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Abstract 

 
Boreal forest ecosystems are predicted to experience hotter and drier summers due to climate 

change, leading to more frequently reduced soil water availability and an increased risk of droughts, 

as was already the case in Northern Europe during the severe summer drought of 2018. Prolonged 

water stress in forest ecosystems can lead to impacts ranging from reduced photosynthesis to forest 

dieback. However, it is currently unknown whether characteristics associated with undisturbed old-

growth forests, such as a natural age structure, and the presence of understory and dead wood, are 

linked to increased drought resistance. Therefore, this study investigated 2018 drought impacts of 

over 300 Swedish forest pairs through a comparative analysis of spatially proximate old-growth 

and production forest stands, and their associated Landsat EVI2 Z-scores. Prior to this, several 

candidate satellite vegetation indices (Landsat EVI2, MODIS EVI2, MODIS NDWI, MODIS CCI) 

were evaluated on their ability to capture anomalies in gross primary production (GPP) measured 

at different Eddy-Covariance ecosystem monitoring stations. The candidate indices were also 

compared at the landscape level across a highly heterogenous ‘case study’ area in northern Sweden. 

While neither of the indices consistently captured GPP anomalies at the tested stations, the 

increasingly degraded spatial resolution associated with the MODIS vegetation indices proved to 

cause severe smoothing effects when investigating impacts across a topographically varied 

landscape; in contrast, Landsat EVI2 captured negative anomalies along drier slopes, while moister 

valleys were associated with positive Z-scores. It was therefore chosen as the most suitable index, 

and for further analysis, forested areas were separated into five distinct topographical soil moisture 

classes. Despite their older age, old-growth forests were on average associated with significantly 

higher Z-scores than their surrounding production forests. Overall Z-scores increased with 

increasing soil moisture, whereas relative differences (old-growth – production Z-score per forest 

pair) decreased. When normalized by the frequency distribution of the soil moisture classes, the 

mean difference amounted to +0.13. Furthermore, variability in drought impacts was higher for 

old-growth than production forests, and consequently, both the stands associated with the highest 

positive and negative anomalies were old-growth. The largest negative Z-score differences can be 

reconciled by the fact that those old-growth forests were on significantly steeper slopes and had a 

higher fraction of purely deciduous stands. Apart from that, however, relative differences in 

drought impacts were not associated with a clear spatial pattern, and no general relationship was 

found with drought severity, nor relative differences in age, elevation, and slope. Differences were 

therefore likely caused by other factors not considered. 
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growth forests, forest management, resilience, resistance, climate change, boreal forests, remote 
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1. Introduction 

Boreal forest ecosystems are predicted to experience hotter summers due to climate change, and 

while precipitation is predicted to increase to a moderate extent as well, this will be insufficient to 

compensate for the increased evapotranspiration caused by changes in temperature (Gauthier et al. 

2015). Such warmer and drier conditions lead to more frequently reduced soil water availability 

and increase the risk of droughts (Seidl et al. 2017), as was already the case in large parts of Central 

and Northern Europe during the summer drought of 2018 (Reinermann et al. 2019).  

One coping mechanism of plants during periods of water stress is to partially close their stomata, 

thus reducing evaporative water loss and photosynthetic carbon uptake (Peters et al. 2018). In fact, 

numerous Scandinavian ecosystem monitoring stations reported decreased Net Ecosystem 

Production during the summer of 2018, with some of the monitored forests changing from carbon 

sinks to sources (Linderson et al. 2020). However, the understanding of the response of forest 

carbon and water fluxes to a warmer and drier climate is still far from complete (Grossiord et al. 

2013).  

One key missing aspect is the role that functional diversity plays in forest resilience and resistance 

to drought; resilience hereby refers to the capacity of a forest to return to pre-drought growth 

conditions, while resistance refers to the ability to withstand a drought during its occurrence 

(Vanhellemont et al. 2019). While some studies suggest a buffering effect through higher hydraulic 

diversity and increased drought resistance through reduced competition in more heterogenous 

stands (Gazol et al. 2016;  Anderegg et al. 2018), the opposite could be the case, with for instance 

mixed forests more quickly exhausting available soil water than monospecific stands (Grossiord et 

al. 2013). Studies conducted so far have focused on labor-intensive tree ring and carbon isotope 

analyses and their conclusions are therefore to a large extent based on relatively small sample sizes 

and limited areas; furthermore, the majority of research on drought resistance so far only compared 

stands within secondary forests that have been altered by human disturbance, therefore constituting 

systems that likely function very differently than old-growth forest stands. The latter are typically 

characterized by natural succession, by the increased presence of older trees, dead wood, and 

understory (Hedwall et al. 2010;  Sabatini et al. 2018) and it is unknown to what extent these 

differences between old-growth forests and forests that are managed for production purposes 

through measures such as thinning and drainage, influence drought resistance.  

Satellite remote sensing (RS) has increasingly been employed to study the effects of disturbances 

on ecosystems through utilization of so-called vegetation indices (VI), which are designed to 

capture spectral changes caused by changes in vegetation characteristics (AghaKouchak et al. 

2015). Since water stress can lead to reduced leaf water content and altered pigment pools, 
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detectable in the shortwave-infrared (SWIR) and visible (VIS) spectral regions, previous RS 

studies successfully quantified past drought impacts in various European countries (e.g. Reichstein 

et al. 2007;  Dotzler et al. 2015;  Puletti et al. 2019;  Reinermann et al. 2019). However, to our 

knowledge, no study so far has explicitly investigated differences in drought resistance between 

old-growth forests and production forests through the use of satellite RS data, despite the urgent 

need to fill this knowledge gap, given the likelihood of more frequent droughts in the near future, 

and the data abundance RS offers when compared to in-situ methods. Therefore, the aim of this 

thesis is twofold: firstly, a suitable vegetation index to study drought impacts in Scandinavian 

forests will be identified, the latter being typically characterized by highly fragmented landscapes 

and an abundance of evergreen coniferous tree species, which not necessarily show discoloration 

during drought stress. In combination, this makes the choice of a suitable VI and satellite sensor 

and its associated tradeoff between available spectral, temporal, and spatial resolution particularly 

challenging. In order to investigate this, temporal anomalies of various potential candidate VIs will 

be studied at different Scandinavian ecosystem monitoring stations, to test whether they 

successfully capture local anomalies of gross primary production (GPP). Furthermore, the 

candidate VIs will be evaluated at the landscape level across a highly heterogenous ‘case study’ 

area in northern Sweden. Subsequently, the most suitable VI identified in part one will be utilized 

to compare drought impacts in Sweden’s last remaining old-growth and their surrounding 

production forests, based on a newly available map holding detailed information on the locations 

of Swedish old-growth forests. In short, the following two research questions will be addressed: 

 

1. What is the most suitable vegetation index to study 2018 drought impacts on Swedish forests?  

2. Are old-growth forests more drought resistant than their surrounding production forests? 

 

2. Background 

2.1. Swedish old-growth and production forests 

Forests currently cover over 60% of Sweden’s total area, making it by far the most abundant land-

cover class. At the same time, the majority of Swedish forests are managed for commercial 

purposes; in fact, the Swedish forestry sector currently supplies about ten percent of the global 

sawn timber, pulp, and paper products, making these products one of the country’s most important 

export revenues (KSLA 2015;  Lindahl et al. 2017).  

Forests have long played an important role in the countries’ economic development; for centuries, 

areas were cleared for use as firewood, for farming, or directly used for forest grazing; with 



 

3 

 

industrialization, timber was increasingly needed as fuel for the mining, iron, and steel industry, 

for charcoal and tar production, in the shipping industry, and starting in the late 1800s, for the 

manufacturing of pulp and paper, among other uses (KSLA 2015). Consequently, by the early 20th 

century, most of Sweden’s forests were left degraded, with parts of southern Sweden essentially 

devoid of any forest. To alleviate the situation, the national Forestry Act was established in 1903, 

primarily aimed at improving forest management to ensure a steady supply to meet industrial 

demands (Eriksson et al. 2018), and until the early 90s, silvicultural measures to be applied during 

different rotational stages were strongly regulated (Lindahl et al. 2017). While these efforts 

successfully led to almost a doubling in standing tree volume over the past century (Jonsson et al. 

2011), its legacy today is a forest management regime largely dominated by single-species, even-

aged forest stands of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies), which are 

replanted following a clear-cut, typically succeeded by several rounds of thinning and cleaning, 

and eventually clear-cut again after 60-120 years (Vestin 2017). Furthermore, selection of fast-

growing, damage-resistant phenotypes and fertilization (KSLA 2015) are common practices, as 

well as the extensive drainage of wetter areas, artificially lowering water tables to promote tree 

growth and avoid water-logging after clear-cutting has occurred (Jacks 2019). Thus, most of 

Sweden’s extensive forest landscape is structurally very different from what would be found 

naturally, with only few ‘natural’ forests left ‘like islands within managed forests’ (Fridman 2000, 

p. 95) scattered throughout the country (Figure 1).  

 

 

Figure 1: Orthophoto showing a forest landscape in Västernorrland County, near the coast of the Baltic Sea. Skuleskogen national 

park (park boundaries shown as dashed lines) is readily distinguished as a patch of old-growth forest amidst a complex patchwork 

of clear-cut areas and production forests at different rotational stages. Source orthophoto: © Lantmäteriet (2012). 
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Primary forests, here interchangeably referred to as ‘old-growth’ forests, are generally defined as 

naturally regenerated forests of native species without visible traces of past human disturbance, 

with key characteristics being the presence of dead wood, as well as a natural age structure (FAO 

2015). This will be used as the operational definition for the remainder of this project; however, 

note that other definitions encompass additional criteria on, for instance, minimum area, and 

discrepancies between terminologies exist (Buchwald 2005). In a recent study, the boreal biome 

was found to host the majority of Europe’s last old-growth forests; despite Sweden’s extensive 

forest management history, Sweden is believed to still host the largest continuous stretches of old-

growth forest in Europe (Sabatini et al. 2018), although to date, no official map showing the current 

extent of these forests, exists. 

 

2.2. Northern forests in a warming world 

2.2.1 A portrait of the 2018 drought and its impacts 

While droughts are commonly connected to a deficiency in precipitation over a sustained time 

period, there is no single, overarching definition of the term; instead, the phenomenon can be 

understood through four operational definitions, depending on the variable used to describe its 

occurrence: 1) meteorological droughts, characterized by a sustained lack of precipitation, 2) 

hydrological droughts, that is, a diminished surface water flow, 3) agricultural droughts, where 

crop growth is affected through reduced soil moisture, and 4) socio-economic droughts, due to 

failure of meeting water demands (Mishra and Singh 2010). For the remainder of this project, the 

term should be understood as referring to the definitions of a meteorological/agricultural drought. 

In contrast to the extreme heatwave in Europe in 2003, temperature and precipitation anomalies 

during the summer of 2018 displayed a bimodal distribution, with Central and Northern Europe 

experiencing extreme heat, while the Mediterranean and Iberian Peninsula experienced normal 

conditions and negative anomalies, respectively (Buras et al. 2020). The drought was onset by a 

dry-spell and above-average temperatures in May through the establishment of a persistent high-

pressure system, with the situation worsening throughout June and July (Masante and Vogt 2018b). 

In August and September, parts of Northern Europe recovered somewhat, while the situation 

persisted in several Central European countries until October (Masante and Vogt 2018c). 

Furthermore, in Scandinavia, the drought had been preceded by a lack of precipitation from March 

onwards already, thus developing over a longer time period (Masante and Vogt 2018a). Sweden 

experienced positive temperature anomalies of up to 4°C, with July being the hottest month 

measured on record for several parts of the country. Precipitation anomalies showed a more 

heterogenous distribution, whereby the northwestern part of the country, as well as parts along the 
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Bothnian Coastline received above-average rainfall in June, with some areas in Lapland 

experiencing the rainiest summer in decades. In contrast, parts of southern Sweden received less 

than half of their normal precipitation. At the end of an otherwise dry August, heavy rainfalls over 

southern Sweden normalized monthly precipitation values within a short time period (SMHI 

2018a). An overview of the progression of the 2018 monthly temperature and precipitation 

anomalies for the months May to August is shown in Figure 2.  

As a consequence of the drought, central Sweden experienced several severe forest fires (SMHI 

2018a), as well as devastating impacts on agricultural yields, and the situation was declared a 

national crisis (Regeringskansliet 2019). However, impacts on other ecosystems, including forests, 

remain to be explored. A first Europe-wide quantification of 2018 ecosystem impacts based on 

Moderate Resolution Imaging Spectroradiometer (MODIS) RS data estimated the total most 

severely affected area to be twice as large as compared to 2003, as well as the coupling between 

the climatic water balance and drought impacts to be stronger than in 2003 (Buras et al. 2020). 

Consequently, the authors hypothesized that the scale of impacts was likely a function of the 

location of the drought, where during the summer of 2003, the epicenter hit Mediterranean 

ecosystems that are better adapted to such conditions than is the case for northern forests. In fact, 

an earlier study on southern Scandinavian Norway spruce trees revealed severe hydraulic 

dysfunction, top dieback, and stem cracking emerging as a long-term consequence of a dry-spell 

during the summer of 2006 (Rosner et al. 2018). 2018 being unprecedented in recent Swedish 

meteorological history, similar or more severe impacts are to be expected. Importantly, drought-

induced hydraulic dysfunction has been shown to be a mediator of subsequent delayed forest 

dieback, where mortality often only peaks several years after the drought event took place 

(Anderegg et al. 2019). Moreover, drought-induced vulnerability can act as a facilitator for other 

subsequent disturbances such as insect and pest outbreaks, indirectly amplifying drought impacts 

(Seidl et al. 2017). Thus, while the focus of this thesis is to study forest resistance in the context of 

the short-term effects of the 2018 drought, observed tree stress will likely be an underestimation of 

the real magnitude of impacts, with increased mortality events likely to be observable only in the 

years to come. 
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Figure 2. Spatial variability of monthly precipitation (upper panel) and temperature (lower panel) anomalies over Sweden during 

the 2018 drought, showing its progression from May – August. Monthly means during the 1961-1990 period are used as baseline. 

Note the exponential scale of the precipitation anomaly values. Adapted from the original maps of SMHI (2018b), permission 

received 
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2.2.2 Linking forest drought stress to the carbon cycle 

Plant water stress can be induced by atmospheric vapor pressure deficit (VPD) on a scale of days 

to weeks, and further aggravated by soil moisture limitations on a seasonal time scale. Such 

conditions trigger stomatal closure, which increases the plant’s intrinsic water use efficiency and 

aids to slow down further water loss through evapotranspiration (Peters et al. 2018). At the same 

time, carbon dioxide uptake is hampered, leading to reduced photosynthesis. If dry conditions 

continue to prevail, pressure in the water-transporting xylem tissue falls and cavitation, i.e. a phase-

change from liquid water to vapor, occurs. Such xylem embolism impedes further water transport 

and photosynthesis, leading to tissue damage, desiccation, and in some cases, carbon starvation 

and eventual tree death (Choat et al. 2012;  Trugman et al. 2018).  

During the summer of 2018, ground water levels in Southern Sweden were critically low for 

extended time periods (Belyazid and Giuliana 2019), and several Scandinavian ecosystem 

monitoring stations measuring ecosystem-atmosphere carbon exchange by means of Eddy-

Covariance flux towers recorded a strong weakening of the forests’ ability to act as atmospheric 

carbon sinks (Linderson et al. 2020), thus indicating severe local drought stress reactions. This 

stands in stark contrast to what happened in 2003, where Swedish forests showed an increase in 

the rate of photosynthetic carbon uptake, commonly expressed as Gross Primary Production (GPP), 

where water was not as limited, while the rest of Europe experienced an estimated 30% decrease 

of GPP, reversing four years of carbon sequestration (Ciais et al. 2005). Albeit a still poorly 

constrained number, forests are estimated to currently act as a sink of 29% of annual anthropogenic 

carbon emissions due to CO2 fertilization and a lengthening of the growing season (Friedlingstein 

et al. 2019). A long-held paradigm hereby regards old-growth forests as carbon neutral due to 

reduced growth rates and increased maintenance respiration of older trees, therefore excluding 

them from the carbon budget. However, recent research suggests that this view is unsupported, and 

that both temperate and boreal old-growth forests continue to accumulate carbon over centuries, 

thus storing vast carbon stocks (Luyssaert et al. 2008). Given that droughts are predicted to occur 

more frequently due to climate change and boreal forests are under substantial threat under a drier 

future climate (Gauthier et al. 2015;  Seidl et al. 2017), whether old-growth forests are able to 

withstand prolonged dry spells and retain their ability to function as a net carbon sink, is thus of 

key importance for the global carbon budget. 
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2.3. Factors influencing forest drought resistance 

Throughout the last two decades, an intensified research effort motivated by the accelerated loss of 

biodiversity has led to the recognition of biodiversity as one of the most important determinants of 

ecosystem functioning (Tilman et al. 2014). In principle, changes in species and functional group 

diversity can lead to a combination of both negative and positive effects on ecosystems (Loreau 

and Hector 2001;  Grossiord et al. 2013). On the one hand, increased occurrence of so-called ‘niche 

complementarity’ in diverse ecosystems, that is, niche separation and facilitative species 

interactions, generally leads to decreased competition, more efficient partitioning of resources, and 

to increases in overall community performance (Loreau and Hector 2001). Moreover, the 

‘insurance hypothesis’ predicts that if conditions change, at least some species are likely to persist, 

stabilizing overall community functioning (Tilman et al. 2014;  Anderegg et al. 2018). For instance, 

tree growth in several European forest stands has been shown to be less variable through time in 

mixed stands, where species diversity stabilized overall wood production under a wider range of 

environmental conditions (Jucker et al. 2014). On the other hand, increased competition can lead 

to a ‘selection effect’ and to the dominance of a single species with a particular – beneficial or 

harmful – trait (Loreau and Hector 2001); furthermore, if niches of coexisting species are 

overlapping, direct competition can lead to quicker resource depletion (Grossiord et al. 2013).  

Therefore, whether such contrasting interaction effects end up enhancing or reducing overall 

drought resilience and resistance of forests is currently a topic of active debate, fueled by 

inconsistent research findings. A recent paper by Anderegg et al. (2018) showed that temperate and 

boreal forests with a higher diversity in hydraulic traits exhibit a buffering effect on latent heat flux 

(LHF) variations during dry periods, thus suggesting increased drought resistance. Furthermore, 

long-term tree ring analyses from German sessile oak, European beech, and Norway spruce forests 

showed that, while spruce and oak show no difference in drought resistance when grown in either 

mixed or pure stands, beech trees are significantly more resistant in mixtures with spruce or oak 

(Pretzsch et al. 2013). This is believed to be caused by facilitative interaction effects such as 

hydraulic uplift of the deeper rooting system of oaks supplying water to the shallow roots of beech, 

and through a temporal stratification of stress response patterns, where ‘isohydric’ trees such as 

spruce close stomata early on and thus reduce further consumption of water, which is then made 

available to so-called ‘anisohydric’ species such as beech, that continue to photosynthesize until 

water is completely exhausted (Pretzsch et al. 2013;  Forrester et al. 2016). Several studies support 

similar conclusions about facilitative interaction effects and drought resistance (e.g. Lebourgeois 

et al. 2013;  Gazol et al. 2016).  

In contrast to these findings, Grossiord et al. (2013) suggests the opposite to be the case in boreal 

forests, where mixed stands of Silver birch, Norway spruce, and Scots pine in a Finnish forest more 
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quickly exhausted available soil water during the dry-spell of 2006, leading to higher tree water 

stress levels than in their monospecific counterparts. As it seems, there might be no generalizable 

relationship between diversity and community-level drought stress (Grossiord et al. 2014), and the 

extent to which trees, when grown as heterogenous mixtures of different age classes and species, 

prove to be more drought resistant varies across regions and local conditions, with the same species 

benefitting when paired at some sites while showing no effect at others (Forrester et al. 2016).  

Apart from species diversity, forest resilience is also closely linked to tree size and age, with larger 

trees often showing higher levels of delayed drought-induced tree-mortality, despite their more 

extensive rooting systems and thus improved water access; since resistance of passive water 

transport from the roots to the leaves is increased in tall trees, a higher xylem-tissue-to-leaf-ratio is 

needed for effective water use, severely hampering post-drought recovery once extensive xylem 

tissue damage has occurred, therefore making old and tall trees more susceptible to severe droughts 

(Trugman et al. 2018;  Vanhellemont et al. 2019). On the other hand, uneven-aged forests can favor 

the relative growth of smaller trees during droughts, especially in stands with isohydric species, 

with smaller trees benefitting from the shading and the reduced water consumption of the taller 

trees, thus stabilizing overall stand growth (Pretzsch et al. 2018). In conclusion, whether Swedish 

old-growth forests benefit from facilitative processes, or suffer from increased competition for 

water resources, and the role that stand age and structure hereby play, currently constitutes a major 

research gap. Additionally, such systems stand in stark contrast to surrounding production forests 

whose management history, such as species selection of more-drought resistant phenotypes one the 

one hand, and forest drainage and thinning on the other hand, might severely alter drought 

resistance. 

 

2.4. Signs of drought stress and their potential to be observed remotely 

2.4.1 Reduced chlorophyll absorption 

Vegetation indices (VIs) are designed to quantify vegetation information on a per pixel basis in a 

remotely sensed image (Chuvieco 2016). They are based on combinations of several satellite bands, 

making use of differences in the so-called ‘spectral signature’ of vegetation, that is, the variation 

in reflected radiation across different wavelengths (see Figure 3 for an example spectral signature 

of a coniferous species). VIs typically involve a band in the spectral region of strongest chlorophyll 

absorption, corresponding to the red (R) region (0.6-0.7µm), as well as one in the near-infrared 

(NIR) region (the whole region corresponding to about 0.7-1.2µm), in which most incoming 

radiation is reflected rather than being absorbed; combining these two spectral regions in a VI 

enhances the vegetation signal, as the contrast between NIR and R reflectance increases with the 
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presence of vegetation in a pixel (Chuvieco 2016). Arguably the most well-known, ubiquitously 

applied VI is the Normalized Difference Vegetation Index (NDVI). NDVI is commonly used as a 

measure of general greenness and seasonal or interannual variations thereof, and as a proxy for 

biophysical variables such as GPP or biomass (Chuvieco 2016). However, NDVI does not scale 

linearly with biomass, leveling off over dense canopies. Therefore, an alternative VI, designed to 

minimize soil and aerosol influences and to solve the saturation problem over dense canopies, the 

so-called Enhanced Vegetation Index (EVI), is commonly used as an alternative to NDVI in high 

biomass regions. EVI has since been developed into a two-band version called EVI2 (Eq. 1), which 

no longer incorporates the blue band (Jiang et al. 2008). 

 

 𝐸𝑉𝐼2 = 2.5 ∗  
𝜌𝑁𝐼𝑅 −  𝜌𝑅

𝜌𝑁𝐼𝑅 +  2.4 ∗ 𝜌𝑅 +  1
 

Where 𝜌𝑁𝐼𝑅 and 𝜌𝑅 refer to satellite bands in the near-infrared, and red regions, respectively 

Eq. 1 

Figure 3: Spectral signature for needles of a coniferous tree species, showing regions of carotenoid, chlorophyll, and water 

absorption as utilized in the vegetation indices used in this study. Spectral signature retrieved and adapted from the USGS 

Spectral Library (Kokaly et al. 2017). 
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When photosynthetic capacity is compromised, the leaves’ absorption of solar radiation in the 

photosynthetically active wavelengths decreases, and comparatively more radiation is reflected 

instead, reducing the contrast between R and NIR (AghaKouchak et al. 2015). Both NDVI and 

EVI/EVI2 have been employed in various studies to quantify vegetation stress and drought impacts 

across Europe. For instance, Reinermann et al. (2019) used MODIS EVI time series to quantify 

spatiotemporal variability in drought impacts in Germany, investigating patterns of EVI anomaly 

for different land cover types and comparing the 2003 and 2018 droughts, concluding that, while 

2018 spring phenology was above average, both years showed negative summer anomalies of 

similar magnitude, with grass and croplands the most affected. In contrast, no negative anomalies 

were found for forested areas for 2018, interpreted as forests either not being impacted due to their 

ability to reach deeper soil water, or showing a lag in response potentially only visible in the years 

to come. On a continental scale, Reichstein et al. (2007) investigated the 2003 drought impacts 

across Europe based on the MODIS FPAR product, whereby FPAR directly quantities the fraction 

of photosynthetically active radiation absorbed (fAPAR) rather than being a VI, but being based 

on the same principle of measuring reductions in chlorophyll absorption. The authors found FPAR 

anomalies to be strongest in autumn, two months after the maximum meteorological anomaly had 

occurred, pointing toward a delayed or cumulative vegetation response to drought stress. However, 

Reichstein et al. (2007) caution the use of FPAR and NDVI as a proxy of drought stress: for species 

with little control over stomatal closure, water stress can quickly lead to drying out and subsequent 

leaf yellowing; however, radiation received by a tree canopy might continue to be absorbed despite 

low leaf CO2 concentrations, and then simply dissipated rather than used for carbon assimilation at 

initial stages of water stress; therefore, reflectance received by the satellite sensor will not 

necessarily be altered when discoloration or defoliation haven’t occurred. In the context of this 

project, given the focus on detecting stress signals in largely coniferous forests, this highlights the 

potential of investigating alternatives to EVI2, whose performance in detecting lower levels of 

drought stress will likely be affected for the same reasons as stated by Reichstein et al. (2007).  

 

2.4.2 Changes in carotenoid pigment pools 

A VI which explicitly focuses on photosynthetic downregulation rather than changes in canopy 

chlorophyll content, is the so-called Photochemical Reflectance Index (PRI), formulated by Gamon 

et al. (1997): its original version is based on reflectance bands at 531nm and 570nm (Eq. 2), 

whereby the 531nm band is associated with changes in xanthophyll pigment absorption, and the 

570nm region serves as an unaffected reference band. Xanthophylls are a subgroup of carotenoid 

pigments and are shown to be involved in the dissipation of excess energy in response to high 

irradiance, water deficit, or high temperature conditions: during such conditions, a short-term, 
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reversible photoprotective process is triggered, the so-called xanthophyll cycle, during which a 

group of three carotenoid pigments are interconverted, also known as ‘xanthophyll de-

epoxidation’, causing decreased reflectance at 531nm (Gamon et al. 2016;  Middleton et al. 2016). 

Changes in PRI are therefore in principle detectable on a diurnal timescale, with afternoon 

decreases observed at a Finnish coniferous forest site (Mottus et al. 2019). However, PRI is also 

influenced by longer-term changes in the overall ratio of carotenoid and chlorophyll pool sizes, 

caused by seasonality or longer-term stress events (Filella et al. 2009;  Middleton et al. 2016). PRI 

is thus simultaneously tracking two different processes acting on different time scales, ranging 

from minutes to weeks. 

 

𝑃𝑅𝐼 =  
𝜌531 −  𝜌570

𝜌531 +  𝜌570
 

Where 𝜌531 and 𝜌570 refer to spectral regions (nm) of carotenoid and chlorophyll absorption  

 

Eq. 2 

One challenge when using PRI is the availability of bands used in its original formulation, which 

are lacking for most satellite instruments, thus limiting the current applicability of PRI in satellite 

remote sensing. NASA’s MODIS instrument happens to possess the necessary narrow band at 

wavelengths 526-536nm for xanthophyll absorption (band 11), albeit designed for ocean studies 

and not originally intended for use over land, coming at a coarse pixel resolution of 1km, and 

lacking the original 570nm reference band. Nevertheless, MODIS-derived PRI has successfully 

been linked to light use efficiency and GPP in various studies, in which the authors replaced the 

missing reference band with other bands, thus creating several new versions of the index (e.g. 

Drolet et al. 2005;  Hernández-Clemente et al. 2011;  Middleton et al. 2016). One of such PRI 

derivatives is the so-called Chlorophyll/Carotenoid Index (CCI, Eq. 3, see Figure 3), which uses 

MODIS band 1 as reference, centered around 645nm (Gamon et al. 2016).  

 

𝐶𝐶𝐼 =  
𝜌531 −  𝜌645

𝜌531 +  𝜌645
 

Where 𝜌531 and 𝜌645 refer to spectral regions (nm) of carotenoid and chlorophyll absorption 

 Eq. 3 

CCI has been shown to perform better in tracking changes in phenology at evergreen coniferous 

sites, where NDVI fails (Gamon et al. 2016), and has been proposed as a suitable VI to monitor 

both short and long-term water stress in coniferous forests not detected by chlorophyll-based 

indices (Middleton et al. 2016). Therefore, despite its coarse spatial resolution, MODIS-derived 

CCI offers an alternative approach to drought stress detection worth exploring.  
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2.4.3 Reduced canopy water content 

Since drought stress is connected to changes in canopy water content, it can be detected through 

the use of water-sensitive RS indices (Dotzler et al. 2015). Water absorbs strongly in the shortwave 

infrared spectral region (SWIR, about 1.2-2.5µm), causing decreased reflectance across the SWIR 

region in moist leaves while having no direct effect on the NIR spectral region (Chuvieco 2016). 

One of several commonly used SWIR-based VIs is the Normalized Difference Water Index 

(NDWI, Eq. 4, Figure 3), which studies changes in water absorption at around 1241nm, alongside 

the unaffected NIR reference band; NDWI has been shown to retain sensitivity to leaf water content 

in dense canopies, thus being less prone to saturation with high leaf area index (LAI) values (Wang 

et al. 2008).  

 

𝑁𝐷𝑊𝐼 =  
𝜌857 −  𝜌1241

𝜌857 +  𝜌1241
 

Where 𝜌857 and 𝜌1241 refer to regions (nm) of NIR and SWIR reflectance 

Eq. 4 

MODIS-derived NDWI has for instance been used to study the effects of the 2003 drought on an 

ancient coniferous forest in the Pacific Northwest, whose annual fate as a net carbon sink or source, 

i.e. the directional sign of Net Ecosystem Exchange (NEE), has been observed to be largely 

connected to interannual precipitation differences. Variability in NDWI values were found to 

correspond to the spatiotemporal dynamics of NEE, while such variability was not detectable for 

NDVI (Cheng et al. 2007). However, water-sensitive VIs are confounded by soil moisture in 

sparser canopies, as well as by wet leaf surfaces shortly after a rainfall event, causing considerable 

noise in the signal of canopy water content. 

 

2.5. The Google Earth Engine platform 

Google Earth Engine (GEE) is a cloud-computing platform that enables free and easy user access, 

analysis, and visualization of various satellite and other geospatial datasets. The platform is based 

on a public data catalogue which hosts petabytes of preprocessed and therefore ready-to-use remote 

sensing imagery, such as the complete Sentinel-2, MODIS and Landsat surface reflectance data 

archives, which are continuously updated by newly ingested data (Gorelick et al. 2017). The data 

catalogue can be accessed through a GEE enabled Google account, and queries are created in the 

Integrated Development Environment ‘Earth Engine Code Editor’, which is based on a JavaScript 

application programming interface, optionally supplemented by a Python add-on. Queries written 

in Code Editor are composed of functions available in the Earth Engine Library, which support the 
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manipulation of object types such as images, points, and lines, thus enabling tasks commonly 

performed within a geographic information system, for instance, the band algebra needed to 

compute vegetation indices. Queries sent to the Earth Engine Server are handled through parallel 

processing, thus allowing the user to utilize Google’s massive computational capacities (Gorelick 

et al. 2017).   

Google Earth Engine has successfully been employed in a variety of different, large-scale scientific 

endeavors, such as for instance the quantification of annual global forest loss based on the Landsat 

collections (Hansen et al. 2013), boreal peatland mapping in Alberta through a combination of 

Sentinel-1, Sentinel-2, and SRTM DEM data (DeLancey et al. 2019), and automated cropland 

detection across the African continent through utilization of MODIS NDVI data (Xiong et al. 

2017). In short, the GEE environment enables a fast exploration and manipulation of large datasets, 

thus opening an entirely new pathway to satellite data analysis. In the context of this project, it 

provides an ideal environment for comparatively straightforward computation and exploration of 

various vegetation index anomalies for different satellite sensors over multiple regions of interest, 

rather than constraining the project to an a priori choice of a suitable set of tiles to be downloaded. 

 

3. Materials and methods 

3.1. Forest maps used 

3.1.1. Description of old-growth forest map and forest pairing 

This project is based on an unpublished polygon map containing the boundaries of 391 Swedish 

primary forests, which represents a digitized and updated version of an extensive nationwide forest 

inventory map created in the 1980s (Naturvårdsverket 1982;  see Ahlström et al. 2020 for further 

details). The map has since been complemented with additional detailed information collected on 

protection type and duration, as well as past human disturbance, based on which a ranking of 

pristineness level (ranging from 0-9, based on the framework established by Buchwald (2005)) was 

created (Ahlström and de Jong 2020 unpubl.). For the purpose of this study, only forests scoring 

five or higher (intact forests untouched for at least 60 years) were considered, leading to the 

exclusion of 43 complete forests and 147 forest parts. Figure 4A provides an overview of the final 

map used for further analysis; while the 348 old-growth forests are found scattered across Sweden, 

the largest continuous stretches are found in the North along the Norwegian border.  

Subsequently, 15km buffer zones around all old-growth forest polygons were established, which 

represent the surrounding production forests, and, when linked to their respective old-growth 
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forests, form spatially proximate pairs (Figure 4B); this allows for a direct comparison of old-

growth and production forests experiencing similar environmental conditions and atmospheric 

drought impacts during 2018. Any area of potential conservation value, such as nature reserves and 

key biotope areas, which are unlikely to present production forests, were excluded from the buffers 

(see Ahlström et al. 2020 for a full list of exclusions made). Furthermore, areas affected by forest 

fires in 2018 were excluded from both datasets, based on data obtained from the Swedish Forest 

Agency.  

 

 

3.1.2. Further exclusions made during raster analysis 

Non-forested areas and water bodies were excluded from any further raster analysis. For this, the 

national Swedish land cover map, generalized version 2.1 (‘Nationella Marktäckedata 2018’), 

supplied by the Swedish Environmental Protection Agency (© Naturvårdsverket 2019a), which is 

a 10m resolution raster map of Sweden containing information on 24 thematic classes, including 

16 forest types, was reclassified to only include forests (land cover classes 111-117 and 121-127), 

and resampled (pixel majority) to the respective resolutions of the satellite imagery, so as to mask 

Figure 4.A. Overview map showing the locations of the 

old-growth forests in green, as well as the four ecosystem 

monitoring stations (red stars). For better visibility, forests 

smaller than 5,000ha are shown as points instead of 

polygons. B. Example of a forest pair, with Skuleskogen 

national park shown in green, and its associated 

production forest buffer zone in cross-hatched. 

 

A B 
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out any pixels over non-forested land. Note that classes 118 and 128, constituting temporarily non-

forested areas, were excluded based on a preliminary analysis showing that the most of those areas 

were in fact recently clear-cut, thus exhibiting the spectral signal of dry soil; however, these classes 

also include young forests with trees smaller than 5m, and therefore drought impacts on newly 

planted forest stands are not captured. The land cover map also contains a layer of ‘productive 

forests’, in this case referring to areas with environmental conditions in principle supporting an 

annual production of 1m3 timber (Naturvårdsverket 2019b). Based on this, non-productive areas 

were excluded, so as to allow for a more direct comparison of old-growth and production forests 

and therefore the impact of forest management, since old-growth forests tend to be found in 

environments less favorable for timber production. Moreover, many of the non-productive areas, 

when investigated on aerial imagery, contained sparse stands with a disproportionally large fraction 

of exposed understory. For the remainder of this project, the Sweden-wide productive forest layer 

contained in the land cover map will be referred to as ‘productive forest land’ so as to avoid 

confusion with the established 15km buffer zones defined as managed ‘production forest’.  

 

3.2. GPP and drought indicator retrieval and treatment 

3.2.1. Flux tower site descriptions and GPP retrieval 

In order to test the whether the VIs capture anomalies of gross primary production (GPP) over a 

diverse range of different forest types (Research question 1), the four ecosystem monitoring 

stations Soroe (SOR), Hyltemossa (HTM), Norunda (NOR), and Svarteberget (SVB) were chosen 

as representative sites. Soroe, although being located in Denmark, was included as it is one of the 

few Scandinavian monitoring sites with deciduous forest; see Table 1 for a more detailed site 

description and Figure 4A for their location.  

Flux tower measurements were retrieved from the ‘Drought-2018 FLUXNET product’, a newly 

released data set by the Integrated Carbon Observation System Network as well as the Drought-

2018 working group, freely available for 52 monitoring stations (ICOS 2020). The product contains 

Level-2 processed (i.e. quality-controlled and published) half-hourly CO2 measurements for the 

year 2018, as well as several preceding years, with the precise time period covered varying across 

monitoring sites. After downloading, the GPP dataset based on the day-time partitioning method 

(GPP_DT_VUT_REF) was extracted for further use, night-time zero values were excluded, half-

hourly fluxes were aggregated to daily values, and units were converted from umolCO2 m-2 s-1 to 

gC m-2 d-1. Lastly, the daily average GPP data was filtered for the months April-September to only 

include growing season months. 
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Table 1: Overview of the four monitoring stations, dominant vegetation type, and SPI-3 drought severity 

Site name Coordinates Time period Vegetation Lowest SPI-3  

Soroe 55°29'09.1"N 

11°38'40.7"E 

2008-2018,  

 

Mature beech forest -3.0 (July) 

Hyltemossa 56°05'52.0"N 

13°25'07.9"E 

2015-2018 Planted 1983, thinned 2009 and 

2013. Norway spruce dominant, 

small fraction of birch and Scots 

pine. Tree height 19m.  

-3.3 (July) 

Norunda 60°05'11.4"N 

17°28'46.2"E 

2014-2018 Managed for 200y, drained 100ya. 

Norway spruce and Scots pine 

dominant, small fraction of birch. 

Varying tree ages of 110-60y, 

dominating tree height 25m. 

-1.4 (June) 

Svarteberget 64°15'22.0"N 

19°46'28.2"E 

2014-2018, 

2017 missing 

60% Scots pine, 40% Norway 

spruce. 100y old, tree height 20m. 

-3.2 (July) 

 

 

3.2.2. SPI-3 and scPDSI retrieval 

The Standardized Precipitation Index (SPI) is a drought indicator for meteorological droughts, 

measuring local precipitation anomalies based on a comparison of monthly precipitation 

(interpolated to 0.25° grid data for Europe) with the historic precipitation record (1981-2010); SPI 

itself can be calculated for different accumulation periods, thus representing impacts occurring at 

varying time scales (European Commission 2020). Since the drought in Sweden was preceded by 

an already dry spring, SPI-3 based on an accumulation period of three months and representing 

reduced soil moisture and diminished stream flow, was chosen as a suitable index; time series for 

point locations of interest were obtained through the data portal of the European Drought 

Observatory (CEMS 2019). The scores correspond to standard deviations and can be interpreted as 

+1/-1 being near normal, -1/-1.5 moderately dry, -1.5/-2 severely dry, and values smaller than -2 

as extremely dry (European Commission 2020). Since SPI-3 is currently not available as a ready-

made gridded dataset, raster data for the self-calibrating Palmer Drought Severity Index (scPDSI) 

was retrieved for the months July – September 2018 (Barichivich et al. 2018). In contrast to SPI, 

scPDSI additionally incorporates temperature data and a primitive water balance model, thus also 

accounting for the effect of evapotranspiration on water stress, but coming at a coarser resolution 

of 0.5° (Wells et al. 2004). July-September per-pixel mean values were computed and projected to 

SWEREF99 TM, and values were extracted for all forests. 
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3.3. Computations of vegetation indices and Z-scores 

3.3.1. VI timeseries computations in GEE and comparison with GPP data 

Based on the considerations of spectral, temporal, and spatial scale as elaborated on in Section 2.4, 

the MODIS instrument aboard NASA’s sun-synchronous Aqua satellite, currently providing the 

only freely available dataset enabling a quantification of the carotenoid-based index CCI, was 

chosen. With a daily, early-afternoon overpass time in Sweden and a record dating back to 2002, 

MODIS Aqua furthermore provides the ideal temporal resolution; however, depending on the 

bands used, spatial resolution ranges from 250m to 1km.  

Furthermore, data by the TM/ETM+/OLI instruments aboard the Landsat 5, 7, and 8 platforms by 

NASA/USGS were extracted, due to their high spatial resolution of 30m, albeit with an individual 

revisit time of 16 days, making data loss due to cloud cover an important issue. ESA’s Sentinel-2 

dataset was explored as well, but its time in orbit is too short to establish a meaningful pre-drought 

baseline in the context of this project (atmospherically corrected data is only being operationally 

ingested since March 2017).  

All data extraction and VI computations were executed in Google Earth Engine. For MODIS, daily 

surface-level reflectance (L2G) Image Collections MYD09GQ, MYD09GA and MYDOCGA were 

loaded and merged, whereby the first collection contains bands 1 and 2 at a 250m resolution, the 

second bands 1-7 at 500m, as well as cloud and viewing geometry information, and the third 

contains the band 11 needed for CCI computation. Sensor zenith angles larger than 45 degrees were 

excluded to avoid pixel distortion and further degradation of spatial resolution. Clouds and cloud 

shadows were filtered based on quality information held in the ‘state_1km’ band. 

Daily EVI2, NDWI, and CCI values were computed for the years 2008-2018. In order to investigate 

whether the VIs captured the GPP anomalies observed at the flux stations (Research question 1), 

single-pixel time series data corresponding to the point locations of the flux towers were extracted 

and downloaded. Note that a considerable amount of past research has focused on correct RS data 

representation of the spatial flux tower footprint, which dynamically changes in size depending on 

prevailing wind conditions. However, since accurate GPP modeling is not the objective of this 

project and MODIS data is already quite coarse-resolution, single-pixel timeseries were instead 

deemed a better suited way of detecting the presence of temporal dynamics, rather than averaging 

over a larger area, hereby following a similar line of reasoning as by Cai et al. (2017). Lastly, cloud 

filtering based on the built-in quality band was found insufficient for complete cloud removal, and 

therefore an additional, heuristic data filtering method was developed: tiles corresponding to dates 

of sudden up- or downward spikes in the time series data were visualized as RGB color composites, 

and through this, individual thresholds based on observable residual cloud (shadows) were 

determined: for EVI2 values smaller than 0.15 (unrealistically low for forests during the growing 
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season) were excluded, for NDWI, values smaller than -0.2 (unrealistically dry), and for CCI, 

values larger than 1 (outside the possible range of the index), as well as values smaller than -0.4 

(extreme stress levels not observed in other literature and associated with clouds) were additionally 

filtered out.  

For Landsat, surface reflectance Tier 1 collections 5, 7, and 8 were loaded, and clouds and cloud 

shadows were filtered out based on the respective ‘pixel_qa’ bands. EVI2 was computed and 

Landsat 5 and 8 were intercalibrated to match the Landsat 7 values (Tian 2020, unpubl.), and 

despiked using the same thresholding method as described above. Lastly, in the context of GPP 

anomaly detection, EVI2 values were averaged over a buffer zone with a diameter of 250m to 

correspond to a footprint size resembling that of MODIS EVI2 to allow for better comparison. 

While Landsat does contain the necessary bands to compute NDWI, its temporal resolution was 

deemed to coarse to enable a meaningful interpretation of the index, which changes more 

dynamically than EVI2. See Table 2 for a summary of the VIs retrieved in GEE and the bands used 

for computation. 

 

Table 2: Summary of vegetation indices calculated, datasets and bands used, their associated spatial and temporal 

resolutions, and data filtering in GEE.  

VI Dataset Used 

bands 

Spatial 

res. 

Revisit  Data filtering 

EVI2 MYD09GQ B1, B2 250m daily Filtering based on 

QC_250m and state_1km, 

sensor zenith angles >45°, 

despiking (EVI2 <0.15) 

NDWI MYD09GA B2, B5 500m daily Filtering based on 

state_1km, sensor zenith 

angles >45°, despiking 

(NDWI < - 0.2) 

CCI MYD09GA, 

MYDOCGA 

B1, B11 1km daily Filtering based on 

state_1km, sensor zenith 

angles >45°, despiking 

(CCI <-0.4 and >1) 

EVI2 LANDSAT/LT05/C01/T1_SR, 

LANDSAT/LE07/C01/T1_SR, 

LANDSAT/LC08/C01/T1_SR 

B3, B4 

(Landsat 5, 

7), B4, B5 

(Landsat 8) 

30m 16 days 

per 

satellite 

Calibration to Landsat 7, 

filtering based on 

pixel_qa, despiking (EVI2 

<0.15), for Q1 averaging 

to 250m resolution 

 

Subsequently, all further analysis was executed in R version 3.6.2 (R Development Core Team 

2013). VI and GPP time series were aggregated to 14-day median value composites, starting with 

DOY 92 (weeks 14-39 in 2018). This was done to enhance the signal developing over a longer time 

scale, and to smooth out short-term daily variations in the VI data caused by residual noise of low-
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quality data that was not caught by the quality filter, as well as noise such as caused by differing 

viewing angles. Note that a common choice of compositing method is the use of maximum – rather 

than median – value composites, with the assumption that lower values tend to be associated with 

residual clouds (e.g. Middleton et al. 2016); however, since this also holds for drought impacts, the 

maximum-compositing approach was found to be less suitable as it would weaken short-term 

signals, and median-value composites therefore constitute a suitable tradeoff. 2018 median values 

were computed for all VI and GPP data, and compared to their respective baseline median, 5th-, 

25th-, 75th-, and 95th-percentiles, so as to highlight the extent to which the 2018 observations deviate 

from the long-term site conditions. 2008-2017 was chosen as a 10-year baseline period for the VIs 

so as to exclude damage associated with the 2005 windstorm, as well as the 2006 heatwave; 

however, the Fluxnet Drought-2018 product did not contain the same length of records for all 

stations, and thus differing baselines were established based on data availability (Table 1).  

 

3.3.2. Z-score calculations and investigation of effect of spatial scale 

Median-value Z-scores for the month of August for all VIs for Skuleskogen national park (63°07’N 

18°30’E, SPI-3 value in August = -1.41), a test site representative of the typically hilly and 

fragmented landscape encountered in large parts of Sweden (Figure 1 in section 2.1), were 

computed, so as to compare the effect of the choice of spatial resolution on observed drought 

impacts (Research question 1 continued). 2008-2017 values were used as a baseline to compute 

per-pixel long-term VI means and standard deviations. Z-scores quantify how many standard 

deviations the 2018 remotely sensed VI values were above or below the baseline mean, thus 

representing a standard score that allows for easier quantification of drought impacts across 

different vegetation types (Eq. 5). See Appendix A for an example script in GEE. 

 

                     Z-score  =  
𝑉𝐼2018 − 𝑉𝐼𝑚𝑒𝑎𝑛

𝑉𝐼𝑆𝐷
 

Where 𝑉𝐼2018, 𝑉𝐼𝑚𝑒𝑎𝑛, 𝑎𝑛𝑑 𝑉𝐼𝑆𝐷 refer to the VI values computed for 2018, and the 

baseline (2008-2017) mean and standard deviation, respectively 

Eq. 5 

 

3.4. Upscaling of methodology to old-growth and production forests 

3.4.1. Sweden-wide Z-score map and division into soil moisture classes 

Based on the results of the first part of this project, the use of Landsat EVI2 Z-scores was chosen 

as the most suitable method to study drought impacts on Swedish old-growth and production forests 

(Research question 1). To answer research question 2, Sweden was split into four sections for which 
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EVI2 Z-scores were computed separately in GEE, and the resulting raster data were downloaded, 

merged, projected to the national Swedish reference system (SWEREF99 TM), and all non-forested 

areas were masked out. These steps and all map creations were executed in ArcGIS Desktop 10.5.1. 

While this was initially performed for August Z-scores, this resulted in areas of central Sweden 

either lacking data due to complete cloud filtering or exhibiting unrealistically low Z-scores (-9 

and lower) associated with spurious cloud shadows as the only available, falsely nonfiltered, 

monthly data. Therefore, median Z-scores for the summer months were examined separately, and 

based on this, seasonal Z-scores based on July-September median composites were recomputed; 

June was found to be least impacted and thus excluded.  

Since a preliminary analysis revealed topographical differences in drought impacts, the Z-score 

map was split into five separate soil moisture (SM) classes, based on a topographical SM index 

raster which quantifies theoretical soil moisture through a combination of depth-to-water and 

topographical wetness index (TWI); the 10m-resolution index is unitless and ranges from 0-240 

(Naturvårdsverket 2019c). The SM raster was resampled to the resolution of Landsat (bilinear 

interpolation) and reclassified into five classes, subsequently referred to as SM classes 1 (values 0-

50, driest) to 5 (values 200-240, wettest); this resulted in five separate, final Z-score raster datasets. 

SM classes were treated separately because 1) impacts across different soil moisture classes were 

found to be bidirectional, i.e. wetter classes showed positive anomalies, while drier classes were 

negatively impacted, necessitating separation to avoid a cancelling of the signal, and 2) the 

occurrence of old-growth forests is likely to systematically coincide with moisture regimes less 

favorable for timber production, thus introducing a bias in the data that needs to be accounted for. 

 

3.4.2. Paired analysis of drought resistance and overall spatial distribution 

The five Z-score raster datasets were used to extract mean scores for all individual old-growth and 

production forests per soil moisture class, and the results were plotted as paired scatterplots to 

illustrate the relative difference in drought impacts between individual pairs. To test whether old-

growth forests are associated with greater Z-scores than their surrounding production forests, a 

one-tailed Wilcoxon signed-rank test (significance level α = 0.05) was performed for each SM class 

separately. A nonparametric test was chosen, because the Z-score differences of the forest pairs 

(old-growth – production) display a negatively skewed distribution, and only pairs in SM class 5 

were found normally distributed (Shapiro-Wilk test, significance level α = 0.05).  

Moreover, in order to illustrate the overall spatial distribution of Z-score differences, a single 

combined score of all SM classes was calculated for each forest pair, whereby per-class Z-score 

differences were normalized by the overall frequency of occurrence of the respective SM class 

across all Swedish productive forest land.  
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3.4.3. Analysis of potential explanatory variables 

In order to identify potential drivers of the observed differences in drought impacts, the effects of 

meteorological drought severity (scPDSI), latitude, elevation (m), slope (°), and stand age (years) 

on EVI2 Z-scores were tested for through partial linear regression. This was done for those forest 

pairs belonging to soil moisture (SM) class 2, the most frequent SM class across Swedish 

productive forest land. Effects of the variables on old-growth and production forest Z-scores were 

first tested for separately, and subsequently the effect of within-pair differences (old-growth – 

production) in elevation, slope, and stand age on Z-score differences was analyzed. Data were 

retrieved from a 50m-resolution digital elevation model (DEM) (Lantmäteriet 2009) and a 10m-

resolution stand age raster (SLU 2010), which were subjected to the same procedure as described 

in sections 3.4.1 and 3.4.2 so as to obtain per-forest mean values. Since no initial relationship was 

found between those variables and the forest pairs when analyzed as a single dataset (n = 344, 3 

pairs were excluded due to data gaps in the age raster), the data was instead split into three broad 

vegetation zones (Boreo-Nemoral, Boreal, and North Boreal / Alpine) and relationships were 

analyzed separately for each vegetation zone; boundaries of the zones were retrieved through 

digitization of the map provided by KSLA (2015).  

Furthermore, within-pair differences in stand-age, elevation, and slope of the 15 largest positive 

(EVI2 Z-scores old-growth >> production) and negative (EVI2 Z-scores old-growth << 

production) outliers were analyzed with boxplots, and their significance was tested for with two-

tailed Wilcoxon signed-rank tests (significance level α = 0.05). Lastly, differences in species were 

also analyzed for these outliers. To do so, the land-cover raster (see section 3.1.2) was reclassified 

into five broad forest types: purely deciduous (including hardwood species), mixed forest (both 

coniferous and deciduous present), mixed coniferous, spruce, and pine. Subsequently, differences 

in fractions of each forest type were calculated for the area covering SM class 2 of each forest pair.  

 

4. Results 

4.1. Suitability of vegetation indices to study drought impacts 

4.1.1. Temporal anomalies of precipitation, GPP and VIs 

All four ecosystem monitoring stations, irrespective of their location, experienced prolonged 

summer precipitation deficits, with 2018 SPI-3 index values generally being lowest in the months 

June and July, followed by a slightly less impacted August (Figures 5A – 8A). During those 

months, drought severity ranged from ‘extremely dry’ for Soroe, Hyltemossa, and Svarteberget, to 
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‘moderately dry’ in Norunda. However, temporal GPP anomalies over time show contrasting 

responses, with the two southernmost sites (Soroe, Hyltemossa) exhibiting strong negative 

anomalies, while the central (Norunda) and northern (Svarteberget) sites show increased and near-

normal GPP rates, respectively (Figures 5B – 8B), despite local precipitation deficits. At the two 

negatively impacted stations, the steep drop in GPP occurred around mid-June and lasted 

throughout the summer until the beginning of September, with the lowest GPP rates in the 

beginning of July in Hyltemossa (reduction by 62% from baseline median) and end of July in Soroe 

(reduction by 32% from baseline median). Moreover, all four stations show increased spring GPP 

rates in May and the beginning of June, with the most notable and sustained positive spring 

anomaly occurring in Soroe (mid-May increase by 25% from baseline median).  
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Figure 5: Precipitation, GPP, and VI anomalies in Soroe, showing A. SPI-3 scores, and 14-day median values of B. measured GPP, C. Landsat EVI2, D. MODIS EVI2 E. MODIS 

CCI, and F. MODIS NDWI. Dashed lines, dark, and light grey envelopes depict baseline median, 25/75-, and 05/95-percentile values respectively, where the GPP baseline refers to 

the period available in the Drought-2018 product (2008-2017), and the VI baselines to the years 2008-2017.  
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Figure 6: Precipitation, GPP, and VI anomalies in Hyltemossa, showing A. SPI-3 scores, and 14-day median values of B. measured GPP, C. Landsat EVI2, D. MODIS EVI2 E. 

MODIS CCI, and F. MODIS NDWI. Dashed lines, dark, and light grey envelopes depict baseline median, 25/75-, and 05/75-percentile values respectively, where the GPP baseline 

refers to the period available in the Drought-2018 product (2015-2017), and the VI baselines to the years 2008-2017.  
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Figure 7: Precipitation, GPP, and VI anomalies in Norunda, showing A. SPI-3 scores, and 14-day median values of B. measured GPP, C. Landsat EVI2, D. MODIS EVI2 E. MODIS 

CCI, and F. MODIS NDWI. Dashed lines, dark, and light grey envelopes depict baseline median, 25/75-, and 05/95-percentile values respectively, where the GPP baseline refers to 

the period available in the Drought-2018 product (2014-2017), and the VI baselines to the years 2008-2017. 
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Figure 8: Precipitation, GPP, and VI anomalies in Svarteberget, showing A. SPI-3 scores, and 14-day median values of B. measured GPP, C. Landsat EVI2, D. MODIS EVI2 E. 

MODIS CCI, and F. MODIS NDWI. Dashed lines, dark, and light grey envelopes depict baseline median, 25/75-, and 05/95-percentile values respectively, where the GPP baseline 

refers to the period available in the Drought-2018 product (2014-2016), and the VI baselines to the years 2008-2017. 
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None of the four tested vegetation indices (Landsat EVI2, MODIS EVI2, MODIS CCI, MODIS 

NDWI) reliably captures the observed GPP anomalies. In Soroe, Landsat EVI2 displays peak 

values in greenness, subsequently followed by a decrease, in line with the observed occurrence of 

the peak in GPP rate (Figure 5C); it also successfully captures the positive spring anomaly in 

Hyltemossa (Figure 6C), as well as the short-term drops in GPP rates measured at the Svarteberget 

site (Figure 8C). However, the full magnitude of GPP anomalies throughout the most-severely 

affected months is not captured: in Soroe and Hyltemossa, Landsat EVI2 anomalies remain 

elevated compared to the respective baseline periods, despite strong reductions in GPP values, and 

the positive GPP anomalies in Norunda are not captured at all. Moreover, Landsat’s revisit time 

(16 days) leads to periods of data gaps in Hyltemossa and Svarteberget, where low-quality data 

was filtered out. 

MODIS EVI2 alleviates the latter problem of data gaps, due to the satellite’s daily revisit time. 

Furthermore, in contrast to Landsat, it not only captures the occurrence of the peak GPP rates in 

Soroe, but also the preceding positive spring anomalies, as well as the negative GPP anomaly in 

July; however, the latter negative anomaly in the vegetation index is still lying well within the 

natural variability of the baseline variation (Figure 5D). Likewise, temporal dynamics in Norunda 

and Svarteberget are well captured: MODIS EVI2 displays positive anomalies in mid-July and end-

August in Norunda, as would be expected based on the GPP values (Figure 7D), and the same holds 

for the dynamic fluctuations as observed in Svarteberget (Figure 8D), thus performing better than 

its Landsat equivalent at those sites. However, the strong negative GPP anomalies observed in 

Hyltemossa are captured neither by Landsat nor MODIS EVI2 (Figure 6D).  

CCI captures the positive spring and negative summer anomalies in Soroe well (Figure 5E), and it 

replicates the peak of positive GPP anomalies in Norunda (Figure 7E). However, unlike the 

chlorophyll-based indices, it does not capture the short-term fluctuations in Svarteberget, but 

instead suggests constant CCI levels below the baseline median and thus prolonged, slightly 

increased stress levels (Figure 8E). For Hyltemossa, CCI values closely follow the baseline median, 

thus not capturing the negative GPP anomalies at all (Figure 6E). Moreover, the spikes in the 

baseline 05th/95th-percentiles, as is for instance the case for Svarteberget, illustrate a high short-

term variability in CCI values; note that carotenoid pigment pool sizes are influenced by different 

processes acting on different time scales (see section 2.4.2), making the establishment of a 

meaningful baseline less straightforward, as short-term, elevated stress-levels are not controlled 

for.  

Lastly, temporal NDWI dynamics follow the pattern in GPP rates in Soroe well (Figure 5F). 

However, values for Norunda are constantly below the baseline median (Figure 7F), suggesting a 

drier canopy than what would be expected based on the elevated GPP rates. For Svarteberget, no 
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noticeable change from the baseline median is observed (Figure 8F), and neither is the prolonged 

negative GPP anomaly in Hyltemossa captured (Figure 6F). 

In short, none of the indices capture GPP dynamics at the Hyltemossa site; in Soroe, CCI and 

NDWI perform best in capturing both elevated spring values, followed by the subsequent 

prolonged drop, which is captured to a lesser degree by MODIS EVI2 and not at all by Landsat 

EVI2. In Norunda, positive anomalies are captured by MODIS EVI2 and CCI, but not by Landsat 

EVI2 and NDWI. At the Svarteberget site, MODIS EVI2 and NDWI perform best in capturing 

temporal dynamics, while MODIS CCI suggests constant stress levels, and Landsat EVI2 suffers 

from too many data gaps to make the signal readily interpretable. Thus, neither of the VIs can 

clearly be related to GPP anomalies; subsequent use and interpretation of the VIs should therefore 

be done with the expectation that local discrepancies between drought stress as suggested by the 

remotely sensed data and what is occurring on the physiological level, are likely. 

 

4.1.2. Effect of spatial scale 

Skuleskogen national park, chosen as a test site, is characterized by a rough topography, with 

elevations ranging from sea level along the park’s eastern shoreline, to 280m in the northwest, with 

rocky peaks interspersed by deep ravines; consequently, topographical soil moisture varies widely 

across the full spectrum of index values, with the wettest soils found within a network of narrow 

valleys, and increasingly drier soils along the slopes and on hilltops (Figure 9A). Vegetation varies 

accordingly, with large parts of the wettest areas dominated by Norway spruce, while the drier 

areas are preferentially vegetated by mixed stands or Scots pine (Figure 9B).  

Landsat EVI2 Z-scores, coming at a resolution of 30m, clearly mirror this in the distribution of 

drought impacts, with a mean value of -0.49 ± 1.2 (mean ± SD), and positive values occurring in 

the areas expected to be wettest, while the most negatively impacted areas are found along dry 

slopes (Figure 9C). Note that the SPI-3 score for August (-1.41) in Skuleskogen suggests 

moderately dry conditions, which are of similar magnitude as the precipitation anomalies measured 

at the Norunda site (section 4.1.1). 
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Figure 9: Comparison of spatial patterns of VI anomalies associated with increasingly degraded spatial resolution across the 

topographically varied national park Skuleskogen. A. Soil Moisture Index, B. Landcover map showing the distribution of pine, 

spruce, mixed coniferous, and deciduous forest types, and Z-scores of 2018 August median VI values when compared to the 2008-

2017 baseline, non-forested areas excluded, for C. Landsat EVI2, D. MODIS EVI2, E. MODIS NDWI, and F. MODIS CCI 
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The pattern of drought impacts is increasingly degraded with the decreasing spatial resolution 

associated with the other three vegetation indices, MODIS EVI2 (250m), NDWI (500m), and CCI 

(1km). While MODIS EVI2 does reflect a greening along the lowest elevations near the park 

borders, it does not capture the local greening in the ravines and in the wetlands in the central parts 

of the park (Figure 9D); furthermore, overall drought impacts (-1.72 ± 1.53, mean ± SD) are more 

negative than those measured by Landsat EVI2. Lastly, the further degraded resolution of NDWI 

and CCI make any meaningful interpretation of their respective Z-scores close to impossible, since 

the majority of pixels are ‘mixels’ that contain areas of rocky peaks, as well as different forest types 

and moisture classes (Figures 9E and 9F).  

Based on this, it was decided 1) to execute the remainder of the project with Landsat EVI2, as it 

currently constitutes the only available vegetation index with a long enough time record to establish 

a meaningful baseline and a spatial resolution that is deemed appropriate to study drought impacts 

across topographical differences, and furthermore that 2) topographical soil moisture differences 

need to be explicitly treated, which is seldomly done in remote-sensing drought impact studies. 

 

4.2. Drought resistance in old-growth and production forests 

4.2.1. Analysis of all forest pairs and different moisture classes 

The pairwise comparison of old-growth and production forests shows that, on average, old-growth 

forests are associated with significantly higher EVI2 Z-scores during the 2018 drought than their 

surrounding production forests (one-tailed Wilcoxon signed-rank test, p < 0.001). While this 

finding holds true irrespective of soil moisture (SM) class, mean differences in EVI2 Z-scores (old-

growth – production) tend to decrease with increasing soil moisture, being +0.155 for the driest, 

and +0.110 for the wettest SM class. More precisely, 65.1%, 63.1%, 63.1%, 58.7%, and 60.6% of 

old-growth forests showed higher Z-scores (Z-score difference > 0) than their productive 

counterparts in the five SM classes, respectively. When only considering those forests associated 

with considerably higher Z-score differences (>0.5), the numbers amount to 22.6%, 20.7%, 18.7%, 

17.5%, and 16.3% respectively. In contrast, only 10.9%, 9.8%, 9.2%, 10.8%, and 8.1% were 

associated with considerably more negative differences (< -0.5), where old-growth forests scored 

lower Z-scores than their productive counterparts. Figure 10 provides an overview of the Z-score 

distribution per forest type and moisture class.  

Most forests showed negative drought impacts (i.e. negative Z-scores), while some forests 

experienced greening (i.e. positive Z-scores); the degree to which this happens is related to soil 

moisture; in the driest SM class, 80.4% of the old-growth forests and 94.7% of the production 

forests were negatively impacted, while the numbers amounted to 54.4% and 66.3% in the wettest 
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SM class, highlighting the importance of an explicit treatment of (topographical) soil moisture 

when studying drought impacts.  

 

Figure 10: Boxplots providing an overview of the distribution in Z-scores for old-growth and production forests, for each of the 

five soil moisture (SM) classes. As shown here, with increasing topographical soil moisture, EVI2 Z-scores increase. While old-

growth forests are overall less negatively impacted than production forests, their variability in impacts is also higher, and 

consequently, both the highest and lowest Z-scores are found in this forest type. 

 

Moreover, variability in Z-scores was found to be higher for old-growth than production forests 

(see boxplot whiskers in Figure 10). Consequently, both the most negatively (- 3.83, SM class 1) 

and the most positively (+2.00, SM class 4) impacted forests are old-growth stands. Figure 11 

further illustrates this, where values above the 1:1 line in the scatterplots are associated with a 

relatively higher Z-score in the production forest, and vice versa. 
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Figure 11: Scatterplots of EVI2 Z-scores of all forest pairs and associated regression lines (dashed red), for the five soil moisture 

(SM) classes of ascending wetness (A-E). A value above the 1:1 line (black) suggest a relatively higher Z-score associated with the 

production forest in the pair, whereas values below the line are associated with a higher value of the old-growth forest. Blue dots 

indicate the location of the mean Z-scores of all pairs combined. Note the differing axis-limits of the plots. 

 

4.2.2. Spatial distribution of drought impacts 

As illustrated in Figure 12A, the most negatively impacted areas of productive forest land are found 

in direct vicinity to the southern coastline and on the islands of Öland and Gotland, as well as in 

the southeastern provinces (Småland, Östergötland, Södermanland, Uppland). Furthermore, in 

northern Sweden, wide stretches of central Lapland are negatively impacted, with additional, 

locally impacted areas found scattered across the country (e.g. northern Dalarna). In contrast, 

positive anomalies are found further inland in southern Sweden (Bohuslän, Värmland), along the 

northern part of the Bothnian coastline (Norrbotten, Västerbotten), and in the mountains near the 

Norwegian border (western Lapland). Nevertheless, overall EVI2 Z-scores of all productive forest 

land are negative, with a mean (± SD) of -0.584 ± 1.31. 

Figure 12B illustrates the spatial distribution of the forest pair difference in Z-scores (old-growth 

– production), which were individually calculated for all five SM classes and subsequently 

normalized by the frequency distribution of the SM classes across all productive forest land (Figure 
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12C).  When normalized by SM class frequency distributions, the overall mean difference between 

the forest pairs amounts to +0.130. As shown, five of the 27 old-growth forests that were 

considerably more negatively impacted than their associated production forests (relative difference 

in Z-score < -0.5) are found in direct vicinity of the southern coastline, five are found around 

Dalarna, four along the Bothnian coastline, and the remainder scattered across Norrland. In 

contrast, the 62 forest pairs in which old-growth forests were considerably less impacted than their 

production forest buffer (relative difference in Z-score >0.5) are scattered across the entire country. 

 

 

Figure 12: Overview maps of the spatial distribution of drought impacts. A. 2018 EVI2 Z-scores for all productive forest land. B. 

Distribution of the relative difference in Z-scores (old-growth – production) of all forest pairs, all soil moisture (SM) classes 

combined and normalized by their frequency of occurrence. C. Frequency distribution of the five SM classes within productive 

forest land 

 

4.2.3. Potential explanatory variables 

Drought severity as indicated by scPDSI was most extreme in the Boreo-Nemoral Zone (mean ± 

SD: -2.58 ± 0.75, see Figure 13 for the boundaries of the three vegetation zones and gridded scPDSI 

values). The Boreo-Nemoral Zone is also the zone with the lowest mean EVI2 Z-scores (old-

growth: -0.61, production: -0.84). However, neither Z-scores of old-growth and production forests 
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separately, nor their relative differences (old-growth – 

production), were found to be linearly related to scPDSI 

values, irrespective of vegetation zone (Figures 14-16). 

For both the Boreal Zone and the North Boreal / Alpine 

Zone, Z-scores were found to decrease with increasing 

latitude (Boreal: production: adjusted R2 = 0.26, old-

growth: R2 = 0.14; North Boreal / Alpine: production: R2 

= 0.18, old-growth: no linear relationship). Elevation had 

contrasting effects on Z-scores, depending on the 

vegetation zone: in the Boreo-Nemoral Zone, old-growth 

and production Z-scores showed weak, but significant 

positive relationships to elevation (production: R2 = 0.07, 

old-growth: R2 = 0.19), while production forest Z-scores 

decreased with increasing elevation in the North Boreal / 

Alpine Zone (R2 = 0.24), and to a lesser extent in the 

Boreal Zone (R2 = 0.07). Similarly, the effect of stand age 

was found to contrast between vegetation zones, with 

older production forests showing lower Z-scores (R2 = 

0.22) in the Boreo-Nemoral Zone, while in the North 

Boreal / Alpine Zone, both productive (R2 = 0.26) and old-

growth forests (R2 = 0.25) displayed positive relationships 

with stand age. Lastly, production forest Z-scores in the 

North Boreal / Alpine Zone were found positively related 

to slope (R2 = 0.42), while no relationship between slope 

and Z-scores was found within the other vegetation zones.  

While old-growth forests in SM class 2 are significantly 

older (mean difference ± SD: 21.3y ± 14.13), are located at 

higher elevations (33.08m ± 57.29), and are found on 

steeper slopes (1.18° ± 2.40) than their surrounding 

production forests, the forest-pair differences in stand age, elevation, and slope showed no linear 

relationship to Z-score differences in either of the three vegetation zones (Figure 14C – 16C). To 

further investigate this, differences in stand age, elevation, and slope were also analyzed for the 15 

largest positive (old-growth >> production) and negative outliers by means of boxplots (Figure 

17A). Within forest pairs constituting positive outliers (old-growth >> production), old-growth 

forests were found to be significantly older than their surrounding production forests (mean 

difference: 27y). On average, they are also located at slightly lower elevations, but no significant 

Figure 13: Overview of gridded 2018 July-Sept. 

scPDSI values, division of dataset  into major 

vegetation zones, and location of the 15 forests 

pairs with the largest negative (old-growth << 

prod.) and positive EVI2 Z-score differences in 

SM Class 2.  
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differences for either elevation or slope are present (Figure 17B).  Within the forest pairs 

constituting the largest negative outliers (old-growth << production), old-growth forests are also 

significantly older, but the age difference is smaller (mean difference: 17y) than was the case for 

the positive outliers. Furthermore, old-growth forests within the negative outlier group are found 

on significantly steeper slopes than their surrounding production forests, as well as on slightly 

higher elevations, the latter being non-significant.  

Lastly, differences in the fraction of forest type (deciduous, mixed, mixed coniferous, spruce, pine) 

were analyzed. In general, old-growth forests have significantly lower fractions of deciduous and 

mixed forests; however, mean differences in fractions for those forest types (-0.02 and -0.05, 

respectively) are small. There is no significant difference in mixed coniferous forests, but old-

growth forests contain a significantly lower fraction of pine (mean difference: -0.11) and 

significantly higher fraction of spruce stands (mean difference: 0.16) than their surrounding 

production forests (Figure 17C). Within the largest positive outliers, old-growth forests have a 

slightly, but significantly lower fraction of deciduous stands, while there is no difference in mixed 

and mixed coniferous fractions, and they also have higher mean fractions of spruce, as well as 

lower mean fractions of pine, but the latter two differences are insignificant. In contrast, within the 

largest negative outliers, old-growth forests have a significantly lower fraction of mixed forest, 

while differences in the remaining forest type fractions were found insignificant; however, it should 

be noted that variability within the fraction of deciduous stands is high, and those found along the 

southern shoreline (n=5) do have a significantly larger fraction of deciduous stands than their 

surrounding production forest. 
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Figure 14: Partial regression plots of forest pairs located in the Boreo-Nemoral Zone (n = 107), showing the general relationship between different environmental variables on A. 

Production forest and B. Old-growth forest EVI2 Z-score residuals separately, while C. displays the relationship between differences in Z-scores (old-growth – production). As 

shown, production forest Z-scores show a negative relationship with stand age (R2 = 0.22, p < 0.001), which is not the case in old-growth forests. Both production (R2 = 0.07, p < 

0.001) and old-growth forest Z-scores (R2 = 0.19, p < 0.001) show weak, positive relationships with elevation.  
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Figure 15: Partial regression plots of forest pairs located in the Boreal Zone (n = 169), showing the general relationship between different environmental variables on A. Production 

forest and B. Old-growth forest EVI2 Z-score residuals separately, while C. displays the relationship between differences in Z-scores (old-growth – production). As shown, both 

production (R2 = 0.26, p < 0.001) and old-growth forests (R2 = 0.14, p < 0.001) show negative relationships with latitude, and production forests show a weak, negative relationship 

with elevation (R2 = 0.07, p < 0.001).  
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Figure 16: Partial regression plots of forest pairs located in the North Boreal / Alpine Zone (n = 68), showing the general relationship between different environmental variables on 

A. Production forest and B. Old-growth forest EVI2 Z-score residuals separately, while C. displays the relationship between differences in Z-scores (old-growth – production). As 

shown, both production (R2 = 0.26, p < 0.001) and old-growth (R2 = 0.25, p < 0.001) forest Z-scores show positive relationships with stand age. Furthermore, production forest Z-

scores are negatively related to latitude (R2 = 0.18, p < 0.001) and elevation (R2 = 0.24, p < 0.001), and positively to slope (R2 = 0.42, p < 0.001), with is neither the case for old-

growth forests nor for forest pair Z-score differences. 
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Figure 17: A. Scatterplot highlighting those EVI2 Z-scores associated with the 15 largest positive (old-growth >> production, blue) 

and negative (old-growth << production, red) outliers found in SM Class 2. B. Distribution of the difference (old-growth – 

production) in stand age, elevation, and slope for all forest pairs (grey) and the 15 most negative (red) and positive (blue) outliers. 

C. Distribution of differences in fractions of forest types. 

5. Discussion 

5.1. Studying drought impacts with RS data 

Given the prospect of more frequent summer dry spells in the years to come, whether old-growth 

forests are in fact more drought resistant than comparable forests that are extensively managed for 

production purposes, constitutes a research gap of pivotal urgency, and studies conducted thus far 

have largely focused on in-situ analyses of differences within production forests, such as the 

comparison of tree rings within individual forest stands. In contrast to this, this study aimed to 

investigate the impacts of the 2018 summer drought on Swedish old-growth and production forests 

through the use of high-resolution remote sensing data and a novel, pair-wise analysis of over 300 

old-growth forest stands and their surrounding production forests scattered across the entire 
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country. To our knowledge, such an approach to studying drought resistance, that is, the ability of 

a forest to withstand a drought during its occurrence, has never been implemented before, therefore 

providing a valuable, larger-scale perspective, which can be viewed as complementary to more 

detailed in-situ studies, as done by, for instance Grossiord et al. (2013).  

Perhaps this study’s main limitation, and thus uncertainty, is the use of seasonal (July-September) 

median EVI2 composite values to detect drought stress, which constitutes a relatively blunt tool to 

study a phenomenon that dynamically evolves over time. The choice of such method was based on 

the current lack of a better suited satellite product that is able to provide the necessary spatial 

resolution to study Sweden’s highly topographically variable forest landscape, alongside a long 

enough timeline to establish pre-drought baseline conditions. Currently, only the Landsat 7 and 8 

archive meets these criteria, meaning that one has to deal with its inherent drawbacks, such as the 

diminished scene quality associated with the Landsat 7 ETM+ scanline failure (NASA 2020), as 

well as the long return time of 16 days per satellite, making data loss due to clouds an issue, as was 

the case for parts of central Sweden for the month of August. Other studies have solved this through 

the use of, for instance, a manually selected individual scene found to be completely cloud-free 

(e.g. Huang and Anderegg 2011), or resorted to coarse-resolution MODIS data whose daily 

availability allows for shorter-period maximum-value compositing and the use of function-fitting 

methods (e.g. Cai et al. 2017), neither of which were viable options in this project. On the other 

hand, the unique approach of studying drought resistance through the pair-wise analysis taken here 

has the strength to ameliorate some of the uncertainties associated with remotely sensed data, since 

impacts are studied as relative differences of Z-scores for spatially proximate forests, whose values 

are simultaneously exposed to the same sources of noise, such as atmospheric or sun-angle effects. 

To strengthen the validity of the results found based on Landsat data, it would be interesting to 

reexamine some of the forests using Sentinel-2 data. While atmospherically corrected Sentinel-2 

scenes are only available as of 2017, the satellites’ high spatial resolution (10m) and more frequent 

return time (5 days when the twin-satellites are combined), could be used in a complementary way 

to Landsat data, allowing for a close-up study of how the drought evolved throughout the summer 

months, without necessarily establishing a pre-drought baseline. Moreover, in contrast to Landsat, 

Sentinel-2 has the strength of being equipped with additional bands covering the spectral region 

associated with the vegetation ‘red-edge’, specifically designed to study vegetation water stress 

(e.g. Puletti et al. 2019;  Zarco-Tejada et al. 2019). 

The fact that EVI2 performed poorly in capturing drops in GPP at the monitoring stations, 

especially at the Hyltemossa site, potentially means that during part two of this study, only those 

forests at the higher end of water stress levels displayed negative Z-scores, and it is possible that 

some of the forests showing no change, or even greening due to preceding spring conditions, still 

experienced elevated stress levels later in the season, leading to a reduction in photosynthesis but 
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not to detectable changes in radiation absorbed by chlorophyll. Nevertheless, given that both old-

growth and production forests are to a large extent comprised of isohydric species displaying 

similar stress reaction patterns, the pair-wise approach ameliorates this problem to a certain extent. 

Furthermore, part of the discrepancy between the VIs and GPP could in hindsight simply be due to 

the methodology chosen; as stated previously, correct modeling of flux tower footprints was 

outside the scope of this project, and instead, a single-pixel approach was used. However, a follow-

up analysis of the Z-score and topographical soil moisture raster data of the monitoring stations 

revealed that even in the direct vicinity of the flux towers, heterogeneity of soil moisture and Z-

scores is observed. For instance, the Hyltemossa tower is located near a small area belonging to 

the wettest moisture class, which shows positive Z-scores, while bordering a drier area in the West, 

associated with negative Z-scores of up to -1.4 (Figure 19). This means that the averaging of the 

Landsat EVI2 data to a resolution resembling MODIS during part 1, which was done to ensure they 

represent a similar spatial footprint to make them comparable, likely smoothed out the signal. It 

could be that the reduction in GPP 

was largely caused by trees within 

the drier areas surrounding the flux 

tower, and that Landsat EVI2 

performed better in capturing this 

than the results of part 1 of this 

study would suggest. Likewise, 

while the positive GPP anomaly in 

Norunda was not captured, the 

follow-up analysis revealed the 

presence of several larger areas 

showing positive Z-scores at a 

distance of about 300m from the 

tower, which, while not falling within the 250m pixel, could still be within the range of the flux 

tower footprint, depending on prevailing wind conditions. 

 

5.2. Potential reasons for the differences in drought resistance 

This study found that Swedish old-growth forests are on average associated with significantly 

higher EVI2 Z-Scores than comparable production forests, suggesting that old-growth forests were 

in fact more drought resistant during the summer of 2018. However, why this is the case is unclear, 

as it is not readily reconcilable by any of the explanatory variables tested. Importantly, positive 

Figure 18: The Hyltemossa flux tower shown as a red star, and a 

surrounding 250 x 250m zone in dashed. A. Soil moisture raster, 

with wetter classes shown in blue. B. Landsat EVI2 Z-scores, with 

positive anomalies shown in green, and negative anomalies in 

orange. Note that a single MODIS pixel, corresponding to the size 

of the dashed square, is unable to capture this. 
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differences in Z-scores (old-growth – production) were scattered across all vegetation zones within 

the entire country and were unrelated to scPDSI drought severity, thus making it a general 

phenomenon rather than limiting it to certain areas. 

When studying old-growth and production forests separately for the three vegetation zones, a few 

general trends did emerge, most notably in connection to stand age: production forest Z-scores 

were negatively related to stand age within the Boreo-Nemoral Zone, the region affected most 

severely by the drought, whereas the opposite was the case in the North Boreal / Alpine Zone. 

Relating stand age to drought resistance is far from straightforward, and the results highlight this 

complexity: while in severely dry areas, older trees are likely more vulnerable to xylem tissue 

damage (see section 2.3), the opposite might be the case in less severely affected areas, where the 

deeper rooting system of older trees provides access to deeper soil water, and this could potentially 

explain these contrasting findings. It should be noted that the youngest trees (trees smaller than 

5m), classified as ‘temporarily no forest’ in the land cover raster used, were excluded from the 

analysis, and it is likely that the highest impacts are in fact found among the very youngest trees.  

However, stand age differences did not hold any generalizable explanatory power for differences 

in Z-scores between old-growth and production forests, and in fact, all of the 15 old-growth forests 

with the largest Z-score differences where significantly older than their productive counterparts.  

These old-growth forests, apart from their much older stand age, might potentially have other 

characteristics for which no data is currently available, and which might have influenced drought 

resistance, such as the presence or absence of understory key-stone species. Previous research 

conducted on Swedish Norway spruce forests showed that the common practice of fertilizing young 

stands leads to significant reductions in understory, most notably leading to substantial loss of 

lichen and bryophyte cover (Hedwall et al. 2010). At the same time, research on old-growth forests 

in the Pacific Northwest and in Japan highlight the importance of lichen and bryophyte rainfall 

interception and water-storage capacity, especially after the occurrence of abrupt, heavy rain fall 

events (Pypker et al. 2006;  Oishi 2018), as was the case in parts of Sweden in August 2018. At the 

time of this writing, an active field campaign is underway, which will advance the knowledge of 

local understory and soil characteristics of a subset of the old-growth forests studied, potentially 

providing additional explanatory power on why the majority of old-growth forests were found less 

impacted, especially in the drier soil moisture classes. 

Old-growth forests also showed a larger variability in impacts than production forests. Why this is 

the case is unclear; the smaller variability in production forests could potentially be caused by them 

being comparatively more alike in structure than old-growth forests are. It also could be simply 

due to their larger area, and the metric chosen to study the impacts, with each forest represented by 

a single mean Z-score for each individual soil moisture class. While this constitutes the most 

straightforward way in conducting a pair-wise analysis, it unavoidably smooths out some of the 
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variability found within the buffer zones even after accounting for potential soil moisture 

differences. The approach taken in this study therefore should be viewed as representing general 

trends of what is occurring within the old-growth and production forest buffer zones; for further 

research, it would be valuable to conduct a more detailed analysis of a subset of old-growth and 

production forest pairs, based on a large number of randomly chosen individual pixels falling 

within the forest boundaries, thus going beyond area-wide mean values. Such pixel-based approach 

likely also yields clearer relationships to the investigated explanatory variables. 

While most old-growth forests were found less impacted than their surrounding production forests, 

some of the worst impacted forests were old-growth, associated with the largest relative difference 

in negative impacts (old-growth – production). However, this can be partially reconciled by the 

fact that these forests are located on significantly steeper slopes, which influences water dynamics; 

slope steepness has previously been linked to drought-induced forest mortality (Huang and 

Anderegg 2011). Moreover, all five of the largest outliers in the South of Sweden have a 

significantly higher fraction of deciduous trees than the surrounding production forests, therefore 

limiting their comparability. Lastly, while most of Sweden’s forests are coniferous, the detailed 

analysis of soil moisture class 2 revealed that old-growth forests have a significantly higher fraction 

of pure spruce stands, and less pine; spruce is generally associated with higher vulnerability to 

droughts, and the Swedish Commission on Climate and Vulnerability (2007) in fact recommends 

to switch from spruce to pine production to prepare for a drier future climate in southern Sweden. 

The increased fraction of pure spruce in old-growth forests, in combination with their older age, is 

therefore quite intriguing, and the separate pixel-wise comparison, as recommended above, in 

combination with a separate investigation of spruce and pine, has the potential to shed further light 

on this. 

 

5.4. A cautionary note on spatial scale 

Drought impacts were found to depend on a forest stand’s topographical soil moisture. The fact 

that forests located along drier slopes are more impacted by precipitation deficits than those within 

moist valleys should come as little surprise. However, a high spatial resolution is required to 

correctly capture this effect. If this is ignored and instead it is assumed a priori that it would suffice 

to proceed with a coarser resolution to study drought impacts, a potentially severe smoothing effect 

is introduced when pixels associated with wetter sites show positive Z-scores, while being directly 

adjacent to negatively impacted pixels associated with drier sites, as was shown for Skuleskogen 

and Hyltemossa. Consequently, when using an inadequate spatial resolution, these values can 

cancel each other out, and no change is detected at all. How severe this issue is still needs further 
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consideration, and it would be valuable for future research to explicitly investigate this, through 

for instance repeated resampling of Landsat data to mimic an increasingly degraded resolution. 

In light of these findings, the validity of some of the results of previous drought impact studies 

based on MODIS data are questionable, such as those by Reinermann et al. (2019), which found 

no negative deviations in EVI values for forests in Germany during the 2018 drought. 

Consequently, the authors concluded that this might be due to trees reaching deeper soil water than 

other land cover types, despite the fact that at the same time several major German newspapers 

covered reports by the German Forestry Union about the desiccation and subsequent death of over 

300 million young trees, as well as a total affected area of 600,000ha, representing unprecedented 

damage in German forestry history (BDF 2018). It should be noted that most of Germany’s 

continuous stretches of forest coincide with comparatively mountainous terrain, somewhat similar 

to the type of topography found in Sweden; the findings of this project therefore provide a potential 

explanatory pathway for the absence of any drought signal detected by Reinermann et al. (2019). 

 

6. Conclusion 

This study showed that during the summer drought of 2018, Swedish old-growth forests were on 

average more drought resistant than production forests, despite their older age, and that differences 

in resistance decreased with increasing topographical soil moisture. Lastly, what ultimately matters 

for forest resilience is not necessarily the immediate impact a drought exerts on an ecosystem, but 

rather the systems’ ability to quickly recover and return to pre-drought conditions. As noted earlier, 

forest mortality has previously been observed to only peak several years post-drought (Anderegg 

et al. 2019). Therefore, the fact that most old-growth forests were found less impacted than 

production forests can be viewed as an early warning metric of what might be happening in the 

years to come. Subsequent continued monitoring, both through collection of field data on, for 

instance, the percentage of canopy dieback within individual pixels, following a similar procedure 

as in Huang and Anderegg (2011), as well as through  continued remote sensing to detect any future 

trends, is therefore key to establish whether the majority of old-growth forests are not just more 

resistant, but also truly more resilient.  
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Appendix A 

Example script used for Landsat EVI2 Z-score computations in Google Earth Engine 

 
//this script computes Landsat EVI2 Z-scores within predefined polygons. 

//final script created by Julika Wolf, 12 May 2020. Adapted from Landsat timeseries 

script provided by Feng Tian.  

 

// import smaller shapefile, retrieve geometry (in SWEREF99-tm), display on map.  

var sweden = ee.FeatureCollection('users/julikawolf/sweden4'); 

sweden = sweden.geometry();  

Map.centerObject(sweden); 

 

/* 

// Sweden borders, for display purposes only if needed. It replaces the uploaded 

smaller shapefile but is too big for download later on.  

var sweden = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017') 

  .filterMetadata('country_co', 'equals', 'SW'); 

*/ 

 

//add polygon boundary to map display 

Map.addLayer(sweden, {color: 'red'}, 'sweden'); 

 

// functions to mask cloud, cloud shadow and snow pixels 

var maskL457 = function(image) { 

var qa = image.select('pixel_qa'); 

  var cloud = qa.bitwiseAnd(1 << 5) 

                  .and(qa.bitwiseAnd(1 << 7)) 

                  .or(qa.bitwiseAnd(1 << 3)) 

                  .or(qa.bitwiseAnd(1 << 4)); 

  var mask2 = image.mask().reduce(ee.Reducer.min()); 

  return image.updateMask(cloud.not()).updateMask(mask2); 

}; 

 

function maskL8(image) { 

  // Bits 3, 4 and 5 are cloud shadow, snow and cloud, respectively. 

  var cloudShadowBitMask = (1 << 3); 

  var snowBitMask = (1 << 4); 

  var cloudsBitMask = (1 << 5); 

  // Get the pixel QA band. 

  var qa = image.select('pixel_qa'); 

  // Both flags should be set to zero, indicating clear conditions. 

  var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) 

                 .and(qa.bitwiseAnd(snowBitMask).eq(0)) 

                 .and(qa.bitwiseAnd(cloudsBitMask).eq(0)); 

  return image.updateMask(mask); 

}; 

 

// return all Landsat 5 EVI2 summer months (July – Sept) 

// and calibrated to Landsat 7 values 

var Landsat5 = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR') 

                  .filterDate('2008-01-01', '2018-12-31') //baseline years 

                  .filter(ee.Filter.calendarRange(7,9,'month'))  

                  .filterBounds(sweden) 

                  .map(function(img) {return img.clip(sweden)}) 

                  .map(maskL457) 

                  .map(function Landsat5EVI2(image) { //calibrated to fit Landsat 7 

                    var EVI2 = image.expression( 

                      '2.5 * ((NIR/10000 - RED/10000) / (NIR/10000 + 2.4 * RED/10000 + 

1)) * 1.0091249 + 0.007209736', { 

                      'NIR': image.select('B4'), 'RED': image.select('B3') 
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                      }).rename('EVI2'); 

                    return image.addBands(EVI2); 

                  }) 

                  .select(['EVI2']); 

                   

                          

// return all Landsat 7 EVI2 summer months (July - Sept) 

var Landsat7 = ee.ImageCollection('LANDSAT/LE07/C01/T1_SR') 

                  .filterDate('2008-01-01', '2018-12-31') 

                  .filter(ee.Filter.calendarRange(7,9,'month')) 

                  .filterBounds(sweden) 

                  .map(function(img) {return img.clip(sweden)}) 

                  .map(maskL457) 

                  .map(function Landsat7EVI2(image) { 

                    var EVI2 = image.expression( 

                        '2.5 * ((NIR/10000 - RED/10000) / (NIR/10000 + 2.4 * RED/10000 

+ 1))', { 

                        'NIR': image.select('B4'), 'RED': image.select('B3') 

                        }).rename('EVI2'); 

                    return image.addBands(EVI2); 

                  }) 

                  .select(['EVI2']); 

 

// return all Landsat 8 EVI2 summer months 

// and calibrated to Landsat 7 values 

var Landsat8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') 

                  .filterDate('2008-01-01', '2018-12-31') 

                  .filter(ee.Filter.calendarRange(7,9,'month')) 

                  .filterBounds(sweden) 

                  .map(function(img) {return img.clip(sweden)}) 

                  .map(maskL8) 

                  .map(function Landsat8EVI2(image) { 

                    var EVI2 = image.expression( 

                      '2.5 * ((NIR/10000 - RED/10000) / (NIR/10000 + 2.4 * RED/10000 + 

1)) * 0.9475403 - 0.015406447', { 

                      'NIR': image.select('B5'), 'RED': image.select('B4') 

                      }).rename('EVI2'); 

                    return image.addBands(EVI2); 

                  }) 

                  .select(['EVI2']); 

                           

var Landsat578 = Landsat5.merge(Landsat7).merge(Landsat8); 

 

print(Landsat578, "landsat578"); 

 

// this function filters out values less than 0.15 or larger than 1.0, associated with 

remaining clouds or cloud shadows (heuristic approach) 

var filterthreshold = function(image) { 

  return 

image.updateMask(image.select('EVI2').gt(0.15).updateMask(image.select('EVI2').lte(1.0)

)); 

}; 

 

//map threshold filtering over collection 

var Landsat578 = Landsat578.map(filterthreshold); 

 

var years = ee.List.sequence(2008, 2018); 

 

// retrieve annual summer median 

var Landsat578_summer_median = ee.ImageCollection.fromImages( 

  years.map(function(y) { 

    return Landsat578 

      .filter(ee.Filter.calendarRange(y, y, 'year')) 
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      .median() 

      .set('year', y); 

    }) 

  ) 

  .toBands(); 

 

//select baseline years 2008-2017 

var baseline = Landsat578_summer_median 

    .select(['0_EVI2', '1_EVI2', '2_EVI2', 

'3_EVI2','4_EVI2','5_EVI2','6_EVI2','7_EVI2','8_EVI2','9_EVI2']); 

 

// Reduce the collection to calculate mean and standard deviation needed for Z-scores 

var mean = baseline.reduce(ee.Reducer.mean());  

var stdv = baseline.reduce(ee.Reducer.stdDev()); 

var band2018 = Landsat578_summer_median.select('10_EVI2'); 

 

//combine the three bands 

var stacked = band2018.addBands(mean).addBands(stdv); 

print(stacked, 'stacked'); 

 

//compute Z-scores 

var zscore = stacked.select('10_EVI2').subtract(stacked.select('mean')) 

  .divide(stacked.select('stdDev')); 

 

//visualize as Z-score map 

var Viz = {min: -3, max: 3, palette: ['red', 'orange','yellow','green', 'blue']}; 

Map.addLayer(zscore, Viz); 

 

//export to drive for further processing in ArcGIS 

Export.image.toDrive({ 

  image: zscore,  

  description: 'EVI2_sweden4_zscore_growing_median_2008_2018',  

  scale: 30, 

  maxPixels: 1e13, 

  fileFormat: 'GeoTIFF', 

  region: sweden 

}); 

 

 

 

 

 

 


