
MASTER’S THESIS 2020

Mitigation and handling of
non-deterministic tests in
automatic regression testing
Axel Berglund, Oskar Vateman

ISSN 1650-2884
LU-CS-EX : 2020-54

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX : 2020-54

Mitigation and handling of
non-deterministic tests in automatic

regression testing

Axel Berglund, Oskar Vateman

Mitigation and handling of
non-deterministic tests in automatic

regression testing

Axel Berglund
ine15abe@student.lu.se

Oskar Vateman
ine15ova@student.lu.se

September 1, 2020

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Helena Razdar, helena.razdar@axis.com
Per Runeson, per.runeson@cs.lth.se

Examiner: Emelie Engström, emelie.engstrom@cs.lth.se

mailto:ine15abe@student.lu.se
mailto:ine15ova@student.lu.se
mailto:helena.razdar@axis.com
mailto:per.runeson@cs.lth.se
mailto:emelie.engstrom@cs.lth.se

Abstract

Iterative development is a principle of agile development, meaning that the steps
of software development are performed over and over again in iterations. Per-
forming these steps multiple times means that testing must also be done multiple
times, which leads to the automation of these tests being necessary.

A flaky test, also called a non-deterministic test, is a test which can both pass
and fail using the same version of the code. This non-determinism leads to testers
not trusting their tests. Therefore our purpose with this thesis was to find out
how to minimise flakiness in a test suite. To do so we used an iterative research
approach, where di�erent potential solutions to a problem were implemented
and evaluated in iterations until we arrived at a working solution.

During the first iteration the approach was to attempt to fix flaky tests in a
test suite and from this identify common underlying causes as well as solutions to
the identified common causes. From this approach it was discovered that fixing
flaky tests and identifying their causes is di�cult and time consuming.

For the second iteration another solution was evaluated, which consisted of
performing a cost-benefit analysis on di�erent strategies of handling flaky tests.
This analysis was done by conducting interviews with Axis employees and by
using information from relevant literature.

The third iteration consisted of developing guidelines, based on information
from the interviews as well as information from the literature, on how to avoid
flaky tests, how to handle flaky tests, and how to mitigate flakiness during test
case implementation. The guidelines were found to be e�ective in minimising
flakiness through validation interviews with testers and experts at Axis Commu-
nications.

Keywords: non-determinism, flaky tests, regression testing, flakiness strategies, cost-
benefit analysis

2

Acknowledgements

We would like to thank Axis Communications and especially the New Business department
for welcoming us to your o�ce and overall being very helpful with any problems we had.

The research in this thesis would not be possible without the input from the interviews
we conducted. We would therefore like to extend our vast gratitude to all interviewees who
invested their time in making this thesis a reality.

We would also like to thank Baldvin Gislason Bern for bringing us the expert perspective
on flakiness and the intricacies of automated regression testing.

A special thanks to Per Runeson, our supervisor at LTH, for being extremely helpful with
everything concerning the work and the report, including feedback and support. And also a
special thanks to Helena Razdar, our supervisor at Axis, for being with us every step of the
way.

3

4

Contents

1 Introduction 9
1.1 Background . 9
1.2 Definition of flakiness . 10
1.3 Context . 10
1.4 Problem statement . 10

2 Methodology 11
2.1 Research approach . 11
2.2 Research design . 13

2.2.1 Literature review . 13
2.2.2 Interviews . 14
2.2.3 Analyzing flaky tests . 15
2.2.4 Cost trade-o�s for flaky tests . 16
2.2.5 Developing guidelines . 17
2.2.6 Evaluation of research results . 17

3 Theory 19
3.1 Literature review . 19
3.2 Flaky or non-deterministic tests . 20
3.3 Root causes for flakiness . 21
3.4 Mitigation strategies for flakiness . 23

3.4.1 Rerunning flaky tests . 23
3.4.2 Improving implementation . 24
3.4.3 Removing flaky test cases . 27
3.4.4 Replacing implementation . 27
3.4.5 Using machine learning . 28
3.4.6 Assume tests are flaky . 28
3.4.7 Test prioritisation and test selection 29
3.4.8 Tools . 29

3.5 Costs and benefits of test automation . 30

5

CONTENTS

4 Identifying and fixing flaky tests 33
4.1 Approach . 33

4.1.1 Identifying flaky tests . 33
4.1.2 Fixing flaky tests . 34

4.2 Results . 34
4.3 Discussion . 35

5 Cost trade-o�s when fixing flaky tests 37
5.1 Costs and benefits of fixing flaky tests . 38
5.2 Costs and benefits of keeping flaky tests . 39

5.2.1 Test selection cost . 39
5.2.2 Test execution cost . 40
5.2.3 Result analysis cost . 40
5.2.4 Other costs . 40

5.3 Costs and benefits of removing flaky tests 40
5.4 Discussion . 41

6 Guidelines for flaky tests 43
6.1 Guidelines for avoiding non-deterministic tests 43

6.1.1 Be aware of the context . 44
6.1.2 Minimise flakiness caused by the testing environment 44
6.1.3 Avoid asynchronous implementation 45
6.1.4 Adhere to good coding practices 45
6.1.5 Make tests explicit . 45
6.1.6 Keep test cases simple and test in isolation 46
6.1.7 Strive for deterministic assertions 46
6.1.8 Limit third party dependencies . 47

6.2 Guidelines for handling flaky tests . 47
6.2.1 Analysing the test case . 47
6.2.2 Choosing strategy . 48
6.2.3 Fixing the test case . 48
6.2.4 Keeping flaky tests . 50
6.2.5 Removing flaky tests . 50

6.3 Guidelines on test case implementation . 51

7 Validation 53
7.1 Validation interviews . 53
7.2 Threats to validity . 54

7.2.1 Internal validity . 55
7.2.2 External validity . 56

8 Discussion 59
8.1 Discussion of results . 59
8.2 Future work . 60

References 61

6

CONTENTS

Appendix A Interview guide 67

Appendix B Interview guide - validation 69

Appendix C Guidelines for avoiding non-deterministic tests 71

Appendix D Guidelines for handling flaky tests 73

Appendix E Guidelines on test case implementation 75

7

CONTENTS

8

Chapter 1

Introduction

This section aims to provide a quick introduction to the thesis and its’ purpose, the context
of the thesis as well as to the topic of flaky tests.

1.1 Background
Agile development is an approach to developing software which focuses on finding solutions
through collaboration between and within self-organizing and cross-functional teams. A
principle of agile development is iterative development. This means that software develop-
ment activities, such as coding, integrating and testing, repeat over and over again [1]. Code
is constantly changing and as such the step of testing is also repeated. This repeated testing
is called regression testing, named so because it is used to protect against software regression,
by testing that previous functionality is still working after a change to the production code.
Since this testing is repeated it becomes beneficial to automate this process [30]. One might
think that if a test works once then it will always work and therefore tests that work will
never have to be fixed or replaced. This is, however, an incorrect assumption as tests may not
have a strictly deterministic outcome.

Flaky tests, also called non-deterministic tests, are tests which can both pass and fail using
the same version of the code (depending slightly on definition). This can happen for a variety
of reasons, including asynchronous calls, network issues, test case timeouts etc. These tests
are a problem for a test suite as they undermine the trust people have in their test results. In
some cases this can lead to the results being ignored, defeating the purpose of running the
test in the first place [32]. In the process of fixing these tests, reproducing the failure can
be very di�cult due to the failure not occurring reliably. Tests that exhibit flaky behavior
are di�cult to fix, and as such require disproportionate attention from test engineers [26].
Therefore, minimising flakiness is a worthwhile goal which has the potential to free up time
for test engineers to work on other tasks.

9

1. Introduction

1.2 Definition of flakiness
Di�erent definitions of flakiness exist across the relevant literature. The most common def-
inition of flakiness is a test case that both fails and passes while the codebase is static (i.e.
does not change) [11, 29, 40]. Luo et al. [29] define flaky tests as “tests that can intermittently
pass or fail even for the same code version” and Eck et al. [11] uses the following definition:
“Software tests are flaky when they exhibit a seemingly random outcome (i.e. pass or fail)
despite exercising code that has not been changed.” Others, such as Fowler, add other condi-
tions such as both the code and the environment have to be the same during both a success
and a failure. We have decided to use the broader definition, used by Luo et al. [29] and Eck
et al. [11]; if the same test can both pass and fail for the same code version, it is flaky. Thus we
disregard the environment the test is run in when we define a test as flaky. We chose this
definition because it is the most common one used in the relevant literature and also because
we want the code base to be more robust against flakiness, and thus should be able to handle
a changing test environment.

1.3 Context
Axis Communications AB is a Swedish company, founded in 1984 in Lund, which provides
network solutions for security purposes. At the end of 2019 there were 3646 Axis employees
in more than 50 countries. The largest o�ce and headquarters is located in Lund. They
currently sell network intensive products in the areas of video surveillance, access control
and audio. Their regression tests are run over the network using Jenkins, an open source
automation tool which is built with continuous integration in mind.

The Lund o�ce consists of two departments : the main department which focuses on
network cameras, and the New Business department which focuses on all other products
such as access control and audio products. Our thesis was carried out at the New Business
department.

1.4 Problem statement
Axis applies iterative development to their workflow and as such are negatively a�ected by
flakiness. Our goal with this thesis is to better understand what causes flakiness and to use
that information to develop guidelines for writing tests and handling tests in a way that
minimises flakiness and its negative impacts. In order to achieve this goal we must answer
the following three questions :

• RQ1 : What are the common causes of flaky tests?

• RQ2 : How can the flakiness of a test case be minimised?

• RQ3 : How should flaky tests be handled in order to balance costs and test suite sta-
bility?

10

Chapter 2

Methodology

This chapter explains the methodology used to conduct the work in this report.

2.1 Research approach
The scientific disciplines can be categorized in the following way according to van Aken [3] :

1. Formal sciences (e.g. philosophy and mathematics)

2. Explanatory sciences (e.g. the natural sciences and a majority of the social sciences)

3. Design sciences (e.g. the engineering and medical sciences)

Formal sciences aim to build knowledge systems that has an internal logical consistency. Ex-
planatory sciences aim to produce a model which describes and explains observable phenomena
within its field. The research output in the explanatory sciences should lead to propositions
which are majorly accepted by the scientific forum. Design sciences aim to develop the knowl-
edge necessary to create, realize or improve human-made design. The research output in the
design sciences should be knowledge that can be used to design solutions to problems.

The basis for our research strategy builds on methodologies used in the design sciences
as the aim of our research is to develop the knowledge necessary to generate a solution for a
problem. Further, Runeson et al. [35] argue that the design science paradigm is appropriate
in the area of software engineering as the software itself as well as the surrounding tools and
technologies are human-made constructs.

We are using the design science research model proposed by Runeson et al. [35] to guide us
in our research endeavour. Figure 2.1 shows the model. Design science research contributions
can be categorized into practical contributions, i.e. specific solutions to a specific problem,
and theoretical contributions, i.e. generalized knowledge about the relationship between the
problem and solution domain which can be expressed as a technological rule.

11

2. Methodology

Figure 2.1: "An illustration of the interplay between problem and
solution as well as between theory and practice in design sci-
ence research." by Engström, Emelie, et al. "How software en-
gineering research aligns with design science : a review." [12],
DOI : 10.1007/s10664-020-09818-7, licensed under CC BY 4.0.

The arrows in figure 2.1 depict activities that are performed in an iterative manner in
order to create knowledge.

• Problem conceptualization is the activity of capturing the problem and identifying its
constituent parts.

• Solution design refers to the activity of formulating a solution that may be expressed as
a technological rule.

• Instantiation refers to the activity of implementing a solution to a specific problem.

• Abstraction refers to the activity of describing the key design decisions for a solution.

• Empirical validation refers to the activity of evaluating the implemented solution in its
context.

The model works in an iterative way which means that an activity will be revisited several
times during the course of the research. Our research includes all activities.

12

https://doi.org/10.1007/s10664-020-09818-7
https://creativecommons.org/licenses/by/4.0/

2.2 Research design

2.2 Research design
As explained previously we follow an iterative manner to conduct our research. In our re-
search we are mainly iterating on (i.e. revisiting) the activity of solution design, whereas the
other activities remain static. The solution design will consist of three iterations of possible
solutions.

Based on the research questions expressed in chapter 1 we have identified a number of
steps to lead us to a solution for our problem.

The steps are :

1. Literature review. This step relates to the problem conceptualization and solution
design activities.

2. Interviews. This step relates to the problem conceptualization and empirical valida-
tion activities.

3. Analyzing flaky tests. This is the first iteration for a potential solution. This step is
mainly performed in the form of a workshop and relates to the problem conceptual-
ization and solution design activities.

4. Cost trade-o�s for flaky tests. This is the second iteration for a potential solution.
This step relates to the solution design activity.

5. Developing guidelines. This is the third iteration for a potential solution. This step
relates to the solution design and instantiation activities.

6. A�rmation of research results. This step relates to the empirical validation activity.

The following subsections explains each step in closer detail.

2.2.1 Literature review
In order to gain a deeper understanding of the subject it is often preferable to start with a
literature review. In the book Research Methods for Engineers, David V. Thiel [39] notes that a
literature review should be conducted using the following sequence of tasks :

1. Key word searching.

2. Selection of relevant papers (partly influenced by publication date and citation num-
ber).

3. Review of paper abstracts for relevance.

4. Review of complete papers for relevance.

5. Critical analysis of the results as they apply to the new research project.

Further, Thiel notes that when reading a scientific article the researchers should have the
following things in mind :

13

2. Methodology

• The relevance of the article to their research project.

• The research methods described in the article.

• The conclusions reached at the end of the article.

• The relationship of the article to other publications.

We conduct the literature review in two steps. First, we conduct a database search using
relevant keywords. This is primarily done using the research platform EBSCOhost. We have
identified a number of search terms aimed to find literature which has previously discussed
flakiness in testing. The search terms are flaky, flaky test, flaky tests, flaky testing, flakiness and
non-deterministic tests.

Second, after identifying relevant literature we further search for relevant research by
exploring the references and citations in the found literature. This is known as snowballing
[6] and is considered a good complement to a database search.

The initial database search complemented with the search through snowballing gives us
a solid foundation of theoretical knowledge about flakiness on which we build upon.

2.2.2 Interviews
Common goals of all interviews are to gain insights through interviewing that we cannot di-
rectly observe and to gain new perspectives on a problem or area [34]. We use interviews in
order to delve further into the practice domain as mentioned in chapter 2. More specifically
we are using interviews as a way to further conceptualize the problem to gain an under-
standing of the problem from an industry perspective. The interviews also guide us in the
empirical validation activity by confirming that the results are applicable in practice. The
interviews are done with thirteen Axis Communication employees. 7 testers, 2 developers,
and 4 experts within the area of software testing are interviewed. The validation interviews
are done with four Axis Communication employees. All four interviewees for the validation
interviews were testers.

Hughes [17] discusses three di�erent types of interviews; the informal conversation in-
terview, the general interview guide approach and the standard open-ended interview. As
we want to gain a deeper understanding of the practical domain we are using the general in-
terview guide approach so that we are collecting the same general areas of information from
the interviewees but we still allow the interviewees to go into further detail in the areas most
relevant in their daily work.

The interviews are conducted online through the Meeting function in Microsoft Teams.
The choice to conduct the interviews in a digital setting comes from the current situation
of the COVID-19 pandemic which complicates a face-to-face setting. Microsoft Teams was
chosen as it is the software used on a daily basis by the interviewees and so it is a software
they are comfortable using.

The interview starts with an introduction of the thesis work we are conducting as well
as an introduction to flaky tests using the definition we established in section 1.2. The inter-
views then follows the interview guide found in Appendix A, but allows a certain degree of
freedom as we may choose to explore an area further. The interview ends with the interviewee
being able to ask questions or further clarify anything they said during the interview as this

14

2.2 Research design

can sometimes lead to further information being provided [17]. All interviews are recorded
so that we are able to confirm any given answers.

2.2.3 Analyzing flaky tests
In order to gain an understanding of the causes for flaky tests we attempt to analyse a num-
ber of real-life examples of flaky tests. This helps us get an understanding of and further
conceptualizes the problem of flaky tests. The tests are part of a real test suite at Axis Com-
munications.

The analysis is done in two steps. The first step focuses on identifying the flaky tests.
This includes both identifying flaky test candidates as well as confirming their flakiness. The
second step focuses on identifying the causes of the tests that are confirmed flaky. This is
mainly done through code analysis.

The following sections explain the steps in further detail.

Identifying flaky tests
When identifying flaky tests we use historic data consisting of over two million tests, run
from late August of 2019 until late January of 2020. The information contained in this data
set consist of : The date and time the test was run, the build, the test level, the test class, the
test case, and the result for that test. From the data we sort out the test cases that have both
passed and failed in the same day, thus presumably running the same code base. These are
our candidates for flaky tests as they follow the definition we established in chapter 1.

After identifying potential flaky tests we verify their flakiness by running the tests a large
number of times and observing the results. We first run the tests on the latest code base to
see if the test case is still exhibiting flaky behavior. The test cases that both pass and fail at
least once during the run are labeled as flaky on the latest code base.

If the tests that have been identified as flaky do not exhibit flaky behavior when running
them with the latest version of the test and production code, we rerun the tests using the test
code versions which were used the last time they exhibited flaky behavior. If a test case both
passes and fails during this run we assume that the flakiness has been fixed and a manual code
analysis is used to classify the cause of the flaky behavior.

Identification of causes of flaky tests
Using the test cases identified as flaky, we try to identify the causes of their flakiness. This is
done to get a better understanding of the problem (i.e. conceptualizing the problem) and to
be able to start the activity of solution design.

We do this using two di�erent approaches.

1. For test cases which no longer exhibits flaky behavior, but were confirmed flaky in an
older commit we attempt to identify the cause of the flaky behavior by studying the
commit that is most likely to have fixed the test.

2. For test cases that are still flaky we attempt to categorize the cause of flakiness by using
a static code analysis on the latest version of the code.

15

2. Methodology

The following sections explains the approaches in further detail.

Identifying causes using commits
If a test case is confirmed flaky on an older version of the code, but does not exhibit flaky
behavior on the latest version it is likely that a change in the code base was able to fix the
flaky behavior.

In this case we attempt to identify the cause of the flaky behavior by analyzing the code
changes. We do this both by exploring the commit message as well as inspecting the actual
code change. Based on the code changes as well as any hints given in the commit message we
attempt to classify the root cause of the flaky behavior.

Identifying causes using static code analysis
For the test cases that are still exhibiting flaky behavior in the latest version of the code base,
we attempt to find the likely causes of the flakiness using static code analysis. This is done
in the form of a workshop together with Axis QA employees.

During the workshop one test case at a time is studied. The participants are introduced
to the test case and any accompanying log information about the failure. They then attempt
to fix the test case (i.e. make it deterministic) and then classify the cause of the flaky behavior
based on the fix. After the workshop the test cases are run again to verify that the proposed
fix actually fixes the flaky behavior.

2.2.4 Cost trade-offs for flaky tests
Most of the research that currently exists regarding flaky tests, as summarised in chapter 3,
focus on determining the cause of the non-deterministic behavior and on ways to fix it. There
is however currently no research regarding the potential costs in fixing flaky tests and reach-
ing a completely deterministic test suite. Similarly the current research on cost models in
regression testing does not consider the case of flaky tests. We explore this area by proposing
a cost trade-o� model for flaky tests focusing on the costs and benefits of fixing flaky tests
as opposed to removing them from the test suite.

As explained in chapter 2 we are exploring the problem of flaky tests both in the theo-
retical domain as well as in the practical domain. In a real-life situation the benefit should
outweigh the cost associated with performing an activity in order to justify performing said
activity. This is in literature often referred to as a cost-benefit analysis [8].

We perform a cost-benefit analysis for whether or not a flaky test should be fixed or if
it should be thrown out and rewritten. Further, we weigh the benefits of increased code
coverage but decreased reliability of test results against a lower test coverage but increased
robustness of the test suite.

The cost-benefit analysis helps us answer RQ3, as expressed in section 1.4, and we are
therefore focusing on the following questions :

• How much time should be spent trying to fix the flaky behavior of a test before the
cost outweighs the benefits?

• Is it better to remove a flaky test from the test suite entirely or is it better to leave it
in even if the test results are less reliable?

16

2.2 Research design

• Will it always be better to remove the test or does the test have to be certain level of
flaky for it to be worth it?

We perform the analysis by comparing the e�ort required by an employee to fix a flaky
test with the benefit gained by having fixed the test. We do this by conducting a literature
review, as explained in subsection 2.2.1, as well as interviewing a number of employees at Axis
Communications as explained in subsection 2.2.2.

2.2.5 Developing guidelines
As explained in chapter 2 we are working in both the theoretical and the practical domain. In
order to make the information in this thesis available and suitable for practitioners as well,
the final results are presented in the form of guidelines.

The cost of fixing a defect in software is larger the further into the software development
process you get [38]. Detecting flaky behavior in test cases before they enter production can
therefore be a huge cost saver. As such we develop guidelines meant to mitigate the risk of a
flaky test case entering the production code. The guidelines also cover how to handle flaky
tests once they have entered the production stage, building on the knowledge gained from
the cost trade-o�s analysis.

The guidelines are developed using the insights gathered from interviews with Axis em-
ployees, as explained in subsection 2.2.2, as well as insights gained from the literature review.
The guidelines focus on methods of writing tests to reduce flakiness as well as how tests which
are already flaky should be handled.

2.2.6 Evaluation of research results
The last step of any research endeavour is evaluation of the results. We evaluate the results by
having a discussion of the methodology used as well as through a validation of the guidelines
with test employees and managers.

In the discussion of the methodology used we critically analyse the assumptions made and
discuss any factors that may have influenced the results. We also discuss the delimitations we
have used in the research endeavour in order to evaluate how generalized the results can be.

The validation of the guidelines are done by evaluating how employees at the QA depart-
ment at Axis Communications perceive the guidelines as well as what di�culties and risks
they find in implementing the guidelines. This is done through interviews with Axis QA
Employees. The interview guide used for the interviews can be found in appendix B.

17

2. Methodology

18

Chapter 3

Theory

This chapter aims to provide an overview of the current research related to non-deterministic
tests.

3.1 Literature review

Table 3.1: Relevant literature as well as type of literature.

Literature Type
Empirical Analysis of Factors and their E�ect on Test Flakiness
- Practitioners’ Perceptions [2]

Empirical study

DeFlaker : Automatically detecting flaky tests [7] New technique
Understanding flaky tests: the developer’s perspective [11] Empirical study
Proactively detecting unreliable tests [14] PhD Thesis
Towards a Bayesian Network Model for Predicting Flaky Auto-
mated Tests [21]

New technique

iDFlakies: A Framework for Detecting and Partially Classifying
Flaky Tests [24]

New technique

Where do our flaky tests come from? [26] Case study (Google)
An empirical analysis of flaky tests [29] Empirical study
Can We Trust Test Outcomes? [28] Empirical study
Flaky tests at Google and how we mitigate them [32] Case study (Google)
An empirical study of flaky tests in Android apps [40] Empirical study

This chapter builds upon the information found in the literature review, as described in
subsection 2.2.1. After conducting a database search as well as snowballing we identified a
number of journals/articles relevant to the topic at hand. We did not deem it necessary to

19

3. Theory

make a selection from the identified literature as the number of articles was relatively small.
The identified relevant literature is presented in Table 3.1.

The literature presented in Table 3.1 were all written by di�erent authors (with the excep-
tion of [28, 29]. However, most identified research builds upon the empirical study conducted
by Luo et al. [29], which was the first empirical study done on flaky tests.

In addition to the research presented in Table 3.1, we also identified a number of papers
where flaky tests were discussed but where it was not the main focus of the paper, e.g. [4, 15,
18, 23, 27, 31].

When finding literature relevant to, for example, the cost-benefit analysis section (e.g. [8,
16, 20, 25]), we made more general searches and did not employ the practice of snowballing.
Those searches were therefore not as extensive as they were not the main focus of the thesis.

3.2 Flaky or non-deterministic tests
Regression testing ensures that previously working code still works after performing changes
in the code. This is done through performing tests on previous functionality in order to test
that the functionality is still working after applying a change to the production code. It is
an essential part of software development and a failure when performing regression testing
should indicate that the newly introduced changes broke previously working functionality.
This assumes that the tests are deterministic, i.e. the test should always pass or fail for the
same code under test. However, in practice this is not always the case.

Flaky tests are tests that are non-deterministic in their behavior. This means that the
test may pass or fail without any changes having been made to the test code or to the code
under test. These types of failures are relatively common in large codebases. For example,
according to Luo et al. [29] the TAP system at Google attributed 73K out of 1.6M failures
(4.56%) to flaky tests. Google has also reported seeing a continual rate of 1.5% of all test runs
reporting a flaky result and almost 16% of tests across Google’s test suite has some level of
flakiness associated with them [32]. Additionally, Labuschagne et al. [23] attributed 13% of
test failures to flaky tests in their study on regression testing in Java projects.

There are several problems associated with flaky tests. Because of the non-deterministic
behaviour inherent in flaky tests, test failures caused by flaky tests can be very hard to re-
produce. This could potentially lead to a developer spending a lot of time trying to track
down a bug, only to discover that it was caused by a flaky test. This is both time consuming
and wastes a lot of machine resources [11, 29]. A consequence of this is that many developers
instead ignore failures as they chalk it up to a flaky test.

Ignoring flaky tests could be a problem as they may hide real bugs. Luo et al. [29] found
that 24% of flaky tests were fixed by also changing the code under test. They found three
reasons for this :

• The source code is deterministic but contains a bug which is discovered thanks to a
flaky test. In this case the test code is the cause of the flakiness, but the test case was
still helpful in uncovering a real bug.

• The source code is non-deterministic and contains a bug (for example a race condition)
which causes flakiness. This happens if the flakiness is in the production code rather
than the test code.

20

3.3 Root causes for flakiness

• The source code is non-deterministic but does not contain a bug. In this case the test
code may not cover all possible result values, resulting in non-deterministic behavior.
If this happens developers sometimes attempt to make the code more deterministic to
make it easier for the test cases to cover all possible correct results.

3.3 Root causes for flakiness
There have been several empirical studies to understand the causes for flakiness in testing
suites. Luo et al. [29] studied 201 commits that fixed flaky tests in 51 di�erent open-source
projects. They identified ten di�erent categories for causes of flaky tests, out of which the
top three categories represented 77% of the studied commits.

In subsequent work, Eck et al. [11] asked developers to classify flaky tests they had pre-
viously fixed. In addition to the causes reported by Luo et al. they found a number of new
causes of flakiness.

The root causes found in previous research are presented in Table 3.2.

Table 3.2: Root causes for flakiness.

Root cause Description
Async wait This type of flakiness arises when a test makes an asynchronous call and

does not wait for the result of that call to become available before using
that result. For flakiness to be classified as Async wait the flakiness must
be the result of a remote resource being unavailable. An example of this is
when the test waits for a fixed amount of time for a result from a remote
server every time the test is run. Sometimes the remote server takes longer
to respond than the test waits for, which leads to this type of flakiness. [29]

Concurrency Much like async wait, this flakiness is caused by synchronization issues.
However, unlike async wait, this flakiness is caused by a local synchroniza-
tion issue in contrast to a remote one. This flakiness can be characterized
as when the interaction of di�erent threads lead to an undesirable out-
come, for example when the threads execute in a di�erent order than their
dependencies would require. [29]

Test order depen-
dency

As the name suggests, this flakiness is caused by the result of the test being
dependant on which order the tests are run. This occurs when a shared
state is not properly setup or cleaned. The failure would then occur if the
test is run after another test has changed the state of the main memory
or an external resource without cleaning up or resetting it to the expected
state before the next test is run. [29]

Resource leak This flakiness is caused by the application not managing its resources cor-
rectly, such as memory or database connections. [29]

Network The network on which the tests are run can be unreliable at times and as
such tests which execution depends on it may exhibit flaky behavior. [29]

Time Flakiness may arise from the test relying on the system time. The failure
could be caused by time zones or perhaps be due to the timing imprecision
when compared with another platform. [29]

21

3. Theory

IO Flakiness may also be found during I/O operations. An example of this is
having a file reader that is not closed until it gets garbage collected. If a
test would try to open the same file it could either pass or fail depending
on whether or not the file reader had been garbage collected. [29]

Randomness Tests that make use of a random number generator may exhibit flaky be-
havior. This might be caused by the test not accounting for all possible
numbers generated. For example, the test might expect a value greater
than zero, but the random number generated can assume a value of zero
or greater. [29]

Floating point op-
erations

Operations with floating point numbers can exhibit flakiness if the pre-
cision of the floating point numbers are not considered. Both potential
over- and underflow needs to be considered for the test to behave prop-
erly. This type of flakiness also includes the case where the failure is caused
by a di�ering number of significant digits in di�erent test executions. [29]

Unordered collec-
tions

When iterating over a set, the elements can either be sorted or unsorted.
If the code assumes that the elements are sorted while the set is unsorted,
the test outcome can become non-deterministic. [29]

Too restrictive
range

If the allowed range of output values is narrower than the valid range of
output values the test will pass or fail at random, i.e. flaky behavior. [11]

Test case timeout The max runtime value can be selected in such a way that the test expe-
riences non-deterministic timeouts. This is usually the result of the test
growing over time while the max runtime value not being increased to
match the new size of the test. [11]

Platform depen-
dency

A test may be called flaky if it fails on only certain platforms (e.g. a test
might fail on Windows 10 but not Windows 7). This flakiness might be
caused by the platform being unusually slow or the platform might have
missing preconditions. [11]

Test suite timeout Similar to Test case timeout, but the max runtime value is not properly
adjusted for the entire test suite instead of the max runtime value not being
adjusted for a single test. [11]

Hard to classify There were also a number of cases where the cause could not be classified
into a category. The reasons for this could be that there was not enough
information provided in the commit or that the developer did not under-
stand why the test code changes fixed the flakiness. [29]

It should be noted that sometimes a flaky test may be attributed to multiple root causes.
For example, a flaky test caused by a network problem may manifest itself as a test case
timeout, making both network and test case timeout the cause of the flakiness.

Thorve et al. [40] studied flakiness in Android projects. In addition to the aforemen-
tioned causes they also found three additional causes of flakiness, which can be seen in table
Table 3.3. The most common root cause for flakiness found in Android projects was concur-
rency, similar to the findings of Luo et al.

22

3.4 Mitigation strategies for flakiness

Table 3.3: Root causes for flakiness.

Root cause Description
Dependency This type of flakiness is caused by certain hardware, OS version

or third party libraries. For example, a test case may work on one
device but fail or exhibit flaky behavior when run on a di�erent
device.

Program logic This type of flakiness occurs when developers have wrong as-
sumptions on program behavior.

UI This refers to flakiness caused by the user interface of the applica-
tion. For instance, if a test does not close the soft keyboard before
invoking a click() event, the clicking gesture may be wrongly cap-
tured by the soft keyboard instead of as a click on the correct UI
element.

Introduction of flaky tests
When exploring how flaky tests are introduced in a test suite Luo et al. [29] found that out of
161 studied flaky tests 126 were flaky from the first time they were written, 23 became flaky
in a later commit and 12 cases were hard to determine as tests were refactored.

In the 23 cases where a flaky test was introduced in a later revision of the code it was
mainly because of two reasons. The first reason is newly introduced tests that violate the
isolation between tests. If a test case relies on a shared variable being a set value at the
start of the test for the test to pass and a new test case changes the shared variable then the
first test may become flaky. This would introduce a flaky test that falls under the test order
dependency category.

The second reason is due to test code changes in the test itself. This could be due to,
for instance, patching a new bug, refactoring the test or changing test functionality. The
changed test code could introduce flakiness to a test case that was previously deterministic.

When asked if most flaky tests are flaky from the time they are written, Ahmad et al. [2]
found that 40% of surveyed practitioners responded yes to the question. 40% of survey takers
responded maybe, 10% responded that they did not know and 10% responded no.

3.4 Mitigation strategies for flakiness
There exist no general solution so far that completely eliminates flaky tests. The approaches
that exist often have other problems associated with them. This section provides an introduc-
tion to the current approaches and solutions proposed in research to eliminate or decrease
flakiness in test suites.

3.4.1 Rerunning flaky tests
The most common approach to combat flaky tests is to rerun a failing test multiple times. If
the test passes any of the reruns the test is considered to have passed [29, 40].

23

3. Theory

There are a number of annotations that can be used to help with this. The Android
annotation @FlakyTest [5] will rerun the test at failure until either the test passes or the
number of runs exceeds the retry limit, @RandomlyFails [19] in Jenkins will rerun the test
and ignore the test if it fails consistently and retry rules in JUnit will rerun tests that have
failed.

This approach is often deemed unsatisfactory as it does not remove flaky tests. As such
several of the problems associated with flaky tests still exist when using this approach. It is
also considered costly and may slow down the development cycle. [7]

3.4.2 Improving implementation
A common way to fix flaky tests is to improve the implementation of the test cases. For
instance, to fix issues related to concurrency a common strategy is to introduce locks, sleeps
or increasing the current waiting or timeout time. Another improvement could be to add
extra condition checks or making the software more resilient to non-determinism caused by
third party libraries [40] .

Eck et al. [11] performed a study on flaky tests from the developers perspective. They
identified the following pieces of information that helped practitioners in fixing flaky tests :

• The context leading to failure. As flaky tests are hard to reproduce it is often hard
to identify the context that leads to the failing behavior. However, the context of the
failure was reported as an important piece of information both in fixing a test case and
in verifying that a change has fixed the failing behavior. This was rated as a important
piece of information in order to fix a test, but also di�cult to obtain.

• The nature of the flakiness. Understanding which of the causes, as discussed in sec-
tion 3.3, is considered an important piece of information by practitioners but is also
considered one of the hardest pieces of information to obtain.

• The origin of the flakiness. An important piece of information is the origin of the
flakiness, i.e. whether the flakiness is caused by the testing code or by the production
code.

• The involved code elements. This is mostly obtained by looking at the test code and
log files. Practitioners find that the challenge of obtaining this piece of information is
mainly how complex the source code is. The authors argue that this may indicate that
keeping the code high quality may ease the fixing process.

• The changes to perform the fix. This piece of information is deemed slightly relevant
for developers.

• The context leading to passing. This piece of information is considered slightly impor-
tant by developers. The main reason for this is that developers mainly aim to identify
cases where the test will fail.

• The commit introducing the flakiness. This piece of information is deemed slightly
relevant for developers.

24

3.4 Mitigation strategies for flakiness

• The history of this test’s flakiness (previous causes and fixes). This piece of information
is deemed the least important. The authors argue that this is likely due to the cause
of the flakiness being di�erent, meaning that a past fix can not be used to fix the new
type of flakiness.

The context leading to failure, and the nature of the flakiness was considered the most
important pieces of information in order to fix a test, but also the most di�cult to obtain.
Similarly, the history of the test’s flakiness, and the commit introducing the flakiness were
considered the least di�cult to obtain but also the least important when fixing a flaky test.

The survey sent out by Eck et al. also revealed that the risk of a test being flaky is reduced if
good design principles are applied while the code is developed, according to the participants
of the survey. They also mentioned that mocking dependencies and keeping tests decoupled
are good design practices to reduce test flakiness. Decoupling test cases is a good practice to
ensure that tests does not a�ect each other. The main benefit of mocking dependencies is that
one is able to control the environment, by e.g. making sure installed packages are of the right
version and mocking out dependencies on external services. They also note that in order to
reduce test flakiness it is important that tests are not reliant on external dependencies.

Participants also reported major challenges in verifying if a change fixes the test (as it
may disappear by chance), insu�cient levels of details in log files as well as a lack of insight
into the system.

Luo et al. [29] described a number of strategies used by developers to fix flaky tests for a
number of root causes. They are briefly summarised in the following sections.

Async wait
Flaky tests caused by async wait are fixed by addressing the underlying order violation. An
order violation is defined as “The desired order between two (groups of) memory accesses
is flipped (i.e. A should always be executed before B, but the order is not enforced during
execution.)” [27].

The following fixes were found for flaky tests caused by async wait issues :

• 57% of tests were fixed by calling waitFor. Often (36% of times) the waitFor replaced a
sleep call.

• 27% of tests were fixed using sleep calls. Of the tests which were fixed this way, 60%
of the fixes entailed increasing the waiting time of an existing sleep, while 40% of fixes
introduced a new sleep call to the test.

• 3% of tests were fixed by reordering the code.

• 14% of tests had a fix specific to the project and was therefore hard to generalize.

All the fixes did not completely remove flakiness. Instead, some of the fixes simply reduced
the frequency of the failures. For example, if a test consisted of increasing the waiting time
in a sleep it may still be flaky when using slower hardware.

Using sleep is generally not an advised approach as it is ine�cient and makes the test
harder to grasp [18]. It is often hard to distinguish what order the sleep is trying to enforce.
Further, delevopers tend to over-estimate the waiting time needed in a sleep, making the test
more ine�cient.

25

3. Theory

Using a mechanism similar to waitFor is preferred as it makes clear what condition needs
to be satisfied before the program can proceed. This is also a more e�cient approach as it
allows the program to continue as soon as the condition is met. As a result a longer timeout
can be used when using a mechanism similar to waitFor compared to sleep, which would
reduce flakiness as it allows processes to finish that would timeout when using a sleep call.
This is also supported by Luo et al. [29] who found that the average waiting time in a waitFor
call was 13.04 seconds, compared to an average of 1.52 seconds for sleep calls.

Concurrency
Concurrency bugs are caused by threads interleaving in an undesired way. The concurrency
bugs found in flaky tests are similar to concurrency bugs that can be found in production
code.

The following fixes were found for flaky tests caused by concurrency issues [29] :

• 31% of tests were fixed by adding a lock to code that should only be accessed by one
thread at a time. This strategy ensures mutual exclusion for the code.

• 25% of tests were fixed by making the execution deterministic. The fixes include, for
instance, modifying code to eliminate concurrency and enforcing deterministic orders
between thread executions.

• 9% of tests were fixed by changing the guard conditions in the test code.

• 9% of tests were fixed by changing assertions in the test code. For example, if non-
determinism is permitted in the program the test assertion may not accept all valid
behaviors. The fix to this is to change the assertion to accept all valid behaviors.

• 25% of tests had a fix specific to the project and was therefore hard to generalize.

All studied fixes for flaky tests caused by concurrency issues completely removed flakiness
in the test case.

Test order dependency
Flakiness caused by test order dependency may be di�cult to identify as it is usually not clear
what tests are interdependent of each other. When developers figure out the dependency the
fix is usually quite straight-forward.

The following fixes were found for flaky tests caused by test order dependency issues :
[29]

• 74% of tests were fixed by setting up or cleaning up the shared state between tests.

• 16% of tests were fixed by removing the dependency (i.e. by creating a local copy of the
shared variable).

• 10% of tests were fixed by merging dependent tests, thus eliminating the dependency
between tests.

All studied fixes for flaky tests caused by test order dependency completely removed
flakiness in the test case. The first two strategies are however preferred over the third strategy
of merging the tests as merging tests hurts the readability and maintainability of the test suite.

26

3.4 Mitigation strategies for flakiness

Other root causes
Fixes that were found by Luo et al. [29] for flaky tests caused by other root causes than the
ones disucussed previously are discussed here.

• Resource leak. Fixes for flaky tests caused by resource leak was hard to generalize. One
way to handle resource leaks suggested by Fowler [13] is to manage resources through
a resource pool. By reducing the pool size to 1 and make it throw an exception when a
resource is requested and the pool is empty the test causing resource leak can be easier
found.

• Network. There are two ways to fix flakiness caused by network issues. The recom-
mended approach is to use mocks when dealing with networks. If mocks is not a viable
approach for the project then flakiness can be alleviated by using a waitFor mechanism.

• Time. As time precision can di�er between systems the recommended approach is to
avoid using platform dependent values such as time.

• IO. The recommended approach when dealing with IO-related issues is to ensure that
any opened resource gets closed and to ensure proper synchronization when multiple
threads are sharing a resource.

• Randomness. To alleviate flakiness caused by randomness the recommended strategy is
to control the seed of the random generator so that an individual run can be reproduced
while the seed can be varied between runs. Developers should also ensure that edge
cases (e.g. boundary values) are properly handled.

• Floating point operations. As floating point operations are non-deterministic by na-
ture developers should be careful when dealing with floating point operations. It is
recommended to make test assertions independent from floating point operations.

• Unordered collections. In order to reduce flakiness in tests caused by unordered col-
lections developers should write tests in a way that does not assume a specific ordering
on collections.

3.4.3 Removing flaky test cases
One way to eliminate flakiness in a test suite is to simply remove the test cases that exhibit
flakiness. Thorve et al. [40] found in their study about flakiness in Android projects that
10 out of 77 studied commits that fixed flakiness simply commented out the flaky test code.
This was mainly done when the root cause of the flakiness could not be found.

3.4.4 Replacing implementation
One strategy developers can take to fix flaky tests is to change the implementation (e.g. by
refactoring code or implementing a test in an alternative way). This is a strategy used when
for example a third party library or network is the cause of the flakiness. By, for instance,
replacing an old version of a library with a newer version or by replacing a piece of code with

27

3. Theory

a semantically equivalent version that is syntactically di�erent, flakiness could be removed
or reduced even though developers sometimes struggle to explain why. [40]

3.4.5 Using machine learning
Machine learning and artificial intelligence is a rapidly growing field with many use cases.
One such use case could be to automatically detect flaky tests. A first exploration of this
approach has been made by King et al. [21] who used Bayesian networks for classifying and
predicting flaky tests.

King et al. constructed a Bayesian network by viewing flaky tests as a disease with a
number of symptoms. After identifying symptoms, causes and supporting metrics they tested
the Bayesian model through a case study where the model was tested on an actual product.
The model correctly predicted 188/583 of true flaky test cases and 1880/2552 of false flaky test
cases thus having a test flakiness prediction accuracy of 65.7%. The results of the case study
were considered positive, resulting in a high improvement in stability for the company and
an improvement in stability of up to 60% for the individual test teams. This points towards
machine learning as an approach for flaky test prediction being viable and worthy of further
research.

3.4.6 Assume tests are flaky
Harman and O’Hearn challenges the common notion of tests either passing or failing with
no other possible outcomes from the system under test by proposing the view of “Assume
Tests Are Flaky” (ATAF) [15]. As such, practitioners should not think of a test as having a
boolean outcome (i.e. passing or failing) but rather having a probabilistic outcome. They
note a number of consequences that this view has on testing :

• Regression testing : It is typical to optimize according to certain objectives when per-
forming regression testing, e.g. execution time, test coverage and resource consump-
tion. With the view of ATAF another objective that should be considered is test flak-
iness (e.g. a prioritisation might be to favour tests that are more deterministic over
those that are less deterministic).

• Mutation testing : Fundamental concepts, such as the mutation score, needs to be
adapted to fit with the view of ATAF.

• Foundations : The theoretical foundations of software testing needs to be revisited
when using the view of ATAF, even for fundamental concepts such as test coverage
as the coverage may di�er on di�erent executions of the system. For example, the
authors note that when evaluating a weather application the statement coverage of the
application depend on the current weather condition [4].

They also discuss that much of the previous research focuses on trying to control and
reduce flakiness. They state that this is desirable in the cases where it is possible, but they
also believe that hoping to return to the world of deterministic testing that was common
in the early stages of software development is idealistic and in many cases unrealistic. They
state that research focus should be on how to cope with flakiness, but also on constructing test

28

3.4 Mitigation strategies for flakiness

automation approaches that benefit from it, rather than on trying to eliminate the problem
completely. This view of flakiness gets support by John Micco at Google who states that flaky
tests are inevitable and testing systems must be able to deal with a certain level of flakiness
[31].

3.4.7 Test prioritisation and test selection
Certain test prioritisation and test selection techniques has been shown to reduce flakiness
during test execution. Busjaeger and Xie presented an approach for test prioritisation that
had the unexpected benefit of detecting flaky tests [9]. Similarly, Shi et al. [36], studied
regression test selection (RTS) techniques and found that a majority of failures missed by
RTS techniques were flaky tests. They argue that RTS is beneficial for avoiding flaky tests.

3.4.8 Tools
A number of tools have been proposed in previous research for identifying flaky tests.

DeFlaker
DeFlaker [7] is a tool proposed by Bell et al. that can be used to automatically identify flaky
tests. DeFlaker identifies flaky tests by comparing both the current test code as well as the
current code under test to the previous version. This outputs the di�erence in code between
the two versions.

After a test run a report containing the following is produced :

• A test case which has previously passed but now fails, without covering any code that
has been changed is marked as flaky.

• A test case that fails but passes when rerun on the same code is marked as flaky.

• If a non-code file has been changed since the last run, a failing test is marked as might
be flaky and the non-code changes is pointed out as the potential cause.

• For failing tests that covered change code a message is printed out outlining each part
of the changes that the test covered.

• For any changes that are not covered by any test, DeFlaker prints a warning that the
changes are not being tested.

By comparing the changes made to the code the tool is able to detect flaky tests without
rerunning them, saving a great amount of time and processing power. In the evaluation of
the tool it managed to find 4846 flaky tests out of 5328 confirmed flaky tests (95.5%) with a
false positive rate of 1.5%.

The implementation of the tool was done in Java and was used on projects using the
continuous integration service Travis CI. The authors note that because of complex projects
often including manual configuration steps before they can compile there can be a substantial
human cost of running the tool on a new project.

29

3. Theory

iDFlakies
iDFlakies is a tool developed by Lam et al. [24] which automatically detects and partially
classifies flaky tests. The tool reruns a test suite a specified number of rounds. For each
round that contains a test failure the tool runs a classification step on the failed test cases to
determine if the flakiness is due to test order dependency or not.

The tool classifies the flaky tests as either an order-dependent test or a non-order-dependent
test. An order-dependent test is flaky due to the order of the tests being run, whereas a non-
order-dependent flaky test is flaky regardless of the test order. The tool does not classify the
non-order-dependent tests further.

iDFlakies is implemented to run on maven-based Java projects using JUnit tests. When
testing the tool Lam et al. used 183 projects containing 2921 modules and 1880362 tests.
Because of problems relating to projects not using JUnit, modules being unable to be built
by Maven and other problems the tool was only run on 945 of those modules. Of the 945
modules the tool detected 111 modules containing flaky tests.

3.5 Costs and benefits of test automation
This section provides an overview of the current research regarding costs and benefits in
regards to test automation. The section focuses on research applicable to flaky tests.

Ho�man [16] notes that test automation is not always appropriate or desirable. For in-
stance, one falsely expected benefit is often that all tests will be automated. This is not prac-
tical nor desirable as not all tests can be automated in a cost e�ective way. He also notes that
there usually will not be an immediate payback from automating tests. Instead the benefits
usually comes from running and rerunning the tests many times with little human interven-
tion.

One of the first cost models for regression testing was proposed by Leung and White
[25]. They identified the following four components related to the cost of testing a software
systems :

1. System analysis cost, Ca. This is the cost associated with the test analyst becoming
familiar with a system before being able to test it. The larger and more complex the
system is the higher this cost will be.

2. Test selection cost, Cs. This is the cost associated with figuring out test input and
corresponding output or system behavior. This cost will depend on the chosen test
strategy.

3. Test execution cost, Ce. This is the cost associated with setting up the system and the
cost of resources required to execute the system under test.

4. Result analysis cost, Cr. This is the cost associated with checking the output of the
test and compare it to the desired or specified behavior. This cost depends on the time
required by the tester to collect the required data, the time required to compare the
collected data as well as the resources required for recording the required data in the
system.

30

3.5 Costs and benefits of test automation

All cost components are related to the number of test cases.
As far as we could find, no cost models exist in regards to flaky tests, we therefor adapt

the cost model of Leung and White for a flaky test context. The system analysis cost should
not be a�ected by flaky tests as flaky tests are non-deterministic in its output, and as such a
flaky test will not change the system itself. We therefore consider the system analysis cost to
have a small impact when considering the cost of flaky tests.

Test selection cost is related to flakiness as figuring out the system behavior or corre-
sponding output may become more time consuming. For example, consider a test case where
the output is supposed to be non-deterministic, e.g. the possible (valid) outputs are A, B and
C. If the test analyst forgets to check for one of the outputs, e.g. C, the test case will become
flaky as the test case will pass when the output is A or B but fail when the output is C. This
will lead to more time being spent trying to define the range of valid outputs, as opposed to
a system where the output is deterministic (e.g. always A).

Having more flaky test cases in a test suite should also increase the test execution cost.
The most common way currently to handle flaky test cases is to rerun the test case until it
passes. This takes up more machine resources compared to having a deterministic test suite
where each test case only needs to be run once.

The result analysis cost will also be e�ected by having flaky tests in the test suite. If a test
case is non-deterministic then more resources need to be allocated to a failure in the system
as these kind of defects are generally harder to track down. The result analysis cost can fur-
ther be broken down into two separate components, namely the cost, Cu, for understanding
the program and specification in order to evaluate if the program output is correct and the
checking cost, Cc, for comparing each test output to the expected output.

This leads to the total cost, C, of implementing a test strategy, S, for a set of tests, T, with
regards to flaky tests as

C(S) = Cs(T) +Ce(T) +Cu(T) +Cc(T) (3.1)

In summary, the equation expressed in Equation 3.1 shows a first cost model for flaky
tests. It is an adaptation of the cost model previously proposed by Leung and White, adapted
to only include cost components relevant to flaky tests.

31

3. Theory

32

Chapter 4

Identifying and fixing flaky tests

The first iteration in our research endeavour consisted of trying to conceptualize and define
the problem domain, as expressed in subsection 2.2.3. To do this we tried to identify flaky
tests in the test suite at Axis and analyse the fixes to see if we could find a generalised pattern
in either causes or fixes.

4.1 Approach
Our approach consisted of two steps. First, we needed to identify flaky tests in the test suite
and then we needed to identify a fix to the test in order to categorize the cause of the flaky
behavior. The following sections explains the steps in further detail.

4.1.1 Identifying flaky tests
The first step in our approach was to identify flaky tests. Through the historic test data we
filtered out the test cases which had both failed and passed at least once during the same day.
These became our candidates for flaky tests as the tests were presumably run on the same
code base thus meeting our definition of a flaky test established in section 1.2. For each test
case that passed the criteria we noted the name of the test case as well as the date on which
the test case had last failed.

After identifying our flaky test candidates we wanted to confirm their flakiness. We
started by running the tests on the latest production code as well as the latest test code 100
times in a row. If the tests passed our criterion for flakiness (i.e. passing at least once and
failing at least once), we marked the tests as flaky in the latest code version. If the tests did
not pass our criterion we marked them as not flaky on the latest code version.

For the tests which we could not confirm as flaky on the latest version we instead tried
to confirm their flakiness on the version used on their last failure date as previously noted.
We did this by using the code version of the test code that was used on the noted last date.

33

4. Identifying and fixing flaky tests

We again ran the tests 100 times in a row in order to identify flaky behavior. The tests were
noted as either flaky on that version or not able to confirm flakiness depending on whether
or not they passed our criteria for flakiness.

4.1.2 Fixing flaky tests
In order to gain a deeper understanding of the complexity in turning a test case with a non-
deterministic output into a test with a deterministic output we hosted a workshop. The
participants in the workshop were three QA employees at Axis Communications. The goal
of the workshop was to perform a static code analysis of the tests we had identified as flaky in
subsection 4.1.1. This e�ort proved futile as at best, an educated guess could be made about
what could have caused the flakiness, and at worst not even such a guess could be made. The
team spent more than an hour on each test case identified as flaky, never finding the true
cause but instead moving on to the next test case when it was recognized that they would not
be able to solve the problem by just looking at the code. We also analysed the commits which
were suspected to have fixed the flakiness. This also did not yield very useful results. Almost
all of the commits which had resulted in the flakiness being fixed were not made with the
purpose of fixing the flakiness, which meant that the commit messages almost never specified
how the flakiness had been fixed. It was also very di�cult to analyse how the commits had
fixed the flakiness by looking at the changes to the code, even though one tester who had
written much of the code we analysed was participating in the workshop. The few commits
which were clear what the cause and fix of the flakiness was, were not enough to base our
analysis on.

We abandoned this approach when we realized that even the most educated guess would
have to be used to create a fix, which would then have to be verified to have fixed the flakiness,
to be of any value. While this could perhaps be accomplished for some of the tests, the time
required to write a fix and to verify that it had worked would mean that only a couple of tests
could be fixed. With this data, no meaningful conclusions could be drawn.

4.2 Results
After analysing the test data we identified 74 test cases that passed the criterion of failing
and passing at least one test run during the same day. 10 of the 74 tests had the last failure
on a test run using the latest commit (i.e. using the latest codebase).

After finding our candidates we attempted to confirm their flakiness by running the test
cases a number of times in a row. The following results were found :

• 25 tests were confirmed flaky on the latest version of the codebase.

• 22 tests were confirmed flaky on an older commit.

• 15 tests could not be tested as the the tests could not be run.

• 12 tests could not be confirmed as flaky.

This gave a total of 47 identified flaky tests, out of which 25 were still flaky on the latest
code base. Fixing the tests turned out to be more complex than first expected and during the
6 hour workshop we only managed to look at 5 test cases.

34

4.3 Discussion

There was no conclusive root cause found for any of the test cases. For 4 of the test cases
there were several proposed causes which would require additional time to verify whether
or not they would serve as a solution to fixing the flaky test. For one test case there was
no proposed fix as there was not enough information (e.g. logs and error data) available to
identify the potential cause of the problem.

4.3 Discussion
The results point towards the time requirement of fixing flaky tests being quite large. It
should also be noted that test cases that are easily fixed have presumably already been fixed
as the sample of tests are taken from a live test suite where tests are maintained and up-
dated continuously. A more accurate conclusion of the results may therefore be that the time
required to fix all flaky tests in a test suite is very large, and sometimes not feasible.

This conclusion is reinforced by the interviews we conducted where several of the inter-
viewees pointed to a fix being significantly variable in length. The interviewees all agreed that
a flaky test case generally takes longer to fix than a test case that is defective but deterministic
(i.e. wrongly implemented). The reasons given were mainly that a flaky test takes longer to
investigate as it may be harder to reproduce, and a potential fix is harder to verify as the test
needs to be run many times before the test can be verified as now being deterministic.

From the workshop we were unable to draw any conclusions on the causes of the flaky
tests. During the interviews we also asked about what causes had been seen previously for
flaky behavior. The following causes were found, with the number of interviewees giving a
specific answer in parentheses :

• Asynchronous waits/sleeps (10/13)

• Network problems/timeouts (9/13)

• Dependencies (e.g. third party software) (6/13)

• Environment issues (e.g. power outages) (4/13)

• Bugs in the production code (3/13)

• Unknown/unable to identify a cause (3/13)

• The test case being too complex (3/13)

• Teardown wrongly implemented (e.g. not resetting changed values after a test run)
(3/13)

• Problems with Jenkins (2/13)

• Badly maintained tests (1/13)

• Too many open resources (1/13)

35

4. Identifying and fixing flaky tests

Some of these categories can relate to the same issue. For example, a problem in the
network could cause timeouts to happen.

The majority of the interviewees noted timeouts and network problems as the major
causes of flaky tests. These issues have not been as prevalent in previous studies conducted
on flaky tests [11, 29, 40]. This leads us to believe that the causes of flaky tests are often
context-dependent. The products studied in this study are heavily network-reliant, and as
such so are the tests. This leads to network problems being a large cause of flakiness in the
test suite.

36

Chapter 5

Cost trade-o�s when fixing flaky tests

This chapter describes the second iteration in our research endeavour, as expressed in sub-
section 2.2.4, focused on the costs and benefits of keeping flaky tests in a test suite versus
removing them. As noted in section 4.3 the time requirement for fixing flaky tests is quite
large. This begs the question of how beneficial a fix to a flaky test actually is. When taking
the research into the practical domain, as mentioned in chapter 2, there needs to be a clear
benefit to justify performing an action. The current research on flaky tests, as summarised
in chapter 3, mainly focuses on di�erent ways to fix tests that are flaky. If, however, there is
a large cost associated with fixing the tests (e.g. in setting up a framework, investigating root
causes, etc.) then this may not be practical in a real life situation.

As noted in section 3.5 one of the benefits of test automation comes from being able to
rerun tests without the manual labor that a manual test would require. If a test case is flaky
this benefit is diminished as the test will require human interaction. For example, someone
needs to investigate the cause of the test failure and propose a course of action for the failing
test case. We have found the following three strategies used by practitioners, through our
interviews with Axis employees, to handle flaky tests :

• Keeping the test case in the test suite and fixing it (i.e. making it deterministic)

• Keeping the test case in the test suite but not fixing it (i.e. keeping it non-deterministic)

• Removing the test case from the test suite

Depending on which strategy is chosen a di�erent set of costs and benefits will be in-
curred. The following sections go into the costs and benefits of employing the di�erent
strategies in further detail.

37

5. Cost trade-offs when fixing flaky tests

5.1 Costs and benefits of fixing flaky tests
One strategy to handle flaky tests is to fix them so that the output of the test case becomes
deterministic. Through our interviews with Axis Communications employees we identified
the following steps that were followed when fixing a test :

1. Investigating the cause of the problem

2. Implementing the fix

3. Verifying the fix

The implementation of the fix were often found to be quick whereas steps 1 and 3 were
considered very time consuming.

In the interviews practitioners noted that investigating the cause of the problem is often
the most time consuming action, in terms of working hours spent. This step involves looking
at any accompanying logs for information about the cause of the problem, trying to reproduce
the failure and finding where the problem lies (i.e. in the test code, the code under test or
elsewhere). Fixing a non-deterministic test was considered harder than fixing a deterministic
test. The reason given for this is that a non-deterministic test is generally harder to reproduce
and so the root cause is often harder to find.

Implementing the fix was often considered a quick step by practitioners. Once the cause
has been found the actual coding of the fix is generally done quickly. Some interviewees noted
that this step may also depend on the cause of flakiness. In some instances the fix may be as
simple as increasing the time of a timeout, whereas for more complex tests it may require
code refactoring and more complex logic to be written. However, the general consensus was
that this step is less time consuming compared to investigating and verifying the fix.

The main reason given in the interviews that verifying the fix is time consuming for a
flaky test is that in order to verify that the test is now deterministic, a test case would need
to be run many times. The time required to verify that a test is deterministic depends on a
number of factors. For example, if a test fails 1% of the times (i.e. 1 out of every 100 runs),
assuming a normal distribution of the failures, it would take an average of 100 runs before a
failure has occurred. If we run this test, e.g., 10 times in a row there is still a 90% probability
that the test will pass all 10 runs even if the test is still flaky.

Compare this to a test which fails 50% of the time. In this case the test would only take
an average of two runs before we expect a failure to occur. If this test was to be run 10 times
in a row there is only a 0.1% probability that the test will pass all 10 runs if the test is still
flaky. This shows that the cost of verifying the fix increases when the flaky test has a lower
failure rate as the test will need to be run less often thus decreasing the test execution cost.
In other words, for a test that fails often, a proposed fix will have a low cost to verify whereas
a test that fails rarely will have a high cost.

There is also a possibility that the fix did not completely eliminate the flakiness but in-
stead made it fail less often (i.e. requiring more test runs to verify the fix). However, several
interviewees noted that once the cause of the flakiness had been found and understood it is
generally easy to fix the issue in a way that eliminates flakiness completely.

The cost of fixing a faulty test case will also depend on the cause of the problem. For
some of the root causes listed in section 3.3 we found that the cost was very low. Some other

38

5.2 Costs and benefits of keeping flaky tests

root causes however, e.g. test order dependency, are harder to investigate as accompanying
logs often does not give much information related to the cause and are harder to reproduce.
Those tests will often take a significantly larger amount of time to fix.

The interviews we conducted lead us to three main findings in regards to fixing flaky
tests.

First, the time taken to fix a flaky test (i.e. from the first failure to verifying an imple-
mented fix) has a high variance. It was found that a fix could vary from a few hours to several
weeks in terms of calendar time, depending on the complexity of the problem. The simplest
fixes were considered to be timeout issues, where the most common solution was to simply
increase the time before a timeout happens. The hardest fixes were considered to be the ones
where the root cause was hidden (i.e. where the logs does not give much information about
the problem).

Secondly, several of the interviewees mentioned that the time it would take to fix a prob-
lem was often predictable. Although it is often hard to give an exact estimate of a fix it was
mostly easy to distinguish the easy problems (e.g. timeout issues) from the more complex.
This is further reinforced by the findings reported in chapter 4, where the flaky tests still
present in the test suite were hard to fix as the root cause was hard to identify and the failure
was hard to reproduce. Presumably the tests in the test suite that were less complex to fix
had already been fixed and implemented.

Thirdly, it was noted that it was possible to learn how to fix flaky tests more e�ciently
by doing it often. The more time one had spent fixing flaky tests the less time it took to
implement a subsequent fix. This was mainly due to learning patterns in the logging infor-
mation which gave hints to the root cause of the problem. However, it should be noted that
this was mainly for problems where the root causes were similar. For complex and new fail-
ures the time taken for a fix was approximately the same no matter how many times one had
fixed a di�erent type of flaky test before. The conclusion we draw from this is that the cost
associated with fixing a flaky test will decrease over time. However, for complex flaky tests
the cost will stay approximately the same over time.

5.2 Costs and benefits of keeping flaky tests
As mentioned in subsection 3.4.1 a common way to deal with flaky tests is to keep them in
the test suite and rerun them once they fail. If the test passes at least one of the reruns it
is considered to have passed. If the reruns reaches the set limit of maximum reruns the test
is considered to have failed and is handled in the same way as one would normally handle a
failing test.

By keeping the tests non-deterministic there is an increased cost in the factors mentioned
in section 3.5, i.e. test selection cost, test execution cost and result analysis cost.

5.2.1 Test selection cost
The test selection cost is the cost of selecting the tests that should be run (i.e. selecting
inputs and outputs). A source of flakiness is that not all possible outputs of a test case has
been considered.

39

5. Cost trade-offs when fixing flaky tests

5.2.2 Test execution cost
The test execution cost is the cost of setting up the system and the resources required to
execute the system under test. The usage of machine resources and setting up the test envi-
ronment would be examples of test execution costs. This cost varies a lot between products
and companies and can be quite high for some applications [25].

The test execution cost will also depend on the failure rate of the test case. If a test fails
regularly, e.g. once a day, the test will have a higher cost than a test that fails irregularly, e.g.
once a month as it will require more reruns thus increasing the test execution cost.

5.2.3 Result analysis cost
If the test is set to automatically rerun at failure the result analysis cost may not be high.
However, sometimes a flaky test might fail all of the reruns as well. In that case the result
analysis will incur a cost as someone will have to look at the result manually in order to
identify whether the failure is due to the non-determinism in the test or if it is an actual
failure.

5.2.4 Other costs
Another problem with keeping flaky tests in the test suite without fixing them is that they
may hide real defects. Luo et al. [29] report that if a test fails regularly practitioners tend to
ignore it, and as a result might ignore real defects. In such case the value of the test being in
the test suite is not very high as it does not convey a lot of information.

5.3 Costs and benefits of removing flaky tests
Another strategy to handle flaky tests is to simply remove them from the test suite. This
eliminates the test flakiness but may introduce other costs. This section focuses on the costs
and benefits associated with this strategy.

According to Kazmi et al. [20] 70% to 90% of new defects are found by manual testing.
This points towards the benefit, regarding finding defects, of a single test case remaining in
a test suite not being very high as a test suite can often contain hundreds of test cases.

A flaky test does not necessarily mean that the test case is the problem. Luo et al. [29]
argue that in some cases the failure may occur because of a defect in the source code. In other
instances the test case may be faulty but the code under test also contains a bug which is not
discovered by other tests. In these cases removing the flaky test from the test suite would
lead to the bug being undiscovered and hidden. In such cases a removed flaky test case would
need to be replaced by a di�erent test with the same test coverage, or with a manual test, in
order to uncover the bug.

If there already exists a di�erent test case covering the same feature or code under test
then the test case does not provide much benefit and as such the cost for removing it will
be low. If the test case needs to be replaced the cost would most likely correlate with the
complexity of the test case as a complex test generally takes longer to write and is harder to
verify.

40

5.4 Discussion

There is also an option of removing a test case that is not covered by other tests but not
replacing it. In this case the cost would be a lower test coverage. It is hard to quantify the
value of test coverage. From our interviews the consensus seemed to be that a stable test
suite is more important than a high test coverage. It was also made clear from the interviews
that internal stakeholders often expect a certain amount of test coverage before doing a new
release of a product and so going below that limit is not an option.

5.4 Discussion
There are clear costs and benefits associated with all three proposed strategies. In the case of
fixing flaky tests, our research suggests that there is a relationship between the cost of fixing
a test and its complexity. A less complex test case could take a few hours to fix whereas a test
with a higher complexity could take weeks (i.e. tens of hours or more). This is also supported
by our findings in chapter 4.

In the case of removing flaky tests from the test suite we also saw somewhat of a relation
between the cost and the complexity of the test case. The reason for this is that there is a
need to replace a removed test case in order to satisfy internal stakeholder demands on test
coverage. The higher the complexity of the test case the more di�cult and time consuming
it will be to replace.

When employing the strategy of keeping flaky tests in the test suite we did not see a
relationship between the cost and the complexity of the test. The general strategy in this
case is to rerun the failing test until the test passes at least once. The highest costs of this
strategy will be incurred from test execution as the tests will generally be rerun many times
thus increasing the test execution cost whereas the test selection cost will only be incurred
once, when selecting tests, and the result analysis cost will only be incurred in the event of a
test failing all reruns.

It should also be noted that the higher the maximum number of reruns is of a test case,
the lower the probability is that the test will fail all reruns, assuming a normal distribution of
the failures. The interviews indicated that when employing the rerun strategy the probability
of a test case failing all times is generally very low. Therefore the result analysis cost will in
most cases also be low.

The test execution cost should not depend on the complexity of the test case as the same
machine resources will be used for both a high and low complexity test case. As such a low
complexity test case should have approximately the same cost as a high complexity test case
and so our research suggests that the cost is not dependent on complexity when using this
strategy.

Figure 5.1 shows a conceptual model of the cost of di�erent test strategies compared to
each other, based on the complexity of the test case. The intersections shows when it is a
good idea to switch from one strategy to another. If the complexity of the test case falls in
the area denoted with an A (i.e. low complexity) the best course of action is generally to fix
the test. If the test falls inside the area denoted with a B the best course of action is generally
to remove the flaky test and replace it with either a di�erent automatic test or a manual test.
If the test complexity falls in the area denoted with a C the best course of action is generally
to keep the test case in the test suite and simply rerun the test when it fails.

It should be noted that the slope of the lines will vary depending on a number of factors,

41

5. Cost trade-offs when fixing flaky tests

Figure 5.1: The three test strategies and their cost compared to the
complexity of a test case.

e.g. the type of product and the cost of labour. It should also be noted that all three areas
will not exist for all products and companies. For instance, the strategies of keeping flaky
tests and removing flaky tests could intersect before intersecting with the strategy of fixing
flaky tests which in turn would eliminate the B area completely, i.e. making the strategy of
removing flaky tests redundant.

It should also be noted that this is a simplified model that only takes costs based on
complexity of the test case into account. There may be other scenarios where the cost is
more dependant on something other than the complexity. For example, if a test case is flaky
but has a very low failure rate the better solution may be to keep the test in the test suite and
rerun it once it fails. If the tests are run daily and the test case will fail once a month then
the cost to handle the failure will be relatively low and so the best strategy may be to keep it
in the test suite.

It may often be hard to determine exactly how the curve looks and what the optimal
strategy is. Practitioners should however be aware of all strategies available and the general
costs associated with them in order to make an informed decision.

42

Chapter 6

Guidelines for flaky tests

Previous research indicates that most flaky tests are flaky from the first time they are written
[29]. This suggests that e�ort should be concentrated on new test cases to ensure that they
are deterministic from the start. However, this will only diminish the risk of a flaky test
entering the test suite. However, Harman and O’Hearn [15] suggest that it is inevitable for
flaky tests to enter the test suite at some point and so it is also important to have a plan for
how to handle flaky tests that are detected in the test suite. Further, when a flaky test has
entered the test suite a preferred method is often to fix it.

Therefore, we present three sets of guidelines. One for mitigating the risk of a test case
being flaky when writing it (i.e. before it is implemented in the test suite), one for how
to handle flaky tests that are detected in a test suite, and lastly one set of guidelines for
recommended implementation of test cases related to common root causes. The following
sections explain the guidelines and any assumptions made and a condensed version of the
guidelines can be found in appendix C, D and E.

6.1 Guidelines for avoiding non-deterministic
tests

Generally, the cost to fix a defect in a software increases the further you get into the software
development process [38]. This principle should also apply to flaky tests. If a flaky test enters
the test suite, resources will need to be allocated in order to analyse the problem, investi-
gate the cause of the problem and formulate a course of action. Therefore, there is a large
benefit to be gained from finding and eliminating flaky tests early in the automatic test case
development process.

Because of this, we believe that practitioners should be proactive, rather than reactive,
and a big focus should be put on writing deterministic tests the first time the tests are written.

These guidelines are meant to guide practitioners in avoiding non-deterministic tests

43

6. Guidelines for flaky tests

by avoiding common pitfalls related to non-determinism in tests. The following subsec-
tions explains the reasoning, as well as providing more context and further detail, about each
guideline.

A summary of the guidelines and the source of the recommendations can be found in
Table 6.1. The guidelines is also presented in appendix C.

Table 6.1: Guidelines for avoiding non-deterministic tests, and the
source of the recommendation.

Guideline Source
Be aware of the context Interviews and literature review [11, 29, 40]
Minimise flakiness caused by the testing envi-
ronment

Interviews

Avoid asynchronous implementation Literature review [11, 29, 40]
Adhere to good coding practices Literature review [11, 13, 14, 18, 28, 29, 40, 33]
Make tests explicit Workshop
Keep test cases simple and test in isolation Interviews
Strive for deterministic assertions Literature review [15, 29, 31]
Limit third party dependencies Interviews and literature review [11, 29, 40]

6.1.1 Be aware of the context
Through our interviews we found that network problems was considered a big cause for
flakiness at the New Business test department at Axis Communications, although it has not
been reported as frequently in previous empirical studies done on flakiness [11, 29, 40]. We
believe that this is due to the nature of the software developed at Axis Communications,
where there is a lot of network interaction. We believe that this means that the root causes
for flakiness are quite general, but the probability of a certain root cause being present in a
test suite will di�er based on context. This is further reinforced by the findings of Thorve et
al. [40] that found a number of root causes specific to the Android platform when studying
flakiness in Android applications.

Our conclusion is that practitioners should be aware of the context of their products
and a greater focus should be on minimising flakiness caused by root causes common in that
context. For example, the studied company in this report produces products that are network
intensive, which leads to more flakiness caused by, e.g., networking problems. By using good
coding practices related to networking, found in appendix E, the risk of a flaky test entering
the test suite will be greatly reduced.

6.1.2 Minimise flakiness caused by the testing envi-
ronment

From our interviews we could see that the environment was a common cause for flakiness
at Axis Communications. Network problems was one of the most common, but 4 out of 13
interviewees also noted other environment issues as a cause of flakiness. One example that
was given by an interviewee was power outages in the testing environment.

44

6.1 Guidelines for avoiding non-deterministic tests

Practitioners should strive to minimise flakiness caused by the testing environment by
making sure that the environment is stable (i.e. being able to handle the testing requirements
in terms of e.g. network load and power consumption). Any changes in the environment
should be handled in a proper manner by, for example, throwing exceptions. Environment
issues are not typically seen as a root cause of flaky tests as a power outage would a�ect all
test cases equally and as such it is not the test case that is flaky but rather the environment.
However, it will manifest itself in the same way as a flaky test (i.e. a test both failing and
passing depending on if it can handle the load), and as such we believe that it is important
to minimise variations in testing environment in order to ensure that any flaky behaviors are
caused by the tests themselves and not surrounding factors.

6.1.3 Avoid asynchronous implementation
From the literature review we found that previous empirical studies done on flaky tests all
found asynchronous implementation as the culprit for a large amount of explored flaky tests
[11, 29, 40]. Our interviews indicate that asynchronous waits are a big problem at Axis Com-
munications as well. The conclusions we draw from this is that practitioners should be careful
with asynchronous implementations, and avoid them as much as possible.

From the literature review we found three fixes for flaky tests caused by asynchronous im-
plementation; reordering the source code to make execution less asynchronus, using a waitFor
mechanism, and adding a sleep. However, it was noted that sleeps should be used as a last
resort and waitFor is the preferred mechanism of the two to reduce flakiness.

6.1.4 Adhere to good coding practices
To write deterministic tests it is important to avoid the common pitfalls of flakiness. Through
the literature review we found a number of recommended fixes to common root causes of
flakiness. These include, for example, using waitFor promises in order to mitigate flakiness
caused by async wait and concurrency, and using resource pools to avoid flakiness caused by
resource leaks. A full summary of the fixes can be found in appendix E.

We believe that by following these recommendations while writing the test code, one
would be able to largely avoid flaky tests. By proactively adhering to the guidelines in ap-
pendix E, instead of applying them after the fact that a flaky test has appeared, we believe
that it is possible to avoid a large amount of flaky tests early in the testing process.

6.1.5 Make tests explicit
From the workshop we found that many tests were not explicit in what they were testing.
Although we could not prove that the tests were flaky because of this, it did bring up a
discussion amongst the participants. The consensus was that tests that are not explicit have
a higher tendency to be flaky, as it is harder to cover all possible outcomes.

Therefore, the tests should be specific in what it is testing. For example, if a test is sending
a network request and verifying that the response from the server is the expected response,
then the test might also implicitly test that there is a network connection. If this is not
handled correctly the test may fail due to a di�erent criteria than the one specified in the

45

6. Guidelines for flaky tests

test. This could potentially lead to flaky behavior that is not related to the test itself. By
making tests explicit, and handling errors caused by other factors correctly, a failure in the
test will reflect a failure in what the test is supposed to test and not something else.

By making tests explicit it is easier to distinguish the cause of the failure and it also ensures
that flakiness experienced in the test suite is related to the test case and not to e.g. a problem
in the hardware.

6.1.6 Keep test cases simple and test in isolation
Several interviewees noted that a test case being too complex (e.g. trying to test many features
at once or performing complex calculations that are hard to verify) was a cause they had seen
for flakiness. The reasons given for this were mainly that having a test case that is complex
reduces the readability and maintainability of the test case. We believe that complexity is
not the root cause of flakiness, but rather keeping good coding practices is harder when the
test case becomes larger and more complex which in turn increases the risk of flakiness.

It was also noted that when a test case is more complex the risk of a reviewer missing a
fault in the test code becomes larger, as it is harder for the reviewer to understand what each
part of the code does. Therefore, practitioners should strive to keep test cases simple and test
features in isolation by dividing tests that test multiple things into several, smaller, test cases.
This will help in both keeping flakiness away from the test suite, as well as making flaky tests
easier to investigate and fix.

6.1.7 Strive for deterministic assertions
A common cause of flakiness is that not all outputs are accounted for. For example, flakiness
caused by floating point operators could be caused by di�erent machines calculating floating
points di�erently, resulting in two di�erent outputs [29]. A way to fix this is to make the
assertion independent from the floating point result.

Similarly, one interviewee gave an example of a flaky test with a non-deterministic out-
put. The test was testing if the bit rate was within a certain range when performing an action.
The particular test sometimes passed and sometimes failed as the bit rate depended on the
rate of the network. He noted that in his opinion the test case was not suited as a regres-
sion test, but rather a performance test that should be tested in a separate, dedicated, testing
environment.

This means that practitioners should always strive to minimise the amount of non-determinism
in assertions in order to avoid flaky tests. However, both Harman and O’Hearn [15] and John
Micco [31] believe that a certain amount of non-determinism in test suites is inevitable and
should be expected. For tests where it is not possible to produce an entirely deterministic
output, it is important to ensure that all possible values are handled in assertions. This means
making more relaxed assertions, accepting a wider range of values, and making sure that edge
cases are covered. Timeouts should also be set in a way that ensures there is enough time to
perform the feature under test.

However, one interviewee also noted that it is important not to relax assertions too much
as this could lead to false negatives (i.e. the test passing when it should have failed). Therefore,
we believe that assertions should be relaxed, but they should not be relaxed in a calculated
rather than random way so that you do not introduce false negatives in the test suite.

46

6.2 Guidelines for handling flaky tests

6.1.8 Limit third party dependencies
Flakiness due to third party dependencies were a common cause of flakiness both in literature
[11, 29, 40] as well as in our interviews. Third party dependencies are often hard to maintain
and a change in the third party dependency may cause flakiness in the software. Therefore,
third party dependencies should be kept to a minimum and any third party dependency
should be properly documented so that the cause of the failure can be easily traced.

6.2 Guidelines for handling flaky tests
We propose a model for handling flaky tests that are in a test suite, which can be seen in
Figure 6.1, expressed as a flowchart. The next sections describes the di�erent steps in the
flowchart in further detail.

Figure 6.1: Flowchart depicting the recommended steps to be taken
to handle flaky tests in a test suite.

6.2.1 Analysing the test case
In order to determine how to handle a flaky test case, the first step should be to analyse
the test case. From the interviews, we gathered that it is generally easy for practitioners to
judge how complex a problem is, and to estimate the time to fix. From the interviews we
also gathered that the value of the test case is generally the determining factor on whether or
not a test case can be removed from the test suite or if the test case is necessary in order to
pass a certain acceptance criteria set by the product owners. When analysing the test case,

47

6. Guidelines for flaky tests

practitioners should therefore take note of two things; the di�culty of fixing the test case
(i.e. the complexity of the problem) and the value of the test case.

It is important to note that the time spent on the analysis of the test case should be
limited. If a lot of time is spent on this step, the time savings of choosing the correct strategy
is diminished as the time consuming action will be switched from handling the flaky test
to analysing the best course of action. From our interviews the general consensus amongst
practitioners seemed to be that judging the complexity of the issue is quite quick. From the
interviews the general consensus appeared to be that for an easily fixed test, the fix could be
quickly found and the time to fix was easily estimated. Therefore, if one is unable to judge the
complexity of the problem quickly then it should be assumed that it has a high complexity.

6.2.2 Choosing strategy
The next step when handling a flaky test should be to determine the strategy that should be
taken. Our research suggests three di�erent strategies to handle flaky tests, as expressed in
chapter 5, namely fixing the test, removing the test and keeping the test. Removing the test can
be further divided into removing the test case and replacing it, and removing the test case
without replacing it.

The findings in chapter 5 shows that a low complexity (i.e. “easy to fix”) test case should be
handled by fixing it, while a high complexity test case should be handled by either removing
it from the test suite completely or by keeping it in the test suite but using a rerun annotation.

If the complexity of the issue is found to be low, i.e. the test is estimated to be easy to
fix, the test case should generally be fixed. For a test case that is complex the course of action
should mainly depend on two things :

1. The benefit of the test case. The benefit of the test case is judged by how much value
it provides. A high value test case would be one that covers features or parts of the
code that no other test case in the test suite covers. Another example of a high value
test case would be a test case which covers a feature required to be thoroughly tested in
order to release the product. If the benefit of the test case is considered low the general
course of action should be to remove it from the test suite as it does not provide much
value.

2. The di�culty of replacing the test case. If the benefit of the test case is high and the
test case is easily replaceable (i.e. with a low cost) by a deterministic test providing
the same test coverage as a flaky test, it is generally the best course of action to replace
it. However, sometimes the cost for replacing a test may be high. In such cases it is
generally best to keep the test in the test suite but mark it as flaky.

The next steps will depend on the chosen strategy.

6.2.3 Fixing the test case
If the test case is deemed to be of low complexity, the test case should be fixed (i.e. made
non-deterministic).

48

6.2 Guidelines for handling flaky tests

Eck et al. [11] identified a number of pieces of information that aids developers to fix flaky
tests. When employing the strategy of fixing a flaky test it is important that this information
is readily available, or that the infrastructure is in place to record the necessary information.

The information deemed important by developers is :

• The context leading to failure

• The nature of the flakiness

• The origin of the flakiness

• The involved code elements

• The changes to perform the fix

• The context leading to passing

• The commit introducing the flakiness

• The history of this test’s flakiness

By setting up a testing environment that continuously records the needed information it
will be easier to gather the necessary information once a flaky test needs to be fixed. Again,
we believe that it is important to have a proactive rather than reactive approach and so a
testing environment should be set up in a way that automatically records these pieces of
information.

Once the information is gathered, the tester should analyse the pieces of information in
order to figure out the cause of the failure. From the interviews it was made clear that the
steps taken when attempting to fix a flaky test case is di�erent depending on the preference
of the tester, but two strategies that we found to be the most common, and most helpful in
fixing a flaky test case, was looking at the produced log information and trying to reproduce
the failure if possible.

Once a probable root cause has been identified a fix needs to be coded and implemented.
We recommend referring to the guidelines in test case implementation that can be found in
appendix E for ways to fix flaky tests based on common root causes.

Verifying the fix
After the fix has been implemented the developer should verify that the fix actually eliminates
the flakiness. Generally this is done by rerunning the test a number of times and verifying
that the test passes all runs.

If the test is still flaky after the proposed fix is implemented, the test might be more
complex than first expected. In this case, a new analysis should be made on how to handle
the test.

49

6. Guidelines for flaky tests

6.2.4 Keeping flaky tests
If the test case is deemed to have a high value, and also a high complexity then the strategy
should be to keep the test case.

A potential consequence of keeping flaky tests is that you risk incurring technical debt.
The term technical debt was originally introduced by Ward Cunningham [10] and has come
to mean a future cost that is incurred by using a simple, but limited, solution to a current
problem [22]. The debt in this case is the cost of having to rerun failing tests. Because of
technical debt it may seem contradictory to ever want keep flaky tests in the test suite. How-
ever, as flaky tests may be inevitable in certain software [31, 15], there may be cases where
this strategy is necessary. If the cost of rerunning the test is low, and the test does not need
to be rerun often (i.e. the failure rate is low), the cost may not be very high even across a long
period of time. In such cases the strategy of keeping flaky tests in the test suite would still
hold merit.

Keeping the test in a separate test suite
Flaky tests that are kept should be continuously evaluated so that the value of the test case
has not decreased (and thus the test should be removed from the test suite), and that the
cost of keeping the test is still low relative to the cost of fixing or replacing the test. It is
also recommended not to keep flaky tests in the test suite responsible for acceptance testing
[37]. We therefore propose to keep flaky tests in a separate test suite that is continuously
monitored and evaluated in order to not interfere with normal operations.

When a test case annotated as flaky fails it should be rerun, until it passes or the maximum
number of reruns is exceeded. There is little guidance in previous research on how many
times a flaky test should be rerun or how they should be performed. Google reruns their
flaky tests 10 times and does so outside of peak execution time [31]. Bell et al. note that
reruns sometimes will need to be delayed in order for the cause of the failure to be resolved
(e.g. a network outage) [7].

Using a test selection policy
If there are flaky tests in the test suite it is beneficial to employ a test prioritisation and test
selection policy as it has been shown that employing such techniques are good at finding real
failures while skipping failures that are caused by flakiness [9, 36].

Bell et al. [7] propose a method that analyses the statement coverage for a failed test
run. If the test case does not cover any recently changed code, the failure is attributed to
flakiness. We believe that by using a test selection technique that only select tests that covers
newly changed code we would get the same e�ect as this method. By excluding those tests
without changed code we would not need to rerun the test cases in the case of a potential
flaky failure, and as such machine resources are saved.

6.2.5 Removing flaky tests
The strategy of removing flaky tests should be employed when either the flaky test does
not provide enough benefit to warrant being in the test suite, or when the flaky test is easily

50

6.3 Guidelines on test case implementation

replaceable. If the test does not provide any benefit to the test suite no further action needs to
be taken after removing it. If the test does provide some benefit that needs to be maintained
after removing the test (e.g. by providing test coverage necessary for releasing the product),
the test should be replaced by a new test.

When writing the new test it is important to write it in a way that does not reintro-
duce the flakiness. To do this it is important to adhere to the guidelines for avoiding non-
deterministic tests, found in appendix C. A guideline that we believe is especially important
when replacing a flaky test case is Keep test cases simple and test in isolation. If it is possible,
the flaky test case should be divided into several smaller tests with one assertion each, rather
than one large test case with multiple assertions. This increases the probability of the flaki-
ness being isolated to one test case, which will be easier to handle.

An important input we got through the interviews was that if a test case is divided into
smaller test cases, then it is important to reset the state after a test case has been run. Files
that were created should be destroyed, and variables should be reset to their default state. If
this is not done there is a risk of introducing new flakiness caused by test order dependency.

After the test case has been replaced, the new test case(s) should be verified to not contain
flakiness. This is generally done by rerunning the test a large number of times. If the new
test case is also flaky a new analysis needs to be made.

6.3 Guidelines on test case implementation
In order to e�ectively fix a test case, it is important to know how to make the implementation
more deterministic for di�erent root causes. We therefore present a set of guidelines where
various recommended implementations are presented for each root cause.

The recommendations are taken from the literature review, and are expanded upon in
subsection 3.4.2. The guidelines on test case implementation serve both as an aid in fixing a
test once a root cause has been identified, but can also help as recommendations when writing
a test case for the first time. By keeping the common root causes, as well as the recommended
implementations, in mind when writing a test case we believe that flakiness in many cases
can be stopped before entering the test suite.

51

6. Guidelines for flaky tests

52

Chapter 7

Validation

This chapter discusses the validity of the thesis, actions taken to validate the work and any
limitations used when performing the thesis work.

7.1 Validation interviews
In order to validate the results found in this report, we conduct interviews with four Axis QA
Employees as the last step in our research endeavour, as explained in subsection 2.2.6. The
interview guide used for the interviews can be found in appendix B. The employees being
interviewed consisted of three test engineers and one expert in testing and had experience,
to varying degrees, with, regression testing, UI testing, testing in continuous integration and
automation of tests.

Overall, all four interviewees were positive when seeing the guidelines and thought the
guidelines would have a positive impact in reducing flakiness at the company. All four also
agreed that the guidelines should be realistic to implement at the company.

When asked about which guidelines were seen as the most important, the answers were
varying. Three interviewees answered both Minimise flakiness caused by the testing environment
and Avoid asynchronous implementation as most important. This is consistent with the com-
mon causes for flakiness at Axis, as presented in section 4.3, where asynchronous sleeps and
network problems were noted as the most common answers for causes of flakiness by inter-
viewees. Therefore, this result may be an e�ect of the context where the work was conducted.

Keep test cases simple, Adhere to good coding practices and Make tests explicit were also an-
swered, but only by one interviewee each. From this we can see that several of the guidelines
are considered important, however which ones are considered important may vary between
roles

One controversial suggestion was found in mocking the network, suggested in e.g. the
Network section of appendix E. Three of the interviewees saw risks in mocking the network,
pointing out that there is a large cost associated with it in terms of, e.g., maintenance, whereas

53

7. Validation

one interviewee argued that the benefits would most likely outweigh the risks in his case.
The interviewee who saw a benefit in mocking the network was working mainly with

UI tests. He mentioned that mocking the network (or rather mocking the data that would
be the result of the network call) is something he has proposed before, as he does not care
about whether the network works or not, only the results. However, the test managers said
no as they thought it was more important to test the entire system. As an example on how
mocking could help, the interviewee mentioned a test run he had done the previous week
where 80 UI tests out of 140 failed because the API had stopped working. Because of this a
lot of resources were wasted that could have been saved if he had been able to mock the data
instead of using the network.

The other three interviewees were more hesitant in mocking the network. One inter-
viewee mentioned that mocking the network has a large cost associated with it in terms of
maintainability as it is important to make sure that the mock is updated when the underlying
resource that is being mocked is changed. However, he was slightly positive to mocking when
things are harder to control, such as networks. One interviewee mentioned that there is a risk
associated with creating a new dependency, and that from experience it is often cheaper to
buy more hardware than to mock the network. The other interviewee did not go into closer
detail.

This highlights the importance of having everyone on the same page in a team, and how
management may impose a risk in implementing certain guidelines. It also shows that the
benefits of specific guidelines may di�er based on the role of the tester, or the type of test that
is being performed. This balancing act was further reinforced during the interviews as all four
interviewees mentioned that there are risks associated with the guidelines, and that there are
cases where implementing a certain guideline may not be preferred. One example that was
given was that the cost of setting up a stable testing environment may be too large making
it unrealistic to completely eliminate flakiness from that source. It is therefore important to
stress that there are exceptions to the guidelines.

All four interviewees agreed that the flowchart, depicting how to handle a flaky test
that is already in the test suite, seemed reasonable. Two of them specifically mentioned that
moving a flaky test case into a separate test suite is a good idea. Therefore we believe that
the process described in the flowchart should be reasonable to follow in a practical context.

From the interviews we draw the conclusion that the guidelines should impact a company
positively. We also note that there is a balancing act that needs to be considered. Sometimes
the guidelines may not be feasible, or may carry a too large cost, in a practical context. How-
ever, we believe that the guidelines would still have a positive e�ect even when they can not
be fully implemented, as it makes the testers think twice when implementing a test that has
a high risk of being flaky.

7.2 Threats to validity
When performing research it is important for the research to have both internal and external
validity. Internal validity refers to how other factors and variables may have influenced the
results, whereas external validity refers to how generalized the results are (i.e. if they can be
applied to other situations). This chapter discuss both the internal and external validity of
the thesis.

54

7.2 Threats to validity

7.2.1 Internal validity
This section discuss the validity of each step of the research endeavour, as explained in sec-
tion 2.2. As a reminder, the following steps were taken to conduct the work presented in this
thesis:

1. Literature review.

2. Interviews.

3. Analyzing flaky tests.

4. Cost trade-o�s for flaky tests.

5. Developing guidelines.

6. A�rmation of research results.

During the literature review we followed a very systematic approach by first performing
a database search using relevant keywords and subsequently finding more relevant literature
through snowballing. During the database search we found the majority of the papers that
are used in our work. We judged their relevance by first looking at the title, secondly reading
through the abstract, and last reading the entire paper. When searching for literature through
the snowballing technique we only found a handful relevant papers that we had not already
read. We believe this was due to the database search being very extensive and thus covering
most of the relevant literature. As such, we believe that we found most literature relevant to
the work conducted in this thesis.

When conducting interviews the answers will naturally be subjective, which could be seen
as a threat to the validity. We tried to alleviate this in a few di�erent ways. First, we tried
to follow the interview guide listed in appendix A as closely as possible for all interviews.
This led to the interview answers being more easily comparable, and di�erences between
answers could be found easier. If something was unclear we asked for clarification, or for
the interviewee to elaborate on his or her answer. Second, we tried to interview as broad a
range of roles as possible in order to get di�erent perspectives on issues. We only interviewed
people in roles which had a relevant technical opinion on testing. Testers, developers, test
team leaders, and experts in di�erent areas of expertise relevant to software testing were
interviewed. Last, we tried to compare any given answers with relevant literature to validate
the answers and find abnormalities. We therefore believe that the interviews are trustworthy
enough to draw the conclusions that we did.

During the analysis of the flaky tests we encountered a few problems which may a�ect the
validity. The data set we received was very large, and contained real test runs, which means
that quantity wise it was a very good data set to use. However, the data set su�ered from a
lack of information which made it hard to analyse. The manual analysis of the flaky test cases
also su�ered from a few problems in terms of validity. As the test cases were taken from a
real test suite it meant that the probability of a flaky test case being fixed increases the easier
it is to fix it. As such, certain causes for flakiness might be more common when writing a test
than is apparent when only looking at the flaky tests left in the test suite. Since certain causes
might be easier to fix and as such those cause of flakiness are not accurately represented in
the test suite. However, these problems were discussed in the relevant chapters, and as this

55

7. Validation

approach was abandoned after we could not draw any conclusions based on the inadequate
data this should not have had a big e�ect on the outcome of the thesis.

When performing the cost trade-o�s analysis we mainly used data and conclusions from
the interviews held earlier. The biggest threat to validity of this step is the shape of the
diagram shown in Figure 5.1. As there was not enough data or previous research on cost
models in regards to flaky tests we had to make assumptions on the shapes of the curves.
However, this is also discussed in section 5.4, where we also note that the important takeaways
of the chapter is not the shape of the curves, but rather the underlying analysis.

The guidelines were developed following the conclusions drawn in previous chapter. As
no new data was used when developing the guidelines there should not have been any vari-
ables a�ecting the conclusions. We believe that the biggest threat to validity of this step
were assumptions we made in order to produce the guidelines. However, the source of the
guidelines as well as any assumptions made are clearly presented in chapter 6. Therefore,
each guideline can be easily traced back to its source and as such we believe that this threat
to validity is relatively small.

When a�rming the research results we, again, used interviews to do so. Therefore, this
step su�ers from the same threats to validity as discussed earlier (i.e. answers being subjec-
tive). Further, the validation interviews also su�ers a bias in that two out of four interviewees
were also interviewed in the first interview. Ideally the validation interviewees should be dif-
ferent from the interviewees used to produce the results, as otherwise there is a risk of the
interviewees validating their own answers. However, due to limitations in availability of
participants this was not possible. Similar to the earlier interview, we preferred having in-
terviewees from a range of roles in order to receive input from many di�erent perspectives.
However, unlike the previous interview we did not interview any developers, which might
have an impact on the validity.

Overall, we believe that the internal validity is strong. As we did not overly rely on data
and had a large number of interviewees the results of the thesis should be trustworthy. Any
limitations we did have are discussed and taken into account in the thesis and as such we
believe that we have minimised the threat of validity in the areas where it is possible.

7.2.2 External validity
As the time frame of the thesis did not allow us to evaluate the guidelines’ e�ect on the
company we were not able to confirm the e�ect the guidelines would have in practice. How-
ever, the validation interviews were overall very positive, which gives some insights into the
validity of the guidelines.

All interviews were conducted with employees of the same company, which naturally
creates a bias. This bias could lead to a lower generalisability. However, we tried to alleviate
this bias by interviewing employees in a broad selection of roles. When conducting the inter-
views some employees also brought up examples from previous companies they had worked
for and the problems encountered at Axis Communications and previous companies were
often times similar. We therefore believe that this threat to validity is not very strong.

In addition, we also tried to find support for any findings in interviews through the
literature study as well. This further reinforces the conclusions drawn in this report. The
main findings that we could not find support for in the literature was the cost analysis, and
the expenditure of time in regards to fixing flaky tests. As most interviewees agreed on the

56

7.2 Threats to validity

time it takes to fix a flaky test, and we did not receive any major critique during the validation
interviews, we believe that the conclusions are still valid.

During the cost analysis, found in section 5.4, an assumption was made about the cost
in relation to the complexity of a test case. We argued that there is a relationship between
the cost of fixing a flaky test and the complexity as well as the cost of removing a flaky
test and the complexity. This relationship may not always hold true, or may not always be
linear, depending on context. However, we also discuss this in the chapter. We believe that
even though this relationship may not always hold true, the simplified model is still a good
enough basis to support the conclusions drawn from it in section 6.2.

Axis Communications works according to common software principles, which means
that other companies working according to the same principles should be able to apply these
guidelines in the same manner. There are some guidelines which may be more di�cult in
implementing in a di�erent company. For example, limiting third party dependencies may
not be possible for a smaller company that do not have the resources to code and maintain
certain features. However, the guidelines presented in this thesis allow a certain degree of
freedom and should be adaptable enough to work in such context as well. We therefore
believe that the work and results of this thesis is applicable on other companies as well, and
that the generalisability is quite high. We were also able to find support for most of our
conclusions in previous research and literature, which also points towards the conclusions
drawn in the thesis being generally applicable. However, due to the time limitations of the
thesis we are unable to guarantee generalisability.

57

7. Validation

58

Chapter 8

Discussion

This chapter discusses the results found in this thesis as well as how the thesis can be expanded
upon in future work.

8.1 Discussion of results
Our first approach to minimise flakiness was to find the causes and solutions to flakiness
through fixing tests. This approach mostly failed, but we learned more about flakiness. Flaky
tests are hard to identify and hard to find the cause of, and while relatively easy to implement
a fix for a flaky test, the entire process of identifying a flaky test to the test no longer being
flaky is very time consuming. With this information we postulated that guidelines, which
took the time spent on flaky tests in account, would be very useful. Therefore we have pre-
sented a cost model comparing di�erent strategies to handle flaky tests. The cost analysis
resulted in a flowchart on how to handle flaky tests. We also presented two additional sets
of guidelines meant to aid practitioners in reducing flakiness in a test suite.

We have arrived at the presented guidelines through a combination of interviews with
employees at Axis and from conclusions drawn from related work. Our validation suggests
that the guidelines will have a positive e�ect on the company, however this needs to be con-
firmed in future work.

Compared to related work, our report not only focuses on minimising flakiness in a sin-
gle test case, it also address the balancing act between costs and minimising flakiness. Our
guidelines view a test as being worth running if the benefits outweigh the costs. How exactly
to measure the benefit is highly subjective and a task left for the practitioners. Our contri-
bution to the research of flakiness is the combined overview of how to write deterministic
tests, and a novel approach on how to handle flaky tests.

We believe that all three research questions we originally formulated has been answered.
RQ1, regarding common causes of flaky tests, were answered through the guidelines ex-

pressed in appendix E, where common fixes to the causes are also listed. The di�erent cate-

59

8. Discussion

gories of flakiness were taken from literature, and the categories presented in this thesis are
the ones most commonly agreed upon. The most common categories in literature are Async
Wait, Concurrency and Test Order Dependency. At Axis, Test Order Dependency was less
common and network issues were a lot more common. This could be explained by guideline
number 1: Be aware of the context. Axis’ products are run over the network and the products
themselves are more network intensive than average. Axis has also put in a lot of work to
minimise flakiness, which might also explain why the most common causes of flakiness are
slightly di�erent, if they targeted certain types of flakiness more than others.

RQ2, regarding how flakiness can be minimised, was answered through the guidelines
presented in appendix C. These guidelines were based on information from the literature
review, from the interviews and from the workshop. Through the validation interviews we
learned that most of the guidelines describe activities that experienced testers are already
doing. Therefore the consensus among the interviewees was that the guidelines would be
very useful for new testers to get up to speed and that the guidelines would have a positive
e�ect on minimising flakiness.

RQ3, regarding how flaky tests should be handled, was answered through the flowchart
presented in appendix D, and is explained more in depth in section 6.2. This flowchart was
based primarily on the cost-benefit analysis and the interviews. The work flow at Axis is
already very similar to the flowchart, and they claim to have relatively few problems with
flaky tests. Probably the biggest di�erence is that testers might be more hesitant to throw
out tests than our flowchart would suggest to be optimal. However, that is hard to know for
certain since the benefit is di�cult to measure. In summary, the people we interviewed for
our validation generally agreed that the flowchart was useful and would have a positive e�ect
on flakiness in the test suite.

The validation of the thesis was overall positive, however we could not evaluate the guide-
lines in practice due to time limitations. It should also be noted that the guidelines are now
implemented at Axis and used by the QA Department, which also points towards testers
finding value in using the guidelines.

8.2 Future work
We believe that there are many ways this thesis can be expanded upon. The first way would
be to implement the guidelines in practice and evaluate them during a longer time period.
This would also be a good way to see which guidelines has the biggest e�ect on flakiness, and
the e�ort required to implement the guidelines.

It could also be interesting to further expand the guidelines on test case implementa-
tion to cover more cases, as research is furthered in the field, in order to get an even more
comprehensive list on root causes and recommendations related to them.

In this thesis we have mainly focused on automated regression test suites. Flakiness is
also present in other types of testing and an interesting topic would be to explore how these
guidelines carry over into other types of test suites.

60

References

[1] Agile 101. https://www.agilealliance.org/agile101/. Online; accessed 5 June
2020.

[2] Azeem Ahmad, Ola Leifler, and Kristian Sandahl. Empirical analysis of factors and their
e�ect on test flakiness-practitioners’ perceptions. arXiv preprint arXiv:1906.00673, 2019.

[3] Joan E van Aken. Management research based on the paradigm of the design sciences:
the quest for field-tested and grounded technological rules. Journal of management studies,
41(2):219–246, 2004.

[4] Nadia Alshahwan and Mark Harman. Automated web application testing using search
based software engineering. In 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 3–12. IEEE, 2011.

[5] Android FlakyTest annotation. https://developer.android.com/reference/
android/support/test/filters/FlakyTest.html. Online; accessed 1 July 2020.

[6] Deepika Badampudi, Claes Wohlin, and Kai Petersen. Experiences from using snow-
balling and database searches in systematic literature studies. In Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering, pages 1–10,
2015.

[7] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and
Darko Marinov. DeFlaker: Automatically detecting flaky tests. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pages 433–444. IEEE, 2018.

[8] Anthony E Boardman, David H Greenberg, Aidan R Vining, and David L Weimer. Cost-
benefit analysis: concepts and practice. Cambridge University Press, 2017.

[9] Benjamin Busjaeger and Tao Xie. Learning for test prioritization: an industrial case
study. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 975–980, 2016.

61

https://www.agilealliance.org/agile101/
https://developer.android.com/reference/android/support/test/filters/FlakyTest.html
https://developer.android.com/reference/android/support/test/filters/FlakyTest.html

REFERENCES

[10] Ward Cunningham. The WyCash portfolio management system. ACM SIGPLAN OOPS
Messenger, 4(2):29–30, 1992.

[11] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. Understanding
flaky tests: the developer’s perspective. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 830–840, 2019.

[12] Emelie Engström, Margaret-Anne Storey, Per Runeson, Martin Höst, and Maria Teresa
Baldassarre. How software engineering research aligns with design science: a review.
Empirical Software Engineering, 25(4):2630–2660, 2020.

[13] Martin Fowler. Eradicating non-determinism in tests. https://martinfowler.com/
articles/nonDeterminism.html, 2011. Online; accessed 1 July 2020.

[14] Alex Gyori. Proactively detecting unreliable tests. PhD thesis, University of Illinois at
Urbana-Champaign, 2017.

[15] Mark Harman and Peter O’Hearn. From start-ups to scale-ups: Opportunities and
open problems for static and dynamic program analysis. In 2018 IEEE 18th International
Working Conference on Source Code Analysis and Manipulation (SCAM), pages 1–23. IEEE,
2018.

[16] Douglas Ho�man. Cost benefits analysis of test automation. STAR West, 99, 1999.

[17] Mark Hughes. Interviewing. pages 264–274. Wiley Online Library, 2016.

[18] Vilas Jagannath, Milos Gligoric, Dongyun Jin, Qingzhou Luo, Grigore Rosu, and Darko
Marinov. Improved multithreaded unit testing. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering, pages
223–233, 2011.

[19] Jenkins RandomlyFails annotation. https://javadoc.jenkins.io/component/
jenkins-test-harness/org/jvnet/hudson/test/RandomlyFails.html. On-
line; accessed 1 July 2020.

[20] Rafaqut Kazmi, Imran Ghani, Radziah Mohamad, Murad Tariq, Imran Sarwar Bajwa,
and Seung Ryul Jeong. Trade-o� between automated and manual testing: a production
possibility curve cost model. Int. J. Advance Soft Compu. Appl, 8(1):12–27, 2016.

[21] Tariq M King, Dionny Santiago, Justin Phillips, and Peter J Clarke. Towards a bayesian
network model for predicting flaky automated tests. In 2018 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C), pages 100–107. IEEE,
2018.

[22] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical debt: From metaphor
to theory and practice. IEEE software, 29(6):18–21, 2012.

[23] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. Measuring the cost of
regression testing in practice: a study of java projects using continuous integration. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, pages 821–
830, 2017.

62

https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html
https://javadoc.jenkins.io/component/jenkins-test-harness/org/jvnet/hudson/test/RandomlyFails.html
https://javadoc.jenkins.io/component/jenkins-test-harness/org/jvnet/hudson/test/RandomlyFails.html

REFERENCES

[24] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. iDFlakies: A framework
for detecting and partially classifying flaky tests. In 12th IEEE Conference on Software
Testing, Validation and Verification, ICST 2019, Xi’an, China, April 22-27, 2019, pages 312–
322, 2019.

[25] Hareton KN Leung and Lee White. A cost model to compare regression test strategies.
In Proceedings of the Conference on Software Maintenance, volume 91, pages 201–208, 1991.

[26] Je� Listfield. Where do our flaky tests come from? Online]
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html, 2017.

[27] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In Proceedings of the
13th international conference on Architectural support for programming languages and operating
systems, pages 329–339, 2008.

[28] Qingzhou Luo, Lamyaa Eloussi, Farah Hariri, and Darko Marinov. Can
we trust test outcomes? https://pdfs.semanticscholar.org/a4b2/
f4b9bcfdd0e83323570c40b893310f41e979.pdf, 2014. Online; accessed 13
July 2020.

[29] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical anal-
ysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 643–653, 2014.

[30] Kent McDonald. Agile Q&A: How is testing incorporated into ag-
ile software development? https://www.agilealliance.org/
agile-qa-testing-in-agile-software-development/, 2020. Online; ac-
cessed 5 June 2020.

[31] John Micco. The state of continuous integration testing@ google. http://aster.or.
jp/conference/icst2017/program/jmicco-keynote.pdf. ICST, 2017.

[32] John Micco. Flaky tests at google and how we mitigate them. https://testing.
googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html, 2016.
Online; accessed 1 July 2020.

[33] Steve Neely and Steve Stolt. Continuous delivery? easy! just change everything (well,
maybe it is not that easy). In 2013 Agile Conference, pages 121–128. IEEE, 2013.

[34] Michael Quinn Patton. Qualitative research & evaluation methods: Integrating theory and
practice. Sage publications, 2014.

[35] Per Runeson, Emelie Engström, and Margaret-Anne Storey. The design science
paradigm as a frame for empirical software engineering. In Michael Felderer and Guil-
herme Horta Travassos, editors, Contemporary Empirical Methods in Software Engineering.
Springer, 2020.

[36] August Shi, Peiyuan Zhao, and Darko Marinov. Understanding and improving regres-
sion test selection in continuous integration. In International Symposium on Software
Reliability Engineering, pages 228–238, 2019.

63

https://pdfs.semanticscholar.org/a4b2/f4b9bcfdd0e83323570c40b893310f41e979.pdf
https://pdfs.semanticscholar.org/a4b2/f4b9bcfdd0e83323570c40b893310f41e979.pdf
https://www.agilealliance.org/agile-qa-testing-in-agile-software-development/
https://www.agilealliance.org/agile-qa-testing-in-agile-software-development/
http://aster.or.jp/conference/icst2017/program/jmicco-keynote.pdf
http://aster.or.jp/conference/icst2017/program/jmicco-keynote.pdf
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html

REFERENCES

[37] Managing test flakiness. https://smartbear.com/resources/ebooks/
managing-ui-test-flakiness/. Online; accessed 1 July 2020.

[38] Gregory Tassey. The economic impacts of inadequate infrastructure for software testing.
Technical Report RTI Project Number 7007.011, National Institute of Standards and
Technology, 2002.

[39] David V. Thiel. Research Methods for Engineers. Cambridge University Press, 2014.

[40] Swapna Thorve, Chandani Sreshtha, and Na Meng. An empirical study of flaky tests in
android apps. In 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 534–538. IEEE, 2018.

64

https://smartbear.com/resources/ebooks/managing-ui-test-flakiness/
https://smartbear.com/resources/ebooks/managing-ui-test-flakiness/

Appendices

65

Appendix A

Interview guide

1. What is your role at Axis Communications?

2. How and when do you notice that a test case is flaky?

3. How do you currently deal with flaky tests?

4. What is your opinion on removing a flaky test case from the test suite vs. trying to fix
it?

5. What root causes have you seen for flaky tests?

6. How much of your working time is spent writing and fixing tests?

7. How much of your working time is spent on flaky tests?

8. Do you prefer a flaky test over a lower test coverage?

9. Do you prefer test cases that have a low complexity but that are more stable over test
cases with a higher complexity but with a higher probability of being flaky?

10. How much flakiness have you experienced?

11. How much of a problem do you consider flakiness to be?

12. How has the amount of flakiness in the test suite progressed over time?

13. How many of the flaky tests that you have attempted to fix have you succeeded in doing
so?

14. Do you have any questions, or something that you think is important to mention that
has not been covered?

67

A. Interview guide

68

Appendix B

Interview guide - validation

1. What is your role at Axis Communications?

2. Are the guidelines something you are already thinking of when you are writing tests?

3. If you have investigated a flaky test for several hours, how would you normally move
on?

4. What are your general thoughts on the guidelines?

5. Which of the guidelines do you find the most important in reducing flakiness?

6. What e�ect do you think the guidelines will have on Axis Communications?

7. Do you think the guidelines are realistic to implement?

8. Do you have any questions, or something that you think is important to mention that
has not been covered?

69

B. Interview guide - validation

70

Appendix C

Guidelines for avoiding non-deterministic tests

The following guidelines should be adhered to in order to decrease the risk of a non-deterministic
test entering a test suite.

1. Be aware of the context
Be aware of the context your applications are operating in and focus on minimising
flakiness caused by root causes common in such context. For example, if the application
is operating in a context where tests rely on files and resources being opened regularly
then there should be a greater focus on making sure that such resources are handled
correctly (e.g. closed after use).
Example : If you are testing a piece of software with extensive file handling, then pay
special attention to guidelines referring to resources and IO as there is a higher risk of
flakiness being introduced from those sources.

2. Minimise flakiness caused by the testing environment
Failures caused by the testing environment (e.g. power outages and network load)
should be minimised as much as possible. Ensure a stable testing environment with as
low variations as possible. Use mocks to have as much control over the environment
as possible.
Example : If the network load in your testing environment is large, minimise the strain
on the network by using mocks or by investing in more hardware.

3. Avoid asynchronous implementation
Asynchronous implementation should be avoided by reordering the code to make the
execution less asynchronous. Replace sleeps with waitFor promises wherever possible.
Example : Reorder the execution order of threads to make the execution less asyn-
chronous.

4. Adhere to good coding practices
Adhere to the guidelines in appendix E when writing tests that relates to a certain root

71

C. Guidelines for avoiding non-deterministic tests

cause.
Example : If you are writing a test case that needs to make use of a sleep, then try to
use a waitFor mechanism instead.

5. Make tests explicit
Ensure that the goal of the test is defined and specific. Ensure that the result of the
test will reflect the goal of the test and that errors that are not related to the goal of
the test are handled as errors and not as test failures.
Example : Specify each step of the test case and ensure that the test case will only cause
a failure if the goal criteria is not met.

6. Keep test cases simple and test in isolation
Each test should ideally only test one thing. Strive to keep test cases small by dividing
larger tests into several smaller tests. Avoid multiple assertions in a test case when
possible.
Example : If a test case has several goal criteria that can be divided into separate test
cases, then the test case should be divided into several smaller test cases.

7. Strive for deterministic assertions
Non-determinism should be minimised in assertions. Relax assertions to accept a
wider range of values for test cases where non-determinism is unavoidable (but en-
sure that you do not introduce false negatives). Ensure that all possible outputs are
accounted for, and that edge cases are properly handled. Ensure timeouts give enough
time to receive a response.
Example : If there is a risk of two platforms producing di�erent output based on, for
example, how they handle floating point operations, then assertions should be relaxed
to allow a wider range of outputs.

8. Limit third party dependencies
Keep third party dependencies to a minimum and ensure that any dependencies are
properly documented so that the cause of the failure can be easily traced.
Example : If the cost of writing functionality that now comes from a third party library
is small, then the third party library should be removed.

72

Appendix D

Guidelines for handling flaky tests

The following flowchart should be used to determine how to handle flaky tests that are
present in a test suite.

Figure D.1: Flowchart depicting the recommended steps to be taken
to handle flaky tests in a test suite.

73

D. Guidelines for handling flaky tests

74

Appendix E

Guidelines on test case implementation

Table E.1: Guidelines on test case implementation.

Root cause Recommended implementation
Async wait

• Use an await, waitFor or similar promise to wait for the required
event. [13, 11, 29]

• Reorder the source code to make execution less asynchronous. A
delay can be achieved through executing other parts of the code
while waiting, which makes it more likely that the wait is long
enough.[11, 29]

• Add a sleep, or increase the waiting time of an already existing sleep
[11, 29, 40]. However, sleeps should be avoided or replaced by wait-
For whenever possible as the use of sleep makes the test more unre-
liable, unintuitive and ine�cient [13, 18].

75

E. Guidelines on test case implementation

Concurrency

• Use an await, waitFor or similar promise to wait for the required
event. [11]

• Add locks to ensure mutual exclusion [11, 29].

• Make execution deterministic by e.g. eliminating concurrency, en-
forcing a deterministic order between thread executions [11, 29, 33].

• Change concurrency guard conditions to ensure it includes all pos-
sible scenarios [11, 29].

• Change assertions to ensure all valid outcomes are accounted for
[29].

Test order depen-
dency

• Modify the output directory for the test to use a separate directory,
in order to avoid conflicts between test cases [11].

• Ensure that shared states are setup before executing the test and
ensure to clean up shared states after the test has been run [29, 11].

• Remove the dependency completely by making copies of the shared
variable [29].

Resource leak

• Manage relevant resources through a resource pool. This way the
first test to request a resource after ta resource leak, will fail. Which
makes it significantly easier to find the problem [13].

• Destroy the conflicting object before continuing the execution [11].

Network

• Mock the network. Mocks can also be used to simulate, e.g., a net-
work outage [29, 14] for tests that are meant to test for that.

• Using waitFor, if one is unable to mock the network [29].

• Add connection retries [28].

Time

• Avoid, if possible, using platform dependent values such as time
since time precision di�ers between systems [29, 13].

76

IO

• Close opened resources (e.g. files and databases) after use [29].

• Use proper synchronisation between threads that use shared re-
sources [29].

Randomness

• Control the seed of the random number generator so that an indi-
vidual run can be reproduced yet the seed can be varied across runs
[29].

• Handle the boundary values, e.g. zero, that the random number gen-
erator can return.

Floating point op-
erations

• Make assertions independent from floating point results [29].

• Relax assertions to accept a wider range of values (as floating point
operations can di�er depending on hardware) [28].

Unordered collec-
tions

• Write tests that do not assume any specific ordering on collections
[29].

Too restrictive
range

• Ensure that all possible outputs are accounted for [11].

Test case timeout

• Increase the time until timeout [11].

Platform depen-
dency

• Make platform-specific test cases for the platform that exhibits flaky
behavior [11].

77

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-08-27

EXAMENSARBETE Mitigation and handling of non-deterministic tests in automatic regression testing

STUDENTER Axel Berglund, Oskar Vateman
HANDLEDARE Per Runeson (LTH), Helena Razdar (Axis Communications)
EXAMINATOR Emelie Engström (LTH)

Minimering och hantering av
programvarutester med
odeterministiskta utfall

POPULÄRVETENSKAPLIG SAMMANFATTNING Axel Berglund, Oskar Vateman

Ett programvarutest körs två gånger på raken. Ena gången passerar testet, för att i
nästa körning fallera utan att någon ändring har skett däremellan. Det kan låta som
en omöjlighet, men faktum är att detta är ett stort problem för programvarutestare.
I vårt arbete har vi tagit fram riktlinjer för hur man kan skriva tester för att få ett
deterministiskt utfall samt hur man hanterar tester som är odeterministiska.
För att veta om en programvara fungerar som
den ska så måste man testa den. Om man
dessutom kontinuerligt uppdaterar programvaran
så måste man också kontinuerligt testa den för
att säkerställa att gammal funktionalitet fort-
farande fungerar efter införande av ny funktion-
alitet. Detta brukar kallas för regressionstestning
och är en viktig aktivitet vid programvaruutveck-
ling. Regressionstesterna är ofta automatiserade
då de exekveras ofta. Ett problem som länge
gäckat programvarutestare är att dessa automa-
tiserade regressionstester ibland kan ge olika re-
sultat trots att ingen ändring av programkod eller
tester har skett. Ett sådant test med odetermin-
istiskt utfall brukar kallas för ett flaky test.
Ett flaky test är problematiskt då program-

varutestare inte längre kan lita på sina testresul-
tat, vilket i sin tur kan leda till att man inte kan
lita på programvaran eller att buggar och felak-
tigheter smyger sig in i programvaran. Att min-
imera andelen flaky tests skulle därför göra testre-
sultaten mer värdefulla och leda till mer tillförlitlig
programvara.
Genom att intervjua testare, utvecklare, och ex-

perter inom programvarutestning har vi i vårt ex-
amensarbete försökt förstå vad som orsakar flaky
tests och utifrån detta utvecklat riktlinjer för hur
man minimerar andelen flaky tests samt hur man
hanterar dem.
För hanteringen av flaky tests har vi tagit fram

en flowchart där man beroende på bland an-
nat testets komplexitet får rekommendationen att
antingen fixa testet, ta bort testet, ersätta testet
eller ha kvar testet oförändrat.
För att stödja dem som skriver tester tog vi

fram åtta riktlinjer. Generellt säger riktlinjerna
att man ska göra testerna och testmiljön mindre
komplex, t.ex. genom att minska fel som upp-
står p.g.a. nätverksanslutning eller att man vill
minimera tredjepartsberoenden. Riktlinjerna har
valideratats av testare, utvecklare och experter
inom programvarutestning men vidare studier bör
göras där man testar riktlinjerna i praktiken under
en längre period.
Riktlinjerna bör leda till mer tillförlitliga tester

inom programvaruutvecklingen, och i förlängnin-
gen även mer robust och tillförlitlig programvara.

	Introduction
	Background
	Definition of flakiness
	Context
	Problem statement

	Methodology
	Research approach
	Research design
	Literature review
	Interviews
	Analyzing flaky tests
	Cost trade-offs for flaky tests
	Developing guidelines
	Evaluation of research results

	Theory
	Literature review
	Flaky or non-deterministic tests
	Root causes for flakiness
	Mitigation strategies for flakiness
	Rerunning flaky tests
	Improving implementation
	Removing flaky test cases
	Replacing implementation
	Using machine learning
	Assume tests are flaky
	Test prioritisation and test selection
	Tools

	Costs and benefits of test automation

	Identifying and fixing flaky tests
	Approach
	Identifying flaky tests
	Fixing flaky tests

	Results
	Discussion

	Cost trade-offs when fixing flaky tests
	Costs and benefits of fixing flaky tests
	Costs and benefits of keeping flaky tests
	Test selection cost
	Test execution cost
	Result analysis cost
	Other costs

	Costs and benefits of removing flaky tests
	Discussion

	Guidelines for flaky tests
	Guidelines for avoiding non-deterministic tests
	Be aware of the context
	Minimise flakiness caused by the testing environment
	Avoid asynchronous implementation
	Adhere to good coding practices
	Make tests explicit
	Keep test cases simple and test in isolation
	Strive for deterministic assertions
	Limit third party dependencies

	Guidelines for handling flaky tests
	Analysing the test case
	Choosing strategy
	Fixing the test case
	Keeping flaky tests
	Removing flaky tests

	Guidelines on test case implementation

	Validation
	Validation interviews
	Threats to validity
	Internal validity
	External validity

	Discussion
	Discussion of results
	Future work

	References
	Appendix Interview guide
	Appendix Interview guide - validation
	Appendix Guidelines for avoiding non-deterministic tests
	Appendix Guidelines for handling flaky tests
	Appendix Guidelines on test case implementation

