
MASTER’S THESIS 2020

Smart Personalization for
In-flight Entertainment
Systems
Sara Trygve, Frida Gunnarsson

ISSN 1650-2884
LU-CS-EX: 2020-50

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY





EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-50

Smart Personalization for In-flight
Entertainment Systems

Sara Trygve, Frida Gunnarsson





Smart Personalization for In-flight
Entertainment Systems

Sara Trygve
dic14str

Frida Gunnarsson
tys14fgu

August 20, 2020

Master’s thesis work carried out at Tactel AB.

Supervisors: Pierre Nugues, pierre.nugues@cs.lth.se
Sören Just Pedersen, soren.justpedersen@tactel.se

Johan Liljeros, johan.liljeros@tactel.se

Examiner: Jörn Janneck, jorn.janneck@cs.lth.se

mailto:dic14str
mailto:tys14fgu
mailto:jpierre.nugues@cs.lth.se
mailto:soren.justpedersen@tactel.se
mailto:johan.liljeros@tactel.se
mailto:jorn.janneck@cs.lth.se




Abstract

In-flight entertainment systems are becoming more advanced and a shift to-
wards a more personalized experience can be seen in the industry. A challenge
with providing personal recommendations for new passengers is the lack of ini-
tial user information. This problem is often solved with a login or a connection
to a users own mobile device. However, this solution only covers a small amount
of customers.

In this thesis, we focused on creating a personalized experience for the rest of
the passengers. We investigated di�erent approaches to provide recommenda-
tions, such as content-based recommendations and association rule mining. We
used techniques such as one-hot encoding, word embeddings, and Apriori.

Using data from past passenger interactions with existing IFEs, we evalu-
ated the experiments by a comparison of a given recommendation and previous
watched item. The final model gives category recommendations as well as ranks
the items after similarity compared to previous watched content. When filtering
out the empty recommendations, we could reach an accuracy of 30 %.

Keywords: In-flight entertainment, recommendation systems, personalization, machine
learning techniques



2



Acknowledgements

We would like to thank our supervisor Pierre Nugues for his invaluable guidance, technical
support and ideas during this project. We would also like to thank our supervisors at Tactel,
Sören Just Pedersen and Johan Liljeros, for very helpful feedback and insights.

To all employees at Tactel, thank you for a warm welcome and for giving us the oppor-
tunity to carry out this interesting project in collaboration with you.

Finally, we would like to thank Stina, Ebba and Hanna for endless positivity, laughter
and many enjoyable “fika” breaks during our theses.

3



4



Contents

1 Introduction 7

2 Background 9
2.1 In-flight entertainment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Recommendation systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Collaborative filtering . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Content-based filtering . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Hybrid recommendation systems . . . . . . . . . . . . . . . . . . . 11
2.3.4 Cold-start problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.5 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Movie Recommendation . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 IFE Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Approach 15
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Datasets 19
4.1 The Movie Database (TMDb) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 TMDb API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Spotify API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 In-flight entertainment data . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 21

5 Algorithms and Models 25
5.1 Content-based recommendation . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Metrics for similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 One-hot encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5



CONTENTS

5.1.3 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Association rule mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Apriori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Combination of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3.1 Adding model for TV shows . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Adding model for music . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Evaluation 33
6.1 Content-based recommendation . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.1 Initial evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.2 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Association rule mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Combined model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Results 37
7.1 Content-based recommendation . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Association rule mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2.1 Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2.2 Apriori results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3 Combined model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Application 43
8.1 Interface suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9 Discussion 47
9.1 Comparison of content-based recommendation models . . . . . . . . . . . 47
9.2 Analysis of Apriori model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.3 Combination of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.5.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.5.2 Model improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.5.3 Additional areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10 Conclusion 53

References 55

6



Chapter 1

Introduction

During long-haul flights, a screen on the back of the seat in front of each passenger is not
an uncommon sight. These are called in-flight entertainment (IFE) systems and contain dif-
ferent entertainment options, such as duty-free shopping, maps over the aircraft’s route, and
various media content, such as movies, TV shows, music, and games. In-flight entertain-
ment systems are not a new concept, but are becoming more complex, with larger content
range and more varied activities for the passengers to interact with. Personalization is widely
used today by e-commerce websites, media platforms, and online advertisements. It is a way
to propose a customer recommendations relevant to her/his previous actions or previously
bought items. An individual customer can be identified using cookies, login or connection
to other accounts. It provides a more personal experience and possibly more sales.

Creating a mobile application, which can be connected to the IFE is one approach to
personalize the experience of in-flight entertainment systems. With such an application, the
passenger can create his or her own profile and save movies to watch during their next flight.
However, this requires the creation of an account, as well as planning and downloading the
application in advance since this can’t be done during a flight due to no or limited connec-
tion. While this is a great solution for the passengers who take this additional step, we will
focus on the remaining passengers. In this thesis, we will explore di�erent ways to provide
a solution for personalization during the flight without a login and without much data on
each passenger. In addition, we will focus on the large variation of available media content.

During this Master’s thesis, we created a system that targets the users who did not down-
load the application i.e. a system that could give personalized suggestions without the need
of creating a login. Trending topics such as big data makes this possible. We approached this
problem by looking at patterns of the collected in-flight data to be able to make recommen-
dations according to what other passengers have previously watched during their flights.

7



1. Introduction

Research Questions. In this thesis, we will explore and discuss the following ques-
tions:

• How can an IFE be personalized during flight with limited information?

• How e�ective are the di�erent approaches to personalize an IFE and can they be com-
bined?

• What additional feedback system can be used to make the recommendations more
accurate?

Approach. To answer these question, our work consists of three main steps:

1. First, we researched the existing approaches of personalization and recommendation
systems within in-flight entertainment.

2. Then, we implemented a recommendation engine to recommend content to each in-
dividual passenger. To do this, we studied two main techniques:

• A content-based movie recommendation system, which calculates similarities be-
tween movies, and

• A market basket analysis, derived from a dataset provided by Tactel.

We computed the accuracy and usability of these models.

3. The last step was to combine the two di�erent approaches into a working recommen-
dation system.

We carried out this thesis at Tactel AB, a digital interaction agency, at their head o�ce
in Malmö. Since 2015, Tactel is a part of Panasonic Avionics Corporation. They have been
working with di�erent in-flight entertainment systems for several years and could provide
the knowledge and data necessary to carry out this project.

Contribution. We carried out this thesis in full collaboration. Both of us have partici-
pated in the research, implementation and documentation of all parts of this project. During
the implementation of this project, a lot of discussions and pair programming were done, for
both of us to have a better understanding of the final result.

However, the main responsibility for some parts was divided between us. For example,
when working in parallel with content-based recommendation and association rule mining,
Sara was in charge of content-based recommendations, and Frida of association rule mining.
During the combining of the two models, Sara implemented the function to add music to
our model, while Frida added TV shows.

During the later parts of the project, Sara implemented the test interface with movies,
while Frida made the design of the interface suggestions.

The writing of the report was also divided similar to the implementation. Sara had the
main focus on content-based recommendation and Frida on the association rule mining.

8



Chapter 2

Background

2.1 In-flight entertainment
The existence of in-flight entertainment system reaches back almost 100 years, when a pro-
motional video was shown at a flight in 1921. Up until the eighties, the movies were shown
on projectors and bigger screens shared by multiple passengers, while the sound was played
from shared speakers throughout the cabin. But when LCD screens appeared on the electron-
ics market, the in-flight entertainment evolved to seat-back mounted screens.

When further technical advancements were made, a distributed system which showed
the same content to all passengers could be replaced by a digital video-on-demand (VOD)
system. This allowed the passenger to control the movie with play, pause etc. Today, complex
software solutions have been developed, and the functionality of the IFEs has been widely
extended. Information such as the position, height, and speed of the flight can be viewed, as
well as numerous movies, TV shows, games, duty-free shopping and broadcasted live news
entertains the passengers during flights (White, 2012).

2.2 Personalization
Over the past few years, personalization has been a big trend among companies. According
to a survey done by Evergate and Researchscape International, 98% of companies agree that
personalization helps advance customer relationships. Even if a majority of personalization
is done within emails and with more simple approaches, it can also be seen that the usage of
machine learning in this area has gone up from 26% in 2018 to 40% in 2019. Most importantly,
the personalizations show results — a lift of more than 10% is reported by more than half
of the participating marketers. Another relevant note is that the companies using machine
learning for personalization are more satisfied with the results compared to other approaches
(Researchscape International, 2019).

9



2. Background

2.3 Recommendation systems
Recommendation techniques are an important component of systems which handles a very
large and wide content database. One of the main goals of a recommendation system is to
increase sales by bringing relevant products to the attention of the user. Even though this is
often the first reason any company would implement such systems, the experience of the user
will be less cluttered with more accurate recommendations. S/he will avoid having to scroll
through thousands of products and the overall impression will certainly be more satisfying.

Except relevance, there might also be advantages in recommending products unknown to
the user (called novelty) or products seemingly unrelated i.e. products that the user still might
appreciate (called serendipity). Recommendation systems are often evaluated through ratings
and the creation of training and test sets to compare di�erent models (Aggarwal, 2016).

In the sections below, a few di�erent techniques to implement recommendation systems
are described.

2.3.1 Collaborative filtering
Collaborative filtering models for recommendation systems use ratings across multiple users.
This results in identification of users with similar taste, and recommendation of new items
according to previous ratings of other identified similar users (Aggarwal, 2016). See Fig-
ure 2.1.

Figure 2.1: Collaborative filtering

2.3.2 Content-based filtering
Another approach for recommendation systems is to use content-based filtering, where in-
stead the items attributes are used to make recommendations. The result of these recommen-

10



2.3 Recommendation systems

dations can be seen as more straight-forward since it is based on the keywords or content of
the item. The idea is to not recommend an item with keywords which are not present in the
items previously purchased by a customer. This might lead to reduced diversity of the rec-
ommended items. This approach is e�ective if there is a lot of data about the user’s previous
behavior. The more data there is, more item attributes can be used to find new matching
items (Aggarwal, 2016). See Figure 2.2. However, if the user is new, with no previous con-
summations there is no data to make recommendations based on. This is called a cold-start
problem, see Section 2.3.4.

Figure 2.2: Content-based filtering

2.3.3 Hybrid recommendation systems
Most commonly, the two techniques mentioned above are combined to create a hybrid system
that takes both the item similarity and the user similarity data into account. This provides the
flexibility of using di�erent types of recommendation systems for the same task (Aggarwal,
2016).

2.3.4 Cold-start problem
In an IFE without a login, every user will be a new user. There is no historical data about
the current user and this becomes a classic cold-start problem. Shi et al. (2017) proposed two
main approaches to deal with the cold-start problem in recommendation systems – content-
based recommendations and interview-based:

• For content-based, the metadata of the items are used to recommend similar items to
the user.

• Interview-based uses a few initial questions to profile the user and get a hint of their
preferences (Shi et al., 2017).

11



2. Background

2.3.5 Feedback
There are two main types of feedback data; implicit and explicit. With explicit feedback a
rating system is used, and each customer can rate the product depending on the experience
they had. This gives more information compared to implicit feedback, which does not use
any rating scale, instead it is implied that if the user watched the movie or bought the item,
it is considered to be positive feedback (Jawaheer et al., 2010).

For recommendation systems, explicit feedback from the users is an important factor,
since the watched content or bought item can be both liked and disliked. It is preferred to
give recommendations similar to the products the customer gave a higher rating and avoid
recommending products the user gave a very low rating. Many recommendation systems also
use the ratings to calculate the accuracy of di�erent recommendation engines, where the goal
of the model is to predict an item’s rating. It can then be compared to the actual rating of
the item (Piotte and Chabbert, 2009).

2.4 Related work
In this section some relevant resources which we have received inspiration and knowledge
from will be briefly discussed.

2.4.1 Movie Recommendation
Netflix Grand Prize. In 2009, there was an important step of improvement of movie
recommendation systems when Netflix held a competition to improve their existing recom-
mendation engine Cinematch. The goal was to predict the users rating of a movie, and the
winning team BellKor’s Pragmatic Chaos managed to do so with an accuracy of over 10%
increase from Cinematch.

A joint solution of three teams (BellKor, Pragmatic Theory and Big Chaos) gave a quiz
set RMSE (root mean square error – the standard deviation of errors) of 0.8554. This solu-
tion contains multiple di�erent techniques, for example clustering, classification, Restricted
Boltzmann Machines, KNN, regression and more. However, as all the teams clarify, their
solution is probably not practical for a real-life recommendation system because of its com-
plexity and the fact that performance was not a factor when developing the most accurate
rating predictions (Piotte and Chabbert, 2009; Töscher and Jahrer, 2009; Koren, 2009).

Plot-based Movie Recommendation. Tang et al. (2020) who created the
Weighted-PathSim model explored the possibilities of recommending a movie based on plot
similarity. Some of the most common features used for content-based movie recommenda-
tion are genres, actors, and directors. However, Tang et al. (2020) argued that genre is too
general. To solve this issue, Tang et al. (2020) explore three ways of handling plot description
– phrase mining, topic modelling and similarity measure:

1. Phrase mining is done to find keywords or phrases from a plot that can be compared
to other movies;

12



2.4 Related work

2. To eliminate that the keywords have to be exactly the same to get a match, topic mod-
elling is done by clustering similar words;

3. In the last step, the topic labels from step 2 are used to do a similarity search, by weigh-
ing a label by the number of times it appears in the description and then comparing
movies either by using weighted or unweighted cosine similarity.

Actor embeddings. Another approach to improve content-based movie recommen-
dations was discussed by Kim et al. (2019) who proposed a solution to group similar actors
together. They create an actor model base on movies, genres, character roles, and descriptive
keywords to make cast predictions and a versatility ranking of actors. This actor model could
also be used in a content-based movie recommendation system, where similar actors could
be associated together.

2.4.2 IFE Personalization
A flight can be a stressful situation for some people. Liu (2007) described this phenomenon in
a report about research directions for in-flight entertainment systems and how a personalized
system can help reduce the negative feelings of stress. Three main activities are solutions
proposed to deal with stress during a flight:

1. Communication with other passengers,

2. Di�erent types of exercises and

3. Relaxing with books, movies and other available material.

Most of these activities are available during long-haul flights, but the focus often lies
within the last activity – di�erent types of entertainment. One observation made by Liu
is that these systems are often homogeneous and hard to navigate if containing many avail-
able options. On the other hand, if the content is very limited, the passenger cannot find
anything desirable. In both cases, the IFE does not help to limit the stress. Liu proposes a
solution which utilizes user profiles to create recommendations to better reduce the stress of
the passengers. He also discusses the challenges with such a system. A user’s Behavior and
desires change over time, and to create a model that tracks and updates according to such
changes comes with many di�culties.

According to Garcia (2016a), Lufthansa stated that the next step for in-flight entertain-
ment is personalization and recommendations similar to the ones on Netflix. The motivation
for this is to keep their customers more engaged. The ability to connect with a personal device
and extended connectivity such as Wi-Fi are also future possibilities to increase the personal-
ization. A connected device, or a companion application, helps bringing a passenger’s viewing
history from one flight to another, suggesting her/him to keep watching an unfinished movie.
The IFE product manager at Lufthansa also comments on future possibilities to dynamically
load content based on passenger data (Garcia, 2016a). There are ongoing discussions on data
collection, mainly used to predict content to keep or discard for next month. Nonetheless,
the same type of data could also be used for machine learning and recommendations (Garcia,
2016b).

13



2. Background

In her thesis, Dynamic airline in-flight entertainment systems using predictive analysis, Hawk
(2018) explores a similar idea, with a strong focus on monetization and value for the com-
panies. She emphasizes the value of having an innovative IFE and explores ways of adapting
them to improve each customers experience. Hawk describes how predictive analysis can be
used to improve the content distribution network, by o�ering more popular content to help
build customer satisfaction but also lower the costs for the airlines. Predictive analysis has
previously been used to forecast demand for flights, estimate fuel consumption, predict travel
preferences and crew activity among other things, and could be extended to IFE systems as
well.

To include the IFE content in the predictive analysis, Hawk proposed three steps:

1. Defining passenger demographics,

2. Integrating airline application with third-party applications and

3. Identifying groups and preferences.

With these steps, personalized recommendations can be done according to the user pro-
file. If a passenger does not complete all of these steps, Hawk’s model will give recommenda-
tions according to destination. The conclusion of the implementation of predictive analysis
is that the content of the IFE directly influences the passengers experience. This means that
companies can save money by o�ering the right kind of content (Hawk, 2018).

14



Chapter 3

Approach

3.1 Methodology
In this thesis, we used the Cross Industry Standard Process for Data Mining (CRISP-DM) model
as a method to conduct the project. CRISP-DM is a structured approach that defines a pro-
cess model, which provides a framework for carrying out data mining projects in a structured
way. This method aims to make the project less costly, more reliable, more manageable, and
more repeatable. The model provides an overview of the life cycle of a data mining project.

CRISP-DM describes six di�erent phases of the process and their tasks. The di�erent
phases can be performed in a di�erent order and it’s often necessary to backtrack to previous
phase and repeat certain actions. This is shown by the arrows in Figure 3.1. The phases are
describes in more detail below (Wirth and Hipp, 2000).

Business understanding. The first phase is focused on understanding the business
and project requirements, in order to design a preliminary project plan. The knowledge can
then be used to define a data mining problem. In this project, business understanding consists
of discussions with the company as well as research of related work, which can be seen in
Section 2.4.

Data understanding. Since the project plan and the data mining problem formu-
lated in the previous phase also needs some kind of understanding of the data, this phase and
business understanding are closely correlated with each other. This phase consists of col-
lecting and getting familiar with an initial dataset. This includes identifying potential data
quality problems and detect subsets that could be of interest. This is done in Section 4.3.1.

Data Preparation. To be able to use the data for modeling, the data needs to be
prepared into the final dataset. This is likely to be performed multiple times and could
include attribute selection, construction of new attributes, transformation of data for the

15



3. Approach

Figure 3.1: CRISP-DM model

modeling tools and data cleaning. We describe the necessary preparation steps in Section
4.3.1.

Modeling. In this phase, a set of modeling techniques are selected. Usually this can be
done in combination with data preparation, since some problems with the data can be found
while modeling. Chapter 5 describes the algorithms and models used throughout our project.

Evaluation. After building one or more models, it is important to thoroughly evaluate
the models and review the steps executed to construct the models. The evaluation methods
are described in detail in Chapter 6.

Deployment. The knowledge gained from the models will need to be organized and
presented to the end user. This could for example be done by creating a report or implement-
ing a system. This report is our result of this step, combined with an implementation of the
model, but it has not been integrated with an existing system.

3.2 Utilities
The tools that we used during the implementation of the models will briefly be described
below.

Hardware. MacBook Pro, 2.8 GHz Intel Core i7 and 16 GB RAM.

Python libraries. We chose python as the main programming language used through-
out the implementation process together with various helpful libraries and modules. Below
we describe the most important ones and how they were used:

16



3.2 Utilities

pandas – We used the pandas library to sort the data in a DataFrame, which is an easy way
to e�ectively handle multiple rows of data (Wes McKinney, 2010).

scikit-learn – We used this Python module for various machine learning tasks throughout the
project, for example to one-hot encode the data and to calculate the cosine similarity
between objects (Pedregosa et al., 2011).

mlxtend – An open source python library for machine learning and data mining tasks. Dur-
ing this project it was used for frequent pattern mining, the Apriori algorithm (Raschka,
2018).

Amazon Web Services. The provided in-flight entertainment data was collected
through SQL queries in Amazon Web Services (AWS). To be able to access this data and run
the models, we used AWS SageMaker1.

1Available at https://docs.aws.amazon.com/sagemaker/

17

https://docs.aws.amazon.com/sagemaker/


3. Approach

18



Chapter 4

Datasets

In this chapter, we describe the di�erent datasets used in this project. These were both data
provided by Tactel as well as public datasets for movies, TV shows and music.

To develop an e�ective recommendation system, it is important to take into account
what kind of data and user feedback is available. None of the datasets used in this project
contain any ratings from users. This means that they only contain implicit instead of explicit
feedback, as explained in Section 2.3.5.

4.1 The Movie Database (TMDb)
For the movie recommendation models, we used the existing TMDb dataset1 with 5,000
movies, consisting of all relevant information needed, such as title, cast, director, genres and
a short overview for each movie.

The dataset is divided into two di�erent subsets of the data, movies and credits, and
therefore the data was preprocessed before it was used to build the models. We combined the
two subsets into one to create a DataFrame consisting of the following columns: Title, Actors,
Director, Genres, and Overview. Figure 4.1 shows the distribution by category.

4.1.1 TMDb API
After creating the first models, the movies which were available on the flights did not exist
in the previously used limited dataset from TMDb. Therefore, we used a Python library
called tmdbsimple to access the TMDb API2 and thereby fetch all movie data necessary for
our combined model3. This enabled us to access the complete data of TMDb, including the

1Available at: https://www.themoviedb.org/
2Available at https://developers.themoviedb.org/
3Available at https://pypi.org/project/tmdbsimple/

19

https://www.themoviedb.org/
https://developers.themoviedb.org/
https://pypi.org/project/tmdbsimple/


4. Datasets

Figure 4.1: Histogram of genres in TMDb dataset

features used in the models mentioned above. This data also included similar information
for TV shows, which made it possible to add this category to the recommendations as well.

4.2 Spotify API
To find the available music content on each flight, we sorted out all music that passengers
had listened to during that flight. We then used the Spotify Web API4 to fetch data for each
item in that list. Using this dataset, we could create models similar to those used for the
movies, and give recommendations for music as well. To fetch the data, we used a Python
library for the Spotify Web API, called Spotipy5.

4.3 In-flight entertainment data
The dataset provided by Tactel contains information about each specific flight, as well as
media data for the passengers interactions with the IFE. Each flight is labeled with a flight
ID which is specific to this dataset and can therefore not be connected in any way to the
airlines data. Because of this, the individual user cannot be identified or connected to a real
person in any way. All individual users are sorted out using a flight ID and a seat number.
Information about the watched movies, podcasts, music and games per passenger can be
listed and associated to one session, i.e. all content interacted with by one passenger during
one flight.

The content is divided into three levels of categories; high level (e.g. ‘Entertainment’),
mid-level (e.g. ‘Movies’) and low-level (‘Latest’). The media type is also stored in another
column, divided into video, audio, or game. This was used to sort the data by the specific
content types.

This dataset was also used to collect the available content on each flight with help from
the flight ID. This enables the models to give recommendations for categories or movies that
actually exist on the passengers flight. The complete selection of content for each flight was
not available during this thesis. As a solution, all the media interacted with at least once
during each flight was collected to create the set of existing media per flight. This means that
some content might be missed, if no passenger had interacted with it.

4Available at https://developer.spotify.com/documentation/web-api/
5Available at https://spotipy.readthedocs.io/en/2.12.0/

20

https://developer.spotify.com/documentation/web-api/
https://spotipy.readthedocs.io/en/2.12.0/


4.3 In-flight entertainment data

The total size of the data is roughly 2.5 TB, or 25 billion data entries. We did the experi-
ments with only one million entries, approximately 200 MB or 0.01% of the total data, due to
limited processing ability of our computers. To increase the ability and accuracy, we explored
di�erent ways to run the created models in AWS SageMaker. However, due to limited RAM
on the available instance at AWS SageMaker, this did not increase the computational ability
of the model, and due to this the experiments were limited.

4.3.1 Exploratory Data Analysis
We carried out an exploratory data analysis to get an idea of the structure of the data, and
how it was cleaned before the future experiments. In this section, we present some statistics
and graphs to explain the spread between di�erent levels of categories.

An initial check with 100,000 data points showed that only 20,366 (20%) out of these
contained any media content information and, out of this share, there was 5,818 individual
passengers who watched any type of media content. Since the only data of interest was where
any type of content had been watched, we filtered the data in the initial SQL query to avoid
this part of unusable data where media_contenttype was empty.

The resulting dataset of one million (1,000,000) data points is the data that we used
for the subsequent experiments. The very low percentage that we actually used of the to-
tal data (0.004%) was due to limited processing power. With one million data points, we
initially extracted 106,074 individual passengers. When removing the items with an empty
category_title, which was the field most interesting to our experiments, this resulted in
a total of 812,400 items and 97,299 individual passengers.

The mean value of number of watched items per passenger was at this point 8.35, but it
was acknowledged that many of these were duplicates, such as the same movie three times in
a row, probably due to play/pause actions by the passengers. We filtered out the duplicates
and we obtained a mean value of 4.66. Removal of di�erent items such as ‘Welcome Screen’,
‘AD’ and similar was also required. This lowered the number of individual passengers who
actively used the screen to watch media to 86,364. The mean number of watched items per
passenger was slightly decreased to 4.37.

The following lines show one example of the structure for a single data point:

["Crazy Rich Asians", "video", "Entertainment",
"Movies", "Latest", "Business",
"2018-12-08T06:18:47", "English", "20181208"]

Each item contains information such as date, movie title, category, and parent categories,
see further description below. One session, identified by flight ID and seat number, contains
a list of items like this. The dataset contains more columns, but these are most valuable
during this project:

media_title – title of the media. Could be either movie title, artist name, song name or
TV episode title depending on the media system used for the current flight;

media_contenttype – the content type of the media, could be either audio, video or game;

category_parent_parent_title – highest level of category, typically ‘Entertainment’;

21



4. Datasets

category_parent_title – mid level category, for example ‘Movies’;

category_title – lowest level category, for example ‘Latest’, ‘Kids’, ‘New Releases’, ‘TV’;

starttime – the time when media content was started, could be used to order all watched
content by each passenger;

language – media language or subtitles where applicable;

date – the date of the flight.

We calculated the graphs below with the dataset containing ten million (10,000,000)
data points, which is 0.04% of the total data, to get a broader perspective compared to above
mentioned statistics. Figures 4.4, 4.5, and 4.6 show the most popular categories for the three
levels of categories. The di�erent categories can vary between flights and their media system,
and similar categories can be seen but with di�erent names in the dataset, for example ‘New
Releases’ and ‘Latest’.

Figure 4.2: Number of watched content items per passenger

Data preparation
After looking at the statistics of the complete data as described in Section 4.3.1, we removed
every data entry without any media content to create more e�cient model computations as
these were not usable for predicting recommendations. To be able to give useful recommen-
dations, we also removed some content such as advertisements and welcome screens before
training the models, as these were not considered helpful recommendations. A movie might
appear several times for the same user, but we removed duplicates like this to not a�ect future
models.

22



4.3 In-flight entertainment data

Figure 4.3: Histogram of media content

Figure 4.4: Histogram of top level category

23



4. Datasets

Figure 4.5: Histogram of mid-level category

Figure 4.6: Histogram of lowest level category

24



Chapter 5

Algorithms and Models

In this chapter, we describe the algorithms used and the models which we created. This is
divided into three main parts:

1. Content-based recommendations describes the calculations of movie similarity,

2. Market basket analysis uses data mining to create rules for correlations between items,
and lastly,

3. These two models are then combined to create two levels of recommendations.

5.1 Content-based recommendation
The first step was to implement a recommendation system which focused on movies. We
motivate this choice in reference to Hawk (2018) who mentions that this is the most popular
activity as on-board entertainment for long-haul flights according to the IATA Global Pas-
senger Survey from 2016. Later on, we adapted the same model for music and TV shows as
well, to be able to give recommendations that covers more areas.

5.1.1 Metrics for similarity
We assessed two di�erent metrics for distance measurement, cosine similarity and Euclidean
distance.

Cosine similarity measures the angle between two vectors, and is calculated as the dot
product of two normalized vectors, as shown in Equation 5.1. (Li and Han, 2013)

Similarity(A, B) =
A · B

‖A‖ ×‖B‖
=

∑n
i=1 Ai × Bi√∑n

i=1A2
i ×

√∑n
i=1 B2

i

(5.1)

25



5. Algorithms and Models

Euclidean distance on the other hand, measures the ordinary distance between two points,
and can be compared to measuring with a ruler in two- or three-dimensional space (Huang,
2008), shown in Equation 5.2.

Distance(A, B) =

√√ n∑
i=1

(Bi − Ai)2 (5.2)

Some argue that using cosine similarity as distance measurement is more beneficial than
Euclidean distance when the length of the items is not of importance. The reason for this is
because cosine similarity measures the angle between two vectors and not the distance like
Euclidean distance does. This is applicable to our models since it doesn’t matter if the vectors
have the same amount of, for example, actors. It is more important if the di�erent vectors
have one or more actors that are the same.

We assessed both metrics when creating the models in order to prove the theory that
cosine was the right choice. To be able to do a quick comparison, we used an approach
inspired by Tang et al. (2020) who created the Weighted-PathSim, to see how well the model
gave recommendations of a movie that has sequels. For this test, we used the movie Harry
Potter and the Philosopher’s Stone as the initial movie. For the first attempts, the model using
cosine similarity recommended five other Harry Potter movies amongst the top 10 movies. In
contrary, the model using Euclidean distance recommended none of the other Harry Potter
movies. This experiment strengthened the decision to use cosine similarity for future models.
To evaluate our approaches further and see which model performed best, we carried out
evaluation tests on 10 test users.

5.1.2 One-hot encoding
We first encoded the public datasets’ di�erent rows using one-hot encoding. In this way, the
system could recommend the movies using similarities such as same director, actors, gen-
res and words in a plot description. One-hot encoding means translating the values in the
di�erent rows into a binary vector, where a 1 stands for match and a 0 for no match.

An example of how a one-hot encoded DataFrame for genres look like is shown in Fig-
ure 5.1. In this figure, we can see that movie with index zero, has the genre Action and Adved-
nture, but not Animation or Comedy etc. By comparing the di�erent movie vectors, we can
detect and calculate similarities. The cosine similarity was calculated separately for each
one-hot encoded vector (genres, director, actors). Next, we calculted the mean value of all
the cosine similarities, which made each vector a�ect the model equally (Zhang and LeCun,
2017).

Figure 5.1: One-hot encoding on genres

26



5.2 Association rule mining

5.1.3 Word Embeddings
Next, we explored a method for comparing plots. As an extension to one-hot encoding, we
used word embeddings to translate the plot for each movie. The goal of using word embed-
dings is to connect words that often occurs in the same context and are “similar” to each
other. It allows the words to be represented as a dense vector. However, one-hot encoding
was kept for directors, actors, and genres, since the di�erences of the plot recommendations
were the most interesting to evaluate further. We tried out two di�erent approaches to word
embeddings that are described below.

GloVe. To create a vector representation of the plot description of the movies, we used
the unsupervised learning algorithm GloVe. The GloVe algorithm has been pre-trained on
word to word co-occurrence statistics from a corpus, which shows how frequently words
co-occur with one another and gives a representation with linear substructures of the word
vector space. The intuition is that the ratios of word to word co-occurrence probabilities
have some kind of meaning of how the words can be encoded. We applied these pre-trained
word vectors and used them on the plot descriptions to be able to compare the similarity
between the plots (Pennington et al., 2014).

Sentence-BERT. S-BERT is a technique developed for complete sentences instead
of individual words. It is a modification of the pre-trained Bidirectional Encoder Representa-
tions from Transformers (BERT), which have learned contextual relations between words in a
text. However, S-BERT is optimized for sentences and has obtained better results compared
to other methods. The initial approach, BERT, proved slowly when computing similarity
between longer texts, and S-BERT was chosen due its performance and speed.

Reimers and Gurevych (2019) described how the same computational task can be reduced
from 65 hours with BERT to 5 seconds with S-BERT. The model reached this improvement
in speed by creating Siamese and triplet networks, which makes the sentence embeddings
comparable with cosine similarity. S-BERT has been trained on multiple datasets and tested
on multiple common semantic textual similarity tasks and shows improvement over multi-
ple previous techniques, such as average BERT embeddings and average GloVE embeddings,
which was used in the previous approach.

5.2 Association rule mining
Association rule mining, also called rule-based collaborative filtering or market basket anal-
ysis, was first introduced for supermarket data to predict which items are frequently bought
together. This enables marketers to give more accurate advertising and placement in a store.

Market basket analysis uses data over multiple transactions, in this case movies and other
content watched during a flight, previously described as a session. The transactions contains
multiple items bought or watched together, and these can be used to find patterns over fre-
quent items with positive or negative dependence to each other. A rule is of the format:

X → Y,

27



5. Algorithms and Models

where X (also called the antecedent item) and Y (also called the consequent item) is one or
more items as for example:

{Love Actually, About Time}→ {Bridget Jones’s Diary}.

Multiple factors are relevant in calculating and comparing the most relevant rules (Tan
et al., 2018):

1. Support is the fraction of the sets which contains both X and Y , which can be set to a
minimum to limit the number of calculations. See Equation 5.3.

Support(X) =
|tεT ; X ⊆ t|
|T |

(5.3)

2. Confidence is how often Y appears in sets with X and can be used to sort the results
in descending order to get the most confident rules first. See Equation 5.4.

Confidence(X ⇒ Y ) =
Support(X ∪ Y )

Support(X)
(5.4)

3. Lift is used to measure the independence between X and Y . If the lift is equal to 1, X
and Y are independent from each other. A lift > 1 indicates dependence while a lift < 1
indicates negative dependence. See Equation 5.5.

Lift(X) =
Support(X ∪ Y )

Support(X) × Support(Y )
(5.5)

4. Conviction describes the frequency where X occurs without Y , and can be used to
measure how often a prediction would be wrong. See Equation 5.6.

Conviction(X ⇒ Y ) =
1 − Support(Y )

1 −Con f idence(X ⇒ Y )
(5.6)

5. Leverage is a comparison of the frequency of X and Y together and if they were statis-
tically independent. It results in a value between -1 and 1, where 0 indicates indepen-
dence. See Equation 5.7.

Leverage(X ⇒ Y ) = Support(X ∩ Y ) − Support(X) × Support(Y ) (5.7)

To limit the necessary calculations, we can set a threshold called minimum support,
min_support, which is defined as follows for a transaction base T , where T = {T1, ...,Tm}.
The support of an itemset X ⊆ I is the fraction of transactions in T , of which X is a subset.
All itemsets with higher support than minimum support are considered frequent itemsets
(Aggarwal, 2016).

28



5.2 Association rule mining

5.2.1 Apriori
Apriori is one of the earliest algorithms for frequent pattern mining and market basket anal-
ysis, and can be used to create association rules. It uses joins to generate candidates from
frequent patterns appearing in the analyzed transactions. It is e�cient due to the fact that
every subset of a generated frequent pattern is also considered frequent, and also by joining
two itemsets with k − 1 items in common. E.g.

{i1, i2, i3} and {i1, i2, i4}

have two items in common and can together create

{i1, i2, i3, i4},

which will be considered a candidate as it might be frequent compared to the minimum
support. Another reason to the e�ciency of the algorithm is the pruning of subsets. If

{i1, i2, i3}

is not considered frequent, then
{i1, i2, i3, i4}

can be pruned without further computations.
Figure 5.2 shows the pseudo code for a recursive Apriori algorithm which implements

the above mentioned techniques (Aggarwal and Han, 2014).

Figure 5.2: Apriori algorithm

Implementation
We created the association rules using the Apriori algorithm in multiple experiments below.
During these experiments, we altered di�erent factors to compare the di�erent results, such
as min_support, field of interest, ascendant item, and also size of dataset.
We tried two di�erent Python libraries with support for Apriori: apyori and mlxtend, but

29



5. Algorithms and Models

we found Apyori to be too slow to work with larger datasets, so we calculated all numbers
below using mlxtend (Raschka, 2018).

We computed the accuracy by comparing a given recommendation to the last watched
item by the passenger, which is further described in Section 6.2. We considered every rule
with lift above 1 valuable for the recommendations since this indicates a dependency between
the items, and we sorted the results out in descending order after confidence.

We varied the minimum support to see di�erences in accuracy, but since a lower mini-
mum support creates more number of rules we preferred to keep this value considerably low,
to be able to cover more categories with the created rules.

Figure 5.3 shows an example of how the rules look during an experiment. The columns
and their meaning are explained in Equations 5.3–5.7.

Figure 5.3: An example of the sorted Apriori rules

5.3 Combination of models
In the last step, we combined the two approaches, content-based and market basket analysis,
into one final model. We chose the movie recommendation model with the best feedback
from our evaluation tests, further described in Chapter 6, and the Apriori model with the
best overall accuracy. In this combined model, two categories were first recommended by the
Apriori model, based on the watched item. A check was performed to see if any of these two
categories existed on the current flight, since the categories varied depending on the flight.

Secondly, a list of all the content during that flight was collected. If the recommended
categories were available on that flight, the list would be created from the content in those
specific categories. However, if they were not available on this flight, the list would then be
consisting of all content on that flight instead. If the previously watched item was a movie,
TV show or music, the next step was to apply this item into the content-based model. By
using the TMDb and Spotify Web API, as described earlier, information about all the content
could be fetched and applied to the content-based model. It was then possible to get a list of
the recommended movies and TV shows or music available on that flight for that watched
item. These two recommendations, the two categories and the specific items, could then
both be presented to the passenger.

30



5.3 Combination of models

5.3.1 Adding model for TV shows
When integrating the TMDb API into our models, data for TV shows also became easily
available. We structured this data in the same way as the movies, with the same fields, i.e.
actors, directors, genres and overview. This enabled TV shows to simply be added to the
already existing movie model, and recommendations for both types could be interchangeable.

5.3.2 Adding model for music
When combining the models, we found it desirable to complement the models with recom-
mendations for music as well since this was also shown to be a popular category. Therefore, we
used the public Spotify Web API to fetch information about each track. We then applied the
information to the models that were already created for the movie recommendation. How-
ever, this model would only compare the genres of the artist or track, and not other attributes.
We therefore handled music separately, since this data did not include the same information
as the movies and the TV shows, and the genres of music and movies were di�erent.

31



5. Algorithms and Models

32



Chapter 6

Evaluation

6.1 Content-based recommendation
To evaluate the content-based recommendations, we used two di�erent evaluation methods.
The two di�erent approaches are presented and described below.

6.1.1 Initial evaluation
A di�culty with evaluating recommendation systems is that it is hard to know if a recom-
mendation is good or bad without ratings. Therefore, we made a fast and simple initial eval-
uation by taking inspiration from Tang et al. (2020), the creator of the Weighted-PathSim.
In this approach, we used a movie with sequels in the models to see that the movie sequels
appeared in the recommendations, for example Harry Potter. This means that when creat-
ing recommendations for a Harry Potter movie, preferably the other Harry Potter movies
would be included in the recommendations. However, a more accurate approach of evalua-
tion is possible to assess by a click-through experiment, which was carried out later during
the project.

6.1.2 Model evaluation
Next, we evaluated the three content-based models using an interface and ten test users to
get a click-through rate (CTR) to be comparable to other models for further evaluation.

We created a simple interface using the standard GUI Python package Tkinter. The inter-
face consisted of a drop down menu, where the test user could choose between ten di�erent
movies, from di�erent genres. After selecting a movie, the user was presented with ten sug-
gested recommendations of new movies, with associated keywords and image of the movie.
The test user could then, for each of the suggested movies, decide if they would consider to

33



6. Evaluation

watch it, by choosing yes, no or maybe. The user’s response was registered and saved in a sep-
arate file. This procedure was then repeated for all three of the models using the same movie,
in order to compare the results of how good the recommendations were for that movie.

The test was performed twice on the same test user but with two di�erent movies. The
reason for this was to avoid results too heavily reliant on the recommendations of individual
movies.

The points were distributed so that a yes gave 1 point, a maybe 0.5 points and 0 points for
a no. The argument for not giving -1 point for a no was that a no doesn’t necessarily mean that
the recommendation is bad, and therefore should not be punished with deducted points.

To measure the accuracy, we computed the mean value for each model with a maximum
score of 10 and a minimum value of 0. Each test was performed in a random order to avoid
biased results as much as possible. Figure 6.1 shows the test interface.

Figure 6.1: The user test interface showing the recommendations for
the movie The Avengers.

6.2 Association rule mining
We calculated the accuracy of the association rule mining models by comparing the recom-
mended item to the last item watched by the passenger. A correct prediction corresponds to
when these two items match. All initial calculations were done on the same set of data, with
a train set size of 80% and test set size of 20% of the total data, randomly selected for each
run. The data was sorted and grouped by each passenger first after the data was divided. We
used the train set to create the rules, and the test set to evaluate the created rules.

As mentioned earlier, we removed duplicates from the same passenger, since for example
a paused and played movie, will show as two separate items and therefore a�ect the results.
As also mentioned earlier, the main parameters that were varied during the di�erent experi-
ments were the min_support, representing how big percentage of the users that watched the
included categories, and the antecedent item, which item the recommendation was cre-
ated from. This item could either be the second to last watched item [-2] or the first watched

34



6.3 Combined model

item [0].
To not make the result dependent on only one dataset, we performed the experiments

on several datasets. All these experiments were made with randomised datasets with one
million entries, to compare and make sure that the numbers turned out fairly similar. We
also made experiments with larger datasets, since an increase in data usually leads to better
results. However, for these experiments, the min_support could not be set to the desired
level, and instead had to be higher. Finally, another attempt was made where we instead
beforehand filtered out every data item without any category_title, which would result
in a dataset where all data points could be trained on. However, this did not make any
significant di�erence in accuracy compared to the first dataset.

When comparing two datasets, both containing one million entries, there were quite a
big di�erence in the number of individual passengers. Therefore, we chose the dataset with
the highest total number of passengers, since this dataset gave the most variation and created
the highest number of Apriori rules.

6.3 Combined model
The final model is a combination of the previous models with the best obtained results. To
evaluate the combined model, we used a similar approach as for the Apriori model evaluation,
i.e. comparing the recommended movie/s to the actual last watched movie. The rules for
category recommendations are created from the total training data. However, this evaluation
method could only be done on a limited part of the test data since the evalutaion required a
lot of computation. Therefore, a limited, random slice of the test data was used to run the
evaluation tests. We decided to use a test set size of 100, 500 and 1000 data points.

35



6. Evaluation

36



Chapter 7

Results

In this chapter, we will present the findings from the content-based recommendations, as-
sociation rule mining recommendations and the final combined model. These findings are
retrieved from the evaluation methods described in the previous chapter.

7.1 Content-based recommendation
The results from the evaluation tests can be seen in Table 7.1.

model mean accuracy
One-hot encoding 66.00 %

GloVe 67.75 %
S-Bert 63.23 %

Table 7.1: Results from the evaluation tests of the content-based
models

7.2 Association rule mining
In this section, we present the results from two baseline models as well as the results from
our Apriori models.

7.2.1 Baseline model
To be able to compare our results from the di�erent models, two versions of a baseline model
were created. The first baseline model recommends the most popular category_title

37



7. Results

of the current dataset to everyone, then comparing this to the last item watched by each
passenger. This model resulted in an accuracy of 0.18076, ∼18%.

The second baseline model recommends the most popular category_title of each
flight to passengers on that particular flight. This resulted in an accuracy of∼43% on category
recommendations. This was however decided to be an unfair comparison because of two main
reasons:

1. It is impossible to create rules or models for individual flights in the following exper-
iments due to very limited data.

2. The information about the most popular content for each flight will not be available
during the flight, only after. It will in practise be impossible to implement.

7.2.2 Apriori results
The results from the evaluation of the Apriori models are collected in the tables below. The
tables present a few di�erent values, which are explained further below.

• min_support – the minimum support, see Equation 5.3.

• antecedent item – indicates if the recommendations were based on of the first item
watched [0] or the second to last item watched [-2].

• correct predictions – the number of correct predictions.

• total checked – the number of rules the model was able to create and compare, i.e.
when a rule could be found for the antecedent item. Varies mainly due to the minimum
support, since not all items pass this limit which results in fewer rules.

• all – the total number of items passed through to try to make recommendations.

• accuracy (total checked) – number of correct predictions out of the rules that were
possible to make.

• accuracy (all) – the total number of correct predictions out of all items tried.

With a min_support of 0.001, 166 rules were created for 1114 categories, which indicates
that many categories were not covered during the recommendations. However, when min-
_support was decreased to 0.0005, the number of rules went up to 474.

Since we discovered an increase in accuracy when the min_support was lowered, seen
in Table 7.2, we experimented with even lower min_support. However, due to limited pro-
cessing power, a support lower than 0.00025 for one million data points was not possible
with the tools available. After reaching this limit, we made an attempt to compute this using
AWS Sagemaker instead. Due to the limited RAM of the available AWS instance, this did
not give any better results, and that is the reason why no result of lower minimum support
has been calculated.

We could see small increases in accuracy due to changes of di�erent factors during the
first experiments. These experiments include;

38



7.2 Association rule mining

1. Removing duplicates before collecting the last watched item;

2. Running on di�erent sizes of datasets;

3. Running on di�erent filtered datasets, for example where category_title 6= null.

All tables below are created after these initial experiments, and are therefore run with
the same foundation and instead varying other factors such as min_support etc.

Tables 7.2 and 7.3 show the results from the di�erent runs of the Apriori model, where one
category has been recommended and compared to the actual last watched category. It can be
seen that the accuracy is improved as the min_support decreases, as well as the number of
total checked rules, which indicates that more rules are created. This is desirable as a model
with fewer rules would not be able to give recommendations to all antecedents. The accuracy
of category_parent_title, Table 7.3, is slightly higher compared to category_title,
Table 7.2, which was expected due to fewer and broader categories.

Tables 7.4 and 7.5 show the results from tests with recommending two or three top cat-
egories. These experiments were done only on category_title and not on any higher level
categories. We decided that the recommendations would be more useful for category_title
compared to category_parent_title, which only included less specific categories such
as Movies and similar.

min_support antecedent item correct predictions total checked all accuracy (total checked) accuracy (all)
0.01 [0] 279 10569 43369 2.640 % 0.643 %
0.01 [-2] 299 1299 43301 23.02 % 0.691 %

0.001 [0] 1539 32412 43335 4.748 % 3.551 %
0.001 [-2] 1536 5251 43126 29.25 % 3.562 %

0.0005 [0] 1838 36058 43359 5.097 % 4.239 %
0.0005 [-2] 1744 6198 43296 28.14 % 4.028 %

0.00025 [0] 1982 38929 43252 5.091 % 4.582 %
0.00025 [-2] 1894 7114 43177 26.62 % 4.387 %

Table 7.2: Apriori findings for category_title

min_support antecedent item correct predictions total checked all accuracy (total checked) accuracy (all)
0.01 [0] 1285 23123 43009 5.557 % 2.988 %
0.01 [-2] 1339 2941 42966 45.53 % 3.116 %

0.001 [0] 2568 40512 42975 6.339 % 5.976 %
0.001 [-2] 2581 5953 43151 43.36 % 5.981 %

0.0005 [0] 2695 41122 42826 6.554 % 6.293 %
0.0005 [-2] 2617 6103 42791 42.88 % 6.116 %

0.00025 [0] 2683 42231 42817 6.353 % 6.266 %
0.00025 [-2] 2706 6351 42828 42.61 % 6.318 %

Table 7.3: Apriori findings for category_parent_title

39



7. Results

min_support antecedent item correct predictions total checked all accuracy (total checked) accuracy (all)
0.01 [0] 376 10590 43160 3.551 % 0.871 %
0.01 [-2] 375 1322 43182 28.37 % 0.868 %

0.001 [0] 1861 32086 43143 5.800 % 4.314 %
0.001 [-2] 1926 5252 43269 36.67 % 4.451 %

0.0005 [0] 2238 36008 43288 6.215 % 5.170 %
0.0005 [-2] 2230 6321 43516 35.28 % 5.125 %

0.00025 [0] 2675 39007 43140 6.878 % 6.201 %
0.00025 [-2] 2641 7190 43255 36.73 % 6.106 %

Table 7.4: Apriori findings for two recommended categories

min_support antecedent item correct predictions total checked all accuracy (total checked) accuracy (all)
0.01 [0] 386 10533 43375 3.665 % 0.890 %
0.01 [-2] 367 1313 43007 27.95 % 0.853 %

0.001 [0] 2097 32016 43091 6.550 % 4.866 %
0.001 [-2] 2082 5173 43295 40.25 % 4.809 %

0.0005 [0] 2550 35878 43276 7.107 % 5.892 %
0.0005 [-2] 2569 6315 43310 40.68 % 5.932 %

0.00025 [0] 3037 38789 43278 7.830 % 7.017 %
0.00025 [-2] 2971 7225 43098 41.12 % 6.893 %

Table 7.5: Apriori findings for three recommended categories

7.3 Combined model
The results from the combined model are presented in Table 7.6. A correct prediction corre-
sponds to if any of the three recommended items are a match with the last watched item. In
this model we used both the movie recommendation model with GloVe embeddings, as well
as the Apriori model with min_support 0.00025 and two recommended category_title.
To detect possible irregularities in the results, we ran this evaluation a couple of times.

number of items min_support checked items correct predictions accuracy (total checked) accuracy (all)
100 0.00025 54 5 9.259 % 5.000 %
500 0.00025 279 60 21.51 % 12.00 %

1000 0.00025 515 8 1.553 % 0.800 %

Table 7.6: Results for the combined model

The structure and columns of the table are as followed;

• number of items – the total size of test set.

• min_support – the minimum support, see Equation 5.3.

• checked items – the number of movies, TV shows and songs the model was able to
make recommendations for.

• correct predictions – the number of correct recommendations compared to the actual
last item watched.

40



7.3 Combined model

• accuracy (total checked) - the number of correct predictions out of the item recom-
mendations that were possible to make.

• accuracy (all) - the number of correct predictions out of all items in the test set.

41



7. Results

42



Chapter 8

Application

Figure 8.1 shows the original application interface. It has a general start screen with the less
specific categories, such as Movies. When entering Movies, the user will see a slide menu of
movie categories such as Action, New releases, etc. When a movie ends, the passenger will be
taken back to the start screen shown in Figure 8.1.

Figure 8.1: The original IFE screen

In the section below, we propose a few suggestions on how the recommendations could
be integrated into the existing system.

43



8. Application

8.1 Interface suggestions
The final model was not integrated into an existing IFE system due to limited time and
limited access to the necessary tools, but below are some suggestions on how the recommen-
dations could be presented.

Figure 8.2 shows the IFE start page with two recommended low level categories in ad-
dition to the standard higher level categories. Due to the functionality of our model, this
requires at least one previous interaction with the IFE, which could be a movie, TV show or
a song.

Figure 8.3 shows a suggested implementation of an explicit feedback system, where this
screen appears after finishing watching a movie. The user is given the option to rate the
movie as a similar movie would not be desired to recommend if the passenger did not like
the first movie. If the user chooses thumbs up, the two most similar movies according to the
content-based model available on the current flight are recommended, which can be seen in
Figure 8.4.

Another suggestion is to rank all the movies in an entered category according to similarity
from the previous watched movie. This is not shown in the interface suggestions, but could
be handled by our model which already calculates similarity for all movies on the same flight,
and these could be sorted into descending order within each category.

Figure 8.2: IFE startpage with two personalized recommendations
of categories

44



8.1 Interface suggestions

Figure 8.3: Rating option after finishing watching a movie

Figure 8.4: Recommended movies after finishing watching a movie

45



8. Application

46



Chapter 9

Discussion

Most of the previous personalization attempts for in-flight entertainment systems have fo-
cused on pairing the IFE with various applications or social media to find the demographics
to be able to group similar passengers together. Therefore, after discussion with Tactel, we
decided to focus on the passengers who choose not to connect any devices or social media to
the IFE, the so called cold-start.

We wanted to find a suitable solution for these users as well, even if the recommendations
could not reach the same level of personalization as for a logged-in user. We also wanted to
steer the focus away from demographics as these often become stereotypical.

9.1 Comparison of content-based recommen-
dation models

The mean values from the evaluation tests showed that model using GloVe for word embed-
dings on the plot gave the most reliable recommendations, since the suggested movies were
considered to be better recommendations by the test users. This is the reason this model
was used in the final combined model as well. However, the results from the three di�erent
models were very similar and it only di�ered a very small percentage between them.

We expected S-BERT to be the best model for the content-based recommendations, due
to S-BERT being compared to GloVe during the creation of S-BERT and proving better at
these tests, as seen in Reimers and Gurevych (2019). When comparing only plot descriptions
directly to each other during implementation, we perceived a strong similarity almost im-
mediately using S-BERT, but during the evaluation tests the model using GloVe embeddings
performed the best. To be taken into account, our tests were very limited, but they also did
not only test the plot embeddings, but rather a combined result. This could explain this re-
sult. A conclusion could also be that the genres, actors and directors outweighs the plot when
choosing a movie.

47



9. Discussion

In retrospect, we also discovered that sometimes the test user had a hard time knowing
whether or not they would consider watching the recommended movies. This could have been
improved by adding more information about the movies in the test interface, for example
which actors were starring in the movie or more focus on the movie posters.

9.2 Analysis of Apriori model
When evaluating the Apriori model, we chose to look at two di�erent calculations of ac-
curacy. The reason for this was to show how many failed recommendations were due to no
existing rules rather than a false prediction. First, we looked at the total number of correct
recommendations for all items. This resulted in a top accuracy of ∼6-7 % for our best model.
This did unfortunately not exceed the baseline model which recommended the most popular
category to everyone. Next, we looked at the number of correct recommendations for the
items that we were able to create rules for, which resulted in an accuracy of ∼30-40 %. This
means that about one third of the time that we manage to create a rule, it was correct. This
result exceeded the baseline model. Considering the large di�erences in accuracy, it might
be a good idea to focus on giving more accurate recommendations only when it is possible.

Antecedent item. When alternating between creating the rules based on the first
item or second to last watched item, it was found that the accuracy was in most cases higher
when using the second to last item. We believed the reason for this was that the second to
last item and the last item, that we are trying to predict, are closer to each other in time than
the first item, since they are watched after each other. Therefore it is more likely that they
are more similar. It was therefore decided to use the second to last watched item for the final
combined model.

Number of categories. We also found that the recommendation of three categories,
compared to one or two, resulted in a slight improvement in accuracy. This was probably
due to that the probability of recommending the right category is higher if we recommend
more categories. However, to make the recommendations more specific, we decided to use
the model that recommended two categories. This was also partly a design choice, as three
recommendations looked more cluttered in the interface.

Level of recommendation. We made recommendations for category_title,
(lowest level category), and category_parent_title, (mid level category). The results
showed that the recommendations using category_parent_title had higher accuracy.
However, we believe that the reason for this is due to the categories are less specific, such as
‘Movies’ instead of ‘Action’. Therefore, category_title was used in the final model since it
was desired to have more specific recommendations. On the other hand, category_parent-
_title could act as a substitute when a category_title recommendation can’t be done,
since the total number of items covered is higher. We also tried to make Apriori recommen-
dations using media_title, but due to the much higher amount of di�erent items, this was
not successful.

48



9.3 Combination of models

Minimum support. Comparing the di�erent models, the results proved that when
using more data min_support had to be increased to be able to run on our computers.
However, when increasing the min_support, less categories met the requirements to be
part of the rules. In most cases, this results in a lower total accuracy and therefore it was
found that the best approach was to use one million data entries and a min_support of
0.00025. However, in Table 7.3, we can see an increase in the total checked accuracy when
the min_support was higher. In these cases, we have a higher percentage correct recommen-
dations, but the variation among the recommended categories will be very low. We strive to
recommend many di�erent categories and therefore, we decided that a lower min_support
would give us more value.

In conclusion, we believe that the Apriori model is a good approach for creating person-
alized recommendations in the IFE. Using patterns in other passengers previous behavior to
create rules for recommendation, is shown in this project to give useful results.

9.3 Combination of models
To be able to provide more specific and interesting recommendations, we combined the two
models, content-based and market basket analysis, into one final model. This was carried out
by sorting the movies in the recommended categories according to similarity to the previously
watched content.

To calculate the accuracy, we used the same approach as for the Apriori models, by com-
paring the recommended item to the last watched item. The same problem as in previous
attempts still stands, i.e. a recommendation could still be appreciated by the passenger, and
the result does not necessary reflect the real-life experience of the users. As seen in Table
7.6, the highest accuracy obtained was 12 % for the overall accuracy and 21.51 % for the to-
tal checked. However, this test was performed with a test set of only 500 data points, and
therefore one correct prediction corresponds to a high percentage of the total items. We did
expect low results, since the probability of a match for a predicted media item was lower due
to a lot more items compared to a category recommendations as in previous models. Due to
the long execution time, the tests are very limited in size, and we feel that the tests preferably
should be run on more data before being to heavily relied on.

Even with slightly incomplete test results, we argue that a combination of the models
still is an improvement, since it is merely an extension of the category recommendations.
Now we are also able to rank the movies within each category in descending order according
to similarity, as well as give two movie recommendations after a previous movie has been
watched, as portrayed in Figure 8.4.

9.4 Limitations
One of the limitations of this project was that we did not have access to the real user data
from the in-flight systems until halfway through the project timeline. This was the main
reason why we started with public data sets and focusing on movie recommendation models
initially.

49



9. Discussion

If we would have had access to the real data earlier, more discoveries related to data
mining may have been found. We were aware of this problem from the start and therefore
planned for the uncertainty of not knowing when we would receive the data. However, the
goal would still be a hybrid model, but we might have started in the opposite end, first with
market basket analysis and then creating the content-based recommendations. So in the end,
the results would probably be similar to the results of our current approach.

When we received access to the real user data from the IFE systems, we could start ex-
ploring and preparing the data. During this phase, we discovered other limitations. Firstly,
there were no recorded data of in-flight shopping or any meal orders and similar, which were
part of our initial plan to include. But unfortunately, this had to be skipped completely since
the lack of information made it impossible. Secondly, a dataset of each flights total content
selection was also not available, and therefore content that no passenger had interacted with
will not be covered by our models.

9.5 Future work
This subject provides a lot of possibilities of further experimentation and some of them will
be discussed below.

9.5.1 Testing
We believe that the best way of evaluating recommendation systems would be to let peo-
ple test the system themselves, preferably in a live A/B testing method. This would give the
opportunity to compare a personalized system with recommendations to a non-personalized
system. This was not available to us during the thesis work mainly due to security reasons and
long deployment phase. Since there is no easy way to measure how good a recommendation
actually is, this would provide a more accurate result that shows whether the recommenda-
tions are used by the passengers or not.

9.5.2 Model improvement
To improve the content-based recommendations, actor embeddings could be added. We
decided not to do this, since it would require too much time to implement, and it was not
the main focus of our project.

The decision to not explore the solution with a login was taken since it already exists
solutions with that approach. However, this created a cold-start problem. To make the first
recommendations even better, and limit the cold-start problem, a few initial questions could
be asked to put the passenger in a certain category, as proposed by Shi et al. (2017). We did
not test this approach at all, since that type of data could not be retrieved or would require
excessive user testing, and similar solutions already exists. Instead we wanted to explore
personalization for customers that did not pair a personal device or create a login.

Regarding improvements for the model we did implement, one improvement would be to
train the model as more content is watched, and make better recommendations further into
the flight. Another improvement could be to let the user rate the movie etc. after watching.
Right now, we are only assuming that the user likes the movie if s/he have watched it, but

50



9.5 Future work

this does not need to be the case. Adding the option of rating the product could give the
model information about whether the user liked this item or not, and could then instead
recommend something di�erent if the user did not like the item. A proposed solution of this
can be seen in Figure 8.3.

An alternative to ratings could be to take the duration of the content watched into ac-
count when creating the recommendations. If a passenger only watched a movie for a short
period of time, this type of movie might not be of interest for the passenger and therefore
similar movies should perhaps not be recommended.

9.5.3 Additional areas
From the beginning, the plan was to include in-flight shopping, meals, beverages and other
available products to achieve a broader perspective of each passengers flight and timeline.
However, there was no collected data of this, which made it an impossible addition to our
models. This would be an interesting area to explore if this type of data becomes available.

One future goal would also be to make the recommendations more integrated with each
other. As of now, the model gives movie and music recommendations separately, but we
believe with more data and training, it would be possible to incorporate all areas with each
other. Hopefully, some interesting suggestions can then be seen, for example a certain drink
combined with a specific movie.

51



9. Discussion

52



Chapter 10

Conclusion

Most previous approaches to personalize IFE systems have focused on logging on to di�erent
social media, creating an account or downloading an application before boarding. We feel
that this thesis provides a solution for the passengers who are not willing to take these initial
steps. Independently of the results, this is an area worth covering and further explore as it
could lead to more satisfied passengers and higher profit for the airlines.

How can an IFE be personalized during flight with limited infor-
mation? This thesis focused on solving the cold-start problem that arise due to limited
information about the user. This was dealt with by two di�erent approaches. By comparing
the content of the items we could create content-based recommendations. These recommen-
dations only compare the similarities of the items, e.g. the actors in movies, and can in that
way provide recommendations without any information about the user other than the previ-
ous item watched. Another approach explored was market basket analysis, which compares
di�erent users behavior to each other. We created rules based on previous passengers be-
havior, which detect frequent patterns among the user interactions. These two techniques
were found to be a good approach for giving recommendations after one media item had
been watched by the passenger, which we think is a good solution for a system with limited
information.

How effective are the different approaches and can they be com-
bined? The obtained results did not exceed the results from our baseline model, where
the most popular movie was recommended to all passengers. On the other hand, if only pro-
viding recommendations when it is possible, we obtain an improvement in accuracy com-
pared to the baseline. This proves that our model is more e�ective when only giving recom-
mendations we are certain of.

The models worked very well in combination, the association rule mining providing cat-
egory recommendation and the content-based recommendations being able to compare sim-
ilarities between the media items and giving recommendations based on this information.

53



10. Conclusion

What additional feedback system can be used to make the rec-
ommendations more accurate? There are many di�erent techniques that can
be used for creating valuable recommendations, and some have been discussed during this
thesis. However, additionally to the approaches that were implemented, we believe that it
would be complementary to add a feedback system such as ratings and few initial interview
questions in order to receive more information about the user. By rating the previous watched
item, we could detect whether the passenger liked the item or not. Giving recommendations
similar to the first watched item would not be desirable if the passenger did not appreciate it.
Initial interview questions could also be a good way to target the passengers preferences and
some initial recommendations could be made even without any previous interaction with
the IFE. In conclusion, we believe that one approach does not rule out the other and with a
combination of di�erent techniques, more accurate and appreciated recommendations can
be provided.

54



References

Aggarwal, C. C. (2016). Recommender Systems: The Textbook. Springer Publishing Company,
Incorporated, 1st edition.

Aggarwal, C. C. and Han, J. (2014). Frequent Pattern Mining. Springer Publishing Company,
Incorporated.

Garcia, M. (2016a). Airlines target personalization with ife content recommendations.

Garcia, M. (2016b). Ife data informs airline content curation.

Hawk, E. (2018). Dynamic airline in-flight entertainment systems using predictive analysis.

Huang, A. (2008). Similarity measures for text document clustering. In Proceedings of the 6th
New Zealand Computer Science Research Student Conference.

Jawaheer, G., Szomszor, M., and Kostkova, P. (2010). Comparison of implicit and explicit
feedback from an online music recommendation service. In Proceedings of the 1st Interna-
tional Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec ’10,
page 47–51, New York, NY, USA. Association for Computing Machinery.

Kim, H., Katerenchuk, D., Billet, D., Huan, J., Park, H., and Li, B. (2019). Understanding
actors and evaluating personae with gaussian embeddings. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence (AAAI-19).

Koren, Y. (2009). The bellkor solution to the netflix grand prize.

Li, B. and Han, L. (2013). Distance weighted cosine similarity measure for text classifica-
tion. In Proceedings of the 14th International Conference on Intelligent Data Engineering and
Automated Learning — IDEAL 2013 - Volume 8206, IDEAL 2013, page 611–618, Berlin, Hei-
delberg. Springer-Verlag.

Liu, H. (2007). In-flight entertainment system: State of the art and research directions. In
Second International Workshop on Semantic Media Adaptation and Personalization (SMAP 2007),
pages 241–244.

55



REFERENCES

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Piotte, M. and Chabbert, M. (2009). The pragmatic theory solution to the netflix grand prize,
in: Netflix prize documentation.

Raschka, S. (2018). Mlxtend: Providing machine learning and data science utilities and ex-
tensions to python’s scientific computing stack. The Journal of Open Source Software, 3(24).

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using Siamese
BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational
Linguistics.

Researchscape International (2019). Trends in personalization. Technical report, Evergage.

Shi, L., Zhao, W. X., and Shen, Y.-D. (2017). Local representative-based matrix factorization
for cold-start recommendation. ACM Trans. Inf. Syst., 36(2).

Tan, P.-N., Steinbach, M., Karpatne, A., and Kumar, V. (2018). Introduction to Data Mining
(2nd Edition). Pearson, 2nd edition.

Tang, Z., Yang, Y., and Bu, Y. (2020). Weighted-pathsim: Similarity measure for plot-based
movie recommendation. Technical report, University of Illinois at Urbana-Champaign.

Töscher, A. and Jahrer, M. (2009). The bigchaos solution to the netflix grand prize.

Wes McKinney (2010). Data Structures for Statistical Computing in Python. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference,
pages 56 – 61.

White, J. N. (2012). A history of inflight entertainment. Design A�liates, Inc.

Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a standard process model for data min-
ing. In Proceedings of the 4th international conference on the practical applications of knowledge
discovery and data mining, pages 29–39.

Zhang, X. and LeCun, Y. (2017). Which encoding is the best for text classification in chinese,
english, japanese and korean?

56





INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-11

EXAMENSARBETE Smart Personalization for In-flight Entertainment Systems
STUDENTER Sara Trygve, Frida Gunnarsson
HANDLEDARE Pierre Nugues (LTH)
EXAMINATOR Jörn Janneck (LTH)

Smart personalisering av In-Flight
Entertainment-system

POPULÄRVETENSKAPLIG SAMMANFATTNING Sara Trygve, Frida Gunnarsson

In-flight entertainment-system blir allt mer avancerade och större fokus på att ge varje
passagerare en personlig upplevelse kan ses i branschen. Men hur ser möjligheterna
ut för att skapa personliga rekommendationer utan inlogg och utan tidigare data?

Under långflygningar är en inbyggd skärm i
sätet framför varje passagerare en allt vanligare
syn, med innehåll så som shopping, karta över var
du befinner dig och ett utbrett sortiment av me-
dia. Dessa kallas In-flight entertainment-system
(IFE) och tillsammans med Tactel har vi under-
sökt möjligheter till att göra dessa mer personliga
och kunna ge individuella rekommendationer.
En metod som tidigare använts för personalis-

ering av IFE är en mobilapplikation som kan kop-
plas till IFE systemet och måste laddas ner i
förväg. I vårt examensarbete har vi istället valt
att fokusera på att skapa en personlig upplevelse
för passagerare utan den möjligheten.
Detta har vi gjort genom att bygga ett hy-

brid lösning som kan appliceras efter att en pas-
sagerare har interagerat med minst ett objekt på
skärmen. Rekommendationssystemet täcker både
övergripande kategorier och specifika filmer, TV-
serier och musik. Det utgår dels från likheten
mellan olika objekt och dels från mönster i andra
passagerares beteende. Likheten mellan bland an-
nat filmer beräknas med hjälp av kosinuslikhet för
skådespelare, regissörer och genrer, medan en jäm-
förelse mellan filmernas handlingar görs med hjälp
av två stycken word embedding-tekniker, GloVe
och S-BERT.
För att dra nytta av data från tidigare passager-

ares beteende, har vi använt en metod som kallas

Apriori. Genom att studera vad flera andra pas-
sagerare har tittat på under en flygning, upptäcks
mönster mellan olika kategorier som finns ombord,
och det skapas regler för vilka kategorier som ofta
ses efter varandra. På så sätt kan en eller flera kat-
egorier rekommenderas utifrån den förra kategorin
som passageraren tittade på, samt att innehållet
i kategorin kan rankas efter likhet med tidigare
objekt.

För att mäta hur bra våra modeller har
presterat, har vi jämfört vår rekommendation med
det sista objektet som passageraren har inter-
agerat med. Det är inte alltid vi kan skapa rek-
ommendationer utifrån Apriorireglerna, men när
vi lyckas göra det uppnår vi en accuracy på cirka
30 % för kategorirekommendationer.


	Introduction
	Background
	In-flight entertainment
	Personalization
	Recommendation systems
	Collaborative filtering
	Content-based filtering
	Hybrid recommendation systems
	Cold-start problem
	Feedback

	Related work
	Movie Recommendation
	IFE Personalization


	Approach
	Methodology
	Utilities

	Datasets
	The Movie Database (TMDb)
	TMDb API

	Spotify API
	In-flight entertainment data
	Exploratory Data Analysis


	Algorithms and Models
	Content-based recommendation
	Metrics for similarity
	One-hot encoding
	Word Embeddings

	Association rule mining
	Apriori

	Combination of models
	Adding model for TV shows
	Adding model for music


	Evaluation
	Content-based recommendation
	Initial evaluation
	Model evaluation

	Association rule mining
	Combined model

	Results
	Content-based recommendation
	Association rule mining
	Baseline model
	Apriori results

	Combined model

	Application
	Interface suggestions

	Discussion
	Comparison of content-based recommendation models
	Analysis of Apriori model
	Combination of models
	Limitations
	Future work
	Testing
	Model improvement
	Additional areas


	Conclusion
	References

