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Abstract

In this thesis I extend the chirality-flow method to the full standard model at tree-level by
including massive particles and electroweak interactions. The chirality-flow method is a
new diagrammatic method for calculating Feynman diagrams that is based on the spinor-
helicity formalism, that before this thesis was written had been worked out for massless
QED and QCD at tree-level. I summarize what is known about massive spinor-helicity
calculations and use this as the basis for the extended diagrammatic interpretation for
massive particles. I use the Lorentz structure of the electroweak vertices to rewrite them
in the chirality-flow picture.

Populärvetenskaplig beskrivning

Det finns många vägar att g̊a i jakten efter en bättre först̊aelse för v̊ar materiella världs
minsta best̊andsdelar, elementarpartiklarna. Vi kan bygga kraftigare och mer exakta par-
tikelacceleratorer och därmed förbättra den experimentella delen av partikelfysiken. Vi kan
ocks̊a försöka hitta nya teorier om hur världen fungerar, n̊agot som i praktiken är väldigt
komplicerat. Vi kan istället fokusera p̊a smartare sätt att göra uträkningar inom dagens
teoretiska ramar, vilket är vad den här uppsatsen handlar om.

Inom partikelfysiken är vi ofta intresserade av att räkna ut s̊a kallade överg̊angsamplituder.
Dessa kan exempelvis liknas med en sannolikhet att ett visst tillst̊and av partiklar ska
överg̊a till ett annat tillst̊and av andra partiklar vid en kollision i partikelacceleratorer.
För det mesta har vi inget exakt svar för överg̊angsamplituderna, s̊a istället approximeras
dem. Målet är att försöka göra s̊a bra approximationer som möjligt.

Ofta används en typ av diagram, som kallas för Feynman diagram efter nobelpristagande
fysikern Richard Feynman, för att hjälpa till i beräkningarna. Diagram är ett smidigt sätt
att lättare visualisera uträkningarna och det finns flera typer av diagram som används. Nu
har vi en ny metod som kallas för ”chirality-flow method” med en ny typ av diagram som
förhoppningsvis ska kunna göra uträkningar lättare. Den här nya metoden har utvecklats
för att kunna appliceras p̊a vissa av elementarpartiklarna, där partiklarnas massa ocks̊a
har ignorerats. Målet med den här uppsatsen är att inkludera alla typer av kända ele-
mentarpartiklar samt deras massa, s̊a att den nya metoden kan appliceras i alla möjliga
fall.
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1 Introduction

In particle physics we are often interested in scattering amplitudes which are needed to
calculate cross sections. The complexity of the calculations increases not only from loops
in higher order terms of the perturbation series, but also when we increase the number of
external particles involved in a specific process. To counter the complexity of calculations,
we would like to have better and more efficient methods of calculating the scattering
amplitudes, which will help us increase the accuracy of our theoretical predictions.

The chirality-flow method [1] is a new diagrammatic method for calculating scattering
amplitudes, which has been developed for amplitude calculations for massless QED and
QCD at tree-level. It is based on the spinor-helicity formalism [2, 3, 4, 5, 6] where objects
used in amplitude calculations such as Dirac spinors, Feynman-slashed momenta, and po-
larization vectors are all decomposed and written in terms of two-component Weyl spinors
[7]. The chirality-flow method interprets the Weyl spinor inner products as flow lines in
chirality-flow diagrams. These flow diagrams are very powerful because they drastically
simplify calculations.

In this thesis, I have generalised the chirality-flow method to also include masses and the
electroweak sector, so that it can be used for the full Standard Model at tree-level. This
has been achieved by using what is known about massive spinor-helicity calculations and
including that in the diagrammatic framework of the chirality-flow formalism. I find that
massive Feynman diagrams with a specific helicity configuration can be decomposed into
sums of massless chirality-flow diagrams, which allows us to apply the tools that have been
developed for the massless chirality-flow method.

Before we begin, I will give a brief overview of the thesis. In section 2, I start with the
representations of the Lorentz group and how objects involved in Feynman diagrams can
be written in terms of two-component Weyl spinors using the spinor-helicity formalism.
Then in section 3 I summarise how this formalism can be used to create a diagrammatic
method, called the chirality-flow method, which has been recently developed for massless
QED and QCD at tree-level. In section 4 I use what is known about massive spinor-
helicity calculations to put it into a form which can be inserted into the chirality-flow
framework. I then in section 5 describe how massive particles can be interpreted and used
diagrammatically, and I also give chirality-flow rules for the electroweak vertices. Lastly
in section 6 I show some examples of the diagrammatic method being used.

2 Background

We will begin with brief summaries of two components that lie at the core of the chirality-
flow method: the Lorentz group and the spinor-helicity formalism. These two parts will
be used as the starting points for the description of the chirality-flow method.
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2.1 The Lorentz Group

The Lorentz group [8] describes Lorentz transformations in Minkowski-space and it has 6
generators: 3 rotation generators Ji and 3 boost generators Ki. The generators satisfy the
following commutation relations:

[Ji, Jj] = iεijkJk, [Ji, Kj] = iεijkKk, [Ki, Kj] = −iεijkJk. (2.1)

Together, the generators and commutation relations describe the Lie algebra of the Lorentz
Group. It is possible to define a new set of operators as combinations of the rotation and
boost generators,

N±i =
1

2
(Ji ± iKi) , (2.2)

which gives us a new set of commutation relations:[
N+
i , N

+
j

]
= iεijkN

+
k ,

[
N−i , N

−
j

]
= iεijkN

−
k ,

[
N+
i , N

−
j

]
= 0. (2.3)

We see here that N+
i and N−i form two copies of su(2)C Lie algebras that commute with

each other. The Lie algebra isomorphism so(3, 1)C ' su(2)C⊕ su(2)C is a more formal way
to display this. This isomorphism between Lie algebras can be used to characterize the
irreducible representations of the Lorentz Group as (s1, s2), where s1, s2 = 0, 1

2
, 1, 3

2
, ... give

the specific irreducible representations of the two copies of su(2)C.

Some examples of common representations are:

• The scalar representation is given by (0, 0), where both copies of su(2)C are given in
the trivial representation.

• Left-chiral and right-chiral Weyl spinors are 2-component spinors that transform
under the (1

2
, 0)-representation and the (0, 1

2
)-representation, respectively.

• Dirac spinors are 4-component spinors that are formed by combining a left-chiral and
a right-chiral Weyl spinor, and they transform under the (1

2
, 0)⊕(0, 1

2
)-representation.

• The (1
2
, 1

2
)-representation is the vector representation. We use this to represent a

vector object as a product of a left-chiral and a right-chiral Weyl spinor.

2.2 The Spinor-Helicity Formalism

There are two parts that lie at the core of the spinor-helicity formalism: the use of 2-
component Weyl spinors and the use of the helicity basis. Dirac spinors, Feynman-slashed
momenta, and polarization vectors can all be written in terms of Weyl spinors. Using
these spinors, it is possible to form two types of Weyl spinor contractions that are Lorentz
invariant, which is usually helpful and appreciated. The helicity basis is a good choice for
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a spin basis, as the helicity operator commutes with the Dirac Hamiltonian, which means
that their eigenstates are the same. The use of helicity is especially useful for massless
particles because it is then Lorentz invariant, whereas for massive particles helicity is
frame dependent.

Since we are working with Weyl spinors, we use the Weyl/chiral basis for the gamma
matrices,

γµ =

(
0 σµ

σ̄µ 0

)
=

(
0

√
2τµ√

2τ̄µ 0

)
, σµ =

(
1, σi

)
, σ̄µ =

(
1,−σi

)
, (2.4)

where σi are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.5)

We write the σ-matrices as
√

2τµ to avoid having to carry around unnecessary factors of 2
through the calculations. For the τ -matrices we have the relation

gµν = Tr (τµτ̄ ν) = τ̄µ
αβ̇
τ ν,β̇α = τµ,α̇β τ̄ νβα̇, (2.6)

where the α and β indices will be explained further in section 3.1, without a factor of 2 that
would have been included if σ matrices were used instead. The chiral projection operators
PL and PR also take on a diagonal form in the chiral basis:

γ5 ≡ iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, PL ≡

1

2

(
1− γ5

)
=

(
1 0
0 0

)
, PR ≡

1

2

(
1 + γ5

)
=

(
0 0
0 1

)
.

(2.7)
We can use bras and kets to represent the Weyl spinors: square bra-kets, [p| and |p],
represent left-chiral Weyl spinors and angled bra-kets, 〈p| and |p〉, represent right-chiral
Weyl spinors. The square and angled bracket spinors are related by hermitian conjugation,

|p]† = 〈p|, |p〉† = [p|. (2.8)

More specifically, [p| and 〈p| are 2-component complex row vectors, while |p] and |p〉 are
2-component complex column vectors. We can use these to form antisymmetric spinor
contractions as

[pipj] = − [pjpi] and 〈pipj〉 = −〈pjpi〉 , (2.9)

both of which are Lorentz invariant complex numbers. It is in principle possible to form
contractions with spinors of opposite type, but these will not be Lorentz invariant quanti-
ties.

We will now briefly look at how Dirac spinors, Feynman-slashed momenta, and polarization
vectors can all be written in terms of Weyl spinors. Dirac spinors transform under the
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(1
2
, 0) ⊕ (0, 1

2
)-representation and can therefore be written in terms of Weyl spinors, here

shown in a generic form with its Dirac conjugate:

Ψ =

(
|α]
|β〉

)
, Ψ = Ψ†γ0 =

(
|β〉† |α]†

)
=
(
[β| 〈α|

)
, (2.10)

where |α] and |β〉 are left- and right-chiral Weyl spinors, respectively. For a massive fermion
both chiralities contribute to a specific helicity state and it is possible to perform a Lorentz
boost to a different reference frame where the helicity is the opposite. However, the Dirac
spinor becomes particularly simple in the massless limit as one of the two Weyl spinors
goes to zero. Which one goes to zero depends on the specific helicity of the particle. This
is because for massless fermions helicity and chirality are in a one-to-one relationship,
meaning that a specific chirality only contributes to one of the two helicities. It is also not
possible to perform a Lorentz boost to change the helicity of the fermion in the massless
case.

The projection operators in eq. (2.7) simply project out the left- and right-chiral compo-
nents of the Dirac spinor:

PLΨ =

(
|α]
0

)
, PRΨ =

(
0
|β〉

)
. (2.11)

Four-currents and other objects can be split into parts in the chiral basis. An example of
this splitting is:

vγµu =
(
v†R v†L

)( 0
√

2τµ√
2τ̄µ 0

)(
uL
uR

)
=
√

2v†Rτ
µuR +

√
2v†Lτ̄

µuL, (2.12)

where we have written the two Dirac spinors v and u in terms of their left- and right-chiral
components.

Feynman-slashed momenta /pγ = pµγ
µ coming from the, for now massless, fermion propa-

gators
i/pγ
p2

can also be decomposed into Weyl spinors. In the chiral basis we have

/pγ =

(
0 /pσ
/̄pσ̄ 0

)
=

(
0 pµσ

µ

pµσ̄
µ 0

)
. (2.13)

For a pµ where p2 = 0, it is possible to decompose both /pσ and /̄pσ̄ into products of Weyl
spinors:

/pσ = |p]〈p|, /pσ̄ = |p〉[p|. (2.14)

This can also be applied for each individual pµi where pµ =
∑

i p
µ
i and p2

i = 0 for all i. More
about this and the generalisation to massive particles will be described in section 4.1.

Finally, polarization vectors transform under the (1
2
, 1

2
)-representation, which is the product

of the left- and right-chiral representations (1
2
, 0) ⊗ (0, 1

2
), and can be written in terms of
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Weyl spinors as

εµ+(p) =
[q|τµ|p〉

[pq]
and εµ−(p) =

[p|τµ|q〉
〈qp〉 , (2.15)

where q is a light-like reference momentum and where we for simplicity only include the
two massless polarization states.

3 The Massless Chirality-Flow Method

The chirality-flow method is a new method for calculating transition amplitudes, and it
was created as a diagrammatic method on top of the spinor-helicity and Weyl-van-der-
Waerden (WvdW) formalisms. Using this method it is easy to move from a Feynman
diagram, to one or more chirality-flow diagrams, to complex numbers in terms of Lorentz
invariant spinor contractions. The flow diagrams make it trivial to keep track of the spinor
contractions used in the spinor-helicity and WvdW formalisms.

3.1 Notation and Diagrammatic Interpretation

All objects described in the previous section can be given an index structure using the
Weyl-van-der-Waerden formalism [9]. We begin with Weyl spinors. Left-chiral column
spinors are given upper dotted indices, |p]↔ λ̃α̇p , and right-chiral column spinors are given
lower undotted indices, |p〉 ↔ λp,α, where we for now use λ for the undotted spinors and
λ̃ for the dotted spinors. Hermitian conjugation is used to add or remove a dot over an
index which gives us the row spinors:

(λα)† = λ̃α̇,
(
λ̃α̇
)†

= λα. (3.1)

We can use the antisymmetric tensor ε as a metric for the spinors, in the form of εαβ, εα̇β̇,
εαβ, or εα̇β̇, to raise or lower dotted and undotted indices, where ε12 = −ε21 = ε21 = −ε12 =
1 and other elements are zero. We have:

λα = εαβλβ, λ̃α̇ = εα̇β̇λ̃β̇, λα = εαβλ
β, λ̃α̇ = εα̇β̇λ̃

β̇. (3.2)

Using ε as a metric, we can form Lorentz invariant spinor contractions or spinor inner
products, and these can be drawn as diagrams. The undotted indices are related to undotted
lines and angled brackets, and dotted indices to dotted lines and square brackets. We have:

〈pipj〉 = 〈ij〉 = λαi λj,α = εαβλi,βλj,α = i j , (3.3a)

[pipj] = [ij] = λ̃i,α̇λ̃
α̇
j = εα̇β̇λ̃

β̇
i λ̃

α̇
j = i j , (3.3b)
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〈ij〉 = [ji]∗ , 〈ij〉 = −〈ji〉 , and [ij] = − [ji] . (3.3c)

We note that undotted indices are contracted from upper to lower, dotted indices from
lower to upper, and that the arrow points from the first particle index to the second. The
direction of the arrow is important as these are both antisymmetric contractions, because
of the antisymmetry of ε.

The spinor contractions may also be written using Kronecker deltas as λαi λj,α = λαi δα
βλj,β

or λ̃i,α̇λ̃
α̇
j = λ̃i,α̇δ

α̇
β̇λ̃

β̇
j where we may choose to define

δα
β = α β

and δα̇β̇ = α̇ β̇
(3.4)

For massless fermions, when helicity and chirality are in a one-to-one relationship, a single
two-component Weyl spinor is enough to describe a fermion of a specific helicity. A left-
chiral Weyl spinor describes an outgoing positive helicity fermion or anti-fermion, and a
right-chiral Weyl spinor describes an outgoing negative helicity fermion or anti-fermion. In
this thesis all particles are considered outgoing. The four types of outgoing fermions/anti-
fermions and the relations between indices, brackets, Feynman diagrams, and chirality-flow
diagrams are:

Right-chiral fermion: λαi ↔ 〈i| = i
− = i , (3.5a)

Right-chiral anti-fermion: λi,α ↔ |i〉 =
i
− = i , (3.5b)

Left-chiral fermion: λ̃i,α̇ ↔ [i| =
i
+

= i , (3.5c)

Left-chiral anti-fermion: λ̃α̇i ↔ |i] =
i
+

= i . (3.5d)

Note that the direction of the arrows in the chirality-flow diagrams are defined opposite to
the direction of the Feynman diagram arrows.

If we for a massless four-vector pµ use light-cone coordinates p± = p0±p3 and p⊥ = p1 +ip2

we can write its Weyl spinors as [1]

λαp ↔ 〈p| =
1√
p+

(
p⊥ −p+

)
, λp,α ↔ |p〉 =

1√
p+

(
p+

p⊥

)
,

λ̃p,α̇ ↔ [p| = 1√
p+

(
p+ p⊥

∗)
, λ̃α̇p ↔ |p] =

1√
p+

(
p⊥

∗

−p+

)
. (3.6)

The Weyl-van-der-Waerden notation imposed on eq. (2.12) implies an index structure for
the τ matrices, used in ffγ (fermion-fermion-photon) and ffg (fermion-fermion-gluon)
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vertices, which diagrammatically looks like

τµ ↔ τµ,α̇β = µ

α̇

β

and τ̄µ ↔ τ̄µ
αβ̇

= µ

α

β̇

, (3.7)

where the photon line may also be replaced by a gluon line.

If a massless external particle is given a specific helicity, then that corresponds to a specific
chirality, which means that only one of the two matrices above will contribute to a vertex.
If an outgoing positive helicity particle is connected to a ffγ or ffg vertex, then only
the flow diagram in which that particle line is dotted contributes to the amplitude, and
for outgoing negative helicity particles, only undotted lines contribute. This also means
that if two outgoing massless fermions are connected to the same ffγ or ffg vertex, then
they need to have opposite helicities for the amplitude to be non-zero. An example in the
massless case is

j
−

i
+

µ = ieQf

√
2

j

i

µ = ieQf

√
2λ̃i,α̇τ

µ,α̇βλj,β = ieQf

√
2[i|τµ|j〉,

(3.8)
where the factors in front of the second diagram come from the ffγ vertex and the fermion
lines have been translated using eq. (3.5). In this same line we see how the expression can
also be written in index form or bra-ket form.

The fermion propagator contains a factor of /pγ = pµγ
µ which in the chiral basis looks like

/pγ =

(
0 /pσ
/̄pσ̄ 0

)
, (3.9)

where the subscript indicates what matrix pµ has been contracted with. From here on, /pσ
and /̄pσ̄ will simply be referred to as /p and /̄p, respectively. For the determinants we have

det
(
/p
)

= det
(
/̄p
)

= p2 which is zero in the massless case. If the determinant of a 2x2
matrix is zero, then it can be decomposed into an outer product of two vectors, or in this
case two Weyl spinors, so that

√
2pα̇β = λ̃α̇pλ

β
p = |p] 〈p| and

√
2pαβ̇ = λp,αλ̃p,β̇ = |p〉 [p|. The

reason for this decomposition is to make it possible to form spinor contractions as 〈ij〉 or
[ij]. For /p and /̄p we have

/p =
√

2pµτ
µ ↔

√
2pα̇β =

α̇ β

p

, /̄p =
√

2pµτ̄
µ ↔

√
2p̄αβ̇ =

α β̇

p

,

(3.10)
where in both diagrams the arrows point in the direction of the index order, meaning that
in the first diagram they point from α̇ to β, and in the second diagram they point from α
to β̇.
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We also have for pµ [1]: √
2pµ ↔ p , (3.11)

which will be used for the triple gluon vertex in eq. (3.25) and the triple electroweak vector
boson vertex in eq. (5.15).

A 4-vector pµ can be written in bispinor form, where

√
2pα̇β =

√
2pµτ α̇βµ = pµσα̇βµ ↔ /p =

(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
(3.12a)

and √
2p̄αβ̇ =

√
2pµτ̄µ,αβ̇ = pµσ̄µ,αβ̇ ↔ /̄p =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
. (3.12b)

We can also use eq. (2.6) to get back the 4-vector we started with:

pµ = pα̇β τ̄µβα̇ = p̄αβ̇τ
µ,β̇α. (3.13)

The scalar product between two 4-vectors pµi and pµj can be represented diagrammatically
as

2pi · pj = 2pµi p
ν
jTr(τµτ̄ν) = Tr(/pi/̄pj) =

√
2pα̇βi
√

2p̄j,βα̇ =

pi

pj

. (3.14)

The 4-momentum pµ going through the propagator can always be written as a sum of
4-momenta pµk where each individual pµk satisfies p2

k = 0, which means that each /pk and /̄pk
can be decomposed independently into products of Weyl spinors:

/pk = |k]〈k| ↔ λ̃α̇kλ
β
k , /̄pk = |k〉[k| ↔ λk,αλ̃k,β̇. (3.15)

As an example of /p =
∑

k /pk being decomposed between two Weyl spinors [i| and |j〉, we
have

[i| /p |j〉 = [i|
(∑

k

/pk

)
|j〉 = [i|

(∑
k

|k] 〈k|
)
|j〉 =

∑
k

[ik] 〈kj〉 , (3.16)

forming a sum of Weyl spinor contractions.

The vector boson propagator in Feynman gauge is simply proportional to the metric tensor
gµν . The relation between gµν and the τ matrices in eq. (2.6), together with the Fierz
identity,

τ̄µ
αβ̇
τ γ̇ηµ = δα

ηδγ̇ β̇ (3.17a)
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which is diagrammatically,

α β̇

γ̇η

=

α β̇

γ̇η

, (3.17b)

means that we can write:

µ ν
p =

−igµν
p2

↔ −i
p2

. (3.18)

When substituting the vector boson propagator we need to make sure that we use one
dotted and one undotted line. It is not important which way a specific flow arrow points,
only that they are opposite for the two lines, and for that reason they can be completely
left out of the generic diagram above.

In some cases it is possible to have τ -contractions in the form of

τµ,α̇βτ γ̇ηµ = εα̇γ̇εβη or τ̄µ
αβ̇
τ̄µ,γη̇ = εαγεβ̇η̇. (3.19)

However, it is always possible to flip a τ to a τ̄ or vice versa so that there is exactly one τ
and one τ̄ so that the Fierz identity in eq. (3.17a) can be used. The details of this can be
found in [1].

The positive and negative helicity states for the polarization vectors can be written

ε∗µ+ (pi, r) =
λαr τ̄

µ

αβ̇
λ̃β̇i

λγrλi,γ
=
〈r|τ̄µ|i]
〈ri〉 , (3.20a)

ε∗µ− (pi, r) =
λαi τ̄

µ

αβ̇
λ̃β̇r

λ̃i,γ̇λ̃
γ̇
r

=
〈i|τ̄µ|r]

[ir]
, (3.20b)

and upon contraction with τµ we get

ε∗µ+ (pi, r)τ
α̇β
µ = ε∗α̇β+ (pi, r) =

λ̃α̇i λ
β
r

λγrλi,γ
↔ |i]〈r|〈ri〉 =

1

〈ri〉 r
i , (3.21a)

ε∗µ− (pi, r)τ
α̇β
µ = ε∗α̇β− (pi, r) =

λ̃α̇r λ
β
i

λ̃i,γ̇λ̃
γ̇
r

↔ |r]〈i|
[ir]

=
1

[ir]
r
i , (3.21b)

where pi refers to the physical momentum of the particle and r is an arbitrary light-like
reference momentum.

It is possible to write the two expressions in eq. (3.21) into a more general form,

ε∗α̇βh (pi, r) =
λ̃α̇ipλ

β
im

λγimλip,γ
↔ |ip]〈im|

fh(ip, im)
=

1

fh(ip, im) im
ip , (3.22)
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where for h = ± we have

h = + : ip = i, im = r, fh(ip, im) = 〈ri〉 ,
h = − : ip = r, im = i, fh(ip, im) = [ir] . (3.23)

It is possible to choose different reference momenta ri for different particles i, and the
dependence on the reference momenta will vanish for gauge invariant quantities. The choice
of reference momenta can be made for convenience, to make certain diagrams vanish. A
common choice is to choose the reference momenta of all like-helicity bosons to be equal
to the physical momentum of a boson with the opposite helicity, which is useful because
we have the relations:

ε∗±(p1, r) · ε∗±(p2, r) = 0 and ε∗±(p1, p2) · ε∗∓(p2, r2) = 0. (3.24)

The triple and quartic gluon vertices can be written as

µ1, a1

µ2, a2µ3, a3

←−
−→

−→

p3 p2

p1

= −gsf
a1a2a3

√
2

[gµ1µ2 (p1 − p2)µ3 + gµ2µ3 (p2 − p3)µ1 + gµ3µ1 (p3 − p1)µ2 ]

↔ −gsf
a1a2a3

2

 1

23

1− 2 +

1

23

2− 3
+

1

23

3− 1

 , (3.25)

µ1, a1 µ2, a2

µ3, a3µ4, a4

=− ig2
s [f

a1a2bfa4a3b(gµ1µ4gµ2µ3 − gµ1µ3gµ2µ4)

+ fa1a4bfa2a3b(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)
+ fa1a3bfa2a4b(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)]

=i

(
gs√

2

)2 ∑
S(2,3,4)

Tr(ta1ta2ta3ta4) [2gµ1µ3gµ4µ2 − gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3 ]

(3.26)

↔i
(
gs√

2

)2 ∑
S(2,3,4)

Tr(ta1ta2ta3ta4)

2

1

4

2

3

−
1

4

2

3

−
1

4

2

3

 .
(3.27)

The gµiµj factors become double lines via the Fierz identity and the pµ factors are replaced
using eq. (3.10).
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3.2 Diagram Examples

Now that the basics of the chirality-flow method for massless QED and QCD tree-level
diagrams have been presented, let us look at some examples. In these examples all particles
are considered outgoing. There are also often multiple diagrams contributing to a specific
process, but here we are looking purely at individual diagrams. Something to keep in
mind is that in the massless case only one chirality contributes to a certain helicity. This
means that in the first example below, the two fermions that share a fermion line need to
have opposite helicities for a non-zero amplitude; chirality flips at the vertex, and therefore
helicity must do the same.

We start with the simplest example, which just consists of four fermion legs and a photon
propagator, which can be used to calculate amplitudes for processes such as e−e+ → µ−µ+.
In this diagram the + and − labels refer to the helicity of the particle. We collect all the

1

2 3

4−

+ +

−
Figure 1: A four-fermion diagram with a given helicity configuration.

necessary factors from the vertices and the photon propagator together, and apply the rules
given in eq. (3.5) to transform the Feynman diagram into a chirality-flow diagram. The
positive helicity (left-chiral) particles are replaced with dotted lines, the negative helicity
(right-chiral) particles are replaced with undotted lines, and the photon propagator is
replaced with a double line whose arrow directions are fitted to the arrow directions of the
external legs. The result is:

1

2 3

4−

+ +

−

=
2ie2

(p1 + p2)2

1 4

2 3

=
2ie2 [23] 〈41〉

(p1 + p2)2 ,

where in the final step, the two lines have been written as their spinor contractions. Note
that the final step is completely trivial; the chirality-flow lines are the spinor contractions.
Another type of diagram we can look at is one with a fermion propagator instead of a
photon propagator. One example is a diagram with two fermion legs and two photon legs:
Again we have a Feynman diagram with a specific helicity configuration. The helicities of
the external photons do not actually have to be specified at this stage as they can be given
in the generic form of eq. (3.22), but have been anyway for demonstrative purposes. In
this example we have two new objects that were not seen in the first example: the fermion
propagator and the external photon or vector boson in general. By again collecting the

11



1−

2+ 3+

4−

Figure 2: A ffγγ diagram with a given helicity configuration. The fermions are considered
massless.

relevant factors, and in this example also including the two factors in the denominator
from the photon polarization vectors, we get:

1−

2+ 3+

4−

=
−2ie2

(p2 + p3)2 〈r33〉 [4r4]

1

2 3

4

r3

r4

2 + 3 (3.28a)

=
−2ie2

(p2 + p3)2 〈r33〉 [4r4]
[23]

(
〈r32〉 [2r4] + 〈r33〉 [3r4]

)
〈41〉 , (3.28b)

where r3 and r4 are the light-like reference momenta of the two photons. We have used
eq. (3.21) for the external photons here. Since all particles are considered outgoing, the
momentum flowing through the fermion propagator can be written as either p2 + p3 or
−(p1 + p4). Since all four particles are massless, we can use eq. (3.16) for the propagator
line. As an example, we can here make a clever choice of reference momentum r4 = p2

which simplifies this expression to

1−

2+ 3+

4−

=
2ie2 [23]2 〈41〉
(p2 + p3)2 [42]

(3.29)

Before continuing, take an extra moment to admire the simplicity of the method used in
the examples above. It is possible by using the chirality-flow method to go from a Feynman
diagram to a complex number in a line or two of calculation, practically instantly after
some practice.

4 Massive Particles

We would like to extend the chirality-flow method to include massive particles. Spinor-
helicity methods and the Weyl-van-der-Waerden formalism are known for massive particles
[9], and this reference will be used extensively throughout this entire section. In this section
we discuss massive spinors, bispinors, and polarization vectors, to express them in a form
which will be used to include them in the chirality-flow method in section 5. We will start
with bispinors.

12



4.1 Bispinor Decomposition

We would like to decompose /p and /̄p into products of Weyl spinors. If their determinants
are zero, as they are in the massless case where pµ is light-like, then it is possible to
decompose them both directly,

/p = |p]〈p|, /̄p = |p〉[p|, (4.1a)

or in index form as √
2pα̇β = p̃α̇pβ,

√
2p̄αβ̇ = pαp̃β̇, (4.1b)

where we now use p directly instead of λp as λ± will in the remaining part of the thesis be
used for the two eigenvalues of /p and /̄p. If det(/p) = det(/̄p) = p2 = m2 6= 0, then we need to
split p into a sum of two terms that are decomposed separately. We may decompose using
the eigenvalues of /p and /̄p, or use a more general light-like decomposition. The eigenvalue
decomposition is a special case of the more general type of decomposition, and it is more
symmetric and intuitive. The general light-like decomposition, however, gives us freedom
to choose a particular decomposition, which can be used to cancel certain parts of our
calculations.

4.1.1 Eigenvalue Decomposition

The eigenvalue decomposition involves the eigenvalues and eigenvectors of /p and /̄p. The
eigenvalues can be found through the characteristic equation, det(/p − λ1) = 0, and they
are, for both /p and /̄p,

λ± = p0 ± |p| . (4.2)

Note that in the massless limit, where p2 = (p0)2 − |p|2 = 0, we get λ+ = 2p0 = 2 |p| and
λ− = 0. We also have the relation

det(/p) = det(/̄p) = λ+λ− = p2 = m2. (4.3)

We wish to find the eigenvectors |n±] and |n±〉 so that

/p = λ+|n+]〈n+|+ λ−|n−]〈n−| and /̄p = λ+|n+〉[n+|+ λ−|n−〉[n−|. (4.4)

These eigenvectors for the two matrices can be found in the standard way using matrix
multiplication:

ñα̇+ ↔ |n+] = e−iρ
(

sin θ
2

−eiφ cos θ
2

)
, ñα̇− ↔ |n−] = eiρ

(
−e−iφ cos θ

2

− sin θ
2

)
, (4.5a)

n+,α ↔ |n+〉 = eiρ
(
e−iφ cos θ

2

sin θ
2

)
, n−,α ↔ |n−〉 = e−iρ

(
sin θ

2

−eiφ cos θ
2

)
, (4.5b)
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where ρ is an arbitrary phase and where we have used spherical polar coordinates,

p = |p| e, e =

cosφ sin θ
sinφ sin θ

cos θ

 . (4.6)

The eigenvectors are normalized to satisfy 1 = 〈n+n−〉 = [n−n+], which is later used to
normalize the Dirac spinors in eq. (4.31). We note that from eq. (4.5) we get the relations

|n+] = |n−〉 and |n−] = −|n+〉. (4.7)

There is a possible source of confusion regarding the eigenvalue equation due to the spinor
contractions being antisymmetric. What we get when applying /p to |n+〉 is

/p|n+〉 =
(
λ+|n+]〈n+|+ λ−|n−]〈n−|

)
|n+〉 = λ−|n−] 〈n−n+〉 = −λ−|n−], (4.8)

which does not look like an eigenvalue equation. However, since |n−] = −|n+〉 we can
rewrite this equation into the form of an eigenvalue equation,

/p|n−] = λ−|n−]. (4.9a)

The same method can be used to write out the other 3 eigenvalue equations:

/p|n+] = λ+|n+], (4.9b)

/̄p|n−〉 = λ−|n−〉, (4.9c)

/̄p|n+〉 = λ+|n+〉. (4.9d)

The conclusion of this discussion is that the eigenvectors for /p are |n±] and the eigenvectors
for /̄p are |n±〉.
We can rewrite the decompositions in eq. (4.4) by letting the two Weyl spinors each absorb
a factor of

√
λ,

|p±] =
√
λ±|n±], |p±〉 =

√
λ±|n±〉, (4.10)

so that /p and /̄p can be written as

/p = |p+]〈p+|+ |p−]〈p−| and /̄p = |p+〉[p+|+ |p−〉[p−|. (4.11)

In this new form, 〈p+p−〉 =
√
λ+λ− = m and eq. (4.7) turns into√

λ−|p+] =
√
λ+|p−〉 and

√
λ+|p−] = −

√
λ−|p+〉. (4.12)

We also list these relations:

/p|p+〉 = |p−] 〈p−p+〉 = −m|p−], (4.13a)

/p|p−〉 = |p+] 〈p+p−〉 = m|p+], (4.13b)

/̄p|p+] = |p−〉 [p−p+] = m|p−〉, (4.13c)

/̄p|p−] = |p+〉 [p+p−] = −m|p+〉, (4.13d)

which will be used to find the Dirac equation solutions in eq. (4.30).
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4.1.2 General Light-like Decomposition

A more general way to decompose pµ is to write it as

pµ = p[µ + αqµ, α =
p2

2p · q , p · q 6= 0. (4.14)

Note that p · q = (p[ + αq) · q = p[ · q since q2 = 0. We may choose a light-like four-vector
qµ arbitrarily, which determines the other light-like four-vector p[µ. It is straightforward
to verify that p[µ is indeed light-like:

(p[)2 = p2 − 2
p2

2p · qp · q + α2q2 = α2q2 = 0, (4.15)

since q2 = 0.

We have found two light-like four-vectors p[µ and qµ which means that we can now write

/p and /̄p as

/p = |p[]〈p[|+ α|q]〈q| and /̄p = |p[〉[p[|+ α|q〉[q|, (4.16a)

or in index form as
√

2pα̇β = p̃[α̇p[β + αq̃α̇qβ and
√

2p̄αβ̇ = p[αp̃
[
β̇

+ αqαq̃β̇. (4.16b)

Explicit expressions for the p[ and q Weyl spinors can be found using eq. (3.6). In the

massless limit, α = p2

2p·q = m2

2p·q = 0, which means that p[µ → pµ so eq. (4.16) trivially

reduces to eq. (4.1).

The specific choice of qµ that gives the eigenvalue decomposition is qµ = 1
2

(1,−e), which is
clearly light-like since e is the unit vector in spherical polar coordinates given in eq. (4.6).
With (p0, |p| e) = pµ = p[µ + αqµ we find that

2p · q = p0 · 1 + |p| e · e = p0 + |p| = λ+, (4.17)

α =
p2

2p · q =
λ+λ−
λ+

= λ−, (4.18)

p[µ = pµ − αqµ = (p0, |p| e)− λ−
2

(1,−e) =
λ+

2
(1, e). (4.19)

The decomposition of pµ can in this case be written as

pµ = λ+n
µ
+ + λ−n

µ
−, where nµ+ =

1

2
(1, e) and nµ− =

1

2
(1,−e) , (4.20)

where pµ has been split into light-like forward-pointing and backward-pointing components.
We can also define:

pµ± = λ±n
µ
± (4.21)
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The backward-pointing component will vanish in the massless case as λ− goes to zero.
Contracting this pµ with either σµ or σ̄µ gives us back the two expressions in eq. (4.4), or
to express it another way:

|n+]〈n+| = nµ+σµ, |n−]〈n−| = nµ−σµ, (4.22a)

|n+〉[n+| = nµ+σ̄µ, |n−〉[n−| = nµ−σ̄µ, (4.22b)

which is straightforward but tedious to verify component-wise.

We would like to find expressions for the different types of spinor contractions between p[

and q. Due to their antisymmetry and the relation
[
p[q
]∗

=
〈
qp[
〉

we only need to find
one of them, because the others can be easily found using these relations. We have for any
4-vectors p and k the relation

p̄αβ̇k
β̇α = pµτ̄µ,αβ̇k

ντ β̇αν = pµkνgµν = p · k, (4.23)

where we have used eq. (2.6). We can use the relation above to rewrite the product of pµ

and qµ in terms of Weyl spinors,

2p · q =
√

2p̄αβ̇
√

2qβ̇α =
√

2p̄αβ̇ q̃
β̇qα = (p[αp̃

[
β̇

+ αqαq̃β̇)q̃β̇qα = qαp[αp̃
[
β̇
q̃β̇

=
〈
qp[
〉 [
p[q
]

=
∣∣[p[q]∣∣2 , (4.24)

which gives us one of the expressions we seek,[
p[q
]

= eiϕ
√

2p · q = eiϕ
m√
α
, (4.25a)

where 2p · q > 0 and ϕ is an arbitrary phase. From this we get the three others,[
qp[
]

= −eiϕ
√

2p · q = −eiϕ m√
α
, (4.25b)

〈
qp[
〉

= e−iϕ
√

2p · q = e−iϕ
m√
α
, (4.25c)〈

p[q
〉

= −e−iϕ
√

2p · q = −e−iϕ m√
α
. (4.25d)

It is possible to express the p[ Weyl spinors entirely in terms of p and q, which will be used
in eq. (4.41). The equation

/̄p|q] =
(
|p[〉[p[|+ α|q〉[q|

)
|q] = |p[〉

[
p[q
]

= |p[〉eiϕ
√

2p · q (4.26)

can be used to fit this purpose. We do a similar calculation for /p|q〉, rearrange the two
equations, and arrive at:

|p[] =
−eiϕ√
2p · q/p|q〉, |p[〉 =

e−iϕ√
2p · q /̄p|q]. (4.27)
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4.2 Dirac Equation Solutions

The solutions to the Dirac equation (i/∂γ − m)Ψ = 0, with Ψ being the Dirac spinor in
position space, can be divided into positive and negative frequency solutions,

Ψ+ = e−ip·xus(p) = e−ip·x
(
|usL]
|usR〉

)
, Ψ− = eip·xvs(p) = eip·x

(
|vsL]
|vsR〉

)
, (4.28)

where s is the spin index and where the particle spinor us(p) and anti-particle spinor vs(p)
have been split into their left- and right-chiral parts. Since we are using the chiral basis,
we can separate the Dirac equation into two parts in both cases:

/p|usR〉 = m|usL] and /̄p|usL] = m|usR〉 (4.29a)

or

/p|vsR〉 = −m|vsL] and /̄p|vsL] = −m|vsR〉. (4.29b)

4.2.1 In The Eigenvalue Decomposition

Using the eigenvalue decomposition in eq. (4.11) for /p and /̄p we can write the solutions as

u+(p) =

(
−|p−]
|p+〉

)
, u−(p) =

(
|p+]
|p−〉

)
,

v+(p) =

(
|p+]
−|p−〉

)
, v−(p) =

(
|p−]
|p+〉

)
, (4.30)

which can be verified by using eq. (4.13). Here the labels for the Dirac spinors refer to the
helicities of the particles and the Weyl spinor labels refer to the eigenvalues λ± used in the
eigenvalue decomposition. These solutions are normalized as:

us†(p)ur(p) = vs†(p)vr(p) = 2p0δsr, us(p)ur(p) = 2mδsr, and vs(p)vr(p) = −2mδsr.
(4.31)

To show that the spin labels in eq. (4.30) actually refer to the helicities we use the helicity

projector Σ± = 1
2

(
1± γ5/sγ

)
, where sµ = p0

m|p|p
µ− gµ0 m

|p| is the spin vector, which satisfies

s2 = −1 and s · p = 0 [10, 11]. The spin vector can also be written as sµ = 1
m

(pµ+ − pµ−),
where pµ+ and pµ− are given in eq. (4.21). The helicity projector together with the Dirac
equation solutions satisfy:

Σ+u+ = u+, Σ−u+ = 0, (4.32a)

Σ−u− = u−, Σ+u− = 0, (4.32b)

Σ+v+ = v+, Σ−v+ = 0, (4.32c)

Σ−v− = v−, Σ+v− = 0. (4.32d)

17



These can all be verified in the same way. For the u+ spinor we have

γ5/sγu
+ =

 0 1
m

(
/p− − /p+

)
1
m

(
/̄p+
− /̄p−

)
0

(−|p−]
|p+〉

)
=

(
1
m/p−|p+〉
− 1
m /̄p+
|p−]

)

=

(
1
m
|p−] 〈p−p+〉

− 1
m
|p+〉 [p+p−]

)
=

(
1
m
|p−](−m)

− 1
m
|p+〉(−m)

)
=

(
−|p−]
|p+〉

)
= u+, (4.33)

where we use /p+
|p+〉 = |p+] 〈p+p+〉 = 0, /̄p−|p−] = |p−〉 [p−p−] = 0, and eq. (4.13). This

gives us for the helicity projectors:Σ+u+ = 1
2

(
1 + γ5/sγ

)
u+ = 1

2
(1 + 1)u+ = u+

Σ−u+ = 1
2

(
1− γ5/sγ

)
u+ = 1

2
(1− 1)u+ = 0

. (4.34)

To find the outgoing particle spinors from the solutions we have, we simply need to Dirac
conjugate the u-spinors. In total we then have

u+ =
(
[p+| −〈p−|

)
↔ outgoing (+) helicity fermion, (4.35a)

u− =
(
[p−| 〈p+|

)
↔ outgoing (−) helicity fermion, (4.35b)

v+ =

(
|p+]
−|p−〉

)
↔ outgoing (+) helicity anti-fermion, (4.35c)

v− =

(
|p−]
|p+〉

)
↔ outgoing (−) helicity anti-fermion. (4.35d)

4.2.2 In The General Light-like Decomposition

If instead the /p and /̄p in the Dirac equation are decomposed in the general light-like
decomposition, the solutions can be written as

u+ =

(
−√α|q]
−eiϕ|p[〉

)
, u− =

(
−e−iϕ|p[]√

α|q〉

)
, (4.36)

v+ =

(
−e−iϕ|p[]
−√α|q〉

)
, v− =

( √
α|q]

−eiϕ|p[〉

)
, (4.37)

and the outgoing particle spinors as

u+ =
(
−e−iϕ[p[| −√α〈q|

)
↔ outgoing (+) spin fermion (4.38a)

u− =
(√

α[q| −eiϕ〈p[|
)

↔ outgoing (−) spin fermion (4.38b)

v+ =

(
−e−iϕ|p[]
−√α|q〉

)
↔ outgoing (+) spin anti-fermion (4.38c)

v− =

( √
α|q]

−eiϕ|p[〉

)
↔ outgoing (−) spin anti-fermion, (4.38d)
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where the spin labels do not refer to the helicities in this case, but rather to the spin
along an axis defined by the choice of qµ, namely the spatial part of the spin vector
sµ = pµ

m
− m

p·qq
µ = 1

m

(
p[µ − αqµ

)
. The relations in eq. (4.32) also apply in the general

light-like decomposition case, but now we use this spin vector sµ in Σ± = 1
2
(1 ± γ5/sγ).

It is worth noting that if qµ = 1
2
(1,−e), which is the specific choice of qµ that turns the

general decomposition into the eigenvalue decomposition, then p[µ = pµ+, αqµ = pµ−, and
sµ = 1

m

(
p[µ − αqµ

)
= 1

m
(pµ+ − pµ−), as it is for the helicity projector used in eq. (4.32).

The relations in eq. (4.32) are verified in the same way for sµ = 1
m

(
p[µ − αqµ

)
as we have

done before when sµ = 1
m

(pµ+ − pµ−). For the u+ spinor we have

γ5/sγu
+ =

(
0 1

m
(α/q − /p[)

1
m

(/̄p
[ − α/̄q) 0

)(
−√α|q]
−eiϕ|p[〉

)
=

(
− eiϕα

m /q|p[〉
−
√
α
m /̄p

[|q]

)

=

(
− eiϕα

m
|q]
〈
qp[
〉

−
√
α
m
|p[〉

[
p[q
]) =

(
− eiϕα

m
|q](e−iϕ m√

α
)

−
√
α
m
|p[〉(eiϕ m√

α
)

)
=

(
−√α|q]
−eiϕ|p[〉

)
= u+, (4.39)

where we have used /p[|p[〉 = |p[]
〈
p[p[

〉
= 0, /̄q|q] = |q〉 [qq] = 0, and eq. (4.25). This gives

for the spin projectors Σ± = 1
2
(1± γ5/sγ):

Σ+u+ = u+, Σ−u+ = 0, (4.40)

and similarly for the other combinations of projectors and spinors.

It is possible to write the spinors in a different form, shown here for u+:

u+ =

(
−√α|q]
−eiϕ|p[〉

)
=

(
− m√

2p·q |q]
−eiϕ /̄p|q]

eiϕ
√

2p·q

)
= − 1√

2p · q

(
m|q]
/̄p|q]

)
= − 1√

2p · q (/pγ +m)

(
|q]
0

)
=
−eiϕ
[p[q]

(/pγ +m)|q]D, (4.41)

where we have used eq. (4.25) and eq. (4.27), and where we have introduced an extension
of two-component Weyl spinors to four-component Dirac spinors:

|q]D =

(
|q]
0

)
, |q〉D =

(
0
|q〉

)
, [q|D =

(
[q| 0

)
, 〈q|D =

(
0 〈q|

)
. (4.42)

For all four cases we have:

u+ =
(
−e−iϕ[p[| −√α〈q|

)
=
−e−iϕ
〈qp[〉 〈q|D(/pγ +m), (4.43a)

u− =
(√

α[q| −eiϕ〈p[|
)

=
−eiϕ
[qp[]

[q|D(/pγ +m), (4.43b)

v+ =

(
−e−iϕ|p[]
−√α|q〉

)
=
−e−iϕ
〈p[q〉 (/pγ −m)|q〉D, (4.43c)

v− =

( √
α|q]

−eiϕ|p[〉

)
=
−eiϕ
[p[q]

(/pγ −m)|q]D. (4.43d)
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4.3 Polarization Vectors

All polarization vectors εµ should satisfy the transversality condition,

pµεµ(p) = 0, (4.44)

and the orthonormality relation,

εµi (p)ε∗j,µ(p) = −δij. (4.45)

for i, j = +, 0,− being the three polarisation states for massive particles.

4.3.1 In The Eigenvalue Decomposition

In the helicity basis, which we have seen in the previous section is related to the eigenvalue
decomposition, the three polarization states can be expressed as:

εµ±(p) =
e∓iφ√

2
(0,− cos θ cosφ± i sinφ,− cos θ sinφ∓ i cosφ, sin θ) = ε∗µ∓ (p), (4.46a)

εµ0(p) =
p0

m

( |p|
p0
, cosφ sin θ, sinφ sin θ, cos θ

)
=

1

m
(pµ+ − pµ−) = sµ, (4.46b)

where we have used the spherical polar coordinates defined in eq. (4.6). We consider
outgoing particles and therefore the complex conjugated polarization vectors. The matrix
or bispinor form can be found by contracting ε∗µi (p) with either τµ,α̇β or τ̄µ

αβ̇
, and they are:

ε∗α̇β+ (p)↔ e2iρ|n+]〈n−|, ε̄∗
+,αβ̇

(p)↔ e2iρ|n−〉[n+|, (4.47a)

ε∗α̇β− (p)↔ e−2iρ|n−]〈n+|, ε̄∗−,αβ̇(p)↔ e−2iρ|n+〉[n−|, (4.47b)

ε∗α̇β0 (p)↔ 1

m
√

2

(
|p+]〈p+| − |p−]〈p−|

)
, ε̄∗

0,αβ̇
(p) ↔ 1

m
√

2

(
|p+〉[p+| − |p−〉[p−|

)
, (4.47c)

where the first four relations are straightforward to prove for each element using eq. (4.5)
and the last two follow directly from εµ0(p) = sµ = 1

m
(pµ+ − pµ−). Note that ε∗α̇βi (p) =

ε∗µi (p)τ α̇βµ 6= (εα̇βi (p))∗.

We can rewrite the expressions in eq. (4.47) in an alternative four-vector form by con-

tracting them with either τ̄µβα̇ or τµ,β̇α, e.g. ε∗µ+ (p) = ε∗α̇β+ (p)τ̄µβα̇ = e2iρ|n+]α̇〈n−|β τ̄µβα̇ =

e2iρ〈n−|β τ̄µβα̇|n+]α̇ = e2iρ〈n−|τ̄µ|n+]. All three polarization vectors can then also be ex-
pressed as:

ε∗µ+ (p) = e2iρ[n+|τµ|n−〉 = e2iρ〈n−|τ̄µ|n+], (4.48a)

ε∗µ− (p) = e−2iρ[n−|τµ|n+〉 = e−2iρ〈n+|τ̄µ|n−], (4.48b)

ε∗µ0 (p) =
1

m
√

2

(
[p+|τµ|p+〉 − [p−|τµ|p−〉

)
=

1

m
√

2

(
〈p+|τ̄µ|p+]− 〈p−|τ̄µ|p−]

)
. (4.48c)
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4.3.2 In The General Light-like Decomposition

In the general decomposition the (+, 0,−) indices do not refer to helicity but rather to the
spin along the spatial part of the spin vector sµ = pµ

m
− m

p·qq
µ = 1

m

(
p[µ − αqµ

)
, in the same

way as for the generally decomposed Dirac spinors. These new relations look like

ε∗α̇β+ (p)↔ |p
[]〈q|
〈qp[〉 , ε̄∗

+,αβ̇
(p)↔ |q〉[p

[|
〈qp[〉 , (4.49a)

ε∗α̇β− (p)↔ |q]〈p
[|

[p[q]
, ε̄∗−,αβ̇(p)↔ |p

[〉[q|
[p[q]

, (4.49b)

ε∗α̇β0 (p)↔ 1

m
√

2

(
|p[]〈p[| − α|q]〈q|

)
, ε̄∗

0,αβ̇
(p) ↔ 1

m
√

2

(
|p[〉[p[| − α|q〉[q|

)
, (4.49c)

and

ε∗µ+ (p) =
[p[|τµ|q〉
〈qp[〉 =

〈q|τ̄µ|p[]
〈qp[〉 , (4.50a)

ε∗µ− (p) =
[q|τµ|p[〉

[p[q]
=
〈p[|τ̄µ|q]

[p[q]
, (4.50b)

ε∗µ0 (p) =
1

m
√

2

(
[p[|τµ|p[〉 − α[q|τµ|q〉

)
=

1

m
√

2

(
〈p[|τ̄µ|p[]− α〈q|τ̄µ|q]

)
, (4.50c)

where at least by looking at the form of the Weyl spinors it is easy to see how these relations
reduce to the eigenvalue decomposition relations in eq. (4.47) and eq. (4.48) in the special
case where p[ → λ+n+ and q → n−. The positive and negative spin polarization vectors
are of similar form to the massless polarization vectors in eq. (3.21), and in the massless
limit p[ → p and q becomes a reference momentum instead of defining a spin axis so that
the indices again refer to helicity.

5 Massive and Electroweak Chirality-Flow Rules

Now that we have the pieces needed for calculations that include massive particles in a
convenient form, let us move to the diagrammatic level. One large difference between
the massless and the massive case is in the relation between helicity and chirality. In the
massless case, helicity and chirality are bound together in a one-to-one relation, so that only
one chirality contributes to a certain helicity for a fermion. In the massive case, however,
helicity and chirality are not bound together, and both chiral parts contribute to a specific
helicity. This means that most1 massive cases have a greater number of chirality-flow
diagrams that contribute to a certain helicity configuration.

1One exception is with diagrams containing the ffW -vertex, since the chiral nature of the weak inter-
action only allows one type of chirality-flow for this vertex.
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The massive fermion propagators carry an additional mass term which contributes to an
increase of possible chirality-flow diagrams, and the fermion legs will have both chiral parts
contributing to a certain helicity which also increases the number of possible chirality-flow
diagrams. However, the massive boson propagators and external legs will not contribute to
an increase of diagrams; the propagators will only have their denominators changed which
do not alter the spinor contractions, and the possibility of a boson leg with longitudinal
polarization also does not change the structure of the spinor contractions. We will also
include the W, Z, and Higgs boson vertices to the chirality-flow formalism. The vertices can
rather easily be written as chirality-flow diagrams using what we know from the massless
case by examining their Lorentz index structure.

5.1 Massive Fermion Propagator

The denominator of the fermion propagator is trivial in the massive case. We simply
replace p2 with p2−m2 and since the denominator is not related to the chirality-flow itself
that is all we need to do. The numerator, however, contains /pγ + mf which in the chiral

basis can be split into four parts so that for the entire propagator we have:

←−p
=
i(/pγ +mf )

p2 −m2
f

=
i

p2 −m2
f

(
mf /pσ
/̄pσ̄ mf

)

↔ i

p2 −m2
f

(
mfδ

α̇
β̇

√
2pα̇β√

2p̄αβ̇ mfδα
β

)
=

i

p2 −m2
f


mf

α̇ β̇ α̇ β

p

α β̇

p

mf α β

 , (5.1)

where in the final step we use the index structure to form a diagrammatic interpretation.
The Kronecker deltas on the diagonal we have seen before in eq. (3.4). They connect
the two relevant ends without flipping the chirality, as opposed to what we have seen the
off-diagonal elements do. The off-diagonal elements, /pσ and /̄pσ̄, can be used in the same
way diagrammatically as in the massless case, except for the fact that they may contain
momenta pi where p2

i 6= 0, which need to be decomposed to two terms when written as
products of Weyl spinors.

A simple example of a generic diagram with a fermion propagator is one with two fermion
legs and two vector boson legs, shown in fig. 3, where all labels have been omitted for
clarity. If the fermions are massive, so that both chiralities contribute to a specific helicity
for that particle, four different chirality-flow diagrams will contribute to a specific helicity
configuration for the entire Feynman diagram, shown in fig. 4. In this figure we can see the
different components of the fermion propagator in eq. (5.1), in each of the four diagrams.
For a given helicity configuration in the massless case, only one of the two diagrams on
the left in fig. 4 survives, as both diagrams on the right always come with a factor of the
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Figure 3: A Feynman diagram without particle labels.

Figure 4: Four different types of chirality-flow diagrams that contribute to amplitudes for
the type of Feynman diagram shown in fig. 3.

mass and therefore vanish in the massless case. Which of the two diagrams on the left that
remain non-zero if mf = 0 depends on the helicity of the fermions, because in the massless
case only one chirality contributes to a specific helicity.

5.2 Massive Fermion Legs

For a massless fermion, only one of the two chiral parts of its Dirac spinor contributes for
a specific helicity. A single ffγ-vertex may in the massless case look like this:

µ

−

+
←−

←−

k

p

↔ ie
√

2

k

p

, (5.2)

where we have a regular Feynman diagram on the left and its corresponding chirality-flow
diagram on the right. The vector boson has been written as double lines in the chirality-flow
diagram that can directly be contracted with another vertex or a polarization vector.

For a massive fermion, however, both the left and right chiral parts of its Dirac spinor
contribute for a specific helicity. In the massive case the ffγ-vertex splits into two different
types of chirality-flow:

µ

−

+
←−

←−

k

p

↔ ie
√

2


k+

p+

+

−k−

p−  . (5.3)
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We can see where this relation comes from by looking at the same expression in algebraic
form:

u+(k) (ieγµ) v−(p) = ie
(
k+,α̇ −kα−

)( 0
√

2τµ,α̇β√
2τ̄µ
αβ̇

0

)(
pβ̇−
p+,β

)
= ie
√

2
[
k+,α̇τ

µ,α̇βp+,β + (−kα−)τ̄µ
αβ̇
pβ̇−

]
, (5.4)

where the spinors for the two helicities are taken from eq. (4.35). The two chirality-flow
diagrams in eq. (5.3) are the diagrammatic interpretations of the two terms in square
brackets in eq. (5.4).

When m = 0, the eigenvalues λ− = p0 − |p| are zero for both momenta k and p, so both
k− and p− are zero since they are both proportional to

√
λ−. If no helicities have been

specified for the legs, there is no way to tell which part disappears when m = 0. If specific
helicities have been given, however, it is possible to see which part goes away in the massless
limit for any type of decomposition since both λ− and α = p2

2p·q equal zero when m = 0.

A different example we can use is:

µ

+

+
←−

←−

k

p

↔ ie
√

2


k+

−p−

+

−k−

p+
 , (5.5)

where now both fermions have positive helicity. This helicity configuration does contribute
in the massive case but not in the massless case, because both p− in the left term and
k− in the right term will be zero in the massless case. The chirality-flow diagrams help
us in this case to see instantly that this helicity configuration does not contribute in the
massless case.

5.3 Electroweak Vertices

All the vertices discussed in this section are taken from [12]. The source includes Faddeev-
Popov ghosts, counterterms, and the three additional scalar fields from the Higgs doublet,
but we ignore these for now. We also ignore gluons in this section as they have already
been dealt with in [1].

The vector particle vertex V f̄f can in a general way be written as

µ = ieγµ(CLPL + CRPR), (5.6)
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where PL and PR are the chiral projection operators from eq. (2.7), and CL and CR are
constants that depend on the specific particles involved in the vertex. We can write this
out in matrix form and write the τ -matrices as chirality-flow diagrams:

µ = ieγµ(CLPL + CRPR) = ie
√

2

(
0 CRτ

µ

CLτ̄
µ 0

)
(5.7)

↔ ie
√

2


0 CR

CL 0


(5.8)

If we again look at eq. (5.4) but for an arbitrary electroweak vector boson instead of a
photon, we instead get:

u+(k) [ieγµ(CLPL + CRPR)] v−(p) = ie
√

2
(
k+,α̇ −kα−

)( 0 CRτ
µ,α̇β

CLτ̄
µ

αβ̇
0

)(
pβ̇−
p+,β

)
=ie
√

2
[
CRk+,α̇τ

µ,α̇βp+,β + CL(−kα−)τ̄µ
αβ̇
pβ̇−

]
. (5.9)

From this we see that CL is connected to the left-chiral part of an outgoing anti-particle (pβ̇−
in this case). If we were to consider incoming particles instead, CL would be connected to
the left-chiral part of an incoming particle. This is consistent with the fact that W-bosons
only couple to the left-chiral parts of incoming particles, since CR = 0 for W-bosons, as
can be seen in table 1.

Vertex CL CR
γf̄f −Qf −Qf

Zf̄f
I3W,f−Qf sin2 θW

sin θW cos θW
− sin θW

cos θW
Qf

W+ūidj
1√

2 sin θW
(VCKM)ij 0

W−d̄iuj
1√

2 sin θW
(VCKM)†ij 0

W+ν̄ilj
1√

2 sin θW
δij 0

W−l̄iνj
1√

2 sin θW
δij 0

Table 1: The values of CL and CR for the different V f̄f -vertices.

The scalar particle vertex Sf̄f can be written in a similar way to the V f̄f -vertex, by
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simply excluding γµ:

= ie (CLPL + CRPR) . (5.10)

The only vertex relevant for us right now is the Higgs vertex Hf̄f where CL = CR =
− mf

2 sin θWMW
. We could also insert a different scalar field from the Higgs doublet and get

different values for CL and CR, but as mentioned in the beginning of this section we ignore
these for now.

As an example, let us treat the two fermions as outgoing particles with assigned helicities
and write the diagram in algebraic form:

−

+
←−

←−

k

p

= ū+(k)ie (CLPL + CRPR) v−(p)

= ie
(
k+,α̇ −kα−

)
(CLPL + CRPR)

(
pα̇−
p+,α

)
= ie

(
CLk+,α̇p

α̇
− + CR

(
−kα−

)
p+,α

)
(5.11)

We see that scalar particles connect Weyl spinors of the same index type directly at the
vertex. These spinor contractions can be interpreted with chirality-flow diagrams,

−

+
←−

←−

k

p

= ie

CL
p−

k+

+ CR

p+

−k−

 (5.12)

where the scalar line has been removed from the chirality-flow diagrams as it does not add
any additional information at this level.

The contractions in eq. (5.12) imply a certain structure for the vertex:

= ie (CLPL + CRPR)

= ie

(
CL 0
0 CR

)
= ie


CL 0

0 CR


, (5.13)
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The vertices consisting of three and four vector bosons have the same form as the gluon
vertices, but with different constants that can be found in table 2. We have already seen
from eq. (3.18) and eq. (3.11) that gµν and pµ can be put into a diagrammatic form:

gµν ↔ and
√

2pµ ↔ p . (5.14)

If we do this for both vertices we get

µ1

µ2µ3

←−
−→

−→

p3 p2

p1

= −ieCV V V [gµ1µ2(p1 − p2)µ3 + gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2 ]

↔ −ieCV V V
1√
2


1

23

1− 2 +

1

23

2− 3
+

1

23

3− 1


(5.15)

and

µ1 µ2

µ3µ4

= ie2CV V V V (2gµ1µ3gµ4µ2 − gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

↔ ie2CV V V V

2

1

4

2

3

−
1

4

2

3

−
1

4

2

3

 . (5.16)

There are three additional vertices that contain factors in the form of gµν or pµ: VVS
(vector-vector-scalar), V V SS, and V SS. All V SS interactions involve at least one non-
Higgs electroweak scalar and the details around these are left out of this thesis, but the
vertex is still included to show that interactions of this type can also be put into diagram-
matic form. We can use eq. (5.14) to put these three diagrams into diagrammatic form as

27



Vertex Cvertex

γW+W− 1

ZW+W− − cos θW
sin θW

W+W−W+W− 1
sin2 θW

W+ZW−Z − cos2 θW
sin2 θW

W+γW−Z cos θW
sin θW

W+γW−γ −1

HHH − 3
2 sin θW

M2
H

MW

HHHH − 3
2 sin2 θW

M2
H

M2
W

HW+W− MW

sin θW

HZZ MW

sin θW cos2 θW

W+W−HH 1
2 sin2 θW

ZZHH 1
2 sin2 θW cos2 θW

Table 2: Values of the factor Cvertex for the different boson vertices.

well:

µ1

µ2

= ieCV V Sgµ1µ2 ↔ ieCV V S

1

2

, (5.17)

µ1

µ2

= ie2CV V SSgµ1µ2 ↔ ie2CV V SS

1

2

, (5.18)

←−

←−

p1

p2

µ = ieCV SS (k1 − k2)µ ↔ ieCV SS
1√
2

1− 2
. (5.19)

The final vertices that need to be dealt with are the simplest. The SSS and SSSS vertices,

= ieCSSS and = ie2CSSSS, (5.20)

do not contain any Lorentz factors and therefore do not affect the chirality-flow structure.
Any scalar line in a Feynman diagram can be completely ignored when drawing the relevant
chirality-flow diagrams, as long as the multiplicative factors from scalar interactions are
included.
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Vertices
Feynman Dirac Chirality-flow

µ ieγµ(CLPL + CRPR) ie
√

2

CL + CR


ie(CLPL + CRPR) ie

(
CL + CR

)
µ1

µ2

ieCV V Sgµ1µ2 ieCV V S

1

2←−

←−

p1

p2

µ ieCV SS(p1 − p2)µ ieCV SS
1√
2

1− 2

ieCSSS ieCSSS

µ1

µ2µ3

←−
−→

−→

p3 p2

p1

−ieCV V V [gµ1µ2(p1 − p2)µ3 + gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2 ] −ieCV V V 1√
2

 1

23

1− 2 +

1

23

2− 3
+

1

23

3− 1


ie2CSSSS ie2CSSSS

µ1

µ2

ie2CV V SSgµ1µ2 ie2CV V SS

1

2
µ1 µ2

µ3µ4

ie2CV V V V (2gµ1µ3gµ4µ2 − gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3) ie2CV V V V

2

1

4

2

3

−
1

4

2

3

−
1

4

2

3


Table 3: Chirality-flow rules for the different electroweak vertices. The factors of CL/R and Cvertex can be found in table 1 and table 2,
respectively.
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6 Massive and Electroweak Diagram Examples

We will now look at some examples of Feynman diagram calculations using the chirality-
flow method. We being with an example used earlier in fig. 2, but now for massive fermions,
shown in fig. 5. We remind the reader that in our Feynman diagrams, helicities are denoted
by superscript + and − signs, and in the following chirality-flow diagrams, the eigenvalue
decomposition Weyl spinors are denoted by subscript + and − signs. In this diagram and
all others in this section, all particles are considered outgoing.

1−

2+ 3+

4−

Figure 5: A ffγγ diagram with a given helicity configuration. The fermions are considered
massive.

We begin by collecting a factor of ie
√

2(−Qf ) from each of the two vertices, a factor of
i

(p2 + p3)2 −m2
f

from the fermion propagator, and a factor of
1

〈r33〉 [4r4]
from the two

polarization vectors. We then go through all the possible chirality-flow diagrams for this
Feynman diagram, and add the respective Weyl spinor labels to all of them. The only
chirality-flow diagrams possible for this Feynman diagram are shown in fig. 4. Fermion
number 2 is a positive helicity outgoing particle and fermion number 1 is a negative helicity
outgoing anti-fermion. These can be represented by the Dirac spinors

u+(p2) =
(
[2+|α̇ −〈2−|α

)
and v−(p1) =

(
|1−]α̇

|1+〉α

)
, (6.1)

expressed in terms of the eigenvalue decomposition Weyl spinors, where indices have been
added to clearly show what is dotted and what is undotted. We use these to add the
dotted spinors to the dotted lines and the undotted spinors to the undotted lines for
particles 1 and 2. Particle number 3 is a positive helicity photon, which means that the
dotted lines are given the physical momentum label 3 and the undotted lines are given
the reference momentum label r3; the opposite applies for particle number 4 since it has
negative helicity. Through the propagator we have the momentum p2+p3 so the momentum
dot in the chirality-flow diagrams are simply given the label 2 + 3. The diagrams without
a momentum dot in the propagator come with a factor of mf .

After some practice with the chirality-flow method it is possible to put these pieces together
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almost immediately, so that

1−

2+ 3+

4−

= ie
√

2(−Qf )
i

(p2 + p3)2 −m2
f

ie
√

2(−Qf )
1

〈r33〉 [4r4]
·

·


1+

2+ 3

4

r3

r4

2 + 3 +

1−

−2−
3

4

r3

r4

2 + 3

+mf

1−

2+ 3

4

r3

r4

+mf

1+

−2−
3

4

r3

r4

 (6.2)

At this stage we are in principle done with the calculation since every line corresponds
directly to a Weyl spinor contraction. However, for clarity we will also write this expression
in algebraic form:

1−

2+ 3+

4−

= ie
√

2(−Qf )
i

(p2 + p3)2 −m2
f

ie
√

2(−Qf )
1

〈r33〉 [4r4]
·

·
[

[2+3] 〈r3|
(
|2+〉[2+|+ |2−〉[2−|+ |3〉[3|

)
|r4] 〈41+〉

− 〈2−r3〉 [3|
(
|2+]〈2+|+ |2−]〈2−|+ |3]〈3|

)
|4〉 [r41−]

+mf [2+3] 〈r34〉 [r41−]−mf 〈2−r3〉 [3r4] 〈41+〉
]

(6.3)

As a check, it is also possible to arrive at the same expression as in eq. (6.3) without the
use of chirality-flow diagrams, using standard Feynman rules and spinor-helicity methods,
which has been done for this and the following examples. This process, however, is slower
than using the chirality-flow method.

When the mass goes to zero both Weyl spinors 1− and 2− also go to zero because they are
proportional to

√
λi,− =

√
p0
i − |pi| which is zero when p2

i = 0. This means that the only
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surviving chirality-flow diagram in the massless case is the first diagram out of the four
above, which is exactly the same as the diagram in the earlier massless example in fig. 2.

Another example we can use is a diagram relevant for associated Higgs production, shown
in fig. 6. The superscript 0 in 40 refers to the longitudinal polarization which is a possibility

1+

2− 3

40

H

Z

Figure 6: An associated Higgs production diagram with a given helicity configuration.

for any massive vector boson. We again collect all the factors from vertices, propagators,
and polarization vectors, we draw the only two possible chirality-flow diagrams, and finally
use the Dirac spinor solutions to place the Weyl spinors in their correct positions. The
result is

1+

2− 3

40

H

Z

= ie
√

2
−i

(p1 + p2)2 −m2
Z

ie
mW

sin θW cos2 θW

1

m
√

2
·

·

CL
−1−

2−

40

+ CR

1+

2+

40

 , (6.4)

which can also be written as

1+

2− 3

40

H

Z

= ie
√

2
−i

(p1 + p2)2 −m2
Z

ie
mW

sin θW cos2 θW

1

m
√

2
·

·
[
− CL〈1−|

(
|4+〉[4+| − |4−〉[4−|

)
|2−] + CR[1+|

(
|4+]〈4+| − |4−]〈4−|

)
|2+〉

]
(6.5)

As a final example, we will calculate a more complicated diagram, shown in fig. 7. In the
same way as before, we collect the factors coming from vertices and propagators, but we
do not immediately write down all possible complete chirality-flow diagrams. Instead, we
write them as products of partial chirality-flow diagrams by cutting the vector boson that
connects the two fermion lines. This allows us to more easily find all possible chirality-flow
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1+

2+ 3−

4−
H

5

Z

Figure 7: A Higgs production diagram with a given helicity configuration. This Feynman
diagram can be written as a sum of eight chirality-flow diagrams.

diagrams and helps us to keep better track of the arrow directions to avoid sign mistakes
that may appear when there are an odd number of spinor contractions. The result is:

1+

2+ 3−

4−
H

5

Z
= ie
√

2
−i

(p1 + p2)2 −m2
Z

ie
√

2 ×

× i

(p4 + p5)2 −m2
4

ie

(
− mf

2 sin θWmW

)CL,12

−2−

1+

+ CR,12

2+

−1−

×

×

CL,34

3−

4−

4 + 5 + CL,34m4

3−

4+

+ CR,34 4 + 5

4+

3+

+ CR,34m4

4−

3+


(6.6)
Some pairs of partial diagrams above can be connected instantly by gluing together the
two line types, undotted to undotted and dotted to dotted, because the arrow direction is
the same. In other pairs the arrow direction does not immediately match, but it is possible
to flip the direction of the arrows in one of the two partial diagrams. A simple example of
this is

i

j

=

i

j

, (6.7)

which can also be written as
〈i|τ̄µ|j] = [j|τµ|i〉. (6.8)
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A slightly more complicated example which also introduces a minus sign when the arrow
direction is flipped is

i

j

p = −

i

j

p , (6.9)

which can also be written as
〈j|/̄pτµ|i〉 = −〈i|τ̄µ/p|j〉. (6.10)

Changing the arrow direction of a single line always introduces a minus sign, which is why
an even number of arrow direction flips (as in the first example) does not give a minus
sign, but an odd number of flips (as in the second example) does give a minus sign; in the
second example the momentum dot divides a line into two lines.

The final result after flipping the required arrow directions and gluing the diagrams together
is

1+

2+ 3−

4−
H

5

Z
=

= ie
√

2
−i

(p1 + p2)2 −m2
Z

ie
√

2
i

(p4 + p5)2 −m2
4

ie

(
− mf

2 sin θWmW

)
×

×
[
CL,12CL,34

3−

4−

4 + 5

1+

−2−

+ CR,12CL,34

3−

4−

4 + 5

−1−

2+

CL,12CL,34m4

3−

4+

−2−

1+

+ CR,12CL,34m4

3−

4+

2+

−1−

CL,12CR,34 4 + 5

4+

3+−2−

1+

+ CR,12CR,34 4 + 5

4+

3+2+

−1−

CL,12CR,34m4

4−

3+−2−

1+

+ CR,12CR,34m4

4−

3+2+

−1−

]
(6.11)

34



If the Z-boson propagator had instead been a W -boson, all factors of CR would have been
zero, which means that only 2 out of the 8 diagrams would survive.

7 Conclusion and Outlook

In this thesis we have found a way to extend the chirality-flow method from massless QED
and QCD to the full standard model. In the examples shown we have seen that helicity
amplitudes are easy and quick to calculate using the chirality-flow method. Using this
method it is possible to go from Feynman diagram to a complex number with very little
effort.

The electroweak vector bosons can be treated similarly to photons and gluons, with the
addition of longitudinal polarization for massive vector bosons. Scalar particles have no
Lorentz structure and are therefore not assigned any chirality-flow lines. For massive
fermions, both left- and right-chiral parts contribute to a specific helicity eigenstate which
increases the number of chirality-flow diagrams that contribute to a certain helicity am-
plitude. This means that massive helicity amplitudes can effectively be broken down into
a sum of chirality-flow diagrams that can be treated individually using massless methods.
We have also seen that the W -boson can drastically simplify expressions, by reducing the
number of allowed chirality-flow diagrams.

There are still some interesting topics that are worthy of further study. In the examples in
this thesis we have used the eigenvalue decomposition for pedagogical and aesthetic reasons,
but it is possible that the general light-like decomposition may be preferable in many
practical cases. It would be useful to find ways to choose the reference momentum such
that we maximize symmetry, cancellation, or computer efficiency, perhaps by only looking
at the chirality-flow diagrams. Loop calculations have been ignored for the moment, but it
would be favourable if these could also be included in the chirality-flow method. Finally, it
may also be interesting to try to include extensions of the standard model, e.g. the Two-
Higgs-doublet model (2HDM) [13], and higher representations of the Lorentz group into
the chirality-flow method. For the higher representations, spin-3

2
particles in the Weyl-van-

der-Waerden formalism can be found in [14], and spinor techniques for spin-2 gravitons in
[15].
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