
Density Matrix Simulation of
Quantum Error Correction

Arvid Rolander

Master Thesis
Thesis advisors: Andreas Walther, Adam Kinos

Examiner: Cord Arnold
September 23, 2020

Abstract

Quantum error correction will be integral in developing full scale quantum com-
puters, but as of yet beneficial quantum error correction has not been demon-
strated experimentally. An important question is therefore what prerequisites need
to be met to achieve this. Results of density matrix simulations of the performance
of the seven qubit Steane code in a quantum computing setting are presented. The
full density matrix was kept throughout the whole simulations, which means that
all errors can be accounted for. In particular, the importance of the circuit depth,
i.e. the number of gates in series before error correction is applied, for the overall
performance was investigated. It was found that the depth of the circuit has a
large impact on the threshold error rate for which error correction becomes bene-
ficial. A gain parameter was defined, which describes the largest constant factor by
which errors can be suppressed. It was shown that there is a trade-off between the
threshold error and the gain; The highest threshold value was found to be around
pth ≈ 10−4 which is in line with other estimates, but the maximum gain for this
value was only 3. To achieve a gain of 100, an error rate of perr ≈ 2 · 10−9

is required. In addition, performance statistics such as run-time as a function of
circuit depth and width for the matlab code used for simulations are presented.

iii

Acknowledgements

I would like to thank my supervisors Andreas Walther and Adam Kinos, without
whose help this project would not have been possible. I would like to give a special
thanks to Andreas for his extensive help with finalising this report. I would also like
to thank Katarina Wilhelmsen for reading through countless drafts of this report
and providing invaluable feedback. Finally, I would like to thank my family and
friends for their general support.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Background . 1
1.2 Aims . 2
1.3 Delimitations . 3
1.4 Structure of the Report . 3

2 Background Theory 5
2.1 Quantum Mechanics . 5

2.1.1 Quantum Operations 7
2.2 Quantum Logic and Circuits 8

2.2.1 Quantum Gates . 8
2.2.2 Quantum Circuits . 10

2.3 Quantum Error Correction 12
2.3.1 Fundamentals of Quantum Error Correction 12
2.3.2 The Steane Code . 15
2.3.3 The Threshold Theorem 22

3 Methods 23
3.1 Density Matrix Simulation of Quantum Circuits 23

3.1.1 Partial Trace . 24
3.1.2 Sparse Matrix Operations 24
3.1.3 Gate Tolerance . 24
3.1.4 Error Models . 25

viii CONTENTS

3.2 Simulating Error Correction with the Steane Code 26

4 Results & Discussion 29
4.1 Code Performance . 29

4.1.1 Performance as a Function of Circuit Width 30
4.1.2 Performance as a Function of Circuit Depth 32
4.1.3 Impact of Gate Tolerance 34

4.2 Error Correction Simulations 36
4.2.1 Impact of Different Types of Errors 36
4.2.2 Finding Optimal Gate Numbers 39
4.2.3 Fidelity Error Curves at Different Gate Numbers 41

5 Conclusions & Outlook 47
5.1 Conclusions . 47
5.2 Outlook . 48

6 Appendix 51
6.1 Raw Data for Code Performance 52
6.2 Additional Plots from Simulations 56

7 Bibliography 63

Chapter 1

Introduction

1.1 Background

One of the first mentions of Quantum Computers was by Richard Feynman in
1981, when he proposed that the only way to efficiently simulate a quantum sys-
tem would be to use a quantum computer [1]. There are now examples of algo-
rithms that could only run on a quantum computer that would provide an ex-
ponential speed up compared to their classical counterparts for some tasks, such
as factoring prime numbers. Since then, the field has come a long way, with the
first case of quantum supremacy being demonstrated by Google’s team in October
2019 [2].

Much like the fundamental unit of information in classical computing is the bit,
which can assume the states 0 and 1, the fundamental unit of information in quan-
tum computing is the qubit, which can be in the states |0⟩ and |1⟩. What separates
the qubit from the classical bit is that the qubit can also exist in a so called super-
position of the basis states. An arbitrary state of the qubit is written |ψ⟩, and any
state can be written as a linear combination by

|ψ⟩ = α |0⟩+ β |1⟩ ,

where α and β are complex numbers and |α|2 + |β|2 = 1 [3, chap. 1.2]. One
qubit is hardly enough for actual computations, so a way to describe a collection
of qubits is also needed. A system of several qubits |ψ1⟩, |ψ2⟩ ... can be described
as a product state [3, pp. 94] by

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...,

1

2 CHAPTER 1. INTRODUCTION

where ⊗ denotes a tensor product, see [3, chap. 2.1.7] for a more thorough de-
scription. In this thesis, I will for convenience use the short notation |xx...x⟩ to
write a basis vector state of multiple qubits. This way, any product state can be
written as a sum of the basis vectors.

One major obstacle in realising a full scale quantum computer is the proneness
to errors exhibited by quantum systems, suffering from both environmental noise
and faulty operations limiting the length of calculations that can be performed.
This obstacle was long thought to be insurmountable, until the field of quantum
error correction was invented in the early 1990’s, when Peter Shor discovered the
first error correcting code for quantum systems. One of the major achievements
of quantum error correction is the threshold theorem, which states that given that
the probability p for error of individual components is below a threshold value
pth, arbitrary accuracy can be achieved by concatenating error correcting codes
[3].

The quantum information group in Lund aims to build a quantum computer us-
ing rare-earth ions in crystals, and thus far, no one has investigated which methods
of error correction would be most suitable for these systems.

1.2 Aims

The purpose of this work is twofold. The first part is to produce code that can be
used to simulate quantum circuits, including ones using error correcting schemes.
Here, it is worth mentioning that other efforts have been made to create software
to simulate quantum circuits, two of them being ProjectQ which is introduced in
[4] andQuantumsim introduced in [5]. The reason why these existing frameworks
were not used merits some discussion. As the title of this thesis suggests, using the
density matrix approach over the state vector approach was one of the central ideas
in this work, and although ProjectQ comes with large emulation and simulation
capabilities, density matrix simulation has not yet been implemented at the time of
writing. Quantumsim on the other hand does provide high-performance density
matrix simulation capabilities. However, a major obstacle in using Quantumsim
is that at the time of writing, it lacks a comprehensive user manual. This meant
that it was difficult to assess whether Quantumsim offered all the features required
for this work. Therefore, writing new code for simulations was deemed a more ef-
ficient use of time.

1.3. DELIMITATIONS 3

The second and more important purpose is to investigate how the fidelity of a
quantum circuit is affected by various parameters, with a specific focus on the
parameters of the rare-earth systems used in Lund. These parameters include:

• Qubit gate fidelity and duration

• Readout fidelity and duration

• Ground state coherence time, or T2

In light of the threshold theorem described in section 2.3.3, one question was also
if the threshold could be achieved in the special case of the Steane Code.

1.3 Delimitations

Since time and resources are limited, some delimitations had to be made. The first
obvious delimitation is the choice to use the Steane seven qubit code as the sole
example of error correction, even if this is hardly state of the art. The sophistication
of the error model used had to be limited, especially for gates acting on several
qubits at the same time to create entanglement. This is mainly due to the fact that
the rare-earth ion system is a quite new technology, and the specific errors affecting
it have not yet been established.

1.4 Structure of the Report

I will start the report by briefly introducing the background theory needed to
understand the rest of the report. This will be done briefly in an extended list
of definitions in chapter 2, with references to other work for more detailed de-
scriptions. I will then continue by describing in more detail the methods used
in chapter 3, and considerations that were taken when writing the code. I will
move on to presenting and discussing the results in chapter 4. The results will be
divided into two parts, namely code performance in section 4.1 and results of the
simulations in section 4.2. I will then briefly summarise the conclusions that were
made in section 5.1, and finally move on to ideas for future work in section 5.2.

Chapter 2

Background Theory

In this chapter I will briefly introduce the background theory needed to under-
stand the rest of the report. This will be done in an extended list of definitions,
with references to other work for a more in-depth discussion. I will start by going
over some fundamental topics from quantum mechanics, then move on to more
general quantum information topics and finally give a brief description of some
concepts from quantum error correction.

2.1 Quantum Mechanics

Throughout this work, the density matrix or density operator formulation of quan-
tum mechanics is used, which differs from the state vector formulation in some
key aspects. The necessary definitions follow below.

Representation

It will be crucial for us to have a regular vector representation of quantum states and
a matrix representation for regular operators. A single qubit is a two-level system,
and a general state for a single qubit can be written as |ψ⟩ = α |0⟩ + β |1⟩. This
state can be parameterised by the complex numbers α and β, and we can represent
this state with a column vector by

|ψ⟩ = α |0⟩+ β |1⟩ :=
(
α
β

)
.

5

6 CHAPTER 2. BACKGROUND THEORY

Density Operator/Density Matrix

The density operator or density matrix of a quantum system is a representation of
the state of that system. If the system is in a so called pure state |ψ⟩, the density
operator is given by ρ = |ψ⟩ ⟨ψ|. If the general form of |ψ⟩ introduced above is
used, the density operator for the pure state has the matrix representation

ρ = |ψ⟩ ⟨ψ| :=
(
|α|2 αβ∗

βα∗ |β|2
)

The density matrix formulation is especially useful when one wants to describe
mixed states [3, pp. 100]. The density operator of a joint system made up of several
subsystems is given by a tensor product. For example, the density operator for n
qubits, where the state of each individual qubit is ρi, is given by

ρ = ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn

[3, pp. 102]. The matrix representation of the product state can be found taking
the Kronecker product of the matrices of the individual qubits [3, pp. 74].

Pure and Mixed States

A quantum system is said to be in a pure state when the state of the system is
known exactly. Pure states can be conveniently described by the state vector |ψ⟩.
A system is said to be in a mixed state if it can be in any number of pure states
|ψi⟩. The state vector formalism fails to describe these states, but in the density
matrix formalism such a state can be conveniently described by the density matrix
ρ =

∑
i pi |ψi⟩ ⟨ψi|, where pi is the probability for the system to be found in the

pure state |ψi⟩ [3, pp. 99].

Evolution of Quantum States

One of the postulates of quantum mechanics is that the time evolution of a closed
quantum system is described by a unitary transformation, that is a transformation
U such that UU † = U †U = I . In other words, if the initial state of the system
is |ψ⟩ at some point, the final state after some time has passed is U |ψ⟩. In the
density matrix language, this may be written as ρ→ UρU † [3, pp. 81, pp. 99].

2.1. QUANTUM MECHANICS 7

Projective Measurement

A projective measurement is described by a Hermitian operator M that has the
eigendecomposition

M =
∑
m

mPm

where Pm is the projection operator onto the eigenspace of M with eigenvalue
m. The operators Pm are orthogonal projectors, meaning that they satisfy the
relation PmPn = δmn where δmn is the Kronecker delta. The probability of
measuring outcome m is given by p(m) = ⟨ψ|Pm |ψ⟩. The state immediately
after measuring m is Pm|ψ⟩√

m
[3, chap. 2.2.5].

The Reduced Density Operator

Sometimes it is convenient to study the individual parts of a system separately, for
example in a situation when some qubits are used to represent data and others are
used just for readout and are then discarded, so called ancilla qubits. This can be
achieved within the density operator formalism by using the reduced density matrix.
Suppose that you have a composite systemAB described by a density matrix ρAB

and you want to study subsystem A. The reduced density operator for system A
is defined by

ρA ≡ trB(ρ
AB),

where the trB is called the partial trace over system B, and is defined by

trB (|ai⟩ ⟨aj | ⊗ |bk⟩ ⟨bl|) ≡ |ai⟩ ⟨aj | tr (|bk⟩ ⟨bl|) . (2.1)

A more thorough description of the reduced density operator and the partial trace
can be found in [3, chap. 2.4.3].

2.1.1 Quantum Operations

Because we want to be able to describe more general dynamics than just unitary
evolution and projective measurements, such as stochastic noise and environmen-
tal decoherence, we need to turn to the quantum operations formalism. A quantum
operation is defined as a map

ρ′ = E(ρ),

8 CHAPTER 2. BACKGROUND THEORY

where E is a quantum operation. E can include both unitary transformations
and projective measurements, but more generally it can include interactions with
an environment. Quantum operations have a particularly useful representation,
called the operator-sum representation, that will be used in this thesis. It turns out
that any quantum operation E(ρ), which can include environmental interactions,
can be represented as

E(ρ) =
∑
k

EkρE
†
k,

where the Ek:s are operators acting on the principal system. For an in-depth de-
scription of quantum operations and the operator-sum representation, the reader
can refer to [3, chap. 8.2.1-8.2.2].

2.2 Quantum Logic and Circuits

Just like algorithms for a regular computer can be described using low level op-
erations or gates on bits, such as the NOT, OR, and AND gates, quantum al-
gorithms can be described in a similar way. Moreover, circuit diagrams can be
used as a convenient means to represent algorithms graphically. In this section, I
will briefly introduce the quantum gates that are used in this thesis together with
an introduction to the quantum circuit diagrams. A more in-depth discussion of
these topics can be found in [3, Chap. 1.3].

2.2.1 Quantum Gates

The most fundamental gates used in this work are the Pauli Gates that can be
represented by the Pauli matrices. In this work, they together with the Hadamard
gate and their respective controlled versions are the only gates used.

2.2. QUANTUM LOGIC AND CIRCUITS 9

Pauli Gates and Eigenstates

There are four Pauli matrices, often denoted by σi, but here we denote them by I ,
X , Y and Z. They are defined as follows:

I ≡
(
1 0
0 1

)
,

X ≡
(
0 1
1 0

)
,

Y ≡
(
0 −i
i 0

)
,

Z ≡
(
1 0
0 −1

)
.

The I gate is simply the identity operation. The X gate is analogous to a classical
NOT gate, as it interchanges |0⟩ and |1⟩. The Z gate is sometimes referred to as
the phase flip operation, as it flips the phase of the |1⟩ state. The Y gate works
as a combination of the X and Z gates, as it can be written as a product of the
X and Z matrices. The computational basis states |0⟩ and |1⟩ can be identified as
eigenstates of the Z operator. A simple calculation will show that the states

|+⟩ ≡ 1√
2
(|0⟩+ |1⟩) ,

|−⟩ ≡ 1√
2
(|0⟩ − |1⟩)

are eigenstates of the X operator.

The Hadamard Gate

The matrix representation of the Hadamard gate is given by

H ≡ 1√
2

(
1 1
1 −1

)
.

The action of the Hadamard gate on the computational basis states is to inter-
change |0⟩ and |+⟩, and |1⟩ with |−⟩.

10 CHAPTER 2. BACKGROUND THEORY

Controlled Gates

A controlled gate takes a control qubit and a target qubit as input, and will do
something to the target only if the control qubit is in the |1⟩ state. There are two
controlled gates we use in this work: the controlled-NOT gate, or CNOT gate, and
the controlled-Z gate, or the CZ gate. The CNOT gate is a controlled version of
the X gate, and the CZ gate is a controlled version of the Z gate. The matrix
representations of these gates for a system of just a target and control bit are given
by

CNOT ≡

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

CZ ≡

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,

where the qubits are indexed from left to right. In the case of a system of three or
more qubits where you want to perform a CNOT with for example qubit 1 as the
control and qubit three as the target, the operation matrix can not be constructed
by taking a tensor product between the operation matrix given above and another
matrix. Instead, we have to consider the action of the CNOT: if the control bit is in
state |0⟩, do nothing, otherwise exchange |0⟩ and |1⟩. In the matrix representation,
this can be seen as simply permuting the rows where the control qubit is in state
|1⟩. A similar rule can be used to construct the CZ matrix, with the difference
being that the rows where the control and target are in state |1⟩ get a sign change.

2.2.2 Quantum Circuits

We will need a good way to describe quantum algorithms in terms of gates and
qubits, and for this we will use quantum circuit diagrams. Figure 2.1 below shows a
simple example circuit where aZ gate is applied to qubit awhich is then measured.

2.2. QUANTUM LOGIC AND CIRCUITS 11

a Z

Figure 2.1: A simple example circuit.

In the diagram, qubits are represented by wires and gate operations have spe-
cific symbols. The symbols for the Pauli Z gate and the measurement operation
have already been shown, and the other Pauli gates will simply be represented by
their corresponding letter in the same fashion as above. Similarly, the Hadamard
gate will be represented by the letter H . Figure 2.2 shows a CNOT gate between
two qubits.

a

b
Figure 2.2: A CNOT gate with qubit a as control and qubit b as target

In figure 2.2, qubit a is the control qubit. Controlled gates are always denoted
in the same way, with wires going from the control qubits to the target, which has
a gate symbol. Figure 2.3 shows a generalised controlled Z gate, with qubits a and
b as controls.

12 CHAPTER 2. BACKGROUND THEORY

a

b

c Z

Figure 2.3: A generalised controlled Z gate with qubits a and b as controls.

2.3 Quantum Error Correction

In this section, we will introduce the topic of Quantum Error Correction and the
Steane Code, the error correcting code studied in this thesis, as well as the Fidelity,
our main tool for checking how close two quantum states are.

Fidelity

The definition of fidelity varies between different works, but I will use the defi-
nition found in [3, Chap. 9.2.2]. The fidelity F between a pure state |ψ⟩ and a
density matrix ρ is defined as

F(|ψ⟩ , ρ) =
√
⟨ψ| ρ |ψ⟩. (2.2)

The Fidelity can take values in the interval [0, 1], where a fidelity of 0means ψ and
ρ are orthogonal, and a fidelity of 1 means that they are the same state. Because
we will work with fidelities very close to 1, a more practical measure is the fidelity
error, ϵfid = 1−F(|ψ⟩ , ρ), which will be referred to as the fidelity error.

2.3.1 Fundamentals of Quantum Error Correction

There are three fundamental barriers to developing quantum error correcting codes
which are not present for classical computers, namely

• TheNo CloningTheorem, which states that it is impossible to make a copy
of an arbitrary unknown quantum state [3, p. 532].

2.3. QUANTUM ERROR CORRECTION 13

• The fact that quantum states exist in a continuum, which means that the
errors affecting them are also continuous in nature.

• The fact that measurements destroy quantum superposition states.

Thankfully, these problems have neat workarounds. These workarounds will be
described below, and a more detailed description can be found in [3, Chap. 10.1-
10.2].

Subspace Encodings & Syndrome Measurements

A basic idea in classical error correction is that of introducing redundancy in a
system to protect against errors. We illustrate this with an example: Suppose we
have one bit of information, that can be in state 0 or 1, that we want to transmit.
Because of noise, there is a probability that the bit will flip to the other value during
transmission, causing a 0 to become a 1 and vice versa. To protect against this, we
make two copies of the bit and instead transmit either 000 or 111. Provided only
one of the transmitted bits flip, we can deduce the original state and recover the
lost information. This simple code can be adapted to the quantum case through
what is called a subspace encoding, given by

|0⟩ → |0⟩L ≡ |000⟩
|1⟩ → |1⟩L ≡ |111⟩ ,

where the subscript L denotes a logical state An arbitrary superposition state can
be encoded by

|ψ⟩ = a |0⟩+ b |1⟩ → a |000⟩+ b |111⟩ .

A circuit that accomplishes this is shown in figure 2.4.

a |0〉+ b |1〉
|0〉
|0〉

Figure 2.4: Circuit performing a basic subspace encoding.

14 CHAPTER 2. BACKGROUND THEORY

Suppose that the Pauli X operator is applied to the encoded qubits with a
certain probability. We get four possible error syndromes that we can correct for:

P0 = |000⟩⟨000|+ |111⟩⟨111| No error
P1 = |100⟩⟨100|+ |011⟩⟨011| First qubit flipped
P2 = |010⟩⟨010|+ |010⟩⟨010| Second qubit flipped

P3 = |001⟩⟨001|+ |110⟩⟨110| Third qubit flipped.

It is important to note that the measurement of the syndrome does not tell us
anything about the underlying state i.e. the constants a and b, only that an error
has occurred. This means that the state isn’t actually destroyed, which was another
problem we had to deal with.

Discretisation of Errors

Suppose that we have a code that can correct both bitflip and phaseflip errors on
one qubit, i.e. that can detect and correct both PauliX and Z errors. It turns out
that this is enough to correct an arbitrary error on one qubit. To see this, recall
that any quantum operation has an operator-sum representation, that is

E(ρ) =
∑
i

EiρE
†
i .

The four Pauli matrices form a basis for the space of 2× 2-matrices, so if only one
bit is affected, each operation element Ei can be written in the form

Ei = I ⊗ I ⊗ . . .⊗ (aiI + biX + ciY + diZ)⊗ . . .⊗ I.

Noting that Y = iXZ we can instead write this

Ei = I ⊗ I ⊗ . . .⊗ (aiI + biX + ciXZ + diZ)⊗ . . .⊗ I.

Suppose we have a collection of qubits in the total state |ψ⟩ = |ψ′⟩ ⊗ |ϕ⟩ where
we take |ψ′⟩ to be one qubit that we want to operate on and |ϕ⟩ to be the rest of
the system. We get

E(|ψ⟩) =

[∑
i

(aiI + biX + ciXZ + diZ)
∣∣ψ′〉]⊗ |ϕ⟩

= a
∣∣ψ′〉⊗ |ϕ⟩+ bX

∣∣ψ′〉⊗ |ϕ⟩+ cXZ
∣∣ψ′〉⊗ |ϕ⟩+ dZ

∣∣ψ′〉⊗ |ϕ⟩ .

We can now construct a syndrome measurement that collapses E(|ψ⟩) into one
of the components |ψ′⟩ ⊗ |ϕ⟩, X |ψ′⟩ ⊗ |ϕ⟩, XZ |ψ′⟩ ⊗ |ϕ⟩ and Z |ψ′⟩ ⊗ |ϕ⟩.
Since all of these terms only contain X and Z errors, we can correct them.

2.3. QUANTUM ERROR CORRECTION 15

Error Models

Equipped with some basics of quantum logic, we can now start with some simple
error models that are used here, following [3, Chap 8.3]. For this, we use the
operator-sum representation of quantum operations. With error discretisation in
mind, a very simple way to model an imperfect quantum gate is to say that the
gate is applied perfectly, but is then followed by a bitflip, phaseflip or combination
error with a certain probability. This way, the total operation for a gate G, with
total error probability p becomes

G∗(ρ) = (1− p)GρG† +
p

3
(XGρG†X + Y GρG†Y + ZGρG†Z).

For gates involving several qubits, we can use combinations of the basic X , Y
and Z errors on all qubits instead. Errors that can not be described in the state
vector formalism are the phase damping and amplitude damping channels. The
operation elements of the amplitude damping channel are

E0 =

(
1 0
0

√
1− γ

)
, E1 =

(
0

√
γ

0 0

)
.

The effect of this channel on a density matrix is to move the state towards the
ground state |0⟩, and it can be used to describe energy dissipation or spontaneous
decay. The operation elements for the phase damping channel are given by

E0 =

(
1 0

0
√
1− λ

)
, E1 =

(
0 0

0
√
λ.

)
This channel can model the loss of knowledge of the phases between the compo-
nents in a superposition.

2.3.2 The Steane Code

The Steane Code is the main code studied in this thesis, and uses 7 physical qubits
to encode a logical qubit. It can be used to correct one arbitrary error on a single
qubit, or one phaseflip and one bitflip error on different qubits. Instead of defining
the logical basis states directly, the Steane Code can be described completely by six
operators, called stabilisers, acting on the 7 qubits that make up the logical state.

16 CHAPTER 2. BACKGROUND THEORY

These are:

K1 ≡ IIIXXXX,

K2 ≡ XIXIXIX,

K3 ≡ IXXIIXX,

K4 ≡ IIIZZZZ,

K5 ≡ ZIZIZIZ,

K6 ≡ IZZIIZZ.

The logical basis states |0⟩L and |1⟩L are defined as simultaneous +1 eigenstates
of the stabilisers. To illustrate why it is practical to define the code in terms of
these operators, the states |0⟩L and |1⟩L for the Steane code are given by

|0⟩L =
1√
8
(|0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩

+ |0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩),

|1⟩L =
1√
8
(|1111111⟩+ |0101010⟩+ |1001100⟩+ |0011001⟩

+ |1110000⟩+ |0100101⟩+ |1000011⟩+ |0010110⟩).

These can be very cumbersome to work with. Moreover, as will be seen later,
error correction and state preparation with the Steane code can be performed by
measuring the stabilisers in a smart manner. Once the basis states |0⟩L and |1⟩L
have been defined, one can also define logical equivalents of common operators,
like the Pauli and Hadamard operators.

Logical Operators

In the case of the Steane code, the logical equivalents of the operators that are
used in this work, namely the Pauli and Hadamard operators have a very simple
so called transversal form. To perform a logical H-operation, one simply applies
the one bit H-operator to all the data qubits separately. The same holds for the
Pauli operators. Thus, we can write e.g.

HL = HHHHHHH.

2.3. QUANTUM ERROR CORRECTION 17

Parity Measurements

To perform state preparation and error correction with the Steane Code, we need
a way to measure the stabilisers without destroying information. The type of mea-
surement used for this is called a parity measurement. Parity measurements give us
a way to measure operators without destroying information. Figure 2.5 shows a
circuit to perform a parity measurement of an arbitrary operatorK on four qubits.

|0〉 H

K

H

Figure 2.5: Circuit to perform a parity measurement of the K operator.

This type of measurement does not destroy any information, since the mea-
surement result only tells us if the state of the system is a +1 or −1 eigenstate
of the operator, not what the eigenstate actually is. To see this, we write out the
action of the circuit in figure 2.5: Let the data qubits be in the state |ψ⟩, so that
the total state of the system with ancilla and data qubits at the beginning of the
circuit is ∣∣ψ′〉 = |0⟩ ⊗ |ψ⟩ .

The first Hadamard gate acts on the ancilla, so that the total state is now

∣∣ψ′〉 =
1√
2
(|0⟩+ |1⟩)⊗ |ψ⟩ .

Note that |ψ′⟩ is not the same state, it is just used as a label. Applying the con-
trolled K operation we get

∣∣ψ′〉 =
1√
2
(|0⟩ ⊗ |ψ⟩+ |1⟩ ⊗K |ψ⟩),

18 CHAPTER 2. BACKGROUND THEORY

and applying the second Hadamard gate gives∣∣ψ′〉 =
1

2
|0⟩ ⊗ (|ψ⟩+K |ψ⟩) + 1

2
|1⟩ ⊗ (|ψ⟩ −K |ψ⟩).

Noting now that K is both unitary and Hermitian, we see that

K
1√
2
(|ψ⟩+K |ψ⟩) = 1√

2
(|ψ⟩+K |ψ⟩ ,

K
1√
2
(|ψ⟩ −K |ψ⟩) = − 1√

2
(|ψ⟩ −K |ψ⟩),

so measuring the ancilla in |0⟩ forces the system into a +1-eigenstate of K and
measuring the ancilla in |1⟩ forces the system into a -1-eigenstate of K.

Error Correction

With the stabiliser operators and parity measurements in hand, we are ready to
design a circuit to perform error correction with the Steane code. The strategy
will be to measure all of the operators Ki, and then apply X and Z gates to the
appropriate qubits to place the system in the correct eigenstate. Figure 2.6 shows
a circuit that corrects one phaseflip error using the Steane code.

|0〉
|0〉
|0〉

H

H

H

K1 K2

H

K3

H

H

Zi

Figure 2.6: A circuit to correct one phaseflip error with the Steane code.

To see why K1 − K3 are used to find phaseflip errors, note that the X and
Z operators anti-commute. When using the code for error correction, we assume
that the state |ψ⟩ of the data qubits is already a +1-eigenstate of Ki. Using K1

2.3. QUANTUM ERROR CORRECTION 19

as an example, let us say that there is a phaseflip error on the 7th qubit, so that
we have the state Z7 |ψ⟩. Since |ψ⟩ is a +1-eigenstate of K1, the state |ψ′⟩ after
applying the second Hadamard gate in the parity measurement is

∣∣ψ′〉 =
1

2
|0⟩ ⊗ (Z1 |ψ⟩ − Z1K1 |ψ⟩) +

1

2
|1⟩ ⊗ (Z1 |ψ⟩+ Z1K1 |ψ⟩)

= |1⟩ ⊗ Z1 |ψ⟩ ,

so performing the measurement will automatically place the system in a−1-eigenstate
of K1. The basic idea behind the circuit is then that three measurements are
enough to determine which bit has a phaseflip error. To correct the error a Z gate
is then applied on that bit.

Error Propagation & Fault Tolerance

The circuit in figure 2.6 would work if we had perfect gates apart from the error,
and could prepare perfect ancilla qubits. However, in a real scenario we also want
to limit how errors propagate. A circuit is called fault tolerant if it is designed in a
way such that an error on one qubit can propagate to at most one other qubit. To
achieve fault tolerance, we need to alter the circuit in figure 2.6. Figure 2.7 shows
a circuit which applies a controlled stabiliser operation fault tolerantly and then
measures it.

|0〉
|0〉
|0〉
|0〉
1

7

H H

Figure 2.7: A circuit that applies a controlled stabiliser operator of the Steane code
fault tolerantly and then measures it.

20 CHAPTER 2. BACKGROUND THEORY

This is not enough for fault tolerance as the ancilla preparation, shown in the
part of figure 2.7 to the left of the zig-zag line, is not fault tolerant. Figure 2.8
shows how to initialise the ancilla qubits fault tolerantly.

|0〉
|0〉
|0〉
|0〉
|0〉

H

repeat until measurement is 0

Figure 2.8: Fault tolerant ancilla preparation.

Here, the circuit is repeated until the top qubit is measured as |0⟩. To make
the circuit more clear, it is practical to introduce the equivalent operation shown
in figure 2.9.

|0〉
|0〉
|0〉
|0〉
|0〉

KM
i

Figure 2.9: Circuit element representing a fault tolerant application of the opera-
tor Ki, with subsequent parity measurement. This includes fault tolerant ancilla
preparation. This is the combination of the operations shown in figure 2.7 and
figure 2.8

2.3. QUANTUM ERROR CORRECTION 21

There is one more thing that requires consideration: The fact that the measure-
ments themselves might fail. To combat this, majority voting is used to determine
if the measurement result is correct. The complete fault tolerant circuit is shown
in figure 2.10.

|0〉
|0〉
|0〉
|0〉
|0〉

KM
1

KM
1

KM
1

KM
2

KM
2

Apply measurement between
zig-zag lines only if the two pre-
vious results differ.

KM
2

KM
3

KM
3

KM
3

Zi

|0〉
|0〉
|0〉
|0〉
|0〉

Figure 2.10: A circuit for fault tolerantly measuring the first three Steane stabiliser
operators fault tolerantly. This circuit can be used for both state preparation and
correcting phase flip errors. Image taken from [6].

This circuit uses the first three stabilisers, K1-K3, and can be used for both
state preparation and correcting phase flip errors. To correct bit flip errors,K4-K6

can be used in an analogous circuit. For a more comprehensive explanation of the
Steane code and error correction in general, see [3, Chap. 10] and [6].

22 CHAPTER 2. BACKGROUND THEORY

2.3.3 TheThreshold Theorem

The Threshold theorem for quantum computation is a very important result in quan-
tum error correction. The theorem states that given some assumptions about the
underlying hardware, a quantum circuit consisting of p(n) gates, where p(x) is a
polynomial, may be simulated with error probability at most ϵ using

O (poly(log p(n)/ϵ)p(n))

gates where the probability of individual gate errors is p, given that p is smaller
than a constant threshold value pth. This is important in the context of error
correction, because it means that given a constant threshold value pth is achieved,
error correction will provide a benefit. There are some important assumptions
that are needed to be able to reach the threshold though, one of them being that
parallel operations are possible. Otherwise, for example dephasing could become
too strong for error correction to work [3, p. 481].

Chapter 3

Methods

In this chapter I will introduce the methods used for the simulations. This includes
general considerations taken when writing the code, as well as what error models
were used and how the circuits themselves were modelled.

3.1 Density Matrix Simulation of Quantum Circuits

Recall from section 2.1 that a qubit can be represented as a vector by

|ψ⟩ = α |0⟩+ β |1⟩ :=
(
α
β

)
,

and that the density matrix for the qubit is given by

ρ = |ψ⟩ ⟨ψ| :=
(
|α|2 αβ∗

α∗β |β|2
)
.

Recall also from section 2.1 that several qubits can be represented by a product state,
and that in the matrix representation the product state can be found by taking the
Kronecker product of the matrices for the individual qubits. This density matrix
representation was used in the computer program to represent qubits. Thus, the
state of the seven qubits of the Steane code was represented by a 27 × 27 matrix,
and gate operations were implemented using the matrix representations given in
section 2.2.1.

As mentioned before, the density matrix formalism provides some advantages over

23

24 CHAPTER 3. METHODS

the state vector formalism. The ones relevant for this work are more specifically
that it allows for mixed states, and system-environment interactions like the am-
plitude and phase damping channels described previously. It does however come
with some disadvantages. An arbitrary system of N qubits requires knowledge of
2N constants in the state vector representation. In the density matrix language,
this turns into 2N · 2N = 22N constants. The Steane Code uses 7 data qubits
and four ancilla qubits simultaneously, so simulation of one logical qubit seems
to require performing hundreds of multiplications of 211 × 211 matrices.

3.1.1 Partial Trace

Recall from section 2.1 that the partial trace can be used to remove parts of a
system while keeping the correct measurement statistics about the system. This
can be used to dynamically reduce the size of the system during simulations as
ancilla qubits can be prepared separately and removed once no longer in use. This
was used wherever possible, as a reduction in matrix size from 211×211 to 27×27

is substantial enough to give a large performance boost.

3.1.2 Sparse Matrix Operations

The main way that was chosen to try to combat this is through using sparse matrix
methods. Most of the operators used for error correction are either single qubit
gates or tensor products of controlled versions of the Pauli operators. The Pauli
operators and their controlled versions like the CNOT gate all have exactly one el-
ement per row, which means that using sparse matrix multiplication can eliminate
a huge number of unnecessary multiplications by zero. It also seems reasonable to
assume that the resulting density matrices will, even when errors are included, have
a large number of zeros, although the exact amount is very difficult to estimate.

3.1.3 Gate Tolerance

Another method that was tried to achieve a speedup was to introduce a tolerance
in the gates, so that after all operations have been performed elements of the den-
sity matrix smaller than a very small constant are set to zero. In all simulations, the
tolerance was set to 10−16. This number was chosen because it should be reason-
ably close to the machine epsilon, and several orders of magnitude smaller than

3.1. DENSITY MATRIX SIMULATION OF QUANTUM CIRCUITS 25

typical values of the fidelity error ϵfid which, by experience, are typically greater
than 10−9.

3.1.4 Error Models

The question of which errors to consider is a difficult one, and it is possible to have
very sophisticated models. However, since the exact errors affecting our system in
particular are unknown, a different approach was taken.

Gate Errors

To begin with, it was assumed that gate operations can introduce errors on the con-
trol and target qubits, but that no additional correlated noise is present in the parts
of the system at rest. Furthermore, it was assumed that operations can happen in
parallel in the sense that if for example a Hadamard gate is applied to two sepa-
rate qubits, the operation can be performed simultaneously on both. This means
that amplitude and phase damping only has to be applied to qubits that are not
affected by the multi qubit gate. Parallel operations are, as mentioned in section
2.3.3, a prerequisite for error correction to work in the first place. In light of the
discretisation of errors mentioned in section 2.3.1, it seems reasonable to assume
that single qubit gates introduce bit flip and phase flip errors each with probabil-
ity p, and combined bit and phase flip errors, represented by the Y -operator, with
probability p2. For two qubit gates, it is assumed that errors can be introduced on
both the target and control qubits. Therefore, one also needs to take into account
errors on both qubits on the form σi⊗ σj , where σi is one of the Pauli operators.
For simplicity, since the exact shape of errors and error rates were unknown, it was
assumed that the rate of single qubit errors were the same as for single qubit gates,
and the rate for two qubit errors were the product of the rates for the single qubit
errors involved resulting in e.g. a rate of p3 for the errorX ⊗Y . The constants in
the phase and amplitude damping channels were again set to the single qubit gate
error rate p.

It was also assumed that gate errors can be modelled by a perfect single or two
qubit gates followed by an error operation. In the case of the Hadamard gate with
errors, the total operation on one qubit would be

H ′(ρ) = HρH[1− (2p+ p2)] +XHρHXp+ Y HρHY p2 + ZHρHZp.

26 CHAPTER 3. METHODS

Initialisation & Readout Errors

In addition to gate errors and amplitude and phase damping, it was also assumed
that there are errors associated with qubit initialisation and qubit readout. The
initialisation error implementation is straightforward; one can simply assume that
on initialisation to |0⟩, there is a probability p that the qubit is instead initialised
to |1⟩. Thus, the initialised state would be

|ψ⟩ = (1− p) |0⟩+ p |1⟩ .

Readout errors can also be implemented in a straightforward manner by defining
a probability pr that the measurement result is incorrect. This way, measuring a
qubit as |1⟩ is wrong with probability pr, so the state after measuring a qubit is

|ψ⟩ ⟨ψ| = (1− pr) |1⟩ ⟨1|+ pr |0⟩ ⟨0| .

The rare earth system in Lund has asymmetric readout errors, meaning that |0⟩ has
a relatively high probability to be measured as |1⟩ but not the opposite [7]. With
this in mind, it was assumed that the probability to measure |1⟩ as |0⟩ is negligible.

Using the sparse matrix representations of operators and density matrices together
with the error models discussed, an object oriented framework for simulating
quantum circuits was developed in Matlab, where arrays of qubits and quantum
gates are represented by objects that can interact with each other.

3.2 Simulating Error Correction with the Steane Code

The final thing that deserves some discussion here is how to actually simulate error
correcting circuits. The main merit of the density matrix approach is, as mentioned
previously, that mixed states can be described. Recall from section 2.3.2 that the
Steane code uses 7 qubits to encode a single logical qubit, and that it can be used
to correct one bitflip and one phaseflip error provided that they happen on dif-
ferent qubits, or one arbitrary error. Every syndrome measurement on one logical
qubit for a single type of error, that is bitflip or phaseflip error, therefore has 8
different outcomes: no error or e.g. a bitflip error on one of the qubits belonging
to the block. Because of the fault tolerant measurement scheme for the stabiliser
operators, the number of outcomes increases further. Studying figure 2.10, it is
possible to count all of the possible paths when measuring K1, K2 and K3. The
individual stabiliser measurements have two outcomes, either +1 or −1. Each

3.2. SIMULATING ERROR CORRECTION WITH THE STEANE CODE 27

of these can be reached in three different ways, since if two consecutive measure-
ments yield the same result that result is taken to be correct. For each stabiliser
measurement, there are thus six different paths. After measuring three stabilisers
there are thus 63 = 216 possible paths to reach eight possible error syndromes.
This is illustrated in table 3.1 below.

Table 3.1: Table illustrating the different outcomes when measuring K1-K3.
Since majority voting is used, two consecutive equal measurement results, for ex-
ample measuring +1, +1, automatically means the measurement is interpreted
as +1. This means that there are six different outcomes of every stabiliser mea-
surement. In total, there are therefore 63 = 216 different paths that have to be
accounted for.

K1 K2 K3

+1, +1 +1 +1 +1 +1
+1, -1, +1 +1, -1, +1 +1, -1, +1
-1, +1, +1 -1, +1, +1 -1, +1, +1

-1, -1 -1, -1 -1, -1
-1, +1, -1 -1, +1, -1 -1, +1, -1
+1, -1, -1 +1, -1, -1 +1, -1, -1

In the case of measuring phase flip errors, there are eight possible outcomes:
Either there is no measured error, or there is a phase flip error on one of the 7
data qubits. Therefore, after performing the measurement step one can take a sum
over the 27 different paths leading to a specific syndrome, weighted by the correct
probabilities for each outcome, and then perform the correct error correction op-
eration. Finally, one can sum the total error corrected states weighted by the total
probability to get them. In this way all calculations can be performed analytically,
which would not be possible in the state vector representation.

Some additional assumptions were used during the simulations, and these will
be listed here. Firstly, since the |0⟩ and |1⟩ used are different ground state levels,
it was assumed that amplitude damping does not affect bits which aren’t operated
on. It was further assumed that both ancilla preparation and measurement can
happen in parallel with operations on the data qubits. This means that the data
qubits are not affected by phase damping during readout and ancilla preparation.

Chapter 4

Results & Discussion

In this chapter I will present and discuss the results. I will begin with present-
ing some run-time statistics about the code given different conditions, and then
present the simulation results.

4.1 Code Performance

A prerequisite for simulating error correction is that the quality of the code used
for simulation is high enough. A major concern at the beginning was that it would
take too much time to simulate error correction, since it involves a large number
of operations with large matrices. There are essentially two major factors that can
be expected to have a large impact on the run-time of a simulation, namely the
depth of the circuit and the width of the circuit. The width and depth of a circuit
are illustrated in figure 4.1 below.

|ψ〉⊗Nw

Depth determined by
no. of gates in series, Nd

Width is determined by Nw

Nd

Figure 4.1: Diagram to illustrate the depth and width of a circuit. The width here
is given byNw, the number of qubits in the circuit. The depth is given byNd, the
number of gate operations in the circuit.

29

30 CHAPTER 4. RESULTS & DISCUSSION

The depth of the circuit is simply the number of gates that are applied in se-
ries, and the width of the circuit is the number of qubits it uses.The run-time is
expected to scale linearly with the circuit depth, since the time it takes to run a
gate should be approximately constant. In contrast to this, one would expect the
run-time to scale exponentially with the width of the circuit, since adding a qubit
increases the size of the density matrix by a factor of 4. Therefore, one would ex-
pect the main limiting factor when it comes to code performance to be the width
of the circuit. Also, this is the factor that should be affected by using sparse matrix
operations, since the number of elements in the gate matrices scale as 2Nw while
the matrix size scales as 22Nw .

4.1.1 Performance as a Function of Circuit Width

To test the impact of the circuit width on the run-time, a simple test was performed
where one X-gate, with errors, was applied to a system of increasing size. For
every size of the circuit, the run-time of applying a gate was measured a number
of times and the final run-time was taken as the mean value. This was done for
system sizes between 1 and 12 qubits. To compare with the case without sparse
operations, the same test was also carried out for random full matrices of the correct
size. To get the correct number of operations when compared with the gate with
errors, the total operation f(A) for the full matrix A that was tested was f(A) =
A3 + A3 + A3 + A3. This should be compared with the expression for a single
qubit gate with errors given in section 3.1.4. The results of this test are shown in
figure 4.2.

4.1. CODE PERFORMANCE 31

0 2 4 6 8 10 12
Number of Qubits

10-6

10-5

10-4

10-3

10-2

10-1

100

101
M

ea
n

R
un

tim
e

[s
]

10-8

10-7

10-6

10-5

10-4

10-3

10-2

S
E

M
 [s

]

100 Sample Mean Runtime and SEM for Full Matrices and Gates as a Function
of Circuit Width in Number of Qubits

Random Full matrix
Gate operation
SEM random full
SEM gate

Figure 4.2: Mean run-time and Standard Error of the Mean (SEM) for 100 sam-
ples as a function of circuit width expressed in number of qubits. The solid lines
show the results for full matrices, and the dashed lines show the results for the
sparse matrices and gates used in actual simulations. The blue lines show the mean
run-time, and the red lines show the SEM. Regarding the SEM, it is important to
note that the scale is different from the scale for run-time, so the errors are quite
small. Full matrices and sparse matrices have similar performance for narrower
circuits, up to around 7 qubits, but for wider circuits the sparse operations can be
seen to outperform full matrices by several orders of magnitude. The difference
in run-time at 12 qubits is almost 3 orders of magnitude. The reason why the
performance gain is so drastic is that the number of flops needed for operations
with full matrices scale with 22Nw , while for sparse gate operations the number of
flops scales with 2Nw .

The blue lines in figure 4.2 show the mean run-time, and the red lines show the
SEM, with full lines for full matrices and dashed lines for the gate operations used
in my code. For narrow circuits, full gates actually outperform the gate operations.

32 CHAPTER 4. RESULTS & DISCUSSION

This is to be expected, as sparse operations come with some overhead. However,
for widths larger than 7 qubits the gate operations start outperforming full matrix
operations quite drastically, with a difference of around 3 orders of magnitude for
12 qubits. This can also be expected due to the exponential scaling of the matrices.
For full matrices, the number of flops needed to carry out one multiplication scales
with 22Nw where Nw is the number of qubits, whereas the number of flops for
sparse matrix operations scale with 2Nw . It is important to note that the scale for
the SEM in figure 4.2 is different from the scale for the run-time, so the errors
are actually quite small. In the case of simulating circuits with the Steane code, 7
is the smallest number of qubits used at any point, with 12 being the highest if
only one logical qubit is used. This means that sparse operations are better for the
whole range of qubit numbers considered in this work. It is important to mention
here that figure 4.2 shows a best case scenario, since a sparse density matrix was
used for comparison. However, since the full matrix approach always needs more
flops for matrix multiplication the performance of the implemented gates is still
better.

4.1.2 Performance as a Function of Circuit Depth

To measure the run-time as a function of circuit depth, the time it takes to perform
N gate operations was measured for different integer values of N . The measure-
ments were made separately for single qubit gates and two qubit gates, the single
qubit gates being the Pauli gates and the Hadamard gate, and the two qubit gates
being the CNOT and CZ gates. This was warranted by the fact that the single
qubit gates need fewer operations to calculate errors than the two qubit gates. For
the single qubit gates the run-time was measured as the average over 100 samples,
and for the two qubit gates it was measured as the average over 25 samples. N
was chosen between 1 and 100 gates, and the starting state for all tests was the
|0⟩L-state of the Steane code. The results are shown in figure 4.3.

4.1. CODE PERFORMANCE 33

0 50 100
Number of gates

0

0.05

0.1

0.15

0.2

0.25
M

ea
n

R
un

tim
e

[s
]

Runtime mean vs number of gates,
errors included

All SQBG
TQBG
Hadamard
SQBG no Hadamard

0 50 100
Number of gates

0

0.002

0.004

0.006

0.008

0.01

0.012

M
ea

n
R

un
tim

e
[s

]

Runtime mean vs number of gates,
no errors

All SQBG
TQBG
Hadamard
SQBG, no Hadamard

Figure 4.3: Average run-times for the different kinds of gates used in this work.
The left hand plot shows run-times for gates with errors, and the right hand plot
for gates without errors. Note in particular that the scales are different in the two
plots, so the run-time for gates with errors are around an order of magnitude larger.

The left hand plot of the figure shows the average run-times for gates when
errors are included, and the right hand plot shows results for gates when errors are
not included. Note that the scale is not the same in the two plots, so the run-time
for gates with errors is actually an order of magnitude longer than when errors are
not included. Note also that the run-time for single qubit gates was measured for
three different cases; the Pauli gates separately, the Hadamard gate separately, and
all single qubit gates together. As expected, the run-time when errors are included
is significantly longer than the case without errors. There are two main reasons
for this; Firstly, including errors means having to perform more matrix multipli-
cations and additions. Secondly, including errors often leads to the density matrix
having more non zero elements, which would also reduce the efficiency of sparse
matrix operations.

34 CHAPTER 4. RESULTS & DISCUSSION

Something that is a little bit more surprising is that single qubit gates, when the
Hadamard gate is included, perform substantially worse than the Pauli gates and
even two qubit gates when errors are included. This is surprising because including
the cross term errors for two qubit gates, that is, terms like XX, ZX etc. means that
many more matrix multiplications and additions have to be performed. However,
the Hadamard gate by itself being the worst performer in figure 4.3 could give us a
hint for why this may be. Studying the right hand plot in figure 4.3 the difference
between the Hadamard gate and the two qubit gates is not as drastic as in the plot
where errors are included. The basic one qubit Hadamard matrix is full, whereas
the CNOT, CZ and Pauli gates only have one non-zero element per row. This
means that the Hadamard gate will always have twice as many elements in the
operation matrix compared to the others when applied to a system of equal size. A
likely reason for why the two qubit gates without errors do not perform as well as
the Pauli gates is that building the matrices for the two qubit requires some more
complicated calculations than for the Pauli gates, which can be constructed with
just a Kronecker product.

The left hand plot of figure 4.3 shows that the run-time is about an order of mag-
nitude larger than when no errors are present. This is to be expected as more
matrix multiplications are needed per gate and the errors could possibly make the
density matrix less sparse. It is interesting to note that the difference between
the Hadamard gate and the other gates is further exaggerated in this case. This
could maybe be explained by the fact that the Hadamard gate creates superposi-
tion states, which could potentially reduce the sparsity of the density matrices even
further.

4.1.3 Impact of Gate Tolerance

The final method that was identified as potentially being able to reduce run-times
in section 3.1.3 was that of introducing a tolerance in the gates to remove small
elements from the density matrices, thereby introducing more sparsity. To test the
impact of introducing a tolerance, the time to perform one error correction cycle
was measured for tolerances between 0 and 10−8. A constant error rate of 10−8

was used, and the run-time was taken as the average of 10 samples. It is worth
mentioning that the depth of the circuit performing error correction is around
200, and the width varies between 7 and 12 qubits. Figure 4.4 shows the results.

4.1. CODE PERFORMANCE 35

10-16 10-15 10-14 10-13 10-12 10-11 10-10 10-9 10-8

Gate Tolerance

20

25

30

35

40

R
un

tim
e

[s
]

2

2.5

3

3.5

4

4.5

1-
F

id
el

ity

10-7Runtime & Fidelity Error for logical state preparation vs Gate Tolerance, perr = 1e-8

Runtime
1-Fidelity

Figure 4.4: Average run-time for five samples and resulting fidelity for state prepa-
ration using the Steane code as a function of gate tolerance at an error rate of
10−8. Introducing a tolerance reduced the run-time in this case, and by choosing
the tolerance small enough compared to the error rate the resulting fidelity error
seems unaffected compared to when no tolerance is used.

It is interesting to note that the fidelity error plateaus around 4.2 ·10−7 for all
tolerances above 10−10, with an approximately constant run-time that is slightly
lower than when no tolerance is used. Thus, it seems that some speedup could be
achieved by choosing a favourable tolerance. It seems reasonable to assume that
performance and fidelity error for a specific tolerance would depend on the error
rate though, so choosing one tolerance for all error rates would in the best case
give a small speedup and in the worst case render incorrect results. This speaks for
not using a tolerance during simulations, as the potential gain in run-time is fairly
small and it introduces a risk.

36 CHAPTER 4. RESULTS & DISCUSSION

4.2 Error Correction Simulations

In this section, I will present and discuss the results of the actual simulations of
circuits using the Steane code for error correction. I will begin by presenting some
initial investigations into which types of errors have the most effect on the fidelity
error, and some conclusions, and then move on to manifestations of the threshold
theorem.

4.2.1 Impact of Different Types of Errors

At this point, it might be worthwhile to reiterate the purpose of error correction:
To reduce the fidelity error per gate of a circuit beyond what is possible by just
improving hardware. Essentially, when using an error correcting code one hopes
to see a reduced fidelity error for a logical circuit compared to a physical one,
provided that the error rate perr for the physical gates constituting the circuit
is low enough. The typical circuit that is considered throughout this chapter is
illustrated in figure 4.5.

ρ Initialisation Nd EC ρ′

Figure 4.5: Illustration of the type of circuit considered in this section. The circuit
is to be understood as a flowchart; A state ρ is initialised, typically in the state |0⟩L,
followed by an algorithm of depthNd, which is then followed by error correction,
denoted by EC. After error correction, the fidelity error of the final state ρ′ can be
measured against a state |ψ⟩, which is the resulting state of the circuit if errors are
not present.

With the purpose as stated above in mind, one might expect that the fidelity
error when using the Steane code for error correction as in figure 4.5 should be
reduced for any circuit, provided that perr is small enough. This, however, turns
out not to be true. Figure 4.6 below shows results for a few different scenarios.
The circuit that was simulated is the one in figure 4.5 with Nd = 1 and where it
is assumed that the initialisation stage is completely error free.

4.2. ERROR CORRECTION SIMULATIONS 37

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

Error Rate

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

F
id

el
ity

 E
rr

or

Fidelity Error Vs Error Rate

Physical Single Qubit Gate

Logical Single Qubit Gate, No EC

Logical SQBG with EC, no idle, readout or init errors

SQBG errors, w/ readout and init error

Only SQBG errors

Only SQBG errors, w/ idle

No gate errors, with idling

Figure 4.6: Fidelity error as a function of error rate pth for different errors and
different scenarios. It is clear from studying the lines that the error for the schemes
involving error correction is larger than for those without in realistic scenarios.
This is because the circuit only uses 1 actual gate operation but has several EC-
gates, so the error is limited by the error for EC.

Figure 4.6 shows 7 different lines. All of these show the fidelity error ϵfid as
a function of perr for the circuit depicted in figure 4.5 with Nd = 1. Different
assumptions about which error sources were present and different circuit widths
were used for all cases.

1. The solid red line shows the results for a physical single qubit gate. The
fidelity error is expected to scale linearly with perr and this seems to be the
case.

2. The solid green line shows the results for a logical single qubit gate, without
error correction. Since no error correction is used in this case, ϵfid is ex-
pected to be larger than ϵfid for the physical gate by a constant factor. One
would however still expect it to scale linearly with perr. This seems to be

38 CHAPTER 4. RESULTS & DISCUSSION

the case, as this line has the same slope as the solid red line but is translated
upwards in the plot.

3. The dash-dotted blue line shows results for a logical single qubit gate with
error correction, but where both the readout and initialisation errors are
set to 0 and where phase and amplitude damping is neglected. Since error
correction is used and the Steane code can correct one error, one would
expect ϵfid to be proportional to p2err provided that perr is small enough,
since p2err is roughly the probability that 2 errors will occur. This is clearly
not the case, as the slope is the same as for the two previous lines.

4. The dash-dotted yellow line shows results for the same circuit as the dash-
dotted blue line. The difference is that all two qubit gate errors were set to
0, and the readout and initialisation errors were set to perr. Amplitude and
phase damping were also neglected. This line shows what one would expect
from error correction, since the slope looks like it is twice that of the previ-
ous examples. However, this is not entirely helpful since the assumption of
flawless two qubit gates is highly unrealistic.

5. The dashed magenta line shows the same circuit with the same assumptions
as the dash-dotted yellow line, except that readout and initialisation errors
are also neglected. It has the same slope as the dash-dotted yellow line,
but differs from a constant factor. This seems reasonable: the slope should
not increase since the Steane code can only correct one error, but removing
further error sources should still result in further suppression of ϵfid. This
also suggests that readout and initialisation errors do not have a large impact
on the final error.

6. The black dashed line shows results where all gate errors, and initialisation
and readout errors have been removed, but amplitude and phase damping
are allowed. This line has the same slope as the first few examples, which sug-
gests that amplitude and phase damping errors accumulate too quickly for
error correction to work in this case. Comparing this with the initialisation
and readout errors used for the dashed magenta line shows that amplitude
and phase damping are much more important sources of error.

7. Finally, the dashed cyan line shows results for a logical gate with error correc-
tion, but only the errors from amplitude and phase damping are included.
This line again has the same slope as when error correction is not applied,
and the fidelity error is a constant factor larger than for the physical qubit.

4.2. ERROR CORRECTION SIMULATIONS 39

The results shown in figure 4.6 seem to suggest that error correction only works
under unrealistic assumptions, at least when using the Steane code. Therefore, a
different approach is needed. Gottesman writes in [8] that the number of gates
applied before error correction has a large impact on the performance of the error
correcting code. Going back to figure 4.5, this would mean increasing the depth
Nd of the circuit before error correction. On an intuitive level, it makes sense that
this would be the case; Since the syndrome extraction circuit has a much larger
depth and width than a physical gate performed on a physical qubit, the risk of
introducing an error by performing error correction should be larger than in the
physical case when Nd is low.

4.2.2 Finding Optimal Gate Numbers

With the results from section 4.2.1 in mind, it seems reasonable to check what
depth a physical circuit needs to have for the fidelity error of the circuit to be
larger than for the error correction circuit. To do this, ϵfid was measured as a
function of the circuit depthNd, as illustrated in figure 4.5, for both physical and
logical circuits for some values of perr. Additionally, ϵfid for running an error
correction cycle on |0⟩L was measured for the same values of perr. The results are
shown in figure 4.7.

40 CHAPTER 4. RESULTS & DISCUSSION

100 101 102

No. of gates

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100
F

id
el

ity
 E

rr
or

Fidelity Error vs number of gates, and Fidelity Error for error correction at corresponding error rate

Fidelity for Error Correction

Physical gates

Logical gates

p
err

 = 1e-9

p
err

 = 1e-7

p
err

 = 1e-5

p
err

 = 1e-3

Figure 4.7: Fidelity error as a function of number of gates for physical and logical
single qubit gates at fixed values of perr, as well as fidelity error for error correction
at corresponding values of perr. The solid lines show results for physical gates,
and the dash-dotted lines for logical gates. The horizontal dashed lines show ϵfid
for running an error correction cycle. The lines are colour coded by perr so for
example the group of blue lines show results for perr = 10−9. The effect of
increasing perr is to move ϵfid vertically in the plot, but there also seems to be a
minor change in the relative vertical positions between the lines. The interesting
thing to look at is at what depth, given by number of gates in the figure, the line
for error correction crosses the line for physical gates, since the intersection gives
the circuit depth at which the accumulated error in the circuit is equal to the error
created by error correction. This intersection is aroundNd = 85 for all choices of
perr.

The lines in figure 4.7 are all colour coded after the value of perr, so for example
the blue lines at the bottom all show results for perr = 10−9. The solid lines in

4.2. ERROR CORRECTION SIMULATIONS 41

the figure show ϵfid for physical gates, the dash-dotted lines for logical gates and
the horizontal dashed lines for one error correction cycle. What one expects to
see from the logical gates compared to the physical ones is again a fidelity error
increased by a constant factor. This is also the case in figure 4.7, as the lines for
physical and logical gates have the same slope. What is more interesting to study
however is the intersections between the lines for error correction and the lines for
physical gates, as the point of intersection determines the depthNd at which error
correction should start improving fidelity. The figure shows that for all chosen
values of perr the required depthNd to see a gain from error correction is around
85.

4.2.3 Fidelity Error Curves at Different Gate Numbers

Now that the minimum depth that should needed to gain something from error
correction is known, it is possible to study ϵfid as a function of perr for physical
and logical gates with error correction, at some different depths Nd. Figure 4.8
contains two plots where the fidelity error for physical gates, logical gates without
error correction and logical gates with error correction have been plotted against
perr. In the top plot, the depth was Nd = 160 and in the bottom plot it was set
to Nd = 10, 000. Additional figures at different values of Nd can be found in
Appendix 6.2. The reason why Nd = 160 is shown instead of Nd = 85 is that
a depth of 85 is only enough for logical gates with error correction to break even
with physical gates, so the figure becomes less clear. Both of the plots of figure 4.8
also show the fidelity error for error correction, that is, just the last step of figure
4.5 as a solid purple line. In both plots, the solid blue lines show ϵfid for physical
gates, the solid orange line for logical gates and the solid yellow lines for logical
gates with error correction.

42 CHAPTER 4. RESULTS & DISCUSSION

10-9 10-8 10-7 10-6 10-5 10-4 10-3

perr

10-8

10-6

10-4

10-2

100
F

id
el

ity
 E

rr
or

Fidelity Error as a Function of Error Rate, Nd = 160

Physical SQBG
Logical SQBG
Logical SQBG w/ EC
EC
Intersection

10-9 10-8 10-7 10-6 10-5 10-4 10-3

perr

10-8

10-6

10-4

10-2

100

F
id

el
ity

 E
rr

or

Fidelity Error as a Function of Error Rate, Nd = 10,000

Physical SQBG
Logical SQBG
Logical SQBG w/ EC
EC
Intersection

Figure 4.8: Fidelity error as a function of perr. The top plot shows results for 160
gates, and the bottom for 10,000 gates. In both figures, the solid blue line shows
ϵfid for physical gates, the solid orange line for logical gates without error correc-
tion and the solid yellow line for logical gates with error correction. Additionally,
the solid purple line shows ϵfid for just the error correction operation, i.e. the last
stage in figure 4.5, and the break even point for error correction is marked with a
red cross.

Studying figure 4.8, it is clear that the fidelity error, when error correction is
used, is bounded from below by the fidelity error for the error correction opera-
tion, shown as purple lines in the plots. This makes sense since the error correction
operation itself can introduce errors. Therefore, the total fidelity error shouldn’t
be expected to be lower than this number. Moreover the fidelity error where error
correction is used has approximately double the slope of the fidelity error for phys-
ical gates. This implies that the fidelity error scales with p2err when error correction
is used, which is what is expected from the literature (see e.g. [3, Chap. 10]).

4.2. ERROR CORRECTION SIMULATIONS 43

Another interesting feature of figure 4.8 is that the threshold error pth, which
is given by the point of intersection between the curves for logical gates with error
correction and the curves for physical gates, is not the same in the two plots. Table
4.1 below shows the threshold error and the ratio ϵgatefid /ϵ

EC
fid between the fidelity

error forN gates and the fidelity error for error correction with perr = 10−9. This
ratio will also be referred to as the gain. The value of perr was chosen because it
is small enough to be far away from the plateau for the fidelity error seen in figure
4.8.

Table 4.1: Threshold error and ratio between the fidelity error ϵgatefid for Nd gates
and the fidelity error ϵECfid for error correction taken at perr = 10−9 for different
values of Nd. perr = 10−9 was chosen because it is small enough for both ϵgatefid

and ϵECfid to scale appropriately with perr.
Nd pth ϵgatefid /ϵ

EC
fid

85 7.55 · 10−6 1.00
100 6.58 · 10−5 1.17
120 1.09 · 10−4 1.42
160 1.43 · 10−4 1.89
250 1.44 · 10−4 2.97
500 1.00 · 10−4 5.95
103 5.87 · 10−5 12.00
104 6.82 · 10−6 120
105 6.80 · 10−7 1207
106 6.87 · 10−8 11970

Table 4.1 confirms that the threshold error depends on the number of gates
used before error correction. It is worth noting that the range of the values is in line
with other estimates for the threshold error of the Steane code, see for example [6].

It is practical to define a gain parameter as ϵgatefid /ϵ
EC
fid . The gain is a useful quantity

as it describes how much can be gained by using error correction, in the sense that
it shows how much larger ϵgatefid is than ϵECfid . In particular, the gain for Nd = 85
is exactly 1. This is in line with the results shown in figure 4.7.

The contents of table 4.1 are also shown in figure 4.9 below, where both the gain

44 CHAPTER 4. RESULTS & DISCUSSION

and pth have been plotted against the circuit depth Nd.

100 101 102 103 104 105 106

Number of Gates, N
d

10-2

10-1

100

101

102

103

104

105

G
ai

n,

fidga
te

/
fidE

C

10-8

10-7

10-6

10-5

10-4

10-3

p
th

Maximum Gain and Threshold Error as a Function of Number of Gates N
d

Gain
Interpolated Values
Threshold Error p th (Right axis)

X 160.7
Y 1.899

X 250.1
Y 2.969

X 160
Y 0.0001429

X 250
Y 0.0001441

Figure 4.9: Ratio between fidelity error for error correction and fidelity error for
physical gates as a function of number of gates on the left axis, and pth as a function
of number of gates on the right hand axis. The two highest values for pth are
marked, as well as the corresponding gain in fidelity error.

The left hand axis of figure 4.9 again shows the gain for perr = 10−9. The
gain can be seen to scale linearly with the number of gates, and this has a fairly
simple explanation: Figure 4.7 shows that ϵgatefid has a linear dependence onNd for
fixed values of perr. Thus, the gain given by ϵgatefid /ϵ

EC
fid will also depend linearly

on Nd since ϵECfid is constant for fixed perr.

The right hand axis of figure 4.9 shows the threshold error pth, that is the error rate
perr at which the logical circuit with error correction has the same fidelity error
as the physical circuit. The threshold error has a clear maximum around 160-250

4.2. ERROR CORRECTION SIMULATIONS 45

gates, and decreases sharply for smaller numbers and smoothly for larger numbers.
It is somewhat surprising that pth shows such a strong dependence on Nd, given
the constant estimates for the threshold error in for example [3, Chap. 10] and [6].

To see why the threshold error is not constant, we have to go back to figure 4.8.
It can also be useful at this point to study the figures in Appendix 6.2. In figure
4.8, pth is given by the intersection, marked by a red cross, between the fidelity
error curves for the physical circuit and the logical circuit with error correction.
The top plot of figure 4.8 is a very good illustration of what happens for small
Nd. The potential gain is low, and the intersection is at a point where the slope
of the curve for the logical circuit with error correction is somewhere between 1
and 2. The smaller Nd is in this regime, the smaller the slope will be at the point
of intersection, and this pushes the point of intersection to smaller values of perr.

For values of Nd larger than 250, table 4.1 shows that pth is inversely propor-
tional to Nd. This can also be observed in the bottom plot of figure 4.8, as well
as the plots in appendix 6.2. To see why this happens, one can argue that when
perr ≈ N−1

d or larger, the probability for an error to occur should be so high that
the original state is essentially scrambled, and it is not possible to reliably recover
any information. This means that even when error correction is used, there is no
way to recover the correct state after the circuit. Therefore, the result is no better
than a random guess. This seems to be the case, as the bottom plot of figure 4.8
shows that ϵfid is constant for perr > N−1

d .

What is the significance of figure 4.9? According to [9], the lowest value for perr
achievable with the Rare Earth system should be slightly higher than 10−4 for
the best possible gate. This means that using the Steane code for beneficial error
correction might be achievable. At the same time, the corresponding gain is only
around 3, and to achieve this, a higher gate fidelity is required. It is also worth
noting that actual experimental parameters have not been used in the error model.
For example, the assumption that gate errors scale the same way as phase damping
and amplitude damping is not necessarily completely valid. If for example phase
damping has a larger effect than used in the calculations here, the threshold will
occur for lower values of perr. The results are however still interesting. For exam-
ple, they imply that since high gate fidelities are needed to get a large gain with
error correction, there is a clear trade-off to be made; While one might be able to
improve the fidelity even at high error rates, the gain is so small that it may not

46 CHAPTER 4. RESULTS & DISCUSSION

be worth the trouble. To get a large gain, very low high gate fidelity is required
to begin with. It is also worth mentioning that since only single qubit gates were
considered here, results may change significantly when a circuit with more logical
qubits is considered.

Other work on the topic of simulating error correcting codes has been made, for
example [5] and [10]. The results of [10] are of particular interest here, since it was
investigated if a code equivalent to the Steane code could be used in a quantum
memory application. The results show that beneficial quantum error correction
could be realised for a trapped-ion architecture, provided there are reasonable im-
provements in the hardware. It was also shown that optimising the syndrome
extraction protocol can provide additional improvement. It should be noted that
these results are not directly comparable to the ones presented in this work, since
different but analogous parameters were studied and the underlying physical sys-
tem is slightly different. The results still seem to agree with the ones presented in
this work in that beneficial error correction should be possible. However, to reach
high enough fidelities for running useful algorithms for example, either other codes
need to be considered or some sort of code concatenation or other optimisation
scheme must be employed.

Chapter 5

Conclusions & Outlook

The results presented in this work deal with two separate but connected topics:
simulating circuits with quantum error correction and the performance of the code
that was produced to simulate quantum circuits.

5.1 Conclusions

It was shown that logical state preparation could be performed in around 35 sec-
onds on a normal desktop computer. It was also shown that the code optimisations
employed, mainly using sparse matrices as often as possible, shortened run-times
by several orders of magnitude compared to using full matrices. As expected, the
run-time was found to increase exponentially with respect to circuit width, and
linearly with respect to circuit depth. Overall, the performance was sufficient for
simulating circuits with error correction was possible in a reasonable amount of
time. A spontaneous test of running an error correction cycle on a system of two
encoded qubits had an execution time of around 70 minutes on a normal desk-
top computer. Because of the way the error correction cycle was implemented,
c.f. section 3.2, it can easily be modified to run in parallel on up to 8 cores of a
normal CPU which could increase performance by around a factor 8. This means
that it would be feasible to test fidelity for the Steane code on two logical qubits.
Since the Steane Code uses 7 data qubits and up to five ancilla qubits, this means
that a system of around 14 qubits could be possible to work with, but anything
larger than this would probably start to become impractical.

47

48 CHAPTER 5. CONCLUSIONS & OUTLOOK

Moving on, it was found that the circuit depth as defined in figures 4.1 and 4.5
has a significant impact on the performance of the Steane code when used for error
correction in a circuit setting. It was found that a circuit depth of at least 85 was
required to reach a break-even point where error correction is able to improve gate
fidelity. Perhaps more interesting, it was found that the threshold error pth where
the gate fidelity error for physical and logical circuits are equal has a strong de-
pendence on circuit depth. The maximum value of pth found was slightly larger
than pth = 10−4 at a circuit depth of between 160 and 250 gates. For depths
Nd larger than 250, it was found that pth scales as N−1

d . The maximum value
of pth is of particular interest since the estimated lowest gate fidelity error for the
rare-earth-ion system used by the Quantum Information group at Lund Univer-
sity approaches 10−4. Moreover, it was found that the potential gain from using
error correction, determined as ϵphysfid /ϵ

EC
fid has a linear dependence on Nd. At

Nd = 250, it was found that the gain was around 3. This means that there is a
clear trade-off when determining how often error correction should be performed,
as a higher threshold error corresponds to lower gain and vice versa.

5.2 Outlook

There are a number of further investigations that could be pursued in relation
to this work. Perhaps the most important, and a good starting point for further
research would be to create a more sophisticated error model for rare-earth-ion
systems. This would be highly beneficial, as it would enable a realistic assessment
as to whether using the Steane code for error correction would be feasible with
current or future hardware. Once such an error model is realised, it would also be
possible to run similar simulations as the ones presented here using different error
correcting codes. An important property of rare-earth-ions is their long coherence
time, T2. It was shown in [11] that coherence times of over 2 ms are achievable for
excited states in Eu3+: Y2SiO5. Furthermore, it was shown in [12] that coher-
ence times for some hyperfine ground states of Eu3+: Y2SiO5 of around 6 hours
are possible. This is particularly promising for the rare-earth-ion quantum com-
puting schemes introduced in [13], as hyperfine ground states are used for the |0⟩
and |1⟩ states, while gate operations make use of the excited state with T2 ≈ 2 ms.
This means that a form of quasi-parallelism can be achieved in error correction

5.2. OUTLOOK 49

protocols that make use of sequential operations, as idle qubits can have a very
long lifetime. Some examples of codes using very few physical qubits and that use
such sequential operations are introduced in [14]. These also have an advantage
in that systems using few qubits are potentially easier to realise in an experimental
setting. Further research could for example investigate if rare-earth systems would
be good candidates for testing the codes and fault-tolerant schemes introduced in
[14] experimentally. An example of other error correcting codes that could be in-
teresting to study in a rare-earth-ion context would be the so called surface codes
studied in [5]. These are less efficient than the Steane code in terms of how many
physical qubits are needed to encode a logical qubit, but have the potential for
higher threshold values pth. Another more simple question to investigate is how
the Steane code performs for systems larger than one logical qubit. It is not clear
whether the performance would be the same as for a single logical qubit as, in
spite of fault-tolerant gate design, errors in such a system are allowed to propagate
between the two logical qubits.

As many of these further research topics require simulating wider circuits than
in this work, the efficiency of the code would also most likely need to be im-
proved in terms of memory usage and run-time. One way to do this would be
to use a Monte Carlo approach for simulation instead of the analytical one used
here. This has some drawbacks, for example requiring a large amount of runs to
give good results. However, this may be mitigated by the fact that parallelisation
would be straightforward. Taking the Monte Carlo approach would however not
make profit from some of the benefits of the density matrix approach discussed
in 3.2. Another interesting option would be to again take inspiration from [5],
where GPU acceleration was used to achieve high performance even when large
numbers of qubits were used.

51

52 CHAPTER 6. APPENDIX

Chapter 6

Appendix

6.1 Raw Data for Code Performance

0 10 20 30 40 50 60 70 80 90 100

Number of single qubit gates

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
un

tim
e

[s
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S
E

M
 [s

]

10 -3
Mean Runtime & Standard Error of The Mean Vs Number of TQBG,

 With & Without Errors, 25 samples

Runtime with Errors
Runtime without errors
SEM with errors
SEM without errors

Figure 6.1: 25 sample mean runtime to the left and standard error of the mean
to the right for CNOT and CZ gates with and without errors as a function of
number of gates. The logical zero density matrix of the Steane code was used as
the initial state for every run. The choice of gates was randomised, so that the plot
would be representative for arbitrary combinations of two qubit gates.

6.1. RAW DATA FOR CODE PERFORMANCE 53

0 10 20 30 40 50 60 70 80 90 100

Number of single qubit gates

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
R

un
tim

e
[s

]

0

0.5

1

1.5

2

2.5

S
E

M
 [s

]

10 -3
Mean Runtime & Standard Error of The Mean Vs Number of SQBG,

 With & Without Errors for 100 samples

Runtime with errors
Runtime without errors
SEM with errors
SEM without errors

Figure 6.2: 100 sample mean runtime to the left and standard error of the mean to
the right for the Hadamard and Pauli gates with and without errors as a function
of number of gates. The logical zero density matrix of the Steane code was used
as the initial state for every run, and the choice of gates was randomised for every
run.

54 CHAPTER 6. APPENDIX

0 10 20 30 40 50 60 70 80 90 100

Number of Gates

0

0.05

0.1

0.15

0.2

0.25

R
un

tim
e

[s
]

0

0.2

0.4

0.6

0.8

1

1.2

S
E

M
 [s

]

10 -3
Mean Runtime & Standard Error of The Mean Vs Number of Hadamard Gates,

 With & Without Errors, 100 samples

Runtime with errors

Runtime without errors

SEM with errors

SEM without errors

Figure 6.3: 100 sample mean runtime to the left and standard error of the mean to
the right for the Hadamard gate with and without errors as a function of number
of gates. The logical zero density matrix of the Steane code was used as the initial
state for every run.

6.1. RAW DATA FOR CODE PERFORMANCE 55

0 10 20 30 40 50 60 70 80 90 100

Number of single qubit gates

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
R

un
tim

e
[s

]

0

1

2

3

4

5

6

S
E

M
 [s

]

10 -4
Mean Runtime & Standard Error of The Mean Vs Number of Pauli Gates,

With & Without Errors, 100 samples

Runtime with errors
Runtime without errors
SEM with errors
SEM without errors

Figure 6.4: 100 sample mean runtime to the left and standard error of the mean
to the right for the Pauli gates with and without errors as a function of number
of gates. The logical zero density matrix of the Steane code was used as the initial
state for every run, and the choice of gates was randomised for every run.

56 CHAPTER 6. APPENDIX

6.2 Additional Plots from Simulations

10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3

Error rate

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

1-
F

id
el

ity

1-Fidelity vs error rate for 85 SQBG, physical, logical and logical with EC

Physical SQBG
Logical SQBG
Logical SQBG w/ EC
Intersection
Error Correction

Figure 6.5: Fidelity error for 85 single qubit gates, 85 logical single qubit gates
without error correction, and 85 logical single qubit gates with error correction as
a function of error rate. The plot also shows the fidelity error for error correction
by itself as a function of error rate.

6.2. ADDITIONAL PLOTS FROM SIMULATIONS 57

10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3

Error rate

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

1-
F

id
el

ity

1-Fidelity vs error rate for 160 SQBG, physical, logical and logical with EC

Physical SQBG
Logical SQBG
Logical SQBG w/ EC
EC
Intersection

X 1e-09
Y 4.175e-08

Figure 6.6: Fidelity error for 160 single qubit gates, 160 logical single qubit gates
without error correction, and 160 logical single qubit gates with error correction
as a function of error rate. The plot also shows the fidelity error for error correction
by itself as a function of error rate.

58 CHAPTER 6. APPENDIX

10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3

Error rate

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

1-
F

id
el

ity

1-Fidelity vs error rate for 500 SQBG, physical, logical and logical with EC

Physical SQBG
Logical SQBG
Logical SQBG w/ EC
EC
Intersection

Figure 6.7: Fidelity error for 500 single qubit gates, 500 logical single qubit gates
without error correction, and 500 logical single qubit gates with error correction
as a function of error rate. The plot also shows the fidelity error for error correction
by itself as a function of error rate.

6.2. ADDITIONAL PLOTS FROM SIMULATIONS 59

10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3

Error rate

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

1-
F

id
el

ity

1-Fidelity vs error rate for 5,000 SQBG, physical, logical and logical with EC

Physical SQBG
Logical SQBG
Logical SQBG w/ EC
EC
Intersection

Figure 6.8: Fidelity error for 5000 single qubit gates, 5000 logical single qubit gates
without error correction, and 5000 logical single qubit gates with error correction
as a function of error rate. The plot also shows the fidelity error for error correction
by itself as a function of error rate.

60 CHAPTER 6. APPENDIX

10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3

Error rate

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

1-
F

id
el

ity

1-Fidelity vs error rate for 10k SQBG, physical, logical and logical with EC

Physical SQBG
Logical SQBG
Logical SQBG w/ EC
EC
Intersection

Figure 6.9: Fidelity error for 10,000 single qubit gates, 10,000 logical single qubit
gates without error correction, and 10,000 logical single qubit gates with error
correction as a function of error rate. The plot also shows the fidelity error for
error correction by itself as a function of error rate.

6.2. ADDITIONAL PLOTS FROM SIMULATIONS 61

10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3

Error rate

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

1-
F

id
el

ity

1-Fidelity vs error rate for 100k SQBG, physical, logical and logical with EC

Physical SQBG
Logical SQBG
Logical SQBG w/ EC
EC
Intersection

Figure 6.10: Fidelity error for 100,000 single qubit gates, 100,000 logical single
qubit gates without error correction, and 100,000 logical single qubit gates with
error correction as a function of error rate. The plot also shows the fidelity error
for error correction by itself as a function of error rate.

62 CHAPTER 6. APPENDIX

10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3

Error rate

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

1-
F

id
el

ity

1-Fidelity vs error rate for 106 SQBG, physical, logical and logical with EC

Physical SQBG
Logical SQBG
Logical SQBG w/ EC
EC
Intersection

Figure 6.11: Fidelity error for 106 single qubit gates, 106 logical single qubit gates
without error correction and 106 logical single qubit gates with error correction as
a function of error rate. The purple line shows the fidelity error of error correction
by itself as a function of error rate.

Chapter 7

Bibliography

[1] R. Feynman, Int J Theor Phys 21, 467 (1982).

[2] A. K. B. R. e. a. Arute, F., Nature 574, 505 (2019).

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
formation: 10th Anniversary Edition (Cambridge University Press, 2010).

[4] D. S. Steiger, T. Häner, and M. Troyer, Quantum 2, 49 (2018), ISSN 2521-
327X, URL https://doi.org/10.22331/q-2018-01-31-49.

[5] T. O’Brien, B. Tarasinski, and L. DiCarlo, npj Quantum Inf 3 (2017), URL
https://rdcu.be/b6k3R.

[6] S. J. Devitt, W. J. Munro, and K. Nemoto, Reports on Progress in Physics
76, 076001 (2013), ISSN 1361-6633, URL http://dx.doi.org/10.
1088/0034-4885/76/7/076001.

[7] A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. Nilsson, S. Bengts-
son, and S. Kröll, Physical Review A 92 (2015), ISSN 2469-9926.

[8] D. Gottesman, Stabilizer codes and quantum error correction (1997),
quant-ph/9705052.

[9] As of yet unpublished results of the quantum information group at the faculty of
engineering, lund university.

[10] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky,
P. Schindler, T. Monz, U. G. Poschinger, C. Hempel, J. Home, et al.,

63

https://doi.org/10.22331/q-2018-01-31-49
https://rdcu.be/b6k3R
http://dx.doi.org/10.1088/0034-4885/76/7/076001
http://dx.doi.org/10.1088/0034-4885/76/7/076001
quant-ph/9705052

64 CHAPTER 7. BIBLIOGRAPHY

Phys. Rev. X 7, 041061 (2017), URL https://link.aps.org/doi/10.
1103/PhysRevX.7.041061.

[11] R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, Phys. Rev.
Lett. 72, 2179 (1994), URL https://link.aps.org/doi/10.1103/
PhysRevLett.72.2179.

[12] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan,
S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517, 177 (2015), ISSN
1476-4687, URL https://doi.org/10.1038/nature14025.

[13] A. Walther, Ph.D. thesis, Atomic Physics (2009), defence details Date:
2009-03-20 Time: 10:15 Place: Lecture hall B, Department of Physics, Pro-
fessorsgatan 1, Lund University Faculty of Engineering External reviewer(s)
Name: Wunderlich, Christof Title: Prof. Affiliation: Universität Siegen —.

[14] R. Chao and B. W. Reichardt, Phys. Rev. Lett. 121, 050502
(2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.
121.050502.

https://link.aps.org/doi/10.1103/PhysRevX.7.041061
https://link.aps.org/doi/10.1103/PhysRevX.7.041061
https://link.aps.org/doi/10.1103/PhysRevLett.72.2179
https://link.aps.org/doi/10.1103/PhysRevLett.72.2179
https://doi.org/10.1038/nature14025
https://link.aps.org/doi/10.1103/PhysRevLett.121.050502
https://link.aps.org/doi/10.1103/PhysRevLett.121.050502

	Abstract
	Acknowledgements
	Contents
	Introduction
	Background
	Aims
	Delimitations
	Structure of the Report

	Background Theory
	Quantum Mechanics
	Quantum Operations

	Quantum Logic and Circuits
	Quantum Gates
	Quantum Circuits

	Quantum Error Correction
	Fundamentals of Quantum Error Correction
	The Steane Code
	The Threshold Theorem

	Methods
	Density Matrix Simulation of Quantum Circuits
	Partial Trace
	Sparse Matrix Operations
	Gate Tolerance
	Error Models

	Simulating Error Correction with the Steane Code

	Results & Discussion
	Code Performance
	Performance as a Function of Circuit Width
	Performance as a Function of Circuit Depth
	Impact of Gate Tolerance

	Error Correction Simulations
	Impact of Different Types of Errors
	Finding Optimal Gate Numbers
	Fidelity Error Curves at Different Gate Numbers

	Conclusions & Outlook
	Conclusions
	Outlook

	Appendix
	Raw Data for Code Performance
	Additional Plots from Simulations

	Bibliography

