
Improving Vulnerability Assessment through
Multiple Vulnerability Sources

GUSTAV SVENSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

G
U

STA
V

 SV
EN

SSO
N

Im
proving Vulnerability A

ssessm
ent through M

ultiple Vulnerability Sources
LU

N
D

 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-792
http://www.eit.lth.se

Improving Vulnerability Assessment through
Multiple Vulnerability Sources

Gustav Svensson
dat12gs1@lth.se

Department of Electrical and Information Technology
Lund University

Supervisor: Martin Hell

Examiner: Thomas Johansson

October 6, 2020

c© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Finding vulnerabilities in open source code is getting more important with the
increasing use of open source. The National Vulnerability Database (NVD) pro-
vides a database for public vulnerabilities, or CVEs (Common Vulnerabilities and
Exposures), which is a standard for identifying vulnerabilities. NVD is the most
common used source for vulnerabilities but there exists other vulnerability sources
that often are for specific programming languages or package managers. The pack-
age manager Node Package Manager (NPM) has its own vulnerability database, or
security advisory as you also can call it. Many of the vulnerabilities on the NPM
security advisory overlap with the CVEs on NVD, but there are vulnerabilities
that do not exist on NVD, and vice versa. In this thesis I will do a comparison of
NVD and the NPM security advisory by looking at the vulnerabilities that overlap
and see what information that differ, and also see how many vulnerabilities that
only exist on one of the sources. The mapping of the vulnerabilities will be done
by looking at their third-party references, and if they have common references
they can be mapped to each other. It will also be investigated if vulnerabilities
are published earlier on one of the sources. The goal is to find if it is best to use
NVD in combination with the NPM security advisory.

i

ii

Glossary and Abbreviations

NVD - National Vulnerability Database
NPM - Node Package Manager
CVE - Common Vulnerabilities and Exposures
CWE - Common Weakness Enumeration
CVSS - Common Vulnerability Scoring System
CPE - Common Platform Enumeration

iii

iv

Popular Science Summary

Vulnerabilities in open source code is among the top 10 of the most seen web
application security risks. The usage of open source is increasing and therefore it
is getting more important to find vulnerabilities. To find vulnerabilities in open
source code one can use public sources like the National Vulnerability Database
(NVD) and manually find vulnerabilities there and then update the affected open
source components. There also exists automatic tools that can find vulnerabilities
for you, for example the package manager Node Package Manager (NPM) has a
terminal command for this, npm audit. This command gives a report of all the
known vulnerabilities in your used NPM packages. NVDmakes it possible to create
similar tools by using their data feeds or API for fetching the vulnerabilities. NPM
has their own source for vulnerabilities which is called the NPM security advisory.
There are vulnerabilities that exist on both NVD and the NPM security advisory,
but it is not always clear that they are the same vulnerability. It is also possible
for vulnerabilities to only exist on one of the sources. The information available
for the vulnerabilities that overlap can differ, and it might be a good idea to use
both NVD and the NPM security advisory in combination with each other in order
to find as much information as possible, and to find other vulnerabilities that only
exist on one of the sources. Vulnerabilities on NVD and the NPM security advisory
can be mapped to each other by looking at their third-party references, if they have
a common reference they can be mapped to each other. An investigation of how
many vulnerabilities from NVD and NPM could be mapped to each other was
made. Then a comparison of the mapped vulnerabilities was done to see which
important information that differ.

We fetched 691 vulnerabilities affecting node.js from NVD and 990 advisories
from NPM and it was found that 50,5% of the CVEs could be mapped to 35,6% of
the advisories. It was also found that there exists critical vulnerabilities on only
one of the sources, 9,6% of the CVEs were critical and could not be mapped to an
advisory. 6,7% of the advisories were critical and could not be mapped to a CVE.
For the mapped advisories it was found that the rating is not always the same and
there exists critical vulnerabilities where the vulnerability from the other source
has a much lower rating. We also looked at the published dates and the result was
that 81,3% of the mapped advisories was published earlier than its mapped CVE.
The biggest published date difference found between mapped vulnerabilities was
6 years, where the vulnerability was published on NPM first.

v

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Project Goal . 2
1.3 Related Work . 2
1.4 Structure . 3

2 Background 5
2.1 Software Vulnerabilities and Dependencies 5

3 Methodology 17
3.1 Scraping Vulnerabilities . 17
3.2 Mapping Vulnerabilities between NVD and NPM 19

4 Result 25
4.1 Mapping Vulnerabilities between NVD and NPM 25
4.2 Comparison of NVD and the NPM Security Advisory 30

5 Discussion 43

6 Conclusion and Future Research 45

Bibliography 47

vii

viii

List of Figures

2.1 Screenshot of CVE-2020-8125 from NVD [17]. 7
2.2 Screenshot of a security advisory on NPM [18]. 8
2.3 Screenshot of the affected/unaffected versions from a security advisory

on NPM [19]. 8
2.4 CWE-119 with title and description [24]. 9
2.5 Example of a CPE name in its string format. 9
2.6 Affected software configurations for CVE-2020-8125. 11
2.7 Example of a CVSS vector string. 14

3.1 CPEs with node.js as target software. 18
3.2 Vulnerability npm-1463, this is the same vulnerability as in Figure 2.2. 18
3.3 Vulnerability CVE-2020-8125, this is the same vulnerability as in Fig-

ure 2.1. 19
3.4 Simplified database structure of the fetched advisories and CVEs. . . 20
3.5 Database query used for joining advisories and CVEs on common ref-

erence. 20
3.6 Visualisation of how indirect references work. 21
3.7 An example of a HackerOne advisory with a reference to CVE-2019-

15602. 22
3.8 An example of a GitHub security advisory with a reference to CVE-

2019-16303. 23
3.9 An example of a Snyk vulnerabilty with a reference to CVE-2017-18635. 24
3.10 Visualisation of the datasets created. 24

4.1 Venn diagram with number of advisories and CVEs in the three datasets. 26
4.2 Example of a CVE which differ to its mapped advisory. 31
4.3 Example of an advisory which differ to its mapped CVE. 32
4.4 Example of a CVE which has been mapped to an advisory on the NPM

security advisory by several common references. 33
4.5 Example of an advisory which has been mapped to a CVE by several

common references. 34
4.6 Venn diagram with CVSS distribution. 35
4.7 Graph over distribution of CVSS rating and severity for all CVEs and

advisories that were not mapped to each other by common reference. 36

ix

4.8 Example of an advisory with critical severity which has not been
mapped to a CVE. 37

4.9 Example of a CVE with critical severity which has not been mapped
to an advisory. 37

4.10 Example of a CVE which has been mapped to an advisory on the
NPM security advisory by common reference, where the advisory has
an earlier published date. 40

4.11 Example of an advisory which has been mapped to a CVE on NVD by
common reference, where the advisory has an earlier published date. 40

4.12 Example of a CVE which has been mapped to an advisory on the NPM
security advisory by common reference, where the CVE has an earlier
published date. 41

4.13 Example of an advisory which has been mapped to a CVE on NVD by
common reference, where the CVE has an earlier published date. . . 42

x

List of Tables

2.1 Table of CVSS score ratings. 11
2.2 Table of severity ratings. 15

4.1 Number of advisories and CVEs fetched with number of unique af-
fected dependencies and the number of mapped vulnerabilities. . . . 25

4.2 Table of number of advisories and CVEs that were mapped to each
other grouped on the domain they were mapped on. 26

4.3 Table of number of advisories and CVEs that could be mapped to
each other on any common reference, grouped by the domains in the
vulnerabilities’ references. 27

4.4 Table of number of mapped CVEs and advisories that were mapped
on a reference from GitHub. 28

4.5 Number of advisories mapped by common reference and indirectly. . 29
4.6 CVEs and advisories that could be mapped indirectly through a reference. 29
4.7 Summary of the mapping. 30
4.8 Advisories that have a lower rating than “High” when the mapped CVE

has rating “Critical”. 38
4.9 CVEs that have a lower rating than “High” when the mapped advisory

has rating “Critical”. 39

xi

xii

Chapter1
Introduction

1.1 Background

The usage of open source components in software is rising and many of them
have security flaws that are undetected. According to OWASP (The Open Web
Application Security Project) vulnerabilities in open source and third party com-
ponents are among the top 10 of the most seen web application security risks [1].
Open source code can save a lot of money and time for companies, but they must
do regular security checks, and patch or update the software, in order to avoid
security vulnerabilities. Failing to do so will increase the risk of introducing vul-
nerabilities in commercial software. This is a big risk for several industries. 96% of
commercial codebases use open source software, and over 60% of these contained
vulnerabilities [2].

One famous security vulnerability is the Heartbleed bug, which affected the
OpenSSL cryptography library. The bug was introduced in 2012 and it would
remain there undiscovered for two years. In April 2014 the bug was discovered,
and at that time it was believed that around 17% (around half a million) of the
internet’s secure web servers were vulnerable. The bug made it possible to obtain
sensitive data, passwords or the server’s private key for example. The first fixed
version was released a few days after the discovery. But as mentioned before,
companies need to keep track of the versions in their third-party open source
components themselves, and as of June 2014, around 300 000 public web servers
were still vulnerable to the Heartbleed bug [3]. On the 2nd of May 2014, 1291
sites out of the top 150 000 SSL/TLS enabled sites were vulnerable. On the 6th
of April 2020, there were 46 websites out of these 150 000 that are still vulnerable
to the Heartbleed bug [4]. Early detection and better monitoring of potential
vulnerabilities is therefore very important for companies today, but can be very
time consuming if done manually.

The National Vulnerability Database (NVD) provides a source for publicly
known vulnerabilities, which enables the possibility to have automated monitoring
of vulnerabilities [5]. Automated detection of vulnerabilities makes it easier for
companies to discover vulnerabilities and prevent them from making any harm.
But not all vulnerabilities are published on NVD and many of them are published
on other sources before they reach NVD. These sources are for example GitHub
repositories with security advisories or package managers’ own security advisories.

1

2 Introduction

For example the JavaScript package manager for node.js packages, Node Package
Manager (NPM), has its own security advisory [6]. These sources could be used
in order to find vulnerabilities earlier or to find any other information that is not
available on NVD.

1.2 Project Goal

In this thesis it will be investigated if the NPM security advisory should be used
over or in combination with NVD in order to find more information about vulner-
abilities that affects NPM packages. There are vulnerabilities that exist on both
sources, but it is not clear that they are the same vulnerability. A mapping of
vulnerabilities on NVD and NPM will be done and it will be investigated if there is
extra information on one of the sources which can motivate to use both sources in
combination with each other. It will also be investigated if there are vulnerabilities
that only exist on one of the sources. This will be done by fetching vulnerabilities
from NPM by using an automatic method called web scraping. These vulnerabil-
ities will then be mapped to vulnerabilities on NVD. Then a comparison of the
vulnerabilities on the two sources will be done.

The main questions to be answered are:

• Should the NPM security advisory be used over or in combination with NVD
in order to find more information about vulnerabilities affecting node.js
packages?

• Are there vulnerabilities that do not exist on NVD, but exist on NPM, and
vice versa?

1.3 Related Work

There is a lot of work about vulnerabilities in open-source dependencies and some
of the related work to this thesis is presented below.

1.3.1 Timeline Investigation of NPM Vulnerabilities

In [7], the authors analyse vulnerabilities from the NPM security advisory, and
investigates the timeline for these vulnerabilities.

Specifically, they find when vulnerabilities are introduced, discovered, fixed
and published. They discuss reasons to when in time these events occur, for
example that the majority of vulnerabilities are fixed before they are published.
This is similar to the investigations we will do in this thesis but we will look at
the published dates on vulnerabilities from NVD and the NPM security advisory
and then investigate if they are published earlier on one of the sources.

1.3.2 Information Availability of Vulnerabilities

In [8], the authors also analyse the timeline of vulnerabilities. They analyse how
available information about the timeline of a vulnerability is on publicly available

Introduction 3

sources, and suggests improvements on this. Also, they suggest improvements
concerning what information is available and that combining different vulnerability
sources could be a good idea to have all information about a vulnerability more
easily accessible.

1.4 Structure

Chapter 1 explains the goal of the thesis, presents the questions to be answered and
other related work. In Chapter 2 relevant background knowledge for reading the
thesis is given. Chapter 3 explains how the fetching and mapping of vulnerabilities
from NVD and the NPM security advisory was done. Chapter 4 will present the
result of the mapping and then show the result of the comparison of the two
vulnerability sources and Chapter 5 will discuss the results. And finally, Chapter
6 concludes the thesis and suggests future research on the subject.

4 Introduction

Chapter2
Background

This chapter will explain relevant background to understand the content of this
thesis.

2.1 Software Vulnerabilities and Dependencies

2.1.1 Software Vulnerability

A software vulnerability is defined as a weakness in publicly released software
that can be exploited by a malicious actor [9]. Most software vulnerabilities are
enumerated and identified through the Common Vulnerabilities and Exposures
(CVE, see Section 2.1.3) identifiers, but not all of them. Some vulnerabilities can
be found in security advisories from software vendors where they have their own
identifier, but can be linked to a CVE.

2.1.2 Software Dependency

A software dependency, can also be called package, is a piece of software that
can be imported to another software. The software is then dependent on the
dependency in order for it to work properly.

In software projects, dependencies are usually managed by so called package
managers. The package manager is responsible for installing all dependencies for
a software project. Which versions of the dependencies that should be installed is
usually specified [10].

Package managers are usually grouped by language, one example is the PHP
package manager Composer [11]. Another example is the JavaScript package man-
ager NPM. NPM has both public and paid-for private packages in its registry,
which is called the NPM registry [12]. The public part of the registry is open
source [13].

When a vulnerability is introduced in a software it is because a vulnerable de-
pendency was imported. The vulnerabilities are usually identified by using CVEs
and affects certain versions of dependencies. A way of identifying software depen-
dencies is by the Common Platform Enumeration (CPE), see Section 2.1.8.

5

6 Background

2.1.3 CVE

CVE is a list of publicly known vulnerabilities with CVE identifiers (CVEs) which
is provided by the Mitre Corporation [14]. Vulnerabilities are given identifiers by a
CVE Numbering Authority (CNA) and Mitre act as the primary CNA, but other
organizations can act as their own CNA, e.g. Microsoft. As of April 6th 2020
there are 118 organizations spread over 21 countries that are authorized to assign
CVE identifiers [15]. CVEs affect specific software dependencies and is only for
software that has been publicly released, including commercial software. NVD has
a list of CVEs which is synchronized with Mitre, but with additional information,
see Section 2.1.4.

2.1.4 NVD

NVD is a database for software vulnerabilities provided by the National Institute of
Standards and Technology (NIST), which is part of the United States Department
of Commerce [16]. NVD is synchronized with Mitres CVE list, but compared to
Mitre, NVD provides more in-depth information about CVEs. The information
provided by NVD for every CVE is listed below. Figure 2.1 shows how it looks
on NVD for CVE-2020-8125, excluding software configurations, see Figure 2.6 for
this.

• The CVE identifier.

• The date the CVE was published on NVD.

• The date the CVE was last modified on NVD.

• A description about the vulnerability.

• A CWE identifier and its CWE name, this is a category which the vulnera-
bility belongs to, see more Section 2.1.7.

• The affected software configurations, see Section 2.1.8 about CPEs.

• CVSS information (see Section 2.1.9):

– The CVSS base score, a severity score for the vulnerability.

– The CVSS impact subscore, a subscore used to calculate the base score.

– The CVSS exploitability subscore, a subscore used to calculate the
base score.

– The base score metric values, different metrics used to calculate the
scores above.

• Third-party references, external links where more information about the
vulnerability is provided. Can be a reference to a security advisory, the
NPM security advisory for example.

Background 7

Figure 2.1: Screenshot of CVE-2020-8125 from NVD [17].

2.1.5 The NPM Security Advisory

There exist other sources for vulnerabilities, such as security advisories from either
the vendor or developers. A security advisory is like a vulnerability but reported
by for example the package manager corporation. As mentioned before, NPM
has its own security advisory, which is a list of vulnerabilities affecting JavaScript
dependencies in the NPM registry. The data that exists for each advisory is listed
below. Figure 2.2 and 2.3 shows how an advisory looks like on the NPM security
advisory.

• The title of the vulnerability.

• The date the advisory was published.

• The date the advisory was reported to NPM.

• An overview (description) of the advisory.

• The name of the NPM dependency that is affected.

• A remediation, e.g. what version the affected dependency has to be updated
to in order for it to be secure.

• Which versions of the dependency that are affected and unaffected.

• Third-party references, such as Github issues where the vulnerability was
discovered or a reference to a CVE.

• The severity of the vulnerability (low, moderate, high, critical).

• A status, if it has been patched or not.

8 Background

Figure 2.2: Screenshot of a security advisory on NPM [18].

Figure 2.3: Screenshot of the affected/unaffected versions from a
security advisory on NPM [19].

Background 9

All advisories in this thesis will be fetched from the NPM security advisory
with a method called web scraping [20].

2.1.6 Debricked

Debricked is a company which provides a tool which companies and developers can
use for detecting vulnerabilities in their imported code automatically. Debricked’s
main source for vulnerabilities is NVD [21].

Debricked fetches all the data that is listed in Section 2.1.4 and saves it in
their own vulnerability database. The CVEs that are fetched in this thesis will be
from Debricked.

2.1.7 CWE

The Common Weakness Enumeration (CWE) is a system for categorising vulnera-
bilities [22]. A weakness is an error in software, which might lead to a vulnerability.
As with CVE, CWE is also a list, of different weaknesses, provided by the Mitre
Corporation. Every CWE has an identifier and a description that describes the
type of the vulnerability. The top 1 most dangerous software weakness from 2019
is CWE-119 [23]. Figure 2.4 shows the identifier, title and description of this CWE.

CWE: CWE-119

Title: Improper Restriction of Operations within the
Bounds of a Memory Buffer

Description: The software performs operations on a
memory buffer, but it can read from or write to a
memory location that is outside of the intended
boundary of the buffer.

Figure 2.4: CWE-119 with title and description [24].

2.1.8 CPE

The Common Platform Enumeration (CPE) is a standardized method of describing
and identifying IT products, software dependencies for example [25]. They can be
identified by using their CPE name, which uses a format called Well-Formed Names
(WFN) [26]. The WFNs can be presented as a string, in Figure 2.5 there is an
example of the software dependency klona as a CPE.

cpe:2.3:a:klona_project:klona:*:*:*:*:node.js:*:*

Figure 2.5: Example of a CPE name in its string format.

10 Background

The first part of the string, “cpe:2.3” describes which version of the CPE
specification that is used, the rest of the CPE string consists of the following
attributes:

• part, this can have the following values:

– a, when the CPE concerns an application, this will be the case for
software dependencies.

– o, when the CPE concerns an operating system.

– h, when the CPE concerns hardware devices.

• vendor, this describes or identifies the person or organization that created
the product.

• product, this describes or identifies the product.

• version, this is an alphanumeric string which describes the release version
of the product.

• update, this is an alphanumeric string which describes the particular update
(patch) of the version. For example 1.23a.

• edition, this is deprecated in version 2.3 of the CPE specification. Has the
value ANY, which is “*” in the string format.

• language, this describes the language that is used in the user interface of
the product.

• sw_edition, this describes if the product is tailored to a particular market
or class of end users.

• target_sw, this describes the software computing environment that the
product operates within, node.js for example.

• target_hw, this describes the instruction set architecture on which the prod-
uct operates on, for example x86.

• other, this describes any other identifying information which is vendor or
product specific, and does not fit in any other attribute.

These are in the same order as in the example CPE in Figure 2.5, which has
the part a, the vendor klona_project, the product klona and the target software
node.js.

NVD provides a CPE dictionary, which contains all known CPE names. A
CPE name can be mapped to a CVE if the CPE is vulnerable. For example the
CPE in Figure 2.5 is affected by CVE-2020-8125. Figure 2.6 shows the affected
software configurations list for CVE-2020-8125, this is the same vulnerability as
in Figure 2.1.

Background 11

Figure 2.6: Affected software configurations for CVE-2020-8125.

A software configuration is something used by NVD on their vulnerability
details page, which is a combination of software that are affected by the vulner-
ability [27]. For a vulnerability, there is a list of affected software configurations
and NVD uses CPE strings to represent the software. The affected versions of the
CPEs are also specified, this can either be a specific version or a version range. For
CVE-2020-8125 the affected version range is <= 1.1.0, version 1.1.0 is the last
affected version. An affected CPE can have both start version and end version.
The different version range assignments are listed below.

• <= up to, including the specified version

• < up to, excluding the specified version

• >= from, including the specified version

• > from, excluding the specified version

2.1.9 CVSS

The Common Vulnerability Scoring System (CVSS) is a method for assigning
severity to vulnerabilities (CVEs) [28]. The score ranges from 0 to 10 with 10
being the most severe. The scores are grouped in to different ratings in order to
have a text representation of them, see Table 2.1. The score is calculated based
on several metrics such as how you exploit it or how easy it is to exploit the
vulnerability. In version 3 of CVSS the metrics are divided into three groups, the
exploitability metrics, scope metric and impact metrics.

Table 2.1: Table of CVSS score ratings.

Rating Base score
None 0
Low 0.1 - 3.9

Medium 4.0 - 6.9
High 7.0 - 8.9

Critical 9.0 - 10.0

Exploitability Metrics

These metrics describe how easy it is to exploit the vulnerability.

12 Background

• Attack Vector (AV), this describes how a vulnerability can be exploited.
This value, and the base score, will be larger the more remote an attacker
can be, both physically and logically. It can have the following values:

– Network (N), the vulnerability is “remotely exploitable”. The attacker
does not have to be on the same network, which means that the pos-
sible set of attackers include the entire internet. For example a denial
of service (DoS) attack is a type of network attack.

– Adjacent (A), the attacker must be on the same physical network as
the vulnerable component to exploit the vulnerability.

– Local (L), the vulnerability can not be exploited over a network. The
attacker must exploit it either locally (e.g. by keyboard) or through
user interaction, for example by social engineering, tricking the user
into doing something malicious.

– Physical (P), the attacker must physically touch or manipulate the
vulnerable component in order to exploit the vulnerability.

• Attack Complexity (AC), this describes how easy or difficult it is to ex-
ploit the vulnerability. It describes conditions that is beyond the attacker’s
control which must exist in order to exploit the vulnerability, collecting in-
formation about the target is one example. The base score will be greater
the less complex the attack is. This metric can have the following values:

– Low (L), this means there are no special conditions for exploiting the
vulnerability.

– High (H), a successful exploit depends on conditions beyond the at-
tacker’s control. The attacker must be prepared in order to successfully
exploit the vulnerability.

• Privileges Required (PR), this describes the level of privileges an attacker
must have before executing a successful attack. If no privileges are required
the base score will be greatest. This metric can have the following values:

– None (N), the attacker is unauthorized before the attack. Which means
the attacker does not need access to any settings or files in the vulner-
able system in order to exploit the vulnerability.

– Low (L), the attacker has low authorization. Requires access to files
and settings that are non-sensitive.

– High (H), the attacker has high authorization, e.g. administrative
access of the vulnerable system.

• User Interaction (UI), this metric describes if any interaction from a user
that is not the attacker is required in order to exploit the vulnerability. If
no user interaction is required the base score will be higher. It can have the
following values:

– None (N), the vulnerability can be exploited without any interaction
from any user.

Background 13

– Required (R), it is required that an user take some action before the
vulnerability can be exploited, for example an exploit may only be
possible during the installation of an application by a system admin-
istrator.

Scope Metric

Scope (S), this metric group describes if a vulnerability in one vulnerable compo-
nent affects other components that is not in the same security scope. For example
the resources an application has access to, e.g. files and other resources, are un-
der one security scope. The application is called a security authority, and other
examples of security authorities are operating systems or firmwares. If the impact
of a vulnerability affects components outside of the security scope, a scope change
occurs. If a scope change occurs the base score will be higher. It can have the
following values:

• Unchanged (U), the vulnerability only affects resources managed by the
same security authority.

• Changed (C), the vulnerability can affect resources that is beyond the vul-
nerable component’s security scope.

Impact Metrics

These metrics describes the severity of the consequences of a successful exploit.

• Confidentiality (C), this metric measures the impact to the confidentiality
of the resources managed by the vulnerable component. The base score will
be higher if the confidentiality value is high. The possible values is listed
below:

– High (H), total loss of confidentiality. All resources within the im-
pacted component are disclosed to the attacker.

– Low (L), some loss of confidentiality. The attacker gets access to some
restricted information, but can not control over what is obtained.

– None (N), there is no loss of confidentiality.

• Integrity (I), this metric measures the impact to integrity of the vulnerable
component, in other words, if the attacker is able to modify data. The base
score will be higher if the integrity value is high. The possible values is listed
below:

– High (H), total loss of integrity. The attacker can modify all files
protected by the vulnerable component.

– Low (L), modification of data is possible, but the attacker can not
control the consequences of modification.

– None (N), there is no loss of integrity.

14 Background

• Availability (A), this metric refers to the loss of availability of the vulnerable
component itself. For example an attack that consumes network bandwidth
has some impact on the availability of the vulnerable component. The base
score will be higher if the availability value is high. The possible values is
listed below

– High (H), total loss of availability. The attacker is able to fully deny
access to resources in the vulnerable component.

– Low (L), resources are partially available. The attacker can not com-
pletely deny access.

– None (N), there is no loss of availability.

The metrics can be presented by a vector string used to determine the base
score. An example of a vector string is shown in Figure 2.7. Every metric in the
vector string is represented by an abbreviation of the metric name and its value,
separated by a colon. For example “AV:N”, which is “Attack Vector: Network”.

CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N

Figure 2.7: Example of a CVSS vector string.

The vector string has the following metric values:

• Attack Vector (AV): Network (N)

• Attack Complexity (AC): Low (L)

• Privileges Required (PR): High (H)

• User Interaction (UI): None (N)

• Scope (S): Unchanged (U)

• Confidentiality (C): Low (L)

• Integrity (I): Low (L)

• Availability (A): None (N)

The scores can be calculated by using NVDs CVSS score calculator [29]. The
metrics above results in the following scores:

• CVSS Base Score: 3.8

• Impact Subscore: 2.5

• Exploitability Subscore: 1.2

Background 15

2.1.10 Severity

CVEs have CVSS scores and advisories have something similar which is called
severity. The severity is based on the impact and exploitability of the vulnerability
in its most common use case [30]. The severity can have four different values, and
each of them have a recommended action. See Table 2.2. No more information on
what the severity is based on is proved by NPM and we could not find any other
information on what metrics the severity is based on.

Table 2.2: Table of severity ratings.

Severity Recommended action
Low Address at your discretion

Moderate Address as time allows
High Address as quickly as possible

Critical Address immediately

16 Background

Chapter3
Methodology

In this chapter Section 3.1 will explain how the fetching of the CVEs and advisories
was done. Then in Section 3.2 we will go through how the mapping between CVEs
and advisories was done, and which datasets were created.

3.1 Scraping Vulnerabilities

3.1.1 NPM Security Advisory

In order to scrape the NPM security advisory we had to go through it manually and
see which data was available and how the vulnerabilities could be automatically
fetched. After deciding on which data that was going to be scraped, the actual
scraper could be implemented. The scraper was written in Python and made
continuous requests to the NPM advisory site and scraped the data. All of the
advisories scraped from the NPM security advisory were scraped before the 18th
of May 2020. There will not be any advisories with a publication date after this
date. There are over 1 million dependencies in the NPM registry [31] and there
are in total 1344 advisories in the NPM security advisory with a published date
before the 18th of May 2020, affecting 1149 unique dependencies.

Some vulnerable dependencies have the title “Malicious Package”, these will
not be analysed, because they do not affect real dependencies. They only have
names that are very similar to the real dependency, but contains malicious code.
This is called typosquatting [32]. All advisories were saved in a local database, see
the structure in Figure 3.4.

NVD

For all CVEs from NVD, we wanted to find those CVEs that affects node.js
dependencies and/or had a reference to the NPM security advisory. The Debricked
database was queried for all CVEs that had a reference to the NPM security
advisory or had node.js as target software in the CPE string. This corresponds
to CVEs that affects CPEs that has a CPE string on the formats shown in Figure
3.1. All CVEs were saved in a local database, see the structure in Figure 3.4.

Since all the advisories were scraped before the 18th of May 2020, all CVEs
fetched from NVD also have a publication date before this date.

17

18 Methodology

cpe:2.3:*:*:*:*:*:*:*:*:node.js:*:*

cpe:2.3:*:*:*:*:*:*:*:*:nodejs:*:*

Figure 3.1: CPEs with node.js as target software.

Examples Scraped Vulnerabilities

In Figure 3.2 there is an example of all the data scraped for a vulnerability from
the NPM security advisory. The vulnerability has the identifier 1463 from NPM
but in this thesis all advisories will be prefixed with “npm-” before the identifier,
for example npm-1463.

Advisory: npm-1463

Title: Prototype Pollution

Package: klona

Affected versions: 1.0.0, 1.1.0

Unaffected versions: 1.1.1

Published date: 2020-01-23

Remediation: Upgrade to version 1.1.1 or later.

Severity: High

Description: Versions of klona prior to 1.1.1 are
vulnerable to prototype pollution. The package does
not restrict the modification of an Object’s prototype
when cloning objects, which may allow an attacker to add
or modify an existing property that will exist on all objects.

Third-party references: https://hackerone.com/reports/778414

Figure 3.2: Vulnerability npm-1463, this is the same vulnerability as
in Figure 2.2.

In Figure 3.3 there is a example of all the data that was fetched for a CVE
from the Debricked database. Note, this is the same vulnerability as the advisory
in Figure 3.2 but with data from NVD. Also note that they both have the same
third-party reference, but no direct reference to each other.

Methodology 19

CVE: CVE-2020-8125

Package: klona_project/klona

Published date: 2020-02-04

Updated at: 2020-02-06

CVSS3 score: 98

Vector string: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

CWE: CWE-20

CWE category: Improper Input Validation

Description: Flaw in input validation in NPM package
klona version 1.1.0 and earlier may allow prototype pollution
attack that may result in remote code execution or denial of
service of applications using klona.

Affected software configurations:
cpe:2.3:a:klona_project:klona:*:*:*:*:*:node.js:*:* (<= 1.1.0)

Third-party references: https://hackerone.com/reports/778414

Figure 3.3: Vulnerability CVE-2020-8125, this is the same vulnera-
bility as in Figure 2.1.

3.2 Mapping Vulnerabilities between NVD and NPM

In order to find which advisories might exist on NVD and vice versa, we wanted to
find those advisories with references to either NVD or Mitre’s CVE list, and CVEs
with references to the NPM security advisory. Also, all advisories and CVEs which
had no direct references to each other, can be mapped if they have any common
reference or a so called indirect reference. In order to create a mapping between
advisories and CVEs the following was done:

• All advisories and CVEs from NVD with any common reference were mapped
to each other, by doing a join on the references in the simplified MySQL
database we created. The common reference is an exact match. See Section
3.2.1.

• For those advisories which had no common references with CVEs, it is still
possible to map it to a CVE by looking at the third-party references. There
might exist references to CVEs in the third-party references and we can call
this an indirect reference to a CVE. See Section 3.2.2

20 Methodology

3.2.1 Mapping by Common Reference

Figure 3.4 shows a simplified database structure that the scraped advisories and
CVEs from NVD was saved in. In order to map advisories and CVEs on common
reference the join was done on the npm_reference and nvd_reference field. See
Figure 3.5 for the complete SQL code.

Figure 3.4: Simplified database structure of the fetched advisories
and CVEs.

SELECT
advisory.npm_cve,
cve.cve_id,
advisory.npm_reference,
cve.nvd_reference
FROM cves.advisories advisory
INNER JOIN cves.cves AS cve
ON advisory.npm_reference = cve.nvd_reference;

Figure 3.5: Database query used for joining advisories and CVEs on
common reference.

Methodology 21

NVD had 244 references to a domain called nodesecurity.io. References
with this domain redirects to npmjs.com. This is because the nodesecurity plat-
form, which was a catalogue of JavaScript vulnerabilites, was aquired by npmjs
in 2018 [33]. The vulnerabilities now exist on npmjs.com instead, with the same
identifier (e.g. https://nodesecurity.io/advisories/525 corresponds to
https://npmjs.com/advisories/525, where 525 is the identifier for the advi-
sory). All nodesecurity.io domains were replaced with npmjs.com domains and
this is reflected in Table 4.2.

Some references included “www” in the reference or “https://www” and some
did not. In order to get as many matches as possible the URLs were stripped so
that they only contained the domain name and the path. For example https:
//www.npmjs.com/advisories/10 was stripped to npmjs.com/advisories/10.

Figure 3.2 shows an example of how a NPM advisory with a HackerOne ref-
erence can look like and Figure 3.3 shows the corresponding CVE. As one can see
they have the same third-party reference to HackerOne. It looks the same for all
other advisories and CVEs that are mapped by common reference.

3.2.2 Mapping by Indirect Reference

When looking through some of the references from github.com, hackerone.com
and snyk.io manually, it was found there might exist references to CVEs in them.
If there was no common reference, there might exist a reference to a CVE by
looking at the NPM advisory’s third-party references. The mapping can then be
done by scraping that third-party reference automatically or manually. Figure
3.6 shows how indirect references work. The CVE and advisory have no common
references but the advisory has a reference that references a CVE, an indirect
reference.

Figure 3.6: Visualisation of how indirect references work.

In order to create a mapping between advisories and CVEs through indirect
references the following was done:

nodesecurity.io
npmjs.com
npmjs.com
https://nodesecurity.io/advisories/525
https://npmjs.com/advisories/525
nodesecurity.io
npmjs.com
www
https://www
https://www.npmjs.com/advisories/10
https://www.npmjs.com/advisories/10
npmjs.com/advisories/10
github.com
hackerone.com
snyk.io

22 Methodology

• For those advisories which had no common reference with a CVE on NVD
but has a reference to a GitHub security advisory, there might be a reference
to a CVE. This mapping was done manually.

• For those advisories which had no common reference with a CVE on NVD
but has a reference to HackerOne, there might be a reference to a CVE.
This mapping was done manually.

• For those advisories which had no common reference with a CVE on NVD
but has a reference to Snyk there might be a reference to a CVE on Snyk.
This mapping was done manually.

• For those advisories which had no common reference with a CVE on NVD
but has a reference to cve.mitre.org we can be certain the advisory has a
CVE. This mapping was done manually.

We chose to do the indirect mapping for these four type of references because
they were the most common ones and had the highest chance of referencing a
CVE.

HackerOne References

HackerOne is a site which has a so called bug bounty program where individuals
can get recognition by reporting security vulnerabilities [34]. If there exists a CVE
reference on HackerOne, the mapping to an advisory can be done. This was done
manually because of problems with scraping HackerOne, due to JavaScript being
blocked. Figure 3.7 shows how a HackerOne reference with a reference to a CVE
looks like. Also, the date the vulnerability was reported to HackerOne tells us
around when the vulnerability was discovered.

Figure 3.7: An example of a HackerOne advisory with a reference
to CVE-2019-15602.

GitHub References

The references to GitHub could be a GitHub issue, pull request or a security
advisory. A GitHub security advisory is a vulnerability that has been reported in
a repository on GitHub, and which might have a CVE mapped to it. When the

cve.mitre.org

Methodology 23

vulnerability has been fixed it can be published and is then saved in the GitHub
advisory database. GitHub is a CNA and is therefore authorised to assign CVE
numbers to its security advisories [35]. Figure 3.8 shows an example of how a
GitHub security advisory can look like with a reference to a CVE. GitHub issues
can tell when a vulnerability was discovered by looking at when the issue was
created, but might also contain references to CVEs. A GitHub pull request or
commit might also contain a reference to a CVE.

Figure 3.8: An example of a GitHub security advisory with a refer-
ence to CVE-2019-16303.

Snyk References

Snyk provides a vulnerability database where NPM vulnerabilities can be found
[36]. Some security advisories from NPM have common Snyk references with CVEs
from NVD. Figure 3.9 shows an example of this.

3.2.3 Created Datasets

When the mapping was done, three main datasets was created, see below. The
datasets are visualised in Figure 3.10. All advisories and CVEs have a published
date before 2020-05-18 and no advisory affects any malicious package.

• Dataset A. This dataset consists of all advisories from the NPM security
advisory.

• Dataset B. This dataset consists of all CVEs that had node.js as target
software or had a reference to the NPM security advisory.

• Dataset AB. This dataset consists of all advisories and CVEs that could be
mapped to each other either by common reference or indirect reference.

24 Methodology

Figure 3.9: An example of a Snyk vulnerabilty with a reference to
CVE-2017-18635.

Figure 3.10: Visualisation of the datasets created.

Chapter4
Result

This chapter will show the result of the mapping and the comparison of NVD and
the NPM security advisory. See Section 4.1 and 4.2.

4.1 Mapping Vulnerabilities between NVD and NPM

In Section 4.1.1 the number of scraped and mapped CVEs and advisories is shown.
Section 4.1.2 show the result of the mapping by common reference and Section 4.1.3
show the result of the mapping by indirect reference. Section 4.1.4 summarises
the result.

4.1.1 Number of Advisories and CVEs

There are over 1 million dependencies in the NPM registry and there are in total
1344 advisories in the NPM security advisory with a published date before the
18th of May 2020, affecting 1149 unique dependencies. After filtering out all
the advisories that affected a Malicious Package, 990 NPM advisories remained,
affecting 802 unique node.js dependencies.

There are in total 144382 CVEs from NVD in the Debricked database, that
were published before the 18th of May 2020. The number of CVEs that had
node.js as target software or had a reference to the NPM security advisory was
691 (only 0.4% of all CVEs), affecting 622 unique node.js dependencies. The
result of the scraping and mapping is visualised in Figure 4.1 and summarised in
Table 4.1. As shown in Table 4.1, 38% of the scraped advisories could be mapped
to a CVE and 54% of the fetched CVEs could be mapped to an advisory.

Table 4.1: Number of advisories and CVEs fetched with number
of unique affected dependencies and the number of mapped
vulnerabilities.

Dataset Vulnerabilities Unique affected dependencies Mapped
All advisories (A) 990 802 352 (35,6%)

All CVEs affecting node.js (B) 691 622 349 (50,5%)

Some CVEs can belong to several advisories and vice versa, which is why the
number of mapped CVEs is lower. One example is CVE-2018-3717 [37], which

25

26 Result

Figure 4.1: Venn diagram with number of advisories and CVEs in
the three datasets.

belongs to both advisory npm-584 [39] and npm-595 [40]. The CVE has references
to each of the advisories’ HackerOne references.

4.1.2 Mapping by Common Reference

Out of the 990 advisories and 691 CVEs there were 347 advisories (35,1%) that
could be mapped to 344 CVEs (49,8%) by common reference.

Table 4.2 shows how many advisories and CVEs that were mapped to each
other by common reference grouped on the domain they were mapped on. Advi-
sories and CVEs can be mapped on multiple references, which is the reason for the
sum of the “Mapped” columns being greater than the actual number of mapped
CVEs and advisories.

Table 4.2: Table of number of advisories and CVEs that were
mapped to each other grouped on the domain they were mapped
on.

Domain Advisories Mapped CVEs Mapped
npmjs.com 990 239 (24%) 267 239 (89,5 %)
github.com 422 49 (11,6%) 154 49 (31,8%)

hackerone.com 144 79 (54,9%) 121 77 (63,6%)
snyk.io 71 15 (21,1%) 75 14 (18,7%)

gist.github.com 6 1 (16,7%) 3 1 (33,3%)
blog.npmjs.org 3 3 (100%) 3 3 (100%)
auth0.com 2 2 (100%) 2 2 (100%)
sailsjs.org 1 1 (100%) 1 1 (100%)

timmclean.net 1 1 (100%) 1 1 (100%)
blog.intothesymmetry.com 1 1 (100%) 1 1 (100%)

blog.truesec.com 1 1 (100%) 1 1 (100%)
bugs.debian.org 1 1 (100%) 2 1 (50%)

cigital.com 1 1 (100%) 1 (100%)

The result shows that it is most common for advisories and CVEs to be mapped
on common references to npmjs.com, github.com, hackerone.com and snyk.io.

As one can see 239 out of 267 (89,5%) CVEs with references to the domain
npmjs.com could be mapped to an advisory on NPM. The other 28 references
that leads to npmjs.com is to another page that is not npmjs.com/advisories
or is a faulty url to npmjs.com/advisories. For example there are 8 references

npmjs.com
npmjs.com
npmjs.com/advisories
npmjs.com/advisories

Result 27

to npmjs.com/package, which is the URL for NPM packages, not an advisory.
CVE-2020-7636 [41] is one example, which has a reference to npmjs.com/package/
adb-driver. An example with a faulty url is CVE-2015-1370 [42], which has a
reference to npmjs.com/advisories/marked_vbscript_injection that leads to
a 404 not found error.

One interesting thing to note is that there were only 49 (11.6%) of the advi-
sories with GitHub references that could be mapped to a CVE. Table 4.3 shows
the number of advisories and CVEs that were mapped on any reference, grouped
by the domains they have in their references. The table shows that there are now
more advisories with GitHub references that were mapped to a CVE. There were
94 advisories (22,3%) with GitHub references that were mapped on any common
reference (compared to 49 that were mapped on a GitHub reference). This means
that there were 45 advisories that had references to GitHub, but were mapped on
another reference than GitHub.

Table 4.3: Table of number of advisories and CVEs that could be
mapped to each other on any common reference, grouped by
the domains in the vulnerabilities’ references.

Domain Advisories Mapped on any reference CVEs Mapped on any reference
npmjs.com 990 347 (35%) 267 244 (91,4 %)
github.com 422 94 (22,3%) 154 89 (57,8%)

hackerone.com 144 81 (56,3%) 121 77 (63,6%)
snyk.io 71 17 (23,9%) 75 17 (22,7%)

gist.github.com 6 1 (16,7%) 3 3 (100%)
blog.npmjs.org 3 3 (100%) 3 3 (100%)
cve.mitre.org 6 2 (33,3%) 0 0 (0%)
auth0.com 2 2 (100%) 2 2 (100%)
sailsjs.org 1 1 (100%) 1 1 (100%)

timmclean.net 1 1 (100%) 1 1 (100%)
blog.intothesymmetry.com 1 1 (100%) 1 1 (100%)

blog.truesec.com 1 1 (100%) 1 1 (100%)
bugs.debian.org 1 1 (100%) 2 1 (50%)

cigital.com 1 1 (100%) 1 (100%)1
eslint.org 1 1 (0%) 0 0 (0%)
owasp.org 1 1 (0%) 0 0 (0%)

en.wikipedia.org 1 1 (0%) 0 0 (0%)
backbonejs.org 1 1 (0%) 0 0 (0%)
openwall.com 0 0 (0%) 8 8 (0%)

securityfocus.com 0 0 (0%) 8 8 (0%)
access.redhat.com 0 0 (0%) 6 6 (0%)

oracle.com 0 0 (0%) 4 4 (0%)
lists.opensuse.org 0 0 (0%) 4 4 (0%)

lists.fedoraproject.org 0 0 (0%) 4 4 (0%)
security.netapp.com 0 0 (0%) 3 3 (0%)
bugzilla.redhat.com 0 0 (0%) 2 2 (0%)
lists.apache.org 0 0 (0%) 2 2 (0%)
tenable.com 0 0 (0%) 2 2 (0%)

support.f5.com 0 0 (0%) 1 1 (0%)
raw.githubusercontent.com 0 0 (0%) 1 1 (0%)
packetstormsecurity.com 0 0 (0%) 1 1 (0%)

usn.ubuntu.com 0 0 (0%) 1 1 (0%)
mega.nz 0 0 (0%) 1 1 (0%)
jvn.jp 0 0 (0%) 1 1 (0%)

ibm.com 0 0 (0%) 1 1 (0%)
exchange.xforce.ibmcloud.com 0 0 (0%) 1 1 (0%)

bugs.chromium.org 0 0 (0%) 1 1 (0%)
app.snyk.io 0 0 (0%) 1 1 (0%)

npmjs.com/package
npmjs.com/package/adb-driver
npmjs.com/package/adb-driver
npmjs.com/advisories/marked_vbscript_injection

28 Result

One other interesting thing to note is that there are 6 advisories with references
to cve.mitre.org and 2 of those were mapped on any common reference. Also
there are domains in the references where either the advisories have none of the
CVEs’ references and vice versa. These domains are the ones with either 0 in the
“Advisories” or “CVEs” column. This result shows that there are extra references
in either advisories or CVEs that they necessarily are not mapped on.

Mapped GitHub References

Table 4.4 shows number of CVEs and advisories that were mapped on any common
GitHub reference, grouped on the possible GitHub paths.

Table 4.4: Table of number of mapped CVEs and advisories that
were mapped on a reference from GitHub.

Path Advisories Mapped CVEs Mapped
github.com/*/*/issues 133 24 (18%) 39 24 (61,5%)
github.com/*/*/commit 70 12 (17%) 71 12 (16,9%)
github.com/*/*/pull 69 15 (7,2%) 30 15 (50%)

github.com/nodejs/security-wg/*/vuln 14 0 (0%) 0 0 (0%)
github.com/*/advisories/* 28 4 (14,3%) 13 4 (30,1%)

github.com/*/blob/* 104 1 (0,9%) 26 1 (3,8%)
github.com/*/releases/* 9 0 (0%) 6 0 (0%)
other GitHub domains 37 0 (0%) 6 0 (0%)

The result shows that it is most common for advisories and CVEs to be mapped
on GitHub issues. It is also more common for advisories to have references to
GitHub issues. 18% of the advisories with references to GitHub issues could be
mapped to a CVE, and 61,5% of the CVEs could be mapped to an advisory.

The references to github.com/*/*/commit and github.com/*/*/pull are to
GitHub pull requests and commits. They were the second and third most common
types of GitHub references to be mapped on.

The github.com/nodejs/security-wg/*/vuln paths are to a repository with
NPM vulnerabilities [43], we can call this the NPM vulnerability repository from
now on. There were 14 advisories with references to this domain, but not any CVE
had this type of reference and therefore no advisory was mapped on this type of
reference.

The references to github.com/*/advisories/* are to GitHubs own security
advisory and the github.com/*/blob/* references links to a specific file in a repos-
itory. There were 4 out of the 28 advisories with references to GitHub advisories
that could be mapped to CVEs. There were 104 advisories with references to
specific files (github.com/*/blob/*) but only one of them could be mapped to a
CVE.

Finally, the github.com/*/releases/* links to specific releases of a reposi-
tory and the other GitHub domains are to other paths than the ones mentioned.
For example, github.com/snyk/zip-slip-vulnerability is one of the domains
included in “other GitHub domains”. There were no CVEs or advisories that could
be mapped on either releases or “other GitHub domains”.

Result 29

4.1.3 Mapping by Indirect Reference

For all the advisories that were not mapped we can try to map them indirectly
through their third-party references. Table 4.5 shows the total number of advisories
that have references to github.com, hackerone.com, snyk.io, gist.github.com,
cve.mitre.org (these are the same numbers as the “Advisories” column in Table
4.2) with how many that have already been mapped by common reference. For
those that have not been mapped, we tried to map them indirectly, how many this
was is also shown in the table. We chose to do it for these domains because they
are the most common ones, and the highest chance of finding indirect references
to CVEs. There were actually more CVEs that could be mapped indirectly than
what we have in the final result. This is because some CVEs missed node.js as
target software and since our dataset of CVEs only have CVEs with node.js as
target software, we will only have indirectly mapped CVEs with node.js as target
software in the final result. Table 4.6 shows which advisories and CVEs we have
in the final result that were mapped indirectly to each other.

Table 4.5: Number of advisories mapped by common reference and
indirectly.

Domain Advisories Common reference Indirectly (node.js only) Indirectly (all CVEs)
github.com 422 49 (11,6%) 0 (0%) 12 (2,8%)

gist.github.com 6 1 (16,7%) 1 (16,7%) 1 (16,7%)
hackerone.com 144 79 (54,9%) 4 (2,8%) 6 (4,1%)

snyk.io 71 15 (21,1%) 0 (0%) 29 (40,8%)
cve.mitre.org 6 0 (0%) 0 (0%) 4 (66,7%)

Table 4.6: CVEs and advisories that could be mapped indirectly
through a reference.

CVE Advisory Indirect Reference
CVE-2019-11358 npm-796 https://hackerone.com/reports/454365
CVE-2018-3755 npm-671 https://hackerone.com/reports/328210
CVE-2018-3743 npm-669 https://hackerone.com/reports/320693
CVE-2018-3757 npm-670 https://hackerone.com/reports/340208
CVE-2019-10769 npm-1221 gist.github.com/JLLeitschuh/609bb2efaff22ed84fe182cf574c023a

There were 5 advisories that could be mapped to 5 CVEs with node.js as
target software. If we would have included CVEs without node.js as target
software, there would have been 42 extra advisories and CVEs that were mapped
by common reference or indirectly.

4.1.4 Summary

Table 4.7 shows a summary of how many advisories and CVEs that were mapped,
both by common reference and indirect reference. Since we only have CVEs with
node.js as target software, we only mapped 5 advisories and CVEs indirectly. If
we would have extended the dataset there would have been more advisories and
CVEs mapped both by common reference and indirectly.

https://hackerone.com/reports/454365
https://hackerone.com/reports/328210
https://hackerone.com/reports/320693
https://hackerone.com/reports/340208
gist.github.com/JLLeitschuh/609bb2efaff22ed84fe182cf574c023a

30 Result

Table 4.7: Summary of the mapping.

Dataset Vulnerabilities Total mapped Common reference Indirect reference Not mapped
Advisories 990 352 (35,6%) 347 5 638 (64,4%)
CVEs 691 349 (50,5%) 344 5 342 (49,5%)

The table shows that 35,6% of the scraped advisories could be mapped to
50,5% of the fetched CVEs. This means there are 638 advisories (64,4%) that
does not exist on NVD, and there are 342 CVEs (49,5%) that does not exist on
the NPM security advisory.

4.2 Comparison of NVD and the NPM Security Advisory

This section will make a comparison between CVEs from NVD and advisories
from the NPM security advisory. There are some specific things we want to look
at when we compare NVD and the NPM security advisory, which we decided are
important for deciding if they should be used in combination with each other.
These are the following:

• Things that always differ and differences in general between a mapped CVE
and an advisory. There exists information that always differ between CVEs
and advisories, CVEs having CWEs is one example. This is shown in Section
4.2.1.

• CVSS and severity. Can we find critical vulnerabilities on one of the sources
that are not mapped to each other? Are there mapped vulnerabilities but
with different CVSS and severity ratings? This is shown in Section 4.2.2.

• The published dates. Are there mapped vulnerabilities that are published
earlier on one of the sources? Finding vulnerabilities as early as possible is
important for developers. And are there any mapped vulnerabilities that
were published earlier on one of the sources and have rating “Critical”? This
is shown in Section 4.2.3.

4.2.1 General Differences

In this section we will show some examples of CVEs and advisories that differ.
Some things that always differ between a mapped CVE and an advisory are the
following:

• Advisories have a title which summarises what the vulnerability is about.

• The description slightly differs, sometimes there is more information on
NVD and vice versa.

• Advisories might have information about when the vulnerability was re-
ported (can be used as a proxy for the discovered date) but CVEs have no
information about this.

• CVEs have CVSS scores and advisories have severity.

Result 31

• CVEs have information about CVSS metrics, advisories have nothing similar
to this.

• CVEs have information about which CWEs the CVE is categorised as.

• CVEs have affected software configurations and advisories simply tell which
package is affected. For CVEs the package name is included in the software
configuration string.

• Advisories show exactly which versions are affected and unaffected. CVEs
only show a version range for the affected versions.

• Advisories have a status which tells if the vulnerability has been patched or
not.

• Advisories suggests a remediation.

• Different number of references. It is common for advisories and CVEs to
have different number of references.

Mapped on a Single Reference

Figure 4.2 and 4.3 shows CVE-2018-16472 [44] and advisory npm-739 [45], which
differ in some ways. They were mapped on a common reference to HackerOne
(https://hackerone.com/reports/390847).

CVE: CVE-2018-16472

Published date: 2018-11-06

Updated at: 2019-10-09

CVSS3 score: 7.5 (High)

Vector string: CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

CWEs: CWE-20 (NIST), CWE-400 (HackerOne)

CWE categories: Improper Input Validation,
Uncontrolled Resource Consumption

Description: A prototype pollution
attack in cached-path-relative
versions <=1.0.1 allows an
attacker to inject properties on
Object.prototype which are then inherited by all
the JS objects through the prototype chain causing a
DoS attack.

Affected software configurations:
cpe:2.3:a:cached-path-relative_project:cached-path-relative:*:*:*:*:*:node.js:*:* (<= 1.0.1)

Third-party references:
https://hackerone.com/reports/390847

Figure 4.2: Example of a CVE which differ to its mapped advisory.

The advisory has “Prototype pollution” as the title, and also mentions it in the
description. As mentioned before the CVE has no title but mentions prototype
pollution in its description. The CVE also has a more detailed description than
the advisory.

The CVE was published earlier (2018-11-06) than the advisory (2018-11-28).
Also, the advisory has information about “Updated at” and “Created at”, which is

32 Result

Advisory: npm-739

Title: Prototype Pollution

Package: cached-path-relative

Affected versions: 1.0.0, 1.0.1

Unaffected versions: 1.0.2

Published date: 2018-11-28

Created at: 2018-11-29

Updated at: 2018-11-29

Description: Version of cached-path-relative
before 1.0.2 are vulnerable to prototype pollution.

Remediation: Update to version 1.0.2 or later.

Severity: High

Status: Patched

Third-party references:
https://hackerone.com/reports/390847,
https://github.com/ashaffer/cached-path-relative/issues/3,
https://github.com/nodejs/security-wg/blob/master/vuln/NPM/480.json

Figure 4.3: Example of an advisory which differ to its mapped CVE.

later than the published date. This is because the published date is fetched from
the “Date of advisory” column in https://www.npmjs.com/advisories. In this
case that date is 2018-11-28. For this advisory the reported date is missing.

The CVE has a CVSS3 score of 7.5 (“High”) and the advisory has severity
“High”. There are cases where these ratings are different, more about this in
Section 4.2.2. And as mentioned before the CVE also has a vector string, which
tells us which CVSS metrics the CVE has. The advisory does not have this. This
CVE has the following metrics:

• Attack Vector (AV): Network (N)

• Attack Complexity (AC): Low (L)

• Privileges Required (PR): None (N)

• User Interaction (UI): None (N)

• Scope (S): Unchanged (U)

• Confidentiality (C): None (N)

• Integrity (I): None (N)

• Availability (A): High (H)

The CVE belongs to two CWEs (CWE-20 (NIST) and CWE-400 (HackerOne)).
The CVE was categorised as CWE-20 (Improper Input Validation) by NIST
and CWE-400 (Uncontrolled Resource Consumption) by HackerOne. As men-
tioned before, the advisory has no CWEs.

The CVE’s affected software configuration tells us that the dependency with
vendor and product cached-path-relative with the target software node.js is

https://www.npmjs.com/advisories

Result 33

affected by CVE-2018-16472 up until and including version 1.0.1. The advi-
sory simply have the package name (cached-path-relative), but tells us exactly
which versions that are affected (1.0.0, 1.0.1) and unaffected (1.0.2). The ad-
visory informs about the status of the vulnerability and a suggested remediation.
In this case the vulnerability has been patched and the suggested remediation is
to update to a version higher than 1.0.2. The CVE does not have this type of
information.

All CVEs and advisories were mapped on its common references, but either
the CVE or the advisory often has extra references that we could not map on.
In the example above the advisory has a reference to a GitHub issue and to a
vulnerability in the NPM vulnerability repository. The CVE and the advisory was
mapped on a common reference to HackerOne and the only reference the CVE has
is that one. This indicates that there can be extra information found if NVD is
used in combination with the NPM security advisory.

Mapped on Multiple References

Figure 4.4 and 4.5 shows CVE-2018-1002204 [46] and advisory npm-994 [47] which
were mapped to each other on several references. They were mapped on a reference
to Snyk and a GitHub pull request.

CVE: CVE-2018-1002204

Published date: 2018-07-25

CVSS3 score: 5.5 (Medium)

Vector string: CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N

CWEs: CWE-22 (NIST, Snyk)

CWE categories: Improper Limitation of a Pathname
to a Restricted Directory (’Path Traversal’)

Description: adm-zip NPM library before 0.4.9 is vulnerable to
directory traversal, allowing attackers to write to arbitrary files
via a ../ (dot dot slash) in a Zip archive entry
that is mishandled during extraction. This vulnerability is
also known as ’Zip-Slip’.

Affected software configurations:
cpe:2.3:a:adm-zip_project:adm-zip:*:*:*:*:*:node.js:*:* (< 0.4.9)

Third-party references:
github.com/cthackers/adm-zip/
commit/62f64004fefb894c523a7143e8a88ebe6c84df25,
github.com/cthackers/adm-zip/pull/212,
github.com/snyk/zip-slip-vulnerability,
snyk.io/research/zip-slip-vulnerability,
snyk.io/vuln/NPM:adm-zip:20180415,
securityfocus.com/bid/107001

Figure 4.4: Example of a CVE which has been mapped to an advisory
on the NPM security advisory by several common references.

The advisory has the title “Arbitrary File Write” and arbitrary file write is
mentioned in both the CVE and advisory description.

The CVE was published earlier (2018-07-25) than the advisory (2019-07-11),
but the advisory has a “Reported at” date (2018-08-11), which is 17 days after the
CVE published date. The reported date in this case is therefore not a good proxy

34 Result

Advisory: npm-994

Title: Arbitrary File Write

Package: adm-zip

Affected versions: 0.1.1, 0.1.2, 0.1.3, 0.1.4,
0.1.5, 0.1.6, 0.1.7, 0.1.8, 0.1.9, 0.2.0,
0.2.1, 0.4.3, 0.4.4, 0.4.5, 0.4.6,
0.4.7, 0.4.8

Unaffected versions: 0.4.9, 0.4.10, 0.4.11,
0.4.13, 0.4.14, 0.4.16

Published date: 2019-07-11

Reported at: 2018-08-11

Description: Versions of adm-zip before 0.4.9
are vulnerable to arbitrary file write when
used to extract a specifically crafted archive
that contains path traversal
filenames (../../file.txt for example).

Remediation: Update to version 0.4.9 or later.

Severity: High

Status: Patched

Third-party references:
github.com/cthackers/adm-zip/pull/212,
snyk.io/research/zip-slip-vulnerability,
hackerone.com/reports/362118

Figure 4.5: Example of an advisory which has been mapped to a
CVE by several common references.

for when the vulnerability was discovered.
The CVE has a CVSS3 score of 5.5 (“Medium”) and the advisory has severity

“High”. This is an example of where a mapped CVE and advisory have different
ratings. As with the previously compared CVE and advisory the CVE has a
vector string, which tells us what CVSS metrics the CVE has. This CVE has the
following metrics:

• Attack Vector (AV): Low (L)

• Attack Complexity (AC): Low (L)

• Privileges Required (PR): None (N)

• User Interaction (UI): Required (R)

• Scope (S): Unchanged (U)

• Confidentiality (C): None (N)

• Integrity (I): High (H)

• Availability (A): None (N)

The CVE has one CWE, CWE-22 (Improper Limitation of a Pathname to
a Restricted Directory (’Path Traversal’)), which both NIST and Snyk as-
signed to the CVE. The advisory has no CWEs.

The CVE’s affected software configuration tells us that the dependency with
vendor adm-zip_project and product adm-zip with the target software node.js

Result 35

is affected by CVE-2018-1002204 up until but not including version 0.4.9. The
advisory tells us which package that is affected (adm-zip) and which versions that
are affected and unaffected. The advisory informs us that the vulnerability has
been patched and the suggested remediation is to update to version 0.4.9 or later.

In this example it is the CVE that has more references than the advisory. The
CVE has extra references to a repository owned by Snyk which informs about the
vulnerability, a GitHub commit which fixes the vulnerability, a Snyk reference to
the vulnerability and a SecurityFocus reference to the vulnerability. SecurityFocus
also provides a vulnerability database as NVD and NPM does [48]. The NPM
advisory has fewer references but has one reference which the CVE does not have,
a HackerOne reference.

4.2.2 CVSS and Severity

Figure 4.6 show the distribution of CVSS and severity rating in the venn diagram.
The result show that most of the advisories and CVEs have rating “High”, 57,3%
of all advisories and 60,8% of all CVEs. For the mapped advisories and CVEs
68,2% of the advisories and 60,5% of the CVEs have rating “High”. The result
also show that there is a higher proportion of CVEs with rating “Critical”, 17,8%
of all CVEs and 9,1% of all advisories. For the mapped CVEs 16,3% have rating
“Critical” and for the mapped advisories 6,8% have rating “Critical”.

Figure 4.6: Venn diagram with CVSS distribution.

Figure 4.7 shows the distribution of CVSS ratings and severity for the vulner-
abilities that could not be mapped. There are 66 critical advisories (6,7% of all
advisories) that could not be mapped to a CVE, which is quite worrisome since
NVD is often used as a main source for vulnerabilities. There is a lot of critical
vulnerabilities that might not be found because of this. On NVD there was 66
CVEs (9,6% of all fetched CVEs) that were critical and could not be mapped to
an advisory.

36 Result

Figure 4.7: Graph over distribution of CVSS rating and severity for
all CVEs and advisories that were not mapped to each other by
common reference.

Since there are vulnerabilities on both NVD and NPM with critical severity
that could not be mapped to each other this is an indication to use both sources.

Critical Vulnerability Existing on NPM only

One example of a critical vulnerability that exists on NPM only is npm-1487 [49],
see Figure 4.8. The advisory was published 2020-02-28 and still has the status
"Not patched" (2020-09-16). The vulnerability affects all versions of the package
react-oauth-flow and the remediation is therefore to use an alternative module.
As the description says, the package react-oauth-flow fail to properly implement
the OAuth protocol and stores secrets in front-end code. The third-party reference
leads to a GitHub issue in the ethereum/web3.js, which is a JavaScript API for
the cryptocurrency platform Ethereum [50]. In the issue they discuss a solution
for avoiding saving the private key used for loading the crypto wallet in the local
storage in the front-end.

Critical Vulnerability Existing on NVD only

Figure 4.9 shows an example of a critical vulnerability that exists on NVD only,
CVE-2020-8147 [51]. The vulnerability was published on 2020-04-03 and as the
description says the NPM package utils-extend_project/utils-extend may
allow prototype pollution attack which can result in remote code execution or
denial of service. If we look in the NPM registry we can see which versions that
exist for this package, and there it is found that the latest version is 1.0.8 [52].

Result 37

This means that all versions of utils-extend_project/utils-extend is affected
by the vulnerability. It is hard to know that the vulnerability has not been patched
when NVD does not inform about the status of the vulnerability or a suggested
remediation, as the NPM security advisory does.

Advisory: npm-1487

Title: Improper Authorization

Package: react-oauth-flow

Affected versions: 1.0.0, 1.0.1, 1.0.2, 1.1.0, 1.1.1, 1.1.2, 1.2.0

Unaffected versions: None

Published date: 2020-02-28

Reported at: 2020-02-28

Description: All versions of react-oauth-flow fail to properly implement
the OAuth protocol. The package stores secrets in the front-end code.
Instead of using a public OAuth client, it uses a confidential client on the browser.
This may allow attackers to compromise server credentials.

Remediation: No fix is currently available. Consider using an alternative
module until a fix is made available.

Severity: Critical

Status: Not patched

Third-party references:
https://github.com/ethereum/web3.js/issues/2739,

Figure 4.8: Example of an advisory with critical severity which has
not been mapped to a CVE.

CVE: CVE-2020-8147

Package: utils-extend_project/utils-extend

Published date: 2020-04-03

CVSS3 score: 9.8 (Critical)

Vector string: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

CWEs: CWE-20 (NIST), CWE-471 (HackerOne)

CWE categories: Improper Limitation of a Pathname
to a Restricted Directory (’Path Traversal’)

Description: Flaw in input validation in NPM package utils-extend
version 1.0.8 and earlier may allow prototype pollution attack
that may result in remote code execution or denial of
service of applications using utils-extend.

Affected software configurations:
cpe:2.3:a:utils-extend_project:utils-extend:*:*:*:*:*:node.js:*:* (<= 1.0.8)

Third-party references:
https://hackerone.com/reports/801522

Figure 4.9: Example of a CVE with critical severity which has not
been mapped to an advisory.

38 Result

Different Ratings between Mapped Vulnerabilities

Since we could not find information about what the severity of advisories is based
on (if it is the same as CVSS) we can not be completely sure that a critical
vulnerability on NVD should be critical on NPM, it might be so that on NPM
the rating will be “High”. But it seems reasonable that for a CVE with rating
“Critical”, the corresponding advisory should have at least rating “High”. Therefore
we will try to find mapped vulnerabilities where the CVE has rating “Critical” and
the advisory has a lower rating than “High”, and where the advisory has rating
“Critical” and the CVE has a lower rating than “High”.

There are 43 mapped CVEs (12,3% of the mapped CVEs) and advisories
(12,2% of the mapped advisories) where the CVE has rating “Critical” and the
advisory has a lower rating. Out of these there are 20 (5,7% of the mapped
advisories) advisories that have a lower rating than “High” when the CVE has
rating “Critical”. See Table 4.8.

Table 4.8: Advisories that have a lower rating than “High” when
the mapped CVE has rating “Critical”.

CVE Rating Advisory Rating
CVE-2018-16492 Critical npm-996 Moderate
CVE-2018-3767 Critical npm-970 Moderate
CVE-2019-10061 Critical npm-789 Low
CVE-2018-16491 Critical npm-781 Moderate
CVE-2018-16489 Critical npm-780 Moderate
CVE-2018-16486 Critical npm-778 Moderate
CVE-2019-5413 Critical npm-736 Moderate
CVE-2018-16460 Critical npm-728 Moderate
CVE-2018-16461 Critical npm-719 Moderate
CVE-2018-3752 Critical npm-717 Low
CVE-2018-3753 Critical npm-716 Low
CVE-2018-3751 Critical npm-715 Low
CVE-2018-3786 Critical npm-694 Low
CVE-2018-3745 Critical npm-646 Moderate
CVE-2018-3750 Critical npm-612 Low
CVE-2018-3749 Critical npm-611 Low
CVE-2017-16127 Critical npm-482 Moderate
CVE-2016-10554 Critical npm-113 Moderate
CVE-2015-9244 Critical npm-66 Moderate
CVE-2015-8857 Critical npm-39 Low

For example the CVE-2019-10061 in the table above has rating “Critical” [53]
but the mapped advisory has rating “Low” [54]. The CVE has a direct reference
to https://www.npmjs.com/advisories/789 and that is the reference they were
mapped on. The vulnerability is about command injection where the opencv
package does not validate user input and that allows attackers to execute arbitrary
commands.

There are 12 mapped CVEs (3,43% of the mapped CVEs) and advisories (3,4%

Result 39

of the mapped advisories) where the advisory has rating “Critical” and the CVE
has a lower rating. Out of these there are 8 CVEs (2,3% of the mapped CVEs)
that have a lower rating than “High” when the advisory has rating “Critical”. See
Table 4.9.

Table 4.9: CVEs that have a lower rating than “High” when the
mapped advisory has rating “Critical”.

Advisory Rating CVE Rating
npm-523 Critical CVE-2014-9682 None
npm-26 Critical CVE-2014-10067 Medium
npm-144 Critical CVE-2016-10548 Medium
npm-17 Critical CVE-2016-10555 Medium
npm-87 Critical CVE-2016-10555 Medium
npm-570 Critical CVE-2018-3726 Medium
npm-741 Critical CVE-2018-16474 Medium
npm-1143 Critical CVE-2019-5480 Medium

For example advisory npm-1143 in the table above has rating “Critical” [55] but
the mapped CVE (CVE-2019-5480) has rating “Medium” [56]. They were mapped
on a common reference to HackerOne (https://hackerone.com/reports/570035).
The advisory’s description says that the dependency statichttpserver is vulner-
able to Path Traversal, because it fails to sanitize URLs which allows attackers
to access server files outside of the served folder using relative paths. The CVE’s
description simply says that it is possible to list files in arbitrary folders. All
versions of the package is affected, and on NVD it says all versions up until and
including version (0.9.7) is affected. Again, it is unclear on NVD if all versions
are affected and one have to check themselves on the NPM registry which versions
are available for statichttpserver.

4.2.3 Published dates

Earlier Published Date on NPM

There are 286 mapped advisories (81,3% of the mapped advisories) that have an
earlier published date than its mapped CVE. This is a strong indication of using
the NPM security advisory together with NVD.

One example of a critical advisory that was published much earlier than the
CVE (over 3 years difference) is advisory npm-27 [57], which was mapped to CVE-
2014-3741 [58] on a common reference to a GitHub commit. See Figure 4.10 and
4.11.

The CVE has published date 2017-10-23 and the advisory has 2014-03-06.
Since this is a critical vulnerability on both sources it would have been impor-
tant to publish it earlier on NVD in order for developers to discover it as early
as possible. They were mapped on a common reference to a GitHub commit
(https://github.com/tojocky/node-printer/commit/e001e38738c17219a
1d9dd8c31f7d82b9c0013c7) and the vulnerability is about command injection in

40 Result

CVE: CVE-2014-3741

Published date: 2017-10-23

CVSS3 score: 9.8 (Critical)

Vector string: CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

CWEs: CWE-77 (NIST)

CWE categories: Improper Neutralization of
Special Elements used in a Command (’Command Injection’)

Description: The printDirect function in lib/printer.js
in the node-printer module 0.0.1 and earlier for Node.js
allows remote attackers to execute arbitrary
commands via unspecified characters in the lpr command.

Affected software configurations:
cpe:2.3:a:node-printer_project:node-printer:*:*:*:*:*:node.js:*:* (<= 0.0.1)

Third-party references:
openwall.com/lists/oss-security/2014/05/13/1
openwall.com/lists/oss-security/2014/05/15/2
github.com/tojocky/node-printer/commit/e001e38738c17219a1d9dd8c31f7d82b9c0013c7
npmjs.com/advisories/printer_potential_command_injection

Figure 4.10: Example of a CVE which has been mapped to an
advisory on the NPM security advisory by common reference,
where the advisory has an earlier published date.

Advisory: npm-27

Title: Potential Command Injection

Package: printer

Affected versions: 0.0.1

Unaffected versions: 0.0.2, 0.0.3, 0.0.4, 0.0.5, 0.0.6,
0.1.0, 0.1.1, 0.2.0, 0.2.1, 0.2.2, 0.4.0

Published date: 2014-03-05

Reported at: 2015-10-16

Description: Versions 0.0.1 and earlier of printer are
affected by a command injection vulnerability resulting
from a failure to sanitize command arguments properly in
the printDirect() function.

Remediation: Update to version 0.0.2 or later.

Severity: Critical

Status: Patched

Third-party references:
https://github.com/tojocky/node-printer/commit/e001e38738c17219a1d9dd8c31f7d82b9c0013c7

Figure 4.11: Example of an advisory which has been mapped to a
CVE on NVD by common reference, where the advisory has an
earlier published date.

Result 41

the printer dependency, affecting version 0.0.1. The dependency fails to sanitize
command arguments properly.

Earlier Published Date on NVD

There are 60 mapped CVEs (17,2% of the mapped CVEs) that have an earlier
published date than its mapped advisory.

One example of a CVE that was published earlier than the advisory and the
advisory has rating “Critical” is CVE-2014-9682 [59] which was mapped to npm-
523 [60] on a GitHub issue and a GitHub commit. See Figure 4.12 and 4.13.
The CVE was published (2015-02-27) 2 years earlier than the advisory (2017-09-
07) and this was the biggest difference in published dates we could find where
the CVE was published earlier than the advisory. This means that advisories in
general are published earlier than CVEs since there were more advisories that was
published earlier and the biggest date difference we could find when an advisory
was published earlier than the CVE was 6 years. This was for CVE-2013-4691 [61]
and advisory npm-3 [62]. The CVE was published on 2019-12-27 and the advisory
on 2013-06-30.

CVE: CVE-2014-9682

Published date: 2015-02-27

CVSS3 score: None

Vector string: None

CWEs: CWE-77 (NIST)

CWE categories: Improper Neutralization of
Special Elements used in a Command (’Command Injection’)

Description: The dns-sync module before 0.1.1 for
node.js allows context-dependent attackers to execute
arbitrary commands via shell metacharacters in the first
argument to the resolve API function.

Affected software configurations:
cpe:2.3:a:dns-sync_project:dns-sync:*:*:*:*:*:node.js:*:* (<= 0.1.0)

Third-party references:
openwall.com/lists/oss-security/2014/11/11/6
github.com/skoranga/node-dns-sync/commit/d9abaae384b198db1095735ad9c1c73d7b890a0d
github.com/skoranga/node-dns-sync/issues/1

Figure 4.12: Example of a CVE which has been mapped to an
advisory on the NPM security advisory by common reference,
where the CVE has an earlier published date.

The CVE in Figure 4.12 and advisory in Figure 4.13 is also about command
injection in the dns-sync dependency, affecting version 0.1.0. The advisory has
rating “Critical” and the CVE has rating “None”. Older CVEs sometimes miss
CVSS3 scores. Although there are unaffected versions the advisory says that the
remediation should be to use an alternative dns resolver.

42 Result

Advisory: npm-523

Title: Command Injection

Package: dns-sync

Affected versions: 0.1.0

Unaffected versions: 0.1.1, 0.1.2, 0.1.3, 0.2.0, 0.2.1

Published date: 2017-09-07

Reported at: 2017-09-05

Description: Affected versions of dns-sync have an
arbitrary command execution vulnerability in the
resolve() method.

Remediation:
Use an alternative dns resolver
Do not allow untrusted input into dns-sync.resolve()

Severity: Critical

Status: Patched

Third-party references:
github.com/skoranga/node-dns-sync/issues/1
github.com/skoranga/node-dns-sync/commit/d9abaae384b198db1095735ad9c1c73d7b890a0d

Figure 4.13: Example of an advisory which has been mapped to
a CVE on NVD by common reference, where the CVE has an
earlier published date.

Chapter5
Discussion

The results show that it is probably best to use NVD in combination with the
NPM security advisory in order to get as much information about vulnerabilities
as possible, but also in order to find vulnerabilities that does not exist on one of
the sources. The mapping of the vulnerabilities between NPM and NVD showed
that there are many vulnerabilities, 638 advisories (64,4% of all scraped advisories)
and 342 CVEs (49,5% of all fetched CVEs), that only exists on one of the sources.
This was after doing the mapping on common references and on indirect references
from github.com, hackerone.com, snyk.io and cve.mitre.org.

It was also found that there are many critical vulnerabilities that only exist on
one of the sources, which even further motivates to use both NVD and the NPM
security advisory. 6,7% of all advisories were critical and did only exist on the
NPM security advisory and 9,5% of all CVEs were critical and did only exist on
NVD. In general there were more critical vulnerabilities on NVD than on NPM,
which is good since NVD is often used as the main source for vulnerabilities, 17,8%
on NVD vs 9,1% on NPM. But since we can not be completely sure that NPM’s
severity is based on the same metrics as CVSS, it might be so that some critical
vulnerabilities on NVD have a lower rating on NPM.

For the vulnerabilities that were mapped to each other, we found there were
many differences between them as well. The CVSS rating and severity rating
might differ between CVEs and advisories, and this can make developers think
that a vulnerability that has a lower rating on one the sources is not very critical
if they only use one source.

There might be more references on one of the sources, which lets us find more
information about a vulnerability if the two sources are used in combination. The
descriptions almost always differ and one of the sources might give a more thor-
ough description of the vulnerability. There is also information that always only
exist on one of the sources. NVD has information about which CWE categories
the vulnerability belongs to and NPM has information about the status of the vul-
nerability and the remediation for it. The CWE categories gives developers more
information about what type of vulnerability it is, which NPM does not have.
NPM having information about status and remediation makes it much easier for
developers to know what action to take if they are affected by a vulnerability.
NVD have the affected software configurations which tells us what version ranges
are affected, but it is not clear if the vulnerability has been patched or not or what
remediation that should be done.

43

github.com
hackerone.com
snyk.io
cve.mitre.org

44 Discussion

The NPM security advisory has information about when the vulnerability was
reported to NPM, which sometimes gives a good proxy for when the vulnerability
was discovered. There are cases of when the reported date is missing or when
it is about the same as the published date. In those cases the reported date
might not be a good proxy for the discovered date. It was also found that the
vulnerabilities might be published earlier on one of the sources. Most of the
mapped vulnerabilities were published on the NPM security advisory first (81,3%
of the mapped advisories). This allows developers to discover vulnerabilities earlier
in its life cycle, and makes it possible to fix them as soon as possible.

Chapter6
Conclusion and Future Research

In this thesis we have scraped vulnerabilities from the NPM security advisory
and fetched CVEs affecting node.js from NVD using Debricked’s vulnerability
database. The advisories and CVEs were mapped to each other on their com-
mon references and indirect references. We scraped 990 advisories from the NPM
security advisory which had a published date before 2020-05-18 and fetched 691
CVEs from Debricked with a published date before 2020-05-18. We managed to
map 352 advisories (35,6 % of all scraped advisories) to 349 CVEs (50,5% of all
fetched CVEs). This means that 64,4% of the advisories and 49,5% of the CVEs
could not be mapped.

A comparison was then made between NPM and NVD as vulnerability sources.
Some general differences between mapped advisories and CVEs was found. For
example that CVEs have information about which CWEs the vulnerability belongs
to but NPM has more clear information about the status of a vulnerability and
the recommended remediation. It was also found that the mapped vulnerabilities
might have different number of references which lets developers find more informa-
tion about a vulnerability if the two vulnerability sources are used in combination
with each other.

The CVSS ratings for CVEs and severity ratings for vulnerabilities can also
differ. But, it is not certain that CVSS and NPM’s severity is based on exactly the
same metrics and therefore the ratings are not always the same. But we found that
there was 5,7% of the mapped advisories with a lower rating than “High” when
the corresponding CVE has rating “Critical”. We also found that 2,3% of the
mapped CVEs have a lower rating than “High” when the corresponding advisory
has rating “Critical”. In general there were more critical vulnerabilities on NVD
than on NPM, 17,8% of the CVEs and 9,1% of the advisories were critical.

It was also found that the published dates differ between mapped advisories
and CVEs, 81,3% of the mapped advisories were published earlier than the CVEs.
The biggest date difference found between an advisory and a CVE was 6 years.
This was for advisory npm-3 and CVE-2013-4691. The advisory was published
on 2013-06-30 and the CVE on 2019-12-27. The biggest date difference found
when a CVE was published earlier than an advisory was 2 years. This was for
CVE-2014-9682 and npm-523.

To conclude this thesis the verdict will be that its best to use NVD in combina-
tion with NPM in order to get as much information as possible about vulnerabilities
and to find vulnerabilities that only exist on one of the sources.

45

46 Conclusion and Future Research

There could have been more mapped vulnerabilities if we did not restrict our-
selves to CVEs with node.js as target software. But the result is still good enough
in order to do a comparison of the two vulnerability sources. In the future one can
try to map all existing CVEs on NVD to the advisories on the NPM security advi-
sory. There also exists other similar sources as the NPM security advisory but for
other package managers/programming languages. The PHP Security Advisories
Database on GitHub is one example [63] and the Ruby Advisory Database [64]
is another example. The same work done in this thesis could be done for those
sources. One could also try to fetch vulnerabilities from all these different sources
and map them to each other. And then create a combined vulnerability database
with vulnerabilities that contain the available information from all these different
sources.

We could have done the indirect mapping on all references that were not
mapped on common reference, but was only done for the 4 mentioned domains
above (github.com, hackerone.com, snyk.io and cve.mitre.org) since they
were the most common. Also, the indirect mapping was done manually by simply
searching for “CVE” in the third-party reference. This could have been done
automatically by using text analysis/natural language processing in order to decide
if the reference contains information about a CVE or not. This method can also
be used in order to create the combined vulnerability database mentioned above.
For example one can do natural language processing on GitHub issues and create
vulnerabilities from the result.

Bibliography

[1] OWASP, OWASP Top 10 web application security risks, https:
//www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_
Known_Vulnerabilities

[2] Synopsys Cybersecurity Research Center, 60 percent of enterprise codebases
contain open-source vulnerabilities, https://www.synopsys.com/content/
dam/synopsys/sig-assets/reports/rep-ossra-19.pdf

[3] Wikipedia, Heartbleed, https://en.wikipedia.org/wiki/Heartbleed

[4] SSL Labs, SSL Pulse, https://www.ssllabs.com/ssl-pulse/

[5] National Institute of Standards and Technology, National Vulnerability
Database, https://nvd.nist.gov

[6] NPM, NPM security advisory, https://www.npmjs.com/advisories

[7] Alexandre Decan, Tom Mens and Eleni Constantinou. On the Impact of Se-
curity Vulnerabilities in the NPM Package Dependency Network. In 2018
IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR), Gothenburg, Sweden, 2018

[8] Steven M. Muegge, S. M. Monzur Murshed. Time to Discover and Fix Soft-
ware Vulnerabilities in Open Source Software Projects: Notes on Measurement
and Data Availability. In 2018 Portland International Conference on Manage-
ment of Engineering and Technology (PICMET), Honolulu, HI, USA, 2018

[9] Wikipedia, Software vulnerability, https://en.wikipedia.org/wiki/
Vulnerability_(computing)

[10] Wikipedia, Package manager, https://en.wikipedia.org/wiki/Package_
manager

[11] Wikipedia, List of software package management systems, https:
//en.wikipedia.org/wiki/List_of_software_package_management_
systems#Application-level_package_managers

[12] Wikipedia, npm (software), https://en.wikipedia.org/wiki/Npm_
(software)

47

https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-19.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-19.pdf
https://en.wikipedia.org/wiki/Heartbleed
https://www.ssllabs.com/ssl-pulse/
https://nvd.nist.gov
https://www.npmjs.com/advisories
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/List_of_software_package_management_systems#Application-level_package_managers
https://en.wikipedia.org/wiki/List_of_software_package_management_systems#Application-level_package_managers
https://en.wikipedia.org/wiki/List_of_software_package_management_systems#Application-level_package_managers
https://en.wikipedia.org/wiki/Npm_(software)
https://en.wikipedia.org/wiki/Npm_(software)

48 Bibliography

[13] NPM, About the public npm registry, https://docs.npmjs.com/
about-the-public-npm-registry)

[14] Mitre, Common Vulnerabilities and Exposures, https://cve.mitre.org/

[15] Mitre, CVE Numbering Authorities, https://cve.mitre.org/cve/cna.
html

[16] Wikipedia, National Institute of Standards and Technology, https:
//en.wikipedia.org/wiki/National_Institute_of_Standards_and_
Technology

[17] National Vulnerability Database, CVE-2020-8125, https://nvd.nist.gov/
vuln/detail/CVE-2020-8125

[18] NPM, npm-1463, https://www.npmjs.com/advisories/1463

[19] NPM, npm-1463, https://www.npmjs.com/advisories/1463/versions

[20] Wikipedia, Web scraping, https://en.wikipedia.org/wiki/Web_scraping

[21] Debricked, Debricked vulnerability sources, https://debricked.com/
vulnerability-data/

[22] Mitre, Common Weakness Enumeration, https://cwe.mitre.org/

[23] Mitre, Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors,
https://cwe.mitre.org/data/definitions/1200.html

[24] Mitre, CWE-119, https://cwe.mitre.org/data/definitions/119.html

[25] NIST, Common Platform Enumeration, https://csrc.nist.gov/
projects/security-content-automation-protocol/specifications/
cpe/

[26] NIST, Common Platform Enumeration https://csrc.nist.gov/
publications/detail/nistir/7695/final

[27] NIST, Known Affected Software Configurations https://nvd.nist.gov/
vuln/Vulnerability-Detail-Pages

[28] FIRST, Common Vulnerability Scoring System, https://www.first.org/
cvss/specification-document

[29] NVD, CVSS score calculator, https://nvd.nist.gov/vuln-metrics/cvss/
v3-calculator

[30] NPM, About audit reports (severity), https://docs.npmjs.com/
about-audit-reports#severity

[31] NPM, Number of NPM packages, https://www.npmjs.com/

[32] Wikipedia, Typosquatting, https://en.wikipedia.org/wiki/
Typosquatting

[33] Medium, NPM Acquires L̂ift Security and the Node Security Platform, https:
//medium.com/npm-inc/npm-acquires-lift-security-258e257ef639

https://docs.npmjs.com/about-the-public-npm-registry)
https://docs.npmjs.com/about-the-public-npm-registry)
https://cve.mitre.org/
https://cve.mitre.org/cve/cna.html
https://cve.mitre.org/cve/cna.html
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://nvd.nist.gov/vuln/detail/CVE-2020-8125
https://nvd.nist.gov/vuln/detail/CVE-2020-8125
https://www.npmjs.com/advisories/1463
https://www.npmjs.com/advisories/1463/versions
https://en.wikipedia.org/wiki/Web_scraping
https://debricked.com/vulnerability-data/
https://debricked.com/vulnerability-data/
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/1200.html
https://cwe.mitre.org/data/definitions/119.html
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe/
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe/
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe/
https://csrc.nist.gov/publications/detail/nistir/7695/final
https://csrc.nist.gov/publications/detail/nistir/7695/final
https://nvd.nist.gov/vuln/Vulnerability-Detail-Pages
https://nvd.nist.gov/vuln/Vulnerability-Detail-Pages
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://docs.npmjs.com/about-audit-reports#severity
https://docs.npmjs.com/about-audit-reports#severity
https://www.npmjs.com/
https://en.wikipedia.org/wiki/Typosquatting
https://en.wikipedia.org/wiki/Typosquatting
https://medium.com/npm-inc/npm-acquires-lift-security-258e257ef639
https://medium.com/npm-inc/npm-acquires-lift-security-258e257ef639

Bibliography 49

[34] Wikipedia, HackerOne, https://en.wikipedia.org/wiki/HackerOne

[35] GitHub, GitHub security advisory, https://help.github.
com/en/github/managing-security-vulnerabilities/
about-github-security-advisories#about-github-security-advisories

[36] Snyk, Snyk Vulnerability DB, https://snyk.io/vuln

[37] NVD, CVE-2018-3717, https://nvd.nist.gov/vuln/detail/
CVE-2018-3717

[38] NPM, Reporting a vulnerability in a NPM package, https://docs.npmjs.
com/reporting-a-vulnerability-in-an-npm-package

[39] NPM, npm-584, https://www.npmjs.com/advisories/584

[40] NPM, npm-595, https://www.npmjs.com/advisories/595

[41] NVD, CVE-2020-7636, https://nvd.nist.gov/vuln/detail/
CVE-2020-7636

[42] NVD, CVE-2015-1370, https://nvd.nist.gov/vuln/detail/
CVE-2015-1370

[43] GitHub, Ecosystem Security Working Group, https://github.com/nodejs/
security-wg

[44] NVD, CVE-2018-16472, https://nvd.nist.gov/vuln/detail/
CVE-2018-16472

[45] NPM, npm-739, https://www.npmjs.com/advisories/739

[46] NVD, CVE-2018-1002204, https://nvd.nist.gov/vuln/detail/
CVE-2018-1002204

[47] NPM, npm-994, https://www.npmjs.com/advisories/994

[48] SecurityFocus, About Security Focus, https://www.securityfocus.com/
about

[49] NPM, npm-1487, https://www.npmjs.com/advisories/1487

[50] GitHub, web3.js - Ethereum JavaScript API, https://github.com/
ethereum/web3.js

[51] NVD, CVE-2020-8147, https://nvd.nist.gov/vuln/detail/
CVE-2020-8147

[52] NPM, utils-extend, https://www.npmjs.com/package/utils-extend

[53] NIST, CVE-2019-10061, https://nvd.nist.gov/vuln/detail/
CVE-2019-10061

[54] NPM, npm-789, https://www.npmjs.com/advisories/789

[55] NPM, npm-1143, https://www.npmjs.com/advisories/1143

[56] NIST, CVE-2019-5480, https://nvd.nist.gov/vuln/detail/
CVE-2019-5480

https://en.wikipedia.org/wiki/HackerOne
https://help.github.com/en/github/managing-security-vulnerabilities/about-github-security-advisories#about-github-security-advisories
https://help.github.com/en/github/managing-security-vulnerabilities/about-github-security-advisories#about-github-security-advisories
https://help.github.com/en/github/managing-security-vulnerabilities/about-github-security-advisories#about-github-security-advisories
https://snyk.io/vuln
https://nvd.nist.gov/vuln/detail/CVE-2018-3717
https://nvd.nist.gov/vuln/detail/CVE-2018-3717
https://docs.npmjs.com/reporting-a-vulnerability-in-an-npm-package
https://docs.npmjs.com/reporting-a-vulnerability-in-an-npm-package
https://www.npmjs.com/advisories/584
https://www.npmjs.com/advisories/595
https://nvd.nist.gov/vuln/detail/CVE-2020-7636
https://nvd.nist.gov/vuln/detail/CVE-2020-7636
https://nvd.nist.gov/vuln/detail/CVE-2015-1370
https://nvd.nist.gov/vuln/detail/CVE-2015-1370
https://github.com/nodejs/security-wg
https://github.com/nodejs/security-wg
https://nvd.nist.gov/vuln/detail/CVE-2018-16472
https://nvd.nist.gov/vuln/detail/CVE-2018-16472
https://www.npmjs.com/advisories/739
https://nvd.nist.gov/vuln/detail/CVE-2018-1002204
https://nvd.nist.gov/vuln/detail/CVE-2018-1002204
https://www.npmjs.com/advisories/994
https://www.securityfocus.com/about
https://www.securityfocus.com/about
https://www.npmjs.com/advisories/1487
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://nvd.nist.gov/vuln/detail/CVE-2020-8147
https://nvd.nist.gov/vuln/detail/CVE-2020-8147
https://www.npmjs.com/package/utils-extend
https://nvd.nist.gov/vuln/detail/CVE-2019-10061
https://nvd.nist.gov/vuln/detail/CVE-2019-10061
https://www.npmjs.com/advisories/789
https://www.npmjs.com/advisories/1143
https://nvd.nist.gov/vuln/detail/CVE-2019-5480
https://nvd.nist.gov/vuln/detail/CVE-2019-5480

50 Bibliography

[57] NPM, npm-27, https://www.npmjs.com/advisories/27

[58] NVD, CVE-2014-3741, https://nvd.nist.gov/vuln/detail/
CVE-2014-3741

[59] NVD, CVE-2014-9682, https://nvd.nist.gov/vuln/detail/
CVE-2014-9682

[60] NPM, npm-523, https://www.npmjs.com/advisories/523

[61] NVD, CVE-2013-4691, https://nvd.nist.gov/vuln/detail/
CVE-2013-4691

[62] NPM, npm-3, https://www.npmjs.com/advisories/3

[63] GitHub, PHP Security Advisories Database, https://github.com/
FriendsOfPHP/security-advisories

[64] GitHub, Ruby Advisory Database, https://github.com/rubysec/
ruby-advisory-db

https://www.npmjs.com/advisories/27
https://nvd.nist.gov/vuln/detail/CVE-2014-3741
https://nvd.nist.gov/vuln/detail/CVE-2014-3741
https://nvd.nist.gov/vuln/detail/CVE-2014-9682
https://nvd.nist.gov/vuln/detail/CVE-2014-9682
https://www.npmjs.com/advisories/523
https://nvd.nist.gov/vuln/detail/CVE-2013-4691
https://nvd.nist.gov/vuln/detail/CVE-2013-4691
https://www.npmjs.com/advisories/3
https://github.com/FriendsOfPHP/security-advisories
https://github.com/FriendsOfPHP/security-advisories
https://github.com/rubysec/ruby-advisory-db
https://github.com/rubysec/ruby-advisory-db

Improving Vulnerability Assessment through
Multiple Vulnerability Sources

GUSTAV SVENSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

G
U

STA
V

 SV
EN

SSO
N

Im
proving Vulnerability A

ssessm
ent through M

ultiple Vulnerability Sources
LU

N
D

 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-792
http://www.eit.lth.se

	Exj Gustav Svensson_Improving_vulnerability_assessment_final.pdf
	Introduction
	Background
	Project Goal
	Related Work
	Structure

	Background
	Software Vulnerabilities and Dependencies

	Methodology
	Scraping Vulnerabilities
	Mapping Vulnerabilities between NVD and NPM

	Result
	Mapping Vulnerabilities between NVD and NPM
	Comparison of NVD and the NPM Security Advisory

	Discussion
	Conclusion and Future Research
	Bibliography

