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Abstract

Training intelligent agents in autonomous robotics is a data-intensive process, but
gathering data from robotic experiments can be a costly and ine�cient process. Robot
simulation on the other hand o�ers an e�cient and consistent way to gather data in-
stead, but can often be inaccurate and fail to capture real world complexities. We look
into the problem of inadequate accuracy in robot simulators by investigating the dis-
crepancies in trajectories between simulation and reality for a Franka Emika Panda
robot. In our experiment we create an extensive dataset with free movements of our
robot, repeat it in simulation, and subsequently use this data to develop a Long-Short
TermMemory architecture that can transfer simulated sensor readings of position, ve-
locity and torque into more realistic ones. Our architecture was able to compensate
for the simulator’s shortcoming: the estimation of torque, and reduced the root mean
square error between simulated and real torque with at least 70%.
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1 Introduction

1 Introduction
We investigate the use of Long-Short Term Memory networks to improve the accuracy of robot
simulators.

1.1 Background
The development of intelligent autonomous robots is often dependent on large amounts of data.
This data is used in reinforcement learning to train an agent given a policy, but gathering great
amounts of data from robotic experiments is a costly and ine�cient process. The alternative is
to simulate a robot and generate data from virtual experiments. Using simulated data, an agent
can be trained with the objective to transfer the learned policy from simulation to the real world.
However, simulation can not produce a perfect model of a robot since the real world contains too
many complexities and irregularities, and if the simulation is too inaccurate it can not be used at
all.

One of the most common approaches to improving simulation is with system identification, where
a mathematical model describing the robot dynamics is developed. This is done by analyzing the
input and output of the robot system during executed tasks and identifying its dynamic parameters.
The parameters are then used for the virtual model in the physics based robot simulation; creating
a calibrated simulation of the robot.

However, the dynamic parameters are only estimated and are never perfect, and the mathematical
models that are used are often unable to capture real world factors such as acquired joint friction
and imperfect robot controllers. To combat this, we propose a state of the art approach called
residual physics learning, that bridges the gap between the flawed simulation and reality. We use
our approach to adapt between the domains of simulation and reality. It is a supervised learning
approach where a model is deployed to estimate the di�erence between a prediction made by a
physics engine and the measured data from a real experiment. As trajectories are not classified, but
predicted, it is a regression task.

We investigate the potential of a residual physics model in a trajectory control task. We use a Franka
Emika Panda robotic arm and execute free space movements, and then repeat the same movements
in simulation. The Panda robot has 7 joints, all equipped with sensors for position, velocity and
torque. The continuous joint-wise measurements of these dynamic variables results in a total of
21 time series for both robot and simulation. This data we refer to as the robot trajectory. The
robot is moved by specifying a target configuration that the robot planner uses to create a plan for
a trajectory that moves from its current configuration to the target one. The plan contains position
and velocity waypoints that the robot controller has to follow when executing the plan. Usually the
plan contains only a dozen of waypoints, not to overcomplicate the execution, which leaves a lot of
room for interpretation by the robot controller. As the simulated and the real robot are controlled
by two di�erent controllers, the di�erences can be substantial.

Since our trajectory data is sequential, we propose a Long-Short Termmemory (LSTM) architecture
for our residual physics approach. The LSTM network has the capability to remember short and
long temporal dependencies that can be useful for making inferences about the behavior of a whole
trajectory. Our problem domain is within sequence to sequence learning, where wemap a simulated
sequence (trajectory) to a real one. We propose a deep, bilayered architecture to handle the high
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dimensionality of this domain. We prove that our model architecture is capable of improving the
simulation of trajectories in a myriad of di�erent robot movements, especially in torque where our
simulation was the most inaccurate.

1.2 Research Question
We try to answer the following question:

can a recurrent neural network, given simulated trajectory data, find an accurate transformation
from a simulated to a real trajectory?

The figure below further illustrates the concept, simulation data is transferred to reality in our
"sim-to-real transfer" model, and the output is an improved version of the simulation, ideally in-
distinguishable to the real robot data.

Figure 1: Simulation data (orange) is improved through the sim-to-real
transfer approach to be more similar to real robot data (green). A torque
trajectory from Joint 7 is magnified for clarification.
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1.3 Related work
Zeng et al. [1] investigates if a robotic arm can learn to throw di�erent objects into boxes. After
a physics engine calculates the velocity to throw the object, a residual (extra) velocity is added on
top of the velocity calculated by the physics engine. This residual velocity is predicted by a convo-
lutional neural network. The residual model outperformed other approaches in terms of throwing
accuracy. Ajay et al. [2] implement a recurrent neural network to predict the residual between
simulated and real data in the case of planar pushing with focus on modelling uncertainty in the
predictions. Using a hybrid model consisting of both a deterministic physics engine and a stochas-
tic neural network was found to generalize better to di�erent objects and required less data to train
compared to purely data driven methods.
Kloss et al. [3] also look into the case of planar pushing, where they use a convolutional neural net-
work to predict a residual velocity based on sensory input. This residual is added to the analytically
calculated velocity. The model is only taking current sensor data into account, e�ectively supple-
menting the physics model. The residual model investigated was found to generalize better and
could learn from less data. However, with enough training data, a purely data driven approach was
in some cases found to perform better.

A very relevant relatedwork is that of Gaz et al. [4], who retrieve dynamic parameters for the Franka
Emika Panda robot using penalty based optimization. They visualize their improved estimation
for torque in one trajectory using their developed dynamic model based on the Newton-Euler al-
gorithm, which seems very promising.

1.4 Contributions
The main contributions from this thesis are:

• An approach to improving robot simulation that does not rely on system identification of
the robot. We introduce a recurrent neural network architecture that is easily deployed in
di�erent robotic systems, and can compensate for particular weaknesses in simulation of
trajectories.

• An evaluation of the ability of our architecture to work with inaccurate simulation, and a
comparison in performance between two di�erent types of loss functions.

• Adeveloped Python pipeline for planning, executing, and recording trajectories on the Franka
Emika Panda robot.

• The work from this thesis became a part of a paper currently in submission for the IROS
2020 conference. The paper elaborates on how our approach can be deployed in a real-time
reinforcement learning application.

The LSTM architecture developed for the submitted IROS 2020 paper was developed jointly by
the author of this thesis and Alexander Dürr. The same architecture used in the paper was used in
this thesis. The rest of the work described was developed separately from the paper by the author.
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1.5 Thesis Overview
Weanalyze the performance of a robot simulator and develop amodel to increase its accuracy. In the
theory section we explain relevant theory for both the robot and our supervised learning approach.
In the sections of implementation and experiment setup we detail the data that was used, and
how it was produced and preprocessed. In the approach section we account for our model design
choices, and present the di�erent models used in the results section. Finally a discussion regarding
the results is presented along with conclusions from this thesis.
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2 Theory
In this section, we begin with introducing the specification of our Panda robot, which is necessary
to understand the results of this thesis. We then detail algorithms used for general robotic planning,
and finally the algorithms used in our model architecture.

2.1 Franka Emika Robot specifications
The Franka Emika Panda robot has 7 joints, each one equipped with sensors to measure position,
velocity and torque.

Figure 2: Franka Emika Panda robot, with joint names for every respective
axis of rotation.

The seven joints of the robot guarantee seven degrees of freedom (dof) in movement. With the
industry standard: 6-dof robot arm, there is free movement and rotation in the three dimensional
space. For the panda robot, an extra joint is added for more flexibility, it allows for the robot to
reach an end e�ector position from several di�erent configurations, and improves its ability to
perform tasks such as picking up and placing small objects, or e�ciently switching between tasks
such as grasping and screwing. With the added degree of freedom the robot has more options
during planning, making it easier to avoid self collisions or violating the robot restrictions. The
added possibilities also bring more complexity and uncertainty to the domain of robot control,
introducing more data-driven approaches to problems that may traditionally be solved analytically.

The joint limits for the panda robot are shown in the table below.

Table 1: Shows the joint limits for position q, velocity q̇ and torque τ

Name Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7
qmax (Rad) 2.8973 1.7628 2.8973 -0.0698 2.8973 3.7525 2.8973
qmin (Rad) -2.8973 -1.7628 -2.8973 -3.0718 -2.8973 -0.0175 -2.8973
q̇max (Rad/s) 2.1750 2.1750 2.1750 2.1750 2.6100 2.6100 2.6100
τ j max (Nm) 87 87 87 87 12 12 12

12
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2.2 Controlling robot trajectories
Robot dynamics
The dynamics of a n-dof robot manipulator can be described by the following equation

M(q)q̈ + q̇TC(q)q̇ + g(q) = τ (1)

where q is a n x 1 long vector of joint values, M the n x n mass and inertia matrix, C the n x n x n
Coriolis tensor, g the n x 1 vector of gravitational force and τ the n x 1 long vector of joint torque.

Finding good values to the parameters of this dynamic system for a robot ensures that the robot
can be controlled e�ectively.

Time parameterization
By interpreting function q(s) in equation (1) as an underlying path of a trajectory, and by including
the relationship to time t, we can di�erentiate q(s(t))with respect to time and derive the following.

M(q)(qss̈ + qssṡ2) + qT
s C(q)qsṡ2 = τ(s) (2)

This can be written in the following form:

a(s)s̈ + b(s)ṡ2 + c(s) + g(q) = τ(s) (3)

where:

a(s) = M(q(s))qs(s)
b(s) = M(q(s))qss(s) + qs(s)>C(q(s))qs(s)
c(s) = g(q(s))

(4)

By demanding that the torque for every joint i is kept within its limits, the following inequality is
yielded.

τmin
i ≤ ai(s)s̈ + bi(s)ṡ2 + ci(s) ≤ τmax

i (5)

Finally, the bounds on s̈ can be written as:

α(s, ṡ) ≤ s̈ ≤ β(s, ṡ) (6)

with
αi(s, ṡ) =

(
ταi − bi(s)ṡ2 − ci(s)

)
/ai(s)

βi(s, ṡ) =
(
τ
β
i − bi(s)s2 − ci(s)

)
/ai(s)

(7)

Now a minimal velocity profile can be picked from the vector field α(s, ṡ), and a maximal velocity
profile from vector field β(s, ṡ). By di�erentiating these profiles with respect to s, corresponding
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acceleration profiles can be derived. The time optimal path parameterization (TOPP) (also called
time parameterization) can be retrieved by integrating themaximal velocity profile β, which usually
has several numerical obstacles that will not be covered here. Consequentially there are di�erent
algorithms for calculating the non-deterministic problem of TOPP. In robotics, limits on maximal
acceleration and velocity can be set after planning a path, where a TOPP algorithm finds a time-
e�ective path based on the new bounds. The algorithm is generally used to create a smoother
trajectory.

2.3 RRT-connect
Rapidly-exploring RandomTree [5] is an algorithmwhere a high-dimensional space can be searched
by incrementally building a space filling tree. The algorithm is biased towards exploring empty
states of the search space, making it e�cient with non-convex problems since the whole space is
sampled more or less uniformly. This has made it a popular algorithm in robotic path planning,
where the algorithm accounts for constraints like robot limits and self collision.
The algorithm is initialized with an initial state qinit , number of total vertices to add K , the edge
length ∆q, and a graph G initialized with the initial state qinit .

Algorithm 1: RRT Build Tree algorithm

1 Input: qinit
2 G = Initialize_graph(qinit)
3 for k = 1 to K do
4 qrand ← rand_conf ()
5 qnear ← nearest_vertex(qrand , G)
6 qnew ← new_config (qnear , qrand ,∆q)
7 Add vertex (qnew)
8 Add edge (qnear , qnew )
9 end
10 return G

A random target configuration qrand is chosen in the function rand_conf. The nearest vertex in graph
G is then calculated in nearest_vertex. A new vertex is then added ∆q from the nearest vertex, in
the direction of qrand . Any time a straight line path exists between a new vertex and the target
configuration, it is added to the graph G.

RRT-connect [6], is a modification of a normal RRT planner, where two graphs are created, Gstart
and Gtarget . One of the graphs is iteratively appended until it hits a constraint or a vertex from the
other graph, when this happens, the other graph is appended iteratively instead. This version of the
RRT algorithm simply tries to connect the initial and target configuration by building trees from
both ends and connecting them. The idea is that this algorithm will still sample the configuration
space well, while also adding a more greedy element to the algorithm.

In the case of robot path planning, robot constraints can be implemented as a subspace to the search
space, and any vertex that would have an edge in the constraint space is rejected.

14
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2.4 Artificial Neural Networks
Artificial neural networks (ANN) are algorithm-based computing networks, inspired by the biolog-
ical neural networks that exist in human brains. These networks can learn to spot certain patterns
or perform tasks without being explicitly programmed to do so. They can also be used as function
approximators, where a neural network defines a mapping y = f (x; θ), where y is the target values,
f is the approximated function, x the input, and θ the parameters that the network learns.

The most straightforward type of artificial neural network is a feedforward neural network. It con-
sists of several neurons acting as processing units that form layers. A neuron of a layer is connected
to all the neurons of the previous layer. These connections have weights, signifying the importance
between two neurons. The value of a neuron Z is determined by the summation of all previous
neurons x multiplied by their weights W , added to the neurons bias weight b and finally applied
to an activation function a, according to the following equation:

Z = a
 n∑

i=1

Wixi + b
 (8)

The activation function usually acts as a threshold, normalizing the value of the neuron between
[0,1] or [-1,1], either "activating" the neuron or not. If the weights are high enough, it is deemed
important and activated. Most activation functions are non-linear, which can help the network
learn complex connections.

The computational layers of a neural network are called hidden layers, where the last layer is called
the output layer as it returns the output of the network. Figure 3 below shows a small feedforward
network with two layers. With 3 inputs, a hidden layer with 3 units, and an output layer with 2
unis.

Figure 3: From left to right: inputs, hidden layer, and output layer in a two
layer feedforward neural network. Source:Wikimedia Commons

Training a Neural Network
The training process is where the neural network learns to make connections. The process can be
described with these steps:

1. Input-target pairs (x, y) are input to the network, and the input is used to compute an output
from the network in a feedforward step.

15
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2. The output of a neural network is compared to the target values by a loss function, and
returns a loss based on the dissimilarity.

3. Gradients are computed in weight space with a method called backpropagation [7], using the
loss from the loss function.

4. The gradients are input to an optimizing algorithm (see section 2.8 for our optimizer) that
updates the weights.

These steps are done iteratively, with sets of input-target pairs gathered into "batches", where every
iteration is performed on a whole batch to speed up training. All of the data is divided into batches,
and the amount of times to repeat this algorithm for all the data is called the amount of "epochs".
If the dataset that is used is relatively small compared to the complexity of the neural network,
the network can learn to adjust to the particular dataset, and not the general connections that it
represents. This is called "overfitting". To prevent this, a dataset is often divided into three parts, a
training set for the training process, a validation set to evaluate howwell the network can generalize
to other data, and finally a completely independent test set for the final evaluation of the network
performance.

2.5 Recurrent Neural Networks
A Recurrent Neural Network (RNN) is a type of neural network designed to handle sequential
data x1, . . . , xN . It is designed to keeps an internal state h that can act as a memory and be used to
model the temporal relationships in time series.

The hidden state st of a timestep t is updated with a matrix multiplication between recurrent
weights U and the hidden state of the previous neuron st−1 summed with the input to the timestep
xt multiplied with weight matrix W :

st = a (Wxt + Ust−1) (9)

Figure 4 below shows the interactions in a typical RNN for three timesteps t. In this particular
example the output is also sequential, with every neuron computing its own output.

Figure 4: Illustration of interactions between three neurons in a basic fully
RNN. Source: Wikimedia Commons

One flaw with basic RNNs is in the modeling of long term temporal dependencies, where neurons
are several timesteps apart. This is mostly because of the vanishing gradient problem (see Hochre-
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iter [8] for more information), that occurs because gradient values are becoming continually smaller
as they are backpropagated through neurons in an RNN. To combat this, another type of recurrent
neural network was invented: the Long Short-Term Memory.

2.6 Long Short-Term Memory (LSTM)
An LSTM [9] is a type of recurrent neural network that is able to handle long-term dependencies.
This network consists of several LSTM units where every data point is input to a separate LSTM
unit. To understand this network, the LSTM unit must first be explained.

An LSTM unit takes xt as input, has hidden state st and cell state ct . The input weights are noted
W f , Wi , Wo, recurrent weights U f , Ui , Uo, and biases b f , bi , bo of the forget gate (10), input gate
(11), and output gate (12) respectively. It has activation functions σg and σh, that are normally
chosen as the sigmoid and tanh function respectively. The gates and hidden states are updated
according to the equations below, where ◦ denotes the element-wise product.

ft = σg
(
W f xt + U f st−1 + b f

)
(10)

it = σg (Wixt + Uist−1 + bi) (11)
ot = σg (Woxt + Uost−1 + bo) (12)
c̃t = σh (Wcxt + Ucst−1 + bc) (13)
ct = ft ◦ ct−1 + it ◦ c̃t (14)
st = ot ◦ σh (ct) (15)

The key component of the unit is the cell state ct , that regulates which information is saved and
what is forgotten from previous LSTM units. The forget gate ft in equation 10 regulates what parts
of the cell state should be kept from previous cells. The input modulation gate c̃t (13) computes
from the input xt and hidden state st−1 an interval between 1 and -1 (assuming a tanh activation
function) where memory can be kept or forgotten. Input gate it (11) is multiplied with the input
modulation gate to add new information to the cell state.
After the gates are updated, the new cell state is computed with equation 14, this step is usually
referred to as the Constant Error Carousel (CEC), which solves the vanishing gradient problem, as
the forget gate acts like both a recurrent weight and an activation function, creating an algorithm
that has no restriction on how long to keep its cell state, therefore creating the "long-termmemory".
Finally the hidden state is then updated by a multiplication of the output with activated cell state
as in equation 15.

These LSTM units form a network by stacking together in a structure like in figure 4, with one
LSTM unit passing its hidden state to the next one. The output from an LSTM network can either
be sequential; where every unit produces an output, or singular; where only the last LSTM unit
produces an output.
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2.7 Rolling-Window Method
Long sequences can be ine�ective for training RNNs. This can be handled by dividing these long
sequences into shorter ones. The rolling windowmethod [10] selects a shorter sequence (a window),
and incrementally moves (rolls) this window from start to the end of the longer sequence through-
out training iterations. This method can be used with an RNN, where every batch of trajectories is
chosen a few times every epoch with a di�erent window position, making the model "see" slightly
di�erent trajectories every epoch. This augments the training data and prevents overfitting. The
method is illustrated by figure 5 below.

Figure 5: For every repeat of a batch, a window is "rolled" across the tra-
jectory, resulting in several slightly di�erent sub-trajectories that is seen
in every epoch.

2.8 RMSProp
In stochastic gradient descent, only a few random samples from the batch (or training set) are
chosen for updating the weights in optimization for every iteration. In contrast, normal gradient
descent calculates the gradient for the whole batch in every iteration, a much slower but more pre-
cise method. Optimization with stochastic gradient descent usually converges faster than normal
gradient descent, with the minor setback being that the loss is less minimized after convergence.

RMSProp (Root Mean Square Propagation) is an algorithm using stochastic gradient descent [11].
It is designed to avoid large fluctuations of the gradient by dividing it by the rootmean square of the
moving average for every batch. The mean square of the moving average v is updated in equation
16 with w being the weights, t time, γ a forgetting factor, and Q(w) the loss function estimating
the di�erence between the predicted robot readings and real ones.

v(w, t) = γv(w, t − 1) + (1 − γ) (∇Q(w))2 (16)

The weights are then updated according to equation 17 where η is the step size. In this equation, the
new weightsw are updated based on their previous value, this property is referred to as momentum
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and increases convergence rate by guiding shifting gradients to the right direction [12].

w = w −
η

√
v(w, t)

∇Q(w) (17)

RMSProp has generally been found to e�ectively adapt the learning rate and converge quickly.

2.9 Mean Square Error
The mean square error (MSE) is a measure for the accuracy of an estimator [13]. TheMSE is defined
as

MSE =
1
n

n∑
i=1

(
Yi − Ŷi

)2
(18)

where Y is a vector of true values, and Ŷ a vector of estimated values. MSE is often used as a metric
for evaluating the closeness of predictions. One pitfall with MSE is that it heavily weighs outliers;
if there are a lot of disproportionately poor estimations, the MSE can be a poor metric. To have
the error in the same dimension as the input, the square root of the MSE can be calculated instead,
then the measure is called the Root Mean Squared Error (RMSE).

2.10 Mean shift detection
When aligning two time series, maximizing the cross-correlation between them is the most com-
mon method [14]. However, if the start of the two time series is constant and then starts changing
at a certain point — like the position sensors of a robot before a trajectory is executed — they can
be aligned by finding this start point in both cases. The start point from which a time series starts
to change in a statistically significant way can be found by locating the mean shift of the time series.
This is possible with the Mean Shift Detection algorithm.

The expected value µ of a discrete stochastic variable is:

Mean(x) = µ =
1
N

N∑
i=1

xi (19)

where x are observations and N the total amount of observations.

Using the expected value µ, the standard deviation σ of a discrete stochastic variable can be calcu-
lated with

Std(x) = σ =

√√
1
N

N∑
i=1

(xi − µ)2; (20)
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With these two measures we can explain the mean shift detection algorithm. As input, an initial
interval length l and a window length for succeeding values S are specified. Also a factor n can be
chosen to adjust the confidence interval for deviations.

Algorithm 2:Mean Shift Detection algorithm

1 for k = 0 to N − l do
2 µk = Mean(X[0, l+k])
3 σk = Std(X[0, l+k])
4 for i = 0 to S do
5 if |(X(i + k) - µk | < σ ∗ n then
6 break
7 if i == S then
8 return k
9 end
10 end

The central part step of the algorithm is to update the mean µ and standard deviation σ in every
iteration. To initialize, an interval length l needs to be defined, since the mean and standard devi-
ation should be calculated from a sequence and not a single point (which would be the case when
k = 0). A window of length S is traversed along the sequence, checking if all the values inside the
window deviate from the mean value µ. If they do, a significant and consistent change has occurred.
The algorithm is then stopped and the start point of the window is returned.
This method relies on the sequence not being too noisy. It also requires some tuning of the param-
eters S and n, controlling the window length and standard deviation factor.

2.11 System Identification
System Identification is a method for building mathematical models for dynamical systems, by
using an input and output signal. In our case of robot dynamics, the dynamic parameters have a
linear relationship with values for position, velocity, acceleration and torque according to equation
1. By sampling these values for di�erent trajectories that excite the dynamics of the robot, the
dynamic parameters can be estimated by di�erent methods such as penalty based optimization [4]
or linear least squares [15].

After retrieval, the robot-specific dynamic parameters can be used for calibrating the virtual model
in simulation to improve the accuracy of simulated trajectories.
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3 Approach
Our objective is to find a model that can improve simulated trajectories by minimizing the resid-
ual between simulated and real sequential trajectory data. In this section we describe our LSTM
architecture that is designed for handling the complexities in sequential trajectory data, and metic-
ulously account for our design choices to increase the reproducibility of our approach. In addition,
we evaluate the results from two di�erent loss functions, and with two di�erent sets of dynamic
parameters for the robot, resulting in three models in total.

3.1 Sequence to Sequence learning
In time series forecasting a model is typically deployed to predict N future outcomes Yt+N based on
past outcomes Yt . In contrast, in sequence to sequence learning, an entire sequence is mapped to
another sequence. Our proposed LSTM is an instance of sequence to sequence learning, with the
task of regression. Based on a sequence of xt with t ∈ {0, . . . ,T } an entire sequence y is predicted.
To be clear, this is di�erent from a "vanilla" LSTM that forecasts a single prediction per feed forward
step.

3.2 Model implementation
As the trajectory data consists of several time series describing position, velocity and torque of all
seven joints, the natural choice for a model was a type of RNN. Recording in 100 Hz, with second-
long trajectories, these time series consists of a few hundred datapoints. For capturing various time
dependencies of these longer trajectories either a Gated Recurrent Unit (see Chung et al. [16] for
theory) or LSTM based model seems reasonable. Since we want our model to be able to remember
information from a whole trajectory, we opted for the more complex LSTM layer, since it has three
gates (input gate, update gate, output gate) instead of the two gates of the Gated Recurrent Unit
(reset gate, update gate). The model was implemented in Tensorflow [17].

Because of the high dimensionality and complexity in our sequence to sequence regression problem
two LSTM layers were concatenated. The first layer returns the hidden state of every LSTM cell to
the same-indexed cell of the layer above. This can be interpreted as the first layer creating a feature
space optimal for the second LSTM layer to output predictions. To capture the high dimensionality
of the data, the first layer had a hidden size of 100, and the second layer a size of 21.

In a normal LSTM that propagates forward in time the hidden state of the first cells (receiving the
input from the initial values) does not receive information from future cell states and can therefore
only produce a suboptimal hidden state because of the lack of information. As we are training on
a whole trajectory at once, we used bidirectional LSTM layers — consisting of two separate layers
propagating in opposite directions, with their final output aggregated — so that information is
propagated in both directions in time, making inference possible in earlier timesteps.

The default activation functions of the LSTM were used, where the recurrent activation σg is a
sigmoid function, and activation σh is a tanh function. Since the data was normalized in the [0,
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1] interval, the sigmoid function is a good choice of recurrent activation since it maps the output
state to that same interval (see equation 12). The tanh is used for its [-1, 1] interval allowing parts
of the cell state to be both forgotten or remembered (see equation 14).

The rolling window technique was used to shorten the sequences and augment the dataset. The
window length was chosen as half the size of the shortest trajectory in the batch, and the window
was "rolled" by uniformly randomizing its placement within the trajectories. The batch size was
chosen to be 16, with 50 epochs, with a total of 1372 epoch steps. Since the training set had 1372
trajectories, this translates to every epoch going through every trajectory 16 times, with a di�erent
window of the trajectory every time. This causes a slight variation of the training data between
batches, which augments the training set and reduces the amount of overfitting. In addition, draw-
ing a shorter fixed length window from the variable length trajectories enables batch learning, —
since all trajectories in the batch are cut to the same length and subsequently have known dimen-
sions — and creates shorter gradients during training, which improves the e�ciency of the training
process.

RMSProp algorithm was chosen as the optimizer for its momentum and e�ciency. The learning
rate was set to 10−4 and a callback function that reduced the learning rate whenever the models
performance plateaued was also implemented since this has been shown to improve learning.

3.3 Residual loss function
Having neural network based models predict a residual between input data (X) and ground truth
(Y) has been found to make models generalize better and require less training data than predicting
the ground truth directly [2] [3]. This is implemented by creating a custom loss function that
calculates residual loss.
The custom loss function that was used was a modifed MSE function:

MSEResidual(X) = MSE(X + Model(X)) (21)

=
1
T

T∑
i=1

(Yt − (Xt + Model(Xt)))2 . (22)

3.4 Model experiments
We trained three models in total, all with the specifications from section 3.2:

1. Model with simulation parameters from Erdal Pekel’s blog [18], with loss function from 3.3,
referred to as "Residual".

2. Model with simulation parameters from Erdal Pekel’s blog, with a normal MSE loss function
from 2.9, referred to as "Normal"

3. Model with simulation parameters from Gaz et al. [4] with loss function from 3.3, referred
to as "Residual-2

Since the simulation parameters of Erdal Pekel’s blog were much better for our Panda robot indi-
vidual, these parameters were used in all experiments, except the experiment in results section 6.4
where Gaz et al. [4] parameters were used. To test model robustness, the performance on the linear
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dataset was compared between model 1 and 3. The performance of these two models with di�erent
amounts of training data was also tested.
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4 Implementation
Our objective was to create a dataset that is extensive enough to accurately represent di�erent
dynamics within the working space of the robot. Additionally, this data needs to be processed
before it can be used in our approach with supervised learning.

4.1 Dataset
The data consisted of pairs of simulation and real-robot trajectories; with measured position, ve-
locity and e�ort. Only trajectories that executed successfully in both simulation and reality were
included. Since the dynamics of a certain joint is heavily dependant on the orientation of the robot,
there exists complex temporal dependencies between the joints. To reduce these complexities in
the data, the amount of joints allowed to move in a trajectory was varied; in data where only a few
joints move, the friction of the joints should be easier to learn for a neural network. To test the
robustness of the model, a smaller set of linear movements was also collected. In a linear move-
ment the end e�ector of the robot is moved linearly from one position to another, requiring high
precision control from several joints. In linear movements there is also a much higher amount of
waypoints that the robotic arm has to follow, making the trajectory harder to execute. If the model
can capture these trajectories successfully as well, it indicates that the di�erence between the robot
controllers in simulation and reality has been learned.

4.2 Data Alignment
To create a dataset for supervised learning, the trajectories recorded from simulation and the trajec-
tories from the physical robot had to be aligned. The experiment was set up so that the robot rests
before and after an executed trajectory, allowing the recording software to start in time. Since the
simulation was made in real-time, the trajectory pairs had the same execution speeds. Therefore it
was su�cient to find the starting point of a trajectory and cut out the interval where the robot was
resting. This was done by using the mean shift detection method (section 2.10), where the mean of
the joint positions was used as an indicator. The position data was used because it is less noisy than
velocity or e�ort data. The robot was recorded with a frequency of 100 Hz, so the window length S
and initial interval l were both chosen to be 10 timesteps (0.1s), and the confidence interval factor
n was chosen to 1.6. The use of time series cross correlation to find the lag between a simulated and
real trajectory was also attempted for alignment, but this method did not perform as well as mean
shift detection, and was therefore not used.

Trajectories that did not execute properly were found by analyzing the position data: if the total
mean square error between simulation and reality was too large it was disregarded. Since the sim-
ulation was very accurate for position, the threshold for removing faulty trajectories could be set
so that it did not disregard any valid (but poorly simulated) trajectories.
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5 Experimental Setup
We chose the software in our setup based on what was supported and documented for the Franka
Emika Panda robot. To increase the reproducibility of our experiment, we explain the programs
and libraries we used, which were all open source. We also present the main algorithm of our
experiment in pseudocode. The purpose of the experiment in this section was to create the dataset
described in section 4.1.

5.1 ROS Architecture
The Robot Operating System (ROS) [19] was used to control the robot. ROS is a framework de-
signed to simplify the process of building applications for robots. One of the main advantages is the
communication between software and hardware components in the ROS architecture. It consists
of a large set of libraries and tools covering several domains in robotics such as robot geometry,
simulation and planning.

5.2 MoveIt Motion Planning
MoveIt Motion Planning [20] is a motion planning library that runs on top of ROS. The Moveit
interface was used to plan and execute robot trajectories. The plans consist of waypoints that
specify joint position, velocity, and acceleration at certain timepoints. The user can choose to
either plan to a joint configuration in joint space, or Cartesian space. Linear moves can be planned
in Cartesian space, where the planner creates closely spaced waypoints in joint space that ensure
linear movement. MoveIt was also used to:

• Model the workspace environment and avoid collisions with it in the planning stage

• Time parameterize planned trajectories

• Execute plans on the robot

5.3 Gazebo
Gazebo is an open sourced robot simulator capable of running on top of ROS. In our experiment
we used Gazebo with the physics engine ODE, which is also the default engine.

5.4 Rosbag
Rosbag is ROS library that can record ROS processes such as trajectories. Our recorded trajectories
were recorded in rosbags and converted to .csv (comma separated values) files when the execution
was finished.

5.5 Docker
Docker is a service that allows users to work from a container, which contains an isolated software
environment. A user can upload software such as libraries and configuration files, and finally share
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this container with other users. The advantages with containers are that they are shareable, have
all the imported libraries installed, and eliminate any interference or bugs originating from the
local computer. We used a docker container for our ROS environment for these aforementioned
advantages.

5.6 Pickle
Pickle is a Python library that is used to serialize and deserialize Python objects so they can be saved
to a local disc. It was used in the experiment to save plans made in MoveIt so they could be loaded
again to be executed in simulation.

5.7 Experiment design
A ROS environment for controlling the robot (both physical and simulated robot), was created in
a docker container. MoveIt Motion Planning was used to plan and execute trajectories. The plans
were modified with a version of the path parameterization algorithm, called "Iterative Parabolic
Time Parameterization" in MoveIt documentation. The parameterization was made with varying
upper bounds on velocity, ranging from 20% to 100% of maximal velocity, creating a dataset with
varied execution speeds.

The data was gathered with an algorithm containing the following functions:

Initialize_joint_limits: Creates two vectors with the lower and upper position limits of the joints
from table 1.
Robot.get_Current_Values: Robot function that retrieves the current joint positions
Robot.set_joint_value_target: Sets a target configuration to plan towards
Plan Plans a trajectory with the RRT-connect algorithm (see section 2.3).
Planchecker: Confirms that the plan does not cheat and moves more joints than it is supposed to
Load_Workspace: Creates the robot workspace to avoid collisions with walls and objects that may
exist in the robot’s reach.
Robot_Retime_trajectory: Modifies a plan with Time Optimal Path Parameterization.
Record: Starts a rosbag recording of the robot joint values
Stop: Stops the recording and saves it to csv
Error recovery: Resets the robot

These functions were used in the following algorithm.
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Algorithm 3: Plan and execute algorithm

1 Input Robot, joints_to_move, velocity_bound, acceleration_bound, max_attempts
2 Robot.Set_robot_max_velocity = velocity_bound
3 Robot.Set_robot_max_acceleration = acceleration_bound
4 joints_upper_limits [], joints_lower_limits [] = Initialize_joint_limits()
5 planning_attempts = 0
6 while planning_attempts < max_attempts do
7 Joint_goal [] = Robot.Get_Current_Values()
8 for joint in joints_to_move do
9 Joint_goal[joint] = Random.Uniform(Joints_lower_limits[joint],

Joints_upper_limits[joint])
10 end
11 Robot.set_joint_value_target(Joint_goal)
12 Plan = Robot.plan()
13 if Plan 6= None and Planchecker(Plan, joints_to_move) == True then
14 Successful_Plan = True
15 break
16 end
17 else
18 Planning_attempts += 1
19 end
20

21 end
22 if Successful_Plan == True then
23 Load_Workspace()
24 Plan= Robot.Retime_Trajectory(Plan, Velocity_Bound)
25 Record()
26 Robot.Execute(Plan)
27 Stop()
28 if Robot.Get_Current_Values() 6= Joint_goal then
29 Error_Recovery()
30 Load_workspace()
31 end
32 Save_plan()
33 end
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Given a set of joints, the algorithm finds a configuration for those joints to move towards where no
other joint is allowed to move. Line 6-15 is the core part of the algorithm, where a target configura-
tion is randomized in the for loop at lines 8-10, and a plan is made towards this target configuration
in line 12. Sometimes the robot is in an awkward configuration, where moving a certain joint will
lead to a collision or be impossible; therefore the algorithm only attempts to find a plan for a par-
ticular set of joints a certain number of times (max attempts). When a plan is successful, the while
loop is interrupted, and the plan is executed and recorded in lines 22-26. Finally the plan is saved
in a Python Pickle file.

Once the plan is saved, executing the plan in simulation is very simple and is donewith the following
functions:

Algorithm 4: Execute saved plan in simulation

1 Input Robot, Plan
2 Record()
3 Robot.Execute(Plan)
4 Stop()

The following figure summarizes the two data collecting algorithms:

Figure 6: Summarizing schematic over the data collection process

The datasets (see section 4.1) were collected by recording the robot with rosbag. The updating
frequency of Gazebo and real robot controllers were set to 100 Hz. The collected data consisted
of one dataset with 850 multi-joint moves, one dataset with 870 single joint moves, and one with
50 di�erent linear Cartesian moves in xy, xz, and yz direction. The joint moves were sampled
randomly in the workspace.
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The dataset was split in the following fractions: 80% for training, 15% for validating, and 5% for
testing. The linear dataset was not split, as it was only used for testing.

For the two joint datasets, the simulation was done twice with di�erent hyperparameters describ-
ing inertia and mass properties of the Panda robot:

1. Parameters from Erdal Pekel’s blog [18]

2. Parameters from Gaz et al. [4]

The simulation of the linear dataset was only done with the parameters from 1.
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6 Results
Since the dynamic parameters retrieved from Pekel [18] described our robot dynamics much better
than the parameters from Gaz et al. [4], we used the better Pekel parameter simulation for most of
the results section.

6.1 Complete Trajectory Data
To illustrate how the data from an executed trajectory looks, the seven joints are plotted in position,
velocity and torque for an arbitrary trajectory. Both robot data and simulated data is plotted, using
the more accurate Pekel simulation parameters.

Figures 7, 8 and 9 below show how accurate the simulation is for position and velocity. In contrast,
the torque simulation is very inaccurate, where the simulation usually follows the trend of the real
robot torque, but oscillates substantially. Since torque is the only unreliable part of the simulation,
we will continue to study mostly the torque results.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Position, velocity, and e�ort data for robot (green) and simula-
tion (orange) for joints 0, 1, 2
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Position, velocity, and e�ort data for robot (green) and simula-
tion (orange) for joints 2, 3, 4
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Position, velocity, and e�ort data for robot (green) and simula-
tion (orange) for joints 4, 5, 6
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Since the simulation of torque is oscillatingmore than the real robot, the trend of the simulationwas
analyzed by using themoving average over 0.5 seconds (50 timesteps) of the simulation:

Figure 10: Moving average (blue) of simulated torque, for an arbitrary tra-
jectory of joint 0

Applying this moving average filter to the simulation of all trajectories decreased the RMSE of
torque between simulation and reality with 50.5%. This filter was never used in the experiment.

6.2 Predictions with Pekel Simulation parameters
Weplot the results from our trainedmodel, in comparison of simulation and the robot data (ground
truth) from an exemplary trajectory.

Figure 11 below shows how well the model can improve the torque simulation for some trajectories.
It is shown how, for Joint 0, 1, 2 and 5, the model does not only improve the simulation accuracy,
but also replicates the torque behavior of the robot to near perfect accuracy.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Torque data for robot (green) and simulation (orange) and
model prediction (red) for a multi-joint trajectory
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The complete performance of the model is shown in table 2 below, where the "Residual" model is
the model trained with the residual loss function from section 3.3. It is clear from the table that the
residual between simulation and reality is very small for position and velocity data confirming the
findings of section 6.1. There is also no consistent improvement in position or velocity. For torque,
in joint 0-3, the RMSE is reduced with a factor between 3 and 4, and for joint 4-6 it reduced with
a factor of 10.

Table 2: Mean squared residual error in position, velocity and torque for
the test data set with Pekel simulation parameters.

Joint 0 1 2 3 4 5 6

Position - Simulation (rad) 4.63e-02 4.19e-02 2.20e-02 4.10e-02 6.80e-02 1.85e-02 5.23e-02
Position - Residual (rad) 5.47e-02 3.50e-02 2.36e-02 3.16e-02 5.89e-02 2.85e-02 5.35e-02
Velocity - Simulation (rad/s) 5.00e-02 6.04e-02 3.61e-02 6.93e-02 9.27e-02 4.81e-02 7.54e-02
Velocity - Residual (rad/s) 6.15e-02 4.77e-02 3.63e-02 5.61e-02 8.12e-02 6.55e-02 7.39e-02
Torque - Simulation (Nm) 5.65e+00 5.41e+00 4.61e+00 4.33e+00 3.20e+00 2.75e+00 2.26e+00
Torque - Residual (Nm) 1.17e+00 1.78e+00 1.42e+00 1.42e+00 3.17e-01 3.45e-01 2.41e-01
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To evaluate how the custom residual loss function performs in comparison to a normal mean square
error one, the mean prediction error across all joints is plotted for both loss functions versus the
amount of training data.

Figure 12: Test set prediction error for torque, mean across all joints: resid-
ual prediction (orange) with custom loss funcion, versus prediction with
normal MSE loss function (blue)

It is evident that the normal loss function outperforms the custom residual loss function for all
training sizes, with the largest di�erence in small training sets.

6.3 Predictions on Linear Dataset with Pekel simulation
parameters

Figure 13 below shows the results of themodel— that is trained on non-linearmovements— applied
to a linear trajectory. To satisfy the waypoints, the simulation is changing the torque substantially
between small timesteps. Even here the model can be deployed e�ectively, showing a very accurate
prediction of the robot data.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Torque data for robot (green) and simulation (orange) and
model prediction (red) for a linear movement trajectory
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The complete performance of the model on the linear dataset is shown in table 3 below. The results
of the model with the mean square error loss function (Normal) is compared to the model with a
custom residual loss function (Residual). Overall, there is no discernible di�erence between the
results of the two models. The results show a reduction in RMSE of torque between a factor of 2-3
for joint 0-3, and at least a factor of 4 for joint 4-6 for both models.

Table 3: Root mean squared residual error in position, velocity and torque
for linear data set

Joint 0 1 2 3 4 5 6

Position - Simulation (rad) 3.46e-03 3.29e-03 3.63e-03 5.65e-03 4.57e-03 4.16e-03 4.05e-03
Position - Residual (rad) 9.29e-03 8.40e-03 7.61e-03 1.32e-02 1.16e-02 1.56e-02 9.62e-03
Position - Normal (rad) 1.73e-02 1.52e-02 2.19e-02 1.93e-02 1.73e-02 1.43e-02 1.51e-02
Velocity - Simulation (rad/s) 2.10e-02 1.63e-02 2.19e-02 2.63e-02 2.15e-02 1.75e-02 3.25e-02
Velocity - Residual (rad/s) 2.19e-02 1.64e-02 2.48e-02 2.98e-02 2.26e-02 1.88e-02 2.13e-02
Velocity - Normal (rad/s) 2.31e-02 2.35e-02 2.89e-02 4.23e-02 3.25e-02 2.52e-02 2.80e-02
Torque - Simulation (Nm) 3.52e+00 2.58e+00 2.74e+00 2.31e+00 1.46e+00 1.61e+00 1.29e+00
Torque - Residual (Nm) 8.51e-01 1.20e+00 9.77e-01 9.24e-01 2.22e-01 2.35e-01 3.30e-01
Torque - Normal (Nm) 9.11e-01 1.14e+00 1.08e+00 1.07e+00 2.67e-01 2.54e-01 3.44e-01
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6.4 Predictions with Gaz simulation parameters
Figure 14 below shows a trajectory with the model trained on the suboptimal simulation with Gaz
et al. [4] simulation parameters. From Joint 4 and 6 it is visible how the simulation is completely
inaccurate, where the simulation is not oscillating around the correct value, but instead fails to
predict the torque completely. It is also possible to see the model making very bold and flawed
predictions, like at the 2.6 second mark of Joint 2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: Torque data for robot (green) and simulation (orange) and
model prediction (red) for a multi-joint trajectory
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The complete performance of the model is shown in table 4 below, where the "Residual-2" model is
the model trained with the residual loss function from section 3.3, with the Gaz et al. [4] simulation
parameters. The residual between simulation and reality is still very small for position, but the
velocity simulation is considerable worse, with an increase of RMSE with at least a factor of 10
across all joins compared to the Erdal simulation. The simulation of torque is alsomuch worse, with
a substantial increase in RMSE across all joints. The improvements from the model are also record
breaking, where the final torque predictions are only slightly worse, even though the simulation is
much worse, and the velocity RMSE is significantly reduced.

Table 4: Mean squared residual error in position, velocity and e�ort for
the test data set with Gaz simulation parameters

Joint 0 1 2 3 4 5 6

Position - Simulation (rad) 4.64e-02 4.16e-02 2.21e-02 4.06e-02 6.81e-02 1.89e-02 5.23e-02
Position - Residual-2 (rad) 4.97e-02 4.26e-02 2.45e-02 3.87e-02 5.25e-02 2.66e-02 5.14e-02
Velocity - Simulation (rad/s) 1.05e+00 1.76e-01 1.16e+00 1.62e-01 4.45e-01 9.94e-02 2.25e-01
Velocity - Residual-2 (rad/s) 7.66e-02 6.22e-02 8.73e-02 7.35e-02 1.03e-01 5.39e-02 7.54e-02
Torque - Simulation (Nm) 4.40e+01 1.93e+01 4.46e+01 1.17e+01 7.91e+00 4.37e+00 4.62e+00
Torque - Residual-2 (Nm) 1.44e+01 2.33e+00 1.69e+00 1.84e+00 3.54e-01 3.64e-01 2.61e-01
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7 Discussion
In this thesis, our focus was not on improving the execution of a specific robotic task, instead
the objective was the general improvement of simulation for arbitrary trajectories in the robot’s
workspace. Since there was no task in mind, we introduced planning limitations such as velocity
and acceleration bounds and amount of joints allowed, to keep the complexities of the dataset
low and be able to evaluate the potential of our approach. For the same reason we chose not to
include trajectories where the Panda robot is grasping an object. Errors during the execution of
trajectories were not uncommon, and we chose to identify and delete those trajectories during the
preprocessing steps. A better solution might have been to delete the recording every time an error
is published in the ROS framework.

With the Erdal simulation parameters, the simulation is almost identical to the real robot for po-
sition and velocity. Sometimes discrepancies occur like in the velocity data for joint 4 in figure 8
around the 0.5s mark. This usually lasts for a fraction of a second before the simulation returns
to being accurate. These disturbances seem to occur quite sporadically and would be hard for a
neural network to predict. Hence, it is not surprising that none of the models could improve the
results. For torque, the simulation generally seems to oscillate more, even when the real torque is
kept constant (like for Joint 4, 5 and 6 of figure 9). The moving average of every 50 timesteps of
simulation helps to filter sensor noise and disregards the oscillations, only focusing on the trend.
Figure 10 illustrates how the trend can be a much better prediction. Since just the moving aver-
age of simulation reduced the simulated RMSE in torque by 50%, this should at minimum be used
as an intuitive benchmark. A model that can not outperform this reduction would not be useful.
However, it is clear from table 2 that the model outperforms the moving average of the simulation.
For joint 0-3 the RMSE is reduced with a factor between 3 and 4. For joint 4-6 it was reduced with
a factor of 10.

One reason for the di�erence in improvement between the joints can be found in the configuration
of the robot. Figure 2 shows how the joints are numbered from bottom to top. Joint 6 and 5 only
control the "head" of the robot, therefore they are not very dependant on the robot configuration.
The torque of joint 1, 2, 3 and 4 on the other hand will depend more on the robot configuration
since it relates to the amount of torque needed to counter the force that is exerted on the robot
arm by gravity. Joint 0 rotates the whole robot, where the robot inertia plays a key role, which is
determined by the configuration. The results from the table confirm that the robot configuration
plays a vital part in predicting torque, and adding more executed trajectories to the dataset in var-
ious robot configurations could improve the model performance further.

As earlier stated in the introduction, we applied a version of residual learning where our hybrid
model made predictions on top of the simulation results. Earlier work [3] [1] has had a similar ap-
proach, where a residual velocity was calculated. Contrary to earlier work, we did not observe that
our residual model generalized better or trained with less data than our normal model. In figure 12
it is shown how the model with the residual loss function performs much worse with little train-
ing data than the normal model. The generalization of the two models on a linear dataset shown
in table 3 does not indicate any significant di�erence in performance between them. The di�er-
ence in findings could be explained by the di�erence of approaches. We do not use our simulation
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to calculate the minimum torque required for an action, and then use our LSTM architecture to
predict how much residual torque to add to counter factors such as friction. Instead our hybrid
model learnt all the shortcomings of the simulation and improved upon it. Considering the high
dimensionality of the data which consists of 7 joints in 21 dimensions in hundreds of timesteps, it
is possible that the Residual model is punished for making predictions that deviate too much from
the simulation, therefore getting stuck in local minima close to the simulation. The normal model
on the other hand, is forced to learn the mapping between simulation and reality from scratch, and
since the model has deep hidden layers and a relatively small dataset it is able to do so e�ciently.

The Gaz et al. [4] simulation parameters performed much worse than Pekel’s [18]. Comparing the
good simulation in table 2 with the bad one in table 4, the velocity simulation RMSE is higher by
a magnitude between one and two for all joints. The torque RMSE is also higher with a factor
between 2 and 10, where joints 0-3 have the highest increase in RMSE. In figure 14, the plot of the
torque in joint 4 shows how the simulation is predicting completely wrong torque during a slow
trajectory. The predictions of the model in this figure also seem to converge to di�erent values,
indicating that the simulation parameters are simply wrong: forcing the model to make awkward
adjustments. Nevertheless, the Residual-2 is making accurate predictions, even with inadequate
simulation. The RMSE of the predictions of torque in joint 1-6 in table 4 are just 10% to 30%
worse than the predictions with the Pekel simulation. In joint 0 the Gaz simulation is extremely
inaccurate, which could explainwhy theResidual-2model prediction of that joint is also inaccurate.

Because the Gaz simulation of velocity is inaccurate, there is more room for improvement. The
Residual-2 model made much better predictions, proving that it is also capable of improving sim-
ulation of velocity. With the model using the Pekel simulation, the model loss was dominated by
torque input, making the model prioritize improvements in torque instead of improving position
and velocity data.

The more popular alternative to our approach of domain adaptation with machine learning is to
identify dynamic parameters and create a mathematical model describing the robot dynamics,
which was done by Gaz et al. [4], also for a Franka Emika Panda robot. In their paper, they did
not estimate the RMSE between their model prediction and their measured data for a dataset like
we did, therefore it is hard to evaluate the di�erence in results between the two methods. However,
the results they do show for torque seems very promising, although their approach is more focused
on a single trajectory. Visually, our model seems to show equal performance for some trajectories
like in figure 11.

There is nothing limiting the use of a joint approach of both system identification and our approach
of domain adaptation. System identification can first be used to retrieve a better mathematical
model for the simulation, and then domain adaptation can applied to compensate for the flaws of
the mathematical model as well as model complex real world factors that are not modeled. This
approach could bring robustness from the analytical system identification approach and flexibility
from the data driven domain adaptation, bringing the best of both worlds.
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8 Conclusion and Future Work
Wehave developed a pipeline for executing trajectories, recording them, and processing the recorded
data, for both the physical and the simulated Franka Emika Panda robot; with the objective to de-
velop a robust and easy approach to bridge the gap between simulation and reality, and prove that
it works for simple free movements of the panda robot. Our approach relies on several factors that
may not be existent in every robot application. Sensors that accurately measure position, veloc-
ity and torque does not exist in every robot. Di�erent robots may have more nonlinear behavior
originating from factors such as heat development in joints, cable stretch or the controller system.

We found a set of simulation parameters that produced adequate results for position and velocity
data, and hence focused on improving the suboptimal simulation of torque. We proposed an LSTM
architecture suitable for the task, and have shown how our model, when deployed after simulation,
can produce an improved simulation where the RMSE is on average reduced by a minimum of 70%
across all joints. We demonstrate robustness of our model by deploying it on a dataset of linear
movements and observing a consistent decrease of torque RMSE across all joints. Relating this to
the research question in section 1.2, our model does manage to find a sim-to-real transformation
that is generally more reliable and in some cases substantially better. To really grasp the viability
of our approach, a more quantitative comparison to system identification is in order, where both
methods are applied to the same robot individual, and evaluated for the same trajectories.

Moreover, we evaluate a residual loss function for our model. Contrary to the findings of earlier
work, we found that the model needed more data and did not perform any better with the residual
loss function.

By repeating our approach with more ill-fitting simulation parameters we show that our approach
does not depend on an accurate simulation. Our model was also shown to be able to improve not
only simulation of torque but also that of velocity.

In our approach, we did not attempt to retrieve dynamic parameters of our own Panda robot indi-
vidual, but used parameters found from other robot researchers [18] [4]. By retrieving the specific
parameters, the simulation of torque could potentially be improved drastically, which would also
improve the predictions made by our approach. It would be valuable to evaluate how well our ap-
proach works in combination with system identification, to understand the potential and eventual
limitations.

It would also be useful to research how the behavior of the robot changes with a grasped object,
and how well our approach works for the resulting trajectories. Gathering more data — 10.000
trajectories or more— can help assess the potential in our proposed LSTM architecture. Controller
errors were not uncommonduring the execution of plans, and developing a framework for detecting
plans that cause errors could be helpful for future work. Finally, trying our proposed approach on
di�erent types of robots would help evaluate the viability of our method.
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Från simulering till verklighet – en
robotarms resa

POPULÄRVETENSKAPLIG SAMMANFATTNING Liam Neric

Datadriven modellering av en robotarms rörelse med syftet att öka effektiviteten i
simulerade experiment. Arbetet kan komma att effektivisera utvecklingen av au-
tonoma robotar.
Vem skulle inte vilja äga en intelligent robotarm
som kan hjälpa till med matlagning, eller kanske
byta kanal på tv:n? Innan detta är möjligt be-
höver robotens mjukvara tränas i tusentals, om
inte miljontals experiment för att lära sig anal-
ysera robotarmens misstag och utföra komman-
don utifrån olika omständigheter. Dessa experi-
ment kan påskyndas genom att utföra dem på en
simulerad version av roboten, där ett kommando
som kanske tar tjugo sekunder i verkligheten kan
ta en halv sekund i simuleringen.
Simuleringen består av en fysikmotor med en

virtuell matematisk modell av robotarmen. Dessa
modeller har svårt för att fånga komplexiteter
som finns i verkligheten, som bristfällig robot-
styrning eller värmeutveckling i robotens leder.
Om simulering ger alltför annorlunda resultat blir
det svårt att relatera lärdomar från simuleringen
till verkligheten. Därför är det viktigt att hitta
metoder som kan minska gapet mellan simulering
och verklighet och därmed öka användbarheten
hos virtuella experiment. Det finns främst två
olika sätt att utföra detta, antingen kan metoder
utvecklas för att direkt förbättra simuleringen,
eller så kan metoder hittas som kan uppskatta
verkligheten utifrån simuleringsdatan; där en upp-
graderad ”syntetisk” version av simuleringen ska-
pas vid en separat plattform.

I detta arbete har fokus lagts på det senare
alternativet, där syftet varit att hitta en allmän
metod som kan förbättra simuleringsdata av
rörelsebanor för en robotarm. Detta medförde
en analys av robotarmens alla leder i position,
hastighet och vridmoment; för både simulering
och verklighet i olika fria rörelser. Målet var också
att bevisa konceptet av att en datadriven modell
kan lära sig olika mönster i en robotarms rörelser,
vilket kan ha stor betydelse i framtida applika-
tioner.
Experimentet gick ut på att samla in data från

cirka 2000 olika rörelsebanor som både den verk-
liga och virtuella robotarmen utförde. Utifrån
dessa rörelsebanor utvecklades en maskininlärn-
ingsmodell som använde simuleringsdata och pro-
ducerade syntetisk data. Resultaten visade att
den syntetiska datan var betydligt bättre, med
en genomsnittlig reduktion av 80% av simulerin-
gens fel. Detta reflekterar hög potential hos den
utvecklade metoden då det påvisar att maskinin-
lärningsmodellen är kapabel till att lära sig verk-
liga rörelsebanor utifrån simulering.
Den utvecklade modellen kräver ingen finjuster-

ing av parametrar eller kalibrering till en specifik
robot. Framtida arbete kan bestå av att testa vari-
ationer av vår metod i olika robottillämpningar för
att få en bättre bild av dess potential.
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