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Abstract

This thesis investigates the possibility of computing interval estimates for metrics that pertain to

traffic safety based on surrogate measures of safety. A probabilistic model of the (near) crash count

is defined using the generalized Pareto distribution and three different methods for calculating

confidence intervals for the corresponding intensity parameter are proposed. We consider the

delta method, the profile likelihood and a modification to the profile likelihood. Using the same

methods we construct statistical tests in order to compare the safety of two infrastructure designs

controlling for difference in traffic flow. These methods are then applied to three data sets from

intersections in Denmark and three intersections in the Netherlands. Our findings show that the

profile likelihood method yields satisfactory results in comparison to the other two methods; while

also being relatively straightforward to implement.

Keywords: Extreme value theory, traffic safety analysis, surrogate measure of safety, maximum

likelihood, delta method, profile likelihood, modified profile likelihood.
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Nomenclature

Abbreviations

Dk1 First intersection in Denmark

Dk2 Second intersection in Denmark

Dk3 Third intersection in Denmark

GPD Generalized Pareto Distribution

ML Maximum likelihood

MPL Modified profile likelihood

Ne1 First intersection in the Netherlands

Ne2 Second intersection in the Netherlands

Ne3 Third intersection in the Netherlands

PDF Probability density function

PET Post-encroachment time

PL Profile likelihood

PMF Probability mass function

POT Points over Threshold

SMoS Surrogate Measures of Safety

TCT Traffic Conflict Technique

TTC Time-to-Collision

Notations

S̃ Random variable for the negated surrogate measures of safety, where S̃ = −S

S Random variable for surrogate measures of safety
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1 Introduction

The first part of this section provides an introduction to the importance of traffic safety as well

as previous research on the subject. The second part will present the purpose of this thesis and a

description of the data that has been used for the analysis.

1.1 The Importance of Traffic Safety Analysis

In the European Union, more than 35000 people died in 2009. As part of the White Paper, the

EU has adapted ”Vision Zero” in an attempt to curb this problem, a vision where the number of

road deaths are to be reduced to almost zero by 2050. A sub goal is that the number is halved

between the year 2011 and 2020 [1].

As an effect of this vision, a number of countries have seen a reduced road accident fatality rate,

however, Sweden and the Netherlands have some of the slowest progress. In the past few years,

Sweden has even seen an increase in the road accident fatality rate. During 2018, 324 people died

in road traffic accidents (defined as ”an accident that occurred in traffic on a road generally used

for traffic with motor vehicles, whereas at least one vehicle were in motion and resulted in person

injury” [2]) in Sweden, which is an increase of 29% since the year before.

Internationally speaking, however, Sweden has a fairly low fatality rate. In 2017, Sweden had 25

fatalities due to road accidents per million inhabitants, while Denmark had 32 and the Netherlands

had 36. By 2018, Sweden had increased that number to 32 [2].

Assessing the traffic safety of roads can be challenging. Not all accidents are reported, especially

non-fatal accidents suffer from being under reported. Thus, obtaining data can sometimes be

challenging, and not to mention, the data received often contain very little additional information

of the accident. As such, even accident types with a high frequency often needs years of observation

before any analysis of safety can be done. Consequently, the use for different surrogate measures,

that measure how close an interaction of road users are to collision, is unquestionably useful

[3]. The practicality of these measures is the added information, such as the type of road user,

evasive manoeuvres, and type of intersection at which the near-crashes occured, as well as a higher

frequency of data points.

1.2 Previous Research of Traffic Safety

The Safety Pyramid, Figure 1, was introduced in 1987 by Hydén [4] to illustrate the relationship

between severity and frequency of interactions between road users. At the top of the pyramid

are the most severe collisions (the fatal) which have the lowest frequency of all interactions, and

at the bottom are the undisturbed passages, that constitute the highest frequency. By analyzing

near-crashes, we will be focusing on the top of the pyramid, including potential conflicts.
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Figure 1: The Safety Pyramid as introduced by Hydén in 1987

Source: Laureshyn et al. (2010) [5]

Traffic Conflict Technique (TCT) is the use of surrogate measures to to assess levels of conflicts.

These are related to accidents, and were primarily used to evaluate individual intersections. The

first practical application of TCT was suggested by Harris and Perkins in 1967 [6], and since,

many surrogate measures of safety (SMoS) have emerged, Time-to-Collision (TTC) being among

the more popular which was introduced by Hayward in 1972 [7].

Extreme value theory is used in various fields, but the pioneers to apply it to traffic safety was

Campbell, Joksch and Green whom in 1996 fit the Weibull distribution to the extreme values of

TTC to ”estimate the safety benefits of active safety technology” [8]. In 2006, Songchitruksa and

Tarko let the extreme value distributions vary with the traffic flow and predicted crash frequencies

which were consistent with the observed crash frequencies when analysing post-encroachment

times, another surrogate measure of safety, from video recordings [9].

1.3 Surrogate Measures of Safety (SMoS)

As mentioned in Section 1.1, surrogate measures are a useful tool for statistical analysis of traffic

safety. By utilising the additional information and data of near-crashes rather than pre-existing

crash data, one can work pro-actively as opposed to reactively [3]. However, this approach tend

to be somewhat labour intensive.

In this thesis, the following three SMoS will be used in the analysis.

- TTCmin (Time-to-Collision): The minimum time in seconds it takes for the two road users

to collide if they continue with their same speed and paths. The road users must be on a

collision course for this to be measured [7].

- PET (Post-Encroachment Time) is the time in seconds it takes for the second road user to

reach the place of the first road user [5].
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- T2min is an extension of PET, measuring the PET for each given moment, given that both

road users continue with the same speeds and paths, and taking the minimum value [5].

Also measured in seconds.

1.4 Purpose and Problems

As was previously described, there is an established approach within traffic safety analysis to use

SMoS and extreme value distributions to assess the safety of a particular piece of road infrastruc-

ture. Generally, it is assumed that some extreme value distribution can be used to approximate

the lower tail distribution of some SMoS, from which a crash probability can be computed. With

some additional assumptions one can then use the crash probability to estimate the intensity at

which a crash occurs per unit of time. The two primary objectives of this thesis can summarized

as:

• The first goal is to develop and evaluate different methods for computing confidence intervals

for the (near) crash intensity at an intersection.

• The second goal is to develop hypothesis tests in order to assess the relative safety between

two different intersections while accounting for differences in traffic flows.

A lot of previous research has focused on producing adequate point estimates of the crash intensity.

In this thesis, we put more consideration into constructing adequate interval estimates of the

crash intensity. Incorporating confidence intervals will allow the researcher to get a sense of

the uncertainty of their point estimates. This is not necessarily something novel since most

studies from our literature review also compute confidence intervals. However, from our research

it appears that the intervals are computed through parametric bootstrapping schemes; see for

example Zheng et. al (2014) [10], Tarko (2012) [11], Songchitruksa and Tarko (2006) [9], and

Farah and Azevedo (2017) [12]. Our contention with this approach is that it has been shown that

parametric bootstrapping methods perform poorly for extreme value distributions in the sense

that it produces excessively wide confidence intervals (see e.g. [13]). We propose some alternative

methods of computing confidence intervals for the crash intensity based on some common principles

within extreme value theory and statistical inference theory.

The second aim is to assess the relative safety between two intersections. Although we may not

be able to model the exact underlying process generating the SMoS, we may still be able to make

correct decisions as to which intersection is safer. As a consequence, these methods could be used

to identify optimal infrastructure designs from a safety perspective, even if we have inaccurate

representations of the variability in crash frequencies in the form of a model. This is potentially

also an alternative method to validating proposed models of the crash frequency. If we know

that a particular infrastructure design in theory is safer than another, and the proposed model

identifies this design as safer than some other design, then this is evidence that the model is valid;
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at least for assessing the relative safety of two designs. We apply our proposed methods on three

data sets from intersections in Denmark and the Netherlands.

For this particular application there is some theoretical evidence that the intersection design

in Denmark is generally safer than in the Netherlands. This proposition is mostly based on a

literature review by Prati et al (2018) [14], which found evidence that the intersection design in

Denmark is safer than the corresponding design in the Netherlands for interactions between motor

vehicles and cyclists [14]. The bicycle crossing at the intersections in the Netherlands consist of

a separate cyclist track together with pedestrians in which the cyclist lane is separate from the

motor vehicle lane. The intersections in Denmark are characterized by having bike paths that

are separated from the motor vehicle lane only by painted lines on the road before and after the

intersection. So there is some justification for the proposition that the intersections in Denmark

are generally safer. To evaluate the relative safety, our approach is to define hypothesis tests for

the difference in crash probabilities at the respective intersections using some asymptotic results

from inference theory (see Section 3).

1.5 Data Description

The data used in this thesis has been collected by the Transport and Roads Division of the Depart-

ment of Technology and Society at LTH, by filming intersections in several European countries.

The videos have been processed by using a combination of the two softwares T-analyst and Road

User Behavioural Analysis (RUBA), in addition to using human observers.

In this thesis, we are analysing a subset of this data, consisting of three intersections in Denmark

and three in the Netherlands, hereby referred to as Denmark 1 - 3 and Netherlands 1 - 3. We

are only focusing on conflicts between right turning cars and straight going bicycles, using the

three surrogate measures of safety TTCmin, T2min and PET (see Section 1.3 for definitions of

the surrogate measures). In total, three outliers were removed from the data: one observation

for T2min from Denmark 1 with a value of 56.9128 seconds, one observation for T2min from the

Netherlands 1 with a value of 21.1210 seconds , and one from T2min from the Netherlands 3 with

a value of 21.8707 seconds. All analysis below are done after these outliers were removed.

All intersections have been filmed from 00:00 - 23:59 during 2016. The intersections in the Nether-

lands have all been filmed for a period of 24 hours on the 16/6, while two of the ones in Denmark

have been filmed for more than one day. The data for Denmark 1 have been collected from 18/4

- 21/4, Denmark 2 from 19/5, and Denmark 3 from 23/8 - 24/8. The intersections Netherlands

1 - 2 have a higher number of interactions than Denmark 1 and 3, despite having been filmed

for a shorter period of time. The total number of interactions for the six intersections between

a right turning car and a cyclist can be seen in Table 1, along with the number of observations

of each of the three surrogate measures as well as the number of hours for which the data has
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been collected. As evidenced, there are few observations for TTCmin for most of the intersections,

one being as low as 4 (Denmark 3). The number of observations for T2min and PET are much

higher, with the lowest being 71 and 72 respectively, both belonging to Denmark 1. Due to the

low number of observations for TTCmin for Denmark 1 and 3, they will be removed from further

analysis. Denmark 2 and the Netherlands 1 - 3 has had a period of 24 hours for the collection

of data, Denmark 3 has had 48 hours and Denmark 1 has the longest time of data collection: 96

hours.

Table 1: Number of observations for the different data sets and surrogate measures and number

of hours for the collection of data

Intersection N n
TTC

n
T2

n
PET

h

Denmark 1 76 10 71 72 96

Denmark 2 136 39 136 136 24

Denmark 3 114 4 104 104 48

Netherlands 1 269 189 266 265 24

Netherlands 2 137 67 136 136 24

Netherlands 3 109 41 106 106 24

The histograms for all measures for Denmark 2 and the Netherlands 2 can be seen in Figure 2 - 4.

The distributions for TTCmin (Figure 2) look like they may be similar for the Denmark 2 and the

Netherlands 2, however, the number of observations for Denmark 2 are fairly low (39) compared to

the Netherlands 2 (67). The histograms for T2min for Denmark 2 and the Netherlands 2 (Figure

3) look very similar, with the same number of observations but a shifted mean. The histogram

for PET for Denmark 2 have much heaver tails than the histogram for the Netherlands 2 for the

same measure, and the distributions do not appear to be the same (Figure 4).

Figure 2: Histogram of TTCmin for Denmark 2 and the Netherlands 2
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Figure 3: Histogram of T2min for Denmark 2 and the Netherlands 2

Figure 4: Histogram of T2min and PET for the Netherlands 2
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Boxplots of the measures for intersection 2 in Denmark and the Netherlands are seen in Figure 5

- 7. The boxplot for TTCmin look similar for the two countries, both with two outliers (Figure

5). The boxplots for T2min is much narrower for Denmark than the Netherlands (Figure 6). For

PET, the box and whiskers are much narrower for Denmark than the Netherlands, with the later

having 5 outliers compared to Denmark, which has none (Figure 7).

Figure 5: Boxplot of TTCmin for Denmark 2 and the Netherlands 2

Figure 6: Boxplot of T2min for Denmark 2 and the Netherlands 2
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Figure 7: Boxplot of PET for Denmark 2 and the Netherlands 2

Descriptive statistics of the data can be seen in Table 2. The lowest standard error is for Denmark

2, PET, with a value of 0.4146, while the highest is for the Netherlands 3, T2min, with a value of

2.1746. The standard error varies somewhat for the same measures across the intersections within

one country. For instance, the lowest standard error in Denmark for T2min is 0.5096 and the

highest is 1.8069 while the same measure for the Netherlands range from 0.8498 to 2.1746. The

closest difference in the highest and lowest standard errors for a measure in one country are PET

in Denmark and TTCmin in the Netherlands, both with a difference close to 0.4. The standard

errors for TTCmin for Denmark 1 and 3 are 0.8588 and 1.9409 respectively.

All minimum values but two are below 0.54, with TTCmin for the Netherlands 2 and 3 being the

exceptions with a minimum of 0.9621 and 2.076 respectively. Mean values are fairly consistent

with values ranging from 1.2392 to 3.5759 for all measures and intersections.

The maximum values for all measures and intersections range from 2.2667 for PET for Denmark

2, to 21.8707 for T2min for the Netherlands, while most values range from 2 to 8.
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Table 2: Minimum, mean, maximum value and standard errors for the three measures in the

different intersections and countries

Data Measure Min Mean Max Standard Error

Denmark 1 T2min 0.0094 2.0171 10.6758 1.8069

PET 0.200 1.764 5.533 0.8433

Denmark 2 TTCmin 0.1437 3.5759 11.3627 2.1453

T2min 0.2061 1.2751 3.1528 0.5096

PET 0.3333 1.2392 2.2667 0.4146

Denmark 3 T2min 0.1231 1.5120 6.3527 0.7342

PET 0.5333 1.3660 2.9333 0.4484

Netherlands 1 TTCmin 0.000 3.074 7.687 1.1096

T2min 0.2281 2.1927 21.1210 1.5581

PET 0.2667 2.0340 12.4667 1.7660

Netherlands 2 TTCmin 0.9621 2.8289 6.0053 0.9756

T2min 0.2417 2.0706 5.8423 0.8498

PET 0.200 1.748 5.918 0.8152

Netherlands 3 TTCmin 2.076 3.149 5.364 0.7397

T2min 0.4842 2.5846 21.8707 2.1746

PET 0.400 1.874 8.267 0.9980

2 Theory

In this section we provide some necessary theory that justifies the method and results found in

the course of this thesis.

2.1 Probability Distributions

In what follows, we will list some basic probability distributions and stochastic processes that will

be used in the course of this thesis. Most of the material covered in this section is taken from Gut

(2009) [15]. Probability distributions are usually characterized by their cumulative distribution

function defined as

F (x) = P (X ≤ x0) =

∫
x<x0

f(x)dx

for continuous distributions, and
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F (x) = P (X ≤ x0) =
∑
x≤x0

p(x),

for discrete distributions. Here, f(x) and p(x) refer to the probability density function (PDF) and

the probability mass function (PMF) respectively.

Let X be a Bernoulli variable with discrete outcomes {0, 1} and PMF given by

p(x) =

π, for x = 1

1− π, for x = 0.

If we have a sequence of identical and independent Bernoulli variables {X1, ..., Xn} and consider

the sum Y =
∑
Xi, then Y ∈ Bin(n, π) with PMF

p(y) =

(
n

y

)
πy(1− π)n−y, for y = 0, ..., n.

A closely related distribution is the Poisson distribution with PMF

p(x) =
e−λλx

x!
, for x = 0, 1, 2, ... and λ > 0

Finally, let X ∈ exp(λ), meaning that it follows the exponential distribution with PDF

f(x) = λ exp(−λx), for x > 0, λ > 0.

Now suppose we observe a sequence of integer-valued random variables {X(t), t ≥ 0} with X(0) =

0 and X(t2) ≥ X(t1) for t2 > t1. This sequence will constitute a Poisson process if it satisfies the

following properties [15]:

1. The increments X(ti+1)−X(ti) are independent random variables for all i.

2. X(t)−X(s) ∈ Po(λ(t− s)) for λ > 0.

The parameter λ is usually called the intensity of the Poisson process. Suppose that the times at

which an increment in the process occurs during a period T are given by t1 < t2 < ... < tn, so that

X(tn) = n. These time points are usually referred to as jumping times, and the difference between

two contiguous jumping times ti − ti−1 follow an exponential distribution, i.e., ti − ti−1 ∈ exp(λ)

[15].

2.2 Extreme Value Theory

Extreme value theory is concerned with the distribution of extremal events. An appropriate

starting point is to consider the distribution of sample maxima.
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Definition 2.1. Suppose we have the random variables {X1, ..., Xn}, then the maxima is defined

as Mn = max{X1, ..., Xn}.

Now, if we let {X1, ..., Xn} be independent and identically distributed with common distribution

function F (x), it follows that Mn ∈ Fn(x). In many cases Fn will converge to a point mass, but

as we are interested in the distribution of the maxima, the question is whether there exists some

distribution function G such that P (an (Mn − bn) ≤ x)→ G(x).

Theorem 2.1. A non-degenerate distribution function G is max-stable if and only if there is a

sequence Fn and constants an > 0 and bn such that

Fn
(
a−1nkx+ bnk

)
→ G

1
k (x)

for k = 1, 2, ...

For a max-stable distribution, it follows that Gn (anx+ bn) = G(x). Conveniently, it can be shown

that every max-stable distribution belongs to three types [16].

Theorem 2.2. Suppose G(x) is a max-stable distribution. Then G belongs to one of the following

three types

Type I : G(x) = e−e
−x
, −∞ < x <∞

Type II : G(x) =

0, if x ≤ 0

e−x
−α
, otherwise, α > 0

Type III : G(x) =

e
−(−x)α , x ≤ 0, α > 0

1, otherwise.

(1)

Furthermore, the three cases can be captured by a single generalized extreme value distribution

given by

G(z) = exp

(
−
[
1 + γ

(
z − µ
σ

)]− 1
γ

)
, (2)

for {z : 1 + γ
(
z−µ
σ

)
> 0}, where −∞ < µ <∞, σ > 0 and −∞ < γ <∞ [17].

The implication of Theorem 2.1 - 2.2 is that if we have a sequence of i.i.d random variables

{X1, ..., Xn} with distribution function F such that Fn
(
a−1n (x+ bn)

)
→ G(x), then we obtain

the distribution of the maxima Mn as P (Mn ≤ z)→ G(z) where G(z) is given as in Equation 2.

We may proceed by modelling Mn immediately using the theorems above, however this approach

is wasteful in terms of data. Instead, we may consider the distribution of exceedences above some

threshold u i.e.

P (X − u > y|X > u) =
1− F (u+ y)

1− F (u)
, y > 0. (3)
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The following theorem provides a way to approximate the distribution of exceedences.

Theorem 2.3. Suppose that Mn = max (X1, ..., Xn) and P (Mn ≤ z) → G(z) as in Equation 2,

then the distribution of (X − u) for sufficiently large u is given by

P (X − u ≤ y|X > u) = 1−
(

1 + γ
y

σ

)− 1
γ

for {y : y > 0,
(
1 + γ yσ > 0

)
}, σ > 0, ∞ < γ < −∞ [17].

The distribution function in Theorem 2.3 is called the Generalized Pareto Distribution (GPD),

and we see that the approximation to the GPD is contingent on the convergence of maxima to a

non-degenerate distribution. For the case when γ = 0, we take the limit which is the exponential

distribution given by

P (X − u ≤ y|X > u) = 1− exp
( y
σ

)
, for y > 0. (4)

We can use the theorem to obtain an estimate of the upper tail of the distribution of F simply by

applying Bayes’ theorem i.e.

P (X ≤ x) = P (X > u)

[
1−

(
1 + γ

x− u
σ

)− 1
γ

]
.

Theorem 2.3 motivates the modelling of points over high threshold using the GPD in what is

sometimes called Points over Threshold model (POT). Suppose we have a sample of i.i.d. random

variables {x1, ..., xn}. To approximate the upper tail of the distribution using the POT model,

we identify an appropriate threshold u and fit the GPD to the filtered sample {x∗1, x∗2, ..., x∗n∗}

consisting of all x that exceed u.

In this application we are interested in the lower tail of the distribution of a given SMoS. If we

let mn denote the minima of a sequence, then it follows that mn = −max (−X1, ...,−Xn) =

−max
(
X̃1, ..., X̃n

)
. Consequently, if there exists some sequence of constants an and bn such that

−mn−bn
an

converges to the generalized extreme value distribution, then by theorem 2.3 there exists

some ũ such that X̃ − ũ | X̃ > ũ converges to the GPD. From a modelling perspective we simply

have to apply POT to the negated data.

2.3 Statistical Inference

2.3.1 Estimation

Parametric inference in concerned with estimating some parameter vector θ of a distribution

F (x;θ) from a finite sample x = {x1, ..., xn}. It is common in the field of extreme value theory to

make use of the likelihood function given by

L (x;θ) =

n∏
i=1

f(xi;θ),
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where f is the density function associated with F . This assumes that x is an i.i.d. sample. Then,

the maximum likelihood estimator of θ is given by

θ̂ = arg max
θ
{L (x;θ)} = arg max

θ
{` (x;θ)},

where ` (x;θ) = log [L (x;θ)] . In general, we want any estimator of θ to be efficient and consis-

tent. It is known that the maximum likelihood estimator is consistent under certain regularity

conditions, which implies that
∂

∂θ
` (x;θ) = 0

has roots θ̂ which converges to the true value with probability 1. Moreover, under the same

regularity conditions the maximum likelihood estimator achieves the Cramér-Rao lower bound,

which implies that they are efficient [18].

It should be noted that the likelihood function is invariant to one-to-one transformations. Suppose

we have a likelihood function for θ but we are interested in ψ = g (θ) = [g1(θ), g2(θ), ..., gk(θ)]

where the mapping is one-to-one. Then it follows that

sup
θ
L (x;θ) = sup

ψ
L(x; g−1(ψ)),

which implies that we can re-parametrize the likelihood function to obtain estimates of interest.

However, if we are interested in estimating g(θ) we can obtain the estimate immediately from θ̂,

i.e. ĝ (θ) = g(θ̂) even if g is not a one-to-one bijection. If the transformation is one-to-one then

certain asymptotic properties are preserved. For example, if θ̂ is asymptotically normal, then ψ̂

will also be asymptotically normal [19].

Now suppose we are only interested in some subset of the parameter vector, i.e., let θ = [ψ,φ],

where ψ is the parameter of interest and φ are nuisance parameters. Then the profile log-likelihood

function of ψ is defined as

`p (ψ) = sup
φ
` (ψ,φ) = `(ψ, φ̂ψ). (5)

This implies that for a specific value of ψ0 we compute φ̂ that maximizes ` (ψ0,φ), and evaluating

` at
(
ψ0, φ̂0

)
yields the profile likelihood function at ψ0. In many cases, inference based on

the profile-likelihood performs better for the parameter ψ compared to the standard likelihood

function; particularly for small samples [17]. The profile likelihood estimate is given by

ψ̂p = arg max
ψ

{`p(ψ)} .

We can think of φ̂ψ as an estimator of the nuisance parameters, but these will generally be biased

estimators except when ψ = ψ̂. In order to adjust for the bias, we must multiply the profile

likelihood with some function M (ψ) so that the modified profile likelihood is given by

LM (ψ) = M(ψ)Lp(ψ).
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In general such a function exists and is given by

M(ψ) = |jφφ(ψ, φ̂ψ)|− 1
2

∣∣∣∣∣∂φ̂∂φ
∣∣∣∣∣ , (6)

where jφφ is the corner of the observed information matrix corresponding to the nuisance param-

eters, and ∂φ̂
∂φ is a sample space derivative which is usually difficult to compute [20]. One solution

to this difficulty is to transform the parameter-space according to (ψ,φ) 7→ (ψ,φ′) such that the

i−1(ψ,φ′) is a diagonal matrix. However, this involves solving a system of partial differential

equations which have a solution in general, but may be difficult to find for particular problems

[21]. As an alternative, we consider an approximation to the modified profile likelihood derived

by [22]. Let us denote the approximate modified likelihood by LM , then

LM (ψ, φ̂ψ) =

∣∣∣jφφ(ψ, φ̂ψ)
∣∣∣∣∣∣i(ψ, φ̂ψ; ψ̂, φ̂)
∣∣∣Lp(ψ), (7)

where

i(ψ, φ̂ψ; ψ̂, φ̂) = Eψ̂,φ̂

[(
∂

∂φ
`(ψ,φ)

∣∣∣
ψ,φ̂ψ

)(
∂

∂φ
`(ψ,φ)

∣∣∣
ψ̂,φ̂

)T]
.

Here, Eψ̂,φ̂ is defined as the expectation under f(x; ψ̂, φ̂). It turns out that the quantity

i(ψ, φ̂ψ; ψ̂, φ̂) is quite cumbersome to compute for likelihoods involving the GPD. Fortunately,

it can be approximated by

ĩ(ψ, φ̂ψ; ψ̂, φ̂) =

n∑
i

(
∂

∂φ
`(i)(ψ,φ)

∣∣∣
ψ,φ̂ψ

)(
∂

∂φ
`(i)(ψ,φ)

∣∣∣
ψ̂,φ̂

)T
, (8)

where `(i) denotes the log-likelihood for a single observation i. Meaning that that for n observations

`(θ) =
∑n
i=1 `

(i)(θ) [23]. We will make use of this approximation to find MPL estimators ψ̂ using

the following likelihood function

LM (ψ, φ̂ψ) =

∣∣∣jφφ(ψ, φ̂ψ)
∣∣∣∣∣∣̃i(ψ, φ̂ψ; ψ̂, φ̂)
∣∣∣Lp(ψ). (9)

The motivation for this modification is that in practice one may obtain better approximations of

the confidence bounds for small samples compared to the profile likelihood (see below) [24].

2.3.2 Confidence Intervals

Apart from estimating the parameters, we can also use certain properties of the likelihood functions

to construct statistical tests from which we can derive confidence intervals for certain parameters
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of interest. Ideally, we would like to derive some uniformly most powerful test based on Neymann-

Pearson’s lemma that would hold for both large and small samples. However, the nature of the

likelihood function for the Generalized Pareto distribution makes this approach very difficult.

Instead, large-sample theory is often used for inference with respect to the GPD. In what follows,

we will list some fundamental theorems with respect to large-sample likelihood theory that will

be used to construct confidence intervals in this thesis. These theorems require the following

regularity conditions for f(x;θ) = L (x;θ):

1. The paremeter space Ω has finite dimension, and the true parameter θ0 ∈ Ω.

2. f(x;θ) is distinct for distinct values of θ.

3. The density f(x;θ) is three times differentiable with respect to θ, and E
[
| ∂

3

∂θ3 f(x;θ)|
]
<∞

4. Finally, we must have that

E
[
U(θ)U(θ)T

]
= E

[
− ∂

∂θ
U(θ)T

]
= i(θ)

,

where the score function is U(θ) = ∂
∂θf(x;θ) and the Fisher information is i(θ) =

E
[
−∂

2

θ2 log (f(x;θ)
]
. Note that if the dimension of θ is greater than one, ∂

∂θ denotes the gradient

operator and ∂2

∂θ2 is the hessian. These conditions are unnecessarily restrictive, however, they are

often easy to verify. Under these same regularity conditions one can show that the maximum

likelihood estimate is asymptotically normally distributed [25].

Theorem 2.4. Let X1, ..., Xn be i.i.d. and suppose the distribution satisfies the regularity con-

ditions 1 - 4 above. Then the maximum likelihood estimator θ̂ satisfies

θ̂ → N
(
θ, i−1 (θ)

)
.

A similar result holds for the ML estimate of g(θ), which is often referred to as the delta method.

Assuming that θ = [θ1, ..., θk], then we introduce the following notation

∇g(θ) =

[
∂

∂θ1
g (θ) , ...,

∂

∂θk
g (θ)

]
.

Theorem 2.5. Let X1, ..., Xn be i.i.d. and suppose the distribution satisfies the regularity con-

ditions 1 - 4 above. Let θ̂ be the maximum likelihood estimate of θ and g (θ) is a differentiable

function. Then it follows that

g(θ̂)→ N
(
g (θ) , σ2

g

)
,

where,

σ2
g = ∇g (θ) i−1 (θ)∇g (θ)

T
.
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Theorem 2.4 constitutes the basis for constructing a series of hypothesis tests regarding θ. In this

thesis, we are particularly interested in constructing confidence intervals for our estimates based

on two-sided hypothesis testing of the form given in equations (10 - 11).

H0 : θ = 0 (10)

H1 : θ 6= 0 (11)

Let α be the desired significance level of the test, and let zp denote the pth quantile of the

standard normal distribution, then a consequence of Theorem 2.4 is that we can we can reject the

null hypothesis H0 if

|θ̂| ≥ z1−αi−
1
2

(
θ̂
)
,

which is called the Wald statistic. From this test we can construct the following confidence interval

for θ:

θ̂ − zαi−
1
2

(
θ̂
)
≤ θ ≤ θ̂ + z1−αi

− 1
2

(
θ̂
)
. (12)

Moreover, the corresponding confidence interval for Theorem 2.5 is given by

g
(
θ̂
)
− z1−ασ̂g ≤ g (θ) ≤ g

(
θ̂
)

+ z1−ασ̂g, (13)

where σ̂g is σg evaluated at θ̂. Notice that the confidence intervals given in Equations 12 - 13

are necessarily symmetric about the maximum-likelihood estimate, and the estimated variance

is related to the likelihood function only through the Fisher information [26]. In practice, and

in extreme value theory in particular, convergence to the normal distribution is poor for finite

samples. To remedy this, it is often beneficial to confidence intervals based on the asymptotic

distribution of the log-likelihood ratio. These confidence intervals are based on the following

theorems [27].

Theorem 2.6. Suppose X1, ..., Xn are i.i.d. with distribution function F satisfying the regularity

conditions 1 - 4 above. And suppose we’re interested in testing the simple hypothesis

H0 : θ = θ0

H1 : θ 6= θ0.

The likelihood ratio is defined as R =
L(θ̂)
L(θ0)

. Then, under H0 it follows that

2 log

L
(
θ̂
)

L (θ0)

 = 2
(
`
(
θ̂
)
− ` (θ0)

)
→ χ2

k,

where k is the number of free parameters under H1.
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The corresponding confidence region is then give by{
θ : ` (θ) ≥ `

(
θ̂
)
− 1

2
q1−α

}
, (14)

where q1−α is the 1− α quantile of the χ2
k distribution.

Similarly, we can construct confidence intervals for g (θ) based on the asymptotic likelihood ratio

test using the following theorem.

Theorem 2.7. Let X1, ..., Xn be i.i.d. with distribution function F satisfying regularity conditions

1 - 4 above. Let g (θ) be differentiable and suppose we’re interested in testing the following

hypothesis

H0 : g (θ) = 0

H1 : g (θ) 6= 0.

Then,

2 log (R) = 2
(
`(θ̂)− ` (θ0)

)
→ χ2

1.

From Theorem 2.7 we can construct the following confidence region for g (θ):

Ig1−α =
{
g (θ) : ` (θ) ≥ `(θ̂)− q1−α

2

}
. (15)

The lower and upper bounds of the confidence interval with usual interpretation, is then given

by min
{
Ig1−α

}
and max

{
Ig1−α

}
respectively. Computing these bounds essentially amounts to a

constrained maximization problem and the following Lagrangian can be used to find said bounds

immediately

L (x;θ,φ, ε) = ` (θ) + ε (φ− g(θ)) , (16)

where ε is the the multiplier. Let (θ̂, φ̂, ε̂) be the parameters that maximizes the L, and let (θ̂ε, φ̂ε)

be the parameters that maximizes L for a given ε. Then by the properties of the Lagrangian it

follows that the confidence region in Equation 14 can be re-written in terms of ε as{
ε : L(θ̂ε, φ̂ε, ε) ≥ L(θ̂, φ̂, ε̂)− q1−α

2

}
,

and the lower confidence bound is given by finding ε− and ε+ such that L(θ̂ε, φ̂ε, ε) = L(θ̂, φ̂, ε̂)−
q1−α
2 , and so the upper and lower bounds are g(θ̂ε−) and g(θ̂ε+) [28].

It can be shown that the likelihood ratio for the profile likelihood and the modified profile likelihood

function also converge to χ2 distribution, which consequently implies that we can construct the

following confidence regions for the profile likelihood [26]{
ψ : `p(ψ) ≥ `p(ψ̂)− q1−α

2

}
, (17)
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and for the modified profile likelihood we have [29]{
ψ : `p(ψ) ≥ `mp(ψ̂)− q1−α

2

}
, (18)

where q1−α is 1− α quantile of the the χ2
k distribution, with k equal to the dimension of ψ.

3 Method

In this section we delineate how the theory from Section 2 can be applied to construct confidence

intervals for the near-crash intensity and to assess the relative safety between two intersection

using SMoS.

3.1 Probabilistic Model of Near-Crash Events

Let us denote the value of an SMoS by S, and treat it as a random variable. Then, in order to

model the lower tail distribution of S using the generalized Pareto distribution, we must assume

that S is continuous. Further, suppose we observe a sequence {S1, ..., Sn}, and let F be the

distribution function for S̃ = −S, then from Theorem 2.1 there must exist a sequence of constants

an and bn such that Fn converges to a max-stable distribution which will be one of the extremal

types. Consequently, if the above assumptions hold, and for a sufficiently large threshold ũ, it

follows that

P (S̃ − ũ ≤ z|S̃ > ũ) = 1−
(

1 + γ
z

σ

)− 1
γ

,

from Theorem 2.3. For concision, we set Z = S̃ − ũ, and as we are interested in P (S < s), then

the relation of the the probability P (Z > z|Z > 0) to P (S < s|S < u) is easily seen from the

following identities

(
1 + γ

z

σ

)− 1
γ

= P (Z > z|Z > 0) = P (S̃ − ũ > z|S̃ > ũ)

= P (−(S̃ − ũ) < −z| − S̃ < −ũ) = P (S − u < −z|S < u)

= P (S − u < s− u|S < u) = P (S < s|S < u).

Meaning that P (Z > z|Z > 0) is interpreted as the probability that S is less than s conditional

on S < u. Finally, the lower tail probability the P (S < s) is then given by multiplication with

P (S < s) i.e.

P (S < s) = P (S < s|S < u)P (S < u) =
(

1 + γ
z

σ

)− 1
γ

P (Z > 0).

When assessing the safety of some type of traffic infrastructure, one is generally interested in the

number of times S < s during a period, where is s is some level of interest. This suggests that we
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are interested in some counting process where the intensity is a function of the GPD parameters.

Let us denote this counting process by Cf (s, t), since it is both a function of the sampling period

t and the quantile of interest s. We want Cf (s, t) to be the count of the number of interactions

during a period t with an SMoS less than s. Now we make the following simplifying assumptions

regarding the interactions between right turning vehicles and cyclists:

1. The number of interactions within any subinterval of t are independent of the number in

any other subinterval.

2. Interactions occur with constant intensity over the time period t.

3. The value of an individual SMoS is independent of the number of interactions.

Let N(t) be the number of interactions between right turning vehicles and cyclists during a period

t; n is the number of interactions with S < u; and let X be a Bernoulli variable defined as

p(x) =


(

1 + γ q(s)σ

)− 1
γ

, for x = 1

1−
(

1 + γ q(s)σ

)− 1
γ

, for x = 0,

where q(s) = s̃ − ũ = −s + u is the desired level of the SMoS for which we want to know the

counting distribution. We will call all observations of s < u ”shortfalls below u”. Together

with the additional assumption that N(t) follows a Poisson distribution, the assumptions above

correspond to the following distributions

N(t) ∈ Po(λt)

n | N(t) ∈ Bin(N(t), π)

X | n,N(t) ∈ Bernoulli

({
1 + γ

q(s)

σ

}− 1
γ

)
.

We use | to denote conditioning so that X| n,N(t) is defined as the distribution of X conditional

on n and N(t). Also, note that π = P (S < u). The random variable Cf (s, t) can then be seen as

the sum of all X over n, i.e.

Cf (s, t) =

n∑
i=1

Xi (19)

We briefly set Cf (s, t) = C and
(

1 + γ q(s)σ

)− 1
γ

= p. Note that C | n,N(t) ∈ Bin(n, p), so the
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distribution of Cf (s, t) can now be derived using the law of total probability as follows

P (C = c) =

∞∑
N=0

N∑
n=0

P (N(t) = N)P (n = n | N(t) = N)P (C = c |n,N(t))

=

∞∑
N=0

N∑
n=0

e−λt
(λt)N

N !

(
N

n

)
πn(1− π)N−n

(
n

c

)
pc(1− p)n−c

=

∞∑
N=0

N∑
n=0

e−λt
(λt)N

N !

(
N

c

)(
N − c
n− c

)
(πp)c(π(1− p))n−c(1− π)N−n

=

∞∑
N=0

(
N

c

)
e−λt

(λt)N

N !
(πp)c

N−c∑
k=0

(
N − c
k

)
(π(1− p))k(1− π)N−c−k

=

∞∑
N=0

(
N

c

)
e−λt

(λt)N

N !
(πp)c (π(1− p) + 1− π)

N−c

=e−λt
(λtπp)c

c!

∞∑
N=0

(λt(1− πp))N−c

(N − c)!
= e−λtπp

(λtπp)c

c!
, (20)

where we have used the binomial theorem and some combinatoric identities. Now the PMF in

Equation 20 can be recognized as the Poisson distribution with intensity λc = λtπ
(

1 + γ q(s)σ

)− 1
γ

.

The implication of this model is that if we know the parameters (λ, π, γ, σ), then we can compute

the expected number of interactions with S < s for all s < u. In other words, once we estimate

the parameters, then we also obtain estimates of the counting distribution Cf (s, t) for all s < u

and all t. As is standard in the literature, we will let S < 0 correspond to the event that an

interaction results in a crash.

The model in Equation 20 also allows us to distinguish between the number interactions as a

function of the traffic intensity corresponding to the parameter λ, and the probability that any

one interaction generates a SMoS less than s, which corresponds to the factor π
(

1 + γ q(s)σ

)− 1
γ

.

3.2 Parameter Estimation

In the previous section, we concluded that the number of interactions with S < s during a time

period t follows a Poisson distribution under certain simplifying assumptions, i.e.

Cf (s, t) ∈ Po

(
λtπ

(
1 + γ

q(s)

σ

)− 1
γ

)
.

What remains to be shown is how the parameter vector θ = (λ, π, γ, σ) can be estimated. In

extreme-value theory, parameter estimation is usually performed through likelihood- and moment-

based estimators. In this thesis, we restrict ourselves to the class of likelihood-based methods, since

the maximum likelihood estimates are invariant to one-to-one transformations of the parameter

space; which will prove to be quite useful indeed.
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From the data description, we know that we observe the random vector X = (N(t), n,z), where

N(t) is the total number of interactions, n is the number of events with an SMoS S < u and

zi = s̃i − ũ = −si + u, for some reasonably chosen threshold u. The likelihood is then simply

the density function f(X) viewed as function of the parameter vector θ. Then, under the same

assumptions as in Section 3.1, the density function follows immediately from Bayes’ Theorem

L(θ;X) = f(X) = f(z | N(t), n)P (n = n | N(t))P (N(t) = N)

= e−λt
(λt)N

N !

(
N

n

)
πn(1− π)N−n

n∏
i=1

1

σ

(
1 + γ

zi
σ

)− 1
γ−1

. (21)

Then, the maximum likelihood estimator of θ is given by the solution to the system of equations

∂
∂θL(θ;X) = 0. Since the parameters λ and π are orthogonal to one another and to the GPD

parameters, these can effectively be estimated separately. There is no analytical solution for the

GPD parameters, so the solution will have to be computed numerically, which can be done using

the extRemes package in R [30].

The question remains whether or not the likelihood in Equations 21 will converge to the normal

distribution, and whether or not the estimators are consistent and efficient, as is desired. It was

shown by Smith that for γ > −0.5 , the maximum likelihood estimator for the GPD parameters

behaved regularly. Note that the number of interactions N(t) and, as a consequence, the number of

exceedences n are generated by a Poisson process. Therefore, we are interested in the distribution

of the maximum likelihood estimates θ̂ as t → ∞, and since the textbook proof of asymptotic

normality proceeds by taking the limit as the number of observations goes to infinity, this requires

an explicit proof for asymptotic normality. This turns out to be quite difficult. Of course, the

model in Equation 21 is equivalent to the model proposed by Davison and Smith [31] if we only

consider the marginal distribution of (n, z) with the following density function

∞∑
N=0

f(X) = e−λπt
(λπt)N

N !

n∏
i=1

1

σ

(
1 + γ

zi
σ

)− 1
γ−1

.

In this case the exceedences follow a Poisson distribution. In other applications, the exceedences

have been treated as Binomial, for example in Coles 2001 [17], which in our case can be obtained by

conditioning on N(t). The point is, that in both cases the asymptotic normality of the estimates

are not proven, and they simply add the corresponding components to the Fisher information

matrix (see below). We will follow the same approach.

In order to compute the confidence interval based on the Wald test as is given in Equation 13, we

need to compute the Fisher information matrix i(θ) = E
[
− ∂2

∂θ2 `(θ)
]
. From [32] we know that
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the Fisher information for the generalized Pareto distribution is given by

iGPD (θ) =


2

(1+γ)(1+2γ)
−1

σ(1+γ)(1+2γ)

−1
σ(1+γ)(1+2γ)

1
σ2(1+2γ)


= M , (22)

and we note that the following the following partial derivatives hold for the log-likelihood corre-

sponding to Equation 21:

∂2

∂λ2 ` = −N
λ2

∂2

∂λ∂π ` = 0 ∂2

∂λ∂γ = 0 ∂2

∂λ∂σ ` = 0

∂2

∂π2 ` = − n
π2 − N−n

(1−π)2
∂2

∂πλ` = 0 ∂2

∂π∂γ ` = 0 ∂2

∂π∂σ ` = 0.

Let jγσ(θ) be the corner of the observed Fisher information corresponding to the GPD parameters

for the likelihood in Equation 21. Since we treat the number of shortfalls as random, we have that

iγσ(θ) =

∞∑
N=0

N∑
n=0

E [jγσ(θ) | N(t) = N,n = n]P (n | N)P (N)

=

∞∑
N=0

N∑
n=0

nMP (n | N)P (N) = λtπM .

Using the fact that the marginal distribution of n ∈ Po(λtπ), and N −n ∈ Po(λt(1−π)), we have

that the Fisher information matrix given by

i (θ) =



t
λ 0 0 0

0 λt
π(1−π) 0 0

0 0 2λtπ
(1+γ)(1+2γ)

−λtπ
σ(1+γ)(1+2γ)

0 0 −λtπ
σ(1+γ)(1+2γ)

λtπ
σ2(1+2γ)



. (23)

From Theorem 2.4, we know that θ̂ → N(θ, i−1(θ)), and so the asymptotic covariance matrix of

the ML estimators is given by
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i−1 (θ) =



λ
t 0 0 0

0 π(1−π)
λt 0 0

0 0 (1+γ)2

λπt
σ(1+γ)
λπt

0 0 σ(1+γ)
λπt

2(1+γ)σ2

λπt


. (24)

We recall that λc = λtπ
(

1 + γ q(s)σ

)− 1
γ

, meaning that λc is a function of the parameter vector θ.

By the properties of the maximum likelihood estimator, we have that λ̂c = λc(θ̂). As a consequence

of Theorem 2.5, we can then form the following confidence interval for λc with significance level α

λc(θ̂)− z 1−α
2
σ̂c ≤ λc ≤ λc(θ̂) + z1−α2 σ̂c, (25)

where,

σ̂2
c = ∇λc(θ̂)i−1(θ̂)∇λc(θ̂),

and,

∇λ̂c =

[
∂

∂λ
λc,

∂

∂π
λc,

∂

∂γ
λc,

∂

∂σ
λc

] ∣∣∣
(λ̂, π̂, γ̂, σ̂)

.

As was noted in Section 2.4, we may obtain estimates with better small sample properties using

the profile likelihood function. To this end, the likelihood function in Equation 21 must be re-

parametrized in terms of λc. Since we have that

λ =
λc
π

(
1 + γ

q(s)

σ

) 1
γ

,

and since λc is a monotone function of λ, the transformation (λ, π, γ, σ) 7→ (λc, π, γ, σ) is one-to-

one. Consequently, the likelihood function is invariant to the transformation and is given by

L(θ;X) = e−
λct
π (1+γ q(s)σ )

1
γ

(
λct
π

(
1 + γ q(s)σ

) 1
γ

)N
N !

(
N

n

)
πn(1−π)N−n

n∏
i=1

1

σ

(
1 + γ

zi
σ

)− 1
γ−1

. (26)

Since we are interested in the near-crash intensity λc, all other parameters can be considered

nuisance parameters. Let φ = [π, γ, σ], then the profile log-likelihood function with respect to λc
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is given by

`p(λc) = `(λc, φ̂λc) = sup
φ
`(λc,φ;X). (27)

The profile likelihood estimate of λc is then given by

λ̂pc = arg max
λc

{`p(λc)} .

There is no analytical expression for `p(λc), and so obtaining λ̂pc amounts to a numerical optimiza-

tion problem in two parts. Firstly, for a given value of λ0c , we have to find φ̂λ0
c

that maximizes

`(λ0c ,φ). Then we need to find λ̂pc that maximizes `p(λc). The problem of obtaining φ̂λ0
c

corre-

sponds to the following non-linear optimization problem:

Maximize `(λ0c ,φ;X) w.r.t. φ

Subject to (1 + γ zσ ) > 0, (1 + γ q(s)σ ) > 0.
(28)

There are broad class of algorithms for optimization with non-linear inequality constraints, and

following [33] we use the SLSQP algorithm which can easily be implemented in R using the

NLOPTR package [34]. The second step is to maximize `p(λc), which is carried out using R’s

standard optim function.

Let q1−α be the 1− α quantile of the χ2
1 distribution, then the confidence region with confidence

level 1− α for λc is given by

I1−α =
{
λc : `(λc) ≥ `(λ̂pc)−

q1−α
2

}
,

so that the corresponding confidence interval is

min(I1−α) ≤ λc ≤ max(I1−α). (29)

This amounts to finding the roots of the function 2
(
`p(λ̂

p
c)− `p(λc)

)
= q1−α. This argument

for the profile likelihood based confidence for the crash intensity λc is very similar to the profile

likelihood based confidence for the return levels in Coles (2001) [17], and Davison and Smith

(1990) [31].

Finally, we consider a modification to the profile likelihood according to Equation 7 with the

appropriate approximation for i(ψ, φ̂ψ; ψ̂, φ̂) as given in Equation 8. This approximation requires

a log-likelihood function that can be re-written as the sum of log-likelihood functions for single

observations, i.e. `(θ) =
∑N
i=1 `

(i)(θ). With the likelihood given in Equation 21, this is not

possible. However, since we have the times at which an interaction between vehicle and cyclist

was recorded, it means that we also observe a Poisson process for the number of interactions.

Furthermore, the observance of the number of shortfalls n is equivalent to observing n Bernoulli
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variables. So, in order to observe an SMoS at time ti, there must occur an interaction and a

shortfall below the threshold. Since we also observe interactions without shortfalls, this should be

included in the likelihood function. So the proposed likelihood function for a single observation is

L(i)(θ;X) =

λπ(ti − ti−1)e−λ(ti−ti−1) 1
σ

(
1 + γ ziσ

)− 1
γ−1 , for si < u

λ(1− π)(ti − ti−1)e−λ(ti−ti−1), for si ≥ u,
(30)

and the full likelihood is then simply given by L(θ;X) =
∏N
i=1 L

(i)(θ;X). Again, we can

reparametrize the likelihood in terms of (λc,φ), and the profile likelihood function can be ob-

tained using the same optimization scheme as above. Also, the approximation in Equation 8

is now well-defined - albeit tedious to compute. Fortunately, the components jφφ(λc, φ̂λc) and

ĩ(λc, φ̂λc ; λ̂c, φ̂) are straightforward computations in any symbolic computing software such as

Maple, which can be translated to an R matrix. Then, to find the estimate of λc, we simply

maximize the modified profile likelihood function. However, the observed information jφφ is not

necessarily positive definite, and we found that the MPL only existed in a neighbourhood of the

maximum-likelihood estimate. Therefore, it is important to plot the MPL before optimizing over

it. We refer to Appendix B for how to implement the profile likelihood and modified profile

likelihood in R.

Finally, let q1−α be the 1 − α quantile of χ2
1 distributione, then the the confidence region for λc

based on the MPL is given by

{
λc : `p(λc) ≥ `mp(λ̂mpc )− q1−α

2

}
. (31)

3.3 Threshold Selection and Model Validation

Provided that the variation of crash or near-crash events Cf (s, t) is appropriately described by

the Poisson distribution, we are left with two distinct problems; on the one hand, we require a

reasonably high threshold ũ to ensure that S̃ − ũ | S̃ > ũ converges to the GPD, and on the

other hand, we need a large enough sample to ensure accurate parameter estimates with the

desired properties. Naturally, there is a trade-off between these two, since a higher threshold (for

the negated observations) implies fewer observations. In this thesis, we restrict ourselves to two

graphical methods for threshold selection.

Earlier we noted that there is stability in the GPD parameters for increasing thresholds, with an

appropriate transformation of the scale parameter. To make this point more clear; suppose that

S̃ − ũ0 | S̃ > ũ0 converges to the GPD, then it will also converge for any ũ > ũ0 with the same

shape parameter γ but different scale parameter σ. Let σũ0 correspond to the scale parameter of

the GPD when the threshold is ũ0, and σũ when the threshold is ũ, then it can be shown that
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σũ = σũ0
+ γ (ũ− ũ0) . (32)

If we set σ∗ = σũ − γũ, then by plugging into Equation 32, we have

σ∗ = σũ − γũ = σũ0 + γ (ũ− ũ0)− γũ = σũ0 − γũ0.

Consequently, σ∗ is constant for all ũ > ũ0. Moreover, a confidence interval can be computed for

σ∗ using the delta method. So, one strategy for threshold is to plot the following tuples along

with the corresponding confidence intervals:

{(ũ, σ̂∗) : ũ < max(s̃)} ,

and,

{(ũ, γ̂) : ũ < max(s̃)} .

A suitable threshold is where the line connecting the points of the plots starts to become horizontal

for both the γ and σ∗ parameters when you account for the confidence intervals. To summarize;

we fit the GPD to the data over a range of threshold values and compute the estimates and

confidence intervals for the parameters γ and σ∗, and then find the lowest threshold above which

the parameters appear stable. These plots are usually called threshold range plots [17].

The second method that will inform our choice of threshold is the mean excess plot (also referred

to as mean residual life plot). It is based on the mean excess function defined as

M(u) = E[X − u | X > u],

and for the GPD in particular, it can be shown that M is linear in u,

M(u) =
σ

1− γ
+

γ

1− γ
u,

provided that γ < 1. Now suppose that the S̃ − ũ0 | S̃ > ũ0 converges to the GPD, then so

will S̃ − ũ | S̃ > ũ for any ũ > ũ0. Furthermore, an estimate of the mean excess function is

given by M̂(ũ) = 1
nũ

∑nũ
i=1 s̃(i) − ũ, where s̃(1), ..., s̃(nũ) are the negated values of S that exceed ũ.

Consequently, we would expect the mean excess plot given by

{(
ũ,

1

nũ

nũ∑
i=1

s̃(i) − ũ

)
: ũ < max(s̃)

}
,

to be linear above the minimum threshold required to ensure convergence [17].

After estimating the parameters, we should also check that the GPD in fact provides a good fit

to the data. We make use of three common plots, the first being the probability plot defined as
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{(
i

n+ 1
, 1−

(
1 + γ̂

s̃(i) − ũ
σ̂

)− 1
γ̂

)
: for i = 1, ..., n

}
, (33)

where, s̃(i), ..., s̃(n) is the ordered sample. This amounts to plotting the empirical probabilities

against the corresponding estimated probabilities according to the model. We may also plot the

observed quantiles against the estimated quantiles in a quantile plot given by

{(
ũ+

σ̂

γ̂

[(
i

n+ 1

)γ̂
− 1

]
, s̃(i)

)
, for i = 1, ..., n

}
. (34)

In principle, the quantile and probability plot should be linear if the GPD is a good fit [17].

Finally, it is a good idea to check whether the Poisson distribution for Cf (s, t) given in Equation

20 is a good fit to the data. One approach to this is to order the observed SMoS values s(1), ...s(n)

and then plot the number of observations with an SMoS lower than s(i) for i = 1, ..., n. At the

same time, we can plot the expected number of interactions with an SMoS lower than s(i) as

according to λ̂c(s(i)), along with the corresponding confidence intervals. This amounts to plotting

the following two sets of tuples simultaneously:

{( s(i), i ), for i = 1, ..., n}

{(s(i), λ̂c(s(i)), for i = 1, ..., n}.
(35)

If we also plot the corresponding confidence intervals for the λc(s(i)), then we get a good idea of

whether or not Cf (s, t) is a good model for the observed data.

3.4 Relative Safety

The major purpose of this thesis is to compare the safety of two different road intersection designs

with respect to cars and cyclists. Even though it may be difficult to obtain accurate estimates of

the crash intensity, or probability of a crash using statistical models, we may nevertheless be able

to draw correct conclusions as to whether or not a particular design is safer than the other.

To assess the relative safety of an intersection compared to another, we’re interested in comparing

the probability that an interaction between a car and a cyclist has an SMoS below a certain value

for two intersection. As such, we’re interested in the quantity P (S < s), and for s < u we know

from Section 2.3 that

P (S < s) ≈ P (S < u)

(
1 + γ

q(s)

σ

)− 1
γ

= π

(
1 + γ

q(s)

σ

)− 1
γ

.

Let us denote this probability by πc(s), so that πc(s) = π
(

1 + γ q(s)σ

)− 1
γ

. We will sometimes drop

the fact that the probability is a function of s for convenience, so that πc(s) = πc. We’re interested

27



in comparing πc for intersections in the Netherlands and intersections in Denmark, meaning that

we’re interested in the following hypothesis

H0 : πNEc − πDKc = 0

H1 : πNEc − πDKc 6= 0.
(36)

Note that our actual hypothesis is that the intersections in Denmark are generally safer than

the intersections in the Netherlands, which would imply the one sided alternative hypothesis

πNEc > πDKc . However, the asymptotic distribution of the likelihood ratio under the null hypothesis

implies a two-sided hypothesis, but since the two-sided hypothesis is more difficult to reject, then

provided that π̂NEc > π̂DKc , we can also reject the null hypothesis for the one-sided test.

We will use the confidence interval for πNEc −πDKc as a test statistic in order to test the hypothesis;

this means that the null hypothesis is accepted if zero is an element of the interval, and rejected

if zero is not an element of the interval.

Now, let θNE = [λNE , πNE , γNE , σNE ] and θDK be the corresponding parameter vector for the

Danish intersection, and let θ = [ θNE , θDK ]. Further, we will assume that the observations from

the Netherlands and Denmark are independent, so that the joint log-likelihood is given by

`(θ) = `(θNE) + `(θDK), (37)

and therefore, by assumption, θNE and θDK are orthogonal. As a consequence, the corresponding

Fisher information is given by

i(θ) =


i(θNE) 0

0 i(θDK)

 , (38)

where i(θNE) and i(θDK) are given as in Equation 23. Computing the confidence intervals based

on the Wald statistic according to Equation 13 is now straightforward by setting g(θ) = πNEc −πDKc
and computing the corresponding gradient with respect to θ.

Again, the likelihood function in Equation 37 can be re-parametrized by noting that

π = πc

(
1 + γ

q(s)

σ

) 1
γ

,

and if we set φNE = [λNE , γNE , σNE ], then the transformation θ 7→ (πNEc , πDKc ,φNE ,φDK) is

one-to-one. Since we’re only interested in the parameters πDKc and πNEc , we can consider the

other elements of the vector θ as nuisance parameters denoted by φ = [φNE , φDK ]. Due to

orthogonality, we have the the profile likelihood for (πNEc , πDKc ) is given by
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`p(π
NE
c , πDKc ) = sup

φ
`(πNEc , πDKc ,φ) = `p(π

NE
c ) + `p(π

DK
c ). (39)

As a consequence of Equation 39, the simultaneous profile-likelihood function simply amounts to

finding the profile likelihood for observations in Denmark and the profile likelihood function for

the observations in the Netherlands. So the optimization scheme in Equation 28 can be applied,

and then the joint likelihood is simply the sum of those two functions.

By Theorem 2.7, it follows that the corresponding 1 − α confidence region for the difference

πNEc − πDKc is given by

Ip1−α =
{
πNEc − πDKc : `p(π

NE
c , πDKc ) ≥ `p(π̂NEc , π̂DKc )− q1−α

2

}
, (40)

where q1−α is the 1−α quantile of the χ2
1 distribution. Then, the corresponding confidence interval

is given by

min(Ip1−α) ≤ πNEc − πDKc ≤ max(Ip1−α), (41)

and computation of the upper bound in Equation 41 can be done through the following optimiza-

tion

Maximize πNEc − πDKc
Subject to 2

(
`p(π̂

NE
c , π̂DKc )− `p(πNEc , πDKc )

)
≤ q1−α.

(42)

For the lower bound we simply minimize the difference under the same constraint.

Computation of the modified profile likelihood is also possible based on the likelihood in Equa-

tion 30 under the re-parametrization θ 7→ (πNEc , πDKc ,φNE ,φDK). For the sake of clarity, the

likelihood for a single observation from one intersection is given by

L(i)(πc,φ) =

λπc
(

1 + γ q(s)σ

) 1
γ

(ti − ti−1)e−λ(ti−ti−1) 1
σ

(
1 + γ ziσ

)− 1
γ−1 , for si < u

λ(1− πc
(

1 + γ q(s)σ

) 1
γ

)(ti − ti−1)e−λ(ti−ti−1), for si ≥ u.
(43)

We note that there will be a different number of observations from Denmark and the Netherlands.

This is not an issue if we let L(i)(πDKc ,φDK) = 1 in the case where we observe no interaction.

Then, the full joint likelihood is given by letting N = max(NDK , NNE):

L(πNEc , πDKc ,φNE ,φDK) =

N∏
i=1

L(i)(πNEc ,φNE)L(i)(πDKc ,φDK). (44)
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Now, computation of the profile likelihood is straightforward as well as computation of the modified

profile likelihood in Equation 9. Furthermore, the 1− α confidence region is then given by

Imp1−α =
{
πNEc − πDKc : `p(π

NE
c , πDKc ) ≥ `mp(π̂NEc , πDKc )− q1−α

2

}
. (45)

Computation of the upper bound of the confidence interval amounts to the following optimization

problem

Maximize πNEc − πDKc
Subject to 2

(
`p(π̂

NE
c , π̂DKc )− `p(πNEc , πDKc )

)
≤ q1−α.

(46)

Again, we use the SLSQP algorithm to optimize.

4 Simulation Study

The profile likelihood and the modified profile likelihood for λc and πc introduces some additional

complexity in the computation of estimates and confidence intervals, compared to the standard

maximum likelihood. In order to motivate this complexity, we conduct a small simulation study

to evaluate the power and confidence level of the confidence intervals described in Section 3.2 -

3.3.

We want the simulations to reflect the sampling problem of using video recordings to identify

interactions between cars and cyclists, and compute the corresponding SMoS for the interaction.

Since the number of interactions observed is a random process, it follows that the number of

interactions is a function of the sampling time T. As before, we assume that the number of

interactions is generated by a Poisson process, and we’re interested in how the different confidence

intervals perform for different sampling times and intensities.

The simulations are done in two steps, first we simulate the number of interactions from a Poisson

process, and then from each interaction we simulate from some underlying distribution, repre-

senting the distribution of an SMoS. This means that we simulate a dataset equivalent to the

datasets for Denmark and the Netherlands from the distribution defined in Equation 21. Then

for each simulated dataset, we can estimate the crash intensity λc and the probability of a crash

πc, as well as confidence intervals using the methods described in the previous section. Finally, we

can use these simulated confidence intervals to estimate the power and the confidence level. The

parameters used are given below.

In order to find the modified profile likelihood estimator, we need to know the times at which

an interaction occurs {ti : i = 1, ..., N} . Provided that N(T ) is generated by a Poisson process

with intensity λ, the time between events ji = ti − ti−1 is exponentially distributed with rate
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λ. So, a simple algorithm to simulate from a Poisson process for a time period T, is to simulate

N + 1 exponentially distributed random variables until
∑N+1
i=1 ji > T. Then set N(T ) = N , and

the jumping times is given by ti = ji + ti−1, with t0 = 0 [35]. We note that this is essentially

equivalent to simulating from Po(λT ). Then, we simulate N random variables from some under-

lying distribution which represents the distribution of S. In this way, we have simulated a random

number of interactions (or conflicts) and the outcome of those conflicts in terms of some SMoS.

We simulate S from the gamma and beta distribution, shifted so that P (S < 0) > 0, and rescaled

to reflect the actual scale in the dataset. We also vary the intensity for N(T ). We simulate from

the following distributions:

1. N(T ) ∈ Po(3T ), S = X1 − 0.1, where X1 ∈ Gamma(3,2)

2. N(T ) ∈ Po(T ), S = X2 − 0.1, where X2 ∈ Gamma(2,2)

3. N(T ) ∈ Po(3T ), S = 10(Y1 − 0.01), where Y1 ∈ Beta(6, 15)

4. N(T ) ∈ Po(2T ), S = 10(Y2 − 0.01), where Y2 ∈ Beta(2, 5).

By a similar argument as for the distribution of Cf (s, t) in Equation 20, the corresponding crash

intensity per hour is given by λc(0) = λP (S < 0). This implies that the true crash intensities (per

hour) for the sampling distributions above are given by

1. λc = 3P (S < 0) = 3P (X1 < 0.1) = 6.020248× 10−5

2. λc = P (S < 0) = P (X2 < 0.1) = 1.209104× 10−3

3. λc = 3P (S < 0) = 3P (Y1 < 0.01) = 1.030925× 10−7

4. λc = 2P (S < 0) = 2P (Y2 < 0.01) = 2.920895× 10−3.

After simulating N(T ) and a random sample of S, we can compute confidence intervals for λc and

πNEc − πDKc using the simulated datasets. Let Iλ denote the confidence region for λc, and let Iπ

denote the confidence region for πNEc − πDKc . Then, the confidence level 1− α for the confidence

interval for λc and πNEc − πDKc is given by

1− α = P (λc ∈ Iλ)

1− α = P (πNEc − πDKc ∈ Iπ).

When comparing the relative safety, we are also interested in the power of the test, and if we use

the confidence intervals as our test statistic, the power is defined as

1− β = P (0 /∈ Iπ).

If we simulate n datasets from the some distribution 1 - 4 above, and for each dataset we compute

the confidence region I according to the methods in Section 3.2 - 3.3, then by the Monte Carlo
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principle, we have that

1

n

n∑
i=1

1
{
πNEc − πDKc ∈ Iiπ

}
→ 1− α.

Here 1 denotes the indicator function, and Iiπ is the confidence interval for the ith simulated data

set. The power can also be computed in the same way by changing the condition for which the

indicator function is equal to one i.e.

1

n

n∑
i=1

1
{

0 /∈ Iiπ
}
→ 1− β.

The results are shown in the tables below. Note that T is the sampling time, and E[N ] is the

expected number of interactions for that sampling time. For each simulation, we constructed

confidence intervals using the nominal confidence level of 95%, so ideally, the actual confidence

level should be the approximately 95%. Each estimate of the confidence level is based on n = 100

simulated datasets.

Table 3: Confidence level for interval estimates of λc based on the maximum-,profile- and modified

profile likelihood. The nominal confidence level is 95%.

E[N] T ML PL MPL

Gamma(3,2) 72 24 0.12 0.68 0.31

144 48 0.16 0.68 0.51

216 72 0.20 0.74 0.62

288 96 0.22 0.79 0.71

Gamma(2,2) 24 24 0.08 0.91 0.72

48 48 0.12 0.94 0.88

72 72 0.20 0.94 0.89

96 96 0.19 0.95 0.93

Beta(6,15) 72 24 0.14 0.30 0.17

144 48 0.15 0.33 0.19

216 72 0.18 0.26 0.20

288 96 0.22 0.30 0.22

Beta(2,5) 48 24 0.15 0.69 0.98

96 48 0.27 0.74 0.94

144 72 0.34 0.78 0.94

192 96 0.46 0.80 0.92

Table 3 shows the confidence level estimates for n = 100 simulated datasets. In general, the

significance level increases with increased sampling time, as we would expect. The confidence

intervals based on the modified profile likelihood for Beta(2,5) is an exception in this regard, but
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if we assume that a confidence level of 95% is already achieved for T = 24, then the results are

not unreasonable given that they are generated by a Binomial distribution.

We also see that the profile- and modified profile likelihood achieves significantly higher confidence

level than the maximum likelihood method. Also, profile likelihood method achieves a higher

significance level for all distributions except for Beta(2,5), which suggests that the relative merit

between the profile- and modified profile likelihood may be sensitive to the underlying distribution

generating the data. Finally, confidence level tends to be higher for distributions with higher values

of λc, like Beta(2,5) and Gamma(2,3).

Next, we evaluate the confidence level for the difference in crash probability πNEc − πDKc and the

power of the testing the difference as in Equation 36. We conduct the test for the difference in

crash probability for the two gamma distributions, and the two beta distributions. For the gamma

distributions we set

πNEc − πDKc = P (X2 < 0.1)− P (X1 < 0.1) = 0.001189037

And for the beta distributions we set

πNEc − πDKc = P (Y2 < 0.01)− P (Y1 < 0.01) = 0.001460413

The results are shown in Table 4 and 5. Again, we see that the confidence intervals based on

the maximum likelihood perform very poorly both in terms of confidence level and statistical

power. In terms of confidence level, both the profile- and modified profile likelihood constitute big

improvements compared to the maximum likelihood method, but the profile likelihood clearly has

a higher confidence level while the modified profile likelihood has a higher power. Consequently,

the profile likelihood based confidence intervals have a high probability of containing the true

difference in crash probability, but it has a hard time rejecting the null hypothesis that the crash

probabilities are equal. In contrast, the modified profile likelihood has a relatively low probability

of covering the true difference, but it is able to identify reject the false null hypothesis in more

cases.
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Table 4: Estimates of the statistical confidence level of the hypothesis test in Equation 36 using

confidence intervals based on ML, PL and MPL as test statistics. The nominal confidence level is

95%.

T ML PL MPL

Gamma 24 0.01 0.98 0.74

48 0.03 0.94 0.53

72 0.03 0.92 0.64

96 0.09 0.96 0.68

Beta 24 0.03 0.98 0.51

48 0.06 0.99 0.64

72 0.08 0.99 0.71

96 0.05 0.98 0.82

Table 5: Estimates of the statistical power of the hypothesis test in Equation 36 using the con-

fidence intervals based on ML, PL and MPL as test statistics. The nominal confidence level is

95%.

T ML PL MPL

Gamma 24 0 0.02 0.23

48 0 0.05 0.33

72 0 0.11 0.37

96 0.01 0.06 0.47

Beta 24 0 0.01 0.18

48 0 0.02 0.31

72 0 0.02 0.37

96 0 0.03 0.47

Based on these results, it may be prudent to use the profile likelihood method when computing

the confidence estimate of λc, since it has a much higher probability of covering the true value. In

terms of testing the difference in crash probability, the modified profile likelihood will be useful

since rejecting the null hypothesis is easier.

5 Results

In this section, we apply the methods from Section 3 to the six datasets for all measures. Since

Denmark 1 (Dk1) and Denmark 3 (Dk3) TTCmin had very few observations, these were discarded.
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Moreover, in order to make the results presentable we only plotted the results for Dk2 and Ne2.

The corresponding plots for the other intersections can be found in Appendix C.

5.1 Threshold Selection

A combination of approaches has been used in order to find suitable thresholds for the six data sets.

Threshold range plots and mean residual life plots has been used to find where S̃ has converged

to GPD, and where the parameters σ and γ are stable. We also considered choosing a threshold

such that the endpoint for the distribution of the SMoS S ≤ 0 such that 0 is in the support, as

we are interested in the probability of a crash (when SMoS=0). Finally, the model diagnostics for

a chosen threshold u must suggest that the model of choice is a good fit.

The plots of the threshold ranges are seen in Figure 8 - 13. The thresholds are given in terms of

the negated data, which corresponds to ũ from Section 3. For Denmark 2, the highest threshold

we can select, where the confidence intervals are not too large, for TTCmin seems to be around

−3. For T2min, it is −0.75, and for PET it seems to be just below −1. For the Netherlands 2,

these thresholds seem to be around −2 for TTCmin, and around −1.5 for both T2min and PET.

Figure 8: Threshold range plot of TTCmin of Denmark 2, where a General Pareto model has been

fit to a sequence of thresholds with 95% confidence intervals
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Figure 9: Threshold range plot of T2min of Denmark 2, where a General Pareto model has been

fit to a sequence of thresholds with 95% confidence intervals

Figure 10: Threshold range plot of PET of Denmark 2, where a General Pareto model has been

fit to a sequence of thresholds with 95% confidence intervals
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Figure 11: Threshold range plot of TTCmin of the Netherlands 2, where a General Pareto model

has been fit to a sequence of thresholds with 95% confidence intervals

Figure 12: Threshold range plot of T2min of the Netherlands 2, where a General Pareto model

has been fit to a sequence of thresholds with 95% confidence intervals
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Figure 13: Threshold range plot of PET of the Netherlands 2, where a General Pareto model has

been fit to a sequence of thresholds with 95% confidence intervals

The mean residual life plots are seen in Figure 14 - 16, in which we want to find where linearity

occurs. For TTCmin, Denmark 2, the graph has a curvature at around −4, suggesting that S̃ has

not converged to GPD before this value, thus, the threshold must be at least −4. There is some

linearity between −4 and just before −2, with a spike at −2, suggesting this value might be an

appropriate threshold.

For the Netherlands 2, there is a curvature at −3 with a plateau between the thresholds −3

and −2.5, after which there is a slight negative linear trend, suggesting −2.5 is an appropriate

threshold. For T2min, −1.4 and −2 seem to be appropriate thresholds for Denmark 2 and the

Netherlands 2 respectively. A suitable threshold for Denmark 2, PET, is difficult to find. There

seems to be a linear trend for all thresholds, but as the observed value closest to 0 for this data

set and measure is 0.3 (Table 2), a threshold of around −1.4 might be suitable. For the same

measure for the Netherlands 2, a threshold of −1.8 seems appropriate.
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Figure 14: Mean residual life plot for Denmark 2 and the Netherlands 2 for TTCmin with 95%

confidence intervals

Figure 15: Mean residual life plot for Denmark 2 and the Netherlands 2 for T2min with 95%

confidence intervals
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Figure 16: Mean residual life plot for Denmark 2 and the Netherlands 2 for PET with 95%

confidence intervals

As we are interested in estimating the crash frequency (corresponding to S ≤ 0), we also want to

consider choosing a u such that the lower endpoint for the estimated tail distribution of S includes

0, as well as a low enough threshold ũ in order to have an appropriate number of observations for

the analysis. After some testing, and considering the threshold plots and mean residual life plots,

the resulting thresholds and maximum likelihood estimates with corresponding standard errors

for the GPD parameters can be seen in Table 6.

For many of the estimates, the shape parameter γ is not significantly different from zero. In many

applications this would indicate that we need to consider the GPD corresponding to γ = 0 with

distribution function given in Equation 4. However, applying such a model to would imply that

S does not have a lower bound. In that sense, the distribution in Equation 4 would be a poor

representation S.
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Table 6: Thresholds, number of exceedances above thresholds, GPD parameter estimates and

their standard errors for all intersections and measures

Data Measure u n Scale (σ) Shape (γ) s.e. Scale s.e. Shape

Denmark 1 T2min 2 52 0.9937 −0.4613 0.1615 0.1062

PET 1.5 30 0.5172 −0.3151 0.1175 0.1469

Denmark 2 TTCmin 3 16 1.1347 −0.2456 0.4267 0.2876

T2min 0.75 22 0.2173 −0.2677 0.0707 0.2522

PET 0.88 30 0.1975 −0.2101 0.0544 0.2099

Denmark 3 T2min 1.5 63 0.4817 −0.2933 0.0700 0.0814

PET 0.88 12 0.6710 −0.6155 0.0827 0.0857

Netherlands 1 TTCmin 2.5 66 0.5025 −0.0735 0.0776 0.0937

T2min 0.74 18 0.2057 −0.2237 0.0974 0.4137

PET 1.07 67 0.2730 −0.2425 0.0448 0.1134

Netherlands 2 TTCmin 1.693 9 0.2734 −0.1574 0.1502 0.4398

T2min 2.3 92 0.9402 −0.4085 0.1217 0.0878

PET 1.4 50 0.3850 −0.2047 0.0713 0.1228

Netherlands 3 TTCmin 2.597 11 0.1592 −0.0512 0.0733 0.3484

T2min 0.96 10 0.9402 −0.4085 0.1217 0.0878

PET 0.88 10 0.1694 −0.1532 0.0776 0.3348

Model diagnostics of the generalized Pareto distributions for Denmark 2 and the Netherlands 2 for

all measures are seen in Figure 17 - 19. For all models, the empirical and model density seem to be

fairly consistent, suggesting the models, thus the thresholds, are appropriate. In the probability-

and quantile plots, there are some curvatures for all measures, however, the points follow the line

fairly well. Overall, the diagnostics seem to suggest the chosen models are appropriate.
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Figure 17: Model diagnostics for the estimated GP distributions for Denmark 2 and the Nether-

lands 2 for TTCmin 42



Figure 18: Model diagnostics for the estimated GP distributions for Denmark 2 and the Nether-

lands 2 for T2min 43



Figure 19: Model diagnostics for the estimated GP distributions for Denmark 2 and the Nether-

lands 2 for PET
44



5.2 Estimates of Near-Crash Intensities

In this section, we present the estimates of λc(s) using the maximum- , profile- and modified profile

likelihood method. We also plot the corresponding confidence intervals and the empirical counts

for reference. The empirical counts are defined as the number of observations with a measure

(SMoS) lower than s.

Comparing the estimates with the empirical counts is a good way to evaluate the model fit Cf (s, t),

however, it says very little about the accuracy of the model when extrapolating outside the range

of the dataset. With the estimates of the crash intensity λc(0) we can still apply some common

sense judgement, in particular when the estimate is very high it is obvious that the estimate is

nonsensical.

5.2.1 Maximum Likelihood

The maximum likelihood estimates of λ̂c(s) ·t with 95% confidence intervals for the three measures

for Denmark 2 and the Netherlands 2 are seen in Figure 20 - 22. The empirical counts are also

plotted as points. We see that the the estimates fit the data well in the sense that empirical

counts appear to be randomly dispersed about the estimate. However, we also see that the lower

confidence bound are less than zero for certain values of s, and since λc(s) > 0 this is unreasonable.

For this reason, we need to consider other methods for computing interval estimates of λc.

Figure 20: Maximum likelihood estimates of crash intensity for TTCmin for Denmark 2 and the

Netherlands 2 with 95% confidence intervals
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Figure 21: Maximum likelihood estimates of crash intensity for T2min for Denmark 2 and the

Netherlands 2 with 95% confidence intervals

Figure 22: Maximum likelihood estimates of crash intensity for PET for Denmark 2 and the

Netherlands 2 with 95% confidence intervals

In Table 7 are the maximum likelihood estimates of the near-crash intensities per hour with 95%

confidence intervals for selected values of the measures (0, 0.3 and 0.6), for all data sets and

measures. As can be seen from the table, the (near) crash intensity λ̂c can vary significantly

for different measures. We also see that the crash intensity (i.e. for s < 0) λ̂c(0) can be quite

high. For example, for Dk1 the hourly crash intensity estimated from T2min is λ̂c(0) = 0.0018.

Consequently, the yearly crash intensity would therefore be λ̂c(0) × 24 × 365 = 15.768. We do

not have access to any crash data, but this seems to be a serious overestimate of the number of

collisions per year. However, we also get very low estimates for e.g. Ne1 PET, we have a yearly

intensity of λ̂c(0)× 24× 365 = 0.09636. This implies that we would expect about one crash every

10 years between right turning vehicles and cyclist.

We also note that the confidence intervals based on the delta method are quite wide, meaning
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that even if we get a reasonable point estimate of λc, we may still obtain unreasonable interval

estimates. So, for Ne1 PET, the point estimate of the crash intensity seems reasonable, but the

upper confidence bound is equal to 0.0008, which would imply an expected number of 7 collisions

per year, which is indeed quite high.

5.2.2 Profile Likelihood

The profile likelihood estimates of λc(s)t with a 95% confidence interval for the three measures

for Denmark 2 and the Netherlands 2 are seen in Figure 23 - 25. In this case, the lower confidence

bounds are all greater than zero. The point estimates of the near-crash intensity are identical

with maximum likelihood estimates, but obviously the confidence bounds are different.

Figure 23: Profile likelihood estimates of crash intensity for TTCmin for Denmark 2 and the

Netherlands 2 with 95% confidence intervals

Figure 24: Profile likelihood estimates of crash intensity for T2min for Denmark 2 and the Nether-

lands 2 with 95% confidence intervals
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Figure 25: Profile likelihood estimates of crash intensity for PET for Denmark 2 and the Nether-

lands 2 with 95% confidence intervals

Table 8 shows the profile likelihood estimates of λc(s) for selected values of the measure s, along

with 95% confidence intervals. We see that these confidence intervals are generally thinner than

those based on the maximum likelihood method. This means that we obtain more reasonable

interval estimates for λc. We noted earlier that the upper bound of the confidence interval for

λc(0) based on the delta method for for Ne1 PET would imply a yearly crash intensity of 7

collisions per year. From Table 8, we see that the corresponding upper bound for the hourly

based crash intensity on the profile likelihood is 1.3× 10−5, which implies a yearly crash intensity

of 0.11388. So, we would expect one crash every 10 years, which seems more realistic than the

corresponding upper bound using the delta method. It is interesting also, that in general the

confidence intervals for λc(0) based on the PET tends to have quite reasonable upper bounds, and

in many cases they produce the lowest upper bounds of all measures. One exception to this rule

is the crash frequency for Ne2.

5.2.3 Modified Profile Likelihood

The modified profile likelihood estimates of λc(s)t with a 95% confidence interval for the three

measures for Denmark 2 and the Netherlands 2 are seen in Figure 26 - 28. Furthermore, the

modified profile likelihood for s < 0, s < 0.3 and s < 0.6 are given in Table 9.

Looking at the point estimates, we see that in general, for λ̂c(0), the MPL estimates seems to

be systematically higher than the maximum likelihood estimates (and therefore also the profile

likelihood estimates).

The confidence intervals for the modified profile likelihood are generally slim compared to the

delta method, and compared the profile likelihood the relative width are mixed. However, if we

look at the lower bounds for the intervals, we can see that the modified profile likelihood creates
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some problems that were not present for the profile likelihood. For example, the lower bound

for λc(0) based on MPL for Dk1 T2min is 0.0009, which would imply a yearly crash frequency

of 0.0009 × 24 × 365 = 7.884. For comparison, the corresponding bound for using the profile

likelihood is 1.91× 10−7 × 24× 365 = 1.67× 10−3. We can see the same problem with the lower

bounds of MPL confidence intervals for other intersections and measures like Dk2 TTCmin, Dk3

T2min and Ne2 PET.

Figure 26: Modified profile likelihood estimates of crash intensity for TTCmin for Denmark 2 and

the Netherlands 2 with 95% confidence intervals

Figure 27: Modified profile likelihood estimates of crash intensity for T2min for Denmark 2 and

the Netherlands 2 with 95% confidence intervals
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Figure 28: Modified profile likelihood estimates of crash intensity for PET for Denmark 2 and the

Netherlands 2 with 95% confidence intervals

5.3 Assessing Relative Safety

In this section, we present the results of assessing the relative safety between intersections in

Denmark and the Netherlands. We construct confidence intervals based on the maximum-, profile-

and modified profile likelihood for πNEc − πDKc in order to test the following hypotheses

H0 : πNEc (s)− πDKc (s) = 0

H1 : πNEc (s)− πDKc (s) 6= 0.

Recall that the null hypothesis is acecepted in the event that the confidence interval spans over

zero, and if this is not the case then the null hypothesis is rejected. Note that if the hypothesis is

rejected, and the πNEc − πDKc > 0, then we have good reason to draw the conclusion that risk of

a crash is greater in the Netherlands compared to Denmark.

The confidence intervals for πNEc −πDKc based on the maximum likelihood as described in Section

3.4 are given in Figures 29 - 30. The confidence interval for πNEc − πDKc based on the profile

likelihood are given in Figures 31 - 32. Finally the corresponding confidence intervals using the

MPL are given in Figures 33 - 34.

By inspecting these confidence intervals graphically, it appears that the confidence intervals based

on the maximum likelihood method are generally very wide. Furthermore, in general, the width of

the confidence interval becomes wider as the s increases, which is quite natural as the number of

events with an SMoS S < s follows a binomial distribution if we condition on the interactions, and

the variance of a binomial random variable increases as the parameter π → 0.5. So, the general

results are congruent with what we expect in theory.
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We also see that the difference in πNEc (s) − πDKc (s) can (and often do) change sign as s varies.

This is because the GP distributions used to estimate πNEc and πDKc differ in shape and kurtosis.

Figure 29: Maximum likelihood estimates of πNe2 − πDk2 for TTCmin and T2min with 95% confi-

dence intervals

Figure 30: Maximum likelihood estimates of πNe2 − πDk2 for PET with 95% confidence intervals
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Figure 31: Profile likelihood estimates of πNe2−πDk2 for TTCmin and T2min with 95% confidence

intervals

Figure 32: Profile likelihood estimates of πNe2 − πDk2 for PET with 95% confidence intervals

Figure 33: Modified profile likelihood estimates of πNe2 − πDk2 for TTCmin and T2min with 95%

confidence intervals
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Figure 34: Modified profile likelihood estimates of πNe2 − πDk2 for PET with 95% confidence

intervals

We are primarily interested in the difference in crash probabilities between intersections in Den-

mark and the Netherlands, since this has the most bearing on the relative safety of the respective

intersection design. The confidence intervals for the difference in πNec (0) − πDkc (0) are given in

Table 10 for all measures and all combination of intersections in Denmark and the Netherlands.

As can be seen from the table, the profile likelihood based confidence intervals suggest that we

can reject the null hypothesis when comparing Ne2−Dk2 using PET. We also reject the null

hypothesis for Ne2−Dk1 using T2min, but in this case the difference is negative, which suggests

that the intersection in the Netherlands has a lower crash probability. In fact, the conclusion that

an intersection is safer in the Netherlands compared to Denmark is made for 7 comparisons using

the hypothesis test based on the profile likelihood.

The modified profile likelihood also rejects the null hypothesis for Ne2−Dk1 using T2min and

Ne2−Dk2 TTCmin with a negative sign, suggesting the intersections in the Netherlands have a

lower crash probability. However, the null hypothesis is rejected for both Ne2−Dk3 T2min and

Ne2−Dk3 PET with a positive sign, suggesting that the corresponding Danish intersections have

a relatively lower crash probability compared to the respective intersections in the Netherlands.

One worrying sign for both MPL and PL is that we have a contradictory result for the comparison

of Ne2-Dk2 when using different SMoS. For Ne2-Dk2 PET, we reject the null hypothesis with

π̂Nec > π̂Dkc , but for Ne2-Dk2 TTCmin and T2min, we reject the null hypothesis with π̂Nec < π̂Dkc .

Consequently, TTCmin and T2min indicate that Ne2 is safer than Dk2, but PET suggests that

Dk2 is safer than Ne2.

These results suggest that there is no real evidence for the general conclusion that the intersection

design in any of the countries are safer than the other. However, we were able to reject the null

hypothesis for particular intersections using particular measures.
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6 Discussion

In the course of this thesis we have proposed three methods for computing confidence intervals

for the near-crash intensity λc(s) as well as three methods for testing the relative safety of two

intersection πNec − πDkc .

For the confidence intervals we noted that we can obtain reasonable point estimates (in terms of

not being too high), but that the corresponding interval can give unreasonable upper bounds. This

motivates the computation of confidence intervals for λc(s), since they indicate the uncertainty in

our point estimates.

Furthermore, we saw that the confidence intervals based on the delta method were uninformative,

since in many cases the lower bounds were less than zero and the intervals were wide. Moreover,

the simulation study indicated that these intervals had very low confidence levels.

In contrast, the confidence intervals based on the profile likelihood remedied many of the problems

with the delta method. None of the lower bounds were lower than zero, and in many cases the

upper bounds of the interval were reasonable. If we couple this with the fact that the profile

likelihood based confidence intervals performed very well in the simulation study, it suggests

that the profile likelihood produce appropriate interval estimates for λc(s). The modified profile

likelihood was considered since it purportedly has better small sample properties compared to the

profile likelihood. However, based on the simulation study, the confidence level for the confidence

intervals based on the MPL generally performed worse than the profile likelihood, except in one

case. Moreover, we saw that the MPL consistently produced higher point estimates of λc(0)

than the maximum- and profile likelihood, as a consequence we sometimes obtained very high

lower bounds for the confidence interval. It should also be noted, that the implementation of

the MPL was complicated and the optimization took a long time compared to the corresponding

computations with the ML and PL.

In terms of the choice of SMoS we saw that the profile likelihood confidence intervals based on

PET produced reasonable interval estimates of λc(s) more times than any other surrogate measure.

However, it is difficult to conclude that any one measure produce better estimates than another

based on this data.

We also compared the relative safety of an intersection in Denmark with an intersection in the

Netherlands, and we considered all pairwise combinations for all SMoS using the hypothesis test

in Equation 36. The maximum likelihood based confidence intervals using the delta method were

again very wide and we never rejected the null hypothesis. The profile likelihood rejected the null

hypothesis for Ne2−Dk2 PET, which suggests that we have some evidence for the fact that Dk2

is relatively safer compared to Ne2. We were also able to reject the null hypothesis using MPL.

However, the contrary conclusion was more prevalent since we rejected the null hypothesis with
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π̂Nec > π̂Dkc more often. But in general, it was difficult to reject the null hypothesis regardless of

the SMoS used, and regardless of the method used.

According to the literature comparing the two intersection designs, the bicycle lanes in Denmark

(separated by painted lines) are generally safer than the intersections in the Netherlands with

physically separated bicycle crossings. This is based on the literature review in Prati et al. [14].

Our findings do not indicate that one type infrastructure design is safer than the other based on

the hypothesis tests in Table 10.

7 Proposals for Future Research

There are many aspects of this thesis that could be altered or pursued further, and so we limit

ourselves to listing a few that we think will be most successful with respect to the purpose. One

of the problems of finding good point and interval estimates is to have an accurate model of

the data-generating process. In this thesis, we have made the simplifying assumption that the

near-crash frequency Cf (s, t) can be modelled as a stationary poisson process. However, we know

that the traffic intensity is a function of time, and we saw that Cf (s, t) is a function of the traffic

intensity, so we should include the non-stationarity in our model.

A simple way to introduce non-stationarity is to let the parameter estimates be a function of time.

In doing so, the intensity λc(s) will also be a function of time. For example, we could allow the

scale parameter to be periodic with a 24 hour period, so that

σ(t) = β0 + β1 cos

(
2π

24
t

)
+ β2 sin

(
2π

24
t

)
.

Letting the parameters of the GPD vary with time is intuitive, since in principle the outcome

of an interaction is affected by other traffic conditions such as traffic flow. Detailed descriptions

of implementation of such models are given in Davison and Smith (1990) [31]. Profile likelihood

estimates for λc are still possible under this increased model complexity, the only difference being

an increase in the amount of nuisance parameters.

Earlier we noted that when we conduct statistical inference based on the GPD, we are forced

to rely on asymptotic properties of likelihood function. There are many different adjustments

to the classical asymptotic results related to the likelihood which improve inference for small

samples. In this thesis, we considered the modified profile likelihood, however, we found that

it was cumbersome to compute and optimize over, and the results were not an improvement

compared to the profile likelihood. In fact, a major problem with modified proifle likelihood is

that the point estimates of λc(s) were generally higher than the profile likelihood. It may be worth

considering other types of adjustments, for example, modifications to likelihood ratio can be made

by multiplication with some correction factor (see Lawley 1956). By doing so, we would only
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change the confidence bounds. Tajvidi (2003) derived the corresponding correction factors for the

likelihood ratio statistic for the shape and scale parameters of the Generalized Pareto Distribution

[13]. Similar calculations could be made for λc(s) and πNEc (s) − πDKc (s) and the corresponding

likelihood functions in Section 3.

Finally, a prescient point was made in a previous thesis that in principle, the lower endpoint of

the SMoS S is equal to zero; so that S = 0 corresponds to a crash. In order to include this

piece of prior information, the truncated GPD for S̃ − ũ | S̃ > ũ was proposed. It was used

to compute crash probabilities after estimating the parameters of the GPD using the standard

untruncated likelihood function [36]. In theory, one should use the truncated GPD to estimate the

corresponding parameters. The profile- and modified profile likelihood could be derived using the

truncated distribution, however, to our knowledge no one has derived the asymptotic properties

of the likelihood based on the truncated GPD. This may be something worth investigating, since

the truncated GPD is a more accurate model for the data.
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Appendices

A Scripts

The R functions that we developed to compute the confidence intervals can be found and down-

loaded at the following URL: github.com/koba96/masters-thesis .

B Results For All Datasets

B.1 Estimates of Near-Crash Intensities

B.1.1 Maximum Likelihood

Figure 35: Maximum likelihood estimates of crash intensity for TTCmin for the Netherlands 1

with a 95% confidence interval

Figure 36: Maximum likelihood estimates of crash intensity for T2min for Denmark 1 and the

Netherlands 1 with 95% confidence intervals
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Figure 37: Maximum likelihood estimates of crash intensity for PET for Denmark 1 and the

Netherlands 1 with 95% confidence intervals

Figure 38: Maximum likelihood estimates of crash intensity for TTCmin for the Netherlands 3

with a 95% confidence interval

Figure 39: Maximum likelihood estimates of crash intensity for T2min for Denmark 3 and the

Netherlands 3 with 95% confidence intervals
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Figure 40: Maximum likelihood estimates of crash intensity for PET for Denmark 3 and the

Netherlands 3 with 95% confidence intervals

B.1.2 Profile Likelihood

Figure 41: Profile likelihood estimates of crash intensity for TTCmin for the Netherlands 1 with

a 95% confidence interval

Figure 42: Profile likelihood estimates of crash intensity for T2min for Denmark 1 and the Nether-

lands 1 with 95% confidence intervals
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Figure 43: Profile likelihood estimates of crash intensity for PET for Denmark 1 and the Nether-

lands 1 with 95% confidence intervals

Figure 44: Profile likelihood estimates of crash intensity for TTCmin for the Netherlands 3 with

a 95% confidence interval

Figure 45: Profile likelihood estimates of crash intensity for T2min for Denmark 3 and the Nether-

lands 3 with 95% confidence intervals
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Figure 46: Profile likelihood estimates of crash intensity for PET for Denmark 3 and the Nether-

lands 3 with 95% confidence intervals

B.1.3 Modified Profile Likelihood

Figure 47: Modified profile likelihood estimates of crash intensity for TTCmin for the Netherlands

1 with 95% confidence intervals

Figure 48: Modified profile likelihood estimates of crash intensity for T2min for Denmark 1 and

the Netherlands 1 with 95% confidence intervals
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Figure 49: Modified profile likelihood estimates of crash intensity for PET for Denmark 1 and the

Netherlands 1 with 95% confidence intervals

Figure 50: Modified profile likelihood estimates of crash intensity for TTCmin and for the Nether-

lands 3 with a 95% confidence interval

Figure 51: Modified profile likelihood estimates of crash intensity for T2min for Denmark 3 and

the Netherlands 3 with 95% confidence intervals
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Figure 52: Modified profile likelihood estimates of crash intensity for PET for Denmark 3 and the

Netherlands 3 with 95% confidence intervals

B.2 Assessing Relative Safety

B.2.1 Maximum Likelihood

Figure 53: Maximum likelihood estimates of πNe1 − πDk2 and πNe3 − πDk2 for TTCmin with 95%

confidence intervals
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Figure 54: Maximum likelihood estimates of πNe1 − πDk1 and πNe1 − πDk2 for T2min with 95%

confidence intervals

Figure 55: Maximum likelihood estimates of πNe1 − πDk3 and πNe2 − πDk1 for T2min with 95%

confidence intervals

Figure 56: Maximum likelihood estimates of πNe3 − πDk3 and πNe3 − πDk1 for T2min with 95%

confidence intervals
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Figure 57: Maximum likelihood estimates of πNe3 − πDk2 and πNe3 − πDk3 for T2min with 95%

confidence intervals

Figure 58: Maximum likelihood estimates of πNe1 − πDk1 and πNe1 − πDk2 for PET with 95%

confidence intervals

Figure 59: Maximum likelihood estimates of πNe1 − πDk3 and πNe2 − πDk1 for PET with 95%

confidence intervals
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Figure 60: Maximum likelihood estimates of πNe2 − πDk3 and πNe3 − πDk1 for PET with 95%

confidence intervals

Figure 61: Maximum likelihood estimates of πNe3 − πDk2 and πNe3 − πDk3 for PET with 95%

confidence intervals

B.2.2 Profile Likelihood

Figure 62: Profile likelihood estimates of πNe1 − πDk2 and πNe3 − πDk2 for TTCmin with 95%

confidence intervals
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Figure 63: Profile likelihood estimates of πNe1 − πDk1 and πNe1 − πDk2 for T2min with 95%

confidence intervals

Figure 64: Profile likelihood estimates of πNe1 − πDk3 and πNe2 − πDk1 for T2min with 95%

confidence intervals

Figure 65: Profile likelihood estimates of πNe3 − πDk3 and πNe3 − πDk1 for T2min with 95%

confidence intervals
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Figure 66: Profile likelihood estimates of πNe3 − πDk2 and πNe3 − πDk3 for T2min with 95%

confidence intervals

Figure 67: Profile likelihood estimates of πNe1−πDk1 and πNe1−πDk2 for PET with 95% confidence

intervals

Figure 68: Profile likelihood estimates of πNe1−πDk3 and πNe2−πDk1 for PET with 95% confidence

intervals
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Figure 69: Profile likelihood estimates of πNe2−πDk3 and πNe3−πDk1 for PET with 95% confidence

intervals

Figure 70: Profile likelihood estimates of πNe3−πDk2 and πNe3−πDk3 for PET with 95% confidence

intervals

B.2.3 Modified profile Likelihood

Figure 71: Modified profile likelihood estimates of πNe1 − πDk2 and πNe3 − πDk2 for TTCmin with

95% confidence intervals
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Figure 72: Modified profile likelihood estimates of πNe1 − πDk1 and πNe1 − πDk2 for T2min with

95% confidence intervals

Figure 73: Modified profile likelihood estimates of πNe1 − πDk3 and πNe2 − πDk1 for T2min with

95% confidence intervals

Figure 74: Modified profile likelihood estimates of πNe3 − πDk3 and πNe3 − πDk1 for T2min with

95% confidence intervals
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Figure 75: Modified profile likelihood estimates of πNe3 − πDk2 and πNe3 − πDk3 for T2min with

95% confidence intervals

Figure 76: Modified profile likelihood estimates of πNe1−πDk1 and πNe1−πDk2 for PET with 95%

confidence intervals

Figure 77: Modified profile likelihood estimates of πNe1−πDk3 and πNe2−πDk1 for PET with 95%

confidence intervals
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Figure 78: Modified profile likelihood estimates of πNe2−πDk3 and πNe3−πDk1 for PET with 95%

confidence intervals

Figure 79: Modified profile likelihood estimates of πNe3−πDk2 and πNe3−πDk3 for PET with 95%

confidence intervals
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