
i

Master’s Thesis

Efficient Security Protocol for

RESTful IoT devices

By

Karnarjun Kantharajan and Sahar Shirafkan
 ka7830ka-s@student.lu.se - sa2408sh-s@student.lu.se

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

mailto:ka7830ka-s@student.lu.se

ii

Abstract
In this thesis, we presented comparisons with respect to Energy

Consumption, bandwidth, Constraint Application protocol (CoAP)

transaction time and throughput for four different security protocols.

We simulated and implemented the Datagram Transport Layer

Protection (DTLS) version 1.2, Transport Layer Protocol (TLS)

version 1.2 & 1.3, and Object Protection for Restricted RESTful

Environments (OSCORE). All of the above security protocols allow

client / server applications to communicate over the internet with

message forgery, eavesdropping, and tampering protection. In

particular, we compared the simulation and implementation results of

the mentioned protocols to extrapolate the performance of the DTLS

version 1.3.

Keywords: Internet of Things (IoT), TLS 1.2 & 1.3, DTLS 1.2,

OSCORE, CoAP, Security Protocols.

iii

Popular Science Summary

The Internet of Things (IoT) has become a concept that defines the

billions of connected devices that are intelligent. IoT covers everything

from connected devices, mobile home products, roadside cameras,

production control equipment, medical equipment, vehicles, and more.

To drive innovation and improve customer satisfaction, companies use

IoT to transform their business and develop new revenue streams.

There are three crucial reasons for illustrating the need for security in

IoT devices, such as the sheer volume and diversity of applications and

data sensitivity. By the early future, there will be an estimated 25

billion IoT devices worldwide, and about 25% of cyber-attacks will

target IoT devices. Although many companies can recognize that IoT

security is necessary to protect consumers and clients, the problem may

rapidly become complicated. As the market continues to evolve, there

is a lack of best practices and recommendations for securing the IoT

device. Also, the other factor to be addressed when designing an IoT

system is the power consumption of the system. With the rise of the

Internet of Things, the development of battery-operated devices is a

significant aspect that can make a huge difference in the device's

efficiency. Device power consumption in IoT is challenging since the

device should still be powered up and could be placed anywhere.

Mostly, IoT devices are remotely placed and need to use a battery to

operate.

Considering the current challenges facing IoT security, in this thesis,

we picked four separate security protocols, including TLS 1.2, TLS 1.3,

DTLS 1.2, and OSCORE for securing IoT device. To compare the

security protocol's efficiency, we simulated and implemented the

mentioned security protocol in a real environment. We compared the

security protocols with the data transmission time and throughput and

security overhead in the simulation by running the client and the server

on PC. While in implementation using the Stand-alone multi-radio

modules (NINA-W102) as a client, we compared the security protocols

with the data transmission time and throughput, security overhead, and

even calculated the energy consumption of the IoT unit, which is one

of the issues in IoT system's design.

iv

Acknowledgments

I want to express a major thank you to my supervisor at U-blox Malmo,

Peter Karlsson, and Hari Vigneswaran for the opportunity and positive

help during the study.

 I would also like to thank the examiner Thomas Johansson and the

LTH supervisor Christian Gehrmann for the advice, feedback, and

written orders they have provided.

Sahar Shirafkan and Karnarjun Kantharajan

v

Table of Contents
Abstract ... ii

Popular Science Summary .. iii

Acknowledgments .. iv

Introduction ... 1

1.1 Background .. 1

1.2 Problem .. 3

1.3 Methodology .. 4

1.4 Outline ... 4

Overview of considered security protocols ... 6

2.1 The CoAP protocol .. 6

2.1.1 Message Layer .. 7

2.1.2 Request/Responses Layer ... 9

2.2 The DTLS Security Protocol ... 11

2.2.1 Providing Handshake Reliability 12

2.2.2 Loss of Packets .. 12

2.2.3 Message Re-ordering .. 12

2.2.4 Length of the Message .. 13

2.2.5 The DTLS Handshake Protocol .. 13

2.2.6 Countermeasures on denial of service 14

2.2.7 Cipher Suites ... 15

2.2.8 Certificate .. 16

2.3 The TLS 1.3 Security Protocol .. 16

2.4 The OSCORE Security Protocol ... 18

2.4.1 The OSCORE Option .. 21

2.4.2 OSCORE Security Context ... 21

vi

Simulation Results ... 25

3.1 Simulation Set-Up and Achieved Results................................ 25

3.2 TLS 1.2 Simulation Results ... 26

3.3 TLS 1.3 Simulation Results ... 28

3.4 DTLS 1.2 Simulation Results .. 28

3.5 OSCORE Simulation Results .. 29

3.6 CoAP Simulation Results .. 31

3.7 Simulation Summary ... 31

Implementation Results ... 35

4.1 Implementation Set-Up and Results .. 35

4.2 TLS 1.2 Implementation Results ... 38

4.3 TLS 1.3 Implementation Results ... 41

4.4 DTLS 1.2 Implementation Results .. 42

4.5 OSCORE Implementation Results .. 44

4.6 CoAP Implementation Results .. 45

4.7 Implementation Summary ... 46

Discussion and Conclusions .. 51

5.1 Comparison of Simulation and Implementation Results 51

5.2 Conclusion ... 53

5.3 Future Work ... 55

References ... 56

APPENDIX A ... 61

vii

List of Figures

Figure 1: CoAP Layers ... 7

Figure 2: CoAP Message Format ... 8

Figure 3: CoAP Message Transmission ... 10

Figure 4: DTLS Handshake .. 14

Figure 5: TLS 1.3 Handshake ... 18

Figure 6: OSCORE Handshake .. 19

Figure 7: CoAP + OSCORE Layers ... 19

Figure 8: OSCORE Header Options .. 21

Figure 9: Simulation Set-Up ... 26

Figure 10: Simulation Handshake Time (ms) 32

Figure 11: Simulation Average CoAP Transaction Time (ms) 33

Figure 12: Simulation Average CoAP Transaction Throughput

(kbps) .. 34

Figure 13: NINA-W10 ... 37

Figure 14: Implementation Set-Up ... 38

Figure 15: Client Current Measurements Set-Up 39

Figure 16: TLS 1.2 Current Consumption .. 40

Figure 17: TLS 1.3 Current Consumption .. 42

Figure 18: DTLS 1.2 Current Consumption 43

Figure 19: OSCORE Current Consumption 45

Figure 20: CoAP Current Consumption ... 46

Figure 21: Average Handshake Time (ms) .. 47

Figure 22: Average CoAP Transaction Time (ms) 48

Figure 23: Average CoAP Transaction Throughput (kbps) 48

Figure 24: Average Current Consumption (mA) and Average Time

(s) .. 49

Figure 25: Average Energy Consumption (J) 50

Figure 26: Average CoAP Transaction Time (ms) 52

Figure 27: Average CoAP Transaction Throughput (kbps) 53

Figure 28: Average CoAP Transaction Time (s) and Throughput

(kbps) .. 54

viii

Figure 29: Handshake Delay (s) and Average Energy Consumption

(J) .. 55

ix

List of Tables

Table 1: Protection of CoAP Header Fields and Payload [18] 20

Table 2: Security Overhead .. 33

1

CHAPTER 1

Introduction

1.1 Background

The Internet of Things (IoT) is the new global connectivity paradigm

allowing billions of devices to communicate among themselves and

with the rest of the Internet. Hence, IoT security is one of the top

research topics. IoT has three layers consisting of layers of perception,

network, and application. Security at the application layer offers an

appealing alternative to secure applications on the Internet of Things

(IoT), especially where protection of transport layers is not adequate or

where safety needs to operate through a range of underlying protocols.

A variety of safety standards can be used in each layer to achieve a

reliable realization of IoT. Many new IoT protocols have been released,

aimed at protecting critical data such as Datagram Transport Layer

Security (DTLS) [1], Transport Layer Security (TLS) [2], and Object

Security for Constrained RESTful Environments (OSCORE) [3] and

Ephemeral Diffie-Hellman Over COSE (EDHOC) [4]. IoT devices can

be restricted in various ways including memory, storage, processing

capacity, and energy, so finding the most efficient security protocols

for RESTful IoT units is an important issue.

The Constrained Application Protocol (CoAP) is a specialized Internet

Application layer Protocol, as specified in [9] for constrained devices.

The lightweight protocol CoAP is intended to be used and considered

as a replacement of HTTP for being an IoT application layer protocol.

This allows certain constrained devices called "nodes" to connect using

common protocols to the broader Internet. Also, it is designed to be

used between devices on the same constrained network (e.g., low-

power, loss networks), between devices and general nodes on the

2

Internet, and between Devices on different constrained networks that

are also linked to the Internet [10]. CoAP is also used by other

channels, for example, SMS on mobile communication networks.

CoAP is a service layer protocol intended for use in resource-

constrained internet applications, such as network nodes with wireless

sensors. It can run on most devices supporting User Datagram Protocol

(UDP) or Transmission Control Protocol (TCP).

The TLS protocol's primary aim is to provide authentication,

confidentially and integrity protection between two communicating

peers. TLS runs over the transport layer protocol and generates security

services for application layer protocols. TLS requires a connection-

oriented transport channel-usually TCP. The protocol is released in

different versions and has been upgraded throughout the years. The

very first version was TLS 1.0 which was released in 1999 [21], TLS

1.1 was released in 2006 [22], and TLS 1.2 in 2008 [23]. The several

weaknesses found in TLS 1.2 and below, as well as the growing

demand to enhance protocol efficiency, motivated by introducing the

next version of the protocol, TLS 1.3, in the spring of 2014. The

Datagram Transport Layer Security (DTLS) protocol has been

developed for applications that use UDP as a transport layer to provide

secure communication between peers who communicate. DTLS is

intentionally designed to be as similar as possible to TLS, both to

eliminate innovation in protection and to increase the amount of reuse

of code and infrastructure. The DTLS protocol has also been releases

in different versions. DTLS 1.0 that was originally defined as a delta

from TLS 1.0, DTLS 1.2 [5] was defined as a series of deltas to TLS

1.2 [6] and DTLS 1.3 protocol is based on the Transport Layer Security

(TLS) 1.3 protocol and provides equivalent security guarantees.

OSCORE is a method for application-layer security of CoAP, using

Concise Binary Object Representation (CBOR) a method for

protecting individual messages at the application layer suitable for

constrained devices is provided by CBOR Object Signing and

3

Encryption (COSE) [16]). OSCORE provides end-to-end protection

between endpoints that communicate via CoAP or CoAP-mappable

HTTP. This method is designed for constrained nodes and networks.

OSCOE uses a small message size offering low complexity

implementation as well as low memory requirements [15].

1.2 Problem

IoT security is characterized by a high-priority research interest as it is

an evolution of the conventional, unsecured Internet paradigm where

communications in the digital world reach the physical world. IoT

systems often deal with personal information, valuable business data,

and actuators interacting with the physical world. Not only do such

systems need security and privacy, they often need end-to-end

protection with source authentication and perfect-forward secrecy. In

particular, IoT security frameworks must tackle conventional

networking attacks and, at the same time, provide safe communications

for all forms of interactions like human-to-machine and machine-to-

machine. User data is protected by security protocols such as TLS,

DTLS, OSCORE, and EDHOC. The selection of efficient security

protocols for IoT devices is a critical issue as IoT devices can be

restricted in various ways including memory, storage, processing

capacity, and energy. Also, an important risk of IoT systems is

cryptographic key exposure [7]. Network nodes can be physically open

to attackers, so securing keys and collected data on the server end is

also critical, as it is typical for IoT systems to collect a large amount of

sensitive data.

There are lots of challenges that security protocols have to address in

general like per-packet message size, overheads, transmission times,

and power consumption. The message size of a key exchange protocol

can have a major impact on the performance of an IoT device,

particularly in noisy environments that show the need to have a security

protocol with a small key exchange message size. In addition, the

power usage of wireless devices is highly dependent on the

4

transmitting, listening and receiving of messages, which indicates the

need to use the appropriate security protocol depending on the

transmitting of the data byte [4]. In this thesis, we will evaluate and test

the per-packet message size overheads, transmission times, and power

consumption for TLS 1.2 & 1.3, DTLS 1.2, and OSCORE that run

above CoAP, to get a good view of which security protocol is the most

efficient for IoT devices. The purpose for including security protocols

above CoAP is that we are going to evaluate the performance of DTLS

1.3 from the results of the security protocols listed above.

1.3 Methodology

The thesis project will be based on the discovery of efficient security

protocols in power and bandwidth for IoT devices. We are coding the

software required for the embedded IoT device and perform power and

overhead measurements on the IoT device. Software tools such as the

Visual Studio and the Eclipse IDE are used to simulate security

protocols, and Wireshark is used as a network analyzer. The open-

source JAVA code of Californium is used for servers of CoAP, DTLS,

and OSCORE. The client is coded in the Visual Studio for the CoAP,

TLS 1.2 & 1.3, DTLS 1.2, OSCORE, and Wireshark for viewing the

packet exchange. These security protocols are implemented into a

NINA-W10 device to measure the power efficiency and overhead and

compare the results to choose the appropriate one.

1.4 Outline

In this thesis chapter, 1 consists of the basic introduction of the thesis.

It also contains Thesis Problems, Methodology, and Outline. Chapter

2, is an overview of IoT devices, considered application protocol, and

security protocols. Chapter 3, is presenting the simulation of

considered security protocols and the output results of simulation.

Chapter 4, is representing the implementation of the mentioned

security protocols over CoAP and the results of implementation.

5

Finally, Chapter 5 concludes the implementation and simulation of this

thesis work.

6

CHAPTER 2

Overview of considered security protocols

2.1 The CoAP protocol

Constrained Application Protocol (CoAP) [9] is a light application

layer protocol for constrained nodes and networks in IoT devices.

CoAP with different request/response methods supports interaction

between application endpoints with low overhead, multicast support,

and simplicity for constraint environment.

Representational State Transfer (REST) is a software design style that

specifies a series of constraints to be used when developing web

services. Web services that fit with the REST architecture form, called

RESTful Web Services. The aim of the Constrained RESTful

Environments (CoRE) work is to implement the REST architecture in

an acceptable form for the most constrained nodes and networks. One

solution for the REST architect's deployment of constrained devices is

the fragmentation of packets, which has the downside of reducing the

throughput. CoAP comes with a new approach in REST architect

deployment for restricted devices as it eliminates the need for

fragmentation while keeping the overhead small. Important features of

CoAP are:

 Fulfilling M2M requirements in constrained environments.

 Low header overhead and parsing complexity.

 URI and Content-type support.

 Simple proxy and caching capabilities.

 Functionality of mapping to HTTP and operating with

protocols that are based on HTTP.

 Ability of binding to UDP and security protocols like DTLS.

7

In addition, CoAP must also be implemented through reliable

transport, such as TCP or Transport Layer Security (TLS), in some

situations, such as when networks do not forward UDP packets or are

rate-limiting UDP traffic.

The CoAP protocol is dividing into two layers like Requests/Responses

and Messages Figure 1. The next sections will introduce these layers.

Application

UDP

Figure 1: CoAP Layers

2.1.1 Message Layer

The CoAP messaging model is based on the transfer of messages

between endpoints via UDP/TCP.

The CoAP message format includes fixed-size 4-byte header, variable-

length Token value, options, and payload shown in Figure 2.

 Requests/Responses

 Messages
CoAP

8

Figure 2: CoAP Message Format

CoAP message header includes:

 Version (Ver): This field is 2-bit unsigned integer shows the

CoAP version.

 Type (T): This field is 2-bit unsigned integer shows message

type. There are four different message types for CoAP like

Confirmable message (CON), Non-Confirmable message

(NON), Acknowledgement message (ACK), and Reset

message (RST). An ACK and RST are CoAP server response

type where ACK message recognizes the arrival of a particular

Confirmable message and RST message shows the missing of

some context in CON and NON. CON and NON messages are

CoAP Request/Response methods. CON is for showing the

reliability of a message and it needs ACK. NON is a message

that does not require reliable transmission and ACK but it has

a duplication identification Message-ID.

 Token Length (TKL): This field is 4-bit unsigned integer

shows the length of the Token field (0-8 bytes).

 Code: This field is 8-bit unsigned integer, which is explained

in the section 2.1.2.

 Message ID: This field is 16-bit unsigned integer which is used

to match messages of types CON/NON with ACK/RST and

detecting message duplication.

9

The second part of the message format is the Token value used to

correlate requests and responses, which can be between 0 to 8 bytes

long. The next field is filled when there are CoAP options otherwise,

it is a sequence of zeros. Finally, the last part is filled with an optional

payload. One-byte Payload Marker (0xFF) shows the payload's

presence, and without this marker, the payload is zero.

The Message Layer is responsible for reliability and sequencing with

different types of CoAP messages like CON, NON, ACK.

2.1.2 Request/Responses Layer

In the request/response layer, the CoAP client sends one or more CoAP

requests to the server. The server that receives the Request will reply

with the CoAP Response. The Request and the Response are

exchanged asynchronously via CoAP messages. The CoAP message

carries a method code or Response code. Also, the CoAP message

carries some optional Request and Response information like URI,

payload media type, and Token to match requests and responses. The

CoAP Request methods are:

 GET: The GET method is used to obtain information that

currently corresponds to the resource defined by the URI

request.

 POST: The POST method recommends that the description

used in the Request be processed.

 PUT: The PUT method recommends that the resource specified

by the URI requirement be changed or generated with the

enclosed representation.

 DELETE: The DELETE method recommends that the resource

specified by the URI request be removed.

Based on the CoAP request methods, CoAP response codes are:

10

 2.xx (Success): This code indicates that the client Request

received, understood, and accepted successfully. Where the last

two. xx denotes: .01 (Created), .02 (Deleted), .03 (Valid), .04

(Changed), and .05(Content).

 4.xx (Client Error): This code shows that the server did not

understand the request. Where the last two .xx denotes .00 (Bad

Request), .01 (Unauthorized), .02 (Bad Option), .03

(Forbidden), .04 (Not Found), .05 (Method not Allowed), .06

(Not Acceptable), .12 (Precondition Failed), .13(Request entity

too large), and .15 (Unsupported Content-Format).

 5.xx (Server Error): This code shows server error where the last

two .xx indicates: .00 (Internal Server Error), .01 (Not

Implemented), .02 (Bad Gateway), .03 (Server Unavailable),

.04 (Gateway Timeout), and .05 (Proxy Not Supported).

In this thesis, the CoAP Request and Response Carried in

Confirmable Message (CON) was selected as seen in Figure 3:

Figure 3: CoAP Message Transmission

11

2.2 The DTLS Security Protocol

Many techniques are used to secure network traffic. Transport Layer

Security (TLS) [2] is one such technique that is the most widely used

protocol for securing email and web traffic. It operates in a transparent

connection-oriented channel and runs over reliable transport channels

such as Transmission Control Protocol (TCP). Over the past few years,

the usage of the User Datagram Protocol (UDP) has increased in many

application protocols. The CoAP protocol is used for communication

in IoT devices operating over UDP and TCP. There is also a need for

a TLS compatible datagram variant. To mitigate innovation on security

and to increase the amount of reuse of code and infrastructure IETF

has proposed Datagram Transport Layer Security (DTLS) [1] [5].

Unreliability in TLS causes problems at two levels i.e.

1. Individual records are not independently decrypted by TLS, so

if record N is not obtained the integrity check is on the sequence

number, then the integrity check on record N+1 will be based

on the incorrect sequence number and will thus fail.

2. If the messages are lost, the TLS handshake layer assumes that

the handshake messages are delivered reliably and breaks.

For securing the communication and preventing eavesdropping,

tampering, message forgery between the two different peers, the

Datagram Transport Layer Security (DTLS) protocol can be used.

Datagram transports applications include media streaming, Internet

telephony, and online gaming for communication. All these

applications are characterized by being delay-sensitive. Applications

with such behaviors are unchanged when DTLS protocol is used for

securing communication since the DTLS protocol does not compensate

for lost or reordered data traffic. It is designed to run in application

space and doesn’t need any kernel modifications. As discussed in

Section 1.1, there are different versions of DTLS, this thesis focuses

12

on DTLS 1.2. Below, we discuss how DTLS handles the different

problems related to datagram transport.

2.2.1 Providing Handshake Reliability

In TLS, messages are mismatched and produce errors if the order is not

defined correctly. So, messages must be defined in the order. This is

incompatible with reordering and message loss. Also, TLS handshake

messages create a problem of IP fragmentation for sending over

datagram, as these messages are larger than the datagram's size. DTLS

provides fixes for these two problems.

2.2.2 Loss of Packets

DTLS uses a retransmission timer to fix the issue of packet loss. The

client sends the client hello message to the server during the initial

process of the DTLS handshake and hopes to receive a hello verify

request from the server. When the client does not receive the hello

verify request within the specified period then the timer expires and the

client knows that the request has been lost either to the client, hello, or

from server hello. The client retransmits the message and retransmits

it when the server receives the retransmission. The server also has the

retransmission timer, and when the timer ends, it retransmits. For hello

verify request, the timeout and retransmission do not apply. The hello

verify request is designed to be small enough not to be broken by itself,

thus eliminating the issues of multiple hello verifying requests.

2.2.3 Message Re-ordering

A specific sequence number has been assigned to handshake messages

within that handshake in DTLS. The receiver, which receives this

handshake, regulates the next upcoming message, which is as

expected, or not. If the received message is not the same then it is put

up in the queue for future handing; else if the message is as expected it

proceeds with further processing.

13

2.2.4 Length of the Message

In DTLS and TLS, the length of the handshake messages is actually

larger when it is compared with the length of the UDP datagram. DTLS

handshake messages are fragmented into separate DTLS record layers.

Each recording layer is intended to fit in a single IP datagram and this

is the solution to solve the issue. Fragment offset and length consist of

individual handshake messages. Hence, the receiver occupies all the

bytes of handshake message and reassembles the original

unfragmented message.

2.2.5 The DTLS Handshake Protocol

Seeing from Figure 4, DTLS uses almost the same handshake and flow

communications as TLS, except for three critical modifications:

1. To avoid Denial of Service (DoS), a stateless cookie exchange

has been added in DTLS.

2. Modifications have been made in the DTLS handshake header

to handle message loss, reordering, and IP fragmentation.

3. To handle message loss, a retransmission timer has been added

in DTLS.

In addition to the examples mentioned above, DTLS message formats

flow, and logic is similar to TLS.

14

Figure 4: DTLS Handshake

2.2.6 Countermeasures on denial of service

A Denial-of - Service (DoS) attack is an attack designed to lock down

a system or network, making it difficult for the intended users to reach

it. DTLS contains two types of DOS attacks that are of major concern:

1. By transmitting a series of handshake initiation requests, an

attacker can consume excessive resources on the server, this

causes the server to perform expensive cryptographic

operations and allocate TLS session state data.

15

2. By using the server as the amplifier, an attacker can send a

connection initiation message with a forged source of the

victim.

DTLS uses stateless cookie technique to protect the system against

these two types of DoS attacks. When the client sends the client hello

to the server, the server will respond with a hello verify request

containing a stateless cookie generated by using the technique

of PHOTURIS [28]. The client then responds back with client hello

adding the cookie. Then the server verifies the cookie and proceeds

with the handshake only if the cookie is valid. DoS attacks with

spoofed IP addresses can be potentially stopped using this mechanism

since it forces the attacker/ clients to be received with cookies; but still

this method does not guarantee any defense against DoS attack with a

valid IP address.

2.2.7 Cipher Suites

The cipher suite [41] is generated with a group of algorithms to secure

the network connections, which uses TLS. As DTLS is based on TLS,

the cipher suite used for DTLS in this thesis is

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256. The

mentioned cipher suite uses authenticated encryption with additional

data algorithm AEAD_AES_128_GCM, and it is the combination of

authentication, encryption, and message authentication code (MAC)

algorithms. AEAD is a form of encryption that provides confidentiality

for the plaintext and a way to check its integrity and authenticity.

Three parts of this cipher suite include:

 ECDHE_RSA algorithm uses ephemeral elliptic curve Diffie-

Hellman to exchange keys. During a handshake, the key

exchange algorithm is used to decide whether and how the

client and server can authenticate.

16

 AES_128_GCM with 128 bits is used to encrypt the message

stream with a block cipher.

 SHA256, a message authentication algorithm, is used for

ensuring message integrity.

2.2.8 Certificate

While analyzing the DTLS handshake, the certificate is divided into

two parts, like Client and Server Certificate. The client certificate acts

as a way for the end-user to claim their identity on the server, and the

server certificate verifies and validates the certificate holder's identity

before authenticating it. Implementations are responsible for verifying

certificate integrity and should generally support messages for

certificate revocation. Certificates will also be checked by a reputable

Certificate Authority (CA) to guarantee a correct signature. Selecting

and introducing trustworthy CAs will be handled with considerable

care. Users should be able to view certificate information and root CA

information.

2.3 The TLS 1.3 Security Protocol

TLS version 1.3 is modified version of TLS 1.2 with some important

improvements. In this section, we will address the major difference

between TLS 1.3 [43] and TLS 1.2. TLS 1.3 has increased security and

speed. The list of main functional differences is as follows:

 All algorithms that are considered legacy have been removed

from the list of approved symmetric algorithms, and the

remaining algorithms are using Authenticated Encryption with

Associated Data (AEAD).

 Since all public-key based key exchange mechanisms now

provide forward secrecy, the Static Diffie-Hellman cipher suite

has been removed.

17

 In the TLS 1.2 handshake, messages after Server Hello were

not encrypted, however in TLS 1.3, all handshake messages

after Server Hello were encrypted.

 The Extract-and-Expand Key Derivation Function (HKDF)

based on HMAC is used as a key deviation function. This

newly introduced function has improved key separation

properties that make it easier for cryptographers to analyze.

 For more consistent and needless messages, such as Change

Cipher Spec, The handshake state machine has been

substantially restructured.

 Due to the reduction in the handshake the speed has been

improved.

 TLS 1.3 just need only one round-trip time before the client

sends the application data. Whereas the older version of TLS

requires two round-trip time. Also, the server will send the

application data in response to the client's first handshake

reply. This means that network latency has less effect on the

time taken to create a stable link.

Figure 5 shows the handshake of TLS 1.3.

18

Figure 5: TLS 1.3 Handshake

2.4 The OSCORE Security Protocol

Object Security for Constraint RESTful Environments (OSCORE) protocol

is an application-layer security method for the Constraint Application

Protocol (CoAP) by means of CBOR Object Signing and Encryption (COSE).

CBOR is a data format designed for small code size and small message size,

which modified the JavaScript Object Notation (JSON) data model by

allowing for binary data, among other changes. CBORE is used for compact

encoding in OSCORE. The COSE structure arranges all of the security

messages based on the CBOR array type, which is used for encryption and

key derivation structures. In Figure 6 below, we give a schematic overview

of the message exchanges of OSCORE when used by CoAP.

19

Figure 6: OSCORE Handshake

OSCORE can be used for both unreliable and reliable transport as these

methods differ only in the CoAP messaging layer, which is not

protected with OSCORE. In addition, OSCORE protects the RESTful

interactions like the request method, the requested resource, and the

payload of the message that is shown in Figure 7. As OSCORE protects

only the relevant application layer information, the message overhead

is minimal.

Application

Request / Response / Signaling

OSCORE

Messaging Layer / Message Framing

UDP / TCP / …

Figure 7: CoAP + OSCORE Layers

 CoAP

20

OSCORE protects the plaintext of CoAP messages. Not all CoAP

fields are equally protected but fields are separated into protected and

unprotected fields. Table 1 below, gives an overview of how the CoAP

header and payload fields are protected with OSCORE.

Field Encrypt and Integrity

Protect

Encrypt and Integrity

Unprotect

Version x

Type x

Length x

Token

Length

 x

Code x

Message ID x

Token x

Payload x

Table 1: Protection of CoAP Header Fields and Payload [18]

OSCORE can provide end-to-end protection between endpoints

including CoAP-to-CoAP, HTTP-to-CoAP, and CoAP-to-HTTP

proxies.

21

2.4.1 The OSCORE Option

The OSCORE header option indicates that the CoAP message is

protected by the OSCORE security protocol, and it contains the

compressed COSE object. The Object-Security option is critical, safe

to forward, part of the cache key, not repeatable.

In Figure 8, the OSCORE header option includes OSCORE flag bits

that occupy the first byte, Partial IV parameter that occupies n bytes,

the kid context flag that occupies 1 byte to encode the length of the

flag, s bytes to encode the kid context, and the remaining bytes to

encode the kid's value. Where h is the kid context flag and k is the kid

flag.

0 1 2 3 4 5 6 7 <---------- n bytes ----------> 0 1 2 3 4 5 6 7 < ------

- s bytes ------->

0 0 0 h k n Partial IV (if any) S (if

any)

Kid context (if

any)

Kid (if

any)

Figure 8: OSCORE Header Options

2.4.2 OSCORE Security Context

The security context is a set of parameters that link the security

protocol to the environment and allow the server and the client to

interact. OSCORE uses pre-shared keys that may have been generated

out-of-band or with a key setup protocol that requires that the client

and server establish a shared security context used to process the COSE

objects. The security context is the set of elements of data necessary to

perform cryptographic operations in OSCORE. There are three types

of security contexts:

1. The Sender Context, which is used to secure the messages to

be sent, includes:

22

a) Sender ID:

Sender ID is bytes of string used to identify the sender context,

derive AEAD keys, Common IV, and to ensure unique AEAD

nonces. AEAD Algorithm determines the maximum length of

the sender ID, and it should be pre-established.

b) Sender Key:

Sender Key is bytes of a string containing the symmetric

AEAD key to protect messages to send. It is derived from

Common Context and Sender ID. AEAD Algorithm defines

Sender key length.

c) Sender Sequence Number:

Sender Sequence Number is a non-negative integer used to list

requests and certain responses where the AEAD Algorithm

determines the maximum value of it.

2. The Receiver Context, which is used to confirm the messages

received, includes:

a) Recipient ID:

Recipient ID is bytes of string used to identify the recipient

context, derive AEAD keys, Common IV, and to ensure unique

AEAD nonces. AEAD Algorithm determines the maximum

length of it, and the value of the recipient ID should be pre-

established.

b) Recipient Key:

Recipient Key is bytes of a string containing the symmetric

AEAD key to verify messages received. It is derived from the

Common Context and Recipient ID, and the AEAD Algorithm

defines its length.

23

c) Replay Window:

Replay Window is on the server-side to evaluate requests

received. DTLS-type replay protection and a window size of 32

will use as default values for Replay Window parameters.

3. The common context from which all contexts derive includes:

a) Authenticated Encryption with Associated Data (AEAD)

Algorithm:

The COSE AEAD algorithm, which is used for encryption, has

the default value of AES-CCM-16-64-128 (COSE encoding

algorithm: 10).

b) HKDF Algorithm:

An HMAC-based key derivation function (HKDF), which is

used to derive Sender Key, Recipient Key, and Common IV,

has the Default value of HKDF SHA-256.

c) Master Secret:

Master Secret contains variable length and random byte string

to derive AEAD keys and Common IV. The master secret must

be pre-configured into the peers.

d) Master Salt:

Optional byte string with variable length containing the salt

used to derive AEAD keys and Common IV with the default

value of empty byte string.

e) ID Context:

Optional variable-length byte string providing additional

information to identify the Common Context and to derive

24

AEAD keys and Common IV. The use of ID Context is

described in.

f) Common IV:

Byte string derived from Master Secret, Master Salt, and ID

Context. They are used to generate the AEAD Nonce.

Finally, some OSCORE differences with other security protocols

include key negotiation and session management as it protects each

payload with a pre-shared key, unlike (DTLS) which protects hop-by -

hop messages, OSCORE protects the payload message with an end-to

- end protection process. As a result, we can save power, bandwidth

and computational resources. In addition, OSCORE enables translation

of the HTTP-CoAP protocol at a gateway or a proxy that enables the

use of OSCORE over TCP.

25

CHAPTER 3

Simulation Results

In this chapter we explain the simulation test we have performed for

the different security protocols, such, we investigate, i.e., TLS 1.2, TLS

1.3, DTLS 1.2, and OSCORE over CoAP. We compared the security

overhead, handshake time/throughput, and CoAP transaction (CoAP

GET Request + Response) time/throughput for these selected

protocols. The tests were performed using Visual Studio as a

development environment on windows 32/64 bit processor platform,

where we simulate both client and server on the same PC with the local

IP address using the open sources like Contiki-NG and WolfSSL

Libraries. All tests were simulated for 20 iterations, and the results

reported are the average values.

3.1 Simulation Set-Up and Achieved Results

In this thesis, the transfer of CoAP packet between client and server is

simulated with different security protocol selections. We utilized open

sources libraries to build the simulations. WolfSSL [33], and Contiki-

NG [34] was used as main security protocol implementation libraries.

The WolfSSL library is a C-language-based SSL/TLS library designed

for IoT, embedded, and RTOS environments. The advantages of this

library, among other open sources, are the size, speed, feature set, and

ability to support TLS 1.2, TLS 1.3, and DTLS 1.2. Since the WolfSSL

library does not support OSCORE, a branch of Contiki-NG [34] open

source was used for simulating OSCORE. Contiki-NG is an open-

source library used for next-generation IoT applications, which focuses

on low-power communication and standard protocols. Visual Studio

Community Version 2019 was used to simulate the server and client

on the same Computer with the Windows 32/64 bit processor and the

specified libraries. Finally, Wireshark tool was used to capture the

packets and analyze security performance. Figure 9 is the simulation

set-up:

26

Figure 9: Simulation Set-Up

3.2 TLS 1.2 Simulation Results

WolfSSL open source master version was used to simulate the TLS 1.2

client and server. A WolfSSL library was built using Visual Studio

Community Version 2019. WolfSSL provides the user-settings.h

header file to enable protocols and methods. This we utilized in the

simulations. No changes to the user-setting.h file was needed for the

TLS 1.2 simulation. In the simulations, we run the CoAP GET request

with 7 bytes length and the responses from the server were set to the

CoAP GET response with the size of 17 bytes and 94 bytes.

We run the simulations with the client and server default certificate

(./certs/server-cert.pem) and the default key file (./certs/server-

key.pem). It would have been possible for us to use another certificate,

but as we are mainly interested in making a performance test, the

default certificate fulfills our requirements. The cipher suite used

during the SSL handshake for TLS 1.2 was

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, a

combination of authentication, encryption, and message authentication

code (MAC) algorithms. This cipher suite was chosen from the list of

Elliptic Curve Cryptography (ECC) cipher suites, which are supported

by the WolfSSL library. This is a cipher suite recommended for many

cloud servers as it has a good security level small overhead in with

respect to TLS record layer header, encryption algorithm padding, and

27

the MAC tag. We run TLS with the configurations and commands

described in Appendix A.

 For analyzing the performance of TLS 1.2, we calculated four

different performance indicators:

 Handshake Time Analysis

 CoAP Transaction Time and Throughput Analysis

 Security Overhead

Handshake time is calculated using Wireshark tool analyzer from the

first Client Hello until end of the handshake. For TLS 1.2 the average

handshake time achieved for 20 iterations are 174.8 ms for total of 13

packets.

The following equation is used to calculate the CoAP Transaction

throughput:

Throughput =
data∗8

Time
 (bps) (1)

In Equation (1), the data is the total length of input data achieved from

the CoAP Request and Response size. To calculate the time and

throughput for the CoAP transaction, we were simulating 20 iterations

with 500 GET Request/Response and two different response size to

check the efficiency. For the 7 bytes GET request with a response size

of 17 bytes, the achieved average time and throughput for one CoAP

transaction is 2.59 ms and 74.131 kbps. Similarly, for 94 bytes

response size, the average time and throughput are 4.35 ms and

185.747 kbps.

The security overhead was measured from Wireshark by the difference

between the length of the record layer of the application data and the

CoAP packet length for the GET request/response. Therefore, the

security overhead for TLS 1.2 is 29 bytes.

28

3.3 TLS 1.3 Simulation Results

The simulation set-up used for TLS 1.3 was the same as those for TLS

1.2. Furthermore, we used the same data and certificates are used as for

TLS 1.2 simulations. The different configurations steps needed are

listed in Appendix A.

We used a different cipher suite for TLS 1.3, as the handshake is

different from the old TLS versions. In TLS 1.3, all encryption and

authentication algorithms are combined in authenticated encryption

with associated data (AEAD) encryption algorithm. Therefore, static

RSA and Diffie-Helman cipher suites have been removed to make the

protocol more secure. So, the TLS_AES_ 128_GCM _SHA256 cipher

suite was chosen among the TLS 1.3 supported cipher suites.

When we analyzed the performance of TLS 1.3, we used the same

measurements parameters as for the TLS 1.2 runs.

For handshake time analysis, the average time achieved for 20

iterations was 143.33 ms for total of 10 packets.

For CoAP transaction time and throughput analysis, the average time

and throughput for one CoAP transaction was 2.19 ms, and 87.671

kbps, which is for 7 bytes GET request with a response size of 17 bytes.

Similarly, the average time and throughput are 4.175 ms and 193.532

kbps for the response size of 94 bytes. Moreover, the security overhead

for TLS 1.3 is 22 bytes.

3.4 DTLS 1.2 Simulation Results

The simulation set-up we used was the same as mentioned in Section

3.1. In addition, the same data, certificates, and cipher suite are used as

TLS 1.2 as we want to compare security protocols. The different

configurations steps needed are listed in Appendix A.

For analyzing the performance of DTLS 1.2, the same parameters are

measured, as mentioned in section 3.2.

29

For handshake time analysis, the average time achieved for 20

iterations was 169.55 ms for 14 packets.

For CoAP transaction time and throughput analysis, the average time

and throughput for one CoAP transaction was 2.24 ms, and 85.714

kbps, which is for 7 bytes GET request with a response size of 17 bytes.

Similarly, the average time and throughput are 4.32 ms and 187.037

kbps for the response size of 94 bytes. Moreover, the security overhead

for DTLS 1.2 is 37 bytes.

3.5 OSCORE Simulation Results

Contiki-NG [34] was used for the simulation of OSCORE with the

same CoAP packet as mentioned in section 3.1. Eclipse/Californium

was used as an OSCORE server that is running on port 5683 for the

simulation part. The input parameters we used for establishment of

security context between client and server are the following:

 AEAD Algorithm is AES-CCM-16-64-128

As OSCORE uses an untagged COSE Encrypt0 structure with

an Authenticated Additional Data Encryption (AEAD)

Algorithm for encryption, the AES-CCM-16-64-128 algorithm

suggested with the OSCORE IETF draft was used in our tests.

The reason for selecting the AES-CCM method in OSCORE

was that the message authentication is done on the plaintext,

compared with the GCM method, which is for message

authentication on the ciphertext. In the selected algorithm, the

authentication field's size is 64 bits, the size of the length field

is 16 bits, and the length of the Sender Key and Recipient Key

is 128 bits.

 Master Salt and Master secret

Master Salt and Master Secret for derivation of AEAD

algorithm are set to the same values of the OSCORE server in

our tests.

30

 HKDF Algorithm was HKDF SHA-256.

HKDF Algorithm was used as a key derivation algorithm in

OSCORE with the IETF draft's default method, which is SHA-

256, and it is similar to other protocols in our tests.

 Replay Window size

Replay Window size is selected as the default value that is

DTLS-type replay protection with a window size of 32 in the

IETF draft.

 Sender ID and Recipient ID

To drive the communication between client and server, the

client's SID value should be matched with the server's RID

value, which is chosen as SID = {0x01} and RID = {0x02} in

our tests. Also, to keep the packet size minimum, we selected

one byte SID and RID.

When we analyzed the performance of OSCORE in simulation, three

performance parameters were calculated:

 Time and Throughput for Packet Exchange

 Security Overhead

To calculate the time and throughput for packet exchange, we were

simulating 20 iterations with 500 CoAP + OSCORE GET

Request/Response and two different response size to check the

efficiency. The 7 bytes CoAP GET request with a response size of 17

bytes for one packet exchange, the achieved average time, and

throughput for one packet exchange was 0.593 ms and 323.777 kbps.

Similarly, for 94 bytes response size, the average time and throughput

are 0.661 ms and 1222.39 kbps. Moreover, the request overhead was

14 bytes, and the response overhead was 10 bytes.

31

 3.6 CoAP Simulation Results

To evaluate and compare the performance parameters described in

section 3.5, we simulated a CoAP transaction without the addition of a

security protocol. The open-source Contiki-NG was used to simulate

the CoAP client, and the UDP socket was used as the server.

For analyzing the performance of CoAP in simulation, two

performance parameters were calculated:

 Time and Throughput of the CoAP transaction

To calculate the time and throughput for packet exchange, we were

simulating 20 iterations with 500 CoAP GET Request/Response and

two different response size to check the efficiency. For the 7 bytes

CoAP GET request with a response size of 17 bytes for one packet

exchange, the achieved average time and throughput are 0.342 ms and

397.66 kbps. Similarly, for 94 bytes response size, the average time

and throughput are 0.633 ms and 1276.461 kbps.

3.7 Simulation Summary

Figure 10 shows the handshake analysis's simulation results for the

three security protocols, TLS 1.2, TLS 1.3, and DTLS 1.2. It is clear

that the average time for TLS 1.3 outperforms comparing with the other

two protocols, and it will affect the performance when there is a need

to send data with multiple handshakes.

32

Figure 10: Simulation Handshake Time (ms)

Figure 11 shows how the CoAP Transaction Time will change for the

different security protocols. While the response size increased, the

average CoAP Transaction time will increase. CoAP Transaction time

with OSCORE is shorter than other security protocols. Although there

is not much difference between TLS 1.2, TLS 1.3, and DTLS 1.2, TLS

1.3 is faster than the others in transferring packets.

TLS 1.2 TLS 1.3 DTLS 1.2

Average Handshake Time
(ms)

174.8 143.33 169.55

0

20

40

60

80

100

120

140

160

180

200

33

Figure 11: Simulation Average CoAP Transaction Time (ms)

From the specified table 2, we can note that the OSCORE security

protocol contributes lower overhead to the CoAP GET

request/response than all other protocols. With respect to the

handshake security protocols, TLS 1.3 provides a significantly lower

overhead than other protocols.

Security

Protocol

Security Overhead

(bytes) Request

 Security Overhead (bytes)

Response

TLS 1.2 +

CoAP

29 29

TLS 1.3 +

CoAP

22 22

DTLS 1.2 +

CoAP

37 37

OSCORE +

CoAP

14 10

Table 2: Security Overhead

TLS 1.2 +
CoAP

TLS 1.3 +
CoAP

DTLS 1.2
+ CoAP

OSCORE
+ CoAP

CoAP

17 Bytes Response Size 2.59 2.19 2.24 0.593 0.342

 94 Bytes Response Size 4.35 4.175 4.32 0.661 0.633

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

34

Figure 12 shows the Average CoAP Transaction Throughput. By

adding security over CoAP, the throughput is reduced, TLS 1.2 +

CoAP has more security overheads than the others. OSCORE on the

other hand, with lower security overhead, has also a lower impact on

the CoAP transaction throughput.

Figure 12: Simulation Average CoAP Transaction Throughput (kbps)

TLS 1.2
+ CoAP

TLS 1.3
+ CoAP

DTLS
1.2 +
CoAP

OSCORE
+ CoAP

CoAP

17 Bytes Response Size 74.13 87.671 85.714 323.777 397.66

 94 Bytes Response Size 185.74 193.532 187.037 1222.39 1276.461

0

200

400

600

800

1000

1200

1400

35

CHAPTER 4

Implementation Results

This chapter presents performance results for implementation on IoT

units of the previously presented security protocols TLS 1.2, TLS 1.3,

DTLS 1.2, and OSCORE. For this purpose, we used a PC and NINA-

W102 with ESP32 chip support as server/client; both are connected to

the same Wi-Fi to communicate. We compared these protocols with

their security overhead, handshake time and throughput, CoAP

transaction time and throughput, and client current consumption.

While the server was the same as used for the simulations. The client-

side tests were performed using VisualGDB, which is a cross-platform

for visual studio to build and debug the NINA-W102 unit, on windows

32/64 bit processor. The packet exchange between client and server is

captured using Wireshark. All tests were simulated for 20 iterations,

and reported results are the average values.

4.1 Implementation Set-Up and Results

The WolfSSL [33] and ESP-IDF [37] open sources were used to

implement security protocols. WolfSSL was explained in chapter 3.

ESP-IDF is an IoT Development Framework, officially developed for

ESP32, which provides necessary hardware, software libraries, source

code, and scripts [39]. There are different versions of the ESP-IDF.

Version 4.0 and Master are used for our implementation. Version 4.0

is one of the new updates available until October 2021 and supports the

WolfSSL library. While for implementing DTLS 1.2, the latest version

of ESP-IDF was used, the master version.

The NINA-W102 unit has opted for this work, which is mounted with

an ESP32 chip. ESP32 is a series of low power and cost system-on-

chip microcontrollers with Bluetooth and Wi-Fi dual-mode

compatibility. It is optimized for smartphones, portable devices, and

Internet-of-Things (IoT) devices. It features all state-of-the-art low-

36

power chip characteristics, including fine-grained clock gating, various

operation modes, and dynamic power scaling. The low-duty cycle is

used to reduce the energy consumed by the chip. The power amplifier's

performance is also flexible, leading to an optimum trade-off between

contact frequency, data rate, and power usage [38]. These features

motivate us to use the NINA-W102 unit for the implementation of the

security protocols.

NINA-W102 [36] comes under the series of NINA-W10 series, and it

is the product of U-blox. The NINA-W10 series are stand-alone multi-

radio MCU modules that incorporate a powerful microcontroller

(MCU) and a wireless radio. Customers will build specialized

applications running on the 32-bit dual-core MCU utilizing the free

CPU architectureNINA-W10 series modules that have a dual-core

system with two Harvard Architecture Xtensa LX6 CPUs operating at

a maximum of 240 MHz internal clock frequency. The internal NINA-

W10 memory's main features include 448 Kbyte ROM for booting and

core functions and 520 Kbyte SRAM for data and instruction. The

radio supports 802.11b / g / n Wi-Fi in the 2.4 GHz ISM and Bluetooth

v4.2 (Bluetooth BR / EDR and Bluetooth Low) band Communications

Power (LE). NINA-W10 series modules are suitable for telematics,

low power sensors, connected factories, connected buildings

(appliances and surveillance), and point-of-sale, enabling advanced

cryptographic hardware accelerators, health devices, and other design

solutions which require the highest level of protection. The system's

underlying architecture helps the developers to use an external antenna

(NINA-W101) or the internal antenna (NINA-W102 and NINA-

W106) in the application design. The NINA-W102 module contains a

PIFA antenna. The RF signal is not attached to a pin on any board. The

size of the panel is 10.0 x 14.0 mm, and the height is 3.8 mm. The

maximum module supply voltage is 3.6 V, and the maximum current

range is 500 mA. This module has 16/32 Mbit FLASH for code storage,

including hardware encryption to protect programs. The product is

shown in Figure 13:

37

Figure 13: NINA-W10

VisualGDB is an extension to Visual Studio that allows building

embedded applications using GCC and debugging them using GDB.

GDB or GNU Debugger is a GNU project that helps debug software

applications and analyze what is happening during program execution.

VisualGDB supports both local debugging (e.g., using an embedded

simulator) and remote debugging. It also supports IoT modules;

Barebone embedded systems, ESP32, and Arduino targets. VisualGDB

will install and configure the required tools automatically [40].

Figure 14 shows the implementation set-up we has used for the

experimental evaluations. The hardware used is the ESP32 NINA-

W102 board connected to a windows operating computer using a USB

cable for the client. Besides, we used software toolchains like GCC to

compile the code, CMake, and ninja were used to build the tools with

the help of Visual GDB application, and ESP-IDF to operate the

toolchain. Also, Visual Studio Community 2019 was used as the text

to write programs for projects in C. For the server, we have the same

set-up, as mentioned in the simulation part chapter 3. To capture the

packets, Wireshark was connected to the same Wi-Fi on the PC.

38

Figure 14: Implementation Set-Up

4.2 TLS 1.2 Implementation Results

ESP-IDF and WolfSSL open sources are used to implement the TLS

1.2 client, which described in Appendix B. NINA-W102 used as the

client while the same server was used, as mentioned in section 3.2. To

have the same status in all tests, certificate files, CoAP

request/response, and cipher suite were the same for the simulation.

The first step of running the TLS 1.2 client is to add the WolfSSL

library to the ESP-IDF and open a WolfSSL client project with the help

of VisualGDB. The second step is to build and flash the TLS 1.2 client

code to the NINA-W102. Finally, when we run the client, it was

connected to the server with its IP address and port (5684) using Wi-

Fi.

39

The performance parameters are the same as those used for the

simulation part as we described in, Chapter 3, Section 3.2. In addition,

the client current consumption during the implementation of TLS 1.2

is measured as a new performance parameter. To measure current

consumption in each iteration during implementation time, the NINA-

W102 ESP32 was connected to the DC Power Analyzer, and the

current is monitored. The Wi-Fi connection is closed after the last flight

in each iteration to reduce the noise and interferences during the current

measurements. Figure 15, shown below, represents the client current

measurement set-up:

Figure 15: Client Current Measurements Set-Up

With average current consumption and time, we calculated the energy

consumption of NINA-W102 for one full handshake and one

request/response using the formula:

𝐸 = (𝑉 × 𝐼) × 𝑇 𝐽𝑜𝑢𝑙𝑒 (2)

In Equation (2) V is the DC power analyzer's voltage, which is set to

the specified 3.3 V (recommended voltage of the power supply for

ESP32). Also, I is the average current consumption and T is the average

time which are captured from DC power analyzer.

40

The measurement of the handshake time was carried out in the same

way as described in section 3.1. For TLS 1.2, the average handshake

time achieved for 20 iterations was 2.117 s.

To calculate the CoAP transaction time and throughput, we were using

the same method as was used in the simulation. For the 7 bytes GET

request with a response size of 17 bytes, the achieved average time and

throughput for one CoAP transaction are 18.21 ms and 10.54 kbps.

Similarly, for 94 bytes response size, the average time and throughput

are 21.05 ms and 38.38 kbps. Also, the security overhead for TLS 1.2

was 29 bytes.

After considering 20 times of iterations, the average current

consumption was measured as 80.91 mA in 8.061 s for 7 bytes GET

request with a response size of 17 bytes. Similarly, for 94 bytes

response, the average current consumption was measured as 81.08 mA

in 8.494 s. Figure 16, shown below, represents the client current

measurement for a single iteration for two different responses:

Figure 16: TLS 1.2 Current Consumption

41

In addition, the average energy consumption was calculated as 2.1523

J for 7 bytes GET request with a response size of 17 bytes. Similarly,

for 94 bytes response, the average energy consumption was calculated

as 2.2726 J.

4.3 TLS 1.3 Implementation Results

The implantation set-up we used was the same as we described in

section 4.1. Also, all tests, certificate files, CoAP request/response, and

cipher suites have the same status as in the simulation of TLS 1.3 in

section 3.3.

For analyzing the performance of TLS 1.3, the same parameters were

measured, as those mentioned in section 4.2.

For handshake time analysis, the average time achieved for 20

iterations was 1.163 s.

For CoAP transaction time and throughput analysis, the average time

and throughput for one CoAP transaction was 18.19 ms, and 10.55

kbps, which is for 7 bytes GET request with a response size 17 bytes.

Similarly, the average time and throughput are 20.3 ms and 39.802

kbps for the response size of 94 bytes. Moreover, the security overhead

for TLS 1.3 was 22 bytes.

Current consumption was measured in the same way as we described

in Section 4.1. The average current consumption was measured as

82.47 mA in 6.818 s for 7 bytes GET requests with a response size of

17 bytes. Similarly, for 94 bytes response, the average current

consumption was measured as 84.29 mA in 7.169 s. Figure 17, shown

below, represents the client current measurement for a single iteration

for two different responses:

42

Figure 17: TLS 1.3 Current Consumption

The calculation for the average energy consumption was carried out in

the same way as described in Section 4.2. The average energy

consumption was calculated as 1.8555 J for 7 bytes GET request with

a response size of 17 bytes. Similarly, for 94 bytes response, the

average energy consumption was calculated as 1.994 J.

4.4 DTLS 1.2 Implementation Results

The implantation set-up we used was the same as we described in

section 4.1. Also, all tests, certificate files, CoAP request/response, and

cipher suites have the same status as in the simulation of TLS 1.2 in

section 4.2.

For analyzing the performance of DTLS 1.2, the same parameters were

measured, as those mentioned in section 4.2.

For handshake time analysis, the average time and throughput achieved

for 20 iterations were 2.494 s.

43

For CoAP transaction time and throughput analysis, the average time

and throughput for one CoAP transaction was 130.159 ms, and 1.475

kbps, which is for 7 bytes GET request with a response size 17 bytes.

Similarly, the average time and throughput are 162.8 ms and 4.963

kbps for the response size of 94 bytes. Moreover, the security overhead

for DTLS 1.2 was 37 bytes.

Current consumption was measured in the same way as we described

in Section 4.2. The average current consumption was measured as 88.4

mA in 17.6 s for 7 bytes GET requests with a response size of 17 bytes.

Similarly, for 94 bytes response, the average current consumption was

measured as 88.6 mA in 8.392 s. Figure 18, shown below, represents

the client current measurement for a single iteration for two different

responses:

Figure 18: DTLS 1.2 Current Consumption

The average energy consumption was carried out, as mentioned in

Section 4.2. The average energy consumption was 2.219 J for 7 bytes

44

GET request with a response size of 17 bytes. Similarly, for 94 bytes

response, the average energy consumption was calculated as 2.453 J.

4.5 OSCORE Implementation Results

The UDP client example from ESP-IDF open source version 4.0 was

used to implement the OSCORE client. Also, the same OSCORE +

CoAP packet that was used in the simulation and described in Section

3.5, was used for the implementation evaluation. The open-source

Eclipse / Californium was used as server.

The following results were achieved for the analysis of the

performance of OSCORE using the same simulation method as we

described in Section 3.5. For the 7 bytes CoAP GET request with a

response size of 17 bytes for one packet exchange, the achieved

average time and throughput for one packet exchange were 15.49 ms

and 12.395 kbps. Similarly, for 94 bytes response size, the average time

and throughput are 16.67 ms and 48.47 kbps. Moreover, the request

overhead was 14 bytes, and the response overhead was 10 bytes.

Current consumption was measured in the same way as we described

in Section 4.2. The average current consumption was measured as

97.72 mA in 3.366 s for 7 bytes GET requests with a response size of

17 bytes. Similarly, for 94 bytes response, the average current

consumption was measured as 98.1 mA in 3.61 s. Figure 19, shown

below, represents the client current measurement for a single iteration

for two different responses:

45

Figure 19: OSCORE Current Consumption

The average energy consumption was carried out as mentioned in

Section 4.2. The average energy consumption was 1.085 J for 7 bytes

GET request with a response size of 17 bytes. Similarly, for 94 bytes

response, the average energy consumption was calculated as 1.169 J.

4.6 CoAP Implementation Results

The UDP client example from ESP-IDF open source version 4.0 was

used to implement the CoAP client. Also, the same server with CoAP

packet was used as described in Section 3.6.

The following results were achieved for the analysis of the

performance of CoAP using the same simulation method as described

in section 3.6. For the 7 bytes CoAP GET request with a response size

of 17 bytes for one packet exchange, the achieved average time and

throughput for one packet exchange were 15 ms and 12.8 kbps.

Similarly, for 94 bytes response size, the average time and throughput

were 15.6 ms and 51.79 kbps.

46

Current consumption was measured in the same way as described in

Section 4.2. The average current consumption was measured as 97.9

mA in 3.355 s for 7 bytes GET requests with a response size of 17

bytes. Similarly, for 94 bytes response, the average current

consumption was measured as 98.22 mA in 3.457 s. Figure 20, shown

below, represents the client current measurement for a single iteration

for two different responses:

Figure 20: CoAP Current Consumption

The average energy consumption was carried out as mentioned in

Section 4.2. The average energy consumption was 1.083 J for 7 bytes

GET request with a response size of 17 bytes. Similarly, for 94 bytes

response, the average energy consumption was calculated as 1.120 J.

4.7 Implementation Summary

Figure 21 shows the three security protocols' handshake analysis,

including TLS 1.2, TLS 1.3, and DTLS 1.2. Due to the new handshake

pattern mentioned in chapter 2, the average handshake time for TLS

47

1.3 outperforms the contrast with the other two protocols, which will

affect performance, as multiple handshakes need to be sent for

transferring data. Also, DTLS 1.2 has a lower handshake delay than

TLS 1.2 as it is sending packets over the UDP socket.

Figure 21: Average Handshake Time (ms)

Figure 22 shows average CoAP transaction time for mentioned

Security protocols with 17 and 94 bytes response size. By increasing

the response size, we can see more delays in the transmission of data.

OSCORE delay for data transfer is shorter than for other security

protocols. As DTLS 1.2 sends data over UDP, it outperforms TLS 1.2

and TLS 1.3.

TLS 1.2 TLS 1.3 DTLS 1.2

Average Handshake
Time (ms)

2117 1163 1891

0

500

1000

1500

2000

2500

48

Figure 22: Average CoAP Transaction Time (ms)

Figure 23 shows average CoAP transaction throughput for mentioned

Security protocols with two different response size. By adding a

security protocol over CoAP, the overhead will increase, which

decreases the throughput. Also, DTLS 1.2, with more overhead, has a

better throughput than TLS 1.2 & TLS 1.3 since it has a smaller latency

when transmitting data.

Figure 23: Average CoAP Transaction Throughput (kbps)

TLS 1.2 TLS 1.3
DTLS
1.2

OSCOR
E

CoAP

17 Bytes Response Size 18.21 18.19 15.52 15.49 15

94 Bytes Response Size 21.05 20.3 16.7 16.67 15.6

0

5

10

15

20

25

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP

17 Bytes Response Size 10.54 10.55 12.368 12.395 12.8

94 Bytes Response Size 38.38 39.802 48.383 48.47 51.79

0

10

20

30

40

50

60

49

Figure 24 shows the average current consumption and time captured

from the DC power analyzer for one full handshake + application data

for TLS 1.2, TLS 1.3, and DTLS 1.2 with two different responses.

Similarly, the mentioned parameters are shown for one exchange of

OSCORE and CoAP packets. As seen in the figure, the average current

consumption is high for security protocols with a lower average time

as the throughput (bps) is higher.

Figure 24: Average Current Consumption (mA) and Average Time (s)

The following Figure shows the average energy consumption of the

NINA-W102 device with the same condition as mentioned in the

previous paragraph. OSCORE will consume less energy for sending

data while comparing with the other protocols. Seeing Figure 25,

DTLS 1.2 consumes more energy than TLS 1.2. As mentioned in the

Equation 2 the energy consumption is related to average current

consumption and the average transmission time, so if we use one full

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP

Average Time (s) for 17
bytes

8.061 6.818 7.61 3.366 3.355

Average current (mA) for
17 bytes

80.91 82.47 88.4 97.72 97.9

Average Time (s) for 94
bytes

8.494 7.169 8.392 3.612 3.457

Average current (mA) for
94 bytes

81.08 84.29 88.6 98.1 98.22

0

20

40

60

80

100

120

50

handshake + application data, the average current would affect energy

consumption more than the time as we can see in Figure 24. Thus, for

scenarios where we have multiple handshakes or application data,

DTLS 1.2 may outperform, as it is faster than TLS 1.2.

Figure 25: Average Energy Consumption (J)

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP

17 Bytes Response Size 2.1523 1.8555 2.219 1.0854 1.0838

94 Bytes Response Size 2.2726 1.994 2.453 1.1693 1.1205

0

0.5

1

1.5

2

2.5

3

Average Energy Consumption (J)

51

CHAPTER 5

Discussion and Conclusions

In this chapter, we will conclude the results of the implementation and

simulation comparison of mentioned security protocols in chapter 3

and 4. In addition, we are going to discuss future work.

5.1 Comparison of Simulation and Implementation

Results

Figure 26 shows the average CoAP transaction time results for

simulation and implementation of mentioned security protocols. As

can be seen in the figure there is a large difference between the

simulations and the implementation. The simulation response time is

as expected, much smaller in the simulations than for the device

implementation. However, there is in general a good conformity for the

two realizations, with respect to response time differences between the

protocols. When switching from simulation to implementation, time

will reduce more for OSCORE and CoAP than other protocols. In

comparison, DTLS 1.2 faces a smaller time reduction between

simulation and implementation than other protocols. OSCORE and

DTLS 1.2 can perform competitively in implementation, and with

these two security protocols, there is not so much difference in time,

although there is a considerable difference in simulation between them.

Among the security protocols with a handshake, DTLS 1.2

outperforms data transmission during implementation, despite no

significant difference between DTLS 1.2 and TLS 1.3 in simulation.

As in the simulation, the client and server communicate through

localhost, and even the security overhead of DTLS 1.2 is higher as

compared to TLS 1.3, there is not much difference between DTLS 1.2

and TLS 1.3 in CoAP Transaction Time. On the other hand, while the

client and server are connected to Wi-Fi, TLS over TCP would indicate

more latency than DTLS over UDP.

52

Figure 26: Average CoAP Transaction Time (ms)

Figure 27 shows the average CoAP transaction throughput results for

the simulation and implementation of the security protocols described

above. When moving from simulation to implementation, the

throughput will decrease as the average CoAP transaction time

increases. OSCORE has a higher throughput in both simulation and

implementation than other security protocols since it is faster. DTLS

1.2 outperforms the implementation of TLS 1.2 and TLS 1.3 as it

transfers data over UDP. In the simulation, DTLS 1.2 and TLS 1.3 are

not so different in throughput as there is not so much variation in CoAP

transaction time in simulation between them.

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP

17 Bytes Response Size
(Simulation)

2.59 2.19 2.24 0.593 0.342

94 Bytes Response Size
(Simulation)

4.35 4.175 4.32 0.661 0.633

17 Bytes Response Size
(Implementation)

18.21 18.19 15.52 15.49 15

94 Bytes Response Size
(Implementation)

21.05 20.3 16.7 16.67 15.6

0

5

10

15

20

25

53

Figure 27: Average CoAP Transaction Throughput (kbps)

5.2 Conclusion

In this thesis, we simulated and implemented different security

protocols such as TLS 1.2, TLS 1.3, DTLS 1.2, and OSCORE to find

the most effective one out of it. Different evaluation parameters were

used to calculate the performance of these security protocols. Through

evaluating the performance of the simulation and implementation, we

can infer that OSCORE outperforms all other security protocols as it

has lower latency, higher throughput, and lower energy consumption

for NINA-W102 in data transmission because it does not have a key

exchange protocol. However, we should consider that the algorithm

used for OSCORE encryption is not the same as the other security

protocols used in this thesis. Among security protocols that have a

handshake, TLS 1.3 outperforms with a lower handshake latency and

security overhead, while DTLS 1.2 outperforms in application data

latency. These results are suggesting the need to switch from TLS 1.3

to DTLS 1.3. As DTLS 1.3 has TLS 1.3 handshake messages and

flows, with some minor improvements, and the DTLS 1.3 application

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP

17 Bytes Response Size
(Simulation)

74.13 87.679 85.714 323.777 397.66

94 Bytes Response Size
(Simulation)

185.74 193.532 187.037 1222.39 1276.461

17 Bytes Response Size
(Implementation)

10.54 10.55 12.368 12.395 12.8

94 Bytes Response Size
(Implementation)

38.38 39.802 48.383 48.47 51.79

0

200

400

600

800

1000

1200

1400

54

data is as fast as DTLS 1.2, we can conclude that DTLS 1.3 has lower

latency than DTLS 1.2, TLS 1.2, and TLS 1.3. As a result, DTLS 1.3

would have less data transmission latency, greater CoAP message

throughput, and reduced energy consumption than other handshake

security protocols. Finally, in this thesis, for extrapolating DTLS 1.3,

the handshake time and CoAP transaction time of DTLS 1.3 is chosen

the same as TLS 1.3 handshake time and DTLS 1.2 CoAP transaction

time.

Figure 28 shows the average time and throughput of the CoAP

transaction of 94 bytes of response size for the security protocols

specified. This response size was used as an example for extrapolating

DTLS 1.3 to see the effectiveness of the implementation. Seeing the

figure, DTLS 1.3 is supposed to be as fast as DTLS 1.2 when sending

the data. As a result, the average CoAP transaction throughput for

DTLS 1.3 became approximately as high as DTLS 1.2.

Figure 28: Average CoAP Transaction Time (s) and Throughput (kbps)

Figure 29 indicates the average delay and energy consumption of 94

bytes of response size for the security protocols listed below. Seeing

the figure, the extrapolated DTLS 1.3 has a low handshake latency

0

10

20

30

40

50

60

Average CoAP
Transaction

Time (s)

Average CoAP
Transaction
Throughput

(kbps)

TLS 1.2

TLS 1.3

DTLS 1.2

DTLS 1.3

55

comparable to TLS 1.3. Also, due to the lower latency of DTLS 1.3,

lower energy consumption is expected.

Figure 29: Handshake Delay (s) and Average Energy Consumption (J)

5.3 Future Work

The critical role of security in the real world would open up various

fields of research in security protocols, one of which is to add key

exchange protocols such as EDHOC over OSCORE to enhance the

efficiency of data transmission. In addition, the implementation of

stronger security protocol cipher suites would reduce power

consumption and memory use on IoT devices and make

communications more secure. One more work to be added is the

development of DTSL 1.3, which is supposed to have reduced latency

and higher throughput in data transmission.

0

0.5

1

1.5

2

2.5

3

Handshake Delay (s) Average Energy Consumption (J)

TLS 1.2

TLS 1.3

DTLS 1.2

DTLS 1.3

56

References

 [1] E. Rescorla, “Datagram Transport Layer Security”, RFC 4347 -

Datagram Transport Layer Security, April 2006.

[2] T. Dierks, “The TLS Protocol Version 1.0”, RFC 2246 - The TLS

Protocol Version 1.0, January 1999.

[3] G. Selander, J. Mattsson, and F. Palombini, “Object Security for

Constrained RESTful Environments (OSCORE)”, RFC 8613 - Object

Security for Constrained RESTful Environments (OSCORE), July

2019.

[4] G. Selander, J. Mattsson, and F. Palombini, “Ephemeral Diffie-

Hellman Over COSE (EDHOC) draft-selander-ace-cose-ecdhe-

10”,draft-selander-ace-cose-ecdhe-10 - Ephemeral Diffie-Hellman

Over COSE (EDHOC), September 18, 2018.

[5] E. Rescorla, and N. Modadugu, “Datagram Transport Layer

Security Version 1.2”, RFC 6347 - Datagram Transport Layer Security

Version 1.2, January 2012.

[6] T. Dierks, and E. Rescorla, “The Transport Layer Security (TLS)

Protocol Version 1.2”, RFC 5246 - The Transport Layer Security

(TLS) Protocol Version 1.2, August 2008.

[7] E. Rescorla, H. Tschofenig, and N. Modadugu, “Datagram

Transport Layer Security Version 1.3”, draft-ietf-tls-dtls13-34 - The

Datagram Transport Layer Security (DTLS) Protocol Version 1.3,

March 2020.

[8] E. Rescorla, and Mozilla, “The Transport Layer Security (TLS)

Protocol Version 1.3”, RFC 8446 - The Transport Layer Security

(TLS) Protocol Version 1.3, August 2018.

https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc8613
https://tools.ietf.org/html/rfc8613
https://tools.ietf.org/html/draft-selander-ace-cose-ecdhe-10
https://tools.ietf.org/html/draft-selander-ace-cose-ecdhe-10
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/?include_text=1
https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/?include_text=1
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446

57

[9] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained

Application Protocol (CoAP)”, RFC 7252 - The Constrained

Application Protocol (CoAP), June 2014.

[10] C. Bormann, M. Ersue, and A. Keranen, “Terminology for

Constrained-Node Networks”, RFC 7228 - Terminology for

Constrained-Node Networks, May 2014.

[11] A. Castellani, S. Loreto, A. Rahman, T. Fossati, and E. Dijk,

“Guidelines for Mapping Implementations: HTTP to the Constrained

Application Protocol (CoAP)”, RFC 8075 - Guidelines for Mapping

Implementations: HTTP to the Constrained Application Protocol

(CoAP), February 2017.

[12] K. Hartke, “Observing Resources in the Constrained Application

Protocol (CoAP)”, RFC 7641 - Observing Resources in the

Constrained Application Protocol (CoAP), September 2015.

[13] C. Bormann, and Z. Shelby, Ed, “Block-Wise Transfers in the

Constrained Application Protocol (CoAP)”, RFC 7959 - Block-Wise

Transfers in the Constrained Application Protocol (CoAP), August

2016.

[14] A. Bhattacharyya, S. Bandyopadhyay, A. Pal, and T. Bose,

“Constrained Application Protocol (CoAP) Option for No Server

Response”, RFC 7967 - Constrained Application Protocol (CoAP)

Option for No Server Response, August 2016.

[15] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object

Security for Constrained RESTful Environments (OSCORE)”, RFC

8613 - Object Security for Constrained RESTful Environments

(OSCORE), July 2019.

[16] J. Schaad, “CBOR Object Signing and Encryption (COSE)”, RFC

8152 - CBOR Object Signing and Encryption (COSE), July 2017.

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7228
https://tools.ietf.org/html/rfc7228
https://tools.ietf.org/html/rfc8075
https://tools.ietf.org/html/rfc8075
https://tools.ietf.org/html/rfc8075
https://tools.ietf.org/html/rfc7641
https://tools.ietf.org/html/rfc7641
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7967
https://tools.ietf.org/html/rfc7967
https://tools.ietf.org/html/rfc8613
https://tools.ietf.org/html/rfc8613
https://tools.ietf.org/html/rfc8613
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152

58

[17] C. Bormann, and P. Hoffman, “Concise Binary Object

Representation (CBOR) draft-ietf-cbor-7049bis-13”, draft-ietf-cbor-

7049bis-13 - Concise Binary Object Representation (CBOR), March

2020.

[18] L. Seitz, F. Palombini, M. Gunnarsson, and G. Selander,

“OSCORE profile of the Authentication and Authorization for

Constrained Environments Framework draft-ietf-ace-oscore-profile-

02”, draft-ietf-ace-oscore-profile-02 - OSCORE profile of the

Authentication and Authorization for Constrained Environments

Framework, June 2018.

[19] J. Mattsson, F. Palombini, and M. Vucinic, “Comparison of CoAP

Security Protocols draft-ietf-lwig-security-protocol-comparison-

04”,draft-ietf-lwig-security-protocol-comparison-04-Comparison of

CoAP Security Protocols, March 2020.

[20] G. Selander, J. Mattsson, and F. Palombini, “OSCORE: A look at

the new IoT security protocol”, OSCORE: A look at the new IoT

security protocol, November 2019.

[21] T. Dierks and C. Allen. “The TLS Protocol Version 1.0”, RFC

2246 - The TLS Protocol Version 1.0, January 1999.

[22] T. Dierks and E. Rescorla. “The Transport Layer Security (TLS)

Protocol Version 1.1”, RFC 4346 - The Transport Layer Security

(TLS) Protocol Version 1.1, April 2006.

[23] T. Dierks and E. Rescorla. “The Transport Layer Security (TLS)

Protocol Version 1.2”, RFC 5246 - The Transport Layer Security

(TLS) Protocol Version 1.2, August 2008.

[24] M. Crispin, “Internet Message Access Protocol (IMAP) - Version

4rev1”, RFC 3501 - INTERNET MESSAGE ACCESS PROTOCOL -

VERSION 4rev1. March 2003.

https://tools.ietf.org/html/draft-ietf-cbor-7049bis-13
https://tools.ietf.org/html/draft-ietf-cbor-7049bis-13
https://tools.ietf.org/html/draft-ietf-ace-oscore-profile-02
https://tools.ietf.org/html/draft-ietf-ace-oscore-profile-02
https://tools.ietf.org/html/draft-ietf-ace-oscore-profile-02
https://tools.ietf.org/html/draft-ietf-lwig-security-protocol-comparison-04
https://tools.ietf.org/html/draft-ietf-lwig-security-protocol-comparison-04
https://www.ericsson.com/en/blog/2019/11/oscore-iot-security-protocol
https://www.ericsson.com/en/blog/2019/11/oscore-iot-security-protocol
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc3501

59

[25] M. Rose, “Post Office Protocol (POP) - Version 3”, RFC 1081 -

Post Office Protocol: Version 3. November 1988.

[26] E. Rescorla and N. Modadugu, “Datagram Transport Layer

Security”, RFC 4347 - Datagram Transport Layer Security. April

2006.

[27] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.

Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP: Session

Initiation Protocol”, RFC 3261 - SIP: Session Initiation Protocol. June

2002.

[28] P. Karn, Qualcomm, and W. Simpson, “Photuris: Session-Key

Management Protocol”, https://tools.ietf.org/pdf/rfc2522.pdf. March

1999.

[29]Bernstein, D., “ChaCha, a variant of Salsa20”, ChaCha, a variant

of Salsa20, January 2008.

[30] Babbage, S., DeCanniere, C., Cantenaut, A., Cid, C., Gilbert, H.,

Johansson, T., Parker, M., Preneel, B., Rijmen, V., and M. Robshaw,

“The eSTREAM Portfolio (rev. 1)”, The eSTREAM

Project. September 2008.

[31] Y. Nir, and A. Langley, “ChaCha20 and Poly1305 for IETF

Protocols”, RFC 7539 - ChaCha20 and Poly1305 for IETF Protocols,

May 2015.

[31] Bernstein, D., "The Poly1305-AES message-authentication code",

The Poly1305-AES message-authentication code, February 2005.

[32] Isobe, T., Ohigashi, T., Watanabe, Y., and M. Morii, “Full

Plaintext Recovery Attack on Broadcast RC4”, Full Plaintext Recovery

Attack on Broadcast RC4.

[33] https://github.com/wolfSSL.

https://tools.ietf.org/html/rfc1081
https://tools.ietf.org/html/rfc1081
https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/pdf/rfc2522.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
https://www.ecrypt.eu.org/stream/finallist.html
https://www.ecrypt.eu.org/stream/finallist.html
https://tools.ietf.org/html/rfc7539
http://cr.yp.to/mac/poly1305-20050329.pdf
https://www.iacr.org/archive/fse2013/84240167/84240167.pdf
https://www.iacr.org/archive/fse2013/84240167/84240167.pdf
https://github.com/wolfSSL

60

[34] https://github.com/contiki-ng/contiki-ng.

[35] https://github.com/eclipse/californium.

[36] https://www.u-blox.com/sites/default/files/NINA-

W10_DataSheet_%28UBX-17065507%29.pdf.

[37] https://www.u-blox.com/en/docs/UBX-17051775.

[38]

https://www.espressif.com/sites/default/files/documentation/esp32_da

tasheet_en.pdf.

[39] https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-

started/index.html.

[40] https://visualgdb.com/download/.

[41]

https://en.wikipedia.org/wiki/Cipher_suite#DTLS_with_cipher_suites

.

[42] https://www.wolfssl.com/differences-between-tls-1-2-and-tls-1-

3/.

[43] https://tools.ietf.org/html/rfc8446#page-8.

https://github.com/contiki-ng/contiki-ng
https://github.com/eclipse/californium
https://www.u-blox.com/sites/default/files/NINA-W10_DataSheet_%28UBX-17065507%29.pdf
https://www.u-blox.com/sites/default/files/NINA-W10_DataSheet_%28UBX-17065507%29.pdf
https://www.u-blox.com/en/docs/UBX-17051775
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://visualgdb.com/download/
https://en.wikipedia.org/wiki/Cipher_suite#DTLS_with_cipher_suites
https://en.wikipedia.org/wiki/Cipher_suite#DTLS_with_cipher_suites
https://tools.ietf.org/html/rfc8446#page-8

61

APPENDIX A

A.1 TLS and DTLS simulation setup

TLS 1.2:

TLS 1.2 server example starts working with the following commands

in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

>server.exe –v 3

TLS 1.2 client example starts working with the following commands

in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

>client.exe –v 3

TLS 1.3:

To simulate TLS 1.3, some functions should be enabled in

user_settings.h file:

#define WOLFSSL_TLS13

#define HAVE_TLS_EXTENSIONS

#define HAVE_SUPPORTED_CURVES

#define HAVE_ECC

#define HAVE_HKDF

62

#define HAVE_FFDHE_8192

#define WC_RSA_PSS

TLS 1.3 server example starts working with the following commands

in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

>server.exe –v 4

TLS 1.3 client example starts working with the following commands

in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

> client.exe –v 4

DTLS 1.2

Using the user_settings.h header file DTLS 1.2 can be enabled by:

#define WOLFSSL_DTLS

 DTLS 1.2 server example starts working with the following

commands in the Windows Command Prompt after building the

library:

>cd wolfssl-master/Debug

>server.exe –u –v 3

DTLS 1.2 client example starts working with the following commands

in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

> client.exe –u –v 3.

63

APPENDIX B

B.1 TLS and DTLS Setup On NINA-W10

Setup Instructions:

 Windows PC running TLS server from WolfSSL.

 NINA-W10 running TLS client from WolfSSL.

 Wi-Fi Access point to which both the server and client are

connected.

Instruction for TLS and DTLS client:

1. Download VisualGDB version 5.5.

2. Start Visual Studio, create a new project and open the

VisualGDB ESP32 project wizard.

3. On the first page of the wizard select, the CMake build

subsystem.

4. Install and select the latest ESP32 under toolchain and the ESP-

IDF version 4.0 under SDK Checkout.

5. Set the ESP-IDF path on environment variables to the version

4.0 path.

6. Download WolfSSL library from GitHub.

7. Run setup.sh from wolfssl/IDE/espressif/ESP-IDF to deploy

files into the ESP-IDF tree.

8. Uncomment out “#define WOLFSSL_ESPIDF” in path to

wolfssl/wolfssl/wolfcrypt/settings.h.

9. Go back to VisualGDB and select Wolfssl Client from project

samples.

10. On the Debug settings page, select the JTAG debugger (e.g.

Olimex ARM-USB-OCD-H).

11. Press, “Finish” to generate the project. Once the project is

loaded, open the “client-tls.c” and replace WolfSSL method to

64

DTLS 1.2/TLS 1.3/TLS 1.2. Also, to run DTLS there is a need

to change the socket to UDP.

12. Make menuconfig to configure the project.

12.1. Example Configuration:

Set up Wi-Fi SSID.

 Set up Wi-Fi Password.

13. Target host IP address: Set the server IP address in “#define

WEB_SERVER” in the main code.

14. Flash and run the project.

