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Abstract

Sound ranging is a method to locate sources of sound waves using microphones or
other types of receivers at known reference positions. Nowadays, these receivers
can be made both very small and powerful, lasting for a long time on a single bat-
tery charge, making them suitable for longtime outdoor purposes such as detecting
artillery fire or other loud sounds.

In this master thesis, we present a sound ranging algorithm based on three-
dimensional multilateration, Kalman filtering and sound detection. Results from
simulations are given. Results from field experiments are presented. Furthermore,
we compare the two and and evaluate their differences. Finally, suggestions on fu-
ture work are provided.

The evaluation shows that while the Kalman filter and detection algorithm per-
forms well even with high levels of measurement noise, the multilateration algo-
rithm can provide an accurate source positioning, but it is very sensitive to errors,
with performance degrading heavily due to low sampling resolution, too close node
positioning, undefined sound peaks and a lack of robustness in the multilateration
algorithm.
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1
Background

1.1 Introduction

Sound ranging is a method of determining the position of an unknown sound source
by recording the sound with several receivers at different positions. The science of
locating a sound source was originally developed around the First World War, and
is intricately tied to its military applications. During the First World War, this was
put to use in locating artillery fire, and rapidly developed from the efforts of among
others, Nobel Laureate Lawrence Bragg.[Kloot, 2005]

The same principle of detecting electromagnetic waves was used to detect the
direction of radio transmitters, so called radio direction finders. During the Second
World War, this became crucial with regards to radio navigation, e.g. when directing
bombers to enemy territory. One of these radio navigation systems was LORAN,
developed by the United States and based on a hyperbolic system with fix radio
beacons with known positions and an unknown receiver position. It was largely
obsoleted by satellite based systems such as GPS (Global Positioning System) in
the early 1990s.[Bowditch, 2019]

GPS makes use of satellites, synchronized with each other, that continually
transmit radio signals about their position and current time. When these radio sig-
nals reach a receiver on ground, the difference between these times (TOT - time of
transmission) and the current time (TOA - time of arrival) of the receiver are called
time of flight (TOF). From four satellites, a 3D coordinate of the receiver’s position
is calculated. [Blewitt, 1997]

With the continuing development of miniaturized low-voltage components,
along with improved bandwidth and lower production costs, one can now use small,
portable nodes, e.g. sensors or SoC (system-on-a-chip) solutions. These work both
as a receiver and a transmitter, communicating with each other (or a main unit) via
e.g. Bluetooth.

With the use of low-voltage RTC clocks (keeping track of time with a very low
power usage, typically at 32 KHz), these nodes can receive data on "stand-by" con-
tinually over long time periods without needing a power supply. This makes them
attractive for field purposes such as detecting and locating sudden sound events
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Chapter 1. Background

(e.g. artillery fire). However, the RTC clock is sensitive to drift (where the clock
frequency deviates from the specification), eventually causing the nodes to fall out
of sync. Therefore some kind of continuous synchronization method between the
nodes (or to a main unit) will be needed. In this thesis, the nodes transmit calibration
pulses to a main hub, where the drift is estimated by a Kalman filter. [STMicroelec-
tronics, 2008]

This thesis was done at OCTECH AB, who kindly supplied the field recordings
from which the results in Chapters 4-5 were derived. OCTECH is a startup company
formed in 2019, involved in the field of sound ranging and sound detection.

1.2 Scope and problem formulation

The purpose of this master’s thesis was to find a method to determine the position
of an unknown, high-volume sound event, first using multilateration to calculate the
position of sound sources based on the differences in propagation time to several
receivers, then using a Kalman filter to synchronize the nodes, and at last detecting
the sound to determine the local time of arrival. The hypothesis is that the accuracy
of the position estimates is mostly dependant on either the temporal resolution of
the recording apparatus, or the physical position of the receivers.

Originally there were field tests that included the Kalman filter, but the hardware
originally planned for this purpose proved very difficult to implement the filter on,
as we needed not just to implement the RTC clock and detection algorithm, but also
write software for a main hub (usually an Android phone) to enable synchronization.
This proved too difficult and time-consuming, so this approach was abandoned and
instead a set of common microphones were used, with the synchronization being
done a posteriori.

1.3 Method

The thesis combines and applies a number of previously proposed algorithms to
solve the sound ranging problem.

Multilateration Multilateration is a method of determining the position of a sound
source using the difference in times of arrival (TDOAs) between the receiver
nodes. Knowing the time of transmission is not needed, but depending on the
number N of dimensions at least N+1 receivers are required. The solution of
this problem is non-linear.

Kalman filter The Kalman filter is a way of estimating the amount of time error
of the sensors so that they can be synchronized. This is done by transmitting
calibration pulses from the sensor at regular intervals.
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1.4 Outline

Detection The detection algorithm handles samples recorded by the receiver and
determines on-the-fly if they are indicative of a loud sound event.

1.4 Outline

Chapter 2 describes the theoretical background of multilateration methods and how
an estimated position is derived from the recorded samples. Chapter 3 covers the
implementation of the methods from Chapter 2 along with results from the simu-
lation examples in Matlab. Chapter 4 describes the design of the field tests along
with the recording setup and conditions for each test. Chapter 5 presents the calcu-
lated position estimates from the field tests, along with comparisons to the actual
positions. In Chapter 6, these results are discussed, with possible improvements and
points to future work in Chapter 7.

1.5 Related work

Several previous studies concentrate on the non-linear solutions of the multilatera-
tion algorithm, e.g. Kitic et al and Larsson et. al. Other focus mainly on the syn-
chronization aspect, e.g. Stefanski and Sadowski, Gröönroos et. al.

Stefanski and Sadowski proposes a variant of TDOA where the position of a
continously moving (mobile) emitter object is tracked at random times by at least
five spatially fix and asynchronous nodes, forming a set of non-linear equations
that are solved by Taylor LS-algorithms and genetic algorithms, contrary to our
approach where the nodes were independently synchronized to a main unit to reduce
drift and convert their measured TOA to a common time system.1

Kitic et. al is a comparative study on several different approaches of the non-
linear multilateration problem, presenting and evaluating methods such as max-
imum likelihood estimation, iterative solutions, convex interpretations and least
squares cost functions. It does not focus on the synchronization aspect however.2

Grönroos et. al uses a similar multilateration approach to ours on a set of low-
cost nodes consisting of Raspberry Pi computers. These nodes track FM radio sig-
nals, cross correlating each possible pair of nodes with regards to their measured
TDOA values, contrary to our approach where we used a Kalman filter to reduce
the drift of the nodes.3

Larsson et. al approaches the multilateration problem from a matrix theory point
of view, tackling it as an eigenvalue problem.4

1 Stefanski and Sadowski, 2018.
2 Kitic et al., 2020.
3 Grönroos et al., 2017.
4 Larsson et al., 2019.

11



Chapter 1. Background

A very early pioneering study on the sound ranging problem was done by Harry
Bateman in 1918, tackling sound ranging as a triangulation problem, also focusing
on meteorological aspects such as temperature and wind.5.

5 Bateman, 1918.
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2
Theory

Multilateration is based on measuring the times of arrival (TOA) among several re-
ceivers of a wave with known propagation speed, but unknown time of transmission.
Most often the TOAs are used to form time differences of arrival (TDOA), using the
TOA of one of the node as a reference node which we subtract from the other TOAs.
This system of TDOA is called a hyperbolic system, or pseudo-range multilatera-
tion. Several previous approaches to solving this non-linear problem can be seen
in Section 1.5. Other ways of determining position include triangulation, where the
angles to the source are known. However, to acquire information about the angles,
directional receivers are required, which our hardware did not support. The method
below (from [Misra and Bucher, 2002]) was used as it seemed straight-forward to
implement.

As we want to use our sensors in differing weather conditions, we have to con-
tend with the possibility that their characteristics may change, inducing drift (differ-
ent clock speed due to temperature differences) or offset (unavoidable due to clock
restarting). A detection at cycle 1000 for different sensors is meaningless if we do
not know the real clock frequency and how long the clocks have been running. In
order to minimize the effects of these inhomogenities we need to estimate the "true"
properties of each clock. This is done here using a Kalman filter.

2.1 Multilateration in 3D

Given a signal at unknown position rs and a receiver at known position rr, a general
expression for the distance between then, given a sound wave propagating for an
unknown time, is given by

rr− rs = vτ (2.1)

where τ is the propagation time and v is the speed of sound. After [Cramer, 1993],
the speed of sound in air is mainly dependant on the temperature, and is approxi-
mated by

vair(m/s) = 331.3+0.606 ·T (2.2)
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Chapter 2. Theory

where T is the temperature in C°.
The following multilateration algorithm is based on [Misra and Bucher, 2002].

We introduce the following generic terms for any i, j ∈ {0,1,2,3}:

Ri j =
√

(xi− xs)2 +(yi− ys)2 +(zi− zs)2) (2.3)

−
√

(x j− xs)2 +(y j− ys)2 +(z j− zs)2)

xi j = xi− x j

yi j = yi− y j

zi j = zi− z j

By squaring all Ri j terms and separating the terms that contain the sensor distances
to the source, we end up with a set of intersecting hyperboloids1 that can be ex-
pressed as the intersection of two planes

y = Ax+Bz+C (2.4)

y = Dx+Ez+F (2.5)

This results in two separate solutions:

r̂+ =

 Gz+H
Iz+ J

z = N
2M +

√
( N

2M )2− O
M

 (2.6)

r̂− =

 Gz+H
Iz+ J

N
2M −

√
( N

2M )2− O
M

 (2.7)

where 

G = E−B
A−D

H = F−C
A−D

I = AG+B
J = AH +C

K = R2
ik + x2

i − x2
k + y2

i − y2
k

+z2
i − z2

k +2xkiH +2ykiJ
L = 2(xkiG+ ykiI +2zki)

M = 4R2
ik(G

2 + I2 +1)−L2

N = 8R2
ik(G(xi−H)+ I(yi− J)+ zi)+2LK

O = 4R2
ik((xi−H)2 +(yi− J)2 + z2

i )−K2


There is no fool proof way of choosing the correct solution, as this depends on

the situation. If one solution has a z-coordinate significantly < 0, then we choose
the other solution.

1 A hyperboloid is a surface generated by rotating a hyperbolic curve around one of its axes.
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2.2 Kalman filter

2.2 Kalman filter

Each of the sensors are independently synchronized to a main unit that acts as a
reference clock. The clock circuits of the sensors are subject to changes in frequency
due to changes in temperature and to a lesser degree humidity. This will cause the
circuits to drift relative to the reference clock.

The following approach is based on [Oliveira Jr. et al., 2009]. The drift (relative
difference between the sensor clock and reference clock) is modeled as a state D,
which is the proportional deviation of the cycle length. Ideally D = 0. If too fast
(too short length), D < 0. For example, D = −0.1 means that the cycle length is
10% too short (and vice versa for D = 0.1).

The offset (absolute difference between the sensor clock and reference clock) is
modeled as a state T which ideally is 0. We now form a state space model:[

Ṫ
Ḋ

]
=

[
0 1
0 0

][
T
D

]
+

[
1 0
0 1

][
w1
w2

]
(2.8)

where w1 and w2 are the Gaussian process noise terms. Having measurements ts of
the sensor clock and tr of the reference clock, the state vector xk at time step k is
defined as

xk =

[
Tk
Dk

]
(2.9)

where
Tk = ts

k− tr
k (2.10)

Dk =
ts
k− ts

k−1

tr
k− tr

k−1
−1 (2.11)

We are able to measure the momentary offset, and model this by:

yk = Hkxk + vk (2.12)

where

Hk =

[
1

∆ts

]
(2.13)

is our observation matrix, with ∆ts being time step between updates of the sensor
clock ("calibration pulses"), and vk is the measurement noise.

The dynamics of the Kalman filter itself are described by

ẋ = Ax+Gw (2.14)

where w is the process noise vector from Equation 2.8, assumed to be Gaussian with
variance Q. G is the process noise transformation matrix.

The Kalman filter is updated each time step as follows:

ẋ = Ax̄ (2.15)
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Chapter 2. Theory

˙̄P = AP̄+PĀ+GQGT (2.16)

where (2.16) is the matrix Riccati equation, x̄ and P̄ are the estimates from the
previous time step. The state transition matrix is given by

Øk+1,k =

[
1 ts

k− ts
k−1

0 1

]
(2.17)

resulting in

xk =

[
Tk
Dk

]
=

[
1 ts

k− ts
k−1

0 1

][
Tk−1
Dk−1

]
(2.18)

P̄k = Øk+1,kP̂k−1ØT
k+1,k +

[
1 ∆t

2
0 1

]
Q
[

1 ∆t
2

0 1

]
∆t (2.19)

where Q is the process noise matrix:

Q =

[
σ2 0
0 σ2

]
(2.20)

where σ2 is the amount of process noise in each (estimated) state.

Kk = P̄kHT
k (HkP̄kHT

k +R)−1 (2.21)

xk = x̄k +Kk(yk−Hkx̄k) (2.22)

P̄k = (I−KkHk)P̄k (2.23)

where R is our specified measurement noise. Depending on the amount of measure-
ment noise, we can tune Q and R to select how much noise we wish to have in our
state estimation.
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3
Implementation of theory

To see how well the multilateration algorithm and the Kalman filter from Chapter
2 performed in various situations and to evaluate the their robustness, they were
implemented in Matlab, then each tested in several different scenarios. In Section
3.4. we also introduce the detection algorithm, from which we determine the TOA
values for the position estimations.

3.1 Simulation setup

For the Kalman filter, we simulated an RTC clock of frequency 32 768 Hz. The
sensors sent out a series of 100 calibration pulses with a time period of 100 RTC
cycles per pulse, or every 100

32768 s. The Kalman filter was updated when a pulse was
received. To minimize the effect of missed pulses, each sensor used its own filter.

The multilateration algorithm was tested using four nodes at fix positions (one
being in the origin), first in given formations, then at random positions to test the
robustness of the algorithm. A number of edge cases were also reviewed to give an
idea of the sensitivity of the algorithm to possible error propagation. The positions
used are shown in Section 3.3.

3.2 Kalman filter

In Figures 3.1 and 3.2, a small overview of the setup is shown. In Figure 3.1, the
source emits a wave at an unknown transmission time TOT (Figure 3.1a), which
arrives at the sensor at the time TOA (in RTC cycles), at which it is detected (Figure
3.1b). The sensor immediately starts sending out calibration pulses to the main unit
as shown in Figure 3.2a, where the Kalman filter is updated at the main hub after
every new received pulse. In Figure 3.2b, the calibration pulses are finished and the
main hub calculates the estimated drift along with the drift-adjusted TOA.

Depending on when we initialize the RTC circuits, the offset will always be
non-zero. As long as the set interval is fix, This however is not relevant until we
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Chapter 3. Implementation of theory

(a) Sound transmitted at TOT (b) Detection by sensor at TOA

Figure 3.1: Transmission and detection of sound waves

(a) Calibration pulses to main hub to update
Kalman states

(b) Calculation at main hub after completed
calibration series

Figure 3.2: Calibration and calculation of drift and time-of-arrival

transmit the calibration series. Luckily, in our TOA calculation we will only need
the initial offset (when the first calibration pulse is received). The filter is updated
when the main unit receives a calibration pulse. We cannot use fix time steps, as
this would imply that we already know D. In practice, this may result in the state
estimation using outdated information. As the reference clock is read in each state
update, this will quickly result in very large values of T and poor state estimations.

The measurement noise is dependent on the delay between the sensor transmit-
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3.2 Kalman filter

ting its calibration pulse and the main unit acknowledging it. It it assumed to be
Gaussian and stationary as long as the sensors and main unit are stationary.

When the state estimations have converged, they are then used in the calculation
of the TOA by converting the sensor-specific time in RTC cycles to the equivalent
time in the time system of the reference clock:

TOAre f = (1+ D̂)
CTOA−C(1)calib

fRTC
− T̂ (0) (3.1)

where C were the timestamp cycles and T̂ (0) was the first measured offset.

Evaluation examples
To tune the Kalman filter so that it would perform well in situations with differing
amounts of measurement noise (by finding suitable initial values for P, K and x) it
was at first trained on a set of simulated time series. These were copies of a reference
series, modified by adding drift (by multiplying the entire reference by 1+D), offset
(a known T0) and measurement noise.

The Kalman filter was at first test on a set of simulated time series, same as the
reference series but with an added drift (by multiplying the entire series by 1+D)
and offset (adding T as similar). This series can be seen in Figure 3.3, where we
used D = 0.1 and T = 10 RTC cycles ( 10

32768 s). We also tested the algorithm with
D =−0.1 and T =−100 RTC cycles, which can be seen in Figure 3.4.

The convergence to the a priori coefficients was quick and successful in both
tests. To the test the robustness of the filter, we used the previous values of D and
T , but now added Gaussian noise of variance σ2 = 0.1

32768 .
Using the final matrices as initial guesses and rerunning the simulation did not

change the outcome. However, the added noise was significantly reflected in the
estimated D, as can be seen in Figure 3.5 and 3.6. By changing (the coefficients) of
Q and R, we can specify how noisy we determine the process or measurement to be,
so that we can choose between either a fast response (introducing a lot of noise into
our estimate) or a non-noisy estimate (which will response in a long convergence
time. Generally using a high value of Q is recommended, since the convergence
time will be within the calibration interval anyway. R should ideally be set low to
avoid overshooting.

In Figures 3.7-3.8, the process noise variance term for state D in Q has been
increased, penalizing high variance due to noise but in the same time increasing the
convergence time.
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Chapter 3. Implementation of theory

Figure 3.3: Convergence of Kalman filter states with D = 0.1, T = 10

Figure 3.4: Convergence of Kalman filter states with D =−0.1, T =−100
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3.2 Kalman filter

Figure 3.5: Convergence of Kalman filter states with D = 0.1, T = 10 and added
noise

Figure 3.6: Convergence of Kalman filter states with D = −0.1, T = −100 and
added noise
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Chapter 3. Implementation of theory

Figure 3.7: Convergence of Kalman filter states with D = 0.1, T = 10 and added
noise, high noise variance penalty

Figure 3.8: Convergence of Kalman filter states with D = −0.1, T = −100 and
added noise, high noise variance penalty
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3.3 Multilateration in 3D

3.3 Multilateration in 3D

Multilateration of time difference of arrival problems entails solving a series of non-
linear least-squares equations and is computationally demanding. Since our devices
are limited in memory and processing power, it is important to find a simple and
least computationally demanding algorithm as possible. The algorithm from Sec-
tion 2.1 was implemented here, as it does not use any matrix inverses that may
be computationally expensive, however due to time constraints we could not delve
deeper here, for example determining worst-case scenarios.

Assume a signal-emitting source in N dimensions with unknown position. In
order to accurately determine its position, at least N +1 receivers are needed. Here,
we use our sensors as receivers. One of the sensors is assumed to be placed in the
origin, here known as s0.

As we only know the time point of arrival (and not the propagation time from
the sound source to the sensors) we make use of TDOA (time difference of arrival)
estimation, where the TOAs of each sensor is subtracted by the TOA of the origin
receiver. These values are multiplied by the speed of sound (Equations 2.1-2.2) in
order to get the difference in distance from the origin sensor to each of the other
sensor (subtracted by the unknown distance from the origin to the sound source).
From these differences in distance we now calculate the three dimensional position
of the source of the sound according to Equations 2.3-2.8.

From Equation 2.2, we see that the speed of sound in air is strongly dependant on
the temperature. Not accommodating this will result in the calculated values vary-
ing up to 5% from ground truth. In the field the air temperatures and the relative
humidity at the moment of detection was measured by the sensors and transmit-
ted along with the calibration pulses, but the humidity ended up not being used in
the calculation as the effect of the difference in humidity was negligible. For the
simulations, vair = 340 m/s was assumed from Equation 2.2.

Evaluation
The method was evaluated was tested using a known source position, calculating
the time of propagation from the source to the sensors. The propagation time of the
origin sensor was subtracted from the other sensors.

First we tested the algorithm with the nodes as unit vectors on each axis: (0,0,0),
(1,0,0), (0,1,0) and (0,0,1). However, we found out that if there are more than two
sensors sharing the same coefficients of an axis, this will result in a singularity in
the algorithm and no solution will be found.

Putting the nodes in (0,0,0), (1,1,0), (1,0,1) and (0,1,1) and the source in (5,5,0)
resulted in the estimates (-0.3577, -0.3577, 0.8925) and (4.7379, 4.7379, -0.0067).
Here we see that the closest solution had a negative z-coordinate, which however
is not significantly below zero. With the nodes in the same position, we evaluated
a grid (20 x 20 in steps of 1 m) of possible source positions on the xy-plane and
plotted these on Matlab, as shown in Figure 3.9. Here the singularity problems are

23



Chapter 3. Implementation of theory

apparent as any source position on a line through origin will have no possible solu-
tion and show up as a white line on the plot. Also, we see that although the accuracy
quickly drops off away from origin, there are still scattered points where the esti-
mated solution is close to the actual source.

Moving the nodes to (0,0,0), (2,2,0), (2,0,2) and (0,2,2) respectively, we might
expect better stability as the increased distances between the nodes decreases the
risk of singularity. This seems to be true as the accuracy is improved according to
Figure 3.10. The same "corridor" of non-solutions seems to remain though.
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3.3 Multilateration in 3D

Figure 3.9: 10-logarithm of least squares error of position estimates. Nodes in
(0,0,0), (1,1,0), (1,0,1) and (0,1,1). The x- and y-axes show the position of the
source.

Figure 3.10: 10-logarithm of least squares error of position estimates. Nodes in
(0,0,0), (2,2,0), (2,0,2) and (0,2,2). The x- and y-axes show the position of the
source.

25



Chapter 3. Implementation of theory

3.4 Detection of events

When a loud sound is made, a sound wave is propagated. We continually record
samples from the microphone. To record events such as explosive sounds (gunfire)
we want to distinguish it from the ambient noise. Preferably this will be done on the
fly inside the sensor.

Our own method was at first to calculate the absolute difference between the
current and previous sample. When field recording, we split the samples into noise
windows of size N starting from the beginning, and calculated the average of the
absolute differences within a window. From this measure of ambient noise we cal-
culate a threshold defined as a multiple of this average.

When the absolute difference in amplitude is larger than the threshold, the noise
window is terminated and a recording window of size N is initialized. If at least k
samples within this window exceed the threshold, this event is flagged as a detec-
tion, with the time of the first sample above the threshold declared as the time of
detection. If not, the event is discarded and we continue recording samples.

When an event is definitely detected, the sensor transmits the time of detection
and initializes a calibration series, where the sensors transmits a time pulse each
100 RTC cycles to the main unit. Under this calibration interval, the sensor does not
record any incoming sound.

At the end of this calibration series and a further wait, if the unit has received
input (ongoing or finished) from all the sensors, the event is regarded as true (non-
false positive) and the calibration series are fed into the Kalman filter. If the unit has
not received input from all sensors, the event is regarded as a false positive and the
RTC clocks are restarted.

The algorithm does not discern between different possible sources of the sound.
For example, a hand clap or a balloon being popped will both be detected as an
event.

Evaluation examples
We evaluated this method in Matlab with a set of sound files of gunshots (sampled
at 44-96KHz, 32-bit, converted from stereo to mono) from http://freesound.org. A
fix threshold value of 0.2 with a window of 500 sample values was used. In Figures
3.11-3.13, the amplitude, difference in amplitude and absolute difference in ampli-
tude, respectively, from one of the sound files are shown. It was sampled at 44.1
Khz, 32-bit stereo, with the left channel used.
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3.4 Detection of events

Figure 3.11: Recording of gunshot, unfiltered

Figure 3.12: Recording of gunshot, filtered by differentiating the amplitude
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Chapter 3. Implementation of theory

Figure 3.13: Recording of gunshot, absolute values of the filtered sound values

Most events were correctly detected, but the difference in volume between the
recordings resulted in some events not being detected at all. A lower threshold
would be needed here, but at the same time this increases the chance of false pos-
itives from background noise. Using a noise window was not possible as the time
of preceding background noise was almost non-existent in several recordings. We
instead assumed the threshold to be user selectable, so that one of 4 different thresh-
olds can be chosen depending on the perceived background noise level. The final
detection algorithm code (in Matlab) printed below.
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3.4 Detection of events

Detection algorithm code
The following code shows the detection algorithm discussed in Section 3.4. It shows
the case for the threshold window of 500 samples, with a threshold of 0.2 and a
minimum cluster of 2.

% s1 is our sound vector, imported from elsewhere.
% it is assumed to have at least than 1000 values
ds1 = s1(2:end)-s1(1:end-1);
abs_ds1 = abs(ds1);
thrs = 0.2; % threshold of detection
cluster_thrs = 2; % nbr of required peaks within detection window
TOA = 0;
tempvec = [];
vec_len = 500; % length of detection window
start = 1;
finish = 500;

for i = 1:floor(length(s1)/500)
tempvec = abs_ds1((start:finish));
if sum(tempvec > thrs) > cluster_thrs

first_el = find((tempvec > thrs),1);
TOA = start-1 + first_el;
start = start + vec_len;
finish = finish + vec_len;
break

else
start = start + vec_len;
finish = finish + vec_len;

end
end
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4
Field experiments

To test the theory out and find potential error sources, two field sessions were done,
testing the detection algorithm by firing gunshots at stationary positions in series.
Three microphones (ml , mc and mr; left, center and right respectively) were used,
continuously recording at either 44Khz or 48Khz, 32-bit in stereo. The left chan-
nel was used, as the difference between the two channels was minimal, except the
right channel being delayed by 2 samples. In total both recording sessions lasted
around 30 min, with the analysis being done in post using MATLAB. As originally
intended, this analysis would be online, where upon detection the sensors would
send their TOA and calibration pulses to the main hub where the Kalman filtering
and multilateration calculation would be done automatically once all sensors had
sent their calibration pulses.

The testing environment was a flat grassfield (to minimize reflections), making
it possible to simplify the positioning algorithms to 2D. However, the original 3D
positioning algorithms were not easily convertible to 2D, so instead an exhaustive
search algorithm was used, evaluating each possible solution in a grid x by y meters
centered in (0,0), with resolution dx and dy in the x- and y-axes, respectively.
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4.1 Session 1

Figure 4.1: Session 1, firing positions and microphone positions

Series Source and direction Shots
1 sc towards mc 10
2 sc towards mr 5

sc towards ml 5
3 sl towards ml 5

sl towards mc 5
sl towards mh 5

4 sr towards mr 5
sr towards mc 5
sr towards ml 5

Table 4.1: Session 1, firing series

4.1 Session 1

The temperature during the first session was 15°C.
The microphones and the sound sources were oriented according to Figure 4.1, with
each firing series according to Table 4.1.

After detection processing the recordings, a fixed threshold of 0.4 was used
for the TDOA analysis, as the peaks corresponding to the shots all exceeded this
number. A detection window of 1000 samples was used, with a cluster value of 2.
The TDOA values from each recording were normalized to actual time (in s) by
dividing with the sample frequency.

Although the recordings were originally synced with four short beeps, this ap-
proach was hard to utilise in post due to gaps in the recordings. Instead the record-
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Chapter 4. Field experiments

Source Microphone Relative distance (m)
sc ml 1.670

mr 1.575
sl ml -1.573

mr 4.391
sr ml 4.474

mr -1.673

Table 4.2: Session 1, distance from source to microphone relative to mc

ings were calibrated from the first firing series, aligning the recordings to correspond
with the theoretical TDOA values from the first shot in Series 1, to exactly match
those expected from ground truth. Due to the lack of any continuous periodic sync-
ing, the Kalman filter was not in use. From Equation 2.2, the speed of sound was
estimated at 340.4 m/s. The difference in distance between the microphones and
sound sources (compared to mc) can be seen in Table 4.2.
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4.2 Session 2

4.2 Session 2

The temperature during the second session was 12°C.
The microphones and the sound sources were oriented as in Figure 4.2, with each
firing series according to Table 4.3.

Figure 4.2: Session 2, firing positions and microphone positions
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Chapter 4. Field experiments

Series Source and direction Shots Type (silenced)
1 s100 towards mc 5 Low
2 s100 towards mc 3 High (no)
3 s100 towards mc 3 High (yes)
4 s300 towards mc 5 Low
5 s300 towards mc 3 High (no)
6 s300 towards mc 3 High (yes)

Table 4.3: Session 2, firing series

The type signifies the calibre. To minimise the mirroring effects of Session 1,
the microphones were placed as in an equilateral triangle with side length 30 m,
with mc being placed at the bottom.

At the beginning of the recording, the microphones were situated at the same
location, synced with a series of hand claps, then placed at the given locations. This
was repeated at the end of the recording, the microphones gathered together and
synced with a series of hand claps. These hand claps were visible in the detection
processing, and the TOA values were used to align the recordings. The Kalman filter
was not used, as there was no continuous, periodic syncing.

From Equation 2.2, the speed of sound was estimated at 338.6 m/s. The ex-
pected relative distances from ml and mr to mc was (27.12,27.12) for s100 and
(26.37,26.37) for s300. The number of samples between the first hand clap of the
opening syncing and the last hand clap of the end syncing differed between the
recordings, indicating drift within the microphones. (The left microphone had been
operating at a voltage too low)

With regard to the recording from the center microphone (containing 83 184
922 samples inside the interval between the claps), the left microphone and right
microphone had 793 and 264 samples too many, respectively, corresponding in a
recording frequency drift of D = 9.533 · 10−6 and 3.174 · 10−6 respectively. The
TOA values of each recording were divided by 1+D to match that of the center
recording, and then aligned with both hand clap series.

As in Session 1, an exhaustive search algorithm in 2D was used, within a grid of
resolution 1 m in the interval {x ∈ (−300,300),y ∈ (−1000,1000)}. Any solution
outside this interval was deemed invalid and marked as N/A.
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5
Results

In this chapter, the positions as estimated from the detected TOAs of the field tests
are shown. The Figures, 5.1 from Session 1 and 5.2-5.6 from Session 2, show the
estimated positions for each session (and possible calibration). The detected TDOA
for each shot and microphone, together with the derived data (estimated relative
distance, estimated position) and ground truth position are shown in Tables 5.1-5.2
for Session 1 and Tables 5.3-5.7 for Session 2.
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Chapter 5. Results

5.1 Session 1

In this section, we display the setup of Session 1, along with the estimated positions,
in Figure 5.1. In Tables 5.1-5.2, the raw data from the TOA analysis of Session 1
are displayed, along with the estimated distance (given the speed of sound from
Equation 2.2 and the temperature according to Section 4.1) and the estimated posi-
tion derived from it. We also display the ground truth position. Since there was no
available sync, the first shot in series 1 was aligned according to expected ground
truth.

Figure 5.1: Session 1, estimated firing positions from TDOA
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5.1 Session 1

Series T DOA(ml ,mr) dr(mc) est. pos g.t.
1 (4.912,4.633) ·10−3 (1.670, 1.575) (0.00,-30.00)* (0,-30)

(4.822,4.558) ·10−3 (1.639, 1.550) (0.30, 30.56) (0,-30)
(4.844,4.662) ·10−3 (1.647, 1.585) (-0.06,-30.14) (0,-30)
(4.890,4.724) ·10−3 (1.663, 1.606) (-0.06,-29.78) (0,-30)
(4.980,4.682) ·10−3 (1.693, 1.592) (0.30, 29.62) (0,-30)
(4.912,4.504) ·10−3 (1.670, 1.531) (0.38, 30.44) (0,-30)
(4.935,4.692) ·10−3 (1.678, 1.595) (-0.02,-29.74) (0,-30)
(5.071,4.802) ·10−3 (1.724, 1.633) (0.28, 28.94) (0,-30)
(5.071,4.759) ·10−3 (1.724, 1.618) (0.02,-29.08) (0,-30)
(5.048,4.709) ·10−3 (1.716, 1.601) (0.32, 29.30) (0,-30)

2 (5.706,4.948) ·10−3 (1.940, 1.682) (0.50,26.70) (0,-30)
(5.728,5.024) ·10−3 (1.948, 1.708) (0.20,-26.44) (0,-30)
(5.661,5.170) ·10−3 (1.925, 1.758) (0.10,-26.24) (0,-30)
(5.728,4.829) ·10−3 (1.948, 1.642) (0.30,-26.96) (0,-30)
(5.706,4.755) ·10−3 (1.940, 1.617) (0.60,27.20) (0,-30)
(5.253,5.477) ·10−3 (1.786, 1.862) (-0.24,-26.50) (0,-30)
(5.366,5.447) ·10−3 (1.824, 1.852) (0.10,26.28) (0,-30)
(5.411,5.412) ·10−3 (1.840, 1.840) (-0.14,-26.26) (0,-30)
(5.366,5.486) ·10−3 (1.824, 1.865) (0.08,26.18) (0,-30)
(5.366,5.514) ·10−3 (1.824, 1.875) (0.06,26.10) (0,-30)

Table 5.1: Session 1, table of TDOA values, estimated distance from origin node,
estimated position and ground truth for Series 1-2
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Chapter 5. Results

Series T DOA(ml ,mr) dr(mc) est. pos g.t.
3 (−2.208,15.766) ·10−3 (-0.751, 5.360) (-6.28,17.44) (-10,-30)

(−2.140,15.824) ·10−3 (-0.728, 5.380) (-6.22,17.24) (-10,-30)
(−2.117,15.784) ·10−3 (-0.720, 5.367) (-6.38,-17.22) (-10,-30)
(−2.140,15.741) ·10−3 (-0.728, 5.352) (-6.40,-17.32) (-10,-30)
(−2.162,15.728) ·10−3 (-0.735, 5.347) (-6.42,-17.38) (-10,-30)
(−1.890,15.657) ·10−3 (-0.643, 5.323) (-6.24,-17.20) (-10,-30)
(−1.800,15.693) ·10−3 (-0.612, 5.336) (-6.18,-17.04) (-10,-30)
(−1.822,15.659) ·10−3 (-0.620, 5.324) (-6.02,17.18) (-10,-30)
(−1.754,15.734) ·10−3 (-0.596, 5.349) (-6.14,-16.92) (-10,-30)
(−1.528,15.550) ·10−3 (-0.514, 5.287) (-5.84,17.04) (-10,-30)
(−1.504,15.571) ·10−3 (-0.512, 5.294) (-5.82,16.98) (-10,-30)
(−1.164,15.626) ·10−3 (-0.396, 5.313) (-5.60,16.52) (-10,-30)
(−1.391,15.574) ·10−3 (-0.473, 5.295) (-5.92,-16.80) (-10,-30)
(−1.278,15.754) ·10−3 (-0.434, 5.356) (-5.66,16.42) (-10,-30)
(−1.346,15.725) ·10−3 (-0.458, 5.347) (-5.88,-16.50) (-10,-30)

4 (16.409,−1.431) ·10−3 (5.580, -0.486) (5.72,-15.54) (10,-30)
(16.273,−1.540) ·10−3 (5.533, -0.524) (5.94, 15.78) (10,-30)
(16.182,−1.508) ·10−3 (5.502, -0.513) (5.94, 15.92) (10,-30)
(16.296,−1.412) ·10−3 (5.542, -0.480) (5.72,-15.72) (10,-30)
(16.318,−1.381) ·10−3 (5.548, -0.470) (5.84, 15.56) (10,-30)
(16.273,−0.976) ·10−3 (5.533, -0.332) (5.46,-15.34) (10,-30)
(16.160,−1.073) ·10−3 (5.494, -0.364) (5.52,-15.60) (10,-30)
(16.137,−1.062) ·10−3 (5.487, -0.361) (5.52,-15.62) (10,-30)
(16.160,−0.981) ·10−3 (5.494, -0.334) (5.62, 15.46) (10,-30)
(16.228,−0.948) ·10−3 (5.517, -0.322) (5.60, 15.32) (10,-30)
(16.160,−0.748) ·10−3 (5.494, -0.254) (5.48, 15.24) (10,-30)
(16.001,−0.778) ·10−3 (5.440, -0.264) (5.36,-15.58) (10,-30)
(16.092,−0.756) ·10−3 (5.471, -0.257) (5.34,-15.40) (10,-30)
(16.160,−0.690) ·10−3 (5.494, -0.234) (5.30,-15.24) (10,-30)
(16.114,−0.721) ·10−3 (5.479, -0.245) (5.32,-15.34) (10,-30)

Table 5.2: Session 1, table of TDOA values, estimated distance from origin node,
estimated position and ground truth for Series 3-4
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5.2 Session 2

5.2 Session 2

In this section, we display the setup of Session 2, along with the estimated positions,
in Figures 5.2-5.6. In Table 5.3, the raw data from the TDOA analysis of Session
2 are displayed, along with the estimated distance (given the speed of sound from
Equation 2.2 and the temperature according to Section 4.2) and the estimated posi-
tion derived from it. We also display the ground truth position.

Without calibration

Figure 5.2: Session 2, estimated firing positions from TDOA without calibration
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Chapter 5. Results

Series T DOA(ml ,mr) dr(mc) est. pos g.t.
1 (no det.) N/A N/A (0,-74)

(no det.) N/A N/A (0,-74)
(no det.) N/A N/A (0,-74)
(no det.) N/A N/A (0,-74)
(no det.) N/A N/A (0,-74)

2 (7.181,6.939) ·10−2 (24.34,23.52) N/A (0,-74)
(7.237,6.927) ·10−2 (24.53,23.48) N/A (0,-74)
(7.220,7.025) ·10−2 (24.48,23.81) N/A (0,-74)

3 (7.188,7.196) ·10−2 (24.37,24.40) N/A (0,-74)
(7.248,7.215) ·10−2 (24.57,24.46) N/A (0,-74)
(7.266,7.160) ·10−2 (24.63,24.27) N/A (0,-74)

4 (no det.) N/A N/A (0,-274)
(no det.) N/A N/A (0,-274)
(no det.) N/A N/A (0,-274)
(no det.) N/A N/A (0,-274)
(no det.) N/A N/A (0,-274)

5 (7.636,7.352) ·10−2 (25.89,24.92) N/A (0,-274)
(7.874,7.522) ·10−2 (26.70,25.50) (38,-929) (0,-274)
(7.757,7.509) ·10−2 (26.30,25.45) N/A (0,-274)

6 (7.903,7.678) ·10−2 (26.79,26.03) (7,-245) (0,-274)
(7.864,7.607) ·10−2 (26.66,25.79) (14,-454) (0,-274)
(7.783,7.654) ·10−2 (26.38,25.95) (10,-654) (0,-274)

Table 5.3: Session 2, without calibration. TDOA values, distance from origin node,
estimated position and ground truth
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5.2 Session 2

Calibrating to Series 2 and s100

In this section, the TDOA values are the same as in Table 5.3, but with the relative
distance differences in Series 2 aligned to match the ground truth of source position
s100. The results of this can be seen in Figure 5.3. No new TDOA-values are mea-
sured and so they are removed from Table 5.4, where the estimated distance (given
the speed of sound from Equation 2.2 and the temperature according to Section 4.2)
and the estimated position derived from it are displayed. We also display the ground
truth position.

Figure 5.3: Session 2, estimated firing positions with Series 2 calibrated to micro-
phone position s100
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Series dr(mc) est. pos g.t.
2 (27.12,27.12) (0,-74)* (0,-74)

(27.31,27.08) (0.7,-67.5) (0,-74)
(27.25,27.41) (0.5,-57.9) (0,-74)

3 (27.14,27.99) (-2,-44.1) (0,-74)
(27.34,28.06) (-1.6,-38.8) (0,-74)
(27.41,27.87) (-1.1,-41.6) (0,-74)

5 (28.67,28.52) (0.2,-16.0) (0,-274)
(29.47,29.10) (0.4,-6.4) (0,-274)
(29.08,29.06) (0,-9.2) (0,-274)

6 (29.57,29.63) (-0.1,-3.4) (0,-274)
(29.44,29.39) (0.1,-5.2) (0,-274)
(29.16,29.55) (-0.5,-5.6) (0,-274)

Table 5.4: Session 2 (without Series 1 and 4), Series 2 calibrated to s100. Distance
from origin node, estimated position and ground truth
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5.2 Session 2

Calibrating to Series 2 and s300 (contradicting ground truth)
In this section, the TDOA values are the same as in Table 5.3, but with the relative
distance differences in Series 2 aligned to match source position s300, which how-
ever contradicts ground truth. The results of this can be seen in Figure 5.4. No new
TDOA-values are measured and so they are removed from Table 5.5, where the es-
timated distance (given the speed of sound from Equation 2.2 and the temperature
according to Section 4.2) and the estimated position derived from it are displayed.
We also display the ground truth position.

Figure 5.4: Session 2, estimated firing positions with Series 2 calibrated to micro-
phone position s300
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Series dr(mc) est. pos g.t.
2 (26.37,26.37) (0,-274)* (0,-74)

(26.57,26.33) (1.9,-223.1) (0,-74)
(26.51,26.67) (-1,-165.3) (0,-74)

3 (26.40,27.24) (-3.8,-107.8) (0,-74)
(26.60,27.31) (-2.8,-89.9) (0,-74)
(26.66,27.13) (-1.9,-98.7) (0,-74)

5 (27.92,27.78) (0.3,-33.8) (0,-274)
(28.73,28.36) (0.6,-16.8) (0,-274)
(28.33,28.31) (0,-21.3) (0,-274)

6 (28.83,28.89) (-0.1,-11.9) (0,-274)
(28.70,28.64) (0.1,-14.8) (0,-274)
(28.42,28.81) (-0.6,-15.6) (0,-274)

Table 5.5: Session 2 (without Series 1 and 4), Series 2 calibrated to s300. Distance
from origin node, estimated position and ground truth
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5.2 Session 2

Calibrating to Series 5 and s100 (contradicting ground truth)
In this section, the TDOA values are the same as in Table 5.3, but with the relative
distance differences in Series 5 aligned to match the source position s100 which
however contradicts ground truth. The results of this can be seen in Figure 5.6. No
new TDOA-values are measured and so they are removed from Table 5.7, where the
estimated distance (given the speed of sound from Equation 2.2 and the temperature
according to Section 4.2) and the estimated position derived from it are displayed.
We also display the ground truth position.

Figure 5.5: Session 2, estimated firing positions with Series 5 calibrated to micro-
phone position s100
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Series dr(mc) est. pos g.t.
2 (25.56,25.71) (-0.1,2.4) (0,-74)

(25.75,25.66) (0.1,2.3) (0,-74)
(25.69,26.00) (-0.3,2.2) (0,-74)

3 (25.58,26.58) N/A (0,-74)
(25.79,26.65) (-13.8,-456.5) (0,-74)
(25.85,26.46) (-13.8,-655.7) (0,-74)

5 (27.11,27.11) (0,-74)* (0,-274)
(27.92,27.69) (0.5,-35.1) (0,-274)
(27.52,27.65) (-0.3,-43.9) (0,-274)

6 (28.02,28.22) (-0.2,1.0) (0,-274)
(27.89,27.98) (-0.2,-31) (0,-274)
(27.61,28.14) (-1.1,-32.5) (0,-274)

Table 5.6: Session 2 (without Series 1 and 4), Series 5 calibrated to s100. Distance
from origin node, estimated position and ground truth
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5.2 Session 2

Calibrating to Series 5 and s300

In this section, the TDOA values are the same as in Table 5.3, but with the relative
distance differences in Series 5 aligned to match the ground truth source position
s300. The results of this can be seen in Figure 5.5. No new TDOA-values are mea-
sured and so they are removed from Table 5.6, where the estimated distance (given
the speed of sound from Equation 2.2 and the temperature according to Section 4.2)
and the estimated position derived from it are displayed. We also display the ground
truth position.

Figure 5.6: Session 2, estimated firing positions with Series 5 calibrated to micro-
phone position s300

47



Chapter 5. Results

Series dr(mc) est. pos g.t.
2 (24.82,24.96) (-0.1,2.8) (0,-74)

(25.01,24.92) (0.1,2.6) (0,-74)
(24.95,25.25) (-0.3,2.6) (0,-74)

3 (24.84,25.84) (-1,2.4) (0,-74)
(25.04,25.90) (-0.8,2.4) (0,-74)
(25.11,25.71) (-0.6,2.4) (0,-74)

5 (26.37,26.37) (0,-274)* (0,-274)
(27.18,26.95) (0.8,-78.5) (0,-274)
(26.78,26.90) (-0.6,-106.4) (0,-274)

6 (27.28,27.48) (-0.6,-54.5) (0,-274)
(27.15,27.24) (-0.3,-67.4) (0,-274)
(26.87,27.40) (-1.8,-71.7) (0,-274)

Table 5.7: Session 2 (without Series 1 and 4), Series 5 calibrated to s300. Distance
from origin node, estimated position and ground truth
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6
Discussion

6.1 Field experiments

Session 1
As seen in Figure 5.1, the calculated source positions matched the actual positions
with respect to angle, underestimating sl and sr in absolute distance, possibly due
to non-compensated drift. However, there were heavy mirroring artifacts. Since the
microphones were positioned along a line, it was not possible to discern whether the
source was located above or below the line, resulting in the calculated positions of
shots from the same series being mirrored seemingly at random. Possible measur-
ing noise (due to the limited recording frequency) did not seem to affect the result
too severely. If there were any reflecting artifacts they were not too significant. The
direction in which the shots were fired did affect the TDOA slightly, but these dif-
ferences were not significant enough to be immediately noticeable in the position
estimation.

Session 2
The shots in Series 1 and 4 used a low-speed calibre which was mostly too quiet
to be distinguishable from background noise in the detection analysis; these were
discarded from the position estimations.

Without calibration, the algorithm results were poor. For Series 2-3, the TDOA
values for each channel look too small, and do not correspond to any valid source
position. Series 5-6 more closely resemble those expected from ground truth, but
their TDOA values are larger than those in Series 2-3, contrary to ground truth.
The angle from the microphones to the source roughly matched ground truth with
a slight bias to the right, but the magnitude was far too large except for shot 1 of
Series 6.

We suspected the source of these errors to be some kind of non-linear drift (due
to non-constant speed of sound in the air, low voltages of the microphones etc.) or
due to supersonic effects of the calibre.
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Chapter 6. Discussion

To test how a possible calibration (similar to that in Session 1) might improve
the results, we aligned the recordings of ml and mr to match a High-type series
(i.e. Series 2 or 5), either with respect to s100 or s300. This resulted in 4 possible
calibrations. The TDOA values along with Series 1 and 4 in there entirety are left
out from these calibrations.

Calibrating to Series 2 and s100 From Table 5.4, all TDOA values resulted in
valid positions, but contrary to ground truth, the shots from s300 ended up much
closer to the microphones.

Calibrating to Series 2 and s300 From Table 5.5, all TDOA values resulted in
valid positions. The distances match better to ground truth, but in the wrong order
(Series 2-3 better match 5-6 and vice versa). Some kind of drift between shots in
the same series is very noticeable here, primarily in mr.

Calibrating to Series 5 and s100 From Table 5.6, we see that the results are not
realistic and do not resemble ground truth.

Calibrating to Series 2 and s100 From Table 5.7, Series 2-3 are too close to the
mc. Series 5-6 more closely match ground truth, but there is a noticeable drift here
as well.

In conclusion, the results from calibration 2 seemed to correspond best to ground
truth, although with the results in wrong order. Some kind of non-linear drift seems
probable in mr, even with the global drift correction. To more completely ameliorate
effects from drift, some kind of synchronization pulse is needed, preferably with
short, high-frequency pulses.

The results from the field tests and the results from the MatLab simulations in
Chapter 3 are, unfortunately, not directly comparable due to the difficulty, of im-
plementing the methods, evaluated in the simulations, on the originally intended
hardware. As the field tests were conducted on flat ground, it was not strictly neces-
sary to use more than three microphones, which made a simplified algorithm using
only three inputs attractive. Also, the introduced degeneracy in the z-axis would
have made the 3D multilateration algorithm particularly susceptible to singularity
problems, which would have reduced the amount of usable field data.
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6.2 Limitations

6.2 Limitations

The multilateration algorithm from Chapter 2.2 was very sensitive to noise and
quantization due to low sampling frequency as shown in Chapter 3.4, Figures 3.7-
3.8. It was not very robust as the node positions heavily influenced the possible
solutions, and therefore the accuracy of the estimations.

The Kalman filter assumed that the drift changed slowly enough that it could be
considered constant during the calibration interval. It is possible that the dirft might
be subject to fluctuations even within this interval, especially in extreme tempera-
tures (below 0 °C or above 40° C) or unsettled (rainy or windy) weather, causing
wrong state estimations.

The TOA algorithm had some susceptibility to overdetecting, causing some
events to be detected twice, necessitating some manual removal of unrealistic
TDOA values. It also couldn’t detect two peaks very close in time due to the neces-
sary detection window.
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7.1 Conclusion

This thesis has shown that even in conditions with heavy delay, a fast position es-
timate can be achieved. The Kalman filter worked well in achieving estimations of
the clock drift and offsets in a short amount of time even with heavy measurement
noise. The detection algorithm seemed reasonably robust to even heavy background
noise. With the threshold used, there were few errors such as superfluous TOA de-
tections.

Acquiring good TOA values is important to reduce error propagation when these
values are used in the multilateration algorithm for the position estimation. This
was apparent for the multilateration algorithm as it was very sensitive to noise and
singularity errors, and also quickly decreased in accuracy at longer distances, which
was to be expected due to the larger range of possible solutions combined with the
limited sampling frequency. The double solutions generated by the multilateration
algorithm added an element of arbitrariness.

The field tests showed that a continuous sync source is crucial to combat drift,
otherwise the results might be unusable. The multilateration algorithms are not nec-
essarily downgradable (to lower dimensions).

7.2 Future Work

A more robust multilateration algorithm that can be easily adapted to a larger/small
number of nodes, along with a higher frequency clock and more discerning/adaptive
detection algorithms that require less, or no manual error correction. Also, a library
or protocol for easier communication between RTC-equipped nodes, and make use
of the hardware originally intended by OCTECH for this thesis. For example, one
could construct a setup where the detection, synchronization and multilateration is
automated, the sensors continually recording and detecting events, the main unit
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7.2 Future Work

calculating and presenting solutions on-the-fly. The parameters of the algorithms
might also be changed by the user in real-time to improve performance.
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