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Abstract
Probing the physical regions in large parameter spaces of typical Standard Model (SM) ex-
tensions can be a very difficult computational task. In this thesis project, a new framework
has been developed that utilises well-known Machine Learning (ML) techniques in the form
of neural networks trained by a genetic algorithm. This framework is rather generic and
designed to explore new physics model parameter spaces with a large number of dimensions,
implementing a given set of theoretical and experimental constraints, in a time-efficient and
smart way. The ML framework has been applied for analysis of a large parameter space in
a recently proposed Three Higgs Doublet Model (3HDM) with a U(1)× Z2 flavor symmetry
implementing theoretical constraints on tree-level unitarity and boundedness from below, as
well as the experimental bounds on oblique corrections. We have developed an inversion
procedure that enables us to use the scalar boson masses, mixing angles and off-alignment
parameters as inputs in our ML framework. This lets us use measured values of the SM-
like Higgs boson mass (within errors) and couplings in the near-alignment regime, as well
as possible experimental bounds on masses of additional scalar bosons as inputs. A similar
inversion algorithm has also been implemented in the quark sector, enabling us to take the
measured values of quark masses and mixing angles (within errors) as inputs randomized
within the experimental uncertainties. Our ML implementation makes an important step
towards an efficient and detailed exploration of large parameter spaces of new physics models
highly constrained by precision experimental bounds.



Populärvetenskaplig beskrivning
Partikelfysikens standardmodell är en av de mest exakta modellerna inom fysiken. Den
beskriver interaktionerna mellan fundamentala partiklar som kvarkar och leptoner, hur Hig-
gspartikeln ger massa till andra partiklar och tre av universums fyra fundamentala krafter:
elektromagnetism, svag växelverkan och stark kärnkraft. Tyvärr finns det frågor som inte ens
standardmodellen kan svara på. ”Varför finns det fler partiklar än antipartiklar?” och ”Vad är
mörk materia?” är bara två exempel. För att försöka svara på de här frågorna måste fysiker
undersöka nya modeller, som ofta bygger ut standardmodellen, och testa vilka numeriska vär-
den som parametrar i de här modellerna måste ha för att fungera med de många mätningar
som redan gjorts i t.ex. experiment vid partikelacceleratorer. De här nya modellerna kan
dock bli väldigt komplicerade och när de blir mer komplicerade blir det svårare att numeriskt
testa vilka parametrar som fungerar bra, dagens datorer är inte kraftfulla nog. Det är inte
ovanligt att man behöver flera tiotal ihopkopplade datorer som räknar i veckor för att hitta
resultat.

För att försöka göra de här beräkningarna snabbare så har maskininlärning använts i
det här projektet. Maskininlärning handlar om att utveckla metoder som tränar datorer
att lösa olika problem. Ett stort område inom maskininlärning är artificiella neuronnät,
en metod som är baserad på att försöka återskapa en biologisk hjärna med matematik. I
en människohjärna finns över 80 miljarder neuroner som är ihopkopplade med ungefär 150
biljoner synapser. Detta stora nätvärk av neuroner är vad som gör att människor kan, bland
annat, minnas händelser och lösa problem. För att efterlikna den här inlärningsförmågan
skapades artificiella neuronnät, med matematiska modeller av neuroner som är ihopkopplade
till nätverk. Dessa nätvärk lär sig genom att de får försöka lösa ett problem, där de blir
belönade om de gör rätt eller straffade om de gör fel.

Här har ett program skapats som kan träna artificiella neuronnät för att hitta bra värden
på parametrarna i en typ av utvidgning av standardmodellen kallad tre-Higgs-dublettmodeller,
eller förkortat, 3HDMs. I standardmodellen finns bara en Higgspartikel, men i en 3HDM finns
ytterligare sex Higgspartiklar som möjligtvis kan svara på obesvarade frågor och visa vägen
till ny, oupptäckt fysik.

Programmet lyckades träna och hitta bra parameterar inom en dag på en persondator,
vilket är mycket mer effektivt än metoder utan maskininlärning, där det kan ta veckor, även
med många datorer.
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1 Introduction
The Standard Model (SM) provides the best theoretical description of experimentally ob-
served spectra of particles and their interactions at microscopic scales that exists today. It
has succeeded in describing three of the four fundamental forces of nature while providing
remarkable consistency with some of the most accurate measurements in physics. With the
recent discovery of the Higgs particle [1,2], the SM content was completed and it was exper-
imentally proven that the Higgs mechanism is responsible for spontaneous breaking of the
electroweak (EW) SU(2)L × U(1)Y symmetry of the SM Lagrangian, effectively generating
the physical masses of fermions and vector bosons.

Even with such major success, the SM still lacks a solid theoretical explanation for several
experimentally observed facts (for a review of SM strengths and weaknesses, see e.g. Ref. [3]).
For example, in a strict interpretation of the SM with massless neutrinos, there is no particle
in the SM framework that could play a role of dark matter evident from cosmological and
astrophysical observations. Including neutrino masses, they could only play the role of hot
dark matter, instead of the preferred cold dark matter. The SM can also not adequately
explain the origin of the observed baryon asymmetry in the universe i.e. why there is more
matter than antimatter. While the EW baryogenesis mechanism enables violation of the
baryon number in non-perturbative (sphaleron) transitions [4], the SM neither contains the
required amount of CP violation nor provides the necessary mechanism for a strong departure
from thermal equilibrium (e.g. via strong first-order phase transitions), both required for
efficient generation of the baryon asymmetry in the universe. Besides, certain features in
the SM fermion spectra have no explanation within the SM framework, in particular, the
observed mass and mixing hierarchies. This so-called flavor problem, is also often considered
a drawback. For example, the top quark appears to be heavier than the up quark by roughly
five orders of magnitude and heavier than the upper bound on neutrino mass by over eleven
orders of magnitude. An explanation for such pronounced hierarchies is one of the desired
properties of a consistent Beyond the SM (BSM) framework. These are some of the typical
reasons to explore possible extensions of the SM where one or several such issues are addressed.
On the other hand, the precision and the coverage of typical measurements designed to search
for new physics implications at particle colliders, most notably at the Large Hadron Collider
(LHC), grows tremendously over time, setting more and more stringent bounds on viable
parameter spaces in popular BSM scenarios. While the available space for new physics gets
reduced, it makes it more and more technically challenging to reveal remaining (possibly, fine-
tuned) regions in multi-dimensional parameter spaces of such models that are still consistent
with the wealth of precision experimental constraints.

Despite of relatively tight bounds on Higgs boson couplings to the SM gauge bosons and
heavy fermions [5], the Higgs sector still remains among the least constrained ones in the
SM. While the minimality of the Higgs sector postulated by the SM is not in immediate
contradiction with the measurements at the current level of experimental precision, it is not
manifestly required by the existing data. The known viable extensions of the SM typically
incorporate extended Higgs sectors obtained by adding extra Higgs weak (SU(2)L) doublets
and/or complex scalar weak-singlets to the SM. Such models can emerge in the low-energy
limit of high-scale Grand unified field theories, see e.g. Ref. [6].

The SM extensions featuring non-minimal Higgs sectors with extra Higgs doublets in
analogy to fermion generations in the SM provide a fruitful playground for constructing
successful BSM scenarios (for a detailed review, see e.g. Refs. [7–9]). For example, even
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simple extensions of the SM Higgs sector can dramatically enhance the strength of the EW
phase transition in the early universe and provide extra sources for CP violation, both relevant
for an efficient baryogenesis. Moreover, fermion mass and mixing patterns relate to specific
structures of the Yukawa interactions, and hence are directly linked to the properties of the
Higgs sector. A popular class of models with additional family symmetries acting in the space
of fermion and Higgs generations [10] may help in explaining the observed fermion mass and
mixing patterns, including those in the spectrum of light neutrinos. In addition, they provide
rich collider and flavor physics phenomenology which are an important source of constraints
on parameter spaces in such models.

One of the most simple and well explored scenarios of new physics, the so-called Two
Higgs Doublet Model (or 2HDM), contains one extra Higgs doublet. This model was initially
proposed to motivate the observed CP violation [11, 12], but has since become one of the
most popular and well-studied new physics frameworks [8]. The scalar potential of a generic
2HDM (i.e. not containing any additional symmetries) contains a lot of free parameters.
Also, it implies the existence of potentially large tree-level Flavor Changing Neutral Currents
(FCNCs) that, however, are required to be suppressed to comply with measurements. A more
predictive BSM framework could be constructed by imposing an additional symmetry in the
extended Higgs and/or fermion sectors yielding many new realisations with a constrained
parametric freedom [10]. A prime example of a model that includes such an additional
symmetry is the well-known supersymmetry, or SUSY, though this is not explored further
here. In this way, one could explain the observed hierarchies in the fermion sectors of the SM
and avoid large FCNCs [13].

A necessary and sufficient condition for absence of the tree-level FCNCs is that all the
Yukawa matrices are simultaneously diagonalisable in the mass basis. One simple realisation
is to enforce that the charged right-handed fermions with the same charge couple to only
one of the Higgs doublets as was proposed in Refs. [14,15]. This so-called Glashow-Weinberg
model is built by imposing a discrete symmetry such as Z2 in a 2HDM that leads to natural
flavour conservation (NFC) [16] and helps to avoid such problems as basis dependence [17].
An alternative method to suppress the FCNCs is to require an alignment of the Yukawa
couplings between the two Higgs doublets in the flavor space as proposed in Ref. [18], though
this method is not stable under renormalization group evolution.

By adding two extra Higgs doublets to the SM Higgs sector, one arrives at a less ex-
plored class of Three Higgs Doublet Models (3HDMs) which, together with an imposed flavor
symmetry, offer further opportunities for addressing the flavor problem (for a few particular
realisations, see e.g. Refs. [19–22]). Just as in the case of 2HDMs, an extra flavor symmetry
may help in turning a rather complicated generic 3HDM into a predictive New Physics frame-
work and also in suppressing the size of FCNC contributions coming from additional scalar
states. Instead of entirely forbidding the tree-level FCNCs, one could secure an approximate
flavor conservation by suppressing them strongly enough to fit the measurements. In the case
of 2HDM, such a scenario was for the first time implemented by Branco, Grimus and Lavoura
(BGL) [23] where the tree-level FCNCs in the quark sector are suppressed by combinations
of small elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [24,25]. In the original
BGL-2HDM scenario [23] (see also Ref. [26]), this is realised due to the presence of a family
symmetry in the Lagrangian being broken by the neutral Higgs field vacuum expectation
values (VEVs).

A BGL-like realisation in the case of 3HDMs has been developed and its phenomenological
analysis has been performed for the first time in Ref. [27]. This is achieved by using a U(1)×Z2
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flavor symmetry in the Higgs and quark sectors providing a very specific structure of the quark
Yukawa matrices1. In what follows, we refer to this model as the BGL-3HDM scenario. In
this project, we continue this line of research by considering the most generic soft breaking
parameters of the U(1)×Z2 flavor symmetry in the Higgs potential and by going beyond the
Higgs alignment limit imposed previously in Ref. [27]. To get a better control of the searches
for viable regions in the parameter space, an inversion procedure has been developed, both
in the scalar and quark sectors, where the Lagrangian parameters are calculated in terms of
the physical masses and mixing angles such that the parameter scans are performed in the
space of physical inputs (such as masses and mixing angles varied within the experimentally
allowed ranges).

In such complex models as the considered BGL-3HDM, the time-efficient parameter fits
to the theoretical (e.g. tree-level unitarity) and precision experimental (such as EW precision
observables) constraints become a challenging problem. It is common to use a random scan to
search for the physically allowed regions in parameter spaces, but even with only 20 parameters
and two points on each axis, that turns out to 220 ≈ 106 points, which however would not
be nearly enough to explore the space well. When the number of parameters increases, the
computational time necessary to find a good fit through a random scan typically becomes
extremely large for a set of stringent constraints imposed. Even now, it is not uncommon to
run such parameter scans on a large computer cluster for many days if not weeks to find any
allowed ranges in the parameter space, and only very few points that pass the most relevant
constraints may eventually show up (as e.g. in Ref. [19]). No doubt, measurements will become
more and more precise in the future, making the parameter fits even more challenging. With
this in mind, one would want to adopt a smarter algorithm for this purpose.

In this project, we build a new computational framework based upon a Machine Learning
technique applied for a more sophisticated analysis of the BGL-3HDM parameter space. This
technique is realised in the form of artificial neural networks implemented with a genetic
algorithm that trains the networks on how to best transform the full input parameter space
into a subspace that passes a considered subset of physical constraints. Neural networks have
been proven very successful in many other fields such as automation and economy, but also for
various purposes in particle physics (see e.g. Refs. [28–30]). The constraints implemented in
this framework are the tree-level unitarity bounds, the EW precision constraints formulated
in terms of the Peskin-Takeuchi parameters [31, 32] S, T and U as well as boundedness from
below constraints. Provided the BGL-like nature of the considered 3HDM, we have verified
that many physical points generated by the ML implementation yield rather suppressed FCNC
observables. The latter have been computed using the Python package flavio [33] through
an interface with SARAH [34–36] and SPheno [37, 38] that are utilized to generate a set of
Wilson coefficients for each potentially valid parameter point. Constraints on allowed Higgs
masses and couplings from collider data have not been considered in this project, but need
to be considered in further studies for a more proper phenomenological analysis.

The structure of this thesis is as follows. Section 2 defines the SM framework. Section 3
discusses the BGL-3HDM scenario with U(1)×Z2 flavor symmetry used in this project. Sec-
tion 4 briefly introduces neural networks and how they are trained. Section 5 discusses the
specifics about the networks used in the project and also introduces the training procedure
and the algorithms used in our implementation. Then, Section 6 presents the relevant in-

1In the lepton sector, lepton flavor violation has not been considered for simplicity, such that the lepton
Yukawa matrices are assumed to be diagonal. We follow the same simplifying assumption in what follows.
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put parameter ranges and the numerical results of the training and the corresponding ML
parameter scans. Finally, a brief summary and an outlook for future studies are given in
Section 7.

2 A brief outline of the Standard Model
In order to introduce notations and basic concepts behind the SM extensions let us first start
with defining the SM framework in those details that are particularly relevant for further
BGL-3HDM model-building and exploration.

2.1 Higgs sector

The scalar (or Higgs) sector of the SM Lagrangian invariant under SU(2)L × U(1)Y gauge
transformation (that will be the main subject for further extensions) reads

Lφ = (Dµφ)
† (Dµφ)− V (φ) , V (φ) = µ2φ†φ+ λ(φ†φ)2 , φ =

(
φ+

φ0

)
, (2.1)

where φ is the complex SU(2)L doublet of Higgs fields (or the Higgs doublet), µ2 and λ are
the Higgs mass term and quartic interaction coupling – the only parameters of the SM Higgs
potential V (φ).

With this potential, SU(2)L is spontaneously broken and gives a VEV v. Further expla-
nation in a toy model is given in Appendix A. Upon an appropriate gauge transformation,
this Higgs VEV v can be conveniently placed in the electrically neutral φ0 component of the
Higgs doublet, namely,

φ(x) =
1√
2

(
ϕ1(x) + iϕ2(x)
v + h(x) + iϕ3(x)

)
, 〈φ〉 = 1√

2

(
0
v

)
, v =

√
−µ2
λ

, (2.2)

such that the Higgs vacuum manifestly preserves the electric charge conservation. In the SM,
the three Goldstone states ϕ1,2,3 emerge corresponding to three broken generators of the EW
symmetry.

The measured values of the vector and Higgs boson masses are [39]

mW = 80.379± 0.012 GeV ,

mZ = 91.1876± 0.0021 GeV ,

mh =
√
2λv = 125.10± 0.14 GeV (2.3)

The measurement of mZ,W provides a rather precise value of the Weinberg angle (determined
at the Q2 = m2

Z scale and in a particular renormalization scheme called the MS scheme),

sin2 θW (m2
Z) = 0.23120± 0.00015 . (2.4)

Together with the value of the fine structure constant measured extremely precisely at small
momentum transfers [39],

α =
e2

4π
, α−1(0) ' 137.036 , (2.5)
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one can access the value of the Higgs VEV,

v =
2mW

g
' 246 GeV , (2.6)

that is widely used in practical calculations.

2.2 Yukawa sector

The Yukawa sector of the SM Lagrangian, with massless neutrinos, describes the interactions
between the Higgs and chiral fermion fields,

−LY = q̄kLΓ
kjφdjR + q̄kL∆

kjφ̃ujR + l̄kLΠ
kjφejR + h.c. , φ̃ = iτ2φ

∗ , (2.7)

where τ2 is the second Pauli matrix, and qjL = (ujL, d
j
L)
T and ljL = (νjL, e

j
L)
T represent the

left-handed quark and lepton SU(2)L doublets of j-th generation (j = 1, 2, 3) while ujR, djR
and ejR correspond to the j-th generation of right-handed up-type quark, down-type quark
and lepton SU(2)L singlets, respectively. The matrices Γ, ∆ and Π are the 3 × 3, generally
complex, Yukawa interaction matrices (or textures) in the space of fermion generations (in
the down-quark, up-quark and lepton sectors, respectively) that encode all possible coupling
constants between the Higgs boson and a given pair of chiral fermions from generations k and
j. In Eq. (2.7), the sums over j and k indices have been left implicit.

After the Spontaneous Symmetry Breaking (SSB) of the EW symmetry, the Yukawa
Lagrangian (2.7) provides a consistent description of fermion masses and mixings, as well as
the physical Higgs boson h interactions with Dirac fermions. Taking the VEV of the Higgs
field, the charge fermion mass terms take the following form

−LY
SSB→

(
ūL d̄L

)k
Γkj

1√
2

(
0
v

)
djR +

(
ūL d̄L

)k
∆kj 1√

2

(
v
0

)
ujR

+
(
ν̄L ēL

)k
Πkj

1√
2

(
0
v

)
ejR + h.c.

= d̄kLM
kj
d d

j
R + ūkLM

kj
u u

j
R + ēkLM

kj
e e

j
R . (2.8)

where

Md =
v√
2
Γ , Mu =

v√
2
∆ , Me =

v√
2
Π , (2.9)

are the down, up and lepton mass matrices in the generations space, respectively, each con-
taining nine complex entries in general. Transforming to the mass basis, each mass matrix
becomes a real diagonal matrix by multiplying it on the left and right by appropriate unitary
transformation matrices, U−1 = U †. For example, for the quark sector such a diagonalisation
reads

Mdiag
u ≡ U−1

R,uMuUL,u =

mu 0 0
0 mc 0
0 0 mt

 , Mdiag
d ≡ U−1

R,dMdUL,d =

md 0 0
0 ms 0
0 0 mb

(2.10)

in terms of the real physical up-type u, c, t and down-type d, s, b quark masses. Because
of the linear relations in Eq. (2.9), diagonalisation of the mass forms Mu,d simultaneously
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W−
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W+

νµ

s µ−

d µ+
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Figure 1: Feynman loop diagram for KL → µ+µ−.

diagonalises the corresponding Yukawa matrices, ∆ and Γ, such that the Higgs couplings
to qq̄ appear to be automatically real and also flavour-diagonal in the quark mass basis.
This means that there is no neutral quark (and also lepton) flavor violation in the SM at
tree level, so any possible FCNC reactions in the SM can only happen radiatively at a loop
level (typically, at one loop), and hence are suppressed. Tree-level flavor violation can still
occur through charged currents, since the Γ and ∆ terms for charged currents cannot be
simultaneously diagonalised. A real eigenvalue of the Yukawa matrices for each q, e fermion
generation can thus be readily found in terms of the Higgs VEV v and the corresponding
fermion mass, mq,e, for example, yq,e =

√
2mq,e/v.

On top of loop suppression of FCNCs in the SM, an extra source of their smallness comes
due to the Glashow-Iliopoulos-Maiani mechanism [40]. This mechanism shows that the FCNC-
inducing loop diagrams involving the quarks of different flavors cancel in the limit of exact
flavor symmetry. When flavor symmetry breaks down and quarks get different masses, the
surviving contribution depends on the differences between the quark masses. For example,
the total of contributions to the KL → µ+µ− decay amplitude shown in Fig. 1 from diagrams
mediated by up and charm quarks is of order g4(m2

c − m2
u)/m

2
W , which contains an extra

suppression factor compared to the contribution of the order g4 for only one of those diagrams.
For this reason, typical FCNC reactions are strongly suppressed in the SM in consistency with
the measurements while new physics models often introduce new contributions to such FCNCs
that must then be relatively small and highly constrained to comply with experiment. For
a detailed review on typical FCNC observables, methodology and theoretical results, see e.g.
Refs. [41–43].

In the framework of the SM, the W± boson mediates the FCNC loop diagrams since the
charged currents are the only ones that are capable of changing flavor (the neutral currents
are automatically flavor diagonal). This happens due to the CKM matrix which is the only
source of flavor and CP violation in the quark sector of the SM2.

The unitary CKM matrix VCKM appears in the charged currents as follows

JµW =
1√
2

(
ūL c̄L t̄L

)
γµVCKM

dLsL
bL

 , VCKM ≡ U †
L,uUL,d . (2.11)

In the so-called standard parameterisation, it is expressed in terms of three angles θ12, θ13, θ23
2In the neutrino sector, the complex phases in the PMNS neutrino mixing are considered to be yet another

source of CP violation in the SM that is not discussed in this thesis.
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b̄ q̄
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q b

Figure 2: Dominant loop diagrams for B0
q − B̄0

q where (q = d, s).

and one CP violating phase δ13 as

VCKM =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ13

0 1 0
−s13eiδ13 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 , (2.12)

where sij and cij are the shorthand notations for sin θij and cos θij , respectively, and the
hierarchy s13 � s23 � s12 � 1 has been experimentally observed.

In this thesis, we work with a different parametrization introduced by Wolfenstein [44],

VCKM =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) , (2.13)

where λ, A, ρ and η are related to the angles in the standard parametrization (2.12) through

s12 = λ , s23 = Aλ2 and s13e
−iδ13 = Aλ3(ρ− iη) . (2.14)

The measured values for the Wolfenstein parameters can be found in the Particle Data Group
review [39] and read

λ = 0.22506± 0.00050 ,

A = 0.81± 0.026 , (2.15)

ρ̄ = 0.124+0.019
−0.018 and

η̄ = 0.356± 0.011 ,

where ρ̄ = ρ(1 − λ2/2 + . . . ) and η̄ = η(1 − λ2/2 + . . . ) such that the approximate form of
VCKM in Eq. (2.13) is retained up to order of O(λ4), reproducing all results in literature with
a sufficiently good precision.

The FCNC processes that will be considered in this project are the branching ratios for
rare decays such as KL → µ+µ− mentioned above as well as the B− B̄ oscillation frequencies
∆Ms and ∆Md. The latter are computed as

∆Mq = 2|M12| , (2.16)
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where, since the oscillations are dominated by the box loop diagrams shown in Fig. 2, M12

can be approximated as [45]

M12 '
G2
FBqf

2
Bm

q
Bm

2
W

12π2
[(VCKM)∗tq(VCKM)tb]

2S0(m
2
t /m

2
W )ηB , (2.17)

where GF is the Fermi constant, mq
B is the mass of the B0

q meson (for q = (d, s)), Bq is the
so-called bag parameter, fB is the B-meson weak decay constant, S0(m2

t /m
2
W ) is a known

function [46] that can be approximated by 0.784(m2
t /m

2
W )0.76 and ηB is the QCD correction

factor of order one. The B − B̄ oscillation frequencies are experimentally constrained to
be [39]

∆Md = (3.334± 0.013) · 10−13 ,

∆Ms = (1.1688± 0.0014) · 10−11 , (2.18)

providing an important source of phenomenological constraints on new physics models.

3 Flavoured Three Higgs Doublet Model
Let us now consider an extended version of the SM, with an enlarged Higgs sector that contains
three generations of scalar-doublets, φi (i = 1, 2, 3). On top of that, in order to comply with
the approximate flavor conservation apparent in measurements, following the first footsteps
of Ref. [27], we impose an additional horizontal U(1) × Z2 global flavor symmetry acting
in the space of fermion and Higgs generations. This symmetry is considered to be exact in
the quark Yukawa sector and softly broken in the scalar potential. As will be discussed in
more detail below, this turns the model into a phenomenologically viable framework sharing
similar features to those of the well-known BGL scenario of 2HDM [23]. We refer the reader
to Refs. [19–22] for detailed discussions of other possible 3HDM realisations and key results.

3.1 U(1)× Z2 flavor symmetry

Based upon earlier work [27], we know that the global U(1)×Z2 flavor symmetry of the Higgs
and quark Yukawa sectors provides a very specific structure on Yukawa interactions and the
scalar potential introduced below. After spontaneous EW symmetry breaking, it results in
a minimal flavour violation scenario in the quark sector á la BGL [23] where the smallness
of the tree-level FCNC contributions is directly correlated with the smallness of off-diagonal
elements in the quark CKM mixing matrix. In order to achieve this, one adopts the following
transformations under the U(1)× Z2 flavor symmetry for each of the three Higgs doublets,

U(1) : Z2 :

φ1 → eiαφ1 φ1 → −φ1
φ2 → φ2 φ2 → φ2

φ3 → eiαφ3 φ3 → φ3 . (3.1)
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and, simultaneously, for the third quark generation

U(1) : Z2 :

qL,3 → eiαqL,3 qL,3 → −qL,3
uR,3 → e2iαuR,3 uR,3 → −uR,3
dR,3 → dR,3 dR,3 → −dR,3 (3.2)

while the other quark generations remain unaffected by this symmetry.
We should also mention that, for simplicity, the leptonic fields are assumed to couple only

to φ1 in the Yukawa sector which implies no lepton flavor violation in the current version.
This can be achieved by assigning the following transformations to the leptonic fields

U(1) : Z2 :

lL,i → eiαlL,i lL,i → −lL,i (3.3)
eR,i → eR,i eR,i → eR,i . (3.4)

for i = 1, 2, 3 labeling the lepton generations. In addition, it is also worth mentioning that
we do not introduce right handed neutrinos in the current analysis, such that neutrinos are
assumed to be massless in this model.

3.2 Higgs sector

3.2.1 Scalar potential and minimisation

The part of the 3HDM Higgs potential that is governed by the EW and flavor symmetries
can be written as

V0(φ1, φ2, φ3) = µ21

(
φ†1φ1

)
+ µ22

(
φ†2φ2

)
+ µ23

(
φ†3φ3

)
+ λ1

(
φ†1φ1

)2
+λ2

(
φ†2φ2

)2
+ λ3

(
φ†3φ3

)2
+ λ4

(
φ†1φ1

)(
φ†2φ2

)
+ λ5

(
φ†1φ1

)(
φ†3φ3

)
+λ6

(
φ†2φ2

)(
φ†3φ3

)
+ λ7

(
φ†1φ2

)(
φ†2φ1

)
+ λ8

(
φ†1φ3

)(
φ†3φ1

)
+λ9

(
φ†2φ3

)(
φ†3φ2

)
+ λ10

{(
φ†1φ3

)2
+ h.c.

}
, (3.5)

while the most general potential that softly breaks the U(1)×Z2 flavor symmetry is given by

Vsoft(φ1, φ2, φ3) = µ212φ
†
1φ2 + µ213φ

†
1φ3 + µ223φ

†
2φ3 + h.c. . (3.6)

Vsoft therefore prevents the occurrence of a massless Goldstone scalar in the physical spectrum.
Note, only the term that is proportional to µ223, which respects the Z2 part of the flavor
symmetry, has been included in the first analysis of Ref. [27]. In this work, we incorporate
all three terms in Eq. (3.6) thus also enabling a soft breaking of the Z2 symmetry. The total
Higgs potential of the considered 3HDM is then given by the sum of the flavor-symmetric and
flavor-breaking parts, V = V0 + Vsoft. In this work, we assume that all the parameters in the
potential are real, from which it follows that the CP symmetry is not broken explicitly.
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Similarly to the SM, each doublet acquires a VEV upon spontaneous EW symmetry
breaking and gets expanded around an extremum of the potential as follows

φk =
1√
2

( √
2H+

k

vk + hk + iηk

)
, 〈φk〉 =

1√
2

(
0
vk

)
, (3.7)

in terms of three real Higgs VEVs, vk, k = 1, 2, 3, charged Higgs fields, H+
k , neutral CP-odd,

ηk, and CP-even, hk, Higgs fields. Out of these 12 scalar degrees of freedom, 3 will become
Goldstone modes showing up as massless states in the mass basis. They will be absorbed by
the massive gauge bosons and hence will discarded from the scalar mass spectrum leaving us
with 9 physical states (including one pseudo-Goldstone state corresponding to softly-broken
flavor U(1) symmetry).

Then the standard procedure to identify physical regions in the parameter space is to find
all the (global and local) minima of the scalar potential V (φk) by first solving a coupled set
of three tadpole equations (extremum conditions)

∂V (φk)

∂φk

∣∣∣
φk=〈φk〉

= 0 , (3.8)

and then requiring that the masses squared of all physical scalars are strictly positive for
each such solution (minimisation conditions). For this purpose, it is convenient to trade the
bilinear coefficients µ21,2,3 in favor of the three Higgs VEVs yielding

µ21 = −2λ1v
3
1 + v1v

2
3(2λ10 + λ5 + λ8) + v1v

2
2(λ4 + λ7) + 2µ212v2 + 2µ213v3

2v1
, (3.9)

µ22 = −2λ2v
3
2 + v21v2(λ4 + λ7) + v2v

2
3(λ6 + λ9) + 2µ212v1 + 2µ223v3

2v2
, (3.10)

µ23 = −v
2
1v3(2λ10 + λ5 + λ8) + 2λ3v

3
3 + v22v3(λ6 + λ9) + 2µ213v1 + 2µ223v2

2v3
. (3.11)

3.2.2 Higgs basis and alignment

Note, the gauge boson mass terms

1

4
[v21 + v22 + v23]g

2W+
µ W

−µ +
1

8
[v21 + v22 + v23](g

′2 + g2)ZµZ
µ (3.12)

retain the same form as in the SM as long as√
v21 + v22 + v23 = v =' 246 GeV . (3.13)

This represents an important constraint on the allowed values of the Higgs VEVs that enables
us to reparametrize the doublet VEVs in terms of two independent parameters β1,2 as follows

v =
√
v21 + v22 + v23

tan(β1) = v1/v3
tan(β2) = v2/v13

↔


v1 = v sin(β1) cos(β2)
v2 = v sin(β2)
v3 = v cos(β1) cos(β2)

, (3.14)

where v13 =
√
v21 + v23. Thus, the β1,2 parameters can be considered as rotation angles to

a new basis in the space of Higgs VEVs, v1 → v and v2, v3 → 0, in which only one Higgs

13



doublet acquires a non-zero VEV, v. This new basis is called the Higgs basis which can be
conveniently utilised as an intermediate basis between the gauge (or Lagrangian) and the
mass (or physical) bases. An orthogonal matrix that performs such a “rotation” between the
gauge and the Higgs bases reads

Oβ =

sin(β1) cos(β2) sin(β2) cos(β1) cos(β2)
cos(β1) 0 − sin(β1)

sin(β1) sin(β2) − cos(β2) cos(β1) sin(β2)

 , (3.15)

which is one of the possible representations of such a basis transformation that we employ
in our work. In order to realise the inversion procedure in the Higgs sector, i.e. to get the
Lagrangian parameters in terms of physical masses and rotation angles, we need to determine
all relevant relations between the physical (measured) masses and the Lagrangian parameters
in terms of the rotation angles between the gauge and the Higgs bases and between the Higgs
and the mass bases.

Besides the gauge boson mass terms, the Higgs kinetic Lagrangian contains the following
interaction terms of the CP-even Higgs states and the W± bosons:

g2v

2
W+
µ W

µ−

(
1

v

3∑
k=1

vkhk

)
, (3.16)

Here, the following superposition of neutral scalar states emerges

H0 =
1

v

3∑
k=1

vkhk , (3.17)

which represents a scalar state that features the same tree-level coupling to the gauge bosons
as those of the SM Higgs boson. Similarly, one can explicitly demonstrate that this would-be
SM Higgs boson H0 has the SM-like Yukawa couplings too, see Ref. [47].

In general, however, H0 is not a physical mass eigenstate. Only in the so-called Higgs
alignment limit corresponding to a particular configuration in the parameter space of the
3HDM, the Higgs-basis state H0 becomes a mass eigenstate and thus gets completely aligned
with the CP-even physical Higgs boson (h) in the SM. In the earlier work of Ref. [27], such
an alignment limit has been imposed on the parameter space such that the lightest CP-even
state of the 3HDM had exactly the same couplings as those of the SM Higgs bosons.

In this project, we go beyond the Higgs alignment limit and allow the H0 state to become
somewhat misaligned with respect to the SM Higgs direction in a controllable way. Indeed,
due to the current stringent experimental constraints on the Higgs boson couplings to the SM
fermions and gauge bosons, such a misalignment cannot be too large and constrains these
Higgs couplings to be within 10% or so of those predicted by the SM [5].

Instead of the direct diagonalisation of the gauge-basis mass forms extracted from the
bilinear terms of the potential V expanded around the vacuum state by using Eq. (3.7), the use
of the intermediate Higgs basis significantly simplifies the analysis of the scalar, pseudoscalar
and the charged scalar sectors. Indeed, in the Higgs basis the mass forms acquire a block-
diagonal form where the Goldstone modes manifestly decouple from the physical spectrum.
With the choice of the first Higgs doublet getting the VEV v only, the (1, 1)-components of the
Higgs-basis pseudoscalar and charged scalar mass matrices correspond to neutral and charged
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Goldstone modes, respectively. Then, the pseudoscalar and charged scalar mass forms in the
Higgs basis reduce to 2× 2 matrices whose diagonalisation becomes a trivial step.

More explicitly, the gauge-basis mass matrix MG gets rotated to the Higgs-basis mass
matrix MH by means of the orthogonal transformation in Eq. (3.15) as

MH = OβM
GOT

β , (3.18)

where MG and MH have the forms

MG =

MG
11 MG

12 MG
13

MG
21 MG

22 MG
23

MG
31 MG

32 MG
33

 and MH =

0 0 0
0 MH

22 MH
23

0 MH
32 MH

33

 , (3.19)

for both the CP-odd η and the charged H± Higgs fields. The residual diagonalisation can be
performed in a trivial way by means of the block-diagonal rotation matrices

Oγi =

1 0 0
0 cos(γi) − sin(γi)
0 sin(γi) cos(γi)

 , i = 1, 2 , (3.20)

given in terms of two angles γ1 and γ2 for the charged and CP-odd scalar sectors, respectively.
Then, the transformations between the gauge and mass bases (through the intermediate Higgs
basis) can be represented as

Mdiag
H± ≡

0 0 0
0 m2

H±
1

0

0 0 m2
H±

2

 = Oγ1Oβ M
G
H± OT

βOT
γ1 , (3.21)

Mdiag
η ≡

0 0 0
0 m2

A1
0

0 0 m2
A2

 = Oγ2Oβ M
G
η OT

βOT
γ2 . (3.22)

At the same time, the CP-even Higgs mass matrix in the Higgs basis reveals a specific
structure when the (1, 1)-component corresponds to the H0 state defined in Eq. (3.17). Thus,
if the Higgs alignment limit is concerned, the (1, 1) element for the mass matrix becomes
equal to the Higgs mass squared m2

h in the SM and decouples from other CP-even scalars. In
this case, the matrix reduces to a block-diagonal form, with a 2× 2 residual mixing between
the heavier scalar states only. We, however, do not impose this limit considering a more
generic 3 × 3 CP-even mass form in the Higgs basis whose diagonalisation is performed by
three subsequent 2× 2 rotations

Oα=

cos(α1) − sin(α1) 0
sin(α1) cos(α1) 0

0 0 1

 cos(α2) 0 sin(α2)
0 1 0

− sin(α2) 0 cos(α2)

1 0 0
0 cos(α3) − sin(α3)
0 sin(α3) cos(α3)

 , (3.23)

such that the diagonalisation procedure reads

Mdiag
h ≡

m2
h 0 0
0 m2

H1
0

0 0 m2
H2

 = OαOβ M
G
h OT

βOT
α . (3.24)
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Here, mh is the measured value of the SM Higgs boson given in Eq. (2.3). As was mentioned
above, in the Higgs alignment limit one enforces the (1, 1) elements of Mdiag

h and MH
h to

be the same, while enforcing the absence of any mixing between this H0 ≡ h state with the
heavier non-SM scalars. One way such an alignment can be imposed is by setting α1 = 0 and
α2 = 0 (c.f. Ref. [27]). In the numerical analysis of the 3HDM parameter space, this limit can
be easily relaxed to an approximate Higgs alignment H0 ≈ h enabling a small mixing between
h and H1,2 by setting α1 and α2 to small values varying within certain ranges allowed by the
Higgs couplings measurements.

3.2.3 Inversion

Next, we would like to define the physical input parameters in order to ensure that the
scalar mass spectrum is positively definite, i.e. no tachyonic solutions are considered from the
beginning and the vacuum is manifestly stable, at least, at tree level. For this purpose, we
adopt an inversion procedure in the scalar sector enabling us to express many of the Higgs
potential parameters in terms of the physical masses, Higgs VEVs and mixing angles. This
is a particularly convenient representation of the parameter space as it enables to account
for possible experimental bounds that are often imposed on the mass values of additional
(typically, heavy) scalar boson states, as well as on their interactions with SM gauge bosons
and fermions that can be readily represented in terms of the scalar mixing angles. If for
example heavier Higgs masses need to be above a certain value in the search, this constraint
would just mean adjusting the lower bound for the corresponding input parameter.

Of course, such a connection can be established analytically at tree level only (see be-
low), while the measured bounds on the physical parameters effectively account for higher
order radiative corrections. Nevertheless, such an inversion procedure provides an important
guidance assuming that radiative corrections are not dominant but rather subleading in the
masses and physical couplings for relevant parts of the model parameter space. This way,
we assume that only a minor subset of such parameter points would be discarded as soon as
one-loop corrections are incorporated to the scalar boson masses and couplings.

Likewise, in the quark sector discussed below, it is also instructive to determine the
physical input parameter space in terms of measured physical masses of quarks and their
mixing parameters entering the procedure via measured values of the CKM matrix. Such an
inversion would then enable computation of the relevant entries in the Yukawa matrices, while
a spread in input values of the quark masses and mixing angles would roughly correspond
to their experimental error bars. This means that constraints on the physical parameters
would be easy to fulfill. Thus, the numerical scan would be performed within the physical
ranges of Yukawa couplings and Higgs VEVs that provide an approximately correct SM quark
spectrum.

A more standard procedure of fitting the scalar self-interaction and Yukawa couplings in
the Lagrangian to the spectra and exclusion bounds quickly deteriorates with the growth of
dimensionality of the parameter space, and could exhibit large problems when one accounts
for very small experimental error bars on (e.g. quark) masses and mixing angles. The inverted
procedure implemented in this project does not reveal the same problem and can be applied
also for a generic scalar potential and Yukawa textures.

On the other hand, the inversion described above may represent an apparent difficulty
with theoretical constraints such as perturbativity or unitarity bounds and vacuum stability
formulated at the level of Higgs couplings. These, however, are less problematic than fitting
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the physical masses in very narrow allowed ranges or error bars, when precision observables
(like quark masses or oblique corrections) are concerned. In order to also satisfy those con-
straints that remain to be satisfied by the parameter space after the inversion, we further
develop an ML algorithm that trains a neural network on such constraints, further steering
towards the physically interesting regions.

There is also a third possibility of finding a so-called hybrid basis, where one uses a suitable
mix of Lagrangian and physical parameters to calculate the remaining ones, to hopefully
be able to use the parameters with strong constraints as inputs, thereby simplifying the
constraints overall. One example of this has been done for a softly-broken CP conserving
2HDM in Ref. [48].

In order to relate the Lagrangian parameters with physical masses and rotation angles,
it is instructive to rewrite Eqs. (3.22) and (3.24) such that one first rotates the gauge basis
into the Higgs basis, and separately rotates the physical basis to the Higgs basis, and then
equates the resulting matrices as

OT
γ1 M

diag
H± Oγ1 = Oβ M

G
H± OT

β , (3.25)

OT
γ2 M

diag
η Oγ2 = Oβ M

G
η OT

β , (3.26)

OT
α Mdiag

h Oα = Oβ M
G
h OT

β . (3.27)

This provides a linear system of coupled algebraic equations that has been analytically solved
for λ1−10 and µ2ij in terms of the scalar masses, v1,2,3 and the angles α1,2,3 and γ1,2. This
is the essence of the inversion procedure implemented in our analysis of the Higgs sector.
The full set of Lagrangian parameters resolved in terms of the input parameters is given
in Appendix B. The number of equations in (3.27) is one less than the number of quartic
couplings and soft-breaking mass terms, so we have chosen λ10 to be an input parameter for
the inversion procedure as well. Since only the lightest SM-like state h has been discovered
so far, with no evidence of additional Higgs “partners” yet, we can set the numerical values
of the masses of other scalar states to be above certain lower bounds that can be potentially
suggested by the experimental measurements at the LHC.

3.2.4 Further constraints on the Higgs sector

While the tree-level scalar mass and mixing constraints can be directly implemented by choos-
ing appropriate ranges of physical input parameters, there are several additional sources of
theoretical and phenomenological constraints on the scalar sector that should be satisfied.
These concern, for example, the unitarity bounds and boundedness from below conditions on
the parameters of the scalar potential, as well as the EW precision constraints encoded in the
form of bounds on the Peskin-Takeuchi parameters, also known as the oblique corrections, S,
T and U [31].

Other constraints, such as vacuum stability, particle masses at one loop and experimental
bounds on SM Higgs couplings and non-SM scalar masses and decays, should be implemented
on top of these in further more accurate phenomenological studies of the model.

Boundedness from below For the Higgs potential V introduced above to be stable, it
should be bounded from below (BFB) in all directions. In our numerical analysis, we have
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used the following BFB conditions sufficient to ensure such a stability [49]

λ1 > 0 , λ2 > 0 , λ3 > 0 , (3.28)√
4λ2λ3 + λ6 + Min[0, λ9] > 0 , (3.29)√
4λ1λ2 + λ4 + Min[0, λ7] > 0 , (3.30)√
4λ1λ3 + λ5 + Min[0, λ8 + 2λ10, λ8 − 2λ10] > 0 . (3.31)

Tree-level unitarity Description following Refs. [49, 50]. Tree-level unitarity constraints
can be extracted from the scattering S-matrix for the elastic two body scalar boson interac-
tions, which only consists of the quartic part of the scalar potential V . The requirement of
unitarity of the S-matrix can be translated into relations for the partial wave amplitude aJ ,
where J is the total angular momentum, which in the high-energy limit becomes the optical
theorem:

=(aJ) = |aJ |2 . (3.32)

This requirement can be reformulated to aJ lying on a circle centered on (0, 1/2) with radius
1/2 in the complex plane. From this, one can put a requirement on the tree-level amplitude
of aJ as

|<(aJ)| < 1/2 . (3.33)

This can be translated to

|<(M)| < 8π , (3.34)

where M is the amplitude for the process. Now, conditions for unitarity can be found with
these conditions by considering all possible S1S2 → S3S4 processes, where Si’s represent the
different (pseudo)scalar bosons. In the high-energy limit, each element aJ is given by the
(pseudo)scalar four point interactions, which means that only the s-wave (J = 0) amplitude
contributes to the scattering process.

The unitarity conditions on the quartic couplings in the considered 3HDM can be adopted
from a more generic 3HDM analysis in Ref. [49]. They read

|yj | < 8π, (j = 1, . . . , 4) , (3.35)
|y±j | < 8π, (j = 5, . . . , 9) , (3.36)

|xi| < 8π, (i = 1, . . . , 9) , (3.37)

where yj are defined as

y1 = λ4 , y2 = λ6 , (3.38)
y3 = λ4 + 2λ7 , y4 = λ6 + 2λ9 , (3.39)

while y±j are given by

y±5 = λ5 + 2λ8 ± 6λ10 , y±6 = λ5 ± λ10 , (3.40)
y±7 = λ4 ± λ7 , y±8 = λ5 ± λ8 , y±9 = λ6 ± λ9 , (3.41)
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and xi are the eigenvalues of X1, X2 and X3 matrices built as follows

X1 =

 6λ1 2λ4 + λ7 2λ5 + λ8
2λ4 + λ7 6λ2 2λ6 + λ9
2λ5 + λ8 λ6 + λ9 6λ3

 , (3.42)

X2 =

2λ1 λ7 λ8
λ7 2λ2 λ9
λ8 λ9 2λ3

 , X3 =

 2λ1 0 2λ10
0 2λ2 0

2λ10 0 2λ3

 . (3.43)

Electroweak precision tests The oblique corrections effectively parametrize new physics
contributions to the EW observables such as vector boson masses and decay rates, etc. Given
a number of high precision constraints on the EW observables from the LEP collider, and
more recently on the Higgs boson masses and couplings from the LHC, the room for new
physics particles interacting with the SM vector bosons has become very constrained.

New physics contributions can be generically parametrized by only the following six quan-
tities [32],

S =
4s2W c

2
W

α
S̄ , T =

1

α
T̄ , U =

4s2W
α

Ū , (3.44)

X =
sW cW
α

X̄, V =
1

α
V̄ , W =

1

α
W̄ , (3.45)

where α is the fine structure constant found in Eq. (2.5), sW and cW are the sine and cosine of
the weak mixing angle θW whose experimental value is given in Eq. (2.4). In these definitions,
a subtraction of the SM contribution is always present. For example, T̄ can be calculated
as [32]

T̄ =
g2

64π2m2
W

[
n∑
a=2

m∑
b=2

|(U†V)ab|2F (m2
a,M

2
b ) (3.46)

−
m−1∑
b=2

m∑
b′=b+1

[Im(V†V)bb′ ]2F (M2
b ,M

2
b′)

− 2
n−1∑
a=2

n∑
a′=a+1

|(U†U)aa′ |2F (m2
a,m

2
a′)

+ 3
m∑
b=2

[Im(V†V)1b]2
[
F (m2

Z ,M
2
b )− F (m2

W ,M
2
b )
]

− 3
[
F (m2

Z ,m
2
h)− F (m2

W ,m
2
h)
] ]

, (3.47)

where ma, a = 2, 3, are the charged scalar masses, Mb, b = 2, . . . , 6, are the neutral scalar
masses, with b = 2, 3 entries corresponding to the CP-odd scalar masses, and b = 4, 5, 6 are
the CP-even scalar masses, such that M4 = mh is the SM-like Higgs boson mass. The a, b = 1
states correspond to the Goldstone states and are therefore not included. U is a 3× 3 matrix
defined in our notation as

U = OT
βOT

γ2 , (3.48)

19



V is a 3× 6 matrix given by

V =

i 0 0 1 0 0
0 i 0 0 1 0
0 0 i 0 0 1

 6OT
ββ

6OT
γ1α , (3.49)

where 6Oβ and 6Oα are 6× 6 matrices defined as

6Oββ =

(
Oβ 03×3

03×3 Oβ

)
, 6Oγ1α =

(
Oγ1 03×3

03×3 Oα

)
, (3.50)

and the function F is defined as

F (I, J) =


I + J

2
− IJ

I − J
ln
I

J
if I 6= J ,

0 if I = J .
(3.51)

Definitions for the other oblique corrections and relevant functions can be found in Appendix C
and in Ref. [32].

In what follows, only the set of first three oblique corrections S, T and U are employed.
These are the most relevant for probing the effect of heavy new physics particles (heavy
scalars, in our case) with mass scales above the EW scale. These are also known in the
literature as the Peskin-Tacheuchi parameters [31]. In our numerical analysis, we constrain
these parameters to be within the following experimentally allowed ranges [39]

− 0.08 < S < 0.12 , (3.52)
− 0.05 < T < 0.19 , (3.53)
− 0.09 < U < 0.09 . (3.54)

In this work, the S, T and U bounds are treated independently, but these parameter con-
straints are strongly correlated, with a 92% correlation between S and T and a −80%(−93%)
anti-correlation between U and S(T ) [39]. A more detailed analysis of the correlations between
S, T and U can be found in, for example, Ref. [51].

The previously mentioned X,V and W parameters are relevant when new scalar masses
are of similar size to mW and mZ [52], but are not used in this project.

3.3 Yukawa sector

3.3.1 Lagrangian and mass textures

The Lagrangian of Yukawa interactions LY for the considered 3HDM can be written as follows,
assuming massless neutrinos,

−LY =

3∑
ρ=1

q̄kLΓ
kj
ρ φρd

j
R +

3∑
ρ=1

q̄kL∆
kj
ρ φ̃ρu

j
R + ēkLΠ

kj
1 φ1e

j
R + h.c. , (3.55)

where the sums run over the Higgs doublet generation index, ρ. Note that there is no such
sum for the leptons since, for simplicity, they are assumed to only couple to the first Higgs
doublet φ1. This means that the lepton interactions in the Higgs alignment limit are the same
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as in the SM: Πkj1 ≡ Πkj . If there were any changes to the lepton part of the Yukawa sector,
it could be explored in a similar way as the quark sector. A potentially relevant direction for
future research is to introduce neutrino masses and a possibility for a (very small) lepton flavor
violation on the same footing as is done in the quark sector, having a potentially interesting
prospects for new physics (see e.g. Ref. [53]). This can also be done in connection to the
neutrino mass generation mechanisms, a topic for extensive research in the literature.

From the requirement that the Yukawa Lagrangian is invariant under the exact flavor
U(1)×Z2 symmetry, with transformations defined in Eq. (3.2), only very few elements of the
down-quark and up-quark Yukawa matrices Γρ and ∆ρ are allowed to be non-zero. Indeed,
with Γ1 as an example, the products of phases and signs of the fields emerging due to a
combined set of transformations (3.2) in the corresponding term in Eq. (3.55) can be written
as −eiα −eiα eiα

−eiα −eiα eiα

1 1 −1

 (3.56)

which then translates into the allowed structure of the Yukawa texture for Γ1

Γ1 =

0 0 0
0 0 0
× × 0

 , (3.57)

where × is an arbitrary complex number. For the other five matrices, the same procedure
yields [27]

∆1 =

0 0 0
0 0 0
0 0 0

 , Γ2,∆2 =

× × 0
× × 0
0 0 0

 , Γ3,∆3 =

0 0 0
0 0 0
0 0 ×

 . (3.58)

Expanding the quark Yukawa Lagrangian around the physical vacuum, one derives the
explicit form of quark mass matrices and Yukawa interactions as follows

−LQY =

3∑
ρ=1

q̄kLΓ
kj
ρ φρd

j
R +

3∑
ρ=1

q̄kL∆
kj
ρ φ̃ρu

j
R + h.c.

SSB
=

3∑
ρ=1

(
ūL d̄L

)k
Γkjρ

1√
2

( √
2H+

ρ

vρ + hρ + iηρ

)
djR

+

3∑
ρ=1

(
ūL d̄L

)k
∆kj
ρ

1√
2

(
vρ + hρ − iηρ

−
√
2H−

ρ

)
ujR + h.c.

=

3∑
ρ=1

[
1√
2
d̄kLΓ

kj
ρ (vρ + hρ + iηρ)d

j
R + ūkLΓ

kj
ρ H

+
ρ d

j
R

]

+

3∑
ρ=1

[
1√
2
ūkL∆

kj
ρ (vρ + hρ − iηρ)u

j
R − d̄kL∆

kj
ρ H

−
ρ u

j
R

]
+ h.c.
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= d̄LMddR + ūLMuuR (3.59a)

+
1√
2
d̄L

 3∑
ρ=1

Γρ(hρ + iηρ)

 dR +
1√
2
ūL

 3∑
ρ=1

∆ρ(hρ − iηρ)

uR (3.59b)

+ ūL

 3∑
ρ=1

ΓρH
+
ρ

 dR − d̄L

 3∑
ρ=1

∆ρH
−
ρ

uR + h.c. , (3.59c)

where in the last three lines the quark generation indices are implicit. Here, Eq. (3.59a)
represents the down- and up-mass terms, with the following mass textures

Md =
1√
2

 3∑
ρ=1

vρΓρ

 =

X X 0
X X 0
X X X

 , Mu =
1√
2

 3∑
ρ=1

vρ∆ρ

 =

X X 0
X X 0
0 0 X

 , (3.60)

whereas Eq. (3.59b) shows the neutral scalar Yukawa interactions and Eq. (3.59c) provides the
charged scalar Yukawa interactions. In the derivations of Eq. (3.59), one linear combination
of η1,2,3 and H±

1,2,3 corresponds to the Goldstone states and will not contribute.
Because of the Yukawa textures in this model, Eqs. (3.57) and (3.58), there is no overlap

between matrix elements inside the up- or down sectors, which makes it easy to relate elements
in the mass matrices to elements in the Yukawa matrices. As an example, Γ1 from Eq. (3.57)
is the only Yukawa matrix that contributes to the (3, 1) and (3, 2) elements of Md, giving the
simple relations:

(Md)31 =
1√
2
v1(Γ1)31 , (Md)32 =

1√
2
v1(Γ1)32 . (3.61)

Similar relations hold true for all other elements of Md and Mu.

3.3.2 Inversion

As usual, the unitary transformation between the gauge-basis states u, d and the mass-basis
states û, d̂ is different for left- and right-handed quark fields, namely,

uiL = U ijL,uû
j
L , uiR = U ijR,uû

j
R ,

diL = U ijL,dd̂
j
L , diR = U ijR,dd̂

j
R ,

Each of these four generic unitary transformation matrices can be parametrized in the fol-
lowing way [54]

U = ΘZxyZxzZyz , (3.62)
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where

Θ =

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 , (3.63)

Zxy =

 cos(ζ1) sin(ζ1)e
iϕ1 0

− sin(ζ1)e
−iϕ1 cos(ζ1) 0

0 0 1

 , (3.64)

Zxz =

 cos(ζ2) 0 − sin(ζ2)e
−iϕ2

0 1 0
sin(ζ2)e

iϕ2 0 cos(ζ2)

 , (3.65)

Zyz =

1 0 0
0 cos(ζ3) sin(ζ3)e

iϕ3

0 − sin(ζ3)e
−iϕ3 cos(ζ3)

 . (3.66)

Through such parametrisations, the measured elements of the quark CKM mixing matrix
VCKM = U †

L,uUL,d are directly related to the quark mixing angles and phases in the left-
handed sector of the theory. On the other hand, the unitary transformation matrices are
used to diagonalise the mass forms in Eq. (3.59a)

d̄LMddR + ūLMuuR =
¯̂
dL(U

†
L,dMdUR,d)d̂R + ¯̂uL(U

†
L,uMuUR,u)ûR

=
¯̂
dLM

diag
d d̂R + ¯̂uLM

diag
u ûR , (3.67)

where the physical quark mass forms Mdiag
u,d are given in Eq. (2.10). Using U †

L,d = V †
CKMU

†
L,u,

we obtain

Mdiag
d = V †

CKMU
†
L,uMdUR,d , (3.68)

which together with Mdiag
u = U †

L,uMuUR,u provide us with a set of coupled linear equations
for the inversion procedure in the Yukawa sector. This set of equations can be resolved
with respect to non-zero elements of the Yukawa textures in Eqs. (3.57) and (3.58) in terms
of the physical quark masses, CKM elements and the parameters of the unitary “rotation”
matrices UL,u, UR,u and UR,d, by relating Mu,d to the Yukawa matrices as in the example
given in Eq. (3.61). The form of the mass matrices Mu,d for this inversion can be found in
Appendix B. Such an inversion procedure will be employed in our numerical analysis in what
follows allowing the measured quark masses and mixing parameters to vary within narrow
intervals given by their experimental error bars. Note, the parameters of the right-handed
unitary rotations, UR,u and UR,d, are totally free since none of the measured observables are
sensitive to those. At the same time, the left-handed transformation matrix in the up-sector
UL,u is expected to be tightly constrained by the FCNC measurements.

3.3.3 FCNC couplings

To illustrate the BGL-like nature of the FCNC couplings, let us define the Higgs basis for the
CP-even scalars in terms of the gauge-basis eigenstatesH0

H ′
1

H ′
2

 = Oβ

h1h2
h3

 , (3.69)
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where the basis rotation matrix is given in Eq. (3.15). As was discussed earlier, in the Higgs
alignment limit the state H0 completely overlaps with SM Higgs boson h and thus has SM-like
Yukawa couplings at the tree level. Provided that h generates no tree-level FCNCs in the SM,
the same is true for the H0 state in the case of alignment, since its Yukawa couplings will be
directly related to the diagonal mass matrix, while the heavier non-SM states will, in general,
feature tree-level FCNCs. This would necessarily exclude wide domains of the parameter
space unless a strong decoupling of H1,2 mass states occurs in the spectrum and/or there is
an additional mechanism to suppress their tree-level FCNC contributions due to a specific
flavor symmetry such as in the considered model.

For the purpose of estimating the size of those FCNCs, let us write down the Yukawa
couplings of the H ′

1 and H ′
2 states with the physical down-type quarks as follows:

−LH
′
1,H

′
2

Q =
H ′

1

v
¯̂
dLNd1d̂R +

H ′
2

v
¯̂
dLNd2d̂R + h.c. , (3.70)

where the matrices Nd1 and Nd2 are given by

Nd1 =
v√
2v13

U †
L,d(Γ1v3 − Γ3v1)UR,d , (3.71a)

Nd2 = U †
L,d

[
v2
v13

1√
2
(Γ1v1 + Γ3v3)−

v13
v2

1√
2
Γ2v2

]
UR,d , (3.71b)

in terms of the down-type unitary transformation matrices UL,d and UR,d.
In order to simplify the expressions for the Nd1 and Nd2 matrices, let us go back to the

mass textures in Eq. (3.60). Due to the block-diagonal structure of Mu, the corresponding
bi-diagonalizing matrices UL,u and UR,u are expected to have block-diagonal structures as
well. Actually, it is possible to choose

UL,u =

X X 0
X X 0
0 0 1

 . (3.72)

One could add a phase to the (3, 3) element of UL,u that would contribute to the total phase
of (Mu)33, but such a phase could be absorbed into (UR,u)33, and is therefore not necessary
in this choice of UL,u. By definition of the CKM matrix, we find

(UL,d)
3j = V 3j

CKM , (3.73)

meaning that the third row of UL,d is identical to that of the CKM matrix.
Now, it is instructive to define the following projection matrix

P =

0 0 0
0 0 0
0 0 1

 . (3.74)

Then, using the specific structure of the Yukawa textures, Eqs. (3.57) and (3.58), we arrive
at the following relations in the down-quark sector:

Γ3 = (Γ3)33P ,
1√
2
(Γ1v1 + Γ3v3) = P.Md . (3.75)
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With Eqs. (3.73) and (3.75), we can straightforwardly rewrite Nd1 and Nd2 given in Eq. (3.71)
as follows

(Nd1)ij =
v v3
v1v13

(V ∗
CKM)3iV

3j
CKM(Mdiag

d )jj −
1√
2

v v13
v1

(Γ3)33(V
∗
CKM)3i(UR,d)3j ,(3.76a)

(Nd2)ij =
v13
v2

(Mdiag
d )jjδij +

(
v13
v2

+
v2
v13

)
(V ∗

CKM)3iV
3j
CKM(Mdiag

d )jj . (3.76b)

in terms of the diagonal down-type mass matrix Mdiag
d found in Eq. (2.10).

Note that if (Γ1)31 and (Γ1)32 were zero in Eq. (3.57), then we could choose UR,d to be
block-diagonal as well. However, due to the smallness of the (3, j) elements in the CKM
matrix (for j 6= 3), the elements of Γ1 are expected to be small. In this case, it is reasonable
to assume that the (UR,d)3j elements (j 6= 3) are also small. Thus, the off-diagonal elements
of Nd1 and Nd2 matrices indeed exhibit a BGL-like suppression due to being proportional,
at least, to a single power of small V 3j

CKM (j 6= 3) elements. So, we expect that the FCNC
couplings in the down-quark sector will be under control.

A similar procedure applied to the up-quark sector would show that, due to special struc-
ture of the up-type Yukawa textures dictated by the flavor symmetry, there are no scalar
boson mediated FCNC couplings at the tree level there. As in the usual BGL formulation,
it is possible, in fact, to redefine the flavor symmetry charges of quark fields in Eq. (3.2)
such that the tree-level FCNC couplings would reside entirely in the up-quark sector instead
of the down-quark one. However, we choose to work with the current version because, rela-
tively light BSM scalars possessing tree-level FCNC couplings in the down-quark sector have
a better chance to be discovered in the near future.

4 An overview of Artificial Neural Networks
Artificial Neural Networks (ANNs) are a popular method in Machine Learning (ML) that has
its origin in creating a simple mathematical model of a brain. These represent a structure
of artificial neurons connected into networks that can learn how to solve various problems,
approximate functions or find certain patterns. The basis of the ANN is the artificial neuron,
the perceptron [55], often called a node in a larger network. A perceptron consists of a number
of weights wi, often a bias weight b and an activation function φ, that are used with inputs
xi to calculate an output y as

y = φ

(
b+

∑
i

wixi

)
. (4.1)

A visual example of a perceptron is presented in Fig. 3. The bias weight b is often visualized
as an extra input node that always has the value one.

When several of these perceptrons are connected into a network, it becomes a Multi-Layer
Perceptron (MLP), which is the simplest type of ANN. If all nodes are connected to every
node in the previous layer, or to every input node, the network is said to be fully connected
and fully connected MLPs are the simplest type of ANN. An example can be seen in Fig. 4.
A node that is not in the input layer or output layer is called a hidden node.

There are several different ways to train ANNs, the most common being backpropagation,
a method based on gradient descent where the weights of the network are changed so that the
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Figure 3: An example perceptron.

Inputs Hidden
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Figure 4: An example of a fully connected MLP.

network follows the error function towards a minimum. However, with complicated outputs
that vary depending on the set of targets, calculating the gradiants can be difficult. Another
common group of methods for training neural networks, that need no knowledge of the output
calculations, are Genetic Algorithms (GAs). As with the networks themselves, GAs are based
on mimicking nature, specifically evolution, utilizing reproduction and survival of the fittest
to find better networks.

To train with a GA, a population of networks is created and then the population repro-
duces over generations, while bad networks are killed off, until a stop criterion is met and
the training is done. In analogy with biological evolution, there are two common types of
reproduction: crossover and mutation. These work on the list of weights, or the chromosomes,
of the networks. The crossover creates children using two parent networks by mixing their
chromosomes, whereas the mutation creates children by randomly changing the weights in
the chromosome of one parent. The specifics of how both the crossover and mutation work
depends on the GA used. The choice of which bad networks are killed off also depends on
the method, but usually better children replace their parents in the population or the worst
networks after a number of reproductions get killed. A visual example of the training process
using a simple GA can be seen in Fig. 5.

A network is determined to be good or bad through the error, or loss, function. The error
function calculates how good or bad the prediction of an ANN is as a function of the output
and a target value. This calculation is also often done for a batch of inputs. Some common
error functions are the Mean Square Error (MSE) and the Mean Absolute Error (MAE):

MSE =
1

n

n∑
i=1

(oi − t)2 , MAE =
1

n

n∑
i=1

|oi − t| , (4.2)

where t is the target, oi is the output for input i and the error is calculated with a batch of
n inputs.

When training neural networks, the goal is to make a network with the smallest error, a
network where the outputs are as close to the targets as possible, but this should hold for the
general problem and not only for a specific set of input points. If too much training is done
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Figure 5: An example of the evolution of a small population of five networks over one gener-
ation with a genetic algorithm.

on a specific set of points, one might start to fit better to that specific set of points, but worse
for the general, underlying function one tries to approximate. This is called overfitting. The
opposite is underfitting, which happens when the problem is too complex for the specified
architecture of the network.

Underfitting is not a problem if the architecture is suitable for the problem and one does
enough training. Overfitting, on the other hand, is trickier, but there are several different
ways to deal with it. Some common methods are regularization and early stop. Here the
latter is used.

The early stop method requires another set of data, usually called validation data, on top
of the training data. When training, the error calculated from training data will decrease
over time, even when overfitting, but since overfitting by definition is training too much on a
specific set, the error on another valid data set will instead increase. This means that looking
at how the error of the validation data changes over time, one can see when the method
starts to overfit. The early stop method works by seeing if the error of a validation data set
increases during training. If it does, training is stopped at that moment.

5 Methods and Algorithms
One of the main goals of this project was to create a computer program that can probe
large and complicated parameter spaces, such as the new physics model discussed above, in
a smarter and faster way than a random scan. This was achieved by creating a program that
lets the ANNs transform the entire parameter input space by training them such that a signif-
icant portion of the transformed space passes a given set of theoretical and phenomenological
constraints that define the targets for the training. Here, the ANNs have been trained by a
GA made to converge in input spaces with possible epistasis among parameters [56], discussed
more in Section 5.2. The training and validation sets used in this project are sampled accord-
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ing to an algorithm inspired by the one made for large input and/or output dimensions [57]
as discussed in Sections 5.3 and 5.4. Section 5.4 also introduces how training and validation
sets are chosen. The program has been written in Java 8.

5.1 Neural Network

The ANNs used in this project are fully connected MLPs that have the inputs connected
to one layer of hidden nodes that connect to one output node, where the number of nodes
in the hidden layer is the same as the number of input nodes, as seen in Fig. 6. This
architecture was chosen, since it is the smallest architecture possible that will work with the
idea of transforming the entire input space. It was chosen to be as small as possible because
bigger networks would make calculations in the training process slower, though this does
not necessarily mean that larger architectures would converge slower. In further studies, it
would be interesting to test different architectures, to see if larger architectures can possibly
converge faster or find better, but more complicated, transformations.

Inputs
Hidden
nodes

Output

Figure 6: Representation with hidden layer.

For a network that trains on several different targets, one often has several output nodes,
one for each target. This approach does not work here, since the networks are used to
transform the input parameters. If there was a different output node for every target, and
those nodes had different sets of weights, the input parameter transformation would become
different for each individual output node. That would mean that the networks would not find
one transformation that gives good sets of input parameters that fulfill all the targets.

All input values used are in the interval of [−1, 1], calculated from Halton sequences
discussed in Sec. 5.3, and are scaled and translated to fit the defined range of the input
parameters when necessary for calculations. The internal values in the hidden layer need to
be kept in the same range to ensure that the different parameter values do not go outside
the desired range after the transformation. For this reason, the hyperbolic tangent has been
used as activation function for the hidden layer, as it has a range of [−1, 1]. If the output
weights were trained on in the same way as the weights in the hidden layer, the weighted
values passing into the output node could fluctuate out of this range, which would allow the
values in the total parameter transformation to fluctuate out of the desired range. To prevent
this, the output weights were fixed to 1.

Network weights are initialized with normalized initialization [58], often called Xavior
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initialization, where weights are initialized uniformly within the interval [−a, a] where

a =

√
6

k + 1
, (5.1)

and k is the number of input parameters. This prevents the weighted sum to saturate the
hyperbolic tangent function independently of the number of input parameters.

The error function used is a modified MAE, which calculates the error based on comparing
the output to an allowed target interval instead of a certain value. If the output is in the
target interval, the error is zero. If the output is outside of the interval, the error is calculated
as the absolute value of the difference between the output and the closest interval endpoint.
The total error is

EMA =
1

n

n∑
i=1

1

m

m∑
j=1

E(oij , t
L
j , t

U
j ) (5.2)

where n is the number of points in one batch used during training, m is the number of outputs
and targets and E(oij , t

L
j , t

U
j ) is calculated as

E(oij , t
L
j , t

U
j ) =


tLj − oij if oij < tLj ,

0 if tLj < oij < tUj ,

oij − tUj if tUj < oij ,

(5.3)

where o are outputs, and tL and tU are the lower- and upper bounds on the targets, respec-
tively.

In some cases the output values can not be calculated due to an undefined mathematical
operation e.g. a negative argument in a square root, which gives the output a value of Not a
Number (NaN). In those cases, the largest absolute error aj for the specific target tj for any
of the input points is used,

aj =Max
[
|o1j − tUj |, . . . , |onj − tUj |, |o1j − tLj |, . . . , |onj − tLj |

]
. (5.4)

5.2 Genetic Algorithm

In this project, a robust GA that utilizes both Unimodal Normal Distribution Crossover
(UNDX) [59] and Uniform Crossover (UX) [60] was implemented to train the ANNs. This
method has been shown to converge on data sets with strong epistasis between parameters [56],
meaning that it works on the data where the influence of some parameters might overpower
others, which is important for models with unknown or complicated interactions between the
inputs. Algorithm 1 below describes the setup used in the current project. To speed up the
process, the program uses multiple threads to run this algorithm, with slight modifications to
make it work safely and properly with multiple threads. The number of threads used should
be the same as the number of cores in the computer [61].

Here, the UX reproduction randomly splits the weights from the two parents between the
two children,

c1i = pxi, c2i = pyi with (5.5)
~P1 = (p11, . . . , p1n) and (5.6)
~P2 = (p21, . . . , p2n) , (5.7)
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Algorithm 1: Algorithm for UNDX with UX [56] reproduction. nkids is a parameter
(here: nkids = 1), npop is the size of the population. PSundx is limited to [0.05,0.95].
Every RANDOM is a new uniform random number in [0,1). The child closest to Parent
1(2) is Child 1(2).

Input: Population, Training set, Validation set.
Initialization

Initialize Pundx to chosen value (Here 0.1).
repeat

Set Nundx, Nux, N
S
undx, N

S
ux = 0.

while i < nkid(npop/2) do
1 Selection for reproduction

Chose Parent 1 and Parent 2 by random sampling without replacement
from the population.

2 Reproduction
if RANDOM < Pundx then

Chose Parent 3 by random sampling. Create two children according to
UNDX. If either child is better than both parents, increment NS

undx.
Increment Nundx.

else
Create two children according to UX. If either child is better than both
parents, increment NS

ux. Increment Nux.

Selection for survival
if Child 1 is better than Parent 1 and 2 then

Replace Parent 1 with Child 1.
if Child 2 is better than Parent 2 then

Replace Parent 2 with Child 2.

else if Child 2 is better than Parent 1 and 2 then
Replace Parent 2 with Child 2.
if Child 1 is better than Parent 1 then

Replace Parent 1 with Child 1.

i++
if npop/2 > NS

undx +NS
ux then

while j < npop/2− (NS
undx +NS

ux) do
Selection for reproduction: Same as block 1.
Reproduction: Same as block 2.
Selection for survival

The first individual that survives is the best individual from the family
of parents and children. The second one is selected from the other
three by rank-based selection [62]. These individuals replace the
parents.

j++

Update probabilities
Calculate PSundx = NS

undx/Nundx and PSux = NS
ux/Nux

Update Pundx = PSundx/(P
S
undx + PSux).

until Stop criterion satisfied, according to Section 5.2.1;
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Figure 7: A visualisation of how UNDX creates children. The ellipses show the 1σ and 2σ
cut-offs for the normal distributions, with α = 0.5, β = 0.35 and n = 2.

where ~P1 and ~P2 are the chromosomes, or weight vectors, of the parents, n is the number of
weights in a chromosome, and x is uniformly randomized to take values 1 or 2, while y takes
the other value, for i = 1, 2, . . . , n.

The UNDX creates children using the normal distributions defined by three parents, as
illustrated in Fig. 7. The normal distributions are centered around the midpoint ~m between
the chromosomes of the two main parents, ~P1 and ~P2. The standard deviation for the first
distribution is set to σ1 = αd1, where α = 0.53 is a constant and d1 is the distance between
~P1 and ~P2. The second standard deviation is set to σ2 = βd2/

√
n, where β = 0.353, and d2 is

the shortest distance between the chromosome of the third parent ~P3 and the line connecting
~P1 and ~P2. The children ~C1 and ~C2 can now be defined as

~C1 = ~m+ z1~e1 +
n∑
k=2

zk~ek and (5.8)

~C2 = ~m− z1~e1 −
n∑
k=2

zk~ek , where (5.9)

~e1 =
~P2 − ~P1

|~P2 − ~P1|
(5.10)

and ~ek are the orthonormal basis vectors spanning the weight-space. In this project, ~ek are
generated through the modified Gram-Schmidt process with ~e1 as a starting point and z1 is
taken from the normal distribution N(0, σ21) and zk – from N(0, σ22). The children are named
such that the child closest to Parent 1 is Child 1.

GAs often use both crossover and mutation. However, since the UNDX is a type of
extended-box crossover, where the children can be created in a volume of weight-space not
strictly bounded by the weights of the parents, mutation is not necessary and can even worsen
the performance [63], and is therefore not used in this project.

3α = 0.5 and β = 0.35 are the recommended values [56,59]
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5.2.1 Training stop criteria

There are two stop criteria for the UNDX with UX training algorithm: early stop and max-
imum generations. The validation error used is EMA calculated from the validation data,
as an average over the four best networks in the generation. The training will also stop if
a maximum number of generations is reached. Here, this maximum is set to 20 in order to
encourage training with different sets of data.

5.3 Sampling points

With large input spaces and complex error landscapes, how one chooses to randomize or to
calculate the points to be used for validation or training on that input space becomes more
important. A good set of points should be able to represent the underlying error landscape
while also uniformly sampling the input space. The frequently used pseudo-random generation
is a fast and simple method, but it does not generate a uniform spread of points if the input
space is too large or the number of points is too small [57]. Similarly, the generation according
to a uniform grid does not work well for large input spaces or a low number of points.

In this project, we instead employ the Halton sequences [57, 64, 65] to generate points,
which has been shown to be a more uniform method of generating points than pseudo-random
and grid generation [57]. To calculate a Halton point, one chooses an integer n and a basis b.
The integer n, can be written in base b as

n = n0 + n1b+ n2b
2 + . . . nMb

M , (5.11)

where M is the integer part of lnn/ ln b. From here a unique fraction φb(n) that lies between
0 and 1 can be constructed as

φb(n) =
n0
b

+
n1
b2

+
n2
b3

+ · · ·+ nM
bM+1

. (5.12)

A k−dimensional Halton sequence can then be created as

(φb1(n), φb2(n), φb3(n), . . . , φbk(n)) , (5.13)

where n = 1, 2 . . . , N and b1, b2, . . . , bk are commonly chosen to be the first k primes, even
though they only need to be coprime. Since N is not used in the sequence, it is simple to
create more points in the sequence by gradually increasing N . The Halton sequences generate
numbers in [0, 1], which are here stretched to [−1, 1].

The Halton algorithm calculates a sequence of points, but those points are only uniformly
distributed on unit square projections of the hypercube for small dimensions. For projections
on larger dimensions, the sampling clusters into bands, nullifying the uniform distribution in
those dimensions. There are different ways to mitigate this effect, for example, by permuting
the values φ within the points or using a leap value L to skip values of n, such that n = mL,
where m = 1, 2, . . . , N . L = 409 is considered to be a good leap value [65], and is used here.
When implementing a leap value, it should not be used as one of the bases bj .

5.4 Incremental learning

The algorithm that controls how the networks are trained is the so-called incremental learning
algorithm, specified in Algorithm 2, which takes inspiration from Diego G. et al [57]. Here, S
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new Halton points are generated for the training set at every iteration, to be able to explore
a larger number of points without an extreme increase in memory usage. The validation set
used is the training set used in the last iteration. The fact that Halton sequences are used
to generate points means that the points will be uniformly spread out over the input space
regardless of the number of points. Even with uniformly distributed points, if S is small
enough, one set of points will be very different from another set of points and the algorithm
will have a hard time training and will quickly hit the early stop criterion. Therefore a large
number of points is recommended.

Algorithm 2: Algorithm for sampling and incremental learning. Halton points are
generated according to Section 5.3.

Initialization
Initialize a population of npop networks.
V alidation = empty set.
Train = input set with S Halton points

repeat
V alidation = Train.
Train = input set with S Halton points.
Train the population according to Algorithm 1 with Train and V alidation data.

until Convergence according to Section 5.4.1;

5.4.1 Convergence criterion

The convergence criterion used for the incremental learning algorithm is based upon the so-
called pass rate. Since the targets are defined in terms of intervals, it is simple to check if a
point passes all the target constraints. Finding input spaces where points pass all targets is
the goal of the algorithm, so the pass rate was chosen as the convergence criteria. The pass
rate is calculated as the ratio of the number of points in a set that pass over the total number
of points in that set. The validation data was used to calculate the pass rate for one network.
The total pass rate for the iteration is calculated as a mean of the pass rates of the four best
networks. The algorithm was set to converge when this total pass rate was greater than 0.5,
meaning that over 50% of generated points pass through all target constraints.

5.5 Modular training

The training was made modular, meaning that it was done on a sequence of modules, each
containing a set of targets. This was done both to make it easier to train by reducing the
size of the target space that the networks need to search through and to make it easy to add
more constraints for a more precise analysis later. The program first trained the networks
on unitarity constraints in the scalar sector of the considered 3HDM, then retrained with the
BFB constraints added, and finally retrained with bounds on oblique parameters added.

Since all of the targets need to be fulfilled anyways, this would find the minimum EMA,
as defined in Eq. (5.2), for one batch of targets, then, when a new set of targets are added,
the algorithm would work around the minimum of the first batch to find an overlapping (or
close-by) minimum for the second batch, and so on. If one wants to change the second batch
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of targets, retraining on the first batch would not be necessary; one would only need to train
on the new second batch in the same minimum of the first batch.

If the algorithm cannot find a new global minimum after the addition of new targets,
this might be because the old global minimum turned into a new deep local minimum. In
this case, it could instead get stuck in this local minimum. If this happens, which areas of
the parameter space that are found may depend on the order in which the different modules
are trained. This has not been explored in this project, but might be interesting for further
studies.

How the input and target files were created and structured can be seen in Appendix D.

6 Numerical analysis
Here, we would like to present the results of a first numerical analysis of the parameter space
of the BGL-like CP-conserving 3HDM using the ML techniques and algorithms described
above in detail.

All error bars listed below are 1σ deviations, unless otherwise stated. In this work, we
force all values into these ranges, but for future work one could consider sampling the values
according to the normal distributions defined by the means and standard deviations listed,
for a more statistically accurate picture.

6.1 Parameter search specifications

In the scalar sector, the SM-like lightest CP-even scalar was mass varied in the range 125.10±
0.14 GeV suggested by the experimental measurements, Eq. (2.3), while the other heav-
ier scalar masses have been allowed to vary in the 200 GeV to 2 TeV range. The angles
γ1, γ2, α3, β1 and β2 have been distributed over [0, 2π], while α1 and α2 were small values in
[0, 10−2], in a close proximity to the Higgs alignment limit. In addition, λ10 was inside the
[−5, 5] interval consistent with perturbativity. In the Yukawa sector, the mixing angles and
phases in UL and UR varied in the interval [0, 2π]. The CKM elements were constrained to
be within the experimental ranges given in Eq. (2.15). The SM fermion masses, that are used
in our analysis as part of the input parameter space, were determined at a suitable top-quark
mass scale Q2 = m2

t in Ref. [66] and read as follows

mu = 1.22+0.48
−0.40 MeV , mc = 0.590± 0.080 GeV , mt = 162.9± 2.8 GeV ,

md = 2.76+1.19
−1.14 MeV , ms = 52± 15 MeV , mb = 2.75± 0.09 GeV ,

me = 0.485289396 MeV , mµ = 102.4673155 MeV , mτ = 1742.15± 0.20 MeV .

The constraints that have been imposed due to experimentally well measured values,
such as the SM-like Higgs boson mass, are rather tight. In principle, they should be relaxed
somewhat due to potentially sizable effects from radiative corrections which are not accounted
for in our analysis. We, however, were mostly concerned here with the proof-of-concept in
this first use of the ML algorithm to explore the complex BGL-3HDM parameter space and
a diverse set of constraints in the most efficient manner, even within the tightest possible
bounds. Later on, provided that the code is well-tested and takes into account the most
relevant constraints, some of these ranges can be relaxed in order to explore larger potentially
viable regions of the model parameter space.
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6.2 Results

In the scalar sector, the ML training has been done with a population of 200 networks and
S = 10 000 points in the training and validation sets. (Note: The minimum that is searched
for here refers to the minimum of EMA, as defined in Eq. (5.2).)

For the Yukawa sector part, because the SPheno plus flavio setup has turned out to be
a lot slower to run than the other calculations, by about two orders of magnitude, it became
extremely slow to train. Since a GA is used, the only way to speed up the process would
be to lower the population and/or the number of points in the training and validation sets.
For the setup used, to train on the Yukawa sector in a reasonable time on one computer, the
population and number of points had to be reduced too much, such that the algorithm did
not seem to converge properly.

For these reasons, the Yukawa sector has not been trained on in the current results pre-
sented here. For future studies, it would be better to implement the calculation of specific
Wilson coefficients and flavor observables directly in the program instead of using external
packages, as was done with the other targets, to speed up the process. Another possibility
would be to use a computer cluster for training on the Yukawa sector, but since one of the
goals of this program is to be able to find results in a reasonable time without a cluster,
internal calculations would be preferred. For points that passed the scalar sector training,
the BGL-limit Yukawa sector parameters were randomized without any training and several
flavor physics constraints were calculated, such as the branching ratios BR(B0 → µ+µ−),
BR(Bs → µ+µ−), and BR(B → Xsγ) and the frequencies for B0

s − B̄0
s and B0

d − B̄0
d oscilla-

tions, ∆Ms and ∆Md. The SM values for these FCNC observables, with errors, as given by
flavio are as follows (with 3 significant digits)

BR(B0 → µ+µ−)SM = (1.14± 0.12) · 10−10 ,

BR(Bs → µ+µ−)SM = (3.67± 0.16) · 10−9 ,

BR(B → Xsγ)SM = (3.29± 0.22) · 10−4 ,

∆MsSM = (1.25± 0.08) · 10−11 ,

∆MdSM = (3.98± 0.52) · 10−13 . (6.1)

These 1σ errors are calculated in flavio by drawing random values according to flavio:s
internal SM probability distribution of the observable. The relative error of the uncertainty
∆σ/σ = 1/

√
2N where N is the number of values drawn. Here, N = 100 000 was used,

giving a relative uncertainty ∆σ/σ ≈ 0.00224. Here, SM values calculated by flavio are
presented instead of more straight forward sources, as these are the values used in flavio:s
internal calculations, which is the basis of the presented FCNC results. Experimental limits
for ∆Ms/d are given in Eq. (2.18). Experimental limits for the branching ratios are, with
bounds given at 95% confidence level [16]:

BR(B0 → µ+µ−) = (3.6± 1.6) · 10−10 ,

BR(Bs → µ+µ−) = (2.9± 0.7) · 10−9 ,

BR(B → Xsγ) = (3.55± 0.35) · 10−4 .

Here, we can see a difference between the experimental and SM values for the different ob-
servables, for example, the lowest experimental bound for BR(B0 → µ+µ−) is 2.0 · 10−10
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Figure 8: The branching ratio BR(B0 → µ+µ−) plotted against the charged H±
1 Higgs mass

mH±
1

.

Figure 9: The branching ratio BR(Bs → µ+µ−) plotted against the charged H±
1 Higgs mass

mH±
1

.

while the largest SM bound is 1.26 · 10−10. Only with over 5σ errors on the SM values would
they start to overlap with the experimental values, which is a good indicator that the SM is
incomplete, but as will be seen, the predictions of our model are closer to the SM values.

Figs. 8 and 9 show the branching ratios of the BR(B0 → µ+µ−) and BR(Bs → µ+µ−)
processes, respectively, over the corresponding SM values, plotted against the charged Higgs
mass mH±

1
. In Fig. 8, a “cloud” of points are very evenly spread out around the SM value,
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Figure 10: The branching ratio BR(B → Xsγ) plotted against the charged H±
1 Higgs mass

mH±
1

.

while in Fig. 9, almost all of the points form two distinct clouds around the SM value, at
ratios of 0.99 and 1.01, approximately. The same pattern emerges in BR(B0/s → e+e−)
and BR(B0/s → τ+τ−) observables. The splitting into distinct lines for BR(Bs → µ+µ−)
resembles a similar finding in the previous work of Ref. [27], but the allowed regions here are
more spread and further apart than the ones in Ref. [27]. On the contrary, for BR(B0 →
µ+µ−) there is a splitting seen in the previous work that is not seen here. That splitting was
also not centered around the SM value, lines forming around 1.03 and 1.07, which is in sharp
contrast to the cloud centered around the SM value obtained in the present work. In addition,
BR(B → Xsγ), as seen in Fig. 10, also has a split although it seems to move towards the SM
value for larger mH±

1
, which is in agreement with the previous work. The ∆Ms and ∆Md

oscillation frequencies are depicted in Fig. 11 and are plotted against each other, as ratios
with their SM values. The points in this plot are concentrated very closely to the SM values,
but they are not aligned with the measured values in Eq. (2.18). Instead they are shifted
by about 0.64 · 10−13 in the ∆Md direction and 0.08 · 10−11 in the ∆Ms direction from their
respective central values.

The observed differences between the numerical results obtained in this project and the
previous similar work might occur due to differences in the formulation of the BGL-3HDM,
but also because of differences in the constraints used. Indeed, departing from the exact
Higgs alignment limit used in the previous work, as well as employing the most generic soft
flavour symmetry breaking sector. In addition, in Ref. [27], the phenomenology constraints
on the Higgs sector were considered while they were not incorporated in the numerical results
in this study due to the slow computation of the corresponding observables (although they
are implemented in the code already). This would be a well-defined next step for further
studies, to improve on the phenomenological accuracy, but also to compare this analysis to
the one used in Ref. [27]. These results show that in the BGL-limit of the Yukawa sector a
lot of points appear to be close to the SM predictions for the key FCNC observables. This
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Figure 11: The B − B̄ oscillation frequencies ∆Ms and ∆Md, as ratios with their SM values,
plotted against each other.

means that the training should also work well on this sector if the speed of the calculation of
observables is optimized or a computer cluster is used for such a training.

A scan of 10 000 000 Halton points was also done, and the number of points that passed
each individual set of scalar constraints was counted. About 1.7% of all points passed all of
the oblique parameter constraints, 0.42% passed the BFB constraints and no points passed
the unitarity constraints. This shows that it would be very difficult to get any points with
just a random scan, since these are the pass rates for the individual constraints, and for a
point to pass, it would need to pass all of these constraints. After the full training of the
neural networks, over 50% of points passed all constraints.

The evolution of the errors when training on the set of unitarity constraints is shown in
Fig. 12, which shows how the errors evolved over iterations. It shows this for the AveTrain
error, which is the average training error over the entire population, the BestTrain error,
which is the average training error for the best four networks, and the Val error, which is the
average validation error for the best four networks. The spikes seen in AveTrain are because
the UNDX algorithm does not always put better networks into the population, in order to
keep the gene pool varied it sometimes keeps worse networks. This is also the reason that
an average over the entire population was not used to validate for the early stop condition,
but instead only four of the best networks were used. The spikes in BestTrain are because
the size of the training and validation sets, S = 10 000, was too small. This means that the
data sets used for the training could not represent the full input parameter space properly,
but after training for a while, the networks transformed the input space in such a way that
even these smaller data sets were representative and training continued more smoothly. When
training on the bad representations, it often hits early stop conditions and switches from one
badly representative data set to another, which changes the error wildly. A larger S should
be considered for future use to get a smoother curve.
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Figure 12: The average training error over the entire population (AveTrain), the average
training error of the best four networks (BestTrain) and the average validation error of the
best four networks (Val) are shown for every generation of training on unitarity constraints.
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Figs. 13 and 14 show how the allowed values for the CP-even Higgs masses H1,H2, the CP-
odd Higgs masses A1, A2 and the charged Higgs masses H±

1 ,H
±
2 change after the different

stages of training. Note that the masses are ordered such that H1 < H2, A1 < A2 and
H±

1 < H±
2 . The left side of Fig. 13 shows the distributions without any training, sampled

directly with Halton sequences. The plots do not seem uniform and show a bias for larger
masses, which is because the squared masses were uniformly sampled instead of the masses
themselves. The right side of Fig. 13 shows the distributions for the best four networks after
the networks have been trained on the unitarity constraints. Fig. 14 similarly shows the
distributions after the BFB constraints on the left and the distributions of the fully trained
networks after the oblique parameter constraints on the right.

Before training, the masses are spread out over the entire input space, between 200 GeV
and 2 TeV. The global minimum for the unitarity constraints lead to all the masses being in
the 300 − 800 GeV range, with mH1 ≈ mH2 , mA1 ≈ mA2 and mH±

1
≈ mH±

2
. After the BFB

constraints, the ranges moved to 200 − 450 GeV for the CP-even Higgs masses, 200 − 350
GeV for the CP-odd Higgs masses and around 300− 600 GeV for the charged Higgs masses.
Here, the charged Higgs particles’ masses are still mostly close to each other, but the neutral
scalar states have a larger spread. After the oblique parameter constraints, the ranges have
increased slightly again for neutral scalar masses, to between 200− 500 GeV for the CP-even
Higgs masses, mostly 200 − 400 GeV for the CP-odd Higgs masses. For the charged Higgs
masses, the range was constrained to 250−475 GeV. The CP-odd scalar masses seemed to be
constrained the most in all stages. The typical masses found in the analysis were also close to
the lower limit of 200 GeV, such that reducing this limit might be very interesting for future
studies.

These plots show a big difference between the ML approach and the random scan approach.
If one compares the plots passing all constraints in Fig. 14 to the previous work with a similar
model [27], it is clear that the points generated by the ML algorithm are much less spread
apart. The learning pushes networks to a global minimum, and the networks will then be
able to generate points around that minimum, but the points in the global minimum are not
the only points that can pass the constraints. Even in a local minimum, the points might
also be able to pass constraints, which means that the random scans will find points that
pass in the entire input space, while the ML will only find points around a global minimum.
The range of the parameters found in the global minimum will continue to shrink with the
continued training, since the networks transform the entire input space more efficiently into
points that pass. Because of this, it might be better to train for a smaller convergence pass
rate, to possibly get values in a larger range. Generating points after the network has been
trained goes very quickly, so one could get a large number of points even with a pass rate in
the small percentages. In this project, a pass rate of 50% was used, but for future studies,
it would be interesting to see if smaller pass rates give a better spread of parameters. To
find more spread out points, one could also split the input space into different, unexplored
areas to see where the minimum would lie there. Here, we start with the scalar boson masses
within 200−2000 GeV range, but mostly ended up in the 200−450 GeV range after training.
If the masses were forced to be larger in e.g. 1000 − 2000 GeV interval, then the minimum
could end up close to 1000 GeV, possibly indicating that the model works better with lower
masses over-all, or it could lie in the ranges of larger masses, suggesting that the error space
is more complicated than that.
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Figure 13: The distribution of CP-even Higgs masses H1,H2, CP-odd Higgs masses A1, A2

and charged Higgs masses H±
1 ,H

±
2 . Left: Sampled before training, from Halton sequence; no

constraints. Right: After unitarity constraints.
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Figure 14: The distribution of CP-even Higgs masses H1,H2, CP-odd Higgs masses A1, A2

and charged Higgs masses H±
1 ,H

±
2 . Left: After unitarity and BFB constraints. Right: After

unitarity, BFB and EW precision constraints.
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Figure 15: Calculated normal distributions of the VEVs v1, v2 and v3 found after the full
training.

Fig. 15 shows the calculated normal distributions of the VEVs after the full training. The
mean of v1 was at 130.5 GeV with a standard deviation of 7.5 GeV. For v2 and v3, the means
were found to be −122.7 and 167.0 GeV, respectively, with standard deviations of 20.9 and
12.6 GeV, respectively. VEVs are commonly chosen to be positive by choice of a specific
gauge transformation, but negative VEVs are allowed and do not change the physics. A
specific hierarchy between the generations of the VEVs could have been a nice explanation
for the hierarchy between the fermion masses, but these VEVs do not seem to show any
particularly strong hierarchy in the current results.

Fig. 16 shows the oblique parameters S, T and U plotted against each other. Most points
for both S and U were found comfortably inside their bounds, but T seemed to prefer values
towards its upper bound. In general, S seems to increase with larger T , while U seems to
decrease with larger T . As mentioned in 3.2.4, there are strong correlations between the
constraints on S, T and U . This might cause some of the points that were allowed in our
analysis to be forbidden in a more detailed analysis.

7 Conclusion
Machine Learning tools can be very powerful for parameter searches in complicated new
physics models. In this thesis, we have developed such a tool to explore the parameter space
of a recently proposed Three Higgs Doublet Model with a U(1)× Z2 flavor symmetry imple-
menting the unitarity and boundedness from below constraints as well as the experimental
bounds on oblique corrections. We have employed a sophisticated inversion procedure for
both the scalar and Yukawa sectors of the model enabling us to select the points already
within the experimentally allowed ranges of physical masses and measured mixing angles, as
well as with small off-Higgs-alignment corrections.

For the scalar sector, our algorithm has been trained well and quickly, in total the training
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Figure 16: Oblique parameters S and U plotted against T for points that passed constraints.
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procedure over three sequentially applied sets of the scalar sector constraints took less than
one day on a personal computer. A similar analysis for a random scan that could have revealed
a sizable number of points passing the same sets of constraints would take weeks of running
time at a large computer cluster. Our trained networks can be used to produce millions of
points that pass all the implemented constraints in a matter of minutes. Since the Machine
Learning is made to force the neural networks into the global minimum of the error, the points
are generated much closer to each other than the points generated by a random scan as the
latter can find points that pass into local minima as well.

The program was fast when the calculations of observables that were used as constraints
were fast. However, when using the external packages, in our case, SPheno and flavio to
calculate the flavor constraints, the training became a lot slower. In this project, a good
midway point between the time spent on training and possible convergence has not been
found, suggesting that the calculations of observables should be made internal to the program
and more time-efficient. Alternatively, if that is still slow, a more powerful computer, or a
cluster of computers, would become necessary. The cluster would only need to be used on
the slowest training steps though, which would drastically reduce the overall cluster running
time, and would almost certainly still be a lot faster than a random scan.

The minimum found by the algorithm was found to prefer smaller scalar boson masses.
i.e. close to the lower bound imposed on them in the input space. While the search for all
the non-SM scalar boson masses was done between 200 GeV and 2000 GeV, the ranges found
by the algorithm were reduced down to the 200− 450 GeV after training. Since 200 GeV was
the lowest permitted mass in the input, this might suggest that even smaller masses should
be considered. However, that might contradict phenomenological exclusion bounds on new
physics scalars, which have not been implemented in this project.

One possible upside with a 3HDM is that a hierarchy in the Higgs VEVs could be related
to the mass hierarchies in the fermion sector. However, such a hierarchy was not found here.
Instead, the VEVs were all of the relatively similar size, with mean values found to be 130.5,
−122.7 and 167.0 GeV for v1,2,3, respectively.

The FCNCs seem to be well constrained and are under control as they should for a BGL-
like model. The ∆Md and ∆Ms observables seem to be constrained to very specific values
around the SM values, but they differ from the measurements. The branching ratios of various
B-mesons show split clouds of points around the SM value, similar to what has been found
in the previous work in Ref. [27], but BR(B0 → µ+µ−) shows no such split, in contradiction
to the previous work. This might be due some differences in the model structure and/or in
the phenomenological treatment since additional Higgs physics constraints were included in
Ref. [27], but were not included in the present work.

For future development, more constraints should be added to the scalar sector, such as
constraints on Higgs physics and the vacuum stability of the Higgs potential, if possible
calculated internally in the program for better efficiency. Other steps would be to expand the
model by introducing lepton flavor violation and CP violation. Adding calculations for specific
Wilson coefficients and FCNC constraints in the program would make searches in non-BGL
multi-Higgs models possible. If this is implemented, one could investigate if training on a few
FCNC constraints would automatically constrain the rest of the FCNCs, or if one would need
to train on all of them for the full flavor constraints.
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A Higgs mechanism: a toy model
The Higgs mechanism for spontaneous symmetry breaking (SSB) is best illustrated in a toy-
model, with a complex (charged) scalar field χ whose potential invariant under global U(1)
symmetry reads

V (χ) = µ2χ†χ+ λ(χ†χ)2 , (A.1)

in terms of the mass term of the field, µ2, and its quartic interaction strength, λ. If µ2 > 0, it
corresponds to the physical mass squared of χ field, and the minimum of the potential energy
is identified with χ = 0. Such a potential preserves the original Abelian U(1) symmetry of the
theory, see Fig. 17a. However, if µ2 < 0, the field χ acquires a constant VEV, 〈χ〉 = const, in
the minimum of the scalar potential found by means of the extremum condition, also known
as the tadpole equation,〈

∂V (χ)

∂χ

〉
≡ ∂V (χ)

∂χ

∣∣∣
χ=〈χ〉

= 0 → 〈χ〉 =
√

−µ2
2λ

≡ v√
2
. (A.2)

In this case, the U(1) symmetry appears to be broken such that a particle ends up in one of
the two possible minima, χ = v and χ = −v, illustrated in Fig. 17b. A positive frequency of
oscillations around the new stable minimum, and hence a positive mass of the physical scalar
boson is ensured by the minimization condition〈

∂2V (χ)

∂χ2

〉
> 0 , (A.3)

applied for solutions of Eq. (A.2). Clearly, a particular minimum that is chosen by the particle
appears to be more energetically favourable than unstable configuration with χ = 0.

The Goldstone theorem states that massless scalar (Goldstone) bosons appear in the
theory when continuous symmetries are spontaneously broken – one for every broken generator
[67,68]. Upon gauging the U(1) symmetry and parameterising the complex scalar field as

χ(x) =
v + h(x)√

2
eθ(x)/v , (A.4)

in terms of the two real scalar fields – the Higgs field h(x) with mass mh =
√
2µ, and the

massless Goldstone field, θ(x) – one can easily demonstrate that the initially massless and
transversely polarised photon acquires a non-zero mass given by a product of the Higgs VEV v
and the U(1) gauge coupling and gains a third (longitudinal) polarisation through effectively
“absorbing” the Goldstone field θ(x). One also finds that the Goldstone field θ(x) can be
removed by a gauge transformation of the U(1) gauge field in a specific choice of the gauge
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χ

V (χ)

(a) Scalar field potential with µ2 > 0.

−v v

χ

V (χ)

(b) Scalar field potential with µ2 < 0.

Figure 17: The two possible scenarios for the scalar field potential V (χ).

known as the unitary gauge. In this sense, the Goldstone mode completely disappears from
the physical spectrum of the theory, being “eaten up” to provide a non-zero mass to the
photon.

This illustration makes a rather pedagogical introduction into the non-Abelian Higgs
mechanism of spontaneous EW symmetry breaking realised the framework of the SM.

B Inverted procedure equations list
Here all the equations defining the Lagrangian parameters in the inverted procedure of the
scalar sector, using the shorthand sx = sin(x) and cx = cos(x).

λ1 =
1

2v31

{
v1c

2
α1

[
s2α2

(m2
hs

2
α3

+m2
H2
c2α3

) +m2
hc

2
α2

]
+ v1sα1cα1sα2s2α3(m

2
h −m2

H2
)

+ v1s
2
α1
(m2

hc
2
α3

+m2
H2
s2α3

) + µ212v2 + µ213v3

}
(B.1)

λ2 =
1

2v32

{
v2s

2
α1

[
s2α2

(m2
hs

2
α3

+m2
H2
c2α3

) +m2
hc

2
α2

]
+ v2sα1cα1sα2s2α3(m

2
H2

−m2
h)

+ v2c
2
α1
(m2

hc
2
α3

+m2
H2
s2α3

) + µ212v1 + µ223v3

}
(B.2)

λ3 =
1

2v33

{
v3c

2
α2
(m2

hs
2
α3

+m2
H2
c2α3

) +m2
hv3s

2
α2

+ µ213v1 + µ223v2

}
(B.3)
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λ4 =
1

v1v2

{
− µ212 − λ7v1v2 + c2α1

[
s2α2

(m2
hs

2
α3

+m2
H2
c2α3

) +m2
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2
α2

]

+ sα1cα1sα2s2α3(m
2
h −m2

H2
) + s2α1

(m2
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2
α3
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H2
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)

}
(B.4)

λ5 = − 1

v1v3

{
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2
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2
α3

+m2
H2
c2α3

−m2
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2
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H2
)

}
(B.5)

λ6 = − 1

v2v3
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[
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2
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2
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+m2
H2
c2α3

−m2
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−m2
h)

]}
(B.6)

λ7 =
1

v1v2

{
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1
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1
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. (B.7)
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2
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{
1
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2
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1
−m2

H±
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2
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}
(B.8)

λ9 =
1
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{
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2
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2
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2
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(B.9)
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µ213 =
1

2(v213)(v
2
13 + v22)

2

{
(m2

A1
−m2

A2
)

[
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2
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2
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+ v1v3(−m2
A1

−m2
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)
[
v2(v2 − v) + v213
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v2(v + v2) + v213

]}
− 2λ10v1v3 (B.10)

µ223 = − v

(v213 + v22)
2

{
v1(m

2
A1

−m2
A2

)sγ1cγ1(v
2
13 + v22) +m2
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vv2v3s

2
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vv2v3c

2
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(B.11)

µ212 = − v

(v213 + v22)
2

{
v3(m

2
A2

−m2
A1

)sγ1cγ1(v
2
13 + v22) +m2

A1
vv1v2s

2
γ1 +m2

A2
vv1v2c

2
γ1

}
(B.12)

The real and imaginary parts of the Yukawa sector mass matrices Mu and Md are as
follows, where λ,A, ρ̄ and η̄ are the CKM parameters. To simplify the equations, Md =
UL,dM̄d is given in terms of UL,d = UL,uVCKM and M̄d =Mdiag

d U †
R,d.

<(Mu)11 = mcsσu
1

[
cκu1 (sζ1cζ3cφ1−θ1−cζ1sζ2sζ3cφ2+φ3+θ1)

+ sκu1 (sζ1cζ3sφ1−θ1 + cζ1sζ2sζ3sφ2+φ3+θ1)
]
+mucσu

1
cθ1cζ1cζ2 (B.13)

<(Mu)12 = mccσu
1
(cζ1sζ2sζ3cφ2+φ3+θ1 − sζ1cζ3cφ1−θ1) +musσu

1
cζ1cζ2cκu1−θ1 (B.14)

<(Mu)13 = mt(cψu
3
(sζ1sζ3cφ1+φ3−θ1 + cζ1sζ2cζ3cφ2+θ1)

+ sψu
3
(cζ1sζ2cζ3sφ2+θ1 − sζ1sζ3sφ1+φ3−θ1)) (B.15)

<(Mu)21 = mcsσu
1

[
sκu1 (sζ1sζ2sζ3sφ1+φ2+φ3+θ2 + sθ2cζ1cζ3)

− cκu1 (sζ1sζ2sζ3cφ1+φ2+φ3+θ2 + cθ2cζ1cζ3)
]
+mucσu

1
sζ1cζ2cφ1+θ2 (B.16)

<(Mu)22 = mcsσu
1

[
sκu1 (sζ1sζ2sζ3sφ1+φ2+φ3+θ2 + sθ2cζ1cζ3)

− cκu1 (sζ1sζ2sζ3cφ1+φ2+φ3+θ2 + cθ2cζ1cζ3)
]
+mucσu

1
sζ1cζ2cφ1+θ2 (B.17)

<(Mu)23 = mt(cψu
3
(sζ1sζ2cζ3cφ1+φ2+θ2 − cζ1sζ3cφ3−θ2)

+ sψu
3
(sζ1sζ2cζ3sφ1+φ2+θ2 + cζ1sζ3sφ3−θ2)) (B.18)

<(Mu)31 = mcsσu
1
cζ2sζ3(sκu1 sφ3+θ3 − cκu1 cφ3+θ3)−mucσu

1
sζ2cφ2−θ3 (B.19)

<(Mu)32 = mccσu
1
cζ2sζ3cφ3+θ3 −musσu

1
sζ2cκu1+φ2−θ3 (B.20)

<(Mu)33 = mtcζ2cζ3cψu
3−θ3 (B.21)
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=(Mu)11 = mcsσu
1
(−cκu1 (sζ1cζ3sφ1−θ1 + cζ1sζ2sζ3sφ2+φ3+θ1)

+ sκu1 sζ1cζ3cφ1−θ1 − sκu1 cζ1sζ2sζ3cφ2+φ3+θ1) +mucσu
1
sθ1cζ1cζ2 (B.22)

=(Mu)12 = mccσu
1
(sζ1cζ3sφ1−θ1 + cζ1sζ2sζ3sφ2+φ3+θ1)−musσu

1
cζ1cζ2sκu1−θ1 (B.23)

=(Mu)13 = mt

[
cψu

3
(cζ1sζ2cζ3sφ2+θ1 − sζ1sζ3sφ1+φ3−θ1)

− sψu
3
sζ1sζ3cφ1+φ3−θ1 − sψu

3
cζ1sζ2cζ3cφ2+θ1

]
(B.24)

=(Mu)21 = mucσu
1
sζ1cζ2sφ1+θ2 −mcsσu

1

[
sκu1 sζ1sζ2sζ3cφ1+φ2+φ3+θ2

+ cκu1 (sζ1sζ2sζ3sφ1+φ2+φ3+θ2 + sθ2cζ1cζ3) + sκu1 cθ2cζ1cζ3
]

(B.25)

=(Mu)22 = mccσu
1
(sζ1sζ2sζ3sφ1+φ2+φ3+θ2 + sθ2cζ1cζ3)−musσu

1
sζ1cζ2sκu1−φ1−θ2 (B.26)

=(Mu)23 = mucσu
1
sζ2sφ2−θ3 −mcsσu

1
cζ2sζ3(sκu1 cφ3+θ3 + cκu1 sφ3+θ3) (B.27)

=(Mu)31 = mucσu
1
sζ2sφ2−θ3 −mcsσu

1
cζ2sζ3(sκu1 cφ3+θ3 + cκu1 sφ3+θ3) (B.28)

=(Mu)32 = mccσu
1
cζ2sζ3sφ3+θ3 +musσu

1
sζ2sκu1+φ2−θ3 (B.29)

=(Mu)33 = −mtcζ2cζ3sψu
3−θ3 (B.30)

<(Ud)11 = −Aη̄λ3sζ1sζ3sφ1+φ3−θ1 +Aη̄λ3cζ1sζ2cζ3sφ2+θ1 −Aλ3ρ̄sζ1sζ3cφ1+φ3−θ1

−Aλ3ρ̄cζ1sζ2cζ3cφ2+θ1 +Aλ3sζ1sζ3cφ1+φ3−θ1 +Aλ3cζ1sζ2cζ3cφ2+θ1

− 1

2
(λ2 − 2)cθ1cζ1cζ2 + λsζ1cζ3cφ1−θ1 − λcζ1sζ2sζ3cφ2+φ3+θ1 (B.31)

<(Ud)12 = −Aλ2sζ1sζ3cφ1+φ3−θ1 −Aλ2cζ1sζ2cζ3cφ2+θ1 +
1

2
(λ2 − 2)sζ1cζ3cφ1−θ1

− 1

2
λ2cζ1sζ2sζ3cφ2+φ3+θ1 + λcθ1cζ1cζ2 + cζ1sζ2sζ3cφ2+φ3+θ1 (B.32)

<(Ud)13 = cζ1Aη̄λ
3sθ1cζ2 +Aλ2sζ2sζ3cφ2+φ3+θ1 + sζ2cζ3cφ2+θ1)

+Aλ3ρ̄cθ1cζ1cζ2 + sζ1(sζ3cφ1+φ3−θ1 −Aλ2cζ3cφ1−θ1) (B.33)

<(Ud)21 = Aη̄λ3sζ1sζ2cζ3sφ1+φ2+θ2 +Aη̄λ3cζ1sζ3sφ3−θ2 −Aλ3ρ̄sζ1sζ2cζ3cφ1+φ2+θ2

+Aλ3ρ̄cζ1sζ3cφ3−θ2 +Aλ3sζ1sζ2cζ3cφ1+φ2+θ2 −Aλ3cζ1sζ3cφ3−θ2

− 1

2
(λ2 − 2)sζ1cζ2cφ1+θ2 − λsζ1sζ2sζ3cφ1+φ2+φ3+θ2 − λcθ2cζ1cζ3 (B.34)

<(Ud)22 = −Aλ2sζ1sζ2cζ3cφ1+φ2+θ2 +Aλ2cζ1sζ3cφ3−θ2 −
1

2
λ2sζ1sζ2sζ3cφ1+φ2+φ3+θ2

− 1

2
(λ2 − 2)cθ2cζ1cζ3 + λsζ1cζ2cφ1+θ2 + sζ1sζ2sζ3cφ1+φ2+φ3+θ2 (B.35)

<(Ud)23 = Aη̄λ3sζ1cζ2sφ1+θ2 +Aλ3ρ̄sζ1cζ2cφ1+θ2 +Aλ2sζ1sζ2sζ3cφ1+φ2+φ3+θ2

+Aλ2cθ2cζ1cζ3 + sζ1sζ2cζ3cφ1+φ2+θ2 − cζ1sζ3cφ3−θ2 (B.36)
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<(Ud)31 = cζ2(Aη̄λ
3sθ3cζ3 − λsζ3cφ3+θ3)−Aλ3(ρ̄− 1)cθ3cζ2cζ3 +

1

2
(λ2 − 2)sζ2cφ2−θ3 (B.37)

<(Ud)32 = −Aλ2cθ3cζ2cζ3 −
1

2
(λ2 − 2)cζ2sζ3cφ3+θ3 − λsζ2cφ2−θ3 (B.38)

<(Ud)33 = Aλ2(η̄λsζ2sφ2−θ3 − λρ̄sζ2cφ2−θ3 + cζ2sζ3cφ3+θ3) + cθ3cζ2cζ3 (B.39)

=(Ud)11 = −λsζ1
{
Aλ2sζ3

[
η̄cφ1+φ3−θ1 − (ρ̄− 1)sφ1+φ3−θ1

]
+ cζ3sφ1−θ1

}
− 1

2
cζ1

{
2λsζ2

[
Aη̄λ2cζ3cφ2+θ1 +Aλ2(ρ̄− 1)cζ3sφ2+θ1 + sζ3sφ2+φ3+θ1

]
+ (λ2 − 2)sθ1cζ2

}
(B.40)

=(Ud)12 = Aλ2sζ1sζ3sφ1+φ3−θ1 −
1

2
cζ1sζ2

[
2Aλ2cζ3sφ2+θ1

+ (λ2 − 2)sζ3sφ2+φ3+θ1
]
− 1

2
(λ2 − 2)sζ1cζ3sφ1−θ1 + λsθ1cζ1cζ2 (B.41)

=(Ud)13 = −Aη̄λ3cθ1cζ1cζ2 + cζ1(Aλ
3ρ̄sθ1cζ2 +Aλ2sζ2sζ3sφ2+φ3+θ1 + sζ2cζ3sφ2+θ1)

+ sζ1A(λ
2cζ3sφ1−θ1 − sζ3sφ1+φ3−θ1) (B.42)

=(Ud)21 = cζ1

{
Aλ3

[
sζ3 η̄cφ3−θ2 − (ρ̄− 1)sφ3−θ2

]
− λsθ2cζ3

}
− 1

2
sζ1

{
2λsζ2

[
Aη̄λ2cζ3cφ1+φ2+θ2

+Aλ2(ρ̄− 1)cζ3sφ1+φ2+θ2 + sζ3sφ1+φ2+φ3+θ2
]
+ (λ2 − 2)cζ2sφ1+θ2

}
(B.43)

=(Ud)22 = −1

2
sζ1sζ2

[
2Aλ2cζ3sφ1+φ2+θ2 + (λ2 − 2)sζ3sφ1+φ2+φ3+θ2

]
− 1

2
cζ1
[
2Aλ2sζ3sφ3−θ2 + (λ2 − 2)sθ2cζ3

]
+ λsζ1cζ2sφ1+θ2 (B.44)

=(Ud)23 = sζ1(−Aη̄λ3cζ2cφ1+θ2 +Aλ3ρ̄cζ2sφ1+θ2 +Aλ2sζ2sζ3sφ1+φ2+φ3+θ2

+ sζ2cζ3sφ1+φ2+θ2) + cζ1(Aλ
2sθ2cζ3 + sζ3sφ3−θ2) (B.45)

=(Ud)31 = −Aη̄λ3cθ3cζ2cζ3 − cζ2(Aλ
3(ρ̄− 1)sθ3cζ3 + λsζ3sφ3+θ3)−

1

2
(λ2 − 2)sζ2sφ2−θ3

(B.46)

=(Ud)32 = λsζ2sφ2−θ3 −
1

2
cζ2(2Aλ

2sθ3cζ3 + (λ2 − 2)sζ3sφ3+θ3) (B.47)

=(Ud)33 = Aλ3(sζ2 η̄cφ2−θ3 + ρ̄sφ2−θ3) + cζ2(Aλ
2sζ3sφ3+θ3 + sθ3cζ3) (B.48)

(B.49)
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<(M̄d)11 = mdcψd
1
cσd

1
cσd

2
(B.50)

<(M̄d)12 = mdsσd
1
cσd

2
cκd1+ψd

2
(B.51)

<(M̄d)13 = −mdsσd
2
cκd2−ψd

3
(B.52)

<(M̄d)21 = mscσd
1
sσd

2
sσd

3
cκd2+κd3+ψd

1
−mssσd

1
cσd

3
cκd1−ψd

1
(B.53)

<(M̄d)22 = ms(sσd
1
sσd

2
sσd

3
cκd1+κd2+κd3

+ ψd2 + cψd
2
cσd

1
cσd

3
) (B.54)

<(M̄d)23 = mscσd
2
sσd

3
cκd3+ψd

3
(B.55)
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1
sσd

3
cκd1+κd3−ψd

1
+ cσd

1
sσd

2
cσd

3
cκd2+ψd

1)
(B.56)

<(M̄d)32 = mb(sσd
1
sσd

2
cσd

3
cκd1+κd2+ψd

2
− cσd

1
sσd

3
cκd3−ψd

2
) (B.57)

<(M̄d)33 = mbcψd
3
cσd

2
cσd

3
(B.58)

(B.59)

=(M̄d)11 = −mdsψd
1
cσd

1
cσd

2
(B.60)

=(M̄d)12 = −mdsσd
1
cσd

2
sκd1+ψd

2
(B.61)

=(M̄d)13 = −mdsσd
2
sκd2−ψd

3
(B.62)

=(M̄d)21 = −ms(sσd
1
cσd

3
sκd1−ψd

1
+ cσd

1
sσd

2
sσd

3
sκd2+κd3+ψd

1
) (B.63)

=(M̄d)22 = −ms(sσd
1
sσd

2
sσd

3
sκd1+κd2+κd3+ψd

2
+ sψd

2
cσd

1
cσd

3
) (B.64)

=(M̄d)23 = −mscσd
2
sσd

3
sκd3+ψd

3
(B.65)

=(M̄d)31 = mbsσd
1
sσd

3
sκd1+κd3−ψd

1
−mbcσd

1
sσd

2
cσd

3
sκd2+ψd

1
(B.66)

=(M̄d)32 = −mb(sσd
1
sσd

2
cσd

3
sκd1+κd2+ψd

2
+ cσd

1
sσd

3
sκd3−ψd

2
) (B.67)

=(M̄d)33 = −mbsψd
3
cσd

2
cσd

3
(B.68)

C Oblique parameters
All the functions for the oblique parameters not given in Section 3.2.4 are mentioned here,
as found in Ref. [32]. First, the oblique parameters and then the functions used in their
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calculations.
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W̄ =
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b ,m

2
W )− Ĥ(M2
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]
ln
I

J

+

[
I + J − (I − J)2

Q

]
3f(t, r)

Q2
(C.9)

H̃(I, J,Q) =4 +

(
I + J

I − J
− 2

I − J

Q

)
ln
I

J

+
−Q2 + 3Q(I − J)− 2(I − J)2

rQ
f(t, r) (C.10)

Ĥ(I,Q) =H(I,Q,Q) + 12H̃(I,Q,Q) (C.11)

t = I + J −Q (C.12)

r = Q2 − 2Q(I + J) + (I − J)2 (C.13)

f(t, r) =



√
r ln

∣∣∣∣ t−√
r

t+
√
r

∣∣∣∣ if r > 0,

0 if r = 0,

2
√
−r arctan

√
−r
t

if r < 0.

(C.14)

D Input and target files
In order to generalize the program to be usable with different models and different inver-
sions, an input file was created for the inversion procedure in which the input parameters,
Lagrangian parameters, parameters that are both input and Lagrangian ones, and possible
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simplifying equations are defined in blocks. In these blocks, variables can be defined with a
name and a type. For input parameters, the range of values to search over also has to be
defined, while for the Lagrangian parameters and extra equations, the equations that com-
pute them have to be specified. The variable names used in the equations should be defined
prior in the input file. The equations are entered in Mathematica form. The program then
translates the variable definitions, input ranges and Mathematica equations into the code that
can be executed. The number of inputs specified in this file also defines the dimensionality of
the network and the Halton sequences.

Some example rows of an input file are:

- InputParameters -
a1; Angle; 0; 2*pi
b; Real; 4; 15
- LagrangianParameters -
out; Real; b Sin[a1]

Here two inputs are defined: an angle called a1 ∈ [0, 2π] and a real value called b ∈ [4, 15].
One output out is defined as out = b sin(a1). During the inversion procedure, values in a
specific range (here, [−1, 1]) would be assigned to the variables a1 and b and these values
would then be stretched and translated to conform the specified ranges of a1 and b. Then,
out would be calculated with these values of a1 and b and returned.

Target files are also defined with different blocks, e.g. unitarity constraints and oblique
parameters, which are all calculated in the program. The necessary variables for these target
calculations have to be defined in the input file. There are also blocks for targets on SPheno
[37,38] and flavio [33] outputs. Some example rows from the target file with the boundedness
from below conditions are:

l1; 0;
l2; 0;
l3; 0;
Sqrt[4 l2 l3] + l6 + Min[0, l9]; 0;
Sqrt[4 l1 l2] + l4 + Min[0, l7]; 0;
Sqrt[4 l1 l3] + l5 + Min[0, l8 + 2 l10, l8 - 2 l10]; 0;
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