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Abstract

The search for cheaper and more compact accelerators has led to the development of
laser-driven plasma-based accelerators. In comparison to conventional particle ac-
celerators, the plasma-based accelerator is inherently insensitive to the breakdown of
the acceleration structure and therefore greater accelerating fields can be obtained.
One such setup, which is used to accelerate electrons, is the laser wakefield acceler-
ator. Behind the laser, an electric field gradient of the order of hundreds GV/m can
be obtained as the intense laser pulse propagates through the plasma, and electrons
submitted to this field can be accelerated to several MeV over just few millimeters.
During 2020, the Division of Atomic Physics at Lund University will purchase a new
laser system, and in comparison to the old system, the new laser system has a shorter
pulse duration, lower energy, and higher repetition rate. Through particle in cell
simulations, it has in this thesis been shown that attosecond electron pulses can be
achieved with the parameters of the new laser system. The duration of the electron
pulses is tuned by modulating the plasma density. The energy of the these short
electron pulses are of the order of tens of MeV. However, for the specified plasma
density, it is more beneficial to drive the wakefield by a laser with four times the
energy than the system the upgraded laser system the Division plans to purchase.
The energy spectrum of the accelerated electrons at this laser energy proved to be
more peaked, and the electrons could be accelerated over a longer distance than if
the energy of the upgraded laser system were utilized.
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Populärvetenskaplig sammanfattning

Generering av ultrakorta elektronpulser med hjälp
av laseracceleration
Hur snabb är den snabbaste processen som vi kan observera? Och hur litet är det
minsta objektet? Kort sagt så kan vi inte se snabbare än vad ett slutarljus tillåter,
eller objekt mindre än den minsta möjliga våglängden.

Vad menar jag då med det? Jo, om vi vill ta stillbilder av en galopperande häst,
utan att bilden blir suddig, måste vi ha en blixt eller slutarljus som är snabbare än
hästen. Vill vi nu kunna se biologiska eller kemiska reaktioner som sker så snabbt
som knappt några miljondels miljarddels sekunder, måste alltså slutarljuset vara lika
snabbt eller snabbare! Dessutom kan molekylerna, och framförallt de individuella
atomerna, vara mycket små, och med samma tankegång som med slutarljuset, måste
våglängden hos ljuset vara i motsvarande längd som det vi vill se. Så, en atom som
är omkring 1000 gånger mindre än ett hårstrå, kräver en lika “lång” våglängd. Vi är
i röntgenområdet, och härifrån växer utmaningarna.

Ett sätt att generera kort röntgenstrålning är med hjälp av en plasmavåg, och i
jämförelse med en konventionell accelerator, används en laser för att excitera plas-
mavågen som elektronerna kan surfa på. När en laser av mycket hög intensitet
fokuseras i en gas är kraften från lasern så stor att gasen fullständigt joniseras.
Elektronerna slås ut och bort från fokuspunkten, och precis bakom lasern bildas ett
område helt tomt på elektroner. Gasen joniseras fullständigt och lasern bildar alltså
ett plasma. Trycket från lasern gör så att elektronerna slungas uppåt och bakåt.
Samtidig strävar de efter att återförenas med de positiva jonerna, men på grund av
den höga kraften hos lasern kommer de i stället att svänga runt sin jämviktspunkt
utan bindas till dem. Det har bakom lasern bildats en bubbla, likt kölvattnet bakom
en motorbåt. En bild som illustrerar hur bubblan ses i Fig. 1.

Om nu bubblan betraktas mer ingående, så ses det att; precis bakom lasern är net-
toladdningen positiv, och på baksidan av den bildade bubblan är nettoladdningen
negativ. Alltså har det över hela bubblan bildats ett starkt elektriskt fält där elek-
troner kan accelereras. För att elektronerna ska kunna se fältet, måste de injiceras
i bubblan. När injectionsprocessen upphör, klumpar elektronerna ihop sig och bil-
dar en puls som nu kan accelereras i fältet. Dessa elektroner når en hastighet nära
ljusets hastighet i vakuum. Samtidigt som elektronerna drivs i framåtriktningen med
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Fig. 1: Bild som illustrerar växelverkan mellan en mycket stark laserpuls och en gas.
Laserns intensitet är såpass hög att elektronerna fullständigt slås bort och lämnar ett
område bakom lasern helt fritt från elektroner. I bubblan kan elektroner accelereras
i en riktning som illustreras av den svarta pilen i figuren.

lasern, svänger de också transversellt, vilket ger upphov till röntgenstrålning. Detta
är vad som ligger till grund för så kallad Laser wakefield acceleration (LWFA), som
direktöversatt till svenska blir “Laser- kölvattensfältacceleration”. Vad är då fördelen
med att använda sig av den här typen av acceleratorer? För det första kan väldigt
höga elektriska fält uppnås bakom lasern. Det medför att på bara några centime-
ter kan mycket höga partikelenergier uppnås, medan motsvarande energier in en
konventionell accelerator kräver mycket längre sträckor. Dessutom blir acceleratorn
liten och kostnadseffektiv, vilket öppnar upp möjligheten för lokala röntgenkällor i
laboratorier och sjukhus. Det här blir viktigt när syftet är att generera röntgen-
strålning med till exempel hjälp av en frielektronlaser (FEL), som förlitar sig på
att elektronerna rör sig en viss sträcka en enstaka gång. För det andra så kan då
pulslängden av elektronerna göras mycket kort, upp mot en bråkdel av en miljondels
miljarddels sekund, vilket genererar motsvarande kort röntgenpuls.

Atomfysikavdelningen vid LTH kommer under 2020 att upphandla ett nytt laser-
system, och i jämförelse med det tidigare systemet så har den nya lasern kortare
pulslängd, lägre pulsenergi, och skickar fler antal ljuspulser per sekund. Det är då
intressant att undersöka om det är möjligt att generera elektronpulser som är en
miljon miljard gånger kortare än en millisekund i ett LWFA experiment och som
följd motsvarande röntgenstrålning. Med så kort röntgenstrålning är det möjligt att
undersöka biologiska, kemiska, och fysiska processer. Jag har genom simuleringar,
där jag använt mig av en skräddarsydd densitetsprofil av plasmat, visat på att my-
cket korta elektronpulser kan generaras med det nya lasersystemet. Pulserna har en
längd av en bråkdel av en miljon miljarddels sekund, och generering av korta pulser
kan förväntas experimentellt också.
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1

Introduction

An accelerator based radiation source has a number of applications, such as in ma-
terials sciences, industry, medicine and more. In materials sciences, it could for
example be interesting to resolve individual molecules, and the corresponding wave-
length must be as short or shorter than the smallest molecule resolved. If even
smaller structures are to be resolved, such as atoms, with a radius of the order
of 10−10 m, then again, the wavelength must be of the same order of magnitude
or smaller. Therefore, the wavelength range needed to resolve atoms are in X-ray
regime. These can for example be obtained from accelerating electrons. In “conven-
tional” accelerators, particles are driven by radio frequency (RF) electromagnetic
waves, while magnets focus the particles and bend their trajectories. By acceler-
ating the particles over a longer distance, higher energies can be obtained, but as
the energy increases, so must the strength of the magnets. Still, the conventional
accelerators are limited to accelerating fields of a few MV/m before the breakdown
of the cavity walls occur. Therefore, the accelerators must be made several meters
long in order to produce high energetic particles. For example, the linear accelera-
tor (Linac) at MAX IV Lund, has an approximate length of 300 m and a nominal
particle energy of 3.0 GeV [1]. The electron pulses from the accelerator are readily
prepared to be sent to the short pulse facility (SPF), to produce sub-ps X-rays at
MAX IV. However, ultra-short X-ray pulses, down to a duration of a few fs, and
even sub-fs, with high-quality are demanded in research [2]. A conventional accel-
erator delivering these ultra-short and high energetic X-rays would be large, several
hundreds of meters and even kilometers long, and consequently the construction
cost expensive [3].

In 1979, Tajima and Dawson [4] proposed a laser driven plasma-based accelerator,
for which an accelerating field exceeding several GV/m could be obtained. These
accelerators requires laser pulse intensities of the order of 1018 W/cm2, and at the
Division of Atomic Physics at Lund University, LWFA experiments are made pos-
sible with the TW-laser system. The electron pulses from the accelerator can then
either be used as a X-ray source, where the radiation from the transverse oscillation
of the accelerating electrons in the bubble regime is directly used, or the electrons
after leaving the regime can be used as a driver for example an FEL. In comparison
to a conventional RF-accelerator, the plasma can withstand the high accelerating

1



field, and if driven by short laser pulses, in the order of a few fs, the resulting elec-
tron pulse will be inherently short as well. This ultimately also means that over a
distance significantly shorter than that of current existing accelerators, potentially
hundreds of micrometers, the accelerated electrons will have gained more energy
than otherwise obtainable. The short structure opens up the possibility of tabletop,
cost-effective accelerators [3].

When a laser pulse of very high intensity interacts with gas, it may be completely
ionized, creating a plasma. The electrons are expelled away from the laser’s focus,
and just behind it, a bubble completely evacuated of electrons is created. Across
the bubble, the electric field is such that right behind the laser, it is positive, and at
the back it is negative. The whole structure can then be thought of as a capacitor.
In this bubble, electrons can be injected, forming an electron pulse, and then accel-
erated. This is the foundation of Laser Wakefield Acceleration (LWFA). As will be
shown in this report, the bubble depend on the spot size of the laser, and the size of
the bubble will determine the spatial length of the electron pulse. Since interaction
between the intense laser and plasma will be highly nonlinear, the plasma will act
as a focusing lens as the laser propagates through it. Furthermore, the focusing
effect is dependent on the plasma density. Therefore, in an LWFA, the spatial pulse
length of the electron pulses can be further compressed by modulating the spatial
geometry of the plasma [2, 5, 6, 7]. However, the accelerating structure of an LWFA
is small, typically a few µm, and the accelerating effects are transient. This, to-
gether with the complexity of the mechanism that makes the electrons subjected to
the accelerating field makes the diagnostics challenging. Therefore, simulations are
often used together with experimental results, and a common powerful tool is the
particle in cell (PIC) method. With the simulation, various effects can be isolated
an investigated individually [8].

Today, there are several different PIC algorithms, but they all have in common that
the field is represented on a grid, while the physical particles, i.e., electrons and ions,
are grouped together to so called macroparticles. The algorithm then couples the
kinetics of the macroparticles to the fields represented on the grid [9]. What then
essentially differs between the different existing PIC-codes are how the decomposi-
tion of the field is done mathematically. In this project, the Fourier-Bessel particle
in cell (FBPIC) algorithm is used [10], which is a PIC-code performing calculations
with a cylindrical geometry, and the field is decomposed by Fourier-decomposition.
It is motivated in this report that the FBPIC algorithm is computationally fast and
accurate for geometries close to cylindrical, such as an LWFA. In particular, the
code is used to simulate the new laser parameters, to investigate the production of
ultra-short electron pulses.

1.1 Background
During 2020, the Division of Atomic Physics at the physics department of Lund
University, will purchase a new laser system that will be used in research involving
high intensity lasers, including LWFA experiments. In comparison to the current

2



laser system, the new laser will have a lower pulse energy, shorter pulse duration,
and higher repetition rate. A compilation of the two laser systems can be seen in
table 1.1. For this degree project, it is of particular interest to investigate if it is
possible to generate attosecond electron pulses with the new laser parameters.

Table 1.1: Specifications of the current and new laser system.

Parameter Current laser system New laser system
Pulse energy [mJ] 1000 50
Pulse duration [fs] 30 7
Repetition rate [Hz] 5 100

Center wavelength [nm] 800 800

What is interesting about generating attosecond electron pulses is that the corre-
sponding X-ray radiation will have a similar duration, which then makes it possible
to examine ultrafast phenomena, such as charge migration in electronics and biolog-
ical processes [11]. By performing simulations, using the FBPIC algorithm, LWFA
is studied with the new laser parameters.

1.2 Purpose and question at issue
The purpose of this degree project, is to simulate the LWFA by using the FBPIC
algorithm with the parameters of the new laser system as defined in table 1.1. The
following issues are investigated:

• Can ultra-short (< 1fs) electron pulses be generated?

• What is the particle energy?

• What is the energy spread?

The study is done by performing the simulations for different density modulations of
the plasma. As will be motivated in section 3.5, the change in electron density of the
plasma directly affects plasma wave, and consequently the electron pulse duration.

1.3 This thesis
The project is limited to the highly relativistic and nonlinear interaction between
short laser pulse and a gas, where the laser intensity is such that the gas completely
ionizes the gas. The laser has thus created an underdense plasma (a more precise
definition can be found in section 2.2). Chapter 2 gives a brief description of elec-
tromagnetic fields and plasmas in order to understand the underlying physics of an
LWFA. In chapter 3, the physics of LWFA is described. The theory is explained
starting from a 3D linear interaction and then adapted to the nonlinear regime.
In chapter 4, the principles of PIC algorithms is explained, and then the FBPIC.
Chapter 5 presents the simulation results of this project together with a discussion.
The report is concluded with chapter 6 with conclusions and outlook.

3



2

Electromagnetic waves and plasmas

This chapter introduces the concept of electromagnetic waves and plasmas needed
to understand the underlying physics of an LWFA.

2.1 Electromagnetic fields in vacuum
The theory in this section closely follows chapters 2, 3, and 5 from [12]. One of the
reasons why light can travel through vacuum is because it consists of two orthogonal
fields, the electric and magnetic field. These two fields are related to each other by
Maxwell’s equations:

∇×B = µ0

(
j + ε0

∂E

∂t

)
,

∇× E = −∂B
∂t
,

∇ · E =
ρ

ε0
,

∇ ·B = 0,

(2.1)

where E, is the electric field, B the magnetic field, ρ the total electric charge density,
and j the current density. The constants, µ0 and ε0 are the vacuum electric permit-
tivity and magnetic permeability and the product of these two constants define the
speed of light in vacuum, c =

√
1/(ε0µ0).

All light, laser pulses included, propagates as waves, and in vacuum they travel with
a constant speed, c. The wave may mathematically be described by the complex
wave equation:

ψ(r, t) = a(r) exp{i(φ(r) + ωt)}, (2.2)

where r = (x, y, z) is the spatial position, t is the time, φ(r) the phase, a(r) the
amplitude, and ω the angular frequency. To represent an optical wave, the wave
equation must satisfy the wave function, such that:
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∇2ψ − 1

c2
∂2ψ

∂t2
= 0, (2.3)

where ∇2 = ∂2/∂x2+∂2/∂y2+∂2/∂z2 is the Laplacian operator. The wave equation
in Eq. (2.2) can be represented on the form ψ(r, t) = ψ(r) exp(iωt), where ψ(r) =
a(r) exp(iφ(r)) is the complex amplitude. Substituting this representation into Eq.
(2.3) will now lead to the time independent Helmholtz equation:

∇2ψ + k2ψ = 0, (2.4)

where k = ω/c, is called the wavenumber. Depending on the chosen boundary
conditions, different solutions arise. One of the simplest solutions is the plane wave:

ψ(r, t) = |a(r)| cos(ωt− kz + φ(r)). (2.5)

The equation thus says that the wave propagates in the positive z-direction, with
a certain angular frequency, ω, and with a certain phase φ(r). In terms of an
electromagnetic wave, with center frequency ω0, the plane wave can be expressed
as:

E(z) = E0 cos(kz − ω0t)ex. (2.6)

The amplitude of the plane wave may in vacuum be related to the amplitude of the
magnetic field through the expression |B| = |E|/c. For the electromagnetic plane
wave, the intensity, i.e., the power per unit area, can be expressed in terms of the
electric field amplitude as:

I0 = cε0
|E0|2

2
. (2.7)

To describe the interaction between a laser beam and a plasma, it is often convenient
to use the vector potentials of the electric and magnetic field, which in vacuum
becomes [3]:

E = −∂A
∂t

,

B = ∇×A.
(2.8)

Therefore, the plane wave in Eq. (2.6) may be expressed terms of the vector poten-
tial as:

A(z) = A0 sin(kz − ω0t)ex, (2.9)

where A0 = E0/ω0 is the amplitude of the vector potential. In this report, unit
vectors will be denoted ei, where i denotes the Cartesian coordinate. Hence, ex is
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the unit vector along x, and describes the polarization direction.

Another solution to Eq. (2.4), and a rather important one, is obtained if it assumed
that the beam mainly travels in the z-direction, such that it makes a small angle with
the propagation axis. The solution is the Gaussian beam, which is an idealization of
a laser beam, also a laser pulse. The complex amplitude of a laser pulse is therefore
described by:

ψ(r, t) =a0
w0

w(z)
exp

(
−x

2 + y2

w2(z)

)
exp

(
−ikz − ikx

2 + y2

2R(z)
+ iζ(z)

)
×

exp

(
−2 ln(2)

t2

τ 20

)
exp(iω0t),

(2.10)

where a0 is a constant, w(z) is the beam radius at any position z, and ζ(z) is called
the Gouy phase, and describes the additional phase pick-up of a Gaussian wave in
comparison to a plane wave and a spherical wave, which is another solution to Eq.
(2.4), not treated in this report. R(z) is the radius of curvature, which describes the
curvature of the wavefront at any position z, and lastly, w0 =

√
λZR/π is called the

beam waist, where λ = 2πc/ω is the wavelength and ZR the Rayleigh length. The
Rayleigh length defines the distance on the optical axis over which the intensity of
a laser has dropped to 1/2 of its maximum value. Moreover, it defines the depth of
focus, i.e., the distance over which the laser remains “sharp”, which for a Gaussian
beam is 2ZR. The time dependent part of the equation describes the envelope of the
laser pulse, where τ0 is the temporal width at the full width of the half maximum
(FWHM) of the pulse.

The beam waist, w0, is where the Gaussian beam’s width is the smallest, or, where
the maximum intensity of the beam has dropped by a factor of 1/e2 ≈ 0.135. In
beam optics, which these definitions has been derived from, the maximum intensity,
or the peak intensity, is defined by:

I0 =
2W

πw2
0τ0

(2.11)

where W is the laser pulse energy, and the optical power of the laser can be defined
as P = W/τ0.

In terms of an electromagnetic wave that is linearly polarized in the x-direction, the
Gaussian beam becomes:

E(r, t) = E0exψ(r, t), (2.12)

where ψ(r) is the complex amplitude defined in Eq. (2.10), and E0 the electric field
amplitude.
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2.2 Electron propagation in the laser field
The motion of a single electron subjected to an electromagnetic field, such as the
laser field, is described by the Lorentz equation [13]:

dp

dt
= −e(E + v ×B), (2.13)

where v is the velocity of the electron and p = γmev the electron momentum, and
γ = (1 − β2)−1/2 the relativistic factor and β = v/c is the normalized velocity of
the electron, where v is its speed. The E-field is responsible the excitation of a lin-
ear plasma wave, and v ×B, as will be shown, causes the excitation of a nonlinear
plasma wave [3]. Since the electric field, E, is transverse to the propagation direction
of the laser, the electrons will wiggle in the same direction. This field alone can not
accelerate the electrons, at least not in free space.

Since the magnitude of the magnetic field of a plane wave could be expressed as
|B| = |E|/c, as mentioned in section 2.1, for non-relativistic electrons with (β � 1),
the second term on the right hand side in Eq. (2.13) can be neglected. With a
classical approach, the electrons initially at rest at position z = 0 will oscillate with
a velocity:

z̈(t) = −eE0

me

cos(ω0t)⇒

ż(t) = v = − eE0

meω0

sin(ω0t),

(2.14)

which then leads to the normalized velocity:

β = −eA0

mec
sin(ω0t), (2.15)

from which the normalized vector potential now is defined as:

a0 =
eA0

mec
. (2.16)

The normalized vector potential, a0, is a recurring parameter when chracterizing
the interaction between an intense laser pulse and plasma. For a linearly polarized
Gaussian pulse, the laser power and a0 are related by [3]:

P ' 21.5

(
a0w0

λ0

)2

[GW]. (2.17)

When a0 & 1, the electron’s velocity approaches c, and it becomes relativistic,
which means that the term v ×B in Eq. (2.13) no longer can be neglected. In the
frame which is co-propagating with the laser pulse, the vector potential becomes
a(z, t) = eA/mec = a0 sin(k0ξ), where ξ = z − ct gives the coordinate in the co-
propagating frame [3]. The effect that the magnetic field has on the electrons can
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be derived from first finding the expression of the normalized momentum, which in
the x and z direction are [14]:

ux = γβx =
dx

dξ
= a = a0 sin(k0ξ)

uz = γβz =
dz

dξ
=

a2

2
=
a20
2

sin2(k0ξ).

(2.18)

Integrating Eq. (2.18), the displacement in each direction can are obtained as:

x = −a0
k0

cos(k0ξ)

z =
a20
8k0

(2k0ξ − sin(2k0ξ)).
(2.19)

Investigating Eq. (2.18) and (2.19), it is firstly observed that in the z-direction, the
velocity is always positive. Hence, v × B pushes the electrons forward, i.e., it is
responsible for the acceleration in the direction of the laser propagation and, as will
be shown, the nonlinear ponderomotive force. Secondly, as the electron moves for-
ward in z, it oscillates longitudinally at a frequency twice the laser frequency. Also,
when a0 & 1, the longitudinal oscillations dominate over the transverse. However,
in order to obtain a nonlinear response from the laser and plasma interaction, a
non-uniform laser profile must be used, such as a Gaussian pulse. The laser can be
tightly focused and high intensities can consequently be obtained. The ponderomo-
tive force, explained in section 3.1, then excites a plasma wave, which transfers the
energy from the laser to the electrons [3].

2.3 Electromagnetic fields in a plasma
In an LWFA, a laser pulse of very high intensity is focused onto a gas, and com-
pletely ionizes it, creating a plasma. A plasma is a state of matter, consisting of
free negative and positive charges, i.e. free electrons and ions. The net charge of a
plasma however, is zero. Because of the very high intensity of the laser in an LWFA,
the dominating ionization effect in LWFA is called over-the-barrier-ionization. In
comparison to photoionization, where a photon with an energy matching the ioniza-
tion energy of the atom or higher “lifts” the electron from the system, the electric
field is now such that the electron potential is heavily disturbed. The electrons
are then released into the continuum and subjected to the electric field of the laser
alone. A figure showing the principle of over the barrier ionization can be seen in
Fig. 2.1 [15]. Since the laser field oscillates, over the barrier ionization can occur
every half-cycle of the laser oscillation.

2.3.1 Laser propagation in a plasma

In the presence of an electromagnetic field, the plasma electrons which are much
lighter than the ions, will oscillate around their equilibrium position with a charac-
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Fig. 2.1: Over-the-barrier ionization. The dashed black lines are the undisturbed
potential barrier, while the heavy black lines shows the potential disturbed by the very
intense electric field of the laser, illustrated by the red dashed line. The blue dot is
the electron, and EB its binding energy.

teristic frequency, called the plasma frequency [14]:

ωp =

√
nee2

meε0
, (2.20)

where ne is the plasma electron number density, e the elementary charge, me the
electron’s rest mass. The plasma frequency describes the longitudinal oscillation in
plasma number density. For an electromagnetic wave, with fundamental frequency
ω0, propagating in the plasma, the following dispersion relation can be written as
[14]:

ω2
0 = ω2

p + c2k2, (2.21)

where k the wavenumber of the electromagnetic wave. Solving for k yields:

k =

√
ω2
0 − ω2

p

c
. (2.22)

Hence, three limits for the laser frequency arises. When ω0 > ωp, k is real, and the
laser can propagate through the plasma. For ω0 < ωp, k becomes imaginary, and the
electromagnetic wave can not propagate through the plasma. Lastly, when ω0 = ωp,
a critical density, nc, can be defined as:

nc =
ω2
0meε0
e2

=
1.12

λ20[µm]
[1021cm−3], (2.23)
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which gives the threshold number density at which total reflection occurs. λ0 = 2πω0

is the fundamental frequency of the laser. The earlier limits can thus be reformu-
lated in terms of plasma number density instead. When ne > nc, the plasma is
said to be overdense, and the laser pulse is not transmitted. When ne < nc it is
underdense, and the laser may propagate through the plasma. As an example, with
the laser used in this project, which has a wavelength of 0.8 µm, the critical density
is 1.75·1021 cm−3.

The group and phase velocity of an electromagnetic wave are defined as [12, 14]:

vph =
ω0

k
, vg =

(
dk

dω0

)−1
. (2.24)

Therefore, by using Eq. (2.21) and then Eq. (2.22), the vph and vg of the electro-
magnetic wave in the plasma are:

vph =

√
c2 +

ω2
p

k2
=

c√
1− ω2

p

ω2
0

vg =
c2

vph
= c

√
1−

ω2
p

ω2
0

.

(2.25)

Since ω0 > ωp was the condition for laser propagation through the plasma, the phase
velocity of the electromagnetic wave in the plasma is greater than c. Consequently,
the group velocity is always less than c. However, for a driving laser pulse that does
not evolve significantly in the plasma, vph ' vg, the normalized phase velocity, βp
and the relativistic factor of the plasma γp are:

βp =
vg
c

=

√
1− ne

nc

γp =
1√

1− β2
p

=

√
nc
ne
.

(2.26)

It can thus be observed that a smaller ratio between the plasma density and the
critical density, ne/nc, leads to a higher βp and a greater γp. In principle, by de-
creasing ne, the phase velocity of the plasma can be increased.

2.3.2 Self-focusing

As the laser propagates in the plasma, it will be modulated, and for this project,
self-focusing is of particular interest, since it changes the transverse size of the laser
during its propagation. As will be seen, this will affect the bubble which electrons
can be accelerated in, described in more detail in section 3.2.
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For a certain laser intensity, the relativistic nonlinear regime will be reached. The
spatial variation of the laser pulse intensity will cause a variation of the plasma’s re-
fractive index. Consequently, the variation in the plasma density’s spatial refractive
index will cause the plasma to act as a focusing lens. The mechanism is called self-
focusing. In this scenario, the laser’s diffraction can be precisely balanced and the
laser can propagate self-consistently. The spatial index of refraction of the plasma
can be expressed as η(r) = c/vph. Inserting the vph defined in Eq. (2.25), and
assuming a uniform plasma density, as well as a large amplitude plasma wave, the
following expression is obtained [11, 16]:

η(r) =

(
1−

ω2
p(r)

ω2
0

)1/2

' 1− 1

2

ne(r)

γ(r)nc
, (2.27)

which can be expanded as:

η(r) ≈ 1−
ω2
p

2ω2
0

(
1− a2

2
+
δne
n0

)
. (2.28)

where n0 is the background plasma density. In the expression, a2/2 corresponds
to the relativistic guiding of the laser, and δne/n0 the plasma waveguiding, self-
channeling and the self-modulation of long pulses [17]. It can thus be observed that
modulation of the refractive index that leads to self-focusing scales with a2, and the
change in ne, hence, there is a threshold minumum laser power that will lead to the
balancing of the diffraction, called the critical laser power [17]:

Pc = 17
ω2
0

ω2
p

[GW]. (2.29)

When the laser power is such that P/Pc > 1, the laser propagation is dominated by
relativistic self-guiding [16].
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3

Laser wakefield acceleration

Tajima and Dawson showed through theory and numerical analysis that a laser of
high power density, 1018 W/cm2, could generate an electric field of 109 V/cm2 [4],
from which electrons could be accelerated to a high energy over a short distance.
They proposed two schemes for the acceleration, called the beat wave and the laser
wakefield, and common for both is that an intense laser excites a wave in the plasma.
In the 1990s, several experiments followed from their work, where electrons of a few
MeV where injected and accelerated in a field of the GV/m range [18]. The develop-
ment of the chirped-pulse amplification (CPA) laser system, pioneered by Strickland
and Mourou [19], led to consequently more powerful laser systems, and it was possi-
ble to accelerate the electrons in fields to more than one TV/m. The laser wakefield
had one great breakthrough in 1994, when a group at Rutheford Appleton Labo-
ratory demonstrated the self-modulated laser wakefield [18, 20]. The amplitude of
the plasma wave was so large that electrons could be trapped and accelerated with
the laser. These first electron beams had a broad energy distribution due to the
random process of the injection, and did not compare well to what was obtainable
by conventional accelerators [18]. In order to control the shape of the electrons, it
is needed that the injected electrons has a duration much smaller than the excited
plasma wave period, much less than 10 fs, which was done in 2004 by three inde-
pendent groups [21, 22, 23]. It was also shown that the distribution and shape of
the electron pulses is dependent on the density of the plasma [23]. Moreover, they
produced quasi-monoenergetic electron beams, demonstrating the bubble regime.
The electron pulses had high quality as a result of controlling the laser plasma pa-
rameters, better diagnostic techniques, and extension of the laser’s propagation in
the plasma. Also, a better understanding of the underlying physics of the plasma
and laser interaction, in particular the importance of matching the laser parameters
to the plasma. For one, efficient acceleration is obtained if the acceleration length is
matched to the dephasing lenght, which can be thought of as the length for which
the electrons outrun the laser [3].
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3.1 The ponderomotive force
A charged particle, moving in the inhomogeneous field of an electromagnetic wave
will experience a time-averaged force which acts to push the electrons away from
the regions of high gradients in the laser intensity. This is called the ponderomotive
force [11]. Recalling Eq. (2.13), the second term of the right hand side v × B de-
scribes the nonlinear excitation of a plasma wave, and it is also responsible for the
ponderomotive force.

In the nonlinear regime, the electron both oscillates in the longitudinal and trans-
verse direction, and in the latter, the electron has a velocity vq, called the quiver
velocity [3]. The momentum in this direction then can be expressed as pq = γmevq.
One way to obtain an expression for the nonlinear ponderomotive force is by start-
ing from the linear regime. In the linear regime, a0 � 1, the electron oscillates
predominantly in the transverse direction, and the longitudinal oscillation can be
treated as a perturbation. The total momentum thus becomes p = pq + δp. In-
serting this, together with the vector potential description of the electromagnetic
field in Eq. (2.9), into the Lorentz equation, Eq. (2.13) and using the identity
d/dt = ∂/∂t+ v∇, yields the second order motion [3]:

dδp

dt
= −mec

2∇〈a2〉. (3.1)

In the linear regime, the ponderomotive force is given by the above expression,
averaged over the fast laser field oscillation:

Fp = −mec
2∇〈a2〉

2
. (3.2)

To obtain the ponderomotive force in the 3D nonlinear regime, this expression has to
be adjusted. For a collisionless plasma, the nonlinear ponderomotive force becomes
[24]:

FpNL = −mec
2∇〈γ〉, (3.3)

where 〈γ〉 is the slow variation of the relativistic factor, averaged over the fast laser
period [3, 15]. The expression is independent of the polarization of the laser, and it
is this force that the LWFA relies on.

3.2 The bubble regime
The LWFA scheme, exploits the nonlinear ponderomotive force. As can be seen
in Eq. (3.3), FpNL relies on the particle mass. Therefore, when a plasma is sub-
jected to a non-uniform laser pulse of high intensity, the electrons will experience a
stronger force from the laser than the much heavier ions. Due to this strong force,
the electrons will be pushed away from the laser’s focus, creating a “wake” behind
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the laser that is almost completely evacuated of electrons. In this cavity, or bubble,
the accelerating field can be of the order of hundreds of GV/m [2]. The injected
electrons, i.e. the electrons that has successfully entered the bubble, such that they
co-propagate with the laser, are highly relativistic and travels with a velocity close
to the laser’s group velocity [2]. An example of the bubble and the electric field
along it can be seen in Fig. 3.1. where the electrons have accumulated at the back.
There, the electric field is negative, while at the front, behind the laser, it is positive.
On axis, the electric field is zero. The figure shows a snapshot of the LWFA, and
the lighter gray area surrounding the bubble shows the background electrons of the
plasma. It can be seen that at the back of the bubble, that electrons have accumu-
lated, while the whiter area in the bubble shows the absence of electrons. The laser
pulse is propagating from left to right in the figure and is not directly plotted but
the effect of it can be seen as the wave pattern around the position z = 113 µm.

Fig. 3.1: Snapshot of the charge density, ρ, from an FBPIC simulation, illustrating
the bubble regime. For the simulation, the laser intensity corresponds to a0 = 3.4,
an electron density of ne = 1 · 10 19 cm−3 , laser FWHM pulse duration of τ0 = 7
fs, and a beam waist of w0 = 6.2 µm. The blue line shows the electric field in the
z-direction.

For an efficient guiding of the laser in the bubble regime, the waist of the laser must
be matched to the intensity. For intensities corresponding to a normalized vector
amplitude a0 & 2, Lu et al. have through simulations phenomenologically showed
that the matching condition is [16]:

kpw0 = 2
√
a0, (3.4)

where kp = ωp/vph is the wavenumber of the plasma wave. The radius of the bubble
can be described by kpR ' kpw0, which then means that:
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R ' w0 = 2
√
a0/kp. (3.5)

The magnitude of R varies depending on the intensity of the laser and the plasma
number density. From Eq. (3.5), it is evident from that the size of the bubble scales
with n−1/2e . Therefore, if the number density of the plasma is modulated, so is the
size of the bubble.

The expelled electrons follows a collective motion which leads to the formation of
the bubble seen Fig. 3.1. Electrons that manage to escape it can then enter the
cavity, i.e., they can be injected, and thus accelerated and the maximum accelerating
electric field can be estimated from the Poisson relation:

∇ · E = −e(ne − n0). (3.6)

By assuming that the plasma electrons are oscillating with kp = ωp/c, two solutions
are obtained; (ωp/c)Emax = en0 and Emax = E0, where:

E0 =
mecωp
e
' (96 GV/m)

√
ne [1018 cm−3], (3.7)

is the cold, non-relativistic wavebreaking field [3]. However, in the nonlinear regime,
it is possible for the maximum electrical field to exceed E0.

3.3 Dephasing and pump depletion length
In the nonlinear regime, there are two length of importance that determines the
particle energy gain of the accelerated electrons; the pump depletion length, Lpd,
defined as the distance for which half of the laser energy has been transferred to the
plasma wave, and the dephasing length, Ld, which is the distance the electrons that
has entered the bubble outrun the laser and starts to decelerate. These two effects
are intrinsic to the laser-plasma acceleration and depend on both the laser intensity
and the electron density [3, 16].

The pump depletion length, Lpd, can be thought of as the length over which the
laser can sustain the excited wake, and is in the bubble regime estimated via the
etching velocity [14]:

vetch '
cω2

p

ω2
0

, (3.8)

which in turn describes erosion velocity of the laser front the moment before it starts
self-focusing. For a laser with a pulse length of τ0 and an etching velocity as de-
scribed above, the Lpd becomes:
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Lpd =
c

vetch
cτ0 =

ω2
0

ω2
p

cτ0. (3.9)

The dephasning length, Ld, on the other hand, depend on the modification of phase
velocity of the plasma wave, which in the 3D nonlinear regime is βp = 1−3ω2

p/(2ω
2
0).

Therefore, for a bubble with a radius of R, the Ld can be expressed as:

Ld =
R

1− βp
' 2

3

ω2
0

ω2
p

R =
4

3

ω2
0

ω2
p

√
a0
kp

. (3.10)

A criterion for effective electron acceleration is matching the electron density for a
given laser amplitude such that Lpd ≈ Ld, which gives the following relation:

2

√
a0
kp

= R ≈ 3

2
cτ0, (3.11)

which means that if the matching criterion is met, then the bubble radius is approx-
imately 3/2 of the laser’s pulse length. A pulse with a duration of 7 fs would then
correspond to a bubble radius of approximately 3.1 µm, hence, the required laser
beam waist for an effective acceleration is w0 = 3.1 µm. When self-focusing occurs,
w0 will decrease, and consequently the radius of the bubble. The dephasing and
pump depletion length dependency on the electron density can be seen in Fig. 3.2
for a laser intensity corresponding to a0 = 3.4. From the figure it can be observed
that the optimum density is approximately 4·1019 cm−3 giving Lpd ≈ Ld ≈ 90 µm.

20 25 30 35 40 45 50 55 60
0

100

200

300

ne [1018 cm−3]

z
[µ
m
]

Dephasing length
Pump depletion length

Fig. 3.2: Pump depletion length, Lpd and the dephasing length Ld calculated and
plotted for different electron densities, ne. The laser has an intensity corresponding
to a0 = 3.4 and a FWHM duration of 7 fs, which also is used in the simulations.
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3.3.1 The energy gain of the electrons

As the electrons are accelerating in the plasma wave, their energy gain be descried
by [14, 16]:

∆W = eEzLacc (3.12)

where Ez is the accelerating field associated with the plasma wave, and Lacc the
distance for which the electron is submitted to the field. Since the bubble is roughly
a sphere with radius R, and if the electrons are injected at at the back of the bubble,
the electrons then travel a relative distance of R before they dephase. This leads to a
peak useful acceleration field of eEz,max/(mcωp) =

√
a0. The field is roughly linear,

leading to the average field being half of the maximum field, eEz,max/(mcωp) =√
a0/2. Also, it is desired that Lacc ≈ Ld, since this gives the longest acceleration

length before the electrons starts to decelerate [16], and in 2004, it was shown that
when Lacc ≈ Ld, low energy spread electrons were produced [21, 22, 23]. Thus,
insertion of the expression of the average field together with (3.10) in (3.12) gives:

∆W ' 2

3

ω2
0

ω2
p

a0mec
2 '

(
e2P

m2
ec

5

)1/3(
nc
ne

)2/3

mec
2. (3.13)

And in practical units, this can be expressed as:

∆W ' 1.7

(
P [TW]

100

)1/3(
0.8

λ0[µm]

)4/3(
1

ne[1018cm−3]

)2/3

[GeV]. (3.14)

Thus, the energy gain of the accelerated electrons can essentially be tuned by adjust-
ing the laser power, thus affecting a0, but more effectively by changing the electron
density, ne.

3.4 LWFA scaling laws
Summarizing the equation given so far, phenomenological scaling laws, given by Lu
et al. for a matched LWFA can be obtained. In table 3.1, the ones presented in
this chapter, which is valid for a 3D nonlinear regime are given for a laser intensity
corresponding to a0 > 2.

Table 3.1: Scaling laws for the 3D nonlinear regime, developed from [16].

a0 w0 Ld Lpd γp ∆W/mec
2

>2 2
√
a0

kp
4
3

ω2
0

ω2
p

√
a0
kp

ω2
0

ω2
p
cτ0

1√
3
ω0

ωp

2
3

ω2
0

ω2
p
a0

These scaling laws assume a non-evolving laser intensity, which is not true once
the nonlinear regime is reached. Also, the parameters are not fully valid once the
electrons becomes relativistic. However, they act as a guideline in an experimental
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setup, and are also used as a guideline throughout this project when evaluating the
simulation results.

3.5 Electron injection
For the electrons to be accelerated, they must be injected to the cavity, or bubble,
behind the laser in order to be subjected to the electric field gradient. Here, self-
injection and density down-ramp injection will be explained.

3.5.1 Self-injection

To achieve self-injection, the laser intensity is increased until the ponderomotive
force causes so large oscillations by the electrons that they escape the collective
motion that creates the wake and breaks the wave. Recalling from Eq. (2.28),
the plasma can act as a focusing lens as the laser propagates through it. As the
laser pulse self-focuses, the intensity will increase. These electrons can be injected
and trapped behind the laser pulse, and the trapping stops when the charge of the
injected bunch compensates for the ionic charge. As long as the intensity of the
laser is high enough, the structure remains stable [18]. For an optimal acceleration
of the particles, the intensity has to be chosen such that the corresponding a0 fulfills
the matching condition in Eq. (3.4), which also sets a condition on ne for which the
plasma can sustain the self-guiding effect. In order for the electrons to break the
wave during the first plasma wave period, the laser requires an electric field [25]:

EWB

E0

=
√

2(γp − 1), (3.15)

where the subscript WB denotes “Wave Breaking”, and EWB is the cold relativistic
1D wavebreaking field. The expression is valid for low temperature, plane plasma
waves. In the highly relativistic regime, when the laser pulse duration is shorter than
the plasma period, and when the intensity is high enough, such that the nonlinear
regime is entered, then the wave front is curved. The wave then breaks closer to
the propagation axis, leading to a lower required electric field strength than in Eq.
(3.15). However, when the electric field strength exceeds the wave breaking limit, a
larger amount of electrons may be trapped in the cavity behind the driving laser [25].

Even though self-injection is experimentally easy to implement, the lack of con-
trolled injection and reproducibility has led to the development of other injection
mechanisms, such as the density down-ramp injection.

3.5.2 Density down-ramp injection

The density down-ramp injection exploits the plasma wavelength dependence on the
plasma density, and by creating a gradient in the density profile, as seen in Fig. 3.3,
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controlled injection of electrons can be done. In Fig. 3.3, a peak region and plateau
region is created, denoted by I and II in the figure. The two regions are then joined
by a negative gradient for which injection of electrons can occur. This method was
introduced by Bulanov et al. [5], in particular a slow transition between the two
regions were explored. Later, Suk et al. [26] investigated the down-ramp with a
sharper transition between the density regions. Common for the schemes in Ref.
[5] and [26] is that the electrons after the injection are accelerated over the plateau
region, i.e. region II. The length of the down-ramp region, Ldr affects the beam-
loading effect which is the injected eletrons’ influence on the electric field within the
bubble. Ldr also determines the sharpness in transition between the two regions.
Experimentally the density regions could for example be obtained by using two or-
thogonal gas-nozzles, both of which are orthogonal to the propagation axis of the
laser. The method was exploited at Lund Laser Center [6], and it was shown that
the accelerating field could be controlled by adjusting the number density in region
I. In comparison to self-injection, the density down-ramp injection has proven to
be reproducible. As an example, in [6], the accelerated electrons had a measured
charge of 1 pC, with a shot-to-shot standard deviation of 13 %, and in energy it
was 5 %. While the self-injected electrons had a charge of 30 pC, but a standard
deviation of 50 % and limited reproducibility.

When the laser propagates over the negative density gradient, the phase velocity of
the bubble will gradually decrease until it becomes equal to the plasma fluid oscilla-
tion. This causes the wave to break, and hence, electrons are injected and trapped
in the desired plasma wave period [5, 26]. Typically, the plateau number density, ne,
is well below the matched density for an optimum LWFA, while in a self-injection
scheme the matched density is preferable. This is because in the former, it is de-
sirable to avoid injection due to mechanisms other than the change in the density
profile. As a consequence, a controlled and localized injection occur in the gradient
[5, 6, 7, 26].

The scaling law presented in Eq. (3.4), which applies to the matched regime, is
no longer applicable [7]. In a down-ramp scheme, the laser intensity cannot be
matched to both of the density regions at the same time, thus the scaling laws
do not apply throughout the whole density profile. Due to the highly relativistic
and nonlinearity of the bubble regime, theoretical analysis are difficult to establish.
However, parametric studies of the down-ramp region has shown that the injected
electron bunch length can be predicted from numerical simulations as [7]:

Le = C1∆λp + C2Q
2 (3.16)

where C1 and C2 are constants determined numerically, and λp = 2πc/ωp is the
plasma wavelength. Q is the total charge of the injected electron bunch. The con-
stant C1 couples the linear non-relativistic theory to the true plasma wavelength,
λp, and is dimensionless. It takes into account the plasma wavelength dependence
on the laser intensity, a0. The first term on the right hand side, C1∆λp, gives the
true plasma wavelength difference between the two regions in Fig. 3.3, without
the beamloading effect. C2 has the dimension length/charge2, and together with
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(a) (b)

Fig. 3.3: (a)An illustration of the density profile utilized in a density down-ramp
scheme. Injection happens in the down-ramp region, between region I and II. (b)
The bubble before and after the gradient, aqcuired from FBPIC simulations, ex-
plained in section 4.4. In region II, the bubble has expanded, and electrons have
been injected.

Q, the second term on the right hand side of Eq. (3.16) describes the elongation
of the bubble due to the beamloading effects. By numerically simulating the re-
quired parameters, C1 and C2 can then be fitted to the datapoints, leading to a
predictive model for a specific setup [7]. It was also shown in [7] the influence of
the gradient steepness in terms of the injection process. For a steep transition, the
injection process becomes more complicated in comparison with a gentler transition.
The injected electrons experience an abrupt change of the bubble radius, which also
causes large oscillations once the the electrons are trapped. For the gentler gradient,
the electrons propagates along the sheath before they accumulate at the rear of the
bubble, from which they are injected.

Density modulation

Tooley et al. [2] proposed an LWFA scheme exploiting arbitrary variation of the
plasma density profile which led to controlled injection of electrons in the bubble
regime. The density profile can be seen in Fig. 4.4, in section 4.5.1 of this report.
Similarly to the setup used in [6], the simulated profile corresponds to an experi-
mental setup with two orthogonal gas-nozzles which in turn are orthogonal to the
laser’s propagation direction.
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The density profile in [2] causes the expelled electrons to propagate along the sheath
before they are injected to the bubble, similarly to the slow gradient trapping de-
scribed in [7]. In their case, w0 is matched to ne in order to minimize the evolution
of a0 due to self-focusing as the laser propagates through the plasma. Over the
down-ramp region, the phase velocity of the back of the bubble βp decreases, and
hence injection occurs [27], much similar to the linear down-ramp density in Fig.
3.3. Before the decrease in density, and before region I in Fig. 3.3, the scheme in
[2] has a positive gradient. Over this positive gradient, self-injection is completely
suppressed if βp is increased such that it exceeds unity [27].

The in-homogeneity of the density profile described in [2], is also used in this project,
and given in the input script for the FBPIC algorithm. Mathematically, slightly
modified from [2], the plasma number density inhomogeneity can be described by:

n

ne
=

{
h(z)z/Lr if z ≤ Lr

1 + h(b− |z − zi|)α cos2(π z−zi
2b

) if z ≥ Lr,
(3.17)

where h(z) is the Heavyside function, Lr the initial ramp length of the plasma, zi the
position of the peak density with half-width b. In [2], the duration of the electron
bunches from the simulation using this injection mechanism, has a shortest duration
just below one fs. However, in their simulations, the laser has an intensity corre-
sponding to a0 = 4, thus being more intense than the laser used in the simulations
performed in this project, presented in section 4.5.
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4

Particle in cell simulations

A computational simulation acts as complement to physical experiments and the-
oretical models. Through the growth of commercially available computers, it has
become widely used as a tool to test or perform experiments where diagnosis in a
physical experiment perturbs the measurement [8, 9]. For LWFA experiment, nu-
merical simulations help with the understanding of the underlying physics, where
the models often are complex due to the highly relativistic and nonlinear interaction
between the laser pulse and the plasma. Commonly, a PIC-code is used for simula-
tions of LWFA, and here in this projected FBPIC is used, which is suitable for close
to cylindrical geometries, which an ideal LWFA fulfills [10].

In a PIC, or in early works, a cloud in cell (CIC) algorithm, the physical particles
are bunched together and represented by a finite number of macroparticles [8, 9]. To
obtain the field, the Maxwell’s equations are solved by a discretized finite difference
method, i.e., the fields are solved on a spatial grid, and the charge is then obtained
from the particles [9]. This reduces the computational cost in comparison to if the
Columb interaction between N particles is computed, which gives a summation over
N i interactions, where i denotes the number of dimensions. To fully resolve the
physics observed, the number of macroparticles must be sufficient, such that the
macroscopic behavior represents the microscopic. If too few are chosen, then dis-
crete particle effects occur, such as exaggeration of the fluctuations and collisions
(the latter not of any significant interest here) [9]. However, the discretization of
the fields may also lead to numerical errors, such as spurious numerical dispersion
in the propagation of the electromagnetic wave, which in this context means that
unphysical effects may be computed. As will be explained below, the FBPIC-code
avoids this problem, but first the general PIC algorithm will be explained.

4.1 The kinetic equation
The kinetics of the particles of the laser-plasma interaction can be described by the
general equation:
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∂f

∂t
+

p

γme

∇rf + q

(
E +

p×B

γme

)
∇pf = C(f) + ζ(f), (4.1)

where f is the single particle distribution function, p the momentum, E and B the
electric and magnetic field respectively. On the right hand side, C(f) is the collision
operator while ζ(f) is a potential source term, that is present if ionization/recom-
bination processes occur [28]. However, for a fully ionized and collisionless plasma,
as is considered here, both C(f) and ζ(f) can be neglected and (4.1) takes the form
of the Vlaslov equation. This equation must be coupled to the Maxwell’s equations,
or rather, two of them:

∂E

∂t
= − j

ε0
+ c2∇×B

∂B

∂t
= −∇× E,

(4.2)

where j is the current density, and here also the source term. It can be obtained
by solving the first moment, i.e. the expected value or mean of the distribution
function, f . These equation together therefore forms a closed set. One approach is
to directly solve Eq. (4.1), by finite differentiation. However, if N grid points are
used in each dimension, the needed storage scales as N i. The direct finite difference
approach therefore quickly becomes computationally expensive, if one seeks to solve
the equation in more than one dimension [28].

4.2 Particle approach
The above described problem can be reduced by defining the charges as a finite
set of cloud charges or as macroparticles to represent the distribution function. In
comparison to charged particles, that experience a Coulomb force between them,
the overall force for a charge cloud, or macroparticle is Coulombic. Meaning that
instead of two particles experiencing a strong force at short distance from each other
r, that exponentially decays, the macroparticles at a short distance from each other
experience a force that goes toward zero. While at a long distance from each other,
the overall force is the Coulomb force experienced between two single particles.
This allows the macroparticles to pass through each other, appearing collisionless
and hence reducing required computational power [8]. The distribution function can
thus be written as a sum of all macroparticles as:

f =
∑
i

gi(r− ri(t),p− pi(t)). (4.3)

where gi(·) describes the size and momentum of the i-th macroparticle. Substituting
this into Eq. (4.1), and using the chain rule, the two functions emerge:
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dri
dt

=
pi
γimi

dpi
dt

= qi(E + vi×B).

(4.4)

Thus, the macroparticles can be evolved as a set of single particles, and this approx-
imation is a fully consistent approach to the Vlaslov-Maxwell equation system [28].

The algorithm now works such that field are defined on a discrete grid, meaning
that the Maxwell’s equations are solved on the grid for which the macroparticles
moves through. The macroparticles are interpolated onto the grid to obtain cur-
rent densities, and the electric- and magnetic field are interpolated from the grid to
obtain these at each macroparticle [8]. A simple schematic of the procedure of a
PIC-algorithm can be seen in Fig. 4.1.

Fig. 4.1: Schematic showing the interpolation that is done at each iteration
(timestep). Image adapted from [29].

4.3 Particle pusher and interpolation
Particle pusher refers to the update of the momentum and position of the macropar-
ticle. The way this is done depends on the numerical method chosen as the solver of
the differential equation described in previous section. The simplest particle pusher
is that of the position, and if the Leapfrog method is used, then the update in one
spatial dimension for a macroparticle at the (n+ 1)-th timestep is [28]:

xn+1 − xn

∆t
=

p
n+1/2
x

γn+1/2m
. (4.5)
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The update of the momentum, in three-dimensions, is most effectively done by using
the Boris method instead of the Leapfrog method. This is due to the complexity
the term v ×B adds to the equation. However, separating the effect of E and the
rotation in Eq. (4.4), then the first step of the Boris method is accelerating the
particle in the E-field for half a timestep:

p− = pn−1/2 + qEn∆t

2
. (4.6)

where p− corresponds to p for a decreasing iteration step, −1/2. Next, the rotation
v ×B is performed to obtain p+, which is the current p at a increasing iteration
step +1/2. Throughout this step, γ is constant, which is denoted by γ′, and the
equation may be written as [28]:

p+ − p−

∆t
=

q

2γ′me

(p+ + p−)×Bn. (4.7)

The last step of the particle push is once again accelerating the macroparticle in the
electric field for half a timestep. Note here the positive sign in the step taken.

p+ = pn+1/2 − qEn∆t

2
. (4.8)

To obtain the grid charge of a particle and the force from the electric field, an ap-
propriate interpolation has to be done. This is done by a particle-grid interpolation,
which depends on the i-th macroparticle and the j-th spatial cell as [9]:

ρj ≡ ρ(Xj) =
∑
i

qiS(Xj − xi), (4.9)

Fi = qi∆x
∑
j

EjS(Xj − xi), (4.10)

where S(·) is a weight function, which describes the shape of the marcroparticle. The
S(·) in (4.9) and (4.10) does not have to be of the same shape, but usually is to avoid
gravitation-like instability, i.e., the macroparticle exerting a force on itself. Usually,
S(·) is isotropic and uniform [9]. Moreover, if it is isotropic, then it is also real
valued. A simple zeroth order interpolation uses an area weighting method, which
is called the nearest grid point (NGP) method, which is illustrated in Fig. 4.2. The
red box illustrates an arbitrary finite-sized macroparticle with a center point at c,
located somewhere on the grid, illustrated by the heavy black lines. The size of the
particle is, for simplicity of this example, the same as one defined grid cell, or just
cell. The dashed lines shows a grid with gridpoints at the center of the heavy dashed
lines, and the intersection of the dashed lines with the macroparticle divides it into
four areas, A1, A2, A3 and A4. Each gridpoint, 1, 2, 3, and 4, is now assigned a
charge. For simplicity of the example, let ∆x = ∆y, then gridpoint 1 gets assigned
a charge of qA1/∆x

2, and 2 qA2/∆x
2 and so forth. These assigned charges now

have the same dipole moment with respect to each dashed grid-line as the original
particle have [8]. This describes a uniform charge cloud. What is also a common
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interpolation method, and made similarly to NGP is the first order weighting called
the CIC method, or as it also is called, the PIC method. The difference between
the NPG and CIC shape functions are illustrated in Fig. 4.3. Even higher order
weighting can be used, but the increasing order also leads to increased complexity of
the code [9]. On the other hand, higher order interpolations improves the accuracy,
smoothness, among others, e.g. energy conservation [28].

Fig. 4.2: An illustration of the NGP method, or as it also is called, area-weighting
method. Image developed from [8, 9].

Fig. 4.3: Illustration of a) zeroth order shape function (NGP) and b) first order
shape function (CIC, PIC). Image developed from [9].

For a linear shape function, in one dimension, the macroparticle will contribute to
the charge density in two points only, such as [10, 28]:

ρj = qi
xj+1 − xi

∆x
and ρj+1 = qi

xi − xj
∆x

. (4.11)
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Hence, only two gridpoints contributes to the electric field:

Ex,i = Ex,j
xj+1 − xi

∆x
+ Ex,j+1

xi − xj
∆x

. (4.12)

The interpolation scheme is conceptually the same in two- and three dimensions and
can therefore easily be adapted. Moreover, the particle grid interpolation is a crucial
step in the PIC algorithm, and it is where most of the non-physical behaviors emerge.

4.4 Fourier-Bessel particle in cell
The FBPIC algorithm was originally developed by Lehe and Kirchen [10] and uses
a spectral-cylindrical representation of the field, in contrast to most other PIC algo-
rithms which uses a 3D cartesian grid. The spectral representation means that the
fields are transformed into Fourier space, and each coordinate can then be expressed
as a Fourier sum and solved for. Afterward, the fields are transformed back to real
space. The fields are, in contrast to a differential solver, never staggered in space
nor time. This makes the FBPIC relatively computationally fast and accurate for
geometries that are close to cylindrical. Since the PIC code, on the other hand,
staggers the field in both time and space, some numerical artifacts may occur, one
being a numerical growth of the emittance of the relativistic particles. Because of
the spectral representation of the field, numerical artifacts that arises from the dis-
cretization of fields are avoided [10].

4.4.1 Spectral representation

Spectral Cartesian PIC algorithm solves the Maxwell’s equation in Fourier space. A
certain class within this class of algorithms, called Psuedo-Spectral Analytical Time
Domain (PSATD) algorithms, do not suffer from spurious numerical dispersion. It
therefore follows that the algorithm is free from associated numerical artifacts. The
Maxwell’s equations in Eq. (4.2), can in a 3D Cartesian geometry be represented
by a sum of Fourier modes as:

Fϕ(r) =
1

(2π)3

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkzFϕ(k)ei(kxx+kyy+kzz), (4.13)

and with the Fourier representation of F as:

Fϕ(r) =

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dzFϕ(k)e−i(kxx+kyy+kzz), (4.14)

where F is any of the electric and magnetic fields or the current, in any coordinate ϕ.
In this representation, each field may be decoupled and written as, using ε0 = 1/µ0c

2:
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1

c2
∂

∂t
Ex =ikyBz − ikzBy − µ0Jx

∂

∂t
Bx = −ikyEz + ikzEy

1

c2
∂

∂t
Ey =ikzBx − ikxBz − µ0Jy

∂

∂t
By = −ikzEx + ikxEz

1

c2
∂

∂t
Ez =ikxBy − ikyBx − µ0Jz

∂

∂t
Bz = −ikxEy + ikyEx.

(4.15)

where Ei, Bi, and Ji are the Fourier counterparts of E, B, and j respectively. In
the form of Eq. (4.15), the fields can be integrated in time, and then transformed
back to real space by using Eq. (4.13). The procedure described is the principle
of spectral Cartesian algorithms, including PSATD. Now, in cylidrical coordinates,
Maxwell’s equations becomes:

1

c2
∂

∂t
Er =

1

r

∂

∂θ
Bz −

∂

∂z
Bθ − µ0jr

∂

∂t
Br = −1

r

∂

∂θ
Ez +

∂

∂z
Eθ

1

c2
∂

∂t
Eθ =

∂

∂z
Br −

∂

∂r
Bz − µ0jθ

∂

∂t
Bθ = − ∂

∂z
Er +

∂

∂r
Ez

1

c2
∂

∂t
Ez =

1

r

(
∂

∂r
rBθ −

∂

∂θ
Br

)
− µ0jz

∂

∂t
Bz =

1

r

(
− ∂

∂r
rEθ +

∂

∂θ
Er

) (4.16)

However, in cylindrical coordinates, the representation in Eq. (4.13) is no longer
appropriate, since the Fourier modes do not decouple, as they did for the Cartesian
coordinates. Instead, the Fourier-Hankel representation may be used [10]:

Fz(r) =
1

(2π)2

∞∑
m=−∞

∫ ∞
−∞

dkz

∫ ∞
0

k⊥dk⊥F̂z,m(kz, k⊥)Jm(k⊥, r)e
−imθ+ikzz,

Fr(r) =
1

(2π)2

∞∑
m=−∞

∫ ∞
−∞

dkz

∫ ∞
0

k⊥dk⊥(F̂+,m(kz, k⊥)Jm+1(k⊥r)

+ F̂−,m(kz, k⊥)Jm−1(k⊥r))e
−imθ+ikzz,

Fθ(r) =
1

(2π)2

∞∑
m=−∞

∫ ∞
−∞

dkz

∫ ∞
0

k⊥dk⊥i(F̂+,m(kz, k⊥)Jm+1(k⊥r)

− F̂−,m(kz, k⊥)Jm−1(k⊥r))e
−imθ+ikzz,

(4.17)

where F has the same representation as before, and Jm denotes the Bessel function
of order m and k⊥ comes from the change of variables of kx and ky as kx = k⊥ cos(φ)
and ky = k⊥ sin(φ). The spectral representation of Eq. (4.17) may now be written
as:
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F̂z,m(kz, k⊥) =

∫ ∞
−∞

dz

∫ ∞
0

rdr

∫ 2π

0

dθFz(r)Jm(k⊥r)e
imθ−ikzz,

F̂+,m(kz, k⊥) =

∫ ∞
−∞

dz

∫ ∞
0

rdr

∫ 2π

0

dθ
Fr(r)− iFθ(r)

2
Jm+1(k⊥r)e

imθ−ikzz,

F̂−,m(kz, k⊥) =

∫ ∞
−∞

dz

∫ ∞
0

rdr

∫ 2π

0

dθ
Fr(r) + iFθ(r)

2
Jm−1(k⊥r)e

imθ−ikzz,

(4.18)

where F̂− = (F̂x,m−1+iF̂y,m−1)/2 and F̂+ = (F̂x,m+1−iF̂y,m+1)/2. The z-component,
does not transform in the same manner as the r- and θ-component. This is due to
the different behaviors of the coordinates close to the axis. Also, scalar fields, such
as ρ, transforms in the same manner as Fz. By applying Eq. (4.17) to the spectral
representation of the Maxwell’s equations, the different modes do indeed decouple.
From Eq. (4.18), it can be seen that m represents different azimuthal modes of
the form e−imθ. Hence, for physical systems with close to cylindrical symmetry, the
Fourier sum in Eq. (4.17) is truncated to a few terms since higher order modes
goes to zero when |m| becomes large. Also, from Eq. (4.18), it can be seen that
the field now is represented by a set of 2D arrays, F̂(kz, k⊥) instead of a set of
3D arrays F(kx, ky, kz). In fact, only one 2D grid per azimuthal mode m is used.
This reduction leads to a computationally more efficient manipulation of the fields,
and it is the representation that the FBPIC algorithm uses to solve the Maxwell’s
equations in cylindrical coordinates, Eq. (4.16). However, since the number of 2D
grids are defined by the number of modes used, one have to make sure that enough
modes are used in the simulation to represent the physics. For an ideal LWFA, two
modes are enough, where m = 0 represents the grid independent of θ, which would
be the wakefield in an ideal LWFA. m = 1 then represents the the field that varies
proportionally with cos(θ) and sin(θ), which corresponds to a linearly polarized laser
field expressed in cylindrical coordinates, Eθ and Er, given that the propagation is
in the z-direction. Higher order modes takes into account the fields that departures
from the cylindrical symmetry, and represents fields that varies with cos(mθ) and
sin(mθ). For nonlinear effects, such that self-injection, sometimes 3 modes or more
are necessary. However, the computational cost increases with the number of modes
used. Therefore, the FBPIC algorithm is not efficient for geometries that are far
from cylindrical [10].

In the FBPIC code, the field gathering and current deposition of the macroparticle
is not directly performed in spectral space. This is because the operation in spectral
space becomes inefficient, since it still just affects a few cells close to the macropar-
ticle in real space, as visualized in Fig. 4.2, making it a local property. While
in spectral space, the field is represented on the whole grid, making the operation
a global property. Therefore, for the spectral solver, an intermediate grid is used
where the field gathering and current deposition can take place. The transformation
from the intermediate grid to the spectral grid is then a combination of a Fourier
transform along z and Hankel transformation along r. The two transformations lead
to different computational costs in each direction due to the different discretizations
of the intermediate grid, and therefore limits the number of possible grid points
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in each direction. In the z direction, the discretization is commonly done by fast
Fourier transform, while the discretization of the Hankel function varies depending
on the application [10]. For the FBPIC algorithm, the discretization along r is done
by an evenly spaced grid for the intermediate grid. These discretizations leads to
the computational cost in of the Fourier transform scales as Nz log(Nz), since the
discretization is done by fast Fourier transform, while the Hankel transform scales
as N2

r , where Nz and Nr are, respectively, the number of grid points along z and
r. For a large number of grid points along r, the Hankel transform may therefore
dominate the computational cost [10].

4.4.2 Advantages over finite-difference solvers

Other than the already mentioned benefits of using FBPIC in comparison to stan-
dard PIC codes which uses a finite-difference solver and full 3D Cartesian grid are
for one the accuracy of a spectral solver. Because of their high accuracy numerical
artifacts that are present in a finite-difference algorithm are avoided. One of them
being spurious numerical dispersion which affect the simulated dephasing length of
the LWFA. This is not present at all in a spectral solver. For a typical finite-difference
solver, the force felt by an electron co-propagating in a laser is over estimated, which
mainly is a consequence of the discretization of the E and B fields. The discretiza-
tion in turn leads to an improper compensation of the fields in Lorentz equation,
F = −e(E + v ×B). However, since the fields in the FBPIC algorithm are not
discretized, the calculated force on an electron from the field is thus correct [10].

Even though the spectral quasi-cylindrical representation utilized in FBPIC is ad-
vantageous, it does not come without shortcomings. One of them being that a
spectral algorithm is normally more difficult to parallelize. Another is that the
implementation of boundary condition for the moving window is normally more
complicated for a spectral algorithm. Nevertheless, the accuracy of spectral solvers
can, depending on their application, still be preferred over finite-difference solvers
[10].

4.5 Simulation parameters
In the FBPIC input-file, the simulation box, and resolution must be specified. Other
than that, the density profile must be given, and this could for example be the den-
sity modulation that was presented in section 3.5. For this project, the density
modulation that is described by Eq. (3.17) is in particular studied, since it was
proposed in [2] as a step towards the generation of attosecond electron pulses, which
this project is dedicated to.

An example of an input-file that calls the FBPIC simulation is shown in appendix
A.2. Other than the already mentioned parameters, the normalized vector potential,
a0, background electron density of the plasma, ne, duration, τ0, and beam waist,
w0, of the laser must be specified. The a0, w0 and ne are obtained by using the
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matching conditions in table 3.1 based on the new laser system in table 1.1. Thus,
the so called matched parameters can be seen in table 4.1.

Table 4.1: Matched parameters, derived from the new laser parameters specified in
table 1.1.

Parameter Quantity
a0 3.4
w0 3.1 [µm]
ne 4·1019 [cm−3]

From the matched parameters, a dephasing length of Ld = 90 µm and an energy
gain of ∆W = 50 MeV can be expected.

4.5.1 The density profile

The density profile used in the simulations can be seen in Fig. 4.4, where α is the
amplitude of the density modulation, measured from the plateau to the maximum
of the “hill”. The α is swept over values from α = 0 to α = 0.6 for most of the
simulations. In the figure, the dashed black line marks the focal plane of the laser.
Over the plateau, the density is kept at the background number density, ne.
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Fig. 4.4: The density profile used in the simulations, described mathematically by
Eq. (3.17). α is varied in the simulations.

An α = 0 would in this case correspond to a flat density profile, i.e. no density
modulation. For the simulation performed with this scheme, the focal plane is po-
sitioned at the beginning of the plateau.
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4.5.2 Laser specification

The excitation of the wakefield is dependent on the laser profile used for the sim-
ulation. For the simulation of this project, a few-cycle laser profile has been used,
due to the short duration of the laser pulse. In the FBPIC code, the electric field
profile for such a laser is given by [10, 30]:

E(x, t) = <

[
a0E0 exp(iφcep)

iZR
q(z)

(
1 +

ik0
s

(
z − z0 − ct+

r2

2q(z)

))−(s+1)
]
. (4.19)

In this context, r gives the transverse direction of the laser propagation, and x
represents the spatial coordinates. E0 corresponds to the electric field amplitude for
a0 = 1, q(z) = z− zf − iZR, φcep is the carrier-envelope phase, and s is a parameter
that controls the pulse duration [30]:

ω0τ0 = s
√

2(41/(s+1) − 1). (4.20)

As ω0τ0 � 1, the few-cycle laser profile in Eq. (4.19) approaches that of a Gaussian
pulse. The few-cycle laser profile is used during this project because as the initialized
laser pulse becomes short, the standard Gaussian laser pulse is not well adapted in
the FBPIC code. This is because the defined Gaussian laser pulse profile of the al-
gorithm does not take into account that different frequencies focus in different ways.
It has been seen in initial tests of this project that there is a significant difference
between the Gaussian pulse and few cycle laser profile for a FWHM duration of τ0=
7 fs.

The laser is by default linearly polarized in the x-direction, given that the laser
propagates in the z-direction of a Cartesian coordinate system. In the simulation
box, the laser is initialized directly on the grid, leading to the fields satisfying the
equations ∇ · E = 0 and ∇ ·B = 0.
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5

Results and discussion

The matched parameters given in section 4.5 are used as a reference for each of
the simulations performed in this project. In particular, the matched ne caused
some numerical instabilities in the simulations. Also, two injection mechanisms are
present, as will be shown in section 5.3. Therefore, ne was decreased, and the results
from this are shown in section 5.1 and 5.2.

5.1 Density modulation
To suppress self-injection, the number density of the background plasma was de-
creased until no injection was observed for a flat density profile, corresponding to
α = 0 in Fig. 4.4. This happened when ne = 1 · 1019 cm−3, i.e. at ne four times less
the matched density in table 4.1. For this number density, w0 was too small, and
the self-focusing effect was unable to cancel out the spatial diffraction.

The problem was solved by increasing w0 in the simulation, while maintaining the
same a0, which corresponds to a laser pulse energy four times greater than that
specified in table 1.1. So, the parameters given in the input-file are thus a0 = 3.4,
w0 = 6.2 µm and lastly, ne = 1 · 1019 cm−3. A snapshot from three instances of
the simulation performed for α = 0.4 can be seen in Fig. 5.1. In the figure, (a)
and (b) are the charge density and the longitudinal phase space (z, uz) before the
density modulation in Fig. 4.4, and just at the focal plane of the laser. The bub-
ble is almost spherical, and as can be seen in phase space, no electrons are present
within the bubble. Hence, self-injection is suppressed, as expected. The injection
occurs at a position about half-way through the down-ramp region of the modulated
density. Fig. 5.1(c)-(d) shows the charge density and phase space right after the
density modulation. In the longitudinal phase space, it can be seen that at this
point there is only one electron pulse present. In Fig. 5.1(e)-(d) the charge density
and longitudinal phase space are lastly shown at a position right before the end of
the plateau in Fig. 4.4. The injected electron pulse has at this point almost been
accelerated over a distance of 100 µm. In phase space at this point, a U-shape can
be observed, which indicates that the particle energy distribution is peaked, with
the majority of the particles having a normalized momentum of uz = 80mec, which
in turn corresponds to a peak particle energy of approximately 40 MeV.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.1: Snapshots of the charge density and corresponding longitudinal phase
space at three instances of time for the parameters a0=3.4, ne=1·1019 cm-3, w0=6.2
µm and α=0.4. In (a) and (b), right before the density modulation, (c) and (d),
right after and (e) and (f), right before the end of the plateau in Fig. 4.4.

In Fig. 5.2, the charge density, the accelerating electric field, and the electric field of
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.2: Snapshots of the laser’s electric field, electric field along the bubble, and
charge density from simulations performed for the parameters a0=3.4, ne=1·1019

cm−3, and w0=6.2 µm. In (a), (c), and (e) α=0.1. In (b), (d), and (f) alpha=0.6.

the laser are shown at an instance right before the end of the plateau in Fig. 4.4. In
Fig. 5.2(a), (c), and (e), α = 0.1, while in Fig. 5.2(b), (d), and (f) α = 0.6. As can
be seen, there is a minor difference in the strength of the electric field of the laser,
where it is greater for α = 0.6. This might be because the higher α causes a greater
self-focusing effect. It could, however, also be some numerical artifacts that causes
the difference, but this has not been studied in more detail during this project.
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However, for α = 0.6, more electrons are injected into the bubble, in comparison to
when α = 0.1. The amount injected electrons are such that they significantly affect
the accelerating field, Ez, by decreasing the field’s gradient. It is thus expected
that an increased α leads to an increased charge injection, hence a lower particle
energy. This is exactly what can be observed in Fig. 5.5(b). However, as shown
in Eq. (3.16), the spatial length of the electron bunch, scales with Q2. Moreover,
as the number of injected electrons increases, so does the duration of the electron
pulse. This can be seen in Fig. 5.3 for α =0.2, 0.4, and 0.6. Indeed, the FWHM
duration, τe, do increase slightly with increasing α. The energy spectrum for the
same simulations as in Fig. 5.3 can be seen in Fig. 5.4.
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Fig. 5.3: The temporal profile of 3 electron pulses from the simulations where
a0=3.4, w0=6.2 µm and ne=1·1019 cm-3.

15 20 25 30 35 40 45 50 55 60 65 70
0

0.2

0.4

0.6

0.8

1

W [MeV]

d
Q
/d
E

[a
rb
.
un

it
s]

α=0.2
α=0.4
α=0.6

Fig. 5.4: The energy spectrum of 3 electron pulses from the simulations where
a0=3.4, w0=6.2 µm and ne=1·1019 cm-3.
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The FWHM duration and current for all α which were simulated in this project can
be seen in Fig. 5.5(a). This again shows that duration of the electron pulse increases
with increasing α because more electrons are injected in the process. Another result
is that attosecond electron pulses can be generated by utilizing the density profile
presented in Fig. 4.4, if the laser pulse energy is four times greater than the energy
specified for the new laser system in table 1.1. Fig. 5.5(b) shows the particle energy
and spread for the same simulations as in Fig. 5.5(a). It can be observed that for the
simulations performed here, the highest particle energy is obtained for α = 0.1, as
expected, which corresponds to the electron pulse with the least amount of charge.
However, at α = 0.1 the energy spread is larger than it is for e.g. α = 0.15 up to
α = 0.3. This might be because of some numerical error, since it does not follow
the general trend that can be seen in Fig. 5.5(b). However, it might be that for
α < 0.1, the energy spread increases. The reasons why is that the effect of beam-
loading is not as significant for small a small α. Also, for a smaller α the electrons
are located further back in the bubble, and hence experience a stronger E-field. To
fully establish if it is an artifact or physics, simulations for some α’s below 0.1 must
be performed.
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Fig. 5.5: In (a) the FWHM duration, τe, of the electron pulses and their charge, Q,
for each α simulated in this project. (b), their respective particle energy and energy
spread.

In Fig. 5.5(b) it can also be seen that the highest energy gain is approximately 64
MeV, which is higher than the expected energy gain described in section 4.5, where
it was expected that ∆W = 50 MeV. This is not surprising, because as the number
density decreases, the energy gain will increase, as seen in Eq. (3.14). However, the
energy gain does also depend on the acceleration length, and as can be seen in Eq.
(3.10), the dephasing length increases with decreasing ne. Therefore, if Lacc ≈ Ld,
then ∆W again increases. The electrons could probably be accelerated over a longer
distance than done here in these simulations. In that case, even higher particle en-
ergies would be obtainable, assuming that the acceleration stops before dephasing
occur.
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5.1.1 Decreasing a0
The results so far show that the generation of attosecond electron pulses benefit from
a laser pulse waist twice as large as the matched beam waist, which corresponds to a
laser pulse with four times higher energy than the one specified in table 1.1. At least
if ne is decreased such that self-injection is suppressed. A simulation with decreased
intensity, corresponding to a0 = 1.7 was performed to see if a lower intensity still
could excite a nonlinear plasma wave. In this case, the plasma wave is weakly rela-
tivistic, which can be seen in Fig. 5.6. Also, no injection occur in the first plasma
period, even though density modulation is utilized, with α = 0.4. In this case, the
phase velocity of the back of the bubble is not slowed down enough for the electrons
to be injected. However, in the second and even third plasma period, electrons are
injected. This is because the relative change in the bubble phase velocity increases
with increasing plasma period. Injection is therefore more likely to happen as the
plasma period increases.

Fig. 5.6: A snapshot of a simulation performed for the parameters ne=1·1019,
a0=1.7, w0=6.2 µm and α=0.4.

5.2 The effect of the beam waist
For the simulations performed, ne = 1 · 1019 cm−3. In this case, none of the pa-
rameters are matched. The sole purpose was to suppress self-injection, such that
the only injection mechanism is due to the density modulation. Therefore, a0 and
w0 are the matched parameters, as presented in table 4.1. It was interesting here
to see if there were any significant difference between the simulations performed for
w0 = 6.2 µm and w0 = 3.1 µm. These comparisons were done by investigating the
evolution of a0 as the laser propagates through the plasma density. The result can
be seen in Fig. 5.7.

As can be seen in Fig. 5.7, the evolution of a0 as the laser propagates through is
significantly different in the both cases. In Fig. 3.3(b), the self-focusing effect of the
plasma is unable to effectively cancel the spatial diffraction of the laser pulse, hence
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(a) (b)

Fig. 5.7: The evolution of a0 for simulations with parameters a0=3.4, µm,
ne=1·1019 cm-3, and (a) w0=6.2 µm and (b) w0=3.1 µm.

the decrease in a0.

The charge density and the longitudinal phase space from the density down-ramp
injection, similar to the density profile shown in Fig. 5.7(b) can be seen in Fig. 5.8.
In comparison to the longitudinal phase space in Fig. 5.1, the particle distribution
does not form into a U-shape, but rather has a continuous streak. This means that
the energy distribution is broad, and not as peaked as it is for the simulations per-
formed with a w0 = 6.2 µm.

(a) (b)

Fig. 5.8: A snapshot from the simulation where a0=3.4, w0=3.1 µm, ne=1·1019
cm-3. In (a), the charge density and in (b) the corresponding longitudinal phase
space.

5.3 Numerical instabilities at a high ne

When the matched parameters defined in table 4.1 are given as an input to the simu-
lation, numerical instabilities occur. This might have arisen because of the increased
number density in comparison to the other simulations, and therefore the given res-
olution was not enough to resolve the actual physics. One problem, however, with
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performing LWFA for a high number density together with a density modulation
is the fact that two injection mechanisms might occur, which is shown in Fig. 5.9.
One electron pulse is firstly injected before the density modulation, and the second
is injected at the down-ramp. It this point, because of the resolution related in-
stabilities, it is unclear whether the two injection occur because of the underlying
physics, or if it is due to the instability at the current resolution.

(a) (b)

Fig. 5.9: A snapshot from the simulation where the number density was ne = 4
·10-19 cm-3, a0 = 3.4 and w0 = 3.1 µm. In (a), the charge density can be seen, and
in (b) the corresponding longitudinal phase space.

(a) (b)

Fig. 5.10: The evolution of a0 over a flat density profile for two different number
of azimuthal modes, m. In (a) m = 2, and in (b) m = 4.

It did turn out however, that the instabilities were severe, and it could be that either
the resolution was too low to resolve the physics. However, for these simulations,
the parameter limiting the possible resolution was the VRAM of the graphics card
used, with the specifications seen in appendix B.1. Another possibility was that the
number of azimuthal modes used for the simulations, i.e. m = 2, was not enough
to capture eventual asymmetries. Therefore, a test with a flat density profile, was
performed for m = 2, 3, 4 modes. In Fig. 5.10, the evolution of a0 can be seen, for
the simulation results from m = 2 and m = 4. The oscillations of a0 occurs in both
cases, and it indicates that more modes might be needed, hence, the problem might
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not be nearly cylindrical.

The resolution was checked by decreasing the simulation box’s size to about 2/5 of
the previous one, while keeping the number of gridpoints as specified in table A.1.
For this simulation, even though the number of azimuthal modes at this point was
m = 4, numerical instabilities occurs at an early stage of the simulation. It could be
that the simulation box was made too small, and cut the electric field off. Another
simulation was performed to check this, where the simulation box was slightly larger.
The same effect was not observed. It is deduced that not only must the resolution
and the number of modes used be enough to resolve the physics, but the simulation
box must be made large enough to capture the full interaction.
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6

Conclusion and outlook

The simulations results show that by tailoring the number density of the plasma, it is
possible to obtain sub-fs electron pulses from the LWFA, and by matching the laser
waist to the plateau density, in particular, by choosing laser parameters correspond-
ing to an energy four times larger than the laser system that the division of Atomic
physics plans to purchase during 2020. The resulting particle energy of the electron
pulses was peaked with a small energy spread. Another important parameter for
an accelerator is the emittance, but it was not investigated because it requires high
resolution simulation. The sub-fs duration of the electron pulses simulated here are
promising, as this shows that ultrashort electron pulses may be achievable with the
new laser system. These short pulse duration were achieved with a small density
modulation, and the shortest electron pulse also had the highest particle energy.
However, the small density modulation led to the smallest amount of injected elec-
trons, and in terms of injected charge and energy, there seems to be a trade-off in
how to choose these two parameters. In future works, it would be interesting to
investigate the evolution of the electron pulse, such as the divergence, after it leaves
the plasma and propagates some distance afterwards.

Throughout this project, the simulations has been carried out on a local computer
server. In the future, simulation on a cluster would be preferable, since it offers
greater resolution and sweeping of parameters made easier through parallelization.
Nevertheless, using a local computer for a fast diagnosis has been advantageous for
this project, and will most likely be for similar projects in the future, given that
the computer is equipped with a GPU with greater VRAM. Also, larger simulations,
where the computations are made in the boosted Lorentz-frame would be interesting
to perform. Instead of the simulation frame moving in the reference frame, it is
moving in the Lorentz-frame together with the laser. As a consequence, the plasma
is shorter and moves towards the laser pulse. In this regime the algorithm is stable
and performs iterations faster than in the lab-frame, which becomes more relevant
with larger simulations.
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Appendix A

FBPIC input file

A.1 Resolution specifications
In this project, the simulation box was chosen with the current beam waist and
laser duration taken into consideration. A rule of thumb when choosing the the
simulation box is to set zmax ≥ 3cτ0, where τ0 is the pulse duration of the simulated
laser pulse, and r ≥ 3w0. This is to ensure that bubble and the laser is not cut off
by the simulation box. A compilation of the number gridpoints and macroparticles
used can be seen in table A.1. These numbers have not been varied for each and
every simulation because of the increase in computaional cost.

Table A.1: A compilation of the number of gridpoints and macroparticles used
during the simulations.

Number of gridpoints along z Nz 1600
Number of gridpoints along r Nr 200
Number of macroparticles along z Mz 2
Number of macroparticles along r Mr 2
Number of macroparticles along θ Mθ 8

One benefit of using the FBPIC code is that all parameters are given in SI-units,
except for a0, which is given in normalized units.

The output from the simulation gives a meta-file for each iteration, containing infor-
mation about the electric and magnetic field, the current and current density, also
the position and momentum of the different species used in the simulation. The
macroparticles weight are also obtainable from the meta-files. In this project, the
open source python package OpenPMD viewer has been used to analyzing output
data from the simulation.

A.2 Example code
Below is an example code, which has been downloaded from the FBPIC web docu-
mentation, and slightly modified to suit this project.
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2 """
This is a typical input script that runs a simulation of

4 laser -wakefield acceleration using FBPIC.

6 Usage
-----

8 - Modify the parameters below to suit your needs
- Type "python lwfa_script.py" in a terminal

10

Help
12 ----

All the structures implemented in FBPIC are internally documented.
14 Enter "print(fbpic_object.__doc__)" to have access to this

documentation ,
where fbpic_object is any of the objects or function of FBPIC.

16 """

18 # -------
# Imports

20 # -------
import numpy as np

22 import math
from scipy.constants import c, e, m_e

24 # Import the relevant structures in FBPIC
from fbpic.main import Simulation

26 from fbpic.lpa_utils.laser import add_laser_pulse , FewCycleLaser
from fbpic.openpmd_diag import FieldDiagnostic , ParticleDiagnostic ,

\
28 set_periodic_checkpoint , restart_from_checkpoint

30 # ----------
# Parameters

32 # ----------

34 # Whether to use the GPU
use_cuda = True

36

# Order of the stencil for z derivatives in the Maxwell solver.
38 # Use -1 for infinite order , i.e. for exact dispersion relation in

# all direction (adviced for single -GPU/single -CPU simulation).
40 # Use a positive number (and multiple of 2) for a finite -order

stencil
# (required for multi -GPU/multi -CPU with MPI). A large ‘n_order ‘

leads
42 # to more overhead in MPI communications , but also to a more

accurate
# dispersion relation for electromagnetic waves. (Typically ,

44 # ‘n_order = 32‘ is a good trade -off.)
# See https :// arxiv.org/abs /1611.05712 for more information.

46 n_order = -1

48 # The simulation box
Nz = 1600 # Number of gridpoints along z

50 zmax = 20.e-6 # Right end of the simulation box (meters)
zmin = -40.e-6 # Left end of the simulation box (meters)

52 Nr = 200 # Number of gridpoints along r
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rmax = 20.e-6 # Length of the box along r (meters)
54 Nm = 2 # Number of modes used

56 # The simulation timestep
dr = rmax/Nr

58 dz = (zmax -zmin)/Nz
dt = dz/c # Timestep (seconds)

60

# The particles
62 p_zmin = 15.e-6 # Position of the beginning of the plasma (meters)

p_zmax = 300.e-6 # Position of the end of the plasma (meters)
64 p_rmax = 20.e-6 # Maximal radial position of the plasma (meters)

n_e = 1.e19*1.e6 # Density (electrons.meters ^-3)
66 p_nz = 2 # Number of particles per cell along z

p_nr = 2 # Number of particles per cell along r
68 p_nt = 8 # Number of particles per cell along theta

70 # The laser
a0 = 3.4 # Laser amplitude

72 w0 = 6.2*1.e-6 # Laser waist
ctau = 2.1*1.e-6 # Laser duration

74 tau = ctau/c

76 z0 = 0.e-6 # Laser centroid -- initial position of the
centroid in the lab frame

zf = 90.e-6 # Laser focal plane
78

80 # The moving window
v_window = c # Speed of the window

82

# The diagnostics and the checkpoints/restarts
84 diag_period = 200 # Period of the diagnostics in number of

timesteps
save_checkpoints = False # Whether to write checkpoint files

86 checkpoint_period = 100 # Period for writing the checkpoints
use_restart = False # Whether to restart from a previous

checkpoint
88 track_electrons = False # Whether to track and write particle ids

90 # The density profile
zstart = 15.e-6 # Start position of

density profile (ramp)
92 zramp = 50.e-6 # Ramp length

zw = 25.e-6 # Width of density "
hill"

94 zi = 100.e-6 # Position of nozzle ,
central part of the hill

zposstart = -zw + zi # The start of the hill
96 zposend = zw + zi # End position of the

hill
zpos = np.linspace(zposstart ,zposend ,20) # The coordinates over

which the hill is calculated
98 zplateau = 250.e-6

100 npeak = 0.6 # percental increase
nplateau = 1

102 nbump = nplateau + npeak*np.cos(math.pi*(zpos -zi)/(2*zw))**2 #
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Calculating the coordinates of the hill

104

def dens_func( z, r ) :
106 """ Returns relative density at position z and r"""

zp = np.concatenate ([np.array([0, zstart , zstart+zramp]),
zstart+zpos ,

108 np.array ([zplateau , zplateau+zramp])])
fp = np.concatenate ([np.array([0, 0, nplateau ]), nbump , np.
array([nplateau , 0])])

110 n = np.interp(z,zp,fp ,0,0)
return(n)

112

# Interaction time (seconds) (to calculate number of PIC iterations
)

114 T_interact = (( zplateau+zramp)+2*( zramp+zmax -zmin))/ v_window

116

# ---------------------------
118 # Carrying out the simulation

# ---------------------------
120

# NB: The code below is only executed when running the script ,
122 # (‘python lwfa_script.py ‘), but not when importing it (‘import

lwfa_script ‘).
if __name__ == ’__main__ ’:

124

# Initialize the simulation object
126 sim = Simulation( Nz , zmax , Nr , rmax , Nm, dt , zmin=zmin ,

n_order=n_order , use_cuda=use_cuda ,
128 boundaries ={’z’:’open’, ’r’:’reflective ’})

# ’r’: ’open’ can also be used , but is more computationally
expensive

130

# Create the plasma electrons
132 elec = sim.add_new_species( q=-e, m=m_e , n=n_e ,

dens_func=dens_func , p_zmin=p_zmin , p_zmax=p_zmax , p_rmax=
p_rmax ,

134 p_nz=p_nz , p_nr=p_nr , p_nt=p_nt )

136 # Load initial fields
# Add a laser to the fields of the simulation

138 # Few -cycle laser profile
profile = FewCycleLaser(a0, w0, tau , z0, zf)

140 add_laser_pulse(sim , profile)

142 if use_restart is False:
# Track electrons if required (species 0 correspond to the

electrons)
144 if track_electrons:

elec.track( sim.comm )
146 else:

# Load the fields and particles from the latest checkpoint
file

148 restart_from_checkpoint( sim )

150 # Configure the moving window
sim.set_moving_window( v=v_window )
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152

# Add diagnostics
154 sim.diags = [ FieldDiagnostic( diag_period , sim.fld , comm=sim.

comm ),
ParticleDiagnostic( diag_period , {"electrons" :

elec},
156 select ={"uz" : [1., None ]}, comm=sim.comm ) ]

# Add checkpoints
158 if save_checkpoints:

set_periodic_checkpoint( sim , checkpoint_period )
160

# Number of iterations to perform
162 N_step = int(T_interact/sim.dt)

164 ### Run the simulation
sim.step( N_step )

166 print(’lwfa script was executed successfully ’)
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Appendix B

Computing resources

B.1 Computing resources
The simulation are done on the computer server at the Division on Atomic Physics
at the Faculty of Engineering. For this particular purpose, the simulations were
faster on the GPU than the 2 × 10 CPU. The installed graphics card is a Nvidia
GeForce GTX 1050 Ti, originally optimized for gaming purposes, and has total
available memory of 4 GB. Since the graphics card is distributed by Nvidia, it
supports CUDA (compute unified device architecture), which is a parallel computing
platform created by Nvidia. CUDA is specifically designed to communicate with
programming languages, such as C, C++, Fortran, etc. [31], and therefore no prior
advanced knowledge of graphics card programming is required to operate a code on
the GPU. In table B.1, the memory specifications of the graphics card is listed.

Table B.1: Memory specifications of Nvidia GeForce GTX 1050 Ti.

Memory speed 7 Gbps
Standard memory configuration 4 GB GDDR5
Memory interface width 128-bit
Memory bandwidth 112 GB/sec
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