
MASTER’S THESIS 2020

Training Deep Neural
Networks on Synthetic Data
Tony Liu, Arvid Mildner

ISSN 1650-2884
LU-CS-EX: 2020-49

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-49

Training Deep Neural Networks on
Synthetic Data

Tony Liu, Arvid Mildner

Training Deep Neural Networks on
Synthetic Data

(Analysis of the E�ect on Object Detection in Cityscapes)

Tony Liu
to5541li-s@student.lu.se

Arvid Mildner
ar3007mi-s@student.lu.se

August 19, 2020

Master’s thesis work carried out at Axis Communication AB.

Supervisors:
Pierre Nugues, pierre.nugues@cs.lth.se

Martin Ljungqvist, martin.ljungqvist@axis.com
Otto Nordander, otto.nordander@axis.com

Examiner: Jörn Janneck, jorn.janneck@cs.lth.se

mailto:to5541li-s@student.lu.se
mailto:ar3007mi-s@student.lu.se
mailto:pierre.nugues@cs.lth.se
mailto:martin.ljungqvist@axis.com
mailto:otto.nordander@axis.com
mailto:jorn.janneck@cs.lth.se

Abstract

Artificial neural networks have been used to solve complex tasks across dif-
ferent application areas. To train well-behaved generalizing neural networks,
su�ciently large and diverse datasets are needed. Collecting data while adher-
ing to privacy legislation becomes increasingly di�cult and annotating these
large datasets is both a resource-heavy and time-consuming task. An approach
to overcome these di�culties is to use synthetic data generated by a computer
for training. In this thesis, we investigate this idea by training the object detec-
tor YOLOv3 on synthetic images. Moreover, we study the di�erence between
models trained on real and models trained on synthetic data.

We present a performance comparison between leveraging synthetic data and
training on real data only with di�erent proportions of the real training set. Our
results show that performance can be increased using synthetic data when small
amounts of real data is available. However, this relative performance increase
is not as noticeable as more real training data is introduced. Additionally, fine-
tuning from a base model trained on synthetic data seems to yield higher robust-
ness to hyper-parameters during training.

To give insights on how models trained on synthetic and real data di�er, we
applied di�erent similarity and sensitivity metrics to the networks on a layer-
wise basis. The results of this analysis indicate that the models leveraging syn-
thetic makes predictions with fundamentally di�erent weight configurations
and generalizes better compared to a model trained only on real data.

Keywords: Machine Learning, Deep Learning, Synthetic Data, Computer Vision, Object
Detection, Convolutional Neural Networks, YOLOv3

2

Acknowledgements

We would like to thank our supervisors at Axis Communications, Martin Ljungqvist and
Otto Nordander for great discussions and continuous feedback throughout our work. We
would also like to thank Axis Communications for giving us this opportunity as well as the
colleagues at Core Technologies Analytics for helpful advice along the way.

We would like to extend our gratitude to our supervisor at LTH, Professor Pierre Nugues
for guidance and great advice during our thesis project. His support and enthusiasm for our
work has been much appreciated.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Purpose and Delimitations . 8

1.2.1 Delimitations . 9
1.3 Related Work . 9

1.3.1 Object Detection . 9
1.3.2 Synthetic Data . 9
1.3.3 Similarity of Neural Networks . 11
1.3.4 Criticality . 11

1.4 Contribution . 12
1.5 Work Distribution . 12

2 Approach 13
2.1 Data . 13

2.1.1 Definition of Synthetic Data . 13
2.1.2 Datasets . 13
2.1.3 Intersection of Class Labels . 15

2.2 Object Detection Training and Evaluation 18
2.2.1 Evaluation Metrics . 18
2.2.2 YOLOv3 . 20
2.2.3 Training on Synthetic Data . 21
2.2.4 Implementation . 22
2.2.5 The Base Models . 24

2.3 Layer-wise Model Comparison . 24
2.3.1 Similarity Metrics . 24
2.3.2 Representational Similarity . 25
2.3.3 Layer Re-randomization and Swapping 26

3 Evaluation 29
3.1 Results and Discussion . 29

3.1.1 Base Models Trained on Synthetic Data 29
3.1.2 Transfer Learning on Synthetic Model 30

5

CONTENTS

3.1.3 Layer-wise Analysis . 36

4 Conclusions 45
4.1 Transfer Learning on Synthetic Model . 45
4.2 Layer-wise Analysis . 45
4.3 Future Work . 46

References 47

Appendix A E�ect of the Label Mapping 53

6

Chapter 1

Introduction

1.1 Background
In computer vision, object detection is a sub-discipline which involves detecting instances of
objects and classifying them semantically. Object detection is widely used in various di�er-
ent areas such as video surveillance (Yeh et al., 2017), autonomous vehicles (Chen et al., 2016),
medical technology (Jaeger et al., 2018), and face-detection (Jiang and Learned-Miller, 2016).
The task is ultimately about locating objects and classifying these object instances. This prob-
lem was previously solved using traditional machine learning methods such as SIFT (Lowe,
2004) and HOG (Dalal and Triggs, 2005).

In recent years, a popular approach to solve the object detection problem is to use deep
learning – more specifically convolutional neural networks (CNNs). A lot of e�ort has been put
into developing accurate and fast object detectors leveraging the structure of convolutional
layers (Redmon and Farhadi, 2018; Ren et al., 2015; Lin et al., 2017; Long et al., 2014). This
has led to a drastic increase in performance of object detectors during the past few years.
However, these models generally require massive amounts of labeled training data to achieve
good performance and generalization (Nowruzi et al., 2019). Building these datasets can be
both time consuming and resource heavy.

First of all, the raw data needs to be collected, often involving complex data acquisition
setups and gathering schemes. Additionally, when collecting data in public spaces, privacy
concerns, such as the General Data Protection Regulation (GDPR) in the European Union
(European Commission, 2018), need to be taken into account. Adhering to new data pro-
tection regulations and, at the same time, ensuring the diversity and quantity of the data
becomes an increasingly di�cult challenge. Secondly, the data needs to be annotated. This
issue has previously been tackled using, for example, crowd-sourcing such as AmazonMTurk
(Amazon, 2005) or semi-supervised learning methods (Odena, 2016). However, these ap-
proaches involve some kind of manual human labour. Since the training sets often include
several thousand images, the annotation process becomes an extremely mundane and time-
consuming task.

One way of avoiding these issues is using synthetic data for training. Generated synthetic

7

1. Introduction

datasets are inherently scalable and labelling of the data can be done automatically. These
datasets can for example be generated using a data generation tool such as Synscapes (Wren-
ninge and Unger, 2018), Carla (Dosovitskiy et al., 2017), and Synthia (Ros et al., 2016), or
sampling videos from open-world video games like GTAV, which has been done in Richter
et al. (2017) and Johnson-Roberson et al. (2016).

A general problem with deep neural networks is that their complexity makes it di�cult
to understand exactly why a certain prediction has been made. This has led to neural net-
works often being considered as black boxes (Fong and Vedaldi, 2017; Alain and Bengio, 2016),
meaning that we only look at the input and the output, while relying on trial and error when
creating a well-working system.

In this thesis, we will investigate how object detection models are a�ected when trained
on synthetic data versus real data by exposing the inner workings of the network. One key
element will be the comparison between the outputs from individual hidden layers in the
models using di�erent novel ideas of similarity and criticality measurements.

1.2 Purpose and Delimitations
The purpose of this thesis is to investigate how synthetic data a�ects the performance of
object detection models as well as how hidden layers in the CNNs are a�ected by di�erent
types of training data. More specifically, our project aims to answer the following questions
on the matter:

• Can we increase the performance of existing object detection models by introducing
synthetic data in the training sets?

• How does a model trained on synthetic data di�er from one trained on real data and
which network layers are a�ected?

The report aims to present two major parts that should be relevant for anyone looking to
integrate synthetic data into their object detection system.

1. First we will present a thorough parameter search section together with a transfer
learning approach to maximize the utility of synthetic data given a limited amount
of real data.

2. In the second part, we experiment with some novel ideas on how the individual layers
of the models can be interpreted mathematically to find similarity between models
trained on real and synthetic data compositions. Amain goal here is to see if the results
from the analyzes described in Kornblith et al. (2019) and Chatterji et al. (2019) apply
on our use case are coherent and in line with our intuition.

8

1.3 Related Work

1.2.1 Delimitations
Wewill not try to implement new network architectures to increase performance when train-
ing on synthetic data. Instead, we will focus on one of the current state-of-the-art architec-
tures, namely YOLOv3 as described by Redmon and Farhadi (2018) and try to understand
how it is a�ected by training on synthetic data.

As we wanted to focus on performance comparison and similarity analysis more than
wrangling with di�erent datasets, we ended up using one synthetic dataset: GTAV produced
by Richter et al. (2017) and one real dataset: BDD from Yu et al. (2018) for the experiments
in this thesis.

The report is also scoped in that we are not performing any experiments on what im-
provements can be done once similar layers have been found. The investigative part of the
report is meant to give an insight on these novel similarity metrics and to see if there are
some patterns to be found. Our hope is that the knowledge gathered from these experiments
can be useful when designing new architectures or training methods.

1.3 Related Work
1.3.1 Object Detection
Many object detection models use a so called two-stage region-based detection process, pop-
ularized by Girshick et al. (2013). The first stage proposes a sparse set of candidate object
locations and the second stage classifies the candidate as either a background or foreground
object. Network architectures such as MaskRCNN (He et al., 2017), FPN (Lin et al., 2016)
and Faster-RCNN (Ren et al., 2015) use this two-stage process and have successfully reached
high performance on standard datasets such as COCO (Lin et al., 2014).

A limitation of these two-stage techniques is their comparatively slow inference speed
making them less suitable for usage in real-time object detection in video. More recently,
several one-stage methods which sample densely on the set of object locations, scales, and
aspect ratios, have been proposed such as YOLO (Redmon and Farhadi, 2018, 2016; Red-
mon et al., 2015), Retina-NET (Lin et al., 2017), and SSD (Liu et al., 2015). These networks
are significantly faster while having comparable performance to the conventional two-stage
methods. Because of its speed, comparable accuracy, and relatively light-weightness, we have
chosen to use YOLOv3 (Redmon and Farhadi, 2018) in our experiments.

1.3.2 Synthetic Data
There are several synthetic datasets of city environments available and several experiments of
training on synthetic data have been conducted. VKITTI is presented in Gaidon et al. (2016)
and Cabon et al. (2020) which is the synthetic version of the KITTI dataset (Geiger et al.,
2013). Synthia (Ros et al., 2016) is another synthetic dataset of images from urban scenes. The
results from Ros et al. (2016) showed increased performance when training on a mixture of
real and synthesized images. Richter et al. (2017) and Johnson-Roberson et al. (2016) leverage
the open-world video game Grand Theft Auto V (GTA V) to generate synthetic datasets. The
experiments conducted in Johnson-Roberson et al. (2016) show that training a Faster R-CNN

9

1. Introduction

on a GTA V synthetic dataset of at least 50,000 images increases the performance compared
to training on a the smaller real dataset Cityscapes (Cordts et al., 2016) when evaluated on
the real KITTI dataset (Geiger et al., 2013). However, these experiments only used cars as
labels, disregarding other important labels such as persons and bicycles.

Wrenninge and Unger (2018) present the dataset Synscapes, which is a synthetic ver-
sion of Cityscapes. The authors claim that training on only Synscapes yields decent results,
but lowers performance compared to training on real data when evaluated on Cityscapes.
However, their experiments show that models trained on Synscapes outperform both mod-
els trained only on GTA V (Richter et al., 2017) and Synthia (Ros et al., 2016). Furthermore
Wrenninge and Unger (2018) claim that training on a mixture of synthetic and real data can
further improve performance, outperforming models trained only on real data. Results from
Nowruzi et al. (2019) show that training on synthetic data and fine-tuning on real data yield
better performance than training on a mixed real-synthetic dataset. The authors also con-
clude that photo-realism in the synthetic data is not necessarily as important as other factors
in the training such as diversity. Tremblay et al. (2018) produce non-artistically generated
images by domain randomization, where parameters such as lighting, pose, and textures are
randomized. The authors show that with additional fine-tuning on real-data, their model
outperforms a models trained only on real data for object detection of cars on the KITTI
dataset. Furthermore, they argue that letting the backbone be trainable during training on
synthetic data yielded better performance compared to freezing the backbone weights.

Lee et al. (2016) use synthetic data for pedestrian detection and pose estimation. They
show that training on synthetic images only can yield a model that outperforms a model
trained on real data only. However, the models are scene and location-specific meaning that
they use a priori knowledge about the perspective and geometry of the location. Hinter-
stoisser et al. (2017) super-impose 3D rendered models of toys with di�erent lighting and
poses onto real backgrounds. As opposed to Tremblay et al. (2018), the authors argue that
freezing backbone layers during training on the synthetic data is better compared to letting
the backbone be trainable.

Astermark (2018) generates synthetic data of faces using Generative Adversarial Net-
works. The author shows that while training on large real training sets yields best perfor-
mance, synthetic data can improve performance if small amounts of real data are available.
Harrysson (2019) trained a YOLOv3 detector on synthetic license plates super-imposed on
real background images. The results showed that mixing real and synthetic data gave better
performance and only using synthetic data for training almost matches the performance of
training on only real data.

These papers have shown how and where synthetic data can and can not be used. How-
ever, most of the experiments are done on two-stage models such as Faster-RCNN which is
not suitable for real-time detection. Moreover, a limited set of labels is often used under very
specific weather and lighting conditions. None of these papers have experimented exten-
sively on how the real training set size from 0 to 100% a�ects the performance when transfer
learning from a synthetic model. An understanding of the actual di�erences between mod-
els trained on synthetic and real data on a layer-wise basis seems to be missing. To further
leverage synthetic training data, a better understanding of how it is influencing the neural
networks is needed. Thus, in this thesis, we will dissect these models and show quantitative
results. From these results, we will try to draw conclusions about di�erences in the networks.

10

1.3 Related Work

1.3.3 Similarity of Neural Networks
The fast development and research inCNNs have yielded valuablemodels which performwell
on previously di�cult tasks. These models have been used across many application areas such
as computer vision and natural language processing. However, we still have little knowledge
about what the networks are actually doing semantically in the hidden layers. In many cases,
these models have been treated as black boxes (Fong and Vedaldi, 2017; Alain and Bengio,
2016).

One idea of obtaining more insight on how the network behaves is looking at the outputs
layer-wise. By comparing layer outputs from two di�erent models, one can determine the
similarity between the layers. One method of measuring the similarity of layer outputs is the
singular value canonical correlation analysis (SVCCA) (Raghu et al., 2017). SVCCA uses singular
value decomposition (SVD) (Golub and Reinsch, 1971) for dimensionality reduction and then
canonical correlation analysis (CCA) (Hardoon et al., 2004) which was previously used to learn
semantic representations for web images. A further improvement of SVCCA is the projection
weighted CCA (PWCCA) (Morcos et al., 2018), which uses projection weighting to calculate
the similarity measure as a weighted mean instead of a naive mean as in SVCCA.

Both metrics are invariant to invertible linear transformations which according to Korn-
blith et al. (2019) leads to somemajor issues. Kornblith et al. (2019) instead proposed ametric
called centered kernel alignment (CKA) which, according to the authors, better captures simi-
larity representations between network layers.

While there exist several papers that attempt to answer how initialization, model com-
plexity, or dataset size a�ect the similarity between models (Kornblith et al., 2019; Raghu
et al., 2017; Morcos et al., 2018), no attempts have been made to compare the di�erence be-
tween models trained on synthetic and real data. As CKA gives a layer-wise similarity of
hidden layers within the network, it can give insights of how such networks di�er from each
other on a layer-basis. These insights could be leveraged for example during training to target
specific layers inside networks to improve performance. Therefore, in our thesis, we chose
to use CKA to analyze similarity between network layers.

1.3.4 Criticality
Another approach to understand the hidden layers of a neural network is to look at the
layer-wise criticality. This can either be defined as robustness to re-initialization or re-
randomization and is explored in Zhang et al. (2019) and further developed in Chatterji et al.
(2019). Zhang et al. (2019) investigate how much impact each layer in the network has on the
performance by resetting the layer weights and evaluating the network. The mean critical-
ity of a network is also supposedly a good measure for generalization compared to previous
metrics such as generalization error, parameter counting and distance to initialization.

We use the metric re-randomization sensitivity (RR-sensitivity) inspired by the critical-
ity measure to investigate the di�erences between networks trained on synthetic and real
images. Moreover, we further develop the idea of re-randomization by using layer-swapping,
swapping the layer weights of two models on the same layer as another measurement of sim-
ilarity between network layers.

11

1. Introduction

1.4 Contribution
The contribution of this thesis to the field can be summarized in the following points:

1. Show how synthetic data can increase performance for object detection and how this
scales as more real data is available;

2. Show other positive side-e�ects of using synthetic data such as stability against hyper-
parameters;

3. Give insights on how models trained on synthetic and real data di�er from each other
through layer-wise analysis.

1.5 Work Distribution
Arvid Mildner was responsible for most of the CKA analysis part while Tony Liu worked
on the criticality and layer swapping part of the thesis. The rest of the work was carried
out together, including researching previous work, building the code base, model training,
hyper-parameter search, creating plots, analyzes, and report writing.

12

Chapter 2

Approach

2.1 Data
2.1.1 Definition of Synthetic Data
We will often refer to synthetic and real data in this thesis. Therefore, it is important to
clarify the di�erence between them. Image data will be considered real if it is captured with
an actual camera in the real world. Synthetic data is data generated by a computer and in
our thesis is either one of the following:

• A rendered scene from a custom simulation tool such as Carla (Dosovitskiy et al., 2017),
Synscapes (Wrenninge and Unger, 2018), or Synthia (Ros et al., 2016).

• An image captured from a video game such as GTA V (Richter et al., 2017; Johnson-
Roberson et al., 2016).

2.1.2 Datasets
Berkeley Deep Drive

Figure 2.1: Images from the BDD dataset (Yu et al., 2018).

The Berkeley Deep Drive (BDD) dataset (Yu et al., 2018) is based on 100,000 driving
videos collected from 50,000 rides mostly from dash-cams i.e. images with driver’s perspec-
tive with 720p resolution. The videos are collected from New York, San Francisco, Berkeley,

13

2. Approach

and the Bay Area with diverse scenes such as cities, residential areas, and highways. Moreover,
the videos are recorded during di�erent hours of the day and in di�erent weather conditions.

One frame from each of the 100,000 videos are extracted and annotated with bounding
boxes and class label. The classes in the dataset are shown in Table 2.2. Three sample images
from di�erent time of day and weather conditions are shown in Figure 2.1. 20,000 out of
the 100,000 images are reserved for the test set. However, since the labels for the test set are
unavailable, we use the remaining 80,000 images for our experiments divided into 60/20/20%
for training, validation and testing.

Grand Theft Auto V

Figure 2.2: Images from the GTAV dataset (Richter et al., 2017).

The Grand Theft Auto V (GTAV) dataset (Richter et al., 2017) consists of 1080p images
sampled from video sequences from the video game Grand Theft Auto V. The images and 3D
object information are extracted using an injected middle-ware which receives all render-
ing commands. Using this information, the object information and position as well as the
rendered image can be retrieved.

The training set consists of 134,000 images which are collected on di�erent time of day,
in di�erent weather conditions in the fictional city of Los Santos. Images were divided into
60/20/20% for training, validation, and testing for the experiments. Table 2.3 shows the
classes in the dataset and three sample images from di�erent time of day and weather condi-
tions are shown in Figure 2.2.

Since the object position information in the GTAV dataset is gathered before the actual
rendering, there exist a lot of tiny bounding boxes in the ground truth that are not actually
visible. These labels can be objects very far away or persons inside vehicles which makes them
very hard or sometimes impossible to spot, even for a human. To eliminate these bounding
boxes, we filtered out small bounding boxes with an area smaller than 100 pixels. This area
was chosen by empirical visual inspection of the ground-truth bounding boxes.

Furthermore, in the GTAV dataset, the hood of the driving car is labeled while it is not
labeled in the BDD dataset. Therefore, we also removed the hood labels from the dataset.
This filtering of bounding boxes is visualized in Figures 2.3 and 2.4. Filtered small and hood
bounding boxes are shown in red and the remaining labels are shown in green. The number
at each bounding box represents the class index of the object. These images are scaled to
416 × 416 pixels which will be the resolution of the input to the YOLOv3 object detector.

14

2.1 Data

Figure 2.3: Filtered and saved bounding boxes in the GTAV dataset.
Red bounding boxes are removed while green are kept. Numbers
represents the class indices. For example: 0 is car, 1 is person.

Figure 2.4: Filtered and saved bounding boxes in the GTAV dataset.
Red bounding boxes are removed while green are kept. Numbers
represents the class indices. For example: 0 is car, 1 is person.

2.1.3 Intersection of Class Labels
The GTAV (Richter et al., 2017) and BDD (Yu et al., 2018) datasets use di�erent class labels.
The number of classes in the label set can vary, for example GTAV has 32 classes while BDD
has 10. Moreover, label names in the datasets also di�er. GTAV has the bicycle and motorcycle
labels, while BDD uses the names bike and rider. Problem arises when we want to train our
model using one dataset and evaluate on another, or when transfer learning between models
trained on di�erent datasets. This problem could be solved at test time using a prediction
mapper between the predicted labels and the target label space. However, since our model
detection head is dependent on the number of classes in the dataset (see Section 2.2.2) transfer
learning with YOLOv3 would not be possible using this approach.

Our approach to this problem is to define a common intersection of all class labels of

15

2. Approach

the datasets with a fixed number of classes. We call this label space the common labels. This
forces us to surjectively map some of the more detailed labels such as van and trailer into less
descriptive common labels such as car and truck. The upside is that we now have a common
interface between the model and the datasets which is independent on which dataset the
model is trained on. The common class label space defined by us is described in Table 2.1.
The surjective mappings from BDD and GTAV label indices to the common label index are
shown in Tables 2.2 and 2.3 respectively.

Table 2.1: Commonly defined labels which cover an intersection of
the various class names between the datasets used.

Common label index
Index Label
0 Car
1 Person
2 Cycle
3 Truck
4 Bus

Table 2.2: The surjective label map from BDD labels to the simplified
common labels. Note that one prominent side e�ect of this definition
is that rider and bike are now both considered as cycle.

BDD to common index mapping
BDD Common
tra�c light -
motor -
train -
truck truck
rider cycle
car car
bus bus
bike cycle
tra�c sign -
person person

We also made a slight mistake here which was noticed too late to change it. In the BDD
dataset the label motor was simply dropped, while it should have been mapped to cycle. This
happened because we did not realize it meant motorcycle. Since the number of motorcycles
in BDD is small compared to the other classes and the mistake was made for all experiments,
this error should have negligible e�ect on the general trend and conclusions of our results.
We also mapped rider to cycle. Since bike was also mapped to cycle, a rider on a bike would
give us 2 bounding boxes for the cycle where we would rather have wanted one bounding
box. However, this will be partially compensated for by the non-maximum suppression step
in the detection head. We conducted a few experiments to somewhat verify that this had
little e�ect on our results. For further detail of these experiments, see Appendix A.

16

2.1 Data

Table 2.3: The surjective label map from GTAV labels to the simpli-
fied common labels. Note that one prominent side e�ect of this def-
inition is that motorcycle and bicycle are now considered the same.

GTAV to common index mapping
GTAV Common
unlabeled -
ambiguous -
sky -
road -
sidewalk -
railtrack -
terrain -
tree -
vegetation -
building -
infrastructure -
fence -
billboard -
tra�clight -
tra�csign -
mobilebarrier -
firehydrant -
chair -
trash -
trashcan -
person person
animal -
bicycle cycle
motorcycle cycle
car car
van car
bus bus
truck truck
trailer truck
train -
plane -
boat -

17

2. Approach

2.2 Object Detection Training and Evalua-
tion

The task of object detection is to mark each object instance in an image with a 2D bounding
box and classify the object correctly which is shown in Figures 2.3 and 2.4. The annotations
therefore consist of bounding boxes and class labels for each object in an image. How well a
model predicts these bounding boxes and class labels can be measured in numerous ways. A
standard metric is using the so called mean average precision (mAP) popularized by Lin et al.
(2014). To understand the mAP metric, we first recap some basic metrics used to evaluate
performance.

2.2.1 Evaluation Metrics
Precision and Recall
To understand the metrics properly, we first have to introduce the following metrics known
as true conditions. They can be defined as follows:

• True postive (TP): Number of correctly predicted objects.

• True negative (TN): Number of correctly predicted non-objects.

• False positive (FP): Number of wrongly predicted objects.

• False negative (FN): Number of missed objects during prediction.

The precision P is given as the ratio between true positives (TP) and the total number of
predicted positives i.e. TP plus false positives (FP). It can be described as:

P =
TP

TP + FP
. (2.1)

The recall R is the ratio of TPs and the total number of ground truth positives and is given
by

R =
TP

TP + FN
(2.2)

where FN is the false negatives. There is a trade-o� between precision and recall in a classifi-
cation model. Increasing one often leads to a decrease in the other. In object detection, these
two metrics are combined to define the mAP for measuring the overall performance which
we will come to shortly.

18

2.2 Object Detection Training and Evaluation

Intersection over Union
In object detection, the predictions and ground-truth labels are bounding boxes i.e. rectan-
gles drawn over each object instance. The intersection over union (IoU) between two bounding
boxes is defined as:

IoU =
Aoverlap

Aunion
, (2.3)

where Aoverlap is the area of the intersection and Aunion is the union of the bounding boxes. A
visual representation of this equation is shown in Figure 2.5.

IoU =

A union

A overlap

Figure 2.5: Visualization of Intersection over Union (IoU).

Mean Average Precision
With precision and recall properly defined above, we are ready to describe how we can cal-
culate average precision. We pass our validation images through the network and collect the
detections for all the objects. We are now able to create the precision-recall curve for each
class by keeping track of the precision and recall values. This curve is created by plotting
the highest scoring precision for each recall value and interpolating between the values. The
average precision is then defined by the area under this precision-recall curve. When the av-
erage precision (AP) for each class has been calculated in this manner, we can finally create
the mAP which is the mean AP over all the classes:

mAP =
∑C

c AP(c)
C

(2.4)

where C is the total number of classes and AP(c) is the average precision for a given class c
over the images.

Counting TP, FP and FN to calculate the precision and recall can be done at di�erent
levels of IoUs. Thus, the mAP is given at a specific IoU denoted as mAP@IoU. For our
experiments, we use the IoU of 0.5. Henceforth, when referring to the mAP, we actually
mean mAP@0.5.

19

2. Approach

* *+

* Concatenation
+ Addition
… Additional layers

 Darknet-53 Backbone
 Up-sampling
 Model Head Layers

YOLO Layer 1
(low resolution)

YOLO Layer 2
(medium resolution)

YOLO Layer 3
(high resolution)

94

91

106

103

79

82

Figure 2.6: YOLOv3 architecture

2.2.2 YOLOv3
YOLOv3, You Only Look Once version 3, (Redmon and Farhadi, 2018) is a novel one-stage
network architecture for a fast and accurate object detector building on previous detection
models such as Faster-RCNN (Ren et al., 2015) and FPN (Lin et al., 2016). Compared to
similar performing object detection models, YOLOv3 is significantly faster at inference due
to its one-stage detection process. The model is able to predict 20 frames per second (FPS)
compared to 6 FPS for Faster-RCNN, while still maintaining similar performance on the
COCOdataset (Redmon and Farhadi, 2018). The high inference speed is especially attractive
in a real-time detection application.

Figure 2.6 shows the network architecture. The idea is to extract features from an image
using Darknet-53, a backbone built with residual blocks and convolutional layers, which
down-samples along the network depth using the stride length instead of max pooling. This
backbone architecture is shown in Figure 2.7. The backbone is divided into residual blocks
which are marked as boxes in the figure i.e. leveraging shortcut connections similarly to
ResNet backbones (He et al., 2015). The benefits of such skip connections is that they deal
with vanishing gradients and at the same time encourage feature reuse, which makes the
model more parameter-e�cient.

The YOLOv3 network predicts bounding boxes at three resolution levels. These final
prediction layers are referred to as YOLO layers and are seen in Figure 2.6 as layers 82, 94,
and 106. Each prediction layer consists of a grid, where each cell contains the prediction
of a bounding box, its objectness score and a classification score for each class. After the

20

2.2 Object Detection Training and Evaluation

Figure 2.7: Darknet-53 architecture

low resolution YOLO layer (layer 82), responsible for detecting high-level objects, the out-
put is up-sampled and concatenated with an intermediate output from Darknet-53, which
corresponds to the same up-sampled resolution. This concatenated tensor is passed through
several convolutional layers and finally through the second YOLO layer. The same procedure
is then repeated for the third and last prediction layer.

The YOLO layers are grids, where the cells are responsible for predicting the bounding
boxes as well as containing the predicted object and class probability. In inference, bound-
ing boxes are non-maximum suppressed according to their objectiveness score, filtering out
instances which the network believes have low probability of containing objects. The re-
maining bounding box predictions are then used in the actual prediction of the model.

2.2.3 Training on Synthetic Data
Convolutional networks often have complex architectures with a lot of parameters to train.
Therefore, these networks are often divided into two parts: a backbone responsible for fea-
ture extraction and a detection head or classifier. Since training a backbone can take several
weeks, training of convolutional networks often uses pre-trained backbone weights at ini-
tialization to reduce the computations needed.

A convenient approach is to load pre-trained weights into the backbone, and only train
the head of the network on the task-specific data. The idea is that the feature extraction part
has already learnt how to produce generally meaningful features from images which is useful
for any specific vision task. Arguments can be made that the feature extraction layers should
be considered good enough and that it is actually beneficial to freeze the layers as a kind of
regularization (Hinterstoisser et al., 2017). On the other hand, the feature extraction layer
weights may still have room for actual improvement and further training could increase the
overall performance. One obvious upside of freezing the weights is the decreased number of

21

2. Approach

trainable parameters, increasing the training speed.
When training models on synthetic data for usage in the real domain, Hinterstoisser

et al. (2017) showed that freezing the backbone weights (when they are initialized from a
pretrained backbone) yields better performance. The authors noticed a significant perfor-
mance drop if they let the backbone be trainable when training on synthetic images. The
dataset consisted of pairs of images with an object in a real environment. The di�erence
between the images in the pairs was that one image contained a real object while the other
had a 3D model of the object superimposed onto the environment. They noted that the Eu-
clidean distance between the feature vectors of these image pairs were significantly higher
when using a trainable backbone compared to a frozen backbone for the model trained on
the synthetic images.

It is worth noting that later work (Raghu et al., 2017; Morcos et al., 2018) has shown
that the Euclidean distance is not an ideal measurement of similarity between hidden layer
outputs, but it can still give some useful insights. However, Tremblay et al. (2018) show
opposite results i.e. that freezing backbone layers yielded worse result. The authors argue
that a possible explanation could be that the dataset used in Tremblay et al. (2018) was large
and diverse enough to further improve the backbone.

2.2.4 Implementation
Webuilt our code base on the open source implementation of YOLOv3 in PyTorch, developed
by a team of engineers at Ultralytics (2019). It is a well used repository with over 1.4k forks
as of this writing, backed by a well established corporation within the field. We have no
reason to believe there are any major problems about this code that would severely impact
the results and conclusions.

Cosine Learning Rate Decay
Adjusting the learning rate during training can greatly impact the outcome. Exponential
decay of the learning rate is widely used by for example decreasing the learning rate by 0.5
every 2nd epoch. However, He et al. (2018) propose a so called cosine decay for scheduling
the learning rate which has shown to give better results for training models. The learning
rate ηt at epoch t is described by the following formula:

ηt =
1
2

(
1 + cos

tπ
T

)
η0, (2.5)

where η0 is the initial learning rate and T is the total number of epochs. This learning rate
decay was used in our implementation to achieve better training results. The learning rate
η normalized to η0 as a function of the epoch t normalized to T is shown in Figure 2.8. The
cosine decay is compared with an example of the conventional exponential step decay.

Patience
We set a maximum of 100 epochs with a patience of 10 epochs when training our models.
Patience is a way to implement early stopping, a way to counteract overtraining. The idea
of patience is simple: if the validation mAP has not increased for 10 training epochs, the

22

2.2 Object Detection Training and Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Normalized number of epochs

0.00

0.25

0.50

0.75

1.00

η η 0

Cosine decay
Exponential step decay

Figure 2.8: Cosine compared to exponential step decay.

training will stop early. Otherwise it will continue up to 100 epochs. The patience of 10
epochs and the total epochs of 100 is chosen based on empirical results of initial testing of
the training setup.

Batch Normalization and its Implications
In the entire YOLOv3 architecture, we are applying a technique known as batch normalization
(BN) (Io�e and Szegedy, 2015), which is a way to severely reduce training time and increase
performance of a network. The goal of BN is to counteract the problem known as covariance
shift that occurs when training on a set of images which are not normalized to have zero mean
and unit variance. While the images in the set may describe similar settings, the network has
to learn not only how to produce meaningful features but also to account for the varying
non-normalized input which causes an increased training time and performance loss. While
it is widely known that input normalization improves accuracy in general computer vision
tasks (Io�e and Szegedy, 2015), the BN approach takes this a step further by normalizing
between every layer in the feature extractor. This means that the BN layers have to learn a
bit about the datasets to be able to generalize its normalization of each batch.

The BN parameters which normalize the input to each layer are updated according to a
statistical approach and not through back propagation. Hinterstoisser et al. (2017) did not
mention using BN in their frozen backbone, but we postulate that it is not a good idea to
leave the statistical parameters of the BN layers untouched. We came to this conclusion after
preliminary experiments when training on synthetic data using BN layers which were not
updated after initialization and the result was a diverging loss.

According to Io�e and Szegedy (2015), an important perk of using BN layers is that it acts
as a countermeasure to the problem when a bad feature extraction in the first convolutional
layer propagates and leads to worse features down the road when it is passed through the
deeper layers. This is useful to us in the later experiments when we want to compare two
networks trained on di�erent datasets and maintain layers that are not dependent on the
statistical distribution of the colors of the images but rather the textures and details.

23

2. Approach

2.2.5 The Base Models
To properly analyze the di�erently trained networks, we have conceived four base models to
choose from when training or transfer learning. The goal here is to present each model so
that the reader can clearly see how the various base models were created when reading the
rest of the thesis.

Model A – Randomly initialized according to Kai-Ming uniform distribution in all of its
convolutional layers;

Model B – Initialized with the Darknet-53 backbone which populates layers 0 to 74. Layers
75 up to layer 106 was populated randomly according to Kai-Ming uniform distribu-
tion;

Model C – Initialized asmodel B. Then trained on theGTAVdataset with all layers trainable
for 100 epochs and a learning rate of 10−3;

Model D – Initialized as model B. Then trained on the GTAV dataset with only detection
head trainable i.e. layer 75-106 and thus leaving the backbone untrainable. The learn-
ing rate was 10−3 and it was trained for 100 epochs.

2.3 Layer-wise Model Comparison
2.3.1 Similarity Metrics
Comparing the similarity between two neural networks can be done in many di�erent ways.
One approach is to look at the output for each individual layer and compare the outputs
between networks. The problem can be described in the following way (Kornblith et al.,
2019):

Let Xi ∈ Rp × n and Yi ∈ Rp × n be the output of layer i in form of matrices from
two networks with p neurons each, fed with the same n inputs. We want to
introduce a metric function s(Xi,Yi) that can be used to compare the similarity
between two output matrices, to give insight of the behaviour and similarities
between the hidden layers inside the models.

Severalmeasures of similarity complyingwith this definition have been suggested. SVCCA
(Raghu et al., 2017) and PWCCA (Morcos et al., 2018) are two examples of measuring repre-
sentational similarity. Both metrics are invariant to invertible linear transforms i.e.

s(X,Y) = s(AX, BY)

for any invertiblematrices A and B. This is argued to be an important property for comparing
layer outputs. However, according to Kornblith et al. (2019), a metric with invariance to
invertible linear transformations has the limitation of yielding the same similarity for all
outputs with a greater width than the number of datapoints i.e. p ≥ n.

The authors further argue that the scale of layer outputs also is important for repre-
sentations. Therefore, similarity indices that preserve scale information, such as Euclidean

24

2.3 Layer-wise Model Comparison

distance, can be helpful on giving insights of the activations. For a metric that is invariant to
invertible transforms, the magnitude of the vectors in the activation space is irrelevant and
therefore ignores this important information.

Instead of requiring the similarity index to be invariant to invertible linear transform,
a weaker invariance condition can be considered: invariance to orthogonal transformations.
Invariance to orthogonal transformations means that s(X,Y) = s(UX,VY) for any orthog-
onal matrices U and V . A property is that invariance to orthogonal transformations also
means invariance to permutations which is important since the convolutional layer outputs
should have the same representations independent of channel-wise permutations.

One such similarity index is central kernel alignment (CKA) (Kornblith et al., 2019). CKA
is not only invariant to orthogonal transforms but also invariant to isotropic scaling i.e.
s(X,Y) = s(αX, βY) for any α, β ∈ R+. For the matrices X and Y , the CKA with a lin-
ear kernel is defined as:

CKA(X,Y) =
||YT X ||2F

||XT X ||F ||YTY ||F
, (2.6)

where || · ||F is the Frobenius norm and n is the number of data points i.e. columns in X
and Y . With this index definition, Kornblith et al. (2019) have shown that the CKA captures
intuitive similarity ideas such as models trained in the same way with di�erent initialization
should be similar.

Convolutional Layers
While the CKA analysis requires matrices, the convolutional layers in the network output
tensors. To solve this problem, we follow the line of Kornblith et al. (2019) and treat the
output tensors of shape (N, X,Y,C) as a collection of vectors of the shape (N ·X ·Y,C) where
N is the number of images fed through the network, X and Y are the dimension of the image,
and C is the number of output channels i.e. the number of convolutional kernels for the
specific layer.

2.3.2 Representational Similarity
We start by training a YOLOv3 model using all of the available BDD data from our training
set on top of model B as detailed in Section 2.2.5. This gives us a baseline for the performance
we can obtain by the naive approach of only collecting a lot of real data.

We work under the assumption that the best possible outputs between each consecutive
layer in the network is given by an image passed through this specific model. This is an
important assumption which gives us a solid reference when doing layer-wise comparisons
withmodels trained on other compositions of real/synthetic data. This approach of analysing
layers from di�erent models may also be too specific since two convolutional layers of the
same layer index may have di�erent roles between two networks trained on di�erent data.
Moreover, arguments can be made that the output of individual layers is not as important as
the resulting output after a block of layers. For the sake of our analysis, we still interpret the
single layer outputs as significant and leave these other interpretations to the discussion.

Our first step in the experiments is to use the CKAmethod described by Kornblith et al.
(2019). Our aim is to analyze the similarity between convolutional layers of several models to

25

2. Approach

see if the result of such an analysis can be leveraged tomore intelligently use the synthetic and
real data of our use case. The layer-wise similarity analysis is done by feeding 200 random
images from the validation set through both of the trained networks and performing CKA
of the layer outputs to find which layers seem to be similar and which are not. Since residual
layers i.e. shortcut layers essentially just sum outputs from two layers without any weights,
we leave these layers out from the analysis.

Layer-wise CKA

Model A

Model B

Figure 2.9: Visualization of how CKA is performed for an image.
In the actual analysis, images from the BDD dataset were passed
through the networks.

2.3.3 Layer Re-randomization and Swapping
In addition to studying how similar layers from di�erent networks are, we also investigate
how important individual layers are to the overall performance. One approach to studying
layer importance is using layer re-initialization and re-randomization. Re-initialization looks
at the performance when a layer is rewound to the initial weights while re-randomization re-
samples the weights from the initialization distribution.

By re-initializing each layer and measuring performance drop, Zhang et al. (2019) suggest
that layers can be categorized as either critical or ambient: critical being important and
ambient being unimportant to the network’s performance. Building upon this idea, Chatterji
et al. (2019) propose the criticality metric by measuring robustness to re-initialization at
di�erent training epochs. This metric is somewhat complicated and requires training and
saving a lot of di�erent models. Therefore, for simplicity and to save time, we propose a
simpler measurement called re-randomization sensitivity (RR-sensitivity) ξi defined as:

ξi = 1 −
mAP(mi)
mAP(m)

(2.7)

where m denotes the original model, mi is the original model with re-randomized weights at
layer i and mAP(m) is the mean average precision on some validation set for model m. Thus

26

2.3 Layer-wise Model Comparison

the layer importance ξi becomes a number between 0 and 1 where ξi = 1 corresponds to a
100% performance drop and ξi = 0 corresponds to no e�ect on the performance at all.

TheRR-sensitivity was evaluated for various compositions of synthetic/real data. This in-
vestigation could only be donewhen re-randomizing convolutional layers with actual weights,
leaving out shortcut layers and YOLO layers which do not contain any trainable parameters.
By comparing the layer-wise importance of these models, we can hopefully see similarities
and di�erences in the hidden layers between synthetically trainedmodels andmodels trained
on real data.

Another way of comparing two models is swapping the weights from the same layer be-
tween the models. Assuming that the hidden layers have similar functions in each model,
the performance drop can give an indication of the similarity between the layers of the net-
works as well as the importance of that layer. Using the same definition of the RR-sensitivity
(2.7), but subject to swapping layers instead of re-randomization, this similaritymeasurement
could potentially complement the CKA.

27

2. Approach

28

Chapter 3

Evaluation

3.1 Results and Discussion
Model and Training Notation. We use the model notation described in Section
2.2.5 to simplify and avoid confusion amongst the many models tested. Additionally, to de-
scribe further training on these initial models, we use the notationM+DataN%, whereM is the
initial model, Data describes the dataset used for further training and N is the percentage of
the dataset used. For example, model D+BDD5% denotes the initial model D trained on 5%
of the BDD training set. Moreover, the performances presented as mAP in the experiments
hence is more specifically mAP@0.5 i.e. mAP at 0.5 IoU as discussed in Section 2.2.1.

3.1.1 Base Models Trained on Synthetic Data
Training YOLOv3 model on the GTAV dataset with trainable and frozen backbone with
learning rate of 10−3 and batch size 8, yielded our base models trained on synthetic data i.e.
model C and D. Since the GTAV dataset is very large, training these networks takes a very
long time. Therefore, we did not conduct any extensive parameter-tuning when training our
base models. Furthermore, we believe that parameter-search is more important for the fine-
tuning part of the training. This is because the training and evaluation images are now from
the same domain and this final training is likely to a�ect the performance on BDD the most.
The mAP of these models evaluated on the BDD and GTAV validation sets is presented in
Table 3.1.

We see that model D has a higher mAP on the BDD validation set than model C. This
means that freezing the backbone during training on synthetic images yields better perfor-
mance on the real dataset. Figure 3.1 shows two sample images with the predictions made
from these models. We can see that model D seems to be slightly better at predicting the
correct bounding boxes. This result is in line with results from Hinterstoisser et al. (2017)
but di�ering from results presented in Tremblay et al. (2018). As the dataset used in Hinter-
stoisser et al. (2017), the GTAV dataset seems to not be large and diverse enough to improve
the Darknet-53 feature extractor. Whereas the inherent diversity of the domain randomized

29

3. Evaluation

Table 3.1: Performance of base models trained on synthetic data:
model C and D on the BDD and GTAV validation sets.

Model mAP on BDD validation set mAP onGTAV validation set
C 0.089 0.831
D 0.114 0.823

Figure 3.1: Predicted bounding boxes of two scenes from the BDD
dataset. The left predictions are made by model C while the right
predictions are made by model D.

dataset in Tremblay et al. (2018) could be the explanation to why they find di�ering results.
Since model D performed better on the real validation set than model C, we use this model
as our base model when fine-tuning on real data.

3.1.2 Transfer Learning on Synthetic Model
Hyper-parameter Search
Model training results are highly influenced by the chosen hyper-parameters. For example,
the choice of optimizer type, number of training epochs, batch size and learning rate can yield
di�erent performances for the same model definition and training set. Therefore, we carried
out a parameter search to be able to conduct a fair comparison between model performances.

We did the parameter search most extensively using 5% of the real training data due to
time constraints. A subset of the parameter space was then searched for the remaining frac-
tions of real data (10%, 25%, 50% and 100% respectively). The search was performed for train-
ing of model B andD, i.e. training a network with pre-trained backbone and transfer learning
from a base model trained on synthetic data respectively. To limit the search space dimen-
sions, we only look at optimizing for the batch size, optimizer types and initial learning rate.

30

3.1 Results and Discussion

The values and types tested are presented in Table 3.2. As seen in the table, this yields 24
models for training of model B and 24 models for transfer learning of model D. For all the
proportions of the real training data used, when training both model B and D, the whole
backbone is set to trainable i.e. all layers in the YOLOv3 model are trainable.

Table 3.2: Hyper-parameter values tested for 5% real training data.

Hyper-parameter Tested values
batch size 4, 8, 16
optimizer type ADAM, SGD
initial learning rate 10−2, 10−3, 10−4, 10−5

The performances on the BDD validation set formodel B trained on 5% of the real training
data is shown in Figure 3.2. Here we can see that the initial learning rate of 10−4 using an
ADAMoptimizer and a batch size of 8 yielded the best performance. In Figure 3.3, the results
are presented for transfer learning frommodel D trained on 5% of the real data. These results
show that the best performance was reached using an initial learning rate of 10−4 using a
SGD optimizer and a batch size of 8. These optimal values are shown in Table 3.3.

10−5 10−4 10−3 10−2

Initial learning rate

0.00

0.05

0.10

0.15

0.20

m
AP

 o
n
va

lid
at
io
n
 e

t

batch ize 4, ADAM optimizer
batch ize 8, ADAM optimizer
batch ize 16, ADAM optimizer
batch ize 4, SGD optimizer
batch ize 8, SGD optimizer
batch ize 16, SGD optimizer

Figure 3.2: Performance on the BDD validation set as a function
of the initial learning rate for di�erent batch sizes and optimizers.
Models are trained from model B on 5% of the real data.

31

3. Evaluation

10−5 10−4 10−3 10−2

Initial learning rate

0.00

0.05

0.10

0.15

0.20

0.25

m
AP

 o
n
va

lid
at
io
n
 e

t

batch ize 4, ADAM optimizer
batch ize 8, ADAM optimizer
batch ize 16, ADAM optimizer
batch ize 4, SGD optimizer
batch ize 8, SGD optimizer
batch ize 16, SGD optimizer

Figure 3.3: Performance on the full validation set as a function of the
initial learning rate for di�erent batch sizes and optimizers. Models
are transfer learned from model D on 5% of the real data.

Table 3.3: Optimal hyper-parameter values for 5% real data training.

Hyper-parameter Optimal value Optimal value
training on model B transfer learning on model D

batch size 8 8
optimizer type ADAM SGD
initial learning rate 10−4 10−4

Since the optimal values of hyper-parameters are dependent on the size of the train-
ing dataset, one would expect di�erent optimal parameters for di�erent proportions of real
training data used. However, since training on larger training sets requires drastically more
computations, the same parameter tuning could not be carried out for all proportions of
real data within our time scope. Therefore parameter tuning was only carried out in the ini-
tial learning rate dimension for the proportions 10%, 25%, 50% and 100% using the optimal
optimizer and batch size found in the results of the 5% training.

The performance on the validation set as a function of the initial learning rate is shown
in Figures 3.4, 3.5, 3.6 and 3.7 for the proportions 10%, 25%, 50% and 100% of the real train-
ing data respectively. Performance as a function of initial learning rate is shown for both
the training on model B as well as transfer learning on model D. From these figures, we de-
termined the optimal initial learning rates for each percentage and for both training cases.
These learning rates are presented in Table 3.4.

An important observationwhen studying Figures 3.2 to 3.7 is that the curves depicting the
parameter search for Model D is consistently flatter. The flatter curves in the mAP-learning
rate plot indicate that the parameter search for the fine-tuning of model D is more stable
to di�erent initial learning rates compared to training directly on model B. However, this
robustness is mostly visible when lower percentages of training data is used. For example,

32

3.1 Results and Discussion

10−5 10−4 10−3 10−2

Initial lea ning ate

0.125

0.150

0.175

0.200

0.225

0.250

0.275
m

AP
 o

n
va

lid
at

io
n

se
t

t aining on model B with batch size 8, ADAM
t ansfe lea ning on model D with batch size 8, SGD

Figure 3.4: Performance on the validation set as a function of initial
learning rate for di�erent batch sizes and optimizers. Models are
trained on 10% of the real data.

10−5 10−4 10−3 10−2

Initial lea ning ate

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

m
AP

 o
n

va
lid

at
io

n
se

t

t aining on model B with batch size 8, ADAM
t ansfe lea ning on model D with batch size 8, SGD

Figure 3.5: Performance on the validation set as a function of initial
learning rate for di�erent batch sizes and optimizers. Models are
trained on 25% of the real data.

33

3. Evaluation

10−5 10−4 10−3 10−2

Initial learning rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
m
AP

 o
n
va

lid
at
io
n
 e

t

training on model B with batch ize 8, ADAM
tran fer learning on model D with batch ize 8, SGD

Figure 3.6: Performance on the validation set as a function of initial
learning rate for di�erent batch sizes and optimizers. Models are
trained on 50% of the real data.

10−5 10−4 10−3
Initial learning rate

0.36

0.37

0.38

0.39

0.40

0.41

0.42

m
AP

 o
n
va
lid
at
io
n
se
t

training on model B with batch size 8, ADAM
transfer learning on model D with batch size 8, SGD

Figure 3.7: Performance on the validation set as a function of initial
learning rate for di�erent batch sizes and optimizers. Models are
trained on 100% of the real data.

34

3.1 Results and Discussion

Table 3.4: Optimal initial learning rates for di�erent proportions
of real training data used when training on model B and transfer
learning on model D.

Proportion of Optimal initial learning rate Optimal initial learning rate
real training data training on model B transfer learning on model D
10% 10−4 10−4

25% 10−3 10−4

50% 10−4 10−4

100% 10−4 10−3

the flatness of the transfer learning curve in Figure 3.7 is not as evident as in Figure 3.2 to 3.4.
Therefore, the higher robustness could be explained by the more data model D has trained on
compared to B. Furthermore, model B’s detection head has completely random weights while
the detection head of D has trained on the synthetic data. Nevertheless, this could be useful
in a setting where a hyper-parameter search should be carried out for a model and where
synthetic data is available.

Performance Comparison
Using the optimal hyper-parameters found, we compared the performance between model B
and model D trained on di�erent proportions of the real training set. The performance on
the BDD test set is shown for these models as a function of percentage of the real training
data used in Figure 3.8. The mAPs and relative change in mAP for the di�erent percentages
of real training data used are also presented in Table 3.5.

20 40 60 80 100
Proportion of real training data

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

m
AP

 o
n

te
st

 se
t

Trained from model B
Transfer learned from model D

Figure 3.8: mAP on the test set as a function of percentage of real
data when training model B and transfer learning model D.

35

3. Evaluation

Table 3.5: Optimal mAP for model B and D trained on di�erent
proportions of the real training set and the relative mAP change for
each percentage level.

Proportion of # Training Optimal mAP Optimal mAP Relative mAP Change
real training data images training on B training on D (mAPD −mAPB)/mAPB

5% 2400 0.229 0.263 0.150
10% 4800 0.281 0.295 0.052
25% 12000 0.320 0.334 0.043
50% 24000 0.379 0.376 -0.007
100% 48000 0.422 0.422 0.000

This result shows a performance increase when using lower percentages of the real train-
ing data when fine-tuned onmodel D compared to training on model B. When transfer learn-
ing on 5% of the data we got an increase of 15% while 10% and 25% results in an increase of
5.2% and 4.3% respectively. For 50% we see a small decrease in performance. However this de-
crease of 0.7% is probably due to noise or variance in training rather than an actual decrease.
Therefore, for 50% and 100%, the performance can be considered as unchanged when trained
on model B compared to fine-tuned on model D.

We can conclude that using a base model trained on synthetic data is most useful when
a low number of real images are available. When the real training set is su�ciently large and
diverse, fine-tuning on the base model is not really useful. In our case, this region is between
25% and 50% of the real training set i.e. between 12,000 and 24,000 training images.

These results di�er from Tremblay et al. (2018) and Harrysson (2019) where both show
increased performance when utilizing synthetic data and the whole real dataset compared to
only training on real data. One explanation could be that the BDD dataset is several times
larger than the KITTI dataset used in Tremblay et al. (2018). The diversity of the data in
BDD could be su�cient to achieve good performance and therefore the training on GTAV
did not yield any improvements.

Anothermajor di�erence in our investigation is that we usemultiple classes in the dataset
whereas Tremblay et al. (2018) only conducted experiments on cars and Harrysson (2019)
only on license plates. Additionally, maybe other approaches of leveraging the synthetic data
could be more beneficial for training on 100% of the real data. Since we train model D on
BDD100%, it could be argued that the synthetic data D has seen could be overwritten by the
introduction of real data. Maybe a method of mixing the datasets could be a better method
for the higher percentages.

3.1.3 Layer-wise Analysis
CKA Similarity Analysis
From Table 3.5, we know that model B+BDD100% has the highest performance amongst all
models tested. Therefore, theCKAwas evaluated for each layer between di�erentmodels and
B+BDD100%. Using B+BDD100% as the reference or master model we could expect that high
similarity is somewhat correlated to high performance. Furthermore, we want to observe
di�erences in models trained on real and synthetic data. Model B+BDD100% is therefore used
as the reference real model with which we compare other models against. In Figures 3.9 and

36

3.1 Results and Discussion

3.10, the results of the CKA analysis are shown when 200 images from the BDD validation
set are fed through the models and compared against the output of model B+BDD100%.

0 10 20 30 40 50 60 70
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CK
A

sim
ila

rit
y

CKA(Model B+BDD100%, Model B+BDD5%)
CKA(Model B+BDD100%, Model D+BDD5%)
CKA(Model B+BDD100%, Model D+BDD100%)
CKA(Model B+BDD100%, Model C)
CKA(Model B+BDD100%, Model D)

Figure 3.9: The CKA between model B+BDD100% and D+BDD5%,
D+BDD100%, C and D in the backbone layers. Higher value means
higher similarity to B+BDD100%.

An interesting thing to note is that the model D+BDD5% is more similar to B+BDD100%
than model B+BDD5% in the majority of the backbone layers in Figure 3.9. Both of these mod-
els have seen equal amounts of real data during training and have similar backbones before
the final training. Therefore, B+BDD5% and D+BDD5% could be expected to have equal sim-
ilarity score when compared to the master model. We believe that the base model trained
on synthetic data D has a better working detection head which makes it easier for the opti-
mizer to focus on the backbone when training on real data. Another result from Figure 3.9
is that the similarity is low between model B+BDD100% and model C compared to model D.
This is expected since only model C had the backbone trained with synthetic data and it is
promising that the analysis can capture this.

Since model B+BDD5% is initialized identically to model B+BDD100% and only trained on
less real data, we expected it to have a higher similarity throughout the network compared to
the other models which are based on model C or D. This is not true for the backbone layers as
D based models have higher similarity, but is true for the detection head where the similarity
is higher than any other model, see Figure 3.10.

Looking at theCKA in the backbone layers in Figure 3.9 and at the performances achieved
in Figure 3.8, we see that a high similarity to the model B+BDD100% seems to correlate with
a high performance on the BDD test set. In the same way, low similarity with B+BDD100% in
the backbone layers seems to correlate with lower performance.

Similarly, one could assume that a higher similarity score to B+BDD100% in the detection
head layers would be correlated with a higher performance. However, this is not true ac-

37

3. Evaluation

75 80 85 90 95 100 105
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

CK
A

sim
ila

rit
y

CKA(Model B+BDD100%, Model B+BDD5%)
CKA(Model B+BDD100%, Model D+BDD5%)
CKA(Model B+BDD100%, Model D+BDD100%)
CKA(Model B+BDD100%, Model C)
CKA(Model B+BDD100%, Model D)

Figure 3.10: The CKA between model B+BDD100% and D+BDD5%,
D+BDD100%, C and D in the detection head layers. Higher value
means higher similarity to B+BDD100%.

cording to our results as we can see from Figure 3.10. The highest performing model we have
using 5% of real training data, model D+BDD5% has a lower similarity in the detection head
compared to B+BDD5% even though B+BDD5% has a lower performance on the test set (Sec-
tion 3.1.2). A big di�erence between the detection heads of model B and D is that model B
has completely random weights while model D has trained on synthetic data. This di�erence
before the final training on BDD could be an explanation to why model B+BDD5% has con-
sistently higher similarity with B+BDD100% in the detection head compared to the D based
models.

We base our analysis on the idea that B+BDD100% is the best possible model that we
can create, but we know that there are still many objects that are not found by this model.
Our assumption that high similarity should imply better performance only holds in the case,
where the model is predicting a subsection of the detections made by B+BDD100%. There
may very well exist models that are not similar to this model, but have a similar or even
better performance if they are able to predict labels missed by B+BDD100%. We argue that
the transfer learned models D+BDD5% and D+BDD100% are examples of such models, where
the head of the network is not converging to B+BDD100% but is still able to achieve high
performance.

Re-randomization Sensitivity
The re-randomization sensitivity (RR-sensitivity) defined in Eq. (2.7) for model B+BDD5%,
D+BDD5%, D+BDD100%, C, D and B+BDD100% was measured by looking at the performance
drop on BDD validation set, where the weights in each layer are reset randomly from the

38

3.1 Results and Discussion

same initialization distribution. This is shown for the backbone layers in Figure 3.11 and in
the detection head layers in Figure 3.12 as a function of the re-randomized layer.

0 10 20 30 40 50 60 70
Re-randomized layer

0.0

0.2

0.4

0.6

0.8

1.0

Re
-ra

nd
om

iza
tio

n
se

ns
iti
vi
ty

Model B+BDD5%
Model D+BDD5%
Model D+BDD100%
Model C
Model D
Model B+BDD100%

Figure 3.11: Re-randomization sensitivity of the backbone layers as a
function of the re-randomized layer for model B+BDD5%, D+BDD5%,
D+BDD100%, C, D and B+BDD100%. Higher value means higher sen-
sitivity to re-randomization i.e. larger performance drop.

Looking at Figure 3.11, we can see multiple peaks in the RR-sensitivity at layers 0, 1, 5, 12
and 37 which can be explained by the residual block architecture of YOLOv3. In YOLOv3,
the shortcut layers of the residual blocks are connected so that parallel routes through the
network are possible. However, layers 0, 1 ,5, 12, 37, 62 are bottleneck layers and there are no
parallel routes. This principle is shown in Figure 3.13. The left sequence represents a path
where a parallel route is available. The right sequence shows a section containing a bottleneck
layer.

If one of these bottleneck layers is re-randomized, the information in the layers after the
bottleneck in the network will be ruined. Moreover, the layers 0, 1, 5 and 12 have a RR-
sensitivity of 1 meaning that the performance drops to 0 mAP if they are reset while layers 37
and 62 have RR-sensitivities less than one. This is because layers 36 and 61 tap out into the
detection head of the network. Thus, some predictions can still be made using the previous
layers, even though the later layers are useless.

39

3. Evaluation

75 80 85 90 95 100 105
Re-randomized layer

0.0

0.2

0.4

0.6

0.8

1.0
Re

-ra
nd

om
iza

tio
n
se

ns
iti
vi
ty

Model B+BDD5%
Model D+BDD5%
Model D+BDD100%
Model C
Model D
Model B+BDD100%

Figure 3.12: Re-randomization sensitivity of the detection head lay-
ers as a function of the re-randomized layer for model B+BDD5%,
D+BDD5%, D+BDD100%, C, D and B+BDD100%. Higher value means
higher sensitivity to re-randomization i.e. larger performance drop.

In the detection head shown in Figure 3.12, we can see three peaks at layers 81, 93 and
105. These layers are the layers directly before the YOLO detection layers which we refer to
as pre-prediction layers. We can also see that the sensitivity of these pre-prediction layers
seems to be increasing as we go deeper in the network. This suggests that high resolution
predictions deeper in the network are more important for the overall performance compared
to the earlier low-level predictions. Re-randomizing these pre-prediction layers (81, 93 and
105) leads to the network making random predictions at the specific detection resolution.
This can be shown in Figure 3.14b for a sample BDD image where the weights in the pre-
prediction layer 81 have been re-randomized.

However, at layer 80 and 92, i.e. layers before the pre-prediction layers, we see that the
RR-sensitivity is very low compared to the other layers. This can be explained by the fact
that layers 80 and 92 only influence the detections made at their specific resolutions whereas
the layers before also a�ect the predictions at higher resolutions by a�ecting the inputs to
the upsampling layers. This result indicates that resetting layer 80 or 92 i.e. disabling one of
the detection heads does not really a�ect the performance and the predictions are still made
by the remaining two detection layers. Qualitatively, this can be seen by comparing model
B+BDD100% with no layers re-randomized in Figure 3.14a with the same model but layers 80
and 92 re-randomized in Figure 3.14c and 3.14d respectively.

A common factor for the di�erent models is that the RR-sensitivity seems to be high
at early layers in the networks around layer 0 to 13 even when disregarding bottleneck lay-
ers. This indicates that the early layers are important across all models tested. Moreover,
the RR-sensitivity for D+BDD100% and D+BDD5% seems overall lower than the sensitivity
of the other networks. This can be verified by calculating the mean RR-sensitivity for the
networks which is shown in Table 3.6. According to Chatterji et al. (2019), a lower mean crit-
icality corresponds to high generalization of a network. Since our RR-sensitivity measure is
highly related to their criticality metric, a lower RR-sensitivity could also suggest a higher
network generalization. This means that the lower mean sensitivity of the transfer learned

40

3.1 Results and Discussion

...
...

Shortcut layer
Concatenation

Bottleneck layer

Convolutional layer

...
...

*

...

*

* *

*

Figure 3.13: Principle of a bottleneck layer in the residual blocks of
YOLOv3.

models suggests that transfer learning on a base model trained on synthetic data gives better
generalization than directly training on real data.

Table 3.6: Mean RR-sensitivity for the di�erent models.

Model Mean RR-sensitivity
B+BDD5% 0.202
D+BDD5% 0.160
D+BDD100% 0.150
C 0.262
D 0.282
B+BDD100% 0.214

41

3. Evaluation

(a)Predictionmade bymodel B+BDD100%with-
out any re-randomized layer.

(b) Prediction made by model B+BDD100% with
the pre-prediction layer 81 re-randomized.

(c) Prediction made by model B+BDD100% with
layer 80 i.e. layer before the pre-prediction layer
re-randomized.

(d) Prediction made by model B+BDD100% with
layer 92 i.e. layer before the pre-prediction layer
re-randomized.

Figure 3.14: Predicted bounding-boxes by the networks with di�er-
ent layers re-randomized.

Swap Sensitivity

The swap sensitivity of model B+BDD100% with weights swapped with model B+BDD5%,
D+BDD5%, D+BDD100%, C, D is shown in Figures 3.15 and 3.16 by evaluating the model
after swapping layers on the BDD validation set.

Figure 3.15 shows that swapping the first layers of model B+BDD100% with layers from
model C results in a high sensitivity i.e. large performance drop. For the rest of the backbone
we see a generally low sensitivity which indicates that swapping layers has low impact on the
performance of the models. There are some peaks in sensitivity that are interesting to study,
especially together with the previous RR-sensitivity analysis. Looking at Figure 3.11, we can
see that there are peaks present at 0, 5, 11 and 37 where all models experience an equal drop
in performance when these layers are re-randomized. Peaks at 11 and 37 are also present in
the swap sensitivity in Figure 3.15, but with di�erent magnitudes in performance drop for
the di�erent models. Swapping B+BDD100% with layers from model D+BDD100% yielded the
smallest performance drop at these peak layers while swapping with model C resulted in the
largest sensitivity and performance drop.

For the detection head layers shown in Figure 3.16, we see a pattern indicating that swap-
ping layers for the low resolution predictions in the range from 75-82 has little impact on
the model performance. This coincides with the results from the RR-sensitivity analysis that
the higher resolution detection outputs are more important than the low resolution outputs.

42

3.1 Results and Discussion

Comparing Figures 3.16 and 3.12, swapping layers from D based models around layer 90 gives
worse performance than re-randomizing the layer. This implies that these layers are funda-
mentally di�erent and do not encode the predictions in the same representational way. This
result is coherent with the CKA similarity analysis which also suggests that themodels except
B+BDD5% are fundamentally di�erent from B+BDD100% in the detection head.

0 10 20 30 40 50 60 70
Swapped layer

0.0

0.2

0.4

0.6

0.8

1.0

Sw
ap

 se
ns

iti
vi

ty

Model B+BDD100% and Model B+BDD5%
Model B+BDD100% and Model D+BDD5%
Model B+BDD100% and Model D+BDD100%
Model B+BDD100% and Model C
Model B+BDD100% and Model D

Figure 3.15: Swap sensitivity of the backbone layers as a func-
tion of the re-randomized layer for model B+BDD5%, D+BDD5%,
D+BDD100%, C, D and B+BDD100%. Higher value means higher
swap sensitivity i.e. larger performance drop.

75 80 85 90 95 100 105
Swapped layer

0.0

0.2

0.4

0.6

0.8

1.0

Sw
ap

 se
ns

iti
vi

ty

Model B+BDD100% and Model B+BDD5%
Model B+BDD100% and Model D+BDD5%
Model B+BDD100% and Model D+BDD100%
Model B+BDD100% and Model C
Model B+BDD100% and Model D

Figure 3.16: Swap sensitivity of the detection head layers as a func-
tion of the re-randomized layer for model B+BDD5%, D+BDD5%,
D+BDD100%, C, D and B+BDD100%. Higher value means higher
swap sensitivity i.e. larger performance drop.

43

3. Evaluation

44

Chapter 4

Conclusions

4.1 Transfer Learning on Synthetic Model
From the extensive parameter search and our experiments with transfer learning, we have
been able to establish a solid baseline for utilizing synthetic data together with real data to
achieve good performance. We show that there are indeed benefits of introducing synthetic
data when limited real data is available. However, the e�ect of using synthetic data seems to
render diminishing returns as more real data is available. Combining both the synthetic data
and real data did not result in a model that could outperform a model trained on only real
data. This means that it may be worth considering a synthetic dataset when annotated real
data is hard to acquire. More sophisticated approaches to leverage synthetic data would be
required to surpass state-of-the-art performance of a model trained on a highly diverse and
extensive dataset such as BDD.

Another positive e�ect of transfer learning on real data from a basemodel trained on syn-
thetic data is the increased robustness for hyper-parameters. A base training using synthetic
data before hyper-parameter tuning and training on real data could significantly reduce the
search time by being able to have a greater step length in the parameter space. Our experi-
ments indicate that exposure to synthetic data may lead to a reduction of the complexity of
the optimization landscape and a model with higher generalization.

4.2 Layer-wise Analysis
In the second part of the thesis, we tried to introduce newways to think about and experiment
with the internal convolutional layers of the models to shed light on the di�erences between
models trained di�erently on the synthetic and real datasets. We had some success in finding
promising patterns when using the CKA analysis to study the di�erence between the layers of
the networks. We quickly realized that a complex model such as YOLOv3 introduces several
other sources of di�erence in the layers such as skip connections which occlude some of the
conclusions that can be drawn from this type of analysis.

45

4. Conclusions

Nonetheless, we conclude that there seems to be several di�erent weight configurations
that the models can converge to that all result in good performance. This result is most
apparent in the detection head of the network. The backbone seemed to be more hesitant to
find a completely di�erent weight configuration in its layers, even if the head of the network
was completely di�erent between the models.

In the final experiments, we tried two approaches to study the behaviour of the models
when we re-randomize and swap the layers of the models and measure the resulting perfor-
mance drop. While these sensitivity ideas are quite simple, the results were surprisingly hard
to analyze because of the complexity of the YOLOv3 model architecture.

Nonetheless, one conclusion is that training on real data on a base model trained on
synthetic data seemed to yield a lower mean sensitivity to re-randomization compared to a
model only trained on real data. This indicates that these models are better generalized i.e.
have less overfitted parameters compared to models trained on only real data. The swapping
sensitivity experiments also verified the CKA analysis conclusions regarding the layers in the
head of the real and synthetic models.

When comparing models trained on synthetic and real data and models trained on only
real data, layers in the head were fundamentally di�erent. The output of each layer was repre-
sentationally di�erent but the predictions were similar. Therefore, the networks use di�erent
weight configurations taking di�erent routes to make the same predictions. Meanwhile, the
backbone layers remain relatively similar representationally.

In the end, we had hoped that the di�erences between a model trained on synthetic and
real data would be more visible in the various layer-wise experiments that we conducted.
Instead, we found that the analysis captures more of the intrinsic architectural design of
YOLOv3 rather than the major di�erences between the training data we used.

We also had indications that in our use case, the predictions of the lower resolution output
is not that important. The important predictions seem to come from the more detailed
and high resolution outputs. This is a valuable observation for a system, where we want to
introduce synthetic data. It implies that detail in the image is indeed important and worth
spending time on when creating the synthetic dataset.

4.3 Future Work
In this thesis, we have investigated the e�ect of synthetic data on the YOLOv3 architecture
from a performance perspective. While the parameters and approach that we applied for this
specific architecture and datasets have rendered good results, it would be interesting to see
what can be found when applying this new knowledge on another architecture of similar or
lower complexity.

The understanding of the mathematical properties of the internal workings and hidden
layers of complex neural network architectures that we have developed in this thesis is indeed
promising. While some conclusions can be drawn from the analysis presented, more extensive
experiments with other architectures and datasets would be interesting to further reinforce
and generalize our findings.

Another interesting study would be parameter tuning on the synthetic modelD, similarly
to what we conducted for the fine-tuning. This could also impact the overall result since in
this thesis, we are not using the optimal base models, model C and D.

46

References

Alain, G. and Bengio, Y. (2016). Understanding intermediate layers using linear classifier
probes. In ICLR 2017 workshop.

Amazon (2005). Amazon mechanical turk.

Astermark, J. (2018). Synthesizing training data for object detection using generative adver-
sarial networks. Master’s Thesis.

Cabon, Y., Murray, N., and Humenberger, M. (2020). Virtual kitti 2.

Chatterji, N. S., Neyshabur, B., and Sedghi, H. (2019). The intriguing role of module criti-
cality in the generalization of deep networks.

Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., and Urtasun, R. (2016). Monocular 3d
object detection for autonomous driving. In Proceedings of The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U.,
Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene under-
standing. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05).

Dosovitskiy, A., Ros, G., Codevilla, F., López, A., and Koltun, V. (2017). CARLA: an open
urban driving simulator. CoRR, abs/1711.03938.

European Commission (2018). 2018 reform of eu data protection rules.

Fong, R. C. and Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful
perturbation. In The IEEE International Conference on Computer Vision (ICCV).

Gaidon, A., Wang, Q., Cabon, Y., and Vig, E. (2016). Virtual worlds as proxy for multi-
object tracking analysis. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 4340–4349.

47

REFERENCES

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti
dataset. International Journal of Robotics Research (IJRR).

Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. (2013). Rich feature hierarchies for
accurate object detection and semantic segmentation. CoRR, abs/1311.2524.

Golub, G. H. and Reinsch, C. (1971). Singular Value Decomposition and Least Squares Solutions,
pages 134–151. Springer Berlin Heidelberg, Berlin, Heidelberg.

Hardoon, D. R., Szedmak, S., and Shawe-Taylor, J. (2004). Canonical correlation analysis:
An overview with application to learning methods. Neural Computation, 16(12):2639–2664.

Harrysson, O. (2019). License plate detection utilizing synthetic data from superimposition.
Master’s Thesis.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. B. (2017). Mask R-CNN. CoRR,
abs/1703.06870.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.
CoRR, abs/1512.03385.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., and Li, M. (2018). Bag of tricks for image
classification with convolutional neural networks. CoRR, abs/1812.01187.

Hinterstoisser, S., Lepetit, V., Wohlhart, P., and Konolige, K. (2017). On pre-trained image
features and synthetic images for deep learning. CoRR, abs/1710.10710.

Io�e, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift.

Jaeger, P. F., Kohl, S. A. A., Bickelhaupt, S., Isensee, F., Kuder, T. A., Schlemmer, H., and
Maier-Hein, K. H. (2018). Retina u-net: Embarrassingly simple exploitation of segmenta-
tion supervision for medical object detection. CoRR, abs/1811.08661.

Jiang, H. and Learned-Miller, E. G. (2016). Face detection with the faster R-CNN. CoRR,
abs/1606.03473.

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S. N., and Vasudevan, R. (2016). Driv-
ing in the matrix: Can virtual worlds replace human-generated annotations for real world
tasks? CoRR, abs/1610.01983.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. E. (2019). Similarity of neural network
representations revisited. CoRR, abs/1905.00414.

Lee, N., Weng, X., Boddeti, V. N., Zhang, Y., Beainy, F., Kitani, K. M., and Kanade, T. (2016).
Visual compiler: Synthesizing a scene-specific pedestrian detector and pose estimator.
CoRR, abs/1612.05234.

Lin, T., Dollár, P., Girshick, R. B., He, K., Hariharan, B., and Belongie, S. J. (2016). Feature
pyramid networks for object detection. CoRR, abs/1612.03144.

48

REFERENCES

Lin, T., Goyal, P., Girshick, R. B., He, K., and Dollár, P. (2017). Focal loss for dense object
detection. CoRR, abs/1708.02002.

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: common objects in
context. CoRR, abs/1405.0312.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C., and Berg, A. C. (2015). SSD:
single shot multibox detector. CoRR, abs/1512.02325.

Long, J., Shelhamer, E., and Darrell, T. (2014). Fully convolutional networks for semantic
segmentation. CoRR, abs/1411.4038.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision.

Morcos, A., Raghu, M., and Bengio, S. (2018). Insights on representational similarity in
neural networks with canonical correlation. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information
Processing Systems 31, pages 5727–5736. Curran Associates, Inc.

Nowruzi, F. E., Kapoor, P., Kolhatkar, D., Hassanat, F. A., Laganière, R., and Rebut, J. (2019).
How much real data do we actually need: Analyzing object detection performance using
synthetic and real data. CoRR, abs/1907.07061.

Odena, A. (2016). Semi-supervised learning with generative adversarial networks. In Pro-
ceedings of the Data E�cient Machine Learning workshop at ICML.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J. (2017). Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability.

Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A. (2015). You only look once:
Unified, real-time object detection. CoRR, abs/1506.02640.

Redmon, J. and Farhadi, A. (2016). YOLO9000: better, faster, stronger. CoRR,
abs/1612.08242.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv.

Ren, S., He, K., Girshick, R. B., and Sun, J. (2015). Faster R-CNN: towards real-time object
detection with region proposal networks. CoRR, abs/1506.01497.

Richter, S. R., Hayder, Z., and Koltun, V. (2017). Playing for benchmarks. CoRR,
abs/1709.07322.

Ros, G., Sellart, L., Materzynska, J., Vázquez, D., and López, A. (2016). The synthia dataset: A
large collection of synthetic images for semantic segmentation of urban scenes. In Porceed-
ings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, pages 3234–3243.

Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci,
E., Boochoon, S., and Birchfield, S. (2018). Training deep networks with synthetic data:
Bridging the reality gap by domain randomization.

49

REFERENCES

Ultralytics (2019). Ultralytics implementation of yolov3. https://github.com/
ultralytics/yolov3.

Wrenninge, M. and Unger, J. (2018). Synscapes: A photorealistic synthetic dataset for street
scene parsing. CoRR, abs/1810.08705.

Yeh, C., Lin, C., Muchtar, K., Lai, H., and Sun, M. (2017). Three-pronged compensation and
hysteresis thresholding for moving object detection in real-time video surveillance. IEEE
Transactions on Industrial Electronics, 64(6):4945–4955.

Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., and Darrell, T. (2018). Bdd100k:
A diverse driving video database with scalable annotation tooling.

Zhang, C., Bengio, S., and Singer, Y. (2019). Are all layers created equal?

50

https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3

Appendices

51

Appendix A

E�ect of the Label Mapping

As mentioned in Section 2.1.3 we made a slight mistake when creating the common labels for
the BDD dataset. As a result, the synthetic base models could recognize motorcycles but the
labels for motorcycles was not present when evaluating on BDD. Another problem was that
we mapped the label rider to cycle, while in GTAV the riders are labeled as person. To study
whether these choices have any significant e�ect on our results, we evaluated the models C
and D when we did use the label motor mapped to cycle and changed mapped rider to person
instead of cycle. The result is presented in the following table:

Table A.1: Performance of base models trained on synthetic data:
model C and D on the BDD validation sets when the labels was cor-
rected.

Model mAP on BDD valid. set mAP on BDD valid. set Relative
with adjusted labels with original labels mAP change

C 0.092 0.089 +3.4%
D 0.120 0.114 +5.3%

As we can see, the performance of both the models increased slightly. However, the con-
clusion from Section 3.1.1 that model D was the best performing is not changed. This slight
increase in performance is expected since the base models trained on synthetic data have al-
ready learned to detect motorcycles as well as the riders as person. Before the label mapping
adjustment, these motorcycle predictions became FP when they actually were correct and
the riders were predicted with wrong labels.

To investigate the impact on the fine-tuning experiments, we trained model B and D
on the dataset with adjusted labels with 5 and 10% of the real training data. The resulting
performance on the BDD test set is shown in Table A.2. The models were trained with the
optimal hyper-parameters found in Section 3.1.2

We see a small drop in performance for both B-based and D-based models when using the
adjusted labels compared to using the original label mapping. The performance drop could
be explained by the new labelmotor being relatively di�cult to predict. Another e�ect is that

53

A. Effect of the Label Mapping

Table A.2: Performance of model B+BDD5% and D+BDD5% trained
on BDD with adjusted labels.

Model mAP on BDD test set mAP on BDD test set Relative
with adjusted labels with original labels mAP change

B+BDD5% 0.228 0.229 -0.47%
D+BDD5% 0.250 0.263 -2.06%
B+BDD10% 0.278 0.281 -1.07%
D+BDD10% 0.294 0.295 -0.34%

remapping the rider bounding boxes to personmeans that each the riders are learned as person
instead. Since a person riding a bike looks di�erent to a walking person, this could also be
a factor for the performance decrease. Nonetheless, The performance change is really small
and could be insignificant. Therefore, we can conclude that this change in label mapping
does not really a�ect our original results.

54

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-11

EXAMENSARBETE The Effect of Synthetic Data in Training of
Deep Neural Networks for Object Detection in Cityscapes
STUDENTER Arvid Mildner, Tony Liu
HANDLEDARE Pierre Nugues (LTH); Martin Ljungqvist, Otto Nordander (Axis Communications)
EXAMINATOR Jörn Janneck (LTH)

Träning av objektdetektor med hjälp av
syntetiska bilder i stadsmiljö
POPULÄRVETENSKAPLIG SAMMANFATTNING Arvid Mildner, Tony Liu

AI-modeller som används för objektdetektion är i behov av stora mängder exempelbilder
på objekt såsom bilar och personer. Det är dyrt att både samla in och annotera dessa
bilder. Därför skulle ett system som kan tränas på datorgenererade bilder kraftigt minska
kostnaden för att träna modeller i nya miljöer.

Man skulle kunna tänka sig att det inte är så stor
skillnad på en riktig bild och en detaljerad syntetisk
bild. För det mänskliga ögat verkar det i alla fall
inte svårare att urskilja en bil i ett datorspel än vad
det är om man tittar på en riktig bild. Den typ av
modell som vi har experimenterat med är ett så kallat
neuralt nätverk som på en konceptuell nivå fungerar
ungefär som man tror att vår egen hjärna behandlar
synintryck.

(a) Riktig bild från Berkeley
Deep Drive.

(b) Syntetisk bild från da-
torspelet GTA V.

Tyvärr visar det sig att det inte är så enkelt - en mod-
ell som enbart har sett syntetiska bilder har svårt att
få god precision när den tillämpas på riktiga bilder.
Vår idé var att försöka förstå detta och se om vi istäl-
let kunde göra något för att använda så få riktiga
bilder som möjligt tillsammans med de syntetiska
bilderna. Först experimenterade vi med något som
kallas för transfer learning för att nå en så god pre-
cision som möjligt given en viss mängd riktig data.
Grundidén med den här metoden är att ett nätverk
som enbart har sett syntetisk data behöver en liten
skjuts i rätt riktning genom att få se riktig data mot
slutet av träningen. Då ska den ha lärt sig i stora
drag vad den ska söka efter av den första tränin-
gen med syntetisk data. Här visade vi att syntetisk
data kan vara mycket värdefull om man har få rik-

tiga bilder men har avtagande effekt på precisionen
när en större mängd riktig data introduceras.

Därefter försökte vi dyka in i nätverkets inre struk-
tur för att hitta vad som egentligen skiljer en mod-
ell som tränats med hjälp av syntetisk data och en
som tränats med riktig data. Här presenterar vi olika
matematiska metoder för att studera likheten mellan
de interna representationerna i nätverket som leder
fram till de prediktioner som görs. En allmän uppfat-
tning inom forskningsområdet är att de olika interna
lagrena i nätverket får olika uppgifter som sträcker
sig från att detektera konturer till att detektera fak-
tiska saker som hjul och bilfönster. Detta gör att
nätverket slutligen kan hitta hela bilen allt eftersom
den ursprungliga bilden filtreras genom hela nätverk-
skroppen. Idén var att vi skulle kunna isolera de-
lar av nätverket som verkar göra ungefär samma sak
oberoende av om de enbart sett syntetisk data eller
riktig data.

Det visade sig vara svårare än vi trodde att tyda
något anmärkningsvärt från den här analysen. My-
cket av de slutsatser vi kan dra hamnar lite i skymun-
dan bakom detaljer som har att göra med modellens
arkitektur snarare än det faktum att modellerna sett
olika typer av data. Trots detta ger vår analys indika-
tioner på att en modell som tränats på både syntetisk
och riktig data kan hitta nya objektdetektioner och
generaliserar bättre till nya miljöer jämfört med en
modell tränad på enbart riktig data. Resultatet av
detta är en sorts granulär lupp som skulle kunna an-
vändas vid vidare forskning på hur ett nätverk kan
bli mer effektivt med hjälp av syntetisk data.

	Introduction
	Background
	Purpose and Delimitations
	Delimitations

	Related Work
	Object Detection
	Synthetic Data
	Similarity of Neural Networks
	Criticality

	Contribution
	Work Distribution

	Approach
	Data
	Definition of Synthetic Data
	Datasets
	Intersection of Class Labels

	Object Detection Training and Evaluation
	Evaluation Metrics
	YOLOv3
	Training on Synthetic Data
	Implementation
	The Base Models

	Layer-wise Model Comparison
	Similarity Metrics
	Representational Similarity
	Layer Re-randomization and Swapping

	Evaluation
	Results and Discussion
	Base Models Trained on Synthetic Data
	Transfer Learning on Synthetic Model
	Layer-wise Analysis

	Conclusions
	Transfer Learning on Synthetic Model
	Layer-wise Analysis
	Future Work

	References
	Appendix Effect of the Label Mapping
	Tom sida

