow length was set to one minute. To increase the amount of data, they further seg-
mented the minute-long segments with 80% overlap which is referred to as in-line
with related work. The examined PD symptom is bradyskinesia, as in the work by
Lonini et al. (2018), however the work by Goschenhofer et al. (2019) utilizes finer
annotations by a doctor according to a bradyskinesia severity rating scale. The best
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Chapter 1. Introduction

performing model for the scenario proved to be a regression convolutional neural
network. In our work, we attempt to classify the medication-induced hyperkinesia
according to the CDRS rating scale and we draw inspiration from this related work
by evaluating a regression convolutional neural network as a comparison model.

1.3 Contribution from this work

Our work is restricted to treating the hyperkinesia symptom as a subgroup of dysk-
inesia symptoms. Compared to previous work, the dataset in this project can be
expected to reflect a broader spectrum of symptom severity, which is due to de-
liberately triggering medication-induced dyskinesia with larger than usual patient-
individual doses of dopamine-based medication. This makes the dataset currently
unique as no existing similar scenario in other research has been found.

We treat different simulation scenarios with the gathered dataset. We first at-
tempt to find patient-generic models to later attempt and see what can be accom-
plished with patient-individual models. The aim is to arrive at some qualitative re-
sults that can be used to plan further studies within the area. In the long run, the
project could lead to increased life quality for PD patients.

1.4 Report outline

Chapters “Feature extraction”, “Machine learning” and “Artificial neural networks”
focus on underlying theory for the methods used. Chapter 5 explains in detail how
the project was conducted and the process from data gathering to modeling. In chap-
ter 6 we present simulation results and discuss our findings. Finally in chapter 7 we
draw conclusions from our findings and suggest some ideas for future experiments
in chapter 8.
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2
Feature extraction

The methods of feature extraction are in the following chapter divided into time
domain and frequency domain. The purpose is to extract properties of the data that
can later be used to discriminate by class.

2.1 Time domain

Signal variance
The variance is a common statistical tool and is typically estimated using equation
2.1, which is an unbiased estimate [Blom et al., 2017] with x = [x0,x1, ...,xN−1]
being a signal and mx being the mean of the signal. This is equivalent to the signal
power if the mean is zero [Chaparro, 2019].

(σ2)∗ =
1

N−1

N−1

∑
t=0

(xt −mx)
2 (2.1)

Autocovariance function
The autocovariance function (ACF) is a tool that can measure dependencies within
and between stochastic processes that fulfill the requirement of being wide sense
stationary (WSS), i.e., fulfilling the following conditions [Jakobsson, 2017]:

(i) The mean of the process is constant and finite.

(ii) The autocovariance depends only on the time lag and not on the time itself.

(iii) The variance of the process is finite.

The above conditions are assumed to approximately hold for the underlying
process when using the method on data, which is treated like a realization of the
process. Except from these conditions the method is said to be non-parametric as
it does not impose some specific parametric model on the data. The ACF can be
used as one tool to distinguish between auto-regressive (AR) and moving average

13



Chapter 2. Feature extraction

(MA) models. The autocovariance function is estimated using the biased estimate,
which has the property that the variance of the estimate for high lags is more stable
[Jakobsson, 2017]. In this project we restrict ourselves to real-valued signals, which
gives the resulting formula for the estimate as equation 2.2

r̂x(τ) =
1
N

N−τ

∑
t=1

(xt − m̂x)(xt+τ − m̂x) (2.2)

AR modeling
Autoregressive (AR) models are used in modeling of human voiced speech, for
example in the article by Berezina et al. (2010). For this reason it might be a suitable
model to consider for other human phenomena. A stationary stochastic process {Xt}
is called an AR(p)-process if it satisfies equation 2.3 with A(z) = 1+a1z−1 + ...+
apz−p being a so-called generating polynomial in the time-shift operator z and {et}
being a white-noise sequence.

A(z)Xt = Xt +a1Xt−1 + ...+apXt−p = et (2.3)

For a given AR(p) - model, the spectral density can be calculated according to
equation 2.4 where σ2 is the variance of the white-noise sequence {et}. This enables
the possibility of first estimating the model and then computing the spectral density
which could be used for feature-extracting purposes.

Rx( f ) =
σ2∣∣∑p

k=0 ake−i2π f k
∣∣2 (2.4)

For an AR(p) process, the autocovariance function has a specific property in that
it solves the Yule-Walker equations

{
rX (k)+a1rX (k−1)+ ...+aprX (k− p) = 0 for k = 1,2, ..
rX (0)+a1rX (1)+ ...+aprX (p) = σ2 for k = 0

(2.5)

2.2 Frequency domain

Periodogram
A common way to extract frequency information from a temporal signal is to apply
the Fourier transform, which in continuous time is defined as

X( f ) =
∫

∞

−∞

x(t)e−i2π f tdt (2.6)

The output of the Fourier transform X( f ) is in general complex, containing the
information about power and phase of each frequency in the signal. In order to

14



2.2 Frequency domain
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Figure 2.1 Accelerometer signal in the gravity’s direction of a walking patient.

overview the power of different frequencies in the signal, the squared magnitude
of the Fourier transform can be used. This happens to be proportional to the so-
called periodogram, which is an estimate of the power spectral density (PSD) of the
signal [Lindgren et al., 2014]. The periodogram is defined as equation 2.7 where we
instead have the discrete Fourier transform (DFT) of the signal sequence x(t).

R̂x( f ) =
1
N
|X( f )|2 = 1

N

∣∣∣∣∣N−1

∑
t=0

x(t)e−12π f t

∣∣∣∣∣
2

(2.7)

For the methods based on the Fourier transform, the signal is assumed to be sta-
tionary, meaning that the frequency content should be roughly the same throughout
the time signal. This seems to be the case for a subset of the data in this project,
e.g. consider the example from the study where a patient is walking and the cor-
responding accelerometer signal in the gravity’s direction is shown in Figure 2.1.
The signal is repetitive where the individual steps can be seen. Removing the mean
and computing the periodogram for the data example above, the signal appears to
mostly consist out of two frequencies as is seen in Figure 2.2.

Windowing In practice, signals do not have infinite length, but rather consist of
N samples. A consequence of this is that the DFT can be interpreted as perform-
ing the Fourier transform of an infinitely long signal multiplied by a window that
segments the infinitely long signal in time. This corresponds to a convolution with
the Fourier transform of said window in the frequency domain, which causes a phe-
nomenon called sidelobes [Lindgren et al., 2014]. By using a window in the time
domain that is not rectangular we can control the trade off between main lobe width
and sidelobe height. Usually the window function is a design parameter chosen by
the engineer, and many windows achieve similar behaviour for the main lobe and
side lobes for the spectral estimate. One window that suppresses sidelobes is the
Hamming window [Prabhu, 2013].
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Chapter 2. Feature extraction

0 5 10 15 20 25
Frequency [Hz]

0

1

2

3

4

5

6

Po
we

r

Periodogram of walk data

Figure 2.2 Periodogram of the data where a patient is walking. The periodogram
is computed using a 1024 point fast Fourier transform(fft) and the data is windowed
using a Hamming window.

Spectrogram
A non-parametric time-frequency transformation is the spectrogram [Sandsten,
2020]. The definition of the spectrogram utilizes the short-time Fourier transform
(STFT) which in continuous time is defined as

X(t, f ) =
∫

∞

−∞

x(t1)h∗(t1− t)e−i2π f t1dt1 (2.8)

where h(t) is a window function centered at time t. The window function cuts
the signal around time t and the Fourier transform is applied to the resulting seg-
ment. In a similar manner to the periodogram and ordinary Fourier transform, the
spectrogram is then defined as

Sx(t, f ) = |X(t, f )|2 −∞ < t, f < ∞ (2.9)

which can be a useful tool to analyze time-varying and non-stationary signals.
Note that in order for the transformation to be useful, the original signal should have
at least a decent length in order to be further subdivided into segments by the STFT.
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3
Machine Learning

This chapter starts with discussing classification problems and how to evaluate the
results, then introduces some simple classification models.

3.1 Classification problems and performance measures

In a classification problem we have a data array of training data Xtrain =
[x0,x1, ...,xN−1], with the individual samples xi typically being arrays. They
can e.g. be images or spectral representations. We have an accompanying array
Ytrain = [y0,y1, ...,yN−1] containing the labels for each sample in X, e.g. ’tulip’,
’rose’ and ’dandelion’ for a flower classification problem. The classification prob-
lem consists of using the data in Xtrain with the labels Ytrain to form a model that
describes the data as well as possible. The model is then typically evaluated on a
separate test set Xtest to evaluate how well the model generalises to data which has
not been used during training.

When performing classification there are multiple performance measures to
evaluate the result. In this section the used performance measures in this project
are introduced and explained. The most simple classification problem consists of
one-class classification. This means that samples will be labeled as either belonging
to the class or not. The following quantities can be defined:

(i) True positives (TP): The samples that were correctly classified as positive.

(ii) False positives (FP): The samples that were wrongly classified as positive.

(iii) False negatives (FN): The samples that were wrongly classified as negative.

(iv) True negatives (TN): The samples that were correctly classified as negative.

Using the anove definitions, some performance measures are defined in table
3.1.

17



Chapter 3. Machine Learning

Table 3.1 Classification performance measures

Performance measure Formula

Precision T P
T P+FP

Recall T P
T P+FN

F1-score 2 Precison·Recall
Precison+Recall

Accuracy T P+T N
T P+FP+FN+T N

The measures in table 3.1 are computed for every class in a classification prob-
lem, usually followed by computing a weighted measure as a final score. In this
work, the “macro F1-score” is used as the weighted measure. For the K-class clas-
sification problem the macro average f1-score is defined as in equation 3.1, which
simply takes the average of the individual f1-scores.

f 1macro =
1
K

K−1

∑
k=0

f 1k (3.1)

The macro f1-score is a good complement to the overall prediction accuracy
since it penalizes bad classification performance for small classes. Consider a sim-
ple binary classification example where 95% of the dataset belongs to class 0 and
other 5% to class 1. Imagine that a terrible classifier is constructed which classifies
all samples to class 0. The overall prediction accuracy will be 0.95 which is mis-
leadingly high but the macro f1-score will only be 0.5, hence highlighting the poor
classification performance for the smaller class.

The confusion matrix is defined as C = {Ci, j}, where Ci, j is equal to the number
of samples in group i that are predicted to be in group j. This is visualised by figure
3.1 for the “binary classification, two classes” case.

True 0

True 1False 0

False 1Actual 0

Actual 1

Predicted 0 Predicted 1

Figure 3.1 The structure of the confusion matrix. The figure shows the binary clas-
sification case.
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3.2 The naive Bayesian classifier

3.2 The naive Bayesian classifier

A class of simple models are the naive Bayesian classifiers, described in for example
[Norvig and Russel, 2010]. A Bayesian classifier is a conditional probability model.
Given an input vector of n features xn = [x0,x1, ...,xn−1], it is of interest to compute
P[Ck|xn]. This is the conditional probability of class Ck given the feature vector xn.
If this probability is known for every class Ck, we can then during prediction assign
a class to a sample xn by picking the argument (class) that maximises P[Ck|xn], i.e.,

ŷ = argmax
Ck

P[Ck|xn] (3.2)

Using the definition of conditional probability twice, the expression P[Ck|xn] can be
rewritten on the form known as “Bayes rule”:

P[Ck|x] =
P[Ck,x]

P[x]
=

P[Ck]P[x|Ck]

P[x]
(3.3)

The expression for Bayes rule is not directly practically useful and needs to be
rewritten. The expression P[x|Ck] in the numerator of equation 3.3 can be rewritten
using the definition of conditional probability multiple times.

P[x0,x1, ...,xn−1|Ck] = P[x0|x1,x2, ...,xn−1,Ck] ·P[x1,x2, ...,xn−1,Ck] =

P[x0|x1,x2, ...,xn−1,Ck] ·P[x1|x2,x3, ...,xn−1,Ck] ·P[x2|x3, ...,xn−1,Ck] =

= ...= P[x0|x1,x2, ...,xn−1,Ck] ·P[x1|x2, ...,xn−1,Ck] · ... ·P[xn−1|Ck] (3.4)

At this stage the naive assumption is made that the features xi, i ∈ {0,1,2, ...n−1}
are conditionally independent given the class Ck. As a consequence, equation 3.4
can be rewritten as

P[x0,x1, ...,xn−1|Ck] =
n−1

∏
i=0

P[xi|Ck] (3.5)

The results are summarized as equation 3.6, arriving at the naive Bayesian classifier.

P[Ck|x] =
P[Ck]∏

n−1
i=0 P[xi|Ck]

P[x]
(3.6)

Given an input feature vector x, P[x] is a constant when evaluating P[Ck|x] for differ-
ent classes Ck. Therefore it can be omitted in the classifying algorithm. The resulting
implemented classifier is given by equation 3.7.

P[Ck|x] ∝ P[Ck]
n−1

∏
i=0

P[xi|Ck] (3.7)
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Chapter 3. Machine Learning

Dealing with continuous data
Typically the naive Bayesian classifier is trained by counting the occurrences of the
feature values and storing them in a dictionary known as a frequency dictionary.
From this dictionary is is then possible to estimate P[xi|Ck]. This causes problems
for unseen feature values since the estimate P̂[xi|Ck] = 0 if xi has not been observed.
The problem is typically rectified by smoothing the feature dictionary with feature-
individual distributions. This technique is useful when the feature value space is big
and discrete or if the feature value space is continuous.

A common distribution that is widely applied is the Gaussian probability density
function (pdf). Essentially the imposed assumption is that P[xi|Ck] ∼ N(µk,i,σk,i),
meaning that we assume that the individual features are conditionally normal dis-
tributed given class Ck.

Naive Bayesian classifier using kernel density estimation
Instead of imposing the Gaussian pdf, we can use a non-parametric way of estimat-
ing the feature pdfs, and use the estimated pdfs to form predictions. The pdfs can be
estimated by using the non-parametric “kernel denisty estimation” method [Scott,
2015]. For a data vector x =

[
x1 x2 ... xn

]
, the pdf kernel density estimator is

given by equation 3.8 where K is the used kernel (typically Gaussian), n is the num-
ber of values in the data vector and h is the kernel bandwidth which is chosen as a
design parameter.

f̂ (x) =
1
nh

n

∑
i=1

K(
x− xi

h
) (3.8)

The kernel bandwidth h can be chosen according to Scott’s rule given by equa-
tion 3.9 [Scott, 2015], where σ̂ is the standard deviation estimate. This is a good
rule of thumb selection of h.

h = 1.06σ̂n−
1
5 (3.9)

The model fitting stage estimates the pdfs fCk,i for class Ck and feature i using the
above approach. Prediction is performed by using the Bayesian classifier presented
earlier as equation 3.7.

ŷi ≈ argmax
Ck

(P[Ck]P[xi|Ck]) (3.10)

3.3 Linear discriminant analysis

Linear discriminant analysis (LDA) is a category of methods treating functions that
project the feature space of an input vector to a lower-dimensional space using con-
ditions that enhance class-separation. It is similar to principal component analysis
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3.3 Linear discriminant analysis

(PCA) in the sense of dimensionality-reduction but with fundamental differences as
PCA is an unsupervised learning technique that finds the directions of maximum
variance in the original feature space [Martinez and Kak, 2001].

The most simple case of LDA where the projection is done to one dimen-
sion is described by the following equation, where y is the output value in a one-
dimensional space, x is an input sample with feature values, w is a vector of weights
and w0 is a constant bias.

y(x) = wT x+w0 (3.11)

This highlights the linearity of the method as the output value is a linear combina-
tion of the features. In general the w-matrix can be of dimension D′xD where the
projection is taken from the original feature space dimension D to a space of smaller
dimension D′, resulting in a vector output y.

Fisher linear discriminant (FLDA) is a submethod of LDA where the projec-
tion matrix is found by maximizing the between-class distance and minimizing the
within-class distance, i.e., the aim is for the classes to be internally focused but well
separated. This is implemented by first computing two covariance matrices:

(i) The total within-class covariance matrix:

Sw =
K

∑
k=1

∑
n∈Ck

(xn−mCk
)(xn−mCk

)T (3.12)

where K is the number of classes, mCk
is the classwise mean for class Ck and

xn is the n’th sample of class Ck.

(ii) The total between class covariance matrix:

Sb =
K

∑
k=1

Nk(mCk
−m)(mCk

−m)T (3.13)

where Nk is the amount of samples in class Ck and m is the overall sample
mean.

The are many choices of the Fisher optimization criterion [Fukunaga, 1990] and
one way is to formulate it as equation 3.14. This criterion can be shown to be equal
to solving an eigenvalueproblem of the matrix S−1

w Sb, where the projection weight
vectors W = wd′ are chosen as the eigenvectors corresponding to the D′ largest
eigenvalues [Bishop, 2006].

J(W ) = Tr
{
(WSwW T )−1(WSbW T )

}
(3.14)
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Chapter 3. Machine Learning

As an example, the method is applied to the handwritten digits dataset [Dua and
Graff, 2017]. This dataset consists of handwritten digits that are 8x8 pixels. Each
pixel is interpreted as a feature resulting in 64 features. Figure 3.2 shows a scatter
plot of 2D projections obtained when applying Fisher’s linear discriminant to this
example.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

3
2D projection of digits dataset

0
1
2
3
4
5
6
7
8
9

Figure 3.2 Scatter plot of 2D-projection of digits dataset using Fisher LDA
method. Example by Erik Liljeroth.

According to this algorithm, for example the numbers 3 and 9 seem to be similar
as they have a small euclidean distance in the 2D projection space. The numbers 0
and 4 are the most separated from the crowd.
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4
Artificial Neural Networks

Artificial neural networks are a popular class of methods that can be used in, e.g., re-
gression, classification and compression problems. The technology has been around
for several decades with, for example, the pattern recognition properties of the con-
volutional neural network being discussed in the paper by LeCun et al. (1999). How-
ever it is only lately, with the rise in cheap computational power, that the popularity
of the techniques has skyrocketed. This chapter discusses the basic functionality of
neural network models and introduces concepts that are used in the methods of the
project.

4.1 General

A way to model a single neuron is equation 4.1, where h j is the output of the neu-
ron, D is the number of inputs, b j is a bias, w ji is the weight that multiplies with
input xi and a(·) is a non-linear activation function [Bishop, 2006]. The bias can be
incorporated by defining an additional input variable x0 , 1 resulting in the second
equality, note that the summation index starts from zero instead.

h j = a

(
D

∑
i=1

w jixi +b j

)
= a

(
D

∑
i=0

w jixi

)
(4.1)

Placing a couple of neurons in a network with one input layer, one hidden layer
and one output layer produces the architecture shown in Figure 4.1, where the incor-
poration of the bias is seen as the uppermost neurons in the input layer and hidden
layer. Another name for a hidden layer is dense layer.

From the above network the k’th output yk as a function of the input x and the
weights w can be written as equation 4.2 with J = 4 neurons in the hidden layer and
D = 3 inputs.

yk(x,w) = aoutput

(
J=4

∑
j=0

w(2)
k j a1

(
D=3

∑
i=0

w(1)
ji xi

))
(4.2)
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Input layer Output layerHidden layer

Figure 4.1 Example of architecture for a multi-layer perceptron.

0
0

ReLU

Figure 4.2 ReLU activation function.

If the activation functions a1 and aoutput are removed, then the map from the
input to the output is simply linear and can be represented with chained matrix mul-
tiplications. The activation functions are added in order to introduce non-linearity in
the network, which allows the network to learn non-linear relations [Chollet, 2017].
A popular choice of activation function is the ReLU (Rectified Linear Unit) shown
in Figure 4.2. Applying this function to the output of a neuron yields a non-linear
transformation, yet very close to linear in the sense that the function is a piece-wise
linear function of two pieces. The almost-linearity of the ReLU-activation preserves
many properties which makes gradient-descent based optimization easier [Goodfel-
low et al., 2016].

Loss functions
A loss function is defined in order to evaluate the performance of the network, and
is a function of the predicted output ŷ and the true output label y. Typically, the loss
function is chosen depending on the application. Here, two common loss functions
are described.
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4.1 General

Binary cross-entropy Binary cross-entropy (BCE), computed according to equa-
tion 4.3, is a common choice for the binary classification problem, and is derived
from the maximum likelihood principle [Bishop, 2006].

BCE(y, ŷ) =−∑
k
(yk log(ŷk)+(1− yk) log(1− ŷk)) (4.3)

If, for example, there is one output and the true label is yk = 0, then the formula
boils down to “− log(1− ŷk)” which is minimized and equal to zero for ŷk = 0
(note that the binary cross-entropy loss is used in conjunction with the sigmoid-
activation function on the final layer resulting in ŷk only taking values in the interval
[0,1] [Chollet, 2017]). Other properties are that the binary cross-entropy is always
minimized for ŷ = y but only equal to zero if yk = 0 or yk = 1, which can be verified
by the formula. The loss function can be extended to multi-class problems.

Mean squared error The mean squared error (MSE) loss is typically used in re-
gression problems or as the reconstruction loss in autoencoders, and is constructed
as follows for K outputs:

MSE(y, ŷ) =
1
K

K

∑
k=1

(yk− ŷk)
2. (4.4)

Unlike the binary cross-entropy, the MSE loss is usually accompanied with a
linear output activation function (equivalent to none), which allows ŷ to take values
outside the interval [0,1].

Backpropagation
When training the network the objective is to minimize the loss function L. In ordi-
nary convex optimization problems we are guaranteed to reach optimality, however
the non-linear activations of the neural network cause the loss function to become a
non-convex complicated surface. Gradient descent can be used, however we are not
guaranteed to reach a global minima [Goodfellow et al., 2016]. We wish to update
the weights w j,i at layer j multiplying with input i of the network by walking in the
negative direction of the gradient with a learning rate l.

w j,i← w j,i− l
∂L

∂w j,i
(4.5)

It is not trivial how the gradient ∂L/∂w j,i is computed, but this is a solved tech-
nology since the introduction of Backpropagation. Backpropagation allows com-
puting the loss at the end of the network and then propagating the error backwards
through the network to update the weights [Sathyanarayana, 2014]. The algorithm
can be summarized in the following steps.

(i) Initialize the weights in the network to small random values
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(ii) Choose an input t from the training set and set the input layer neurons

h0
j = x j(t), ∀ j (4.6)

(iii) Propagate the signal through the network, for the m’th layer do

hm
j = am

j

(
∑

i
wi, jhm−1

i

)
, ∀ j,m (4.7)

(iv) Calculate the “deltas” also called sensitivity components for the final layer

δ
M
j = aoutput

(
∑

i
wM

i, jh
M−1
i

)
(y j(t)−hM

j ) (4.8)

(v) Calculate the deltas for the remaining layers by propagating the error back-
wards through the network (for m = M,M−1...,2)

δ
m−1
j = am−1

j

(
∑

i
wm−1

i, j hm−2
i

)
∑

j
wm

j,iδ
m
i (4.9)

(vi) Update the weights

w j,i(k+1) = w j,i(k)− lδ m
j hm−1

i (4.10)

Useful deep learning terminology
The following useful terminology is referred to later in the report.

• Batch - The batch size is a hyperparameter that defines the number of samples
that the neural network sees before updating the internal weights.

• Epoch - During an epoch the neural network will see the entire dataset, i.e.,
training for 500 epochs means that the entire dataset flows through the net-
work 500 times.

4.2 Convolutional layers

In the previous section the discussed network was a “multi layer perceptron” con-
sisting of multiple layer of neurons. In modern application different kinds of feature
extracting layers are incorporated in the neural networks such as the convolutional
layer, which is explained in this section. The convolutional layer has proven to be
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4.2 Convolutional layers

excellent in finding translation-invariant patterns in images and became popular af-
ter the convolutional neural network “AlexNet” won the ImageNet competition in
2011 [Krizhevsky et al., 2012]. AlexNet consisted of only five convolutional layers
and three dense, classifying layers.

Convolutional arithmetic
The convolutional layers in neural networks are based off the discrete-time convo-
lution. Equation 4.11 shows the expression for the two-dimensional case which is
most often encountered due to the popularity in image analysis.

O(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n) (4.11)

The discrete time convolution is commutative meaning that I ∗K = K ∗ I. This is
a useful property in proofs but not necessarily in neural networks. In most neural
network libraries the cross-correlation is implemented instead, which is equivalent
with the convolution except of not flipping the kernel [Goodfellow et al., 2016]. In
the literature about convolutional neural networks usually the cross-correlation is
referred to as “convolution” which is also the case in this report.

O(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n) (4.12)

Figure 4.3 shows an example of performing a convolution according to equation
4.12 between a kernel and an input matrix and producing an output.
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input

1

1

0
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0 0 0
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1 2

3 4

output

Figure 4.3 Example of the convolution operation with an input matrix, convolution
kernel and output matrix.

The operation is intuitively understood by sliding the kernel over the input
matrix and at each valid location performing a dot product, thus elementwise mul-
tiplication and then summation. If the input matrix is not extended by, i.e., zero
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Figure 4.4 Example of the transposed convolution operation with an input matrix,
padded input matrix, convolution kernel and output matrix.

padding, the output shape of the feature map will in general be smaller (in the ex-
ample going from 4x4 to 2x2). When a neural network is built off of convolutional
layers, the shape of the input must be monitored as it passes through the convolu-
tional layers.

Transposed convolution
Sometimes it is of interest to “go in the other direction”, i.e., increase the size of
the produced feature map through the convolution of the input while maintaining
the connectivity pattern that is compatible with the considered convolution. This is
desirable with e.g. autoencoders that are introduced in the upcoming section. For
the example in Figure 4.3 this can be shown to be analogous to performing a con-
volution with a zero-padded input and is called transposed convolution [Dumoulin
and Visin, 2016]. Figure 4.4 shows the corresponding transposed convolution to the
example in Figure 4.3.

In the Keras neural network library the transposed convolution is not imple-
mented in the 1D-case, instead the equivalent behaviour is accomplished by com-
bining a layer that upsamples its input in combination with an ordinary convolu-
tional layer [Chollet, 2016].

4.3 Autoencoders

Autoencoders are neural networks where the aim is to reconstruct the input as the
network output. Typically the autoencoder has an architecture similar to what is
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4.3 Autoencoders

shown in Figure 4.5 where the signal’s size through the network is “hourglass”-
like. This allows the autoencoder to learn how to compress the input information
to a lower-dimensional latent space [Chollet, 2017]. Applications include image
compression [Alexandre et al., 2019], image denoising [Ali et al., 2018] and feature
extraction. For example if the autoencoder is fed with noisy images and the target
images are without noise, the autoencoder can learn to denoise unseen images.

input

output

encoder

decoder

embedding

Figure 4.5 Sketch over autoencoder architecture.

In this project the autoencoder serves as an unsupervised feature extractor. This
works by training the autoencoder to reconstruct its input and then utilizing the em-
beddings created in the lower-dimensional latent space and feed them to a classifier.
The class labels associated with the input are not used in the reconstruction process
making the method unsupervised. Instead the assumption is made that if the in-
put data differs, then the encoded representations should separate well in the latent
space. The encoder and decoder depth affects the abstraction level of the captured
features [Goodfellow et al., 2016].

Visualizing what neural networks learn
A problem with neural network models are that they are often considered as black-
box models, i.e., it is not well understood what patterns the network actually finds
in the input data. Lately there has been progress in the area of understanding convo-
lutional neural network decisions. One of these methods is the GRAD-CAM method
[Selvaraju et al., 2017].

For a given classified input map, the method extracts the feature map of the final
convolutional feature extracting layer and then computes the gradient of the class
decision with respect to said feature map. By this method it is possible to produce a
heatmap of the regions in the input that affected the class decision more.
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5
Methods

5.1 Experimental setup and data gathering

Sensor measurements and video footage was available for the project. The clock
between the video and sensors was not synched and therefore manual inspection of
video was necessary in order to connect movements to sensor data in time.

Each patient was tested on two different occasions (in this report referred to as
measurement days), one day for each of the two testdoses of different dopamine-
based medication. Prior to the measurement day, the patient stopped taking his/her
ordinary dopamine medication in order to be as “off” medication as possible when
given the testdose prior to measurements.

On each measurement day the patient was first given the testdose, then mea-
surements occured every 30 minutes for up to 5 hours. After 5 hours the medication
should no longer be active and the patients’ states should have returned to “off”.
During the measurements each patient performed the following tasks:

(i) Describe a picture

(ii) Drink from a cup

(iii) Take on/off a lab coat

(iv) Walk 2 x 4.5 m

Sensor measurements were performed by using the “Medoclinic App” for mo-
bile phones [MedoTemic, released 2018]. The mobile phone was placed in a pouch
that was fastened around the patient’s trunk with a belt. Figure 5.1 shows how the
mobile phone was attached to the body.

The raw sensor output contained 6-dimensional data; accelerations (accx,accy,accz)
and gyroscope data (gyrox,gyroy,gyroz) which were sampled with a sampling fre-
quency of 100Hz. A problem from the engineering point of view is that the phone
was not consistently placed in the same way every time when attached. Figure 5.2
shows two possible orientations how the phone could be positioned in the belt
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Figure 5.1 Sensor placement on body.
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y

z
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Figure 5.2 Examples of ways the phone’s coordinate system could be oriented
during measurements.

pouch. This creates a problem since the coordinate system of the sensors would not
be consistently oriented in the same way between measurement occasions.

The accelerometer and gyroscope of the sensor can be used together to estimate
the coordinate systems orientation relative to the direction of gravity. The different
sensors are fused together by applying a low-pass filter to the accelerometer (due to
high-frequency noise) and a high-pass filter to the gyroscope (due to the tendency of
drifting), as explained in e.g. Mathworks article [Mathworks, 2020]. The coordinate
system of the mobile phone can then be rotated to align one coordinate axis in the
direction of gravity. This gives one direction for which the data can be compared
in a consistent way between different measurement occasions and independently of
how the mobile phone is placed. The trade-off is that the other two coordinate axes’
orientations in the perpendicular plane are unknown.

For the rest of the work, all original measured data was rotated according to
above and the acceleration in the z-direction was extracted and used in the engi-
neered methods.
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Dividing data per task
Figure 5.3 shows the data for a single measurement occasion in the study. The dif-
ferent tasks that the patient performed have been highlighted by color in the plot.
These were identified by viewing the corresponding video footage.
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Figure 5.3 z-direction accelerometer measurement example for a patient in the
study.

Tasks were cut out from the data and analyzed separately. At this stage we se-
lected the tasks that were as consistently performed as possible between measure-
ment occasions and different patients. We did this to give a consistent basis from
which the disease symptoms could be analyzed. Not all of the tasks were deemed
useful to analyze. The “drink from cup”-task was typically short (2-4 seconds, re-
sulting in 200-400 data points) and not performed in a consistent way between
patients. The cup was empty during experiments which allowed for some unique
interpretations of how the task was performed. The “take on/off lab coat” was also
performed very uniquely for each measurement occasion. Sometimes the patients
performed the task standing and sometimes sitting.

Under the assumption, the most promising task was deemed to be “describe
picture”. The task was typically consistently performed and had a long duration
(∼20-40 seconds, resulting in 2000-4000 data points per occasion). Except for this
task, also the “walk”-task was analyzed, since it was the only other task which was
similarly performed for all patients and also not too short in data length. For the rest
of the work, these two tasks were cut out and analyzed.
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5.1 Experimental setup and data gathering

Convention for file layout during data storage
The data for the tasks “describe picture” and “walk” were cut out and stored in
corresponding task-specific folders. Together with the data, an info string in JSON
format was appended at the top of each file with necessary information to uniquely
identify the data segment and to provide the doctor’s CDRS score as class label
[ISO-21778:2017(E), 2017]. The patients identity was anonymized using the corre-
sponding patient number from the study. A small excerpt from a data file is shown
in listing 5.1. A code library was written is Python to load and process the collected
data.

Listing 5.1 Generated task-specific data file.

# {'pt ':12,'time ':'1024','medicine ':'no agonist ','task ':'describe pic ','label ':{'B ':3}}
index ,accX ,accY ,accZ ,gyroX ,gyroY ,gyroZ ,timeAcc ,timeGyro
1800 ,0.889 ,2.761 ,0.065 ,0.085 , -0.173 , -0.012 ,18.0 ,18.0
1801 ,0.875 ,2.715 ,0.071 ,0.093 , -0.176 , -0.020 ,18.01 ,18.01
1802 ,0.858 ,2.696 ,0.072 ,0.086 , -0.176 , -0.034 ,18.02 ,18.02
1803 ,0.822 ,2.673 ,0.0695 ,0.084 , -0.181 , -0.045 ,18.03 ,18.03
1804 ,0.772 ,2.648 ,0.061 ,0.089 , -0.180 , -0.054 ,18.04 ,18.04
1805 ,0.733 ,2.587 ,0.071 ,0.093 , -0.175 , -0.060 ,18.05 ,18.05
1806 ,0.688 ,2.553 ,0.065 ,0.096 , -0.173 , -0.0671 ,18.06 ,18.06

Summary of data library
From the gathered data-library we obtained an overview of the task-specific data
with information about class excitation, i.e., too what extent the different labels have
sample support from different patients. Listing 5.2 and 5.3 show the class counts for
tasks “describe picture” and “walk” respectively.

Listing 5.2 Class counts shown in JSON format according to the convention “class:counts”
for task: “describe picture”

-------------------------------
Summary of data in library , task: describe picture
-------------------------------
Patient 1: Class counts: {0: 6, 1: 4, 2: 7, 3: 0}
Patient 3: Class counts: {0: 6, 1: 8, 2: 2, 3: 0}
Patient 4: Class counts: {0: 4, 1: 9, 2: 4, 3: 0}
Patient 5: Class counts: {0: 4, 1: 3, 2: 1, 3: 0}
Patient 6: Class counts: {0: 1, 1: 1, 2: 3, 3: 13}
Patient 7: Class counts: {0: 9, 1: 5, 2: 0, 3: 0}
Patient 9: Class counts: {0: 12, 1: 0, 2: 0, 3: 0}
Patient 10: Class counts: {0: 2, 1: 8, 2: 5, 3: 0}
Patient 11: Class counts: {0: 5, 1: 10, 2: 4, 3: 0}
Patient 12: Class counts: {0: 3, 1: 2, 2: 6, 3: 3}
Patient 13: Class counts: {0: 6, 1: 2, 2: 3, 3: 1}
Patient 14: Class counts: {0: 8, 1: 3, 2: 0, 3: 0}
-------------------------------
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Listing 5.3 Class counts shown in JSON format according to the convention “class:counts”
for task: “walk”

-------------------------------
Summary of data in library , task: walk
-------------------------------
Patient 1: Class counts: {0: 4, 1: 8, 2: 1}
Patient 3: Class counts: {0: 6, 1: 10, 2: 0}
Patient 4: Class counts: {0: 16, 1: 1, 2: 0}
Patient 5: Class counts: {0: 6, 1: 2, 2: 0}
Patient 6: Class counts: {0: 2, 1: 3, 2: 13}
Patient 7: Class counts: {0: 8, 1: 6, 2: 0}
Patient 9: Class counts: {0: 12, 1: 0, 2: 0}
Patient 10: Class counts: {0: 9, 1: 5, 2: 0}
Patient 11: Class counts: {0: 9, 1: 10, 2: 0}
Patient 12: Class counts: {0: 3, 1: 5, 2: 6}
Patient 13: Class counts: {0: 8, 1: 1, 2: 3}
Patient 14: Class counts: {0: 10, 1: 1, 2: 0}
-------------------------------

Starting with the “describe picture”-data, we note that the label CDRS = 3 only
occurs for patients 6,12 and 13 which most likely affects models to be more non-
generic and biased towards these three patients. This label is also not seen in the
“walk”-data even though the “walk” task was performed only shortly after the “de-
scribe picture”-task. We proceeded with preprocessing and modeling being aware
of the dataset’s limitations.

5.2 Preprocessing

The preprocessing section covers the steps of loading data from the libraries cre-
ated in the previous section, and the steps taken before the processed data was fed
into classifying models. The classifiers take sets of training, validation samples to
learn from and are then evaluated on the test set. In order to create more data from
the files in the library, shorter segments referred to as snippets were sampled from
the task segments. This was done by sliding a window over the signal and at each
viable window location copy out the currently selected “snippet”. The window was
controlled by two parameters:

(i) window_size: The length of the window.

(ii) slide_interval: The length of the window jumps.

Figure 5.4 shows the single-task data “describe picture” which has been cut out
from the measurement in figure 5.3, with illustration of how a window is slided over
the data.

A “describe picture” data segment is typically around 20-40 seconds long which
corresponds to 2000−4000 samples with the sampling frequency of 100Hz. This is
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window_size

slide_interval

Figure 5.4 z-direction acceleration data for the task “describe picture”, cut out
from a patient measurement occasion.

plenty of data to perform transformations to the frequency domain. The size of the
sliding window and the slide interval for the window jumps are design parameters
that were initially chosen as window_size = 800 samples, slide_interval =
100 samples. This results in overlapping windows that could be interpreted as the
data being augmented which could still be beneficial in e.g. neural network models.
Later in the project we simulated the window size as described in section 5.4, which
resulted in a smaller window size window_size = 200 which was selected for the
final simulations.

Figure 5.5 shows a random set of snippets for the task “describe picture” from
the dataset which have been extracted with the above method. At this stage the mean
of each snippet is subtracted to make them zero-mean in order to Every snippet is
associated with a measurement occasion by the information in the string above each
subfigure.

The extracted snippets are processed by the feature extraction algorithms. When
examining the data from the task “walk”, the acceleration typically looks like the
example in Figure 5.6. It is notable how the patient first performs several steps, then
turns in the middle of the data segment and walks back to the starting position. In
order to apply the same methodology as for the describe picture task, the middle
segment with the turn is cut out. The result is data which only contains the “steps”
which are of interest to analyze.
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Figure 5.5 A random collection of snippets that are samples from the “describe
picture”-task. They are uniquely identified to a a measurement occasion with at-
tached string which also includes the label for the body “B”.
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Figure 5.6 Example of accelerometer data from a patient performing the “walk”
task.
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In the same way as for the “describe picture” task, snippets are copied out from
the original “walk” - task and the methods are applied to them. Since the task seg-
ments for this task are typically much shorter in time, smaller window sizes ought
to be used.

Energy measure
As an energy measure of the time signals we used the variance. Figures 5.7 and 5.8
show the time signal variance as histograms separated by class for two patients in
the study. This indicates that the classes are somewhat separated by the time signal
variance and therefore this measure can be useful as a feature in the classification
problem. Large outliers are mapped to a lower threshold which results in the bins
to the far right of the plots, in order to improve visibility. After eyeballing similar
plots for more patients in the study, this feature showed good potential and is used
by simple reference models and the algorithm in section 5.4.
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Figure 5.7 Histograms over time signal
variance computed for the dataset from pa-
tient 1.
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Figure 5.8 Histograms over time signal
variance computed for the dataset from pa-
tient 3.

Task time duration
Heuristically it is tempting to investigate the task time duration, i.e., the time it takes
for a patient to complete a task. This could possibly relate to disease symptoms.
However after examining this feature it was found to be more patient specific than
class specific, and was deemed as not useful in the modeling.
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Figure 5.9 A couple of periodograms labeled as class 2 from patient 3.

Periodogram
We used the periodogram as a one-dimenional, non-parametric spectral estimate for
the task-specific snippets. The periodograms were computed using a 1024-point fft,
with zero-padding applied to shorter signals. The signals were windowed using a
“Hamming” window. The signal energy which relates to the time signal variance
is seen in the periodogram estimates as the magnitude of the power. Figure 5.9
shows a couple of overlapping periodograms computed from patient 3, class 2. The
sampling frequency of 100 Hz results in a Nyquist frequency of 50 Hz, meaning
that this is the highest frequency we can capture given the sampling frequency.
However, eyeballing countless of periodograms belonging to different patients and
classes, there is very little to none activity in the frequency interval [25,50] Hz as
seem in e.g. Figure 5.9. It is also discussed in the work by Goschenhofer et al.
(2019) that PD related patterns do not exceed 20 Hz. For these reasons the content
in the interval [25,50] Hz was discarded since it would significantly reduce training
time for the artificial neural network models.

Periodograms from different patients and classes were eyeballed in order to find
spectral patterns, which could potentially be used in a parametric modeling ap-
proach. Figure 5.10 shows periodograms computed for a set of snippets from class
0 (left column) and class 2 (right column) sampled from patient 3 for the task “de-
scribe picture”. In order to visually compare the spectral patterns, the periodograms
were individually normalized.
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Figure 5.10 A set of periodograms computed on snippets from patient 3 in cate-
gories class 0 (left column) and snippets of class 2 (right column).

Figure 5.10 shows periodograms from snippets of length 800, meaning that 224
zeros are padded at the end of each signal. By viewing several sets of periodograms
no apparent pattern related to one certain frequency could be identified. In some
class 2 periodograms, there appears to be some peaks in the interval [0,5] Hz that
stand out from the class 0 periodograms. In order to investigate the occurance of
peaks in different classes, we examined two features which are:

(i) The amount of peaks above a certain threshold.

(ii) The amount of spectrum points, i.e., values of the periodogram, above a certain
threshold.
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Counting peaks
We developed a simple algorithm for counting peaks, with the short Python imple-
mentation shown in listing 5.4.

Listing 5.4 Peak counting algorithm as implemented in Python

1 def count_peaks(data, threshold):
2 '''
3 Counts peaks in "data", which typically is a spectral estimate.
4 Only peaks above or equal to "threshold" are accounted for.
5 '''
6 counts = 0
7 for i, point in enumerate(data):
8 if point < threshold:
9 pass

10 # left border condition
11 elif i == 0 and point < data[i+1]:
12 pass
13 # right border conditions
14 elif i >= len(data) or i == len(data)-1 and point < data[i-1]:
15 pass
16 elif i == len(data)-1 and point > data[i-1]:
17 counts = counts + 1
18 # if we are climbing or descending a peak
19 elif point < data[i-1] or point < data[i+1]:
20 pass
21 else:
22 counts = counts + 1
23 return counts

In a similar manner as earlier, class-wise histograms of the peak counts as well
as the number of points above the threshold were generated for the dataset. Using a
threshold of 0.8, the histograms for patients 1 and 3 are shown in Figures 5.11, 5.12
and 5.13, 5.14 respectively.
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Figure 5.11 Histograms over peak
counts in periodograms from patient 3.

1 4 8 12 16 20
point counts

Point counts class histograms (patient 3)

0

1

2

Cl
as

s

Figure 5.12 Histograms over the num-
ber of spectrum-points over a certain
threshold in periodograms from patient 3.
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Figure 5.13 Histograms over peak
counts in periodograms from patient 1.
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Figure 5.14 Histograms over the num-
ber of spectrum-points over a certain
threshold in periodograms from patient 1.

We see that these features do not separate the classes as well as the time signal
variance, however by viewing the figures for patient 3 there seems to be a few high
counts only in classes 1 and 2. These features are used in the algorithm in section
5.4.

Spectrogram
Examining spectrograms computed from signals of varying length did not visually
present anything useful, and were therefore omitted in the report. However, we did
use spectrograms as input to one of the models (2D convolutional neural network)
that is evaluated in the section about patient-generic modeling in the results chapter.
When computing the spectrograms, the short-term Fourier transform windows were
selected to have length = 200 and use a 512 point fft.
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5.3 CNN classifier

We used a method consisting of a convolutional neural network with spectral es-
timates as input. A flowchart illustrating the method is shown in Figure 5.15. The
input time signal is first segmented as described earlier and the segments are trans-
formed to periodograms. All periodograms in the dataset are normalized to the in-
terval [0,1] by the largest measured value, which maintains the difference in power
between different periodograms. The normalization was done to enhance the con-
vergence speed of the optimization algorithm when using binary cross-entropy loss
function and sigmoid activation [Chollet, 2017].

CNNpreprocessing spectral
estimate

input
time signal

class
prediction

Figure 5.15 Flowchart over the CNN classifier method, where the method takes a
signal in the time domain and maps it to a class.

We tried multiple varieties of layer architectures for the CNN, both concerning
hyperparameters but also dimension and loss functions. The general architecture
we developed and later used as basis is shown in listing 5.5, consisting of three
convolutional layers and 2 dense layers. A novel regularization technique called
Batch Normalization developed by Ioffe and Szegedy (2015) was tested but did not
yield significantly better results.

Listing 5.5 CNN 1D architecture

Layer (type) Output Shape Param #
========================================================
conv1d_1 (Conv1D) (None , 250, 16) 128
________________________________________________________
max_pooling1d_1 (MaxPool1D) (None , 125, 16) 0
________________________________________________________
conv1d_2 (Conv1D) (None , 119, 32) 3616
________________________________________________________
max_pooling1d_2 (MaxPool1D) (None , 59, 32) 0
________________________________________________________
conv1d_3 (Conv1D) (None , 53, 64) 14400
________________________________________________________
max_pooling1d_3 (MaxPool1D) (None , 26, 64) 0
________________________________________________________
flatten_1 (Flatten) (None , 1664) 0
________________________________________________________
dense_1 (Dense) (None , 256) 426240
________________________________________________________
dense_2 (Dense) (None , 1) 257
========================================================
Total params: 444,641, Trainable params: 444 ,641
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5.4 Feature extracting autoencoder with discriminant

Figure 5.16 Periodogram from class 0
overlayed by a GRAD-CAM heatmap indi-
cating important regions that had more im-
pact on the class decision.

Figure 5.17 Periodogram from class 1
overlayed by a GRAD-CAM heatmap indi-
cating important regions that had more im-
pact on the class decision.

GRAD-CAM validation
Apart from loss function validation using the validation set, we also used GRAD-
CAM validation. By this method, we were able to produce 1D-plots of the areas in
the input that were more important for the class decision. We could then plot the
input periodogram with the GRAD-CAM as overlay. Figure 5.16 and 5.17 show
GRAD-CAMs for one periodogram classified as 0 and one periodogram classified
as 1 respectively. We were able to see that low frequency content in general was
more important invariant of class, which also strengthens the decision to toss away
frequency content in the interval [25,50] Hz. We were not able to draw any spe-
cific conclusions on specific important frequencies by this method. This is partly
due to the computed GRAD-CAMs resolution being to low. In future work we sug-
gest to use this method for deeper neural networks which might increase heat map
resolution.

5.4 Feature extracting autoencoder with discriminant

In order to use a convolutional neural network in an unsupervised fashion, we pro-
pose a scheme depicted in Figure 5.18. In this case the convolutional neural network
part of the algorithm will be focused entirely on reconstruction of its input and dur-
ing this process produce lower-dimensional embeddings. The idea is that if the input
data from different classes differs, then this should be reflected in the latent space
(embedding space) of the autoencoder, where class separation should be achieved
in an unsupervised fashion.
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Figure 5.18 Flowchart over the proposed algorithm which utilizes a feature ex-
tracting autoencoder together with a linear discriminant.

The method works as follow:

(i) The input data is fed through a preprocessing step where a spectral estimate,
the ACF and scalar features are computed. The spectral estimate is computed
by e.g. the periodogram or the spectrogram.

(ii) The neural network part, given by the autoencoder, trains on finding patterns
in the ACF and spectral estimate of the training set.

(iii) After training of the autoencoder, it produces embeddings by encoding input
samples to latent space using the encoder part of the autoencoder.

(iv) The embeddings are concatenated with the scalar features to append additional
information and the result is fed into a discriminant which has to be individu-
ally trained with embeddings from the training set.

(v) The discriminant performs class predictions.

In the following subsections, we explain how different segments in the algorithm
are optimized.

Preprocessing
The slide window size was selected through grid-search simulating the method for
a set of window sizes and evaluating the classification score in each iteration. Each
window size was simulated 100 times where the training, validation and test sets
were randomly selected as usual. Due to this procedure being time consuming it
was only conducted for data belonging to two patients, with the assumption that

44



5.4 Feature extracting autoencoder with discriminant

the result generalizes to the whole dataset. The parameter slide_interval was
chosen as the same value as window_size for window sizes up to 400 samples (no
window overlap) and reduced to slide_interval = 200 for the remaining window
sizes. This was needed to make sure that there was a sufficient amount of snippets
sampled, which becomes a problem for the larger window sizes.

The result of the simulation for patients 1 and 3 are shown in Figures 5.19 and
5.20, where histograms of the macro f1-score (for the binary classification problem,
where CDRS scores 1, 2, 3 are grouped together) are formed for each window size.
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Figure 5.19 Histograms over the macro f1-
score obtained in simulations for different
window sizes when using the dataset from pa-
tient 1.
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Figure 5.20 Histograms over the macro f1-
score obtained in simulations for different
window sizes when using the dataset from pa-
tient 3.

We selected suitable window parameters by summarizing the simulation results
in a combined score, which for each distribution is the mean divided by the standard
deviation. This score reflects that we want a high mean together with a low standard
deviation for the macro f1-score distributions. The individual scores as well as the
combined mean are shown in table 5.1. According to this metric, the highest score
is achieved for window_size = 200.

Table 5.1 Combined score results

window size 100 200 300 400 500 600 700 800

patient 1 8.5 11.0 7.43 7.38 10.49 8.23 7.38 7.37

patient 3 8.89 12.34 9.04 7.99 8.75 8.59 10.48 10.63

mean 8.70 11.67 8.24 7.69 9.62 8.41 8.93 9
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Autoencoder
The autoencoder is trained separately in the algorithm. Its task is to reconstruct its
input, being the spectral estimate and ACF, as well as possible. This is achieved
by minimizing the MSE (Mean Squared Error) between the input and output which
is selected as the loss function for the autoencoder. A multiple input multiple out-
put (MIMO) model is used for the implementation. A conceptual sketch is shown
in Figure 5.21, with the final optimized architectures for the ecnoder and decoder
including all layer shapes shown in Appendix figures B.1 and B.2.

spectral estimate

spectral estimate

decoder

embedding

ACF

ACF

encoder

input

output

Figure 5.21 Sketch over our MIMO autoencoder architecture, which shows how
the two input channels are combined into a common latent space and then decoded
into separate pipelines.

The inputs are normalized to the interval [0,1]. When having big power differ-
ence in the not-normalized periodograms as input, the autoencoder seemed to be
biased towards periodograms with big power and reconstructed all samples as such.
Instead, the important feature of power difference is reflected by the time signal
variance, which is included in the method as a scalar feature.

The different pipelines for the spectral estimate and ACF are optimized indi-
vidually by simulating different models and evaluating test set MSE. In these sim-
ulations the number of convolutional layers, the kernel sizes and the use of special
layers such as batch normalization are compared by the MSE metric resulting in
model choices. Apart from the validation and test set MSEs, another used valida-
tion metric was to eyeball the reconstructions created by the autoencoder. Figures
5.22 and 5.23 show reconstructions of periodograms (selected as spectral estimate)
and ACFs respectively from the test set for one simulation of data gathered from pa-
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tient 3. In this simulation the autoencoder was trained until the validation set MSE
did not decrease for 100 epochs.
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Periodogram reconstructions (patient 3)

Figure 5.22 Periodogram reconstructions. The first row shows input periodograms
and the second row shows the reconstruction as output.
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Figure 5.23 ACF reconstructions. The first row shows input ACFs and the second
row shows the reconstruction as output.

Although the reconstructions are not perfect, we see that the main behaviour
with important peaks is captured in the periodogram reconstructions. It is worth to
comment that the autoencoder has not trained on these samples as they are drawn
from the test set.

In order to select an appropriate latent space size, we simulated how the re-
construction error from the autoencoder depends on the latent space size. This was
done by fixing a dataset for one patient and a set of encoding dimension to test, in
this case even numbers between 2 and 32. For every value of encoding dimension,
100 autoencoders were trained to account for the stochasticity in the autoencoder
optimization algorithm. The result was averaged for every encoding dim value, and
the resulting plot is shown in Figure 5.24.
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Figure 5.24 The mean squared error of the output reconstruction for the autoen-
coder as a function of the latent space dimension. These results are obtained by
simulation.

We opted for an encoding dimension of 16 which is a tradeoff between having
a low reconstruction MSE and keeping the resulting embedding small in dimension
to later make the discrimant possible to fit. In the case of fitting Fisher’s linear dis-
criminant, the covariance matrix requires more data to obtain full rank for a higher
dimensional embedding.

Rescaling features
The feature values in the embeddings produced by the autoencoder are by default on
another magnitude scale compared to the scalar features such as the time signal vari-
ance. This can have negative impact on certain algorithms in the final block of our
method such as principal component analysis (PCA). Features on different magni-
tude scales can make the algorithms biased towards features with large magnitude,
which are given more importance. This problem is discussed in e.g. the paper by
[Leznik and Tofallis, 2005] and on Scikit-learn’s website [Importance of Feature
Scaling 2020]. To deal with this issue and make our method susceptible to different
final-block clusering/classifying algorithms, the scalar features that are appended to
the autoencoder-produced embeddings are scaled to be in the same magnitude as
the embedding features. This is implemented by computing the average embedding
feature range and then scaling the features accordingly.

Discriminant
Having the autoencoder-produced embeddings concatenated with scalar features,
we end up with 19-dimensional embeddings to be clustered. The first approach
we attempted for clustering was to compute the angle between the 19-dimensional
vectors, and mapping the resulting value to the interval [-1, 1] by applying the cosine
function (also known as cosine similarity). However a much more efficient way
for clustering and separating classes was found to be Fisher’s linear discriminant,
projecting the 19-dimensional data onto one or two dimensions.
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5.5 Simulation

Figures 5.25 shows smoothed histograms of 1D projections sampled from pa-
tient 3. Figure 5.26 shows a scatter plot of the same embeddings projected to 2D
instead. The embeddings originate from 2 measurement occasions labeled class 0,
2 occasions labeled as class 1 and one occasion labeled as class 2 with a total test
set size of 73 embeddings.
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Figure 5.25 Smoothed histograms of 1D
embedding projections using Fisher LDA
method.
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Figure 5.26 Scatter plot of 2D
embedding projections using Fisher LDA
method.

In this case it is seen that class 0 separates well but classes 1 and 2 have substan-
tial overlap. The resulting projections are approximated to be normal distributed in
order to use a Gaussian Naive Bayesian Classifier to form class predictions.

5.5 Simulation

During the course of the project different scenarios were simulated. At the project
start, there was no annotated data available. As a preliminary study, we annotated
the data from the “describe picture”-task ourselves taking out only the most extreme
cases of the Hyperkinesia symptom and dividing these into two classes, generic for
all patients. The simulation results for this binary classification problem are found
in section 6.1.

After the preliminary study, the data set for the task “describe picture” was anno-
tated by a certified doctor. At this stage we opted for a generic model for all patients
and evaluated different models on the new annotated dataset. The simulation results
for this scenario are found in section 6.2.
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In the third study we tried to form individual models for each patient as well as
developing the method explained earlier in section 5.4. The new method was sim-
ulated against the best performing model from the previous study. The simulation
results from the individual modeling are shown in section 6.3.

Simulation strategy
The simulations have all been subject to the same simulation strategy. In each simu-
lation iteration, the training, validation and test sets were randomly selected and the
classification score was reported by evaluation of the test set, similar to an n-fold
cross validation approach. By having a constant set of random seeds in the dataset-
selection phase, each different model could have iteration-wise the same dataset
which makes model-comparison more consistent. Further 70% of the data was used
for training, 10% for validation and 20% for testing. The simulations where run
using five 8-core Intel Core i7-9700 CPU nodes.
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6
Results and discussion

In this chapter the results from the project are presented and discussed. Sections 6.1,
6.2 and 6.3 treat different simulation cases where the last section about individual
modeling represents the case most likely suitable for an application. Section 6.4
treats how the algorithm would work in practice.

6.1 Results from preliminary study using own
annotations for the data

The preliminary study used the “describe picture”- dataset, which we annotated
ourselves into classes “big hyperkinesia symptoms” and “small hyperkinesia symp-
toms”. The following patient-generic models were evaluated:

1. 1D_CNN: A one-dimenional convolutional neural network with binary cross-
entropy loss function taking periodograms as input.

2. var_GNBC: Naive Baysian Gaussian classifier taking the time signal vari-
ance as input.

The models were trained until the score on the validation set was not improved
for 20 epochs. Histograms of the macro f1-score after 150 simulations for the two
models are shown in Figure 6.1.

These preliminary results show that the time signal variance is an important fea-
ture as the single-feature classifier performs descent with a mean macro f1-score
around 0.8. The 1D CNN model seems to perform significantly better (as the dis-
tribution is more shifted towards higher scores) which would imply that there is
additional information to gain from the periodograms. It is seen that the variance of
the score distributions is high, i.e., “how lucky” we are with the selection of train-
ing, validation and test set is important. This is most likely affected by the small size
of the dataset, which was further decreased due to removal of ambiguous data, i.e.,
only the extreme cases were kept in the dataset. The results were used as motivation
to properly annotate the dataset using an expert.
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Figure 6.1 Histograms over the macro f1-score obtained during simulation for the
two tested models.

6.2 Generic modeling using doctor-annotated data

At this stage of the project the doctor-annotated data for the “describe picture”-task
was available as CDRS scores. We attempted to find a model that was generic for
all patients. The best binary classification result was achieved for combining CDRS
scores 0 and 1 to the first class and CDRS scores 2 and 3 to the second class. The
models were simulated until the score on the validation set was not improved for 20
epochs. The following models were simulated:

1. CNN1D_bin: Binary 1D CNN using the binary cross-entropy loss function
and having periodograms as input.

2. CNN1D_reg_bin: Binary 1D CNN regression model using the mean squared
error loss function and periodograms as input. The model was trained on 4
classes but evaluated on 2 classes.

3. CNN2D_bin: Binary 2D CNN using binary cross-entropy loss function and
spectrograms as input.

4. Gaussian KDE NBC: Naive Bayesian Classifier having the time signal vari-
ance as input feature. The feature class-wise pdfs were estimated using kernel
density estimation with a gaussian kernel.

5. Simple threshold classifier: The input to the classifier is the time signal vari-
ance. The classes are separated by having the middle point between the class-
means as a threshold.

Figures 6.2 and 6.3 show smoothed histograms of the macro f1-score and accu-
racy respectively for the different models after 150 simulations of the binary classi-
fication problem.
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Figure 6.2 Smoothed histograms over the
macro f1-score obtained during binary-class
simulation of the different tested models.
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Figure 6.3 Smoothed histograms over
the classification accuracy obtained during
binary-class simulation of the models.
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Figure 6.4 Smoothed histograms over the
macro f1-score obtained during multi-class
simulation for two models.
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Figure 6.5 Smoothed histograms over
the classification accuracy obtained during
multi-class simulation for two models.

Figures 6.4 and 6.5 show the corresponding simulation results for the multi-
class classification problem. Here only the best performing model and the bayesian
classifier from the binary classification case were simulated due to time constraints.

The confusion matrix obtained from one of the simulations of the CNN 1D
regression model is shown in equation 6.1.

C =


3 143 5 0
0 150 70 13
0 28 87 29
0 3 57 39

 (6.1)

We see a descent classification result for the binary classification problem, al-
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though the variance of the score-distributions appears to be quite large. For the
multi-class case, the performance is worse which is also indicated by the confusion
matrix from one of the simulations of the CNN 1D regression model. The confusion
matrix shows that class 0 is most often predicted as class 1 and that the model could
not is a satisfactory way distinguish between classes 2 and 3. This is likely partly
affected by class-excitation where, e.g., class 3 only has sample support from two
patients and would therefore probably not generalize well to the crowd.

According to the doctors, for an application it would make more sense to use
CDRS score 0 as one class and put the other scores in another class due to CDRS
score 0 representing the patient being “off medication”. A satisfactory result for
this class division would probably not be obtained with the current methodology,
and therefore the project proceeded by modeling the patients individually.

6.3 Individual modeling using doctor-annotated data

We attempted individual modeling of each patient. The models were allowed to train
until the validation score was not improved for 50 epochs, which typically happened
before 500 epochs for all models. Like before, the same random seeds shuffling the
data were used in order to reproduce same dataset in each iteration for all models.
The following models were simulated:

1. Feature extracting autoencoder (using all features)

2. Feature extracting autoencoder (using everything but the ACF)

3. Feature extracting autoencoder (using only the periodogram)

4. CNN_1D_reg_bin: Binary 1D CNN regression model using the mean
squared error loss function and periodograms as input.

5. Gaussian NBC: Naive Bayesian classifier having the time signal variance as
input. The class-wise feature pdfs are assumed to be normal distributed.

6. Simple guess classifier: this classifier uses the “most-frequent” strategy
where the most frequent label is predicted.

Describe picture dataset
In the following section in Figure 6.6 and 6.7 the simulation results from the best
performing model (Model 2) are shown (blue color), together with the result from
Model 6 (orange color) for reference. The corresponding simulation results from
the other models are shown in Appendix C.1. The reference model acts as a tool to
evaluate whether the simulated model is skillful or not. For the multi-class simula-
tions only the results from the patients that have labels in more classes than two are
shown.
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Figure 6.6 Smoothed histograms of the
macro f1-score obtained during binary-class
simulation of the “describe picture” dataset
when evaluating model 2.
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Figure 6.7 Smoothed histograms of the
macro f1-score obtained during multi-class
simulation of the “describe picture” dataset
when evaluating model 2.

Figure 6.6 highlights that the performance differs between patients. For some
patients the macro f1-score distributions are significantly higher (better) than oth-
ers. The score distributions in general have a big variance as was seen in earlier
simulation cases as well.

Classification score summary The model simulations are summarized in a total
score which is defined for each distribution as the mean divided by the standard de-
viation. This is because we want a high mean together with a low standard deviation
for each distribution. Tables 6.1 and 6.2 show the total score for each patient for the
different models for the binary-class scenario and multi-class scenario respectively.
At the very bottom the median of each model computed, as well as the mean when
the highest and lowest values are omitted (in the table referred to as adj. mean). The
reason for omitting the highest and lowest value is to be able to discard extreme
outliers as were found in some examples (for example model 5, patient 6 in the
binary-class scenario where the standard deviation proved to be very small).
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Chapter 6. Results and discussion

Table 6.1 Total score results binary-class

Model 1 2 3 4 5
patient 1 12.7 11.9 9.9 4.0 14.4
patient 3 12.8 12.4 11.9 4.7 8.5
patient 4 20.2 13.4 17.5 6.1 7.8
patient 5 12.7 11.5 16.2 5.3 4.2
patient 6 9.8 10.5 10.4 4.4 320.9
patient 7 4.3 4.3 5.6 3.3 2.6

patient 10 6.5 8.3 6.4 47.9 23.2
patient 11 6.8 7.6 8.2 5.0 8.2
patient 12 22.0 18.5 14.4 5.3 10.4
patient 13 8.5 8.5 9.5 11.8 7.9
patient 14 9.7 9.8 10.3 5.6 4.1
adj. mean 11.1 10.4 10.8 5.8 9.9

median 9.8 10.5 10.3 5.3 8.2

Table 6.2 Total score results multi-class

Model 1 2 3 4 5
patient 1 11.9 12.0 7.1 3.8 12.7
patient 3 11.0 11.6 11.8 3.3 6.1
patient 4 15.9 13.7 13.8 4.8 8.2
patient 5 5.7 6.0 10.9 2.8 6.7
patient 6 5.7 6.3 6.2 3.3 11.1
patient 7 4.3 4.3 5.6 2.7 2.6
patient 10 5.2 5.9 5.4 3.5 3.7
patient 11 4.5 4.0 4.4 3.8 6.7
patient 12 14.6 13.8 12.9 3.7 6.3
patient 13 11.0 12.0 7.2 5.6 7.1
patient 14 9.7 9.8 10.3 3.9 4.1
adj. mean 8.8 9.1 8.6 3.7 6.7

median 9.7 9.8 7.2 3.7 6.7

It is apparent that models 1 and 2 seem to perform better when weighing to-
gether the total scores from simulation for binary-class and multi-class. Addition-
ally when looking at the distribution plots it is hard to distinguish a difference be-
tween performance of the two models. For this reason model 2 is chosen as the best
model since it is simpler. Taking this model and computing the overall mean macro
f1-score and accuracy the following values were obtained:

• binary-class overall mean macro f1-score: 0.74

• binary-class overall mean accuracy: 0.81

• multi-class overall mean macro f1-score: 0.52

• multi-class overall mean accuracy: 0.65

However, it should be noted that there is an overall big variance in the results
judging by the distributions in Figures 6.6 and 6.7.

Walk dataset
In this section the results are shown when evaluating the best model from the pre-
vious section (Model 2) on the “walk”-dataset. Figures 6.8 and 6.9 show the macro
f1-score for simulating the binary-class and multi-class scenarios respectively. Note
that only the patients that have multi-class labeled data are shown for the multi-class
case. The corresponding total scores for this simulation were:

(i) total score adj mean: 7.8

(i) total score median: 7.1
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Figure 6.8 Smoothed histograms of the
macro f1-score obtained during binary-class
simulation of the “walk” dataset when eval-
uating model 2.
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Figure 6.9 Smoothed histograms of the
macro f1-score obtained during multi-class
simulation of the “walk” dataset when eval-
uating model 2.

(i) binary-class overall mean macro f1-score: 0.61

(i) binary-class overall mean accuracy: 0.68

(i) multi-class overall mean macro f1-score: 0.5

(i) multi-class overall mean accuracy: 0.61

Here, all the results imply that a better classification performance was achieved
when using the “describe picture”-task data compared to the “walk”-task data.

6.4 Use of algorithm in practice

In practice the algorithm could run in real time and would give a verdict every 2
seconds with the best model. The most natural way for the total prediction would
then be to pick the prediction with most votes for a given occasion. The classifica-
tion score for the model directly affects how successful the algorithm will work in
practice.

Figures 6.10 and 6.11 show the time domain signal (lower subfigure) together
with the algorithm score over time (upper subfigure) for two test-occasions for pa-
tient 12 in the multi-class scenario for the “describe picture”-task. In these cases
the most votes would result in the correct total label prediction, however, for the
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Figure 6.10 Algorithm CDRS predictions
(upper subfigure) on unseen data with true
class CDRS = 0 (lower subfigure) for patient
12.
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Figure 6.11 Algorithm CDRS predictions
(upper subfigure) on unseen data with true
class CDRS = 2 (lower subfigure) for patient
12.

multi-class scenario this is not usually the case. Most commonly there is confu-
sion between classes 1 and 2. Class 0 is usually well separated resulting in good
performance for the binary class scenario. <Z

Figures 6.12 and 6.13 show two out of five test set measurement occasions
and model predictions for one selection of dataset for patient 1 for the “describe
picture”-task. In this case the model is trained for the binary class scenario. Even
though the classification macro f1-score is 0.72, all the test set measurement occa-
sions are correctly classified when the prediction votes are counted, highlighting the
usability even though the classification score is not perfect. It should also be noted
that judging from Figure 6.6 several other patients have higher macro f1-score dis-
tributions than patient 1 indicating that the algorithm should perform better for these
patients. However the algorithm’s performance is still not perfect and could be fur-
ther developed and evaluated.

6.5 Optimizations and limitations

Algorithm improvements
During the development of the autoencoder with discriminant method, we simu-
lated some hyperparameters such as autoencoder layer architecture, size of the latent
space dimension and the size of the window segmenting the time-domain signals.
This is only a few of the hyperparameters and there are still endless of possibilities
for model variations. One approach attempt deeper architectures for the autoen-
coder that enables learning of more abstract features. In our design, we increased
depth until the autoencoder reconstruction was satisfactory, however, perhaps there
are more abstract patterns to be learnt from the data that can be used to improve
classification performance.

58



6.5 Optimizations and limitations

0 10 20 30 40
0

1

cla
ss

Model predictions

predictions
true class

0 10 20 30 40
time [s]

2

0

2

am
pl

itu
de

time signal

Chronological algorithm evaluation, pt:1, time:1105

Figure 6.12 Algorithm CDRS predictions
(upper subfigure) on unseen data with true
class CDRS = 1 (lower subfigure) for patient
1.
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Figure 6.13 Algorithm CDRS predictions
(upper subfigure) on unseen data with true
class CDRS = 0 (lower subfigure) for patient
1.

The spectral estimate could perhaps be computed differently by applying some
type of parametric or semi-parametric approach such as modeling the time domain
signal as an AR(p)-process. AR-models have been successful in modeling speech
and perhaps could be attempted for other human phenomena such as movement
signals.

It might also be possible to improve the discriminant part of the method. Cur-
rently a linear discriminant is applied but a reasonable alternative would be to use a
small multi-layer perceptron network that can learn non-linear relations. However,
due to the current small size of the dataset this might not be a feasable alternative,
but rather something that could be attempted as the size of the dataset is increased.

Limitations
A big limitation with the project is the current small size of the dataset. This is af-
fected by the covid-19 virus which has delayed experiments and caused potential
study subjects to decline participation. For this reason this Master’s thesis only pro-
cesses data from 12 out of ideally over 30 patients. The results obtained in this work
should be validated on a larger dataset in the future.

In discussion with the expert who annotated the data it became known that some
parts of the dataset, especially for the “walk”-task, were difficult to annotate mean-
ing that the CDRS score was not easy to determine. For this reason it can be as-
sumed that there is noise in the expert’s labels which affects all classifying models
negatively.
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7
Conclusion

We have investigated several feature extraction methods and classification methods
on different versions on the new Parkinson’s disease dataset with single-channel ac-
celerometer and gyroscope data acquired at the Lund University Hospital. Repeated
simulation of different models allowed for comparison and conclusions on feasible
model architectures for the problem. We found that individual modeling of the pa-
tients is necessary for good performance in a practical implementation, creating a
tailored model for the patient.

The model classification performance is in general significantly better than sim-
ply guessing the most frequent label in the dataset and the results point towards
the algorithm being practically usable for the binary classification case, i.e., when
grouping CDRS score 0 in the first class and CDRS scores 1, 2, 3 in the other
class. However, the dataset that the methods are evaluated on is still small and the
results should be further validated on a larger dataset. In the multi-class case the
classification performance, allthough skillful, appeared to not be accurate enough
for practical usability with a few exceptions discussed in section 6.4. Here at least
the following two factors are affecting; firstly that the size of the dataset is further
decreased when dividing it into more classes and secondly that there is more noise
in the expert’s labels. It is important to note that the trained models are task-specific
for the analyzed tasks, meaning that in practice the patient would need to perform a
similar task in order for the model to be valid.

Our use of relatively short 2-second data windows (200 samples) found by grid-
simulation indicate that 2D time-frequency transformations might not be feasible as
features in the current method framework, due to this signal length being relatively
short for 2D transformations.

The best performing model was found to be a feature extracting autoencoder
acting on periodogram input, combined with additional “simple” features such as
the time signal variance. The concatenated features are fed into a Fisher linear dis-
criminant. According to the simulation results, use of patterns in the auto-covariance
function (ACF) as features did not yield a significant improvement in the classifica-
tion score.

In our work we have concluded that it is possible to use annotated data in order
to train classifying models to detect medication-induced hyperkinesia.
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8
Future ideas

For future work it might be of interest to try more advanced versions of the models
from our methodology. However, this is heavily reliant on computational power.

An interesting approach which could be investigated is to treat the whole prob-
lem as unsupervised. Starting from the autoencoder with discriminant-method the
discriminant could be replaced by an unsupervised clustering algorithm such as
principal component analysis (PCA). Under the assumption that the patient shows
a broad spectra of symptom states during data gathering, the data corresponding to
different states should be able to be clustered in a feature space. The different clus-
ters learnt during this process could then be used as reference when monitoring the
patient. If this could be possible it solves two major problems:

(i) The cost: A doctor would not need to annotate the training data of the patient,
which in practice would result in a lower cost.

(ii) The label noise: The doctor’s labels would not be used, hence there is no
problem of noise in the labels.

For the supervised approach used in this master’s thesis, the labeling of the data
could possibly be improved by having multiple experts annotate the same dataset
and weigh together their annotations. This could possibly help to reduce label noise.
Another idea is to make a finer annotation, i.e., divide the original data into smaller
parts that are individually annotated. This might increase the accuracy in annota-
tions.
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A
Appendix A

A.1 Brain-stimulating picture

Figure A.1 The picture described during the “describe picture” task of the study.
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Appendix B
B.1 Encoder architecture

periodogram: InputLayer
input:

output:

(None, 256, 1)

(None, 256, 1)

conv1d_1: Conv1D
input:

output:

(None, 256, 1)

(None, 256, 8)

max_pooling1d_1: MaxPooling1D
input:

output:

(None, 256, 8)

(None, 128, 8)

acf: InputLayer
input:

output:

(None, 48, 1)

(None, 48, 1)

conv1d_3: Conv1D
input:

output:

(None, 48, 1)

(None, 48, 8)

conv1d_2: Conv1D
input:

output:

(None, 128, 8)

(None, 128, 8)
conv1d_4: Conv1D

input:

output:

(None, 48, 8)

(None, 48, 8)

max_pooling1d_2: MaxPooling1D
input:

output:

(None, 128, 8)

(None, 64, 8)
max_pooling1d_3: MaxPooling1D

input:

output:

(None, 48, 8)

(None, 24, 8)

flatten_1: Flatten
input:

output:

(None, 64, 8)

(None, 512)
flatten_2: Flatten

input:

output:

(None, 24, 8)

(None, 192)

concatenate_1: Concatenate
input:

output:

[(None, 512), (None, 192)]

(None, 704)

dense_1: Dense
input:

output:

(None, 704)

(None, 64)

encoded: Dense
input:

output:

(None, 64)

(None, 16)

Figure B.1 Encoder architecture used in the autoencoder method.
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B.2 Decoder architecture

B.2 Decoder architecture

embedding: InputLayer
input:

output:

(None, 16)

(None, 16)

decoded_input: Dense
input:

output:

(None, 16)

(None, 64)

dec_1: Dense
input:

output:

(None, 64)

(None, 704)

lam_per: Lambda
input:

output:

(None, 704)

(None, 512)
lam_acf: Lambda

input:

output:

(None, 704)

(None, 192)

res_per: Reshape
input:

output:

(None, 512)

(None, 64, 8)

conv_per_1: Conv1D
input:

output:

(None, 64, 8)

(None, 64, 8)

res_acf: Reshape
input:

output:

(None, 192)

(None, 24, 8)

up_sampling1d_1: UpSampling1D
input:

output:

(None, 64, 8)

(None, 128, 8)

up_sampling1d_3: UpSampling1D
input:

output:

(None, 24, 8)

(None, 48, 8)

conv_per_2: Conv1D
input:

output:

(None, 128, 8)

(None, 128, 8)

conv_acf_1: Conv1D
input:

output:

(None, 48, 8)

(None, 48, 8)

up_sampling1d_2: UpSampling1D
input:

output:

(None, 128, 8)

(None, 256, 8)

conv_acf_2: Conv1D
input:

output:

(None, 48, 8)

(None, 48, 8)

per_output: Conv1D
input:

output:

(None, 256, 8)

(None, 256, 1)

acf_output: Conv1D
input:

output:

(None, 48, 8)

(None, 48, 1)

Figure B.2 Decoder architecture used in the autoencoder method.
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Appendix C
C.1 Individual model results - comparison models
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Figure C.1 Smoothed histograms of the
macro f1-score obtained during binary-class
simulation of the “describe picture” dataset
when evaluating model 1.
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Figure C.2 Smoothed histograms of the
macro f1-score obtained during multi-class
simulation of the “describe picture” dataset
when evaluating model 1.
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C.1 Individual model results - comparison models
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Figure C.3 Smoothed histograms of the
macro f1-score obtained during binary-class
simulation of the “describe picture” dataset
when evaluating model 3.
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Figure C.4 Smoothed histograms of the
macro f1-score obtained during multi-class
simulation of the “describe picture” dataset
when evaluating model 3.
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Figure C.5 Smoothed histograms of the
macro f1-score obtained during binary-class
simulation of the “describe picture” dataset
when evaluating model 4.
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Figure C.6 Smoothed histograms of the
macro f1-score obtained during multi-class
simulation of the “describe picture” dataset
when evaluating model 4.

69



Appendix C. Appendix C

0.0 0.2 0.4 0.6 0.8 1.0
Macro f1-score

Simulation results model 5 binary-class

1

f1_bin simple_guess_f1_bin

3

4

5

6

7

10

11

12

13

14

Pa
tie

nt
 n

um
be

r

Figure C.7 Smoothed histograms of the
macro f1-score obtained during binary-class
simulation of the “describe picture” dataset
when evaluating model 5.
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Figure C.8 Smoothed histograms of the
macro f1-score obtained during multi-class
simulation of the “describe picture” dataset
when evaluating model 5.
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