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Abstract

In this thesis, an introduction to public key cryptography over finite fields and
elliptic curves is given. Elliptic curves are introduced using affine and projective
spaces. The thesis also gives an introduction to algorithms that are able to break
the discrete logarithm problem over finite fields and elliptic curves faster than
an exhaustive search.

Uppsatsen behandlar asymmetrisk kryptering över ändliga kropper och elliptiska
kurver. Elliptiska kurver införs med hjälp av affint och projektivt rum. Upp-
saten också ger en introduction till algoritmer som kan knäcka diskret logaritm
problemet över kropper och elliptiska kurver.

Keywords: elliptic curves, public key cryptography, index calculus, Pohlig-Hellman,
Diffie-Hellman Problem, asymmetric cryptography
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Notation

DHP Diffie-Hellman Problem.
DLP Discrete Logarithm Problem.

ECDHP Elliptic Curve Diffie–Hellman Problem.
ECDLP Elliptic Curve Discrete Logarithm Problem.
#EpFpq Number of rational points on the elliptic curve

E over the field Fp.
EpKq Elliptic curve E over the field K.

F˚p Nonzero elements in the field Fp.

φpnq Euler Phi-Function – number of integers up
to n which are coprime to n.





1 Introduction

A secret is a piece of information that someone wishes to keep entirely to them-
selves, or to be able to share with a limited group of people whom they trust.
Furthering this idea is the notion of how long somone would like to keep this
piece of information secret for. In the short term we can look at the example of
buying a present for our partner, a piece of information that can be shared dis-
cretely with a number of individuals over a short period of time until it no longer
needs to be kept secret. In the long term it could also be a piece of information
that remains hidden for many years or even beyond death.

When keeping information secret for a long time, one has to take extended
precautions. With rising computation power and available storage, this can be-
come a real problem. For asymmetric cryptography large prime numbers or
compositions of large prime numbers are needed. These primes are used as keys
in asymmetric cryptography schemes and factoring the composition of two large
primes breaks the system. A prime of 2048 bits is expected to be able to secure
data until approximately 2022, 3072 bits until 2038, and 4096 bits until 2050
[FSK10]. But on the other hand, the rise in computation power, storage and
transmission speed is not only on the attackers side. So where lies the prob-
lem? Take the German passport for example, access to biometric photos and
fingerprints are managed by asymmetric encryption [Ben+08] and the transmis-
sion is done using contactless radio transmission. The problem when the key
size is increasing lies in the rate of radio transmission. With increasing key size
transmissions will take longer and longer in the future. Therefore switching to
a different scheme, considered equally secure, with a smaller key size is advis-
able as not only the key size but also the size of the stored data is expected to
increase in the future. Elliptic curve cryptography is considered to be as secure
as choosing larger prime numbers as encryption keys with the added benefit of
maintaining smaller key sizes.

History

Neal I. Koblitz and Victor S. Miller are the fathers of elliptic curve cryptography
[Kob87] [Mil86a]. The first application of elliptic curves concerning cryptography
was done by Hendrik Lenstra in 1984. He developed a method using elliptic
curves to factor large integers into their prime factors [Len86].

In late 1984, Lenstra sent a copy of his algorithm to Koblitz shortly before
Koblitz left for a study trip to the Soviet Union. During his trip Koblitz got the
idea on using elliptic curve groups to construct a cryptosystem. Although fluent
in Russian, he knew nobody to discuss his ideas with because cryptographic
research was not done openly at universities in the Soviet Union at the time.
Instead Koblitz wrote a letter to Andrew Odlyzko at Bell Labs, describing his
ideas. The letters took a couple of weeks each way and so it wasn’t until a month
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later when he got positive feedback from Odlyzko with the hint that Victor Miller
was also working on this topic at the same time at IBM. Koblitz, during that
time, had no notion of commercializing his idea and Miller was discouraged by
the bureaucracy at IBM. Both ended up not filing patents for their research
[Kob08].

The aim of this work is to introduce asymmetric cryptography using finite
fields and elliptic curves over finite fields. The reader is expected to have taken
a course on abstract algebra. To introduce elliptic curve cryptography from an
mathematical standpoint, the discrete logarithm is introduced first. Building on
the idea of the discrete logarithm, the Diffie-Hellman cryptosystem over finite
fields and its challenges are introduced in the next section. The work continues
with the introduction of elliptic curves from affine and projective curves. In
the final section Diffie-Hellman over elliptic curves is presented, as well as an
algorithm to break a wrong set up system.

The application of mathematical ideas to real world problems depends on
numerous theorems as well as a broad toolkit of techniques, covering the en-
tirety of information relating to elliptic curve cryptography is beyond the scope
of this thesis. Therefore, only the theorems, lemmas and propositions of the
utmost importance are presented here with proofs. It has been an arduous task
determining what is most important to this thesis.
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2 The Discrete Logarithm

The discrete logarithm (DL) can be viewed from an algebraic perspective or a
number theoretic one. In Number Theory the DL is referred to as the index
[Bur11], and algebraically we refer to the following definition [HPS14].

Definition 2.1. Let G be a group with ‹ as its group operation. Then x is
called a solution to the discrete logarithm if:

g ‹ g ‹ ¨ ¨ ¨ ‹ g
loooooomoooooon

x times

“ h.

The following definition is the specific case when the group operation is mul-
tiplication.

Definition 2.2. Let g and h be elements of the multiplicative group F˚p , both
non zero and g a primitive root in the group. Then x is called a solution to the
discrete logarithm if

gx ” h mod p

x “ loggphq.

While the multiplicative version of this definition is used in cryptography, the
additive counterpart is unusable for this purpose. The reason for this is that the
DL can be calculated by using the Euclidean algorithm for finding the inverse
to the primitive root in Fp [Wer13].

The next step is to look at basic properties of the multiplicative DL.

Theorem 2.3. Let a, b, g P F˚p , with g a primitive root. Then the following rules
hold:

1. loggpabq ” loggpaq ` loggpbq pmod φppqq

2. loggpakq ” k logpaq pmod φppqq

3. loggp1q ” 0 pmod φppqq

Proof. From the definition of the discrete logarithm, it follows that gloggpaq ” a

pmod mq and gloggpbq ” b pmod pq. When multiplying both congruences,

gloggpaq`loggpbq ” ab pmod pq

is the result. But by definition of the exponential function: gloggpabq ” ab

pmod pq. This leads to the conclusion that:

gloggpaq`loggpbq ” gloggpabq pmod pq.
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In case loggpaq ` loggpbq is bigger than φppq, it still holds, because ai ” aj

pmod pq if and only if i ” j pmod φppqq

Rule 2 can be proven by using the definition of the discrete logarithm again:

gloggpakq ” ak pmod pq.

Applying exponentiation results in:

pgloggpaqqk “ gk loggpaq ” ak pmod pq.

Which shows:

gloggpakq “ gk loggpaq pmod pq.

From this it can be deduced that loggpakq ” k logpaq pmod φppqq.
As an immediate consequence of the definition of exponents a1 “ a, therefore,

dividing both by a leaves a0 “ 1 and rule 3 holds.
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3 Diffie-Hellman Key Exchange

A classical problem in cryptography is the exchange of a shared secret over an
insecure channel. With the Diffie-Hellman key exchange, the problem can be
avoided by creating a shared secret over an insecure channel with two or more
participants. Following to classical cryptography notation, Alice and Bob are
two parties who wish to communicate secretly, while Eve would like to intercept
their communication and steal their secrets. In the beginning, Alice and Bob
agree on a prime p and a primitive root g in F˚p using the insecure channel. Eve
will take notice of that and therefore also know which g they will use. As a next
step, Alice chooses an secret integer a. Bob does likewise choose an integer b and
keeps it secret. In the next step, Alice and Bob will use their secret integers to
compute two values A and B

A ” ga pmod pq

and

B ” gb pmod pq.

If Alice and Bob now exchange the values A and B, Eve will also record those
two values. Alice and Bob now raise the received number to the power of their
secret integer. This then gives:

B1 “ Ba ” gab pmod pq

and

A1 “ Ab ” gab pmod pq.

Both have now a shared secret which they created together over an insecure
channel. Their shared secret is never transmitted, both keep it to themselves.
For more than two participants the algorithm stays essentially the same but
involves a more complicated exchange of intermediate calculation results. Eve
ends up with A,B and g and is not able to reconstruct a or b in a simple way
from the observed values, which she needs to get gab. The interesting question
is now: How could Eve reconstruct a or b?
This is called the Diffie-Hellman problem.

Definition 3.1 (Diffie-Hellman-Problem). Let p be a large prime and g a prim-
itive root in F˚p . Then the Diffie-Hellman Problem (DHP) is the problem of
constructing the value gab pmod pq from the values ga pmod pq and gb pmod pq.

The DHP is not harder to solve than the DLP introduced in section 2. When
the attacker can solve the DLP, the secret exponents of Bob and Alice can be
obtained which makes it easy to calculate their shared secret gab.
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3.1 Implementation Issues

There are several possible issues that can decrease the difficulty of solving the
DHP and therefore weaken the encryption. Besides programming issues, there
are also mathematical traps. Kohno, Ferguson and Schneier [FSK10] give insight
into these traps. A first mistake that can be done is choosing an arbitrary prime
p for F˚p . The next theorem states the reason for this.

Theorem 3.2. When a cyclic group G has order n, then G has a unique subgroup
of order k if k is a divisor of n.

Proof. This is a well-known theorem and a proof can be found in most books on
abstract algebra.

Choose a random element g˚ from F˚p to be the generator of the group. g˚

then generates a subgroup which divides to order of F˚p . The order of F˚p is p´1
and therefore an even number. It can be the case that for a bad choice of a
generator, g˚ only generates a small subgroup F˚p . This can enable, depending
on the subgroup’s size, Eve to try all possible values in a reasonable amount of
time. To avoid this problem, one can use a special sort of primes:

Definition 3.3 (Safe prime). A prime number of the form p “ 2q ` 1 where q
is also prime is called a safe prime or Sophie Germain prime.

By Theorem 3.2, if p is a safe prime, the number of multiplicative subgroups
of F˚p reduces to four, namely:

1. The trivial subgroup containing only the neutral element 1.

2. A subgroup of size two, containing 1 and p´ 1.

3. A subgroup of size q.

4. The full group of size 2q itself.

The preferred subgroup to use is the one of size q. This can be seen from
mathematical properties of the subgroups. While it is easy to rule out the use of
the first two subgroups by trial and error, a more advanced idea has to be used
to distinguish between the groups of size q and 2q.

Definition 3.4 (Legendre symbol). Let p be a prime bigger than 2, and gcdpa, pq “
1, if there exists an a such that a ” x2 pmod pq, then a is said to be a quadratic
residue or nonresidue if that is not the case. The Legendre symbol is defined in
the following way:

ˆ

a

p

˙

“

$

’

’

’

&

’

’

’

%

1 if a is a quadratic residue modulo p and a ı 0 pmod pq,

´1 if a is a quadratic nonresidues modulo p,

0 if a ” 0 pmod pq.
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Lemma 3.5. The subgroup of order q of the group F˚p with p “ 2q ` 1 consists
only of quadratic residues pmod pq.

Proof. The quadratic residues are congruent (in some order) to the even powers
of the groups generator g2k pmod pq.

Closure

If a “ g2l and b “ g2m are quadratic residues pmod pq, so is their product
ab “ g2pk`lq also a quadratic residue pmod pq.

Associativity

For a “ g2k, b “ g2l and c “ g2m it holds that pa ¨ bq ¨ c “ pg2kg2lq ¨ g2m “

g2pk`lq ¨ g2m “ g2pk`l`mq “ g2k ¨ g2pl`mq “ g2k ¨ pg2l ¨ g2mq “ a ¨ pb ¨ cq. So the
quadratic residues are associative.

Identity element

The element g0 “ 1 is the identity element in the group.

Inverse element

For an arbitrary element g2n there exists and element g´2n such that g2n ¨g´2n “

g0 “ 1. Where ´2n ” m pmod φppqq for some m P 1, ..., φppq.

The quadratic residues obey the group axioms, to finish the proof it has to
be shown that their group order is in fact p.

From Number Theory, it is known that a number can either be a quadratic
residue or nonresidue, not both. It is also well known that exactly half of the
numbers between 1 and p´ 1 are nonresidues pmod pq. Therefore the subgroup
of order q is formed by the quadratic residues pmod pq.

The subgroup of order 2q is not used because the use of elements which are
quadratic residues and nonresidues reveals information about the triple pgx, gy, gzq
where it can help to determine if gx ¨ gy “ gz or not. This problem is related to
the Decisional Diffie–Hellman assumption [FSK10].

3.2 Index Calculus

Besides being aware of issues that weaken the security of a cryptographic sys-
tem, one should also take into account algorithms which are designed to exploit
the nature of the problem effectively. The Baby-Step-Giant-Step or the Pohlig-
Hellman algorithm can solve the DLP but run in exponential time.

A very powerful method for the DLP is the so-called index calculus algorithm.
The first ideas for it came from Wester and Miller and got published 1968.
In the late 1970s and early 1980s Adelman, Merkle and Pollard invented an
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algorithm independently from each other. That algorithm can give a solution in
subexponential time but only works on Fp [HPS14][Ngu11].

The main idea of index calculus is that one builds a basis of known logarithm
values and tries to construct the unknown value from this basis. A similar
approach is also used when factoring composite numbers of big primes with the
number field or quadratic sieve.1

Smooth Numbers

Definition 3.6. A number is called B-smooth if it can be factored into prime
factors less than or equal to B.

The first step is to define which value B to choose for the so-called factor
base. Choosing B is a trade-off between efficiency of the algorithm and the
likelihood to find numbers that are B-smooth.

Definition 3.7. Let ψpx,Bq denote the function that counts the numbers smaller
or equal to x which are B-smooth.

In order to investigate the complexity of the index calculus method, it is
necessary to understand how smooth numbers are distributed. In other terms,
how many B-smooth numbers are there in the interval from 1 to x.

Silverman and Hoffstein [HPS14] give a result by Canfield, Erdős and Pomer-
ance:

Theorem 3.8. For a fixed 0 ă ε ă 1
2 , let x and B increase such that the

following inequality is always satisfied:

lnpxqε ă lnpBq ă lnpxq1´ε.

Then it holds that:

ψpx,Bq “ x ¨ u´up1`op1qq

with u “ lnpxq
lnpBq .

Proof. For a proof of this theorem and further information about smooth num-
bers, the reader is advised to consult [Gra08] and [Pom08].

Time Complexity

The time complexity of an algorithm or a function is the approximated cost of
computations it would take to solve the task. This cost can be measured in
group operations or bit operations. The difference is that when bit operations
are done, the operation costs also depends on the length of the input, while group
operations are independent of input size.

1See [HPS14],[FSK10] and especially [Pom08]
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Operation Expected complexity for cryptography
Addition of and m and an n-bit-integer Opmaxtlogn, logmuq
Multiplication of m-bit integers – Mpmq Opm2q
Multiplication pmod nq OpMplogpnqqq
Inversion pmod nq Oplog2pnqq
Computation gm pmod nq OplogpmqMplogpnqqq

Table 1: Taken from [Gal12]

Definition 3.9 (Big-Oh-Notation). In this work fpnq P Opgpnqq will denote the
following:

If there exist constants c and N such that for all n ě N it holds that |fpnq| ď
c|gpnq|, then this can be written as:

lim sup
nÑ8

|fpnq|

|gpnq|
ă 8.

Definition 3.10 (Little-Oh-Notation). In this work fpnq P opgpnqq will denote
the following:

lim sup
nÑ8

|fpnq|

|gpnq|
“ 0.

The cost of operations usually varies, depending on the implement algorithm. For
example the cost of integer multiplication can vary between Opn2q for classical
schoolbook multiplication to as low as Opn logn log lognq for a multiplication
using a Fast Fourier Transformation [Sut19]. Therefore the abbreviation Mpmq
will be used when multiplication is part of an algorithm.

If needed the cost stated in table 1 will be assumed for the different operations
when time complexity is derived in this work.

Another notation that is commonly used when analyzing algorithms is the
so-called L-Notation.

Definition 3.11. Let the L-notation be denoted as follows:

Lnrα, cs “ epc`op1qqplnnq
αpln lnnq1´α

with c a positive constant and 0 ď α ď 1.

Depending on the value of α the complexity described in this notation is
referred to in three different terms. For the case that α “ 0 the algorithm is said
of being of polynomial time. If α “ 1 it is of exponential and for 0 ă α ă 1 of
sub-exponential time.

Algorithm 3.12 (Index Calculus). Let α denote a primitive root in F˚p and β
the element whose discrete logarithm is to be computed. The problem to solve is
then to find the value of logαpβq.
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1. Decide on a smoothness bound B and and compute the factor base FB :“
tp1, p2, ..., pbu where b denotes the total of number that are B-smooth.

2. Generate a random power of αr and attempt to factor αr over the factor
base. If successful save the relation ri “ αeiβ´1 “

ś

pei,jj . Repeat this step
until b` 1 relations are found.

3. The resulting equations from step 2 form a system of linear equations when
the logarithm with respect to α is taken on both sides. Solve this system of
equations.

4. Return the solution logαpβq if found, otherwise go to step 2 again.

The following example is taken from [HPS14]:

Example 1. Let p “ 18443, 37 be a primitive root pmod pq and the discrete
logarithm problem to be solved is

37x ” 211 pmod 18443q

Setting B “ 5, the factor base consists of the elements 2,3 and 5. The first step
is to compute 37x for random values of x and check if the result is 5-smooth. If
so, the value and its factorization are saved for the next step of the algorithm.
For example:

g12708 ” 23 ¨ 34 ¨ 5 pmod 18443q, g11311 ” 23 ¨ 52 pmod 18443q

g15400 ” 23 ¨ 33 ¨ 5 pmod 18443q, g2731 ” 23 ¨ 3 ¨ 54 pmod 18443q

This can be turned into a linear equation with three unknowns:

12708 “ 3 ¨ log37p2q ` 4 ¨ log37p3q ` log37p5q

Doing the same for all the before given examples gives rise to a system of linear
equations:

3x2 ` 4x3 ` x5 “ 12708 pmod 18442q

3x2 ` ` 2x5 “ 11311 pmod 18442q

3x2 ` 3x3 ` x5 “ 15400 pmod 18442q

3x2 ` x3 ` 4x5 “ 2731 pmod 18442q

This gives the two solutions

px2, x3, x5q ” p1, 0, 1q pmod 2q

px2, x3, x5q ” p5733, 6529, 6277q pmod 9221q
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Combining those gives:

px2, x3, x5q ” p5733, 15750, 6277q pmod 18442q

The next step is computing 211 ¨ 37´k pmod 18443q for random values of k until
a B-smooth value is obtained.

211 ¨ 37´9549 ” 25 ¨ 32 ¨ 52 pmod 18443q

Taking the previously calculated values for the discrete logarithms of 2,3 and 5
leads to:

log37p211q “ 9549` 5 log37p2q ` 2 log37p3q ` 2 log37p5q

“ 9549` 5 ¨ 5733` 2 ¨ 15750` 2 ¨ 6277 ” 8500 pmod 18442q

And in fact, 378500 ” 211 pmod 18442q.

The proof of the next theorem follows closely the argumentation of [Sut19].
The simplest approach for factoring over the factor base, trial-division, is used.
There are faster algorithms for factoring, it does not change the fact that the
algorithm is subexponential but simplifies the proof.

Theorem 3.13. The index calculus algorithm for solving the discrete logarithm
problem over finite fields is of subexponential complexity.

Proof. At first, the second step of the algorithm will be examined, the reason
for this will become clearer later. The second step takes approximately:

pb` 1q ¨ uu ¨ b ¨MplogNq

where u “ logN
logB .

• b` 1: the number of equation needed for the linear algebra step

• uu: the number of random exponents expected to try to obtain an B-
smooth integer m within r1, N s

• b: number of trial divisions to test if the number m is B-smooth and then
factor it

• M(logN) : the time for each trial division

The first assumption to do is that b « b` 1. So the equation simplifies to:

b2 ¨ uu ¨MplogNq.

The number of primes b “ πpBq up to B, can roughly be approximated with
πpBq « B

logB by the prime number theorem, leading to:
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ˆ

B

logB

˙2
¨ uu ¨MplogNq

In the end, B
logB is a large number, replacing it with just B will help to analyse

the algorithm better.

B2 ¨ uu ¨MplogNq

The factor MplogNq will be crossed out. The reason will be discussed near the
end of the proof. The fact that u “ logN

logB makes it possible to rewrite B in terms
of N such that:

B2uu “ N2{uuu.

Taking the logarithm on both sides leads to:

fpuq “ logpN2{uuuq “
2
u

logpNq ` u log u.

Examining the derivative f 1puq helps to minimize the function:

f 1puq “ ´
2
u2 logN ` 2

uN
` log u` 1 “ 0.

Neglecting the terms 1 because it is not relevant enough for asymptotic behaviour
when N is big, one simplifies the derivative to:

f̃ 1puq “ ´
2
u2 logN ` log u`Op1q “ 0.

Which leads to the following approximation:

u2 log u « 2 logN

u2 «
2 logN

logplogN ´ logBq

noticing that logB P oplogNq simplifies then to:

u2 «
2 logN

log logN .

Using

u “ 2
a

logN{ log logN

12



in the equation gives:

u2 log u “ 4 logN
log logN ¨

ˆ

log 2` 1
2plog logN ´ log log logNq

˙

“ 2 logN ` oplogNq.

This value of u shows that one should use the following smoothness bound:

B “ N1{u “ expp 1
U

logNq

“ expp12
a

logN log logNq

“ Lr
1
2 ,

1
2 s.

This also gives uu “ exppu log uq which equals LN “ Lr12 , 1s in L-Notation. The
factor MplogNq can be ignored because multiplying by a polynomial in logN
does not change the asymptotic level of precision of this time complexity analysis.
Putting those results together gives the expected running time of step two:

B2uu “ LN r1{2, 1{2s2LN r1{2, 1s “ LN r1{2, 2s.

The step of solving the linear algebra part of the problem depends on the size
of the smoothness bound only. Using Gaussian elimination to solve the system
of equations, this step can be bounded by Opb3q. b was before approximated by
B, so this leads to OpB3q. This translates to LN r1{2, 3{2s and, as it is added, is
dominated by the previous step of generating the linear relations.
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4 Elliptic Curves

The main goal of this section is to define elliptic curves formally and investigate
the group structure they contain. To achieve this, affine curves and projective
curves are introduced. This is necessary to formally introduce the point at in-
finity O used as the neutral group element in cryptography. For this formal
introduction Werner’s book [Wer13] is closely followed, but some parts are also
taken from [Eng12]. The rest about elliptic curves cryptography is based on the
literature [ST15], [Bla+99]. In contrast to [Lan78] who writes:

It is possible to write endlessly on elliptic curves. (This is not a
threat.)

this section will have a finite number of pages.

4.1 Affine Curves

Definition 4.1. Let f be a polynomial function of two variables with coefficients
in some field F:

fpx, yq “
ÿ

µ1,µ2ě0
αµ1,µ2x

µ1yµ2 αµ1,µ2 P F

with only finitely many αµ1,µ2 nonzero and f ‰ 0. The set of zeros of f in FˆF
shall be then called Cf pFq:

Cf pFq “ tpa, bq P Fˆ F | fpa, bq “ 0u.

This will be called an affine plane curve. The notation can be simplified by just
writing CpFq when it is clear which polynomial function f is meant.

Definition 4.2. The space Fˆ F may also be denoted as A2pFq.

A2pFq “ tpa, bq | a, b P Fu

and called the two dimensional affine space.

Example 2. Let F “ F5 and fpx, yq “ y2 ´ x3 ´ x´ 1. Then the curve Cf pFq
consists of the set of solutions of the equation y2 “ x3 ` x` 1. Checking which
elements of F5 satisfy the equation, gives the points:

Cf pF5q “ tp0, 1q, p0, 4q, p2, 1q, p2, 4q, p3, 1q, p3, 4q, p4, 2q, p4, 3qu

One can also consider a field E which contains F. A special case would be
F̄, its closure and see that Cf pFq is a sub set of Cf pF̄q.

15



Definition 4.3. An affine curve Cf pFq is said to be singular in a point pa, bq P
Cf pFq if f itself and both partial derivatives equal to zero in pa, bq.

fpa, bq “
Bf

Bx
pa, bq “

Bf

By
pa, bq “ 0

Definition 4.4. An affine curve Cf pFq is said to be non-singular if the curve
Cf pF̄q isn’t singular in any point pa, bq P A2pF̄q.

So it may be that Cf pFq is singular although it does not contain a singular
point at all. An example can be given when one considers a curve of the reals
R and its closure C, the complex numbers. Werner [Wer13] gives the following
example:

Example 3. Let fpx, yq “ y2´ x4´ 2x2´ 1 and then its partial derivatives are

Bf

Bx
“ ´4xpx2 ` 1q and Bf

By
“ 2y

Then f, Bf
Bx ,

Bf
By have no zeros over R in common. But over the closure of R there

exist the two points pi, 0q and p´i, 0q which are in Cf pCq so that the curve Cf pRq
is singular.

4.2 Projective Curves

To define the point O, it is necessary to examine the curves in a space other than
the affine space.

Considering the same curve Cf pFq as before from example 2:

fpx, yq “ y2 ´ x3 ´ x´ 1

The solutions pa, bq P A2pFq follow the rule b2 “ a3 ` a ` 1. Choosing an
arbitrary number c ‰ 0 P F, one can define a1 “ ac and b1 “ bc. When then
replacing a and b by a1, b1 the equation rewrites to:

ˆ

b1

c

˙2
“

ˆ

a1

c

˙3
`
a1

c
` 1.

Multiplying with c3 gives the equation b12c “ a12 ` a1c2 ` c3 which makes
pa1, b1, cq P Fˆ Fˆ F a solution of an equation in three variables:

Y 2Z “ X3 `XZ2 ` Z3.

The reason for doing this is that the extended equation has more solutions than
the previous one in only two variables. Assuming that pa, b, cq P Fˆ Fˆ F, the
solutions are of the form:

b2c “ a3 ` ac2 ` c3.

16



This leads to two different cases:
First, the c which extends the equation is chosen to be zero, which leads to

the case that a3 “ 0, which indicates that a “ 0 and b can be chosen arbitrarily.
This is not a solution to the affine form of the equation. This case will play an
important role later and should not be forgotten, but will be put aside for a bit
now.

The second case occurs if c is not equal to zero. Then one can divide the
equation by c3 and get the solution

`

a
c ,

b
c

˘

.
This shows that if pa, b, cq is a solution to the extended equation, also pta, tb, tcq

is a solution for it when t ‰ 0. For the case that c ‰ 0 the results are similar.
Let tc ‰ 0, then

`

a
c ,

b
c

˘

“
`

ta
tc ,

tb
tc

˘

.

Definition 4.5. The points pa, b, cq and pa1, b1, c1q are called equivalent in F ˆ
F ˆ F if there exist t P Fzt0u such that:

a “ ta1, b “ tb1, c “ tc1.

The equivalence is denoted by the symbol „, written pa, b, cq „ pa1, b1, c1q.

Definition 4.6. The two dimensional projective space P2pFq is defined as the
quotient of Fˆ Fˆ F ztp0, 0, 0qu with the equivalence relation „:

P2pFq “ Fˆ Fˆ F ztp0, 0, 0qu{ „

So the projective space P2pFq is a set of equivalence classes of „. Which
means that every pa, b, cq ‰ p0, 0, 0q is a point in P2pFq, denoted ra : b : cs. Two
points ra : b : cs and ra1 : b1 : c1s are called equivalent if and only if it holds that
a “ ta1, b “ tb1 and c “ tc1 for some t ‰ 0.

It is possible to formulate a mapping between the affine space and the pro-
jective space.

i : A2pFq Ñ P2pFq

ipa, bq “ ra : b : 1s

Using this definition, one can see that the mapping is injective:

ipa, bq “ ipa1, b1q

ñ ra : b : 1s “ ra1 : b1 : 1s.

From this it can be deduced that t “ 1, because the equations a “ ta1, b “ tb1 and
1 “ 1t have to hold. This shows that pa, bq “ pa1, b1q. When using the mapping
i, A2pFq can be viewed as a subset of P2pFq.

All points in the form ra : b : cs with c ‰ 0 can be written as points in A2pFq.
But P2pFq is bigger than that. For example the point ra : b : 0s is an element in
P2pFq but not in A2pFq. If it was, it would induce that t0 “ 1 which is clearly a
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contradiction. This observation makes it necessary to define a second mapping.
This time from F to P2pFq:

j : F Ñ P2pFq

jpaq “ ra : 1 : 0s

Like before this mapping is injective and the image of j contains all points
ra : b : 0s in P2pFq when b ‰ 0. But still one point is missing from the set, and
that is r1 : 0 : 0s. So ra : 0 : 0s “ r1 : 0 : 0s for all a ‰ 0.

Combining those thoughts on i, j and the point r1 : 0 : 0s, it can be concluded
that P2pFq can be written as a union of ipA2pFqq, jpFq and r1 : 0 : 0s:

P2pFq “ ipA2pFqq Y jpFq Y tr1 : 0 : 0su

Definition 4.7. Let g be a polynomial in X,Y and Z over F. g is called
homogeneous of degree d if:

gpX,Y, Zq “
ÿ

µ1,µ2,µ3ě0
αµ1,µ2,µ3X

µ1Y µ2Zµ3

with αµ1,µ2,µ3 not all zero, and µ1 ` µ2 ` µ3 “ d for the case that αµ1,µ2,µ3 ‰ 0

An example of a homogeneous polynomial of degree 3 would be gpX,Y, Zq “
Y 2Z ´X3 ´ Y Z2 ´ Z3.

Lemma 4.8. Let g P FrX,Y, Zs be a homogeneous polynomial of degree d and
a, b, c P F and t P Fzt0u Then it holds that:

gpa, b, cq “ 0 ô gpta, tb, tcq “ 0.

Proof. Let

g “
ÿ

µ1,µ2,µ3ě0
αµ1,µ2,µ3X

µ1Y µ2Zµ3 .

From this follows then that

gpta, tb, tcq “
ÿ

µ1,µ2,µ3ě0
αµ1,µ2,µ3ptaq

µ1ptbqµ2ptcqµ3 .

Using the exponent rules gives that

“
ÿ

µ1,µ2,µ3ě0
αµ1,µ2,µ3t

dpaqµ1pbqµ2pcqµ3 “ tdgpa, b, cq.

The sum of the exponents equals d in every nonzero term and the statement is
proved because gpa, b, cq “ 0 by assumption and therefore td0 “ 0.
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This tells that when pa, b, cq is zero for the polynomial g also the multiplies
of this zero pta, tb, tcq have to be a zeros in F.

This leads to the next definition of projective plane curves.

Definition 4.9 (Projective Plane Curve). Set g P FrX,Y, Zs to be a homoge-
neous polynomial. The set of roots of g in P2pF q shall be denoted CgpFq

CgpFq “ tra : b : cs P P2pFq | gpa, b, cq “ 0u.

The set CgpFq of roots is then called projective plane curve.

Revisiting the example from before, there are the two polynomials fpx, yq “
y2´x3´x´1 P A2pFq and now also gpX,Y, Zq “ Y 2Z´X3´XZ2´Z3 P P2pFq
and their sets of zeros Cf pFq and CgpFq. From the previous pages it can be
concluded that every solution in Cf pFq is also contained in CgpFq. This is true
because the mapping i : pa, bq Ñ ra : b : 1s is an injective mapping from A2pFq
to P2pFq.

At the beginning of this section, the equation of an affine curve got extended
to introduce the idea of the projective space. The theory developed until now
is based on the case c ‰ 0. For c “ 0 the curve has an additional zero namely
r0 : 1 : 0s, which is not in Cf pFq but in CgpFq. So:

CgpFq “ ipCf pFqq Y tr0 : 1 : 0su.

Until now it is shown that the affine curve Cf pFq can be embedded into the
projective curve CgpFq. But this projective curve CgpFq contains an additional
point which is not part of Cf pFq. This point is, in elliptic curve cryptography,
usually refereed to as point at infinity and will be denoted O.

Proposition 4.10. Let f be any nonzero polynomial in Frx, ys, additionally
fpx, yq “

ř

µ1,µ2ě0,µ1`µ2ďd
αµ1,µ2x

µ1yµ2 where the coefficients αµ1,µ2 are in F, a

polynomial of degree d. d is the maximum of all µ1`µ2 for any nonzero αµ1,µ2.
The following polynomial of degree d:

gpX,Y, Zq “
ÿ

µ1,µ2ě0,µ1`µ2ďd

αµ1,µ2X
µ1Y µ2Zd´µ1´µ2 .

is then homogeneous and satisfies the condition gpa, b, 1q “ fpa, bq for every pair
pa, bq P A2pFq. The mapping i : A2pFq Ñ P2pFq maps Cf pFq to CgpFq. If a
point ra : b : cs P P2pF q can be written as ipxq for some x P A2pFq, it follows
that x is in Cf pFq.

Proof. The polynomial g is by assumption homogeneous and of degree d. Also
the following equality holds:

gpa, b, 1q “ fpa, bq
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and it follows that ipa, bq “ ra : b : 1s P CgpFq for all points pa, bq P Cf pFq. If for
choosing an arbitrary pa, bq P A2pFq the point ipa, bq “ ra : b : 1s is in CgpFq, so
is gpa, b, 1q “ 0 as well as fpa, bq. From this follows that pa, bq P CgpFq.

Other mappings between A2pFq and P2pFq are also possible. For example:

i1pa, bq “ r1 : a : bs or i2pa, bq “ ra : 1 : bs.

All three copies of ipA2pFqq, i1pA2pFqq, i2pA2pFqq overlap. So ipa, bq can be
rewritten in terms of i1pb{a, 1{aq or i2pa{b, 1{bq for all a, b ‰ 0. Those three sets
combined contain all points ra : b : cs in P2pFq, because for each one of those
sets, either a, b or c is not equal to zero.

Instead of writing the mapping in terms of i, i1 or i2 one can also denote it
as:

CgpFq XA2pFq “ Cf pFq

or to point out the mapping i1 and i2

CgpFq X i1pA2pFqq “ Cf pFq

CgpFq X i2pA2pFqq “ Cf pFq

Those two mappings i1 and i2 have a similar result as i, namely:

Proposition 4.11. Let the homogeneous polynomial of degree d be defined by g “
ř

µ1,µ2,µ3ě0
αµ1,µ2,µ3X

µ1Y µ2Zµ3 with µ1` µ2` µ3 “ d for all nonzero coefficients.

Then

CgpFq X i1pA2pFqq “ i1pCf1pFqq

for f1px, yq “
ř

µ2,µ3ě0,µ2`µ3ďd
αd´µ2´µ3,µ2,µ3x

µ2yµ3 and

CgpFq X i2pA2pFqq “ i2pCf2pFqq

for f1px, yq “
ř

µ1,µ3ě0,µ1`µ3ďd
αd´µ1´µ3,µ1,µ3x

µ1yµ3.

Proof. This proof is very similar to the proof of proposition 4.10.

Definition 4.12. Let g denote a homogeneous polynomial in FrX,Y, Zs of de-
gree d.

1. A projecive plane curve CgpFq is called singular in a point ra : b : cs P CgpFq
if all derivatives of g in [a : b : c] are zero.

Bg

BX
pa, b, cq “

BG

BY
pa, b, cq “

Bg

BZ
pa, b, cq “ 0
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2. The curve CgpFq shall be called non-singular if CgpF̄q does not contain any
singular points.

Lemma 4.13. Let gpX,Y, Zq “
ř

µ1,µ2,µ3ě0 αµ1,µ2,µ3X
µ1Y µ2Zµ3 be a homoge-

neous polynomial of degree d and fpx, yq “
ř

µ1,µ2ě0,µ1`µ2ďd
αµ1,µ2,d´µ1´µ2x

µ1yµ2.
For all points P P CgpFq it then holds that: If P “ ipQq is in ipA2pFqq, then
CgpFq is singular in P if and only if the affine curve Cf pFq is singular in Q.

Proof. Let Q “ pa, bq, then proposition 4.10 ensures that Q is on the affine curve
Cf pFq. It follows then that P “ ipQq “ ra : b : 1s.

Bg

BX
pX,Y, Zq “

ÿ

µ1ą0,µ2,µ3ě0
µ1αµ1,µ2,µ3X

µ1´1Y µ2Zµ3

such that Bg
BX pa, b, 1q “

Bf
Bx pa, bq as well as

Bg
BY pa, b, 1q “

Bf
By pa, bq. In addition:

Bg

BZ
pX,Y, Zq “

ÿ

µ1,µ2ě0,µ3ą0
µ3αµ1,µ2,µ3X

µ1Y µ2Zµ3´1

From which it follows that:

Bg

BZ
pa, b, 1q “

ÿ

µ1,µ2ď0,µ3ą0
µ3αµ1,µ2,µ3a

µ1bµ2 .

If µ3 “ 0 the respective addend disappears. As µ1 ` µ2 ` µ3 “ d it follows:

Bg

BZ
pa, b, 1q “

ÿ

µ1,µ2ď0,µ1`µ2ď0
αµ1,µ2,d´µ1µ2pd´ µ1 ´ µ2qa

µ1bµ2

“ dfpa, bq ´ a
Bf

Bx
pa, bq ´ b

Bf

By
pa, bq.

4.3 Elliptic Curves

Now that affine and projective curves have been introduced, it is time to focus
on a special kind of projective curves, the so called elliptic curves. What makes
them interesting is the fact that a group law can be defined such that the points
on the curve form an abelian group.

Definition 4.14. A non-singular projective plane curve CgpFq with g being a
homogeneous polynomial of degree three of the form:

gpX,Y, Zq “ Y 2Z ` a1XY Z ` a3Y Z
2 ´X3 ´ a2X

2Z ´ a4XZ
2 ´ a6Z

3

with a1, a2, a3, a4, a6 P F is called an elliptic curve.

An elliptic curve written in this form is called a Weierstraß equation.
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Proposition 4.15. Let CgpFq be an elliptic curve where g of the form:

gpX,Y, Zq “ Y 2Z ` a1XY Z ` a3Y Z
2 ´X3 ´ a2X

2Z ´ a4XZ
2 ´ a6Z

3.

Case 1: char(F) ‰ 2
The mapping

Φ : P2pFq Ñ P2pFq

rr : s : ts Ñ rr : s` a1
2 r `

a3
2 t : ts

is bijective and it holds that:

ΦpCgpFqq “ Ch1pFq

where h1pX,Y, Zq “ Y 2Z ´ X3 ´ 1
4b2X

2Z ´ 1
2b4XZ

2 ´ 1
4b6Z

3 with b2 “ a2
1 `

4a2, b4 “ 2a4 ` a1a3 and b6 “ a2
3 ` 4a6. Ch1pFq is then also an elliptic curve.

Case 2: char(F) ‰ 2, 3
The mapping

Ψ : P2pFq Ñ P2pFq

rr : s : ts Ñ r36r ` 3b2t : 216s : ts

is bijective and it holds that:

ΨpCgpFqq “ Ch2pFq

where h2pX,Y, Zq “ Y 2Z ´ X3 ` 27c4XZ
2 ` 54c6Z

3 with c4 “ b22 ´ 24b4 and
c6 “ ´b

3
2 ` 36b2b4 ´ 216b6. Ch2pFq is then also an elliptic curve.

Case 3: char(F) “ 2 and a1 ‰ 0
The mapping

Θ : P2pFq Ñ P2pFq

rr : s : ts Ñ r
1
a2

1
r `

a3
a1
t : a3

1s`
a2

1a4 ` a
2
3

a3
1

t : ts

is bijective and it holds that:

ΘpCgpFqq “ Ch2pFq

where h3pX,Y, Zq “ Y 2Z `XY Z ´X3 ´ a12X
2Z ´ a6Z

3 with a12 “ a3`a1a2
a3

1
and

a16 “
a6

1a6`a5
1a3a4`a4

1a2a2
3`a

4
1a

2
4`a

3
1a

3
3`a

4
3

a12
1

. Ch2pFq is then also an elliptic curve.
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This proposition shows that in the case char(F)‰ 2 the Weierstraß equation
can be turned into the simplified Weierstraß equation of the form:

Y 2Z “ X3 ` a2X
2Z ` a4X

2 ` a6Z
3

with new coefficients ai. In the case that char(F)‰ 2, 3 the equation gets even
simpler

Y 2Z “ X3 ` a4XZ
2 ` a6Z

3

Proof. Case 1: char(F) ‰ 2
From the definition of the mapping it is clear that char(F) has to be unequal to
two, otherwise the mapping would make no sense. It is easy to find the inverse
mapping

Φ´1prr : s : ts “ rr : s´ a1
2 r ´

a3
2 t : tsq

which means that the mapping is bijective. Φ and Φ´1 will also be used for the
mapping from F3 to F3 with Φps, r, tq “ pr, s ` a1

2 r `
a3
2 t, tq and Φ´1ps, r, tq “

pr, s´ a1
2 r ´

a3
2 t, tq. Now h1pX,Y, Zq “ gpX,Y ´ a1

2 X ´
a3
2 Z,Zq:

gpX,Y´
a1
2 X ´

a3
2 Z,Zq

“ pY ´
a1
2 X ´

a3
2 Zq

2Z ` a1XpY ´
a1
2 X ´

a3
2 ZqZ

` a3pY ´
a1
2 X ´

a3
2 ZqZ

2 ´X3 ´ a2X
2Z ´ a4XZ

2 ´ a6Z
3

“

„

Y 2 ´ 2Y pa1
2 X `

a3
2 Zq ` p

a2
1

4 X
2 ` 2a1a3

4 XZ `
a2

3
4 Z

2q



Z

` a1XY Z ´
a2

1
2 X

2Z ´
a1a3

2 XZ2 ` a3Y Z
2 ´

a1a3
XZ2

´
a2

3
2 Z

3 ´X3 ´ a2X
2Z ´ a4XZ

2 ´ a6Z
3

“ Y 2Z ´X3 ` p´
a2

1
4 ´ a2qX

2Z ` p´
a1a3

2 ´ a4qXZ
2

` p´
a2

3
4 ´ a6qZ

3

“ Y 2Z ´X3 ´
1
4b2X

2Z ´
1
2b4XZ

2 ´
1
4b6Z

3

“ h1pX,Y, Zq

This shows h1pr, s, tq “ gpΦ´1pr, s, tqq and therefore that gpr, s, tq “ 0 if and only
if h1pΦpr, s, tqq “ 0. From this it follows:

ΦpCgpFqq “ Ch1pFq
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The polynomial h1 is then an elliptic curve if it can be shown that Ch1pFq is
non-singular. Using the chain rule gives:

Bh1
BX

pr, s, tq “
Bg

BX
pΦ´1pr, s, tqq ´

a1
2
Bg

BY
pΦ´1pr, s, tqq

Bh1
BY
pr, s, tq “

Bg

BY
pΦ´1pr, s, tqq

Bh1
BZ
pr, s, tq “ ´

a3
2
Bg

BY
pΦ´1pr, s, tqq `

Bg

BZ
pΦ´1pr, s, tqq

This shows that for every point P “ rr : s : ts in Ch1pF̄q there exists Φ´1rr : s : ts
a point in CgpF̄q. The derivatives of g don’t vanish all simultaneously in this
point and therefore also not all derivatives of h1 in pr, s, tq. This proves that Ch1

is non-singular over the closure F̄ and therefore an elliptic curve.

Case 2: char(F) ‰ 2, 3
This mapping is also bijective with

Ψ´1prr : s : tsq “ r 1
36r ´

b2
12 t : 1

216s : ts

being the mappings inverse. All the denominators contain powers of 2 and 3,
therefore char(F) gives no problem. Similar to the previous case, one can show
that:

h2pX,Y, Zq “ 2636h1p
1
36X ´

b2
12Z,

1
216Y, Zq.

This shows that h1pr, s, tq “ 0 if and only if h2pΨpr, s, tqq “ 0 indicating that:

ΨpCh1pFqq “ Ch2pFq.

The polynomial h2 has therefore the desired form of an elliptic curve. Repeating
the step of calculating the derivatives using the chain rule reveals that the curve
Ch2pFq is like Ch1pFq non-singular and therefore and elliptic curve.

Case 3: char(F) “ 2 and a1 ‰ 0
The mapping Θ has an inverse given by:

rr : s : ts Ñ ra2
1r `

a3
a1
t : a3

1s`
a2

1a4 ` a
2
3

a3
1

t : ts.

Repeating the same procedure as before shows that:

a6
1h3pX,Y, Zq “ gpa2

1X `
a3
a1
Z, a3

1Y `
a2

1a4 ` a
2
3

a3
1

Z,Zq.

Like in the two previous cases, using the chain rule to calculate the derivatives
of h3 reveals that Ch3pFq is also an elliptic curve.
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Definition 4.16. Let gpX,Y, Zq “ Y 2Z ` a1XY Z ` a3Y Z
2 ´X3 ´ a2X

2Z ´

a4XZ
2 ´ a6Z

3 be a Weierstraß polynomial. Then the discriminant of the curve
CgpFq is defined as:

∆ “ ´b22b8 ´ 8b34 ´ 27b26 ` 9b2b4b6

where:

b2 “ a2
1 ` 4a2

b4 “ 2a4 ` a1a3

b6 “ a2
3 ` 4a6

b8 “ a2
1a6 ` 4a2a6 ´ a1a3a4 ` a2a

2
3 ´ a

2
4

The discriminant is used to examine if a curve in Weierstraß form is non-
singular or not.

Proposition 4.17. Let gpX,Y, Zq “ Y 2Z ` a1XY Z ` a3Y Z
2 ´X3 ´ a2X

2Z ´

a4XZ
2 ´ a6Z

3 be an Weierstraß polynomial. The curve CgpFq is non-singular
if and only if the discriminant ∆ “ ´b22b8´ 8b34´ 27b26` 9b62b4b6 is not equal to
zero.

Proof. From the definition of singularity, one recalls that the elliptic curve CgpFq
is singular exactly when the affine curve Cf pFq is non-singular.

fpx, yq “ y2 ` a1xy ` a3y ´ x
3 ´ a2x

2 ´ a4x´ a6

This is only the case if Cf pF̄q is non-singular. Cf pFq is singular if there are
elements r, s P F̄ such that.

fpr, sq “
Bf

Bx
pr, sq “

Bf

By
pr, sq “ 0 (1)

with:

Bf

Bx
pr, sq “ a1s´ 3r2 ´ 2a2r ´ a4 (2)

Bf

By
pr, sq “ 2s` a1r ` a3 (3)

Case 1: char(F)“ 2 and a1 “ 0
Using the fact that multiplies of two equal zero in F2 reduces the discriminant
from ∆ “ ´b22b8 ´ 8b34 ´ 27b26 ` 9b62b4b6 to ∆ “ ´27a4

3 “ a4
3 as b2 “ b4 “ 0 and

b6 “ a2
3. Additionally the partial derivative Bf

By equals a3. This shows that the
curve Cf pF̄q contains a singular point for a3 “ 0, which also forces ∆ “ 0.
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If one assumes that the converse, ∆ “ 0 is true, also Bf
By “ 0. As F̄ is the

algebraic closure there exists an r P F̄ such that the following equation, coming
from 2, has a solution.

r2 ` a4 “ 0

Then there exists an s P F̄ such that:

s2 ` a3s “ r3 ` a2r
2 ` a4r ` a6.

This shows that pr, sq is singular point on the curve Cf pF̄q.

Case 2: char(F) “ 2 and a1 ‰ 0
The calculations rules implied by the fields characteristic, again reduce the dis-
criminant. This time to:

∆ “ a6
1a6 ` a

5
1a3a4 ` a

4
1a2a

2
3 ` a

4
1a

2
4 ` a

3
1a

3
3 ` a

4
3.

If Cf pF̄q contains a singular point, r, s P F̄ can be obtained from the equations:

fpr, sq “ 0

a1s ` r2 ` a4 “ 0

a1r ` a3 “ 0

In this case a3 ‰ 0, so it follows that

r “
a3
a1

and s “ a2
3 ` a

2
1a4

a3
1

.

Inserting this into fpr, sq gives:

fpr, sq “
∆
a6

1

From which it follows that ∆ “ 0. Again, assuming that ∆ “ 0 gives:

r “
a3
a1

and s “ a2
3 ` a

2
1a4

a3
1

,

and as before, fpr, sq “ ∆
a6

1
which leads to the conclusion that also fpr, sq “ 0 in

this case. This leads to the conclusion that Cf pFq contains a singular point.

Case 3: char(F) “ 3
In this case, the discriminant simplifies to

∆ “ ´b22b8 ´ 8b34
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Let the mapping:

Φ : CgpFq Ñ Ch1pFq

rr : s : ts Ñ rr : s` a1
2 r `

a3
2 t : ts

be the same mapping as in the proof of proposition 4.15, but h1pX,Y, Zq “

Y 2Z ´ X3 ´ 1
4b2X

2Z ´ 1
2b2XZ

2 ´ 1
4b6Z

3. Calculating the derivatives of h1

shows, like in the proof of 4.15, that the curve CgpFq is non-singular if and only
if Ch1pFq is non-singular. When calculating the discriminant, following definition
4.16 one has to set a11 “ a13 “ 0, a12 “ 1

4b2, a
1
4 “

1
2b4 and a16 “ 1

4b6. This shows
that for i “ 2, 4, 6, 8 it holds that b1i “ bi, which means that CgpFq and Ch1pFq
have the same discriminant. Therefore it is sufficient to prove the statement for
one of the curves.

The curve Ch1pF̄q contains a singular point if and only if there exist elements
r, s P F̄ such that:

s2 ´ r3 ´
1
4b2r

2 ´
1
2b4r ´

1
4b6 “ 0

3r2 `
1
2b2r `

1
2b4 “ 0

2s “ 0

If there exists such r in F̄, then the polynomial σpxq “ x3 ` 1
4b2x

2 ` 1
2b4x`

1
4b6

and its derivative vanish at the same point. Over the algebraic closure F̄ the
function σ factors to:

σpxq “ px´ α1qpx´ α2qpx´ α3q

for some α1, α2, α3 P F̄. Differentiating the equation reveals that function and
derivative can only be equal to zero at the same point if and only if the polynomial
has a double root. To examine if the polynomial has a double root, one can use
the discriminant of the polynomial. For σpxq “ px ´ α1qpx ´ α2qpx ´ α3q it is
defined as:

Dσ “ pα1 ´ α2q
2pα1 ´ α3q

2pα2 ´ α3q
2

This leaves the task to show that the discriminant ∆ equals 0 exactly when
Dσ “ 0. In the general case the discriminant of a cubic is defined as:

Dpax3 ` bx2 ` cx` dq “ b2c2 ´ 4ac3 ´ 4b3d´ 27a2d2 ` 18abcd

Because F has a characteristic of three, the equation simplifies to:

Dpσq “
1
64b

2
2b

2
4 ´

1
64b

3
2b6 ´

1
2b

3
4
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Using the relation 4b8 “ b2b6 ´ b
2
4 leads to

Dpσq “
1
16p´b

2
2b8 ´ 8b34q

1
16∆

which proves the proposition for a field of characteristic three.

Case 4: char(F) ą 3
Reusing the bijection from 4.15:

Ψ ˝ Φ : CgpFq Ñ Ch2pFq

with h2pX,Y, Zq “ Y 2Z ´ X3 ` 27c4XZ
2 ` 54c6Z

3 reveals also for this case,
after calculating the derivatives, that CgpFq is non-singular if and only if Ch2pFq
is non-singular as well. Calculaiting the discriminant of Ch2pFq gives:

2639pc3
4 ´ c

2
6q “ 212312∆

It is therefore again sufficient to show the proposition for one of the curves. Like
in the previous case Ch2pF̄q has a singular point if and only if the polynomial
x3´27c4x´54c6 has a double root. This is the case if the discriminant vanishes.
This is the case when 4 ¨273c3

4´27 ¨542c2
6 “ 0, which only happens for c3

4´c
2
6 “ 0.

From this, the proposition follows.

Definition 4.18. Let a homogeneous polynomial of degree 1 be called g P

FrX,Y, Zs.

gpX,Y, Zq “ αX ` βY ` γZ α, β, γ P F

When the coefficients α, β, γ are not all equal to zero, this curve is called a
projective line. It can be written as Lpα, β, γq instead of CgpFq.

Recalling the definition of singularity, it is clear that a line is a non-singular
curve. All the derivatives are constants for any point P on the line and therefore
never equal to zero at the same time.

Recalling proposition 4.10, the intersection of the line CgpFq with ipA2pFqq
gives an affine curve in A2pFq “ FˆF. The line in the affine space be given by
the equation:

fpx, yq “ αx` βy ` γ
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In the case that α “ β “ 0 the value of γ has to be unequal to zero. This means
that CgpFq is the empty set. If α and β do not vanish simultaneously, the sets
follow the rules of ordinary lines in a plane.

Cf pFq “
"

px, yq P Fˆ F | y “ ´
α

β
x´

γ

β

*

and

Cf pFq “
!

px, yq P Fˆ F | x “ ´
γ

α

)

for β “ 0 and α ‰ 0

What happens with parallel lines in A2pFq “ F ˆ F when they get mapped to
P2pFq? Let f and fc be two lines in A2pFq

fpx, yq “ y ´ ax fcpx, yq “ y ´ ax´ c with a P F, c ‰ 0

Let the sets of their points be denoted by Cf and Cfc with:

Cf “ tpx, yq P Fˆ F | y “ axu

Cfc “ tpx, yq P Fˆ F | y “ ax` cu

Mapping Cf and Cfc into the projective space gives Cf and Cgc with the corre-
sponding projective lines:

gpX,Y, Zq “ Y ´ aX

gcpX,Y, Zq “ Y ´ aX ´ cZ

Recalling that the projective space contains the affine space, one can write
CgpFq XA2pFq “ Cf pFq and CgcpFq XA2pFq “ CfcpFq

Calculating their intersection using linear algebra gives a point that does not
lie in the affine plane A2pFq but in the projective plane.

«∣∣∣∣∣1 0
1 ´c

∣∣∣∣∣ :
∣∣∣∣∣ 0 ´a

´c ´a

∣∣∣∣∣ :
∣∣∣∣∣´a 1
´a 1

∣∣∣∣∣
ff

“ r´c : ´ac : 0s “ r1 : a : 0s

This intersection at infinity leads to the next lemma.

Lemma 4.19. For projective lines the two following statements hold:

1. The line going through two points in the projective plane P2pFq is unique.

2. Two dissimilar projective lines intersect in exactly one point in P2pFq
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Proof. 1. Let there be two different points P1 “ ra1 : b1 : c1s and P2 “ ra2 :
b2 : c3s in P2pFq. To find a solution pα, β, γq such both points are on one
line, one has to solve a system of linear equations:

a1α` b1β ` c1γ “ 0

a2α` b2β ` c2γ “ 0

This can be rewritten to a matrix:
˜

a1 b1 c1

a2 b2 c2

¸

As the points P1 and P2 are different, the lines of the matrix are linear
independent, revealing a rank of 2. Therefore the rank-nullity theorem
gives that the nullity is one because rank and nullity have to sum up to
the dimension of the matrix which is three. This implies the existence of a
solution pα, β, γq ‰ 0 such that P1 P Lpα, β, γq and P2 P Lpα, β, γq are on
the same line. Every other solution pα1, β1, γ1q is a multiple of pα, β, γq.

2. Let L1 “ Lpα1, β1, γ1q and L1 “ Lpα2, β2, γ2q be two different projective

lines. Then the matrix
˜

α1 β1 γ1

α2 β2 γ2

¸

has rank two and its kernel is one

dimensional. Therefore there exists a solution not equal to zero. Let that
solution be called P “ ra : b : cs P P2pFq. P then lies on both projective
lines L1 “ Lpα1, β1, γ1q and L1 “ Lpα2, β2, γ2q . Every other point P 1 “
ra1 : b1 : c1s ‰ r0 : 0 : 0s that is in the kernel has to be a multiple of P .

This result shows that there are no parallel lines in the projective space.

Definition 4.20. Let P “ ra : b : cs be a non-singular point on the projective
plane curve CgpFq. The projective line:

Lp
Bg

BX
pa, b, cq,

Bg

BY
pa, b, cq,

Bg

BZ
pa, b, cqq

is then called the tangent line at P .

After having defined lines and tangent lines in the projective space, it is of
interest how often lines and elliptic curves intersect. A result from algebraic
geometry comes in handy. Bézout’s theorem states that two plane projective
curves g, f over a field F, which do not have a common component, have a total
number of intersections (including their multiplicities) over the closure F̄ which
is at most degpgq ¨ degpfq.

So the next step will be to define what is meant by the multiplicity of the
intersection of a projective line and curve.
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Definition 4.21. Let Lpα, β, γq denote a projective line and CgpFq a projective
curve. The point P “ ra : b : cs P Lpα, β, γq shall be fixed and a point P 1 “ ra1 :
b1 : c1s be chosen arbitrarily from Lpα, β, γq. It follows that the multiplicity of
the intersections of Lpα, β, γq and CgpFq in P is defined as the order of vanishing
at t=0:

ψptq “ gpa` ta1, b` tb1, c` tc1q

This will from now on be denoted by mpP,Lpα, β, γq, CgpFq.

Remark. For any point on P R Lpα, β, γq the multiplicitympP,Lpα, β, γq, CgpFq
equals 0.

But how many times do a projective line and an elliptic curve intersect?
Bézout’s theorem tells that it happens at most three times. But does it happen
never, once, twice or three times?

Proposition 4.22. The sum of all multiplicities of and projective curve L and
an elliptic curve EpFq is denoted:

ÿ

PPP2pFq
mpP,L,EpFqq

and equals either 0,1 or 3.

Proof. Let Lpα, β, γq be a line and gpX,Y, Zq “ Y 2Z`a1XY Z`a3Y Z
2´X3´

a2X
2Z ´ a4XZ

2 ´ a6Z
3 an elliptic curve in the projective plane. In case that g

and L do not intersect, mpP,L,EpFqq “ 0.

Case 1: α “ β “ 0
With this conditions the point of intersection is O “ r0 : 1 : 0s. When using
definition 4.21 to calculate the multiplicity a second point is needed. Choosing
that point to be r1 : 0 : 0s gives gp0` t, 1` 0t, 0` 0tq “ ψptq “ ´t3. From this
follows that the order of vanishing at zero equals to 3. This means that the sum
of multiplicities is three.

Case 2: α ‰ 0, β “ 0
Let L contain a point P “ rx : y : zs. From this it follows that αx “ ´γy and
leaves two possibilities, either z “ 0 or z ‰ 0. For z “ 0, P “ O “ r0 : 1 : 0s
and for z ‰ 0 P “ r´ γ

α : y0 : 1s for some y0 P F. Let the arbitrary point on L
be equal to r´γ : 0 : αs so that ψptq “ gp´γt, 1, αtq “ tpc2t

2 ` c1t` c0q for some
constants c2, c1, c0 P F of which c0 ‰ 0. It follows that mpO, L,EpFqq “ 1.

In case z ‰ 0 the point P is on EpFq if and only if y0 is a zero of the
polynomial hpyq “ gp´ γ

α , y, 1q. Using again O as a second point to calculate the
multiplicity gives ψptq “ hpy0` tq. Setting t “ 0 results in hpyq “ py´y0q

kh˚pyq
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with k being the order of the zero at y0 of h and h˚ a polynomial not equal to
zero in y0. Rewriting this to examine it better leads to:

ψptq “ hpy0 ` tq “ tkh˚py0 ` tq

from which it can be seen that k is also the order of vanishing in zero of ψ. So
the

ř

PPP2pFq
mpP,L,EpFqq equals one plus the sum of the orders of the zeros of

h in F. Calculating:

hpyq “ gp´
γ

α
, y, 1q

“ y2 ` a1p´
γ

α
qy ` a3y ´ p´

γ

α
q3 ´ a2p´

γ

α
q2 ´ a4p´

γ

α
q ´ a6

one sees that h is of degree 2. This means that h has either no zero in F, one
zero of order two or two zeros of order one in F.

Case 3: β ‰ 0
In this case, the intersection L X EpFq is contained in the affine space A2pFq,
because O can not be a point on the line L. Let P “ rx0, y0, 1s denote a point
that is in L X EpFq, this holds if and if y0 “ ´

γ
α ´

α
βx0 and x0 a root of

hpxq “ gpx, γα ´
α
βx, 1q is. To calculate the multiplicity for such an P one takes

again an arbitrary point on the line L, for example r´β, α, 0s, and evaluates the
function ψ to get:

ψptq “ gpx0 ´ tβ, y0 ` tα, 1q

“ gpxo ´ tβ,´
γ

β
´
α

β
px0 ´ tβq, 1q “ hpx0 ´ tβq

Like beforempP,L,EpFqq equals the order of the zeros x0 in h. hpxq “ gpx,´ γ
β´

α
βx, 1q itself is a polynomial of degree three with the highest coefficient being -1.
By the definition of what the algebraic closure F̄ is, the polynomial can be split
up:

hpxq “ ´px´ x1qpx´ x2qpx´ x3q

all x1, x2 and x3 are in F̄, not necessarily different. The sum of orders of the
zeros of h in F therefore equals the number of xi in F. This number is in any
case smaller or equal to three. Multiplying this out:

hpxq “ ´x3 ´ px1 ` x2 ` x3qx
2 ` px2x3 ´ x1x2 ´ x1x2qx` x1x2x3

one sees that the coefficient of x2 in h is x1 ` x2 ` x3 which is an element in
F. Therefore the number of xi which lie in F can’t be equal to two. If that is
the case for two xi, then it also has to hold that the third xi is an element of F.
This concludes the assumption.
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Corollary 4.23. For an elliptic curve EpFq it holds that:

1. Let L be the line going through the points Q and P which lay on EpFq,
then L has (counting in multiplicities) three intersections with the elliptic
curve.

2. Let L denote the tangent line on the curve EpFq going through the point P ,
then L has (counting in multiplicities) three intersections with the elliptic
curve when counting P twice.

The terminology counting in multiplicities means in this case that every point
Q gets counted mpQ,L,CgpFqq times.

Proof. 1. The result from proposition 4.22 gives that:

ÿ

PPP2pFq
mpP,L,EpFqq “ 3

This leads to two options. Option one is that there is a point R P LXEpFq
which is neither Q nor P , then all three points P,Q,R have multiplicity
one and R is the additional intersection point. Option two if one of the
points P,Q has multiplicity two and therefore the other point has to have
multiplicity one.

2. It is clear that P must have a multiplicity of at least two. From proposition
4.22 it can be concluded that there is either a second point Q P LXEpFq ‰
P which has multiplicity one or that P has multiplicity three. If P has
multiplicity three, the third intersection is again the point P , if not then
Q is the third intersection of the line and the elliptic curve.

Now that curves and lines got formally introduced and their interaction ex-
amined, a group law can be defined under which the points on an elliptic curve
form an abelian group.

Definition 4.24 (Addition law for elliptic curves). As before, let EpFq be an
elliptic curve and P and Q two points on the curve. Then the addition of those
two points will be denoted by P ‘Q and carried out in the following way:

Draw a line L1 through P and Q. The intersection of this line with EpFq is
guaranteed by corollary 4.23 and then denoted P ˚ Q. Now a second line L2 is
drawn intersecting P ˚Q and O “ r0 : 1 : 0s and then also EpFq. The intersection
with EpFq is then P ‘Q. In the case that P ˚Q “ O the tangent on EpFq in O
is chosen to be L2

In a similar manner the doubling of a point P ‘ P on EpFq is performed.
The line L1 is the tangent line in P on EpFq and the third intersection of L1
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6 E : y2 “ x3 ` 7

P

Q P ˚Q

P `Q

L1

L2

O

x

y

Figure 1: Addition two points P and Q over R

with EpFq is denoted P ˚P . Drawing again the line L2 going through P ˚P and
O the third intersection of L2 with EpFq is then the point P ‘ P .

This procedure can be visualized very well when F “ R as seen in figure 1.

Lemma 4.25. Let P,Q,R be three points on an elliptic curve EpFq. If all lay
on the same projective line L, then it holds that

pP ‘Qq ‘R “ O

This holds also if some or all of P,Q,R coincide but only if they occur as often
as it matches their multiplicity.

Proof. When calculating the addition of P and Q one gets the third intersection
of the line L1 with the elliptic curve EpFq at the point R. From this, it follows
that the intersection of the elliptic curve with a line L2 going through R and O
equals Q ‘ P . To add R to Q ‘ P one draws a line L11 through Q ‘ P and R.
This line L11 is the same as L2, therefore the third intersection of the line with
the curve must be O. Inspecting the tangent line L12 at O on EpFq one sees that
the third point of intersection is again O. This proofs the lemma.

As mentioned before, a group can be formed from the points on an elliptic
curve. In the next proposition, this is formulated and proven.

Proposition 4.26. Let EpFq be an elliptic curve. Under the previously defined
addition law (Def 4.24), the points on the curve and the neutral element O form
an abelian group.

1. For every P,Q P EpFq also P ‘Q is an element of EpFq. (Closure)

2. P ‘O “ P for all P P EpFq. (Identity element)
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3. There exists a point ´P for all P P EpFq such that P‘p´P q “ O. (Inverse
element)

4. P ‘Q “ Q` P for all P,Q P EpFq. (Commutativity)

5. pP ‘Qq `R “ P ‘ pQ‘Rq for all P,Q,R P EpFq. (Associativity)

Proof. Let P,Q,R be points on the elliptic curve EpFq given by a Weierstraß
equation. Let furthermore L denote a projective line.

Closure

The closure is given by the definition of the group law and lemma 4.25.

Identity Element

To show that O is the identity element, two cases have to be examined, first
P “ O and then for P an arbitrary point other than O.

Case 1: P “ O
Let P “ O , then one needs to calculate the tangent in the point and gets:

Bg

BX
p0, 1, 0q “ 0 Bg

BY
p0, 1, 0q “ 0 Bg

BZ
p0, 1, 0q “ 1

The result is the line Lp0, 0, 1q given by the equation Z “ 0. But this line is not
in the affine space A2pFq and therefore can only intersect the elliptic curve in
O. The third intersection (counting in multiplicities) denoted O ˚O , is again O.
Following the procedure of the group law, putting another tangent through O
gives that the third intersection with EpFq is O. So it follows that O‘O “ O.

Case 2: P ‰ O
Let P ‰ O be an arbitrary point on the elliptic curve EpFq. Adding the point O
translates to drawing a projective line L1 through P and O. The resulting third
intersection with EpFq is then denoted by P ˚O. To construct then P ‘O one
has to draw a line L2 through O and P ˚O. This line L2 is the same line as L1.
Therefore the third intersection of L2 and EpFq has to be P .

From this, it follows that O is the neutral element of the group.

Inverse Element

Let aP denote the third intersection of the line L going through P and O. By
the definition, the point aP is an element of EpFq which is on the same line as
P and O. By lemma 4.25 it then holds that:

O “ pP ‘Oq ‘ paP q “ P ‘ paP q
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2P
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x
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Figure 2: Point duplication over R

Commutativity

When drawing the line through P and Q to obtain the point P ˚ Q, one also
obtains the point Q ˚ P because the line through P and Q is unique. Therefore
P ‘Q “ Q‘ P

Associativity

This part of the theorem is the most tedious and would extend this work with
several pages just dedicated to this proof. Therefore the reader is advised to
consult [Kna92] Chapter 3 if interested.

Remark. From this point on the symbol ‘ will be replaced by an ordinary +
when the addition law is used on elliptic curves.

Remark. When a point is added several times to itself the following notation
will be used:

P ` P ` ¨ ¨ ¨ ` P
looooooooomooooooooon

n times

“ nP

In books, it is sometimes referred to as scalar multiplication.

One can also derive formulas for direct calculations. Point duplication as
seen in figure 2 is of special interest for public-key cryptographic.

Proposition 4.27. Let P “ rx1 : y1 : 1s be a point on an elliptic curve
gpX,Y, Zq “ Y 2Z ` a1XY Z ` a3Y Z

2 ´ X3 ´ a2X
2Z ´ a4XZ

2 ´ a6Z
3. Then
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the coordinates of the point 2P are given by x3 “ λ2 ` a1λ ´ a2 ´ 2x1 and
y3 “ ´pλ` a1qx3 ´ ν ´ a3. With:

λ “
3x2

1 ` 2a2x1 ` a4 ´ a1y1
2y1 ` a1x1 ` a3

ν “
´x3

1 ` a4x1 ` 2a6 ´ a3y1
2y1 ` a1x1 ` a3

Proof. Let tangent line in P be L “ Lpλ1, µ1, ν1q with λ1, µ1 and ν 1 in P are given
by the derivatives in the point:

λ1 “
Bg

BX
px1, y1, 1q “ a1y1 ´ 3x2

1 ´ 2a2x1 ´ a4

µ1 “
Bg

BY
px1, y1, 1q “ 2y1 ` a1x1 ` a3

ν 1 “
Bg

BZ
px1, y1, 1q “ y2

1 ` a1x1y1 ` 2a3y1 ´ a2x
2
1 ´ 2a4x1 ´ 3a6

Case 1: µ1 “ 0
In case that µ1 “ 0 the point O is on the line. This implies that P `P “ O and
therefore P “ ´P .

Case 2: µ1 ‰ 0

λ “ ´
λ1

µ1
“

3x2
1 ` 2a2x1 ` a4 ´ a1y1

2y1 ` a1x1 ` a3

ν “ ´
ν 1

µ1
“
´y2

1 ´ a1x1y1 ´ 2a3y1 ` a2x
2
1 ` 2a4x1 ` 3a6

2y1 ` a1x1 ` a3

“
´x3

1 ` a4x1 ` 2a6 ´ a3y1
2y1 ` a1x1 ` a3

Using now the affine form of the Weierstraß equation fpx, yq “ 0 and substituting
y “ λx` ν into it, gives the following equation:

pλx` νq2 ` a1xpλx` νq ` a3pλx` νq ´ x
3 ´ a2x

2 ´ a4x´ a6 “ 0

which every point that lies on both E and L has to satisfy. One point satisfying
this equation, namely x1, is already known. This makes it possible to rewrite the
equation to cpx´ x1qpx´ x

1
2qpx´ x

1
3q with x12, x13 P F̄ and c P F. Comparing the

coefficients of both equations gives that c “ ´1 and λ2`a1λ´a2 “ x1`x
1
2`x3

From the fact that L is a tangent in P it is clear that x1 is a double root, so either
x12 “ x1 or x13 “ x1. Rearranging the equation gives that x13 “ λ2`a1λ´a2´2x1.
This means that x13 is also a solution im F. The third intersection of L and
EpFq is then P 1 “ px13, y

1
3q with y13 “ λx13 ` ν. If P 13 “ P1, the polynomial

´px´ x1qpx´ x
1
2qpx´ x

1
3q can be rewritten to ´px´ x1q

3 which means that the
intersection has multiplicity three at P . For the case P1 ‰ 2P 1 it follows that
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´pP ` P q “ P 1. To get the coordinate y3 one sets x “ x3 into the Weierstraß
equation and receives a quadratic equation in y in the form y2 ` cy ` d “ 0.
c “ a1x3` a3 and d “ ´x3

3´ ax2x
2
3´ a4x3´ a6 lie in F. Therefore this equation

has two solution in the closure F̄. One of the solutions, namely y13 is already
known. So the equation factors to:

y2 ` cy ` d “ py ´ y3qpy ´ y
1
3q

where y3 lies in F̄. Multiplying out both sides and comparing the coefficients
reveals:

y3 “ ´y
1
3 ´ c “ ´y

1
3 ´ a1x3 ´ a3

The result is then x3 “ λ2`a1λ´a2´ 2x1 and y3 “ ´pλ`a1qx3´ ν´a3 where
λ and ν are defined as before.

The next proposition applies to field with a characteristic bigger than three.
This condition makes it possible to transform the Weierstraß equation into
the simplified Weierstraß equation, which makes the derivation of the formulas
shorter. For fields of characteristic two and three, this process can be adapted
and applied to the normal Weierstraß equation.

Proposition 4.28. Let P “ rx1, : y1 : 1s be a point on an elliptic curve
gpX,Y, Zq “ Y 2Z ´X3 ´ a4XZ

2 ´ a6Z
3

1. For a P “ px1, y1q P Cf pFq the point ´P equals px1,´y1q

2. For P1 “ px1, y1q, P2 “ px2, y2q both in Cf pFq and x1 ‰ x2 their sum
P1 ` P2 “ P3 “ px3, y3q with:

x3 “ λ2 ´ x1 ´ x2

y3 “ λpx1 ´ x3q ´ y1

where λ is given by:

λ “
y2 ´ y1
x2 ´ x1

Proof. 1. The point p´P q is on the line going through P and O. This line is
vertical through P , so P and ´P have to have the same x-coordinate x1.
Examining the equation y2 “ x3

1´a4x1´a6 shows that there are only two
possible values, y1 and ´y1. P already has the coordinates px1, y1q, so ´P
has to be px1,´y1q.
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2. Let L be the line connecting P1 and P2. Then the line parameters λ1, ν1

and µ1 are unknown at first. The points on the line have to fulfil the line
equation:

λ1x` µ1y ` ν 1 “ 0

In case that x1 “ x2 the value µ1 equals zero and the line connecting both
points also intersects O which indicates that P2 “ ´P1. With λ “ λ1

µ1 and
ν “ ν1

µ1 the line equation can be rewritten to:

y “ λx` ν

So the y-coordinates of P1 and P2 are y1 “ λx1 ` ν and y2 “ λx2 ` ν

respectively. Combining the formulas gives:

λpx2 ´ x1q “ y2 ´ y1

λ “
y2 ´ y1
x2 ´ x1

Further more this leads to a formula to calculate ν:

ν “ y1 ´ λx1 “ y1 ´
y2 ´ y1
x2 ´ x1

x1

“
y1px2 ´ x1q ´ x1py2 ´ y1q

x2 ´ x1

“
y1x2 ´ y2x1
x2 ´ x1

Like in the proof for the duplication formula, y “ λx ` ν is now put into
the Weierstraß equation to obtain the point of intersection.

´x3 ` λ2x2 ` p2λν ´ a4qx` ν
2 ´ a6 “ 0

Rewriting the polynomial of degree three, of which two solutions x1, x2 are
already known, gives the following over the algebraic closure F̄:

cpx´ x1qpx´ x2qpx´ x
1q “ 0 c P F, x1 P F̄

Comparing both forms of the polynomial gives to c “ ´1 and λ2 “ x1 `

x2` x
1 and leads to x1 “ λ2´ x1´ x2 which is an element if F. The set of

intersections A2pFqXLXEpFq then contains P1, P2 and P 1 “ px1, λx1`νq.
If P 1 ‰ P1 ^ P2 then P 1 “ ´pP1 ` P2q, otherwise if P 1 “ P1 _ P2 the
multiplicity of the point has to be examined. Let P 1 “ P1, then the
multiplicity of P1 in LXEpF equals the order of vanishing of x1 like in the
proof of proposition 4.22. The order of vanishing is then two which implies
that x1 “ x1 and therefore P 1 “ ´pP1 ` P2q holds. The same holds for
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the case P 1 “ P2. Inverting the y coordinates of P 1 and replacing ν with
y1 ´ λx1 gives then P3 with:

x3 “ λ2 ´ x1 ´ x2

y3 “ λpx1 ´ x3q ´ y1

with λ as defined previously in the proof.

A theorem not necessary for elliptic curve cryptography, but still remarkable
is Mordell’s theorem for elliptic curves over the rational numbers:

Theorem 4.29 (Mordell). Let E denote a non-singular cubic curve with rational
coefficients and a rational point, then the group of rational points is finitely
generated.

Proof. A proof can be found in [Sil09]

4.4 Elliptic Curves Over Finite Fields

After the theory for elliptic curves over arbitrary fields was introduced before,
this part will be a brief introduction to elliptic curves over finite fields. First the
procedure of point addition on curves over finite fields will be presented, followed
by a short discussion of determining the group order.

Until now no calculation example for the formulas in proposition 4.28 was
given. In converse to most standard literature about elliptic curves and elliptic
curve cryptography, a visualization of point addition over a finite field is shown.

Example 4. Consider the function from example 2 and its set of solutions
Cf pF5q “ tp0, 1q, p0, 4q, p2, 1q, p2, 4q, p3, 1q, p3, 4q, p4, 2q, p4, 3qu. The task is to add
the point Q “ p2, 1q and P “ p4, 2q by drawing lines in the plane and then
checking the result with the formulas.

Drawing a line in the plane throughQ and P is an easy task to do, but the line
ends in at x “ 4. This seems like a contradiction to the before developed theory
as there has to be a third intersection with the elliptic curve. Recalling that
this is done over a finite field, the procedure has to be adapted to the properties
of a finite field. After the line ends at x “ 4 the next integer x-coordinate one
would expect is x “ 5 which is congruent to 0 pmod 5q. So the line continues
at x “ 0, and has the equation y “ 3x pmod 5q. Evaluating the line equation
at an arbitrary point in F5, for example x “ 1 gives the y value of three which
is on the line. So drawing a line through p1, 3q with slope three gives the second
line. If, for example in a bigger field, there was still no intersection, one has to
continue drawing lines that are parallel until an intersection is found.

The last step is drawing a line through P ˚ Q and O which gives then the
intersection with the curve at the point Q` P “ p3, 1q.

40



1 2 3 4

1

2

3

4

Q Q` P

P

Q ˚ P

x in F5

y in F5

y “ 3x pmod 5q

Figure 3: y2 “ x3 ` x` 1 over Z5

Let Q` P “ R, then the formulas give:

λ “
yq ´ yp
xq ´ xp

“
1´ 2
2´ 4 “

´1
´2 “

4
3 “ 4 ¨ 3´1 “ 8 “ 3 pmod 5q

xr “ λ2 ´ xp ´ xq “ 9´ 4´ 2 “ 3 pmod 5q

yr “ λpxp ´ xrq ´ yp “ p3p4´ 3q ´ 2q “ 1 pmod 5q

So both times one gets at Q` P “ p3, 1q.

For applying elliptic curves on cryptography problems it becomes important
to have an idea of how many points there are on a curve. For curves over the
real numbers this can be easily answered with infinity, but how many points are
there over a finite field? Those points are elements of the group and therefore
determine the order of the group. A first approximation on how many points
there are on an elliptic curve over a finite field is given by the following theorem,
which was conjectured by Emil Artin and proven by Helmut Hasse in the 1930s:

Theorem 4.30 (Hasse’s theorem on elliptic curves). Let E be a non-singular
elliptic curve defined over the finite field Fq. Then the number of points on E

which are contained in Fq equals p` 1´ ε, where ε denotes and error term with
the property |ε| ď 2?q.

´2?q ď #EpFqq ´ q ´ 1 ď 2?q

A proof of this theorem would require too much theoretical background. The
interested reader is advised to consult [Sil09].
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But the bound is not accurate enough to use it for cryptography. In section
3.1 the issue with subgroups of small order has been mentioned. This is not only
a problem with finite fields, but also for elliptic curves over finite fields. One can
try out all combinations of example 2 or 4 with pen and paper without investing
huge amounts of time. Blake and Smart [Bla+99] have a chapter on determining
the order of a group from which the following idea of an naive approach is taken
from.

Theorem 4.31. Let f “ y2 ´ x3 ` ax` b be an elliptic curve over a finite field
with characteristic p. The sum of all rational points on the curve is given by:

#EpFpq “ p` 1`
p´1
ÿ

x“0

ˆ

x3 ` ax` b

p

˙

Proof. Assuming that for every element x in Fp plus O there is a pair px, yq
which is a solution to the equation of the elliptic curve, one needs to start with
p`1 points. The equation of the elliptic curve is quadratic in y which means that
for every solution px, yq, there is a second point p´x, yq which is also a solution.
Having all possible points already counted once, one only needs to add a point
if x3 ` ax ` b is a quadratic residue and subtract one point if x3 ` ax ` b is a
quadratic nonresidue.

This is of course not a very practical approach to the problem of finding the
group order. There are other methods like Schoof’s Algorithm and the Schoof-
Elkies-Atkin Algorithm which are out of the scope of this work but necessary to
mention.
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5 Elliptic curve Diffie-Hellman Key Exchange

Definition 5.1. Let E be an elliptic curve over the field Fp, with P,Q P EpFpq

under the group law defined before. Then n is called a solution to the Elliptic
Curve Discrete Logarithm Problem if:

nP “ Q

n “ logP pQq

The Diffie-Hellman problem on elliptic curves is similar but needs more public
parameters. While for classical Diffie-Hellman key exchange over finite fields,
Alice and Bob only had to agree on a field and a primitive root, now they also
have to agree on the parameters of a curve.

Definition 5.2. After agreeing on a field F, an elliptic curve EpFq and a prim-
itive root P , they calculate their QA and QB respectively.

QA “ nAP

QB “ nBP

As before, both participants again exchange those values publicly over the inse-
cure channel and repeat the previous procedure:

QAB “ nAQB “ nAnBP

QAB “ nBQA “ nAnBP

The following example is taken from [HPS14]:

Example 5. Let p = 3851 and the curve E : Y 2 “ X3 ` 324X ` 1287 with the
generator P “ p920, 303q P EpF3851q. Let Alice choose her nA “ 1194 and Bob
his to be nb “ 1759. Each of them calculates their value QA and QB and sends
it to the other person:

nAP “ QA “ 1194P “ p2067, 2178q

nBP “ QB “ 1759P “ p3684, 3125q

If both use their secret values to compute the exchanged secret both arrive at
the following:

nAQB “ 1194p3684, 3125q “ p3347, 1242q

nBQA “ 1759p2067, 2178q “ p3347, 1242q
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5.1 An Algorithm To Break The ECDLP

Notes On Index Calculus For Elliptic Curves

Index calculus and elliptic curve cryptography is a difficult topic. In [SS98;
Mil86b] Miller and Silverman present arguments why index calculus should not
work for the ECDLP. Silverman even presented in [Sil00] an alternative algorithm
to the index calculus approach for elliptic curves But Claus Diem presents an
index calculus algorithm over finite extension fields [Die11], as well as Gary
McGuire and Daniela Mueller in [MM17].

What all of those approaches have in common, is their exponential time
complexity, which makes them uninteresting for practical attacks on the ECDLP.

The Pohlig-Hellman algorithm

With the Pohlig-Hellman algorithm, it is possible to reduce the complexity of
the DLP in a cyclic group of composite order to the DLP in several cyclic groups
of prime power order [HPS14].

In order to solve the set of smaller problems, one needs another method to
solve the DLP in those cyclic groups and later combines the partial solutions with
the Chinese Remainder theorem. If the group order is prime, the Pohlig-Hellman
algorithm gives no advantage over other methods.

Theorem 5.3 (The Pohlig-Hellman algorithm). Let G denote an arbitrary group
which contains an element g of order N . Let N factor into prime powers such
that:

N “ qe1
1 q

e2
2 . . . qett

Then the following procedure solves the discrete logarithm problem in G.

1. Factor N into its prime power factorization

2. Compute all values gi “ gN{q
ei
i and hi “ hN{q

ei
i for 1 ď i ď t and solve the

discrete logarithm problem

gyi “ hi

where yi denotes the solution of each individual problem.

3. With the Chinese remainder theorem the system of congruences can be
solved:

x ” y1 pmod qe1
1 q, x ” y2 pmod qe2

2 q, . . . , x ” yt pmod qe1t
t q

giving the final solution.
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Proof. Let x denote the solution to the system of congruences. Then for each i
the solution can be written as

x “ yi ` q
ei
i zi for some zi

This then leads to:

pgxq
N

q
ei
i “ pgyi`q

ei
i ziq

N

q
ei
i

“ pg
N

q
ei
i qyi ¨ gNzi

“ pg
N

q
ei
i qyi

“ gyii “ hi “ h
N

q
ei
i

This can be rewritten to a discrete logarithm with basis g:

N

qeii
¨ x ”

N

qeii
¨ loggphq pmod Nq

The discrete logarithm to the basis g is defined modN because gN is the identity
element of the group. The next step is to observe that N

q
ei
i

for i “ 1, . . . , t are
all coprime. When using the extended Euclidean Algorithm repeatedly, it is
possible to find ci such that:

t
ÿ

i“1

N

qeii
¨ ci “ 1

This makes it then possible to add the congruences multiplies by their ci respec-
tively and sum them up:

t
ÿ

i“1

N

qeii
¨ ci ¨ x ”

t
ÿ

i“1

N

qeii
¨ ci ¨ loggphq pmod Nq

Which then collapses to:

x ” loggphq pmod Nq

and thereby completes the proof.

The following example shows the Pohlig-Hellman algorithm applied to the
DLP over finite fields. It’s taken from [HPS14].

Example 6 (Finite fields). Let the characteristic of the field be p “ 11251 and
take the primitive root g “ 23. Then goal is to find the exponent x for which
g ” h “ 9689 pmod 11251q. The order of the group is N “ p´1 “ 11250. 11250
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factors into 2 ¨ 32 ¨ 54. Those give N{2 “ 5625, N{32 “ 1250 and N{54 “ 18 as
exponents

235625x ” 96895625 pmod 11251q

11250x ” 11250 pmod 11251q

x “ 1 pmod 2q

231250x ” 96891250 pmod 11251q

5029x ” 10724 pmod 11251q

x “ 4 pmod 32q

2318x ” 968918 pmod 11251q

5448x ” 6909 pmod 11251q

x “ 511 pmod 54q

Solving the DLP over pmod 2q and pmod 32q is easy. Finding the solution
pmod 54q requires more work, but significantly less than finding a solution
pmod 11251q. There exist algorithms to solve this faster than with an exhaustive
search, for example in [HPS14].

The next step is to solve the system of congruences using the Chinese Re-
mainder Theorem:

x ” 1 pmod 2q, x ” 4 pmod 32q, x ” 511 pmod 54q

This gives x “ 4261 as the smallest solution. Checking the answer shows that
234261 ” 9689 pmod 11251q.

The ECDLP can be solved with the same procedure. The following example
for elliptic curves is taken from [Bla+99].

Example 7 (Elliptic curves). Let P “ p1, 237q and Q “ p190, 271q be points on
the elliptic curve E : Y 2 “ X3 ` 71X ` 602 defined over the finite field F1009.
EpF1009q has the group order 1060, which factors to 22 ¨5¨53. The solution to the
problem Q “ mP can then be reduced to calculation m mod 22, 5 and 53. The
point P has order 530, therefore it is sufficient to calculate the solution modulo
2 instead of modulo 4. Starting with the points in the subgroup of order 2:

P2 “ 265P “ p50, 0q

Q2 “ 256Q “ p50, 0q
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from this one sees that Q2 “ pm pmod 2qqP which leads to m ” 1 pmod 2q.
Now the points have to be multiplied by 530{5 “ 106, which gives:

P5 “ 106P “ p639, 160q

Q5 “ 106Q “ p639, 849q

Q5 and P5 have the same x-coordinate and therefore it holds that P5 “ ´Q5.
Which shows that m ” 4 pmod 5q. The last congruence equation to be solved
for is pmod 53q. Here the points have to be multiplied by ten as 530{53 “ 10.

P53 “ 10P “ p32, 737q

Q53 “ 10Q “ p592, 97q

By, for example exhaustive search, one gets that Q53 “ ´5P53 and therefore
m ” ´5 ” 48 pmod 53q. This three congruences will then be combined to the
following system:

x ” 1 pmod 2q

x ” 4 pmod 5q

x ” 48 pmod 53q

Using the Chinese Remainder Theorem to find a solution gives that x “ 419.
And in fact Q “ 419P .

Theorem 5.4. The discrete logarithm problem can be solved in

O

˜

r
ÿ

i“1
Sqeii

` r log2pqrq

¸

steps with qerr the biggest divisor of N

when the Pohlig-Hellman algorithm is used.

Remark. Sqeii is a place holder for the number of steps an algorithm would take
to solve the discrete logarithm pmod qeii q. In general on cane use the Baby-Step-
Giant-Step algorithm which has a time complexity of Op

a

qerr q.

Proof. The first step of the algorithm is to factorize the number N to its prime
power factorization qe1

1 q
e2
2 . . . qerr where qe1

1 ă pe2
2 ă ¨ ¨ ¨ ă qerr . In this proof the

factorization seen as given as it is out of scope of this work to talk about factor-
ing algorithms. But it can be bounded by approximately ep1`op1qq

?
lnN ln lnN “

LN r1{2, 1s when using the Quadratic Sieve.
Computing the different values of gi “ gN{q

ei
i and hi “ hN{qiei has the cost of

řr
i“1 OplogpN{qeii q log2pNqq bit operations where the calculation of g1 “ gN{q

e1
1

dominates this step, hence the bound OplogpN{qe1
1 q log2pNqq.

It is clear that each DLP takes Sqeii steps to be solved, which sums to
řr
i“1 Sqeii

.
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When all DLPs are solved, it remains to find the solution by using the Chinese
Remainder Theorem. Using a classical schoolbook approach for this means that
one calculates:

x “
r
ÿ

i“1
aiNiN

´1
i pmod qeii q

This is two multiplications (Oplog2pqeii qq and one inversion (Oplog2pqeii qq for each
partial solution. Finally adding all of those numbers up has to be done r times.
Leading to r ¨Oplog2pqerr qq, which can be bound by Opr log2pqerr qq. This gives a
total expected running time of O

´

řr
i“1 Sqeii

` r log2pqerr q
¯

.

This result shows that point counting on elliptic curves is important for
cryptography. If #EpFqq is not a prime, or even worse B-smooth for small B,
the DLP is fast to compute.
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