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Abstract

Topology optimization is a powerful method for finding optimized designs for a vari-
ety of problems. In this work, thermo-mechanical problems are studied in particular
and solved under transient conductive heat transfer using 2 materials plus void in
the optimization.

In the first part of the thesis, the theoretical background for a generic transient
thermo-mechanical topology optimization problem is introduced. The thermo-mechanical
field is modelled using have a one-way coupling between the temperature field to the
displacement field and is solved with the Finite Element Method for small deforma-
tions. To render designs with a minimal length scale and clear boundaries, design
filtering is used together with a robust formulation, which is reliant on Heaviside
projections.

The second part goes more into the details of the implementation in Matlab and the
test cases used as well as a real-world application: optimizing a thermally actuated
disassembly mechanism.

The results are verified against external previous results and are similar in the fea-
tures. The optimal design for the real-world application is from a topology optimiza-
tion perspective satisfactory but show very small displacements under the thermal
load. As future work, large deformations are suggested to be implemented.
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Notations

Description Unit

q Heat flux vector W m−2

ρ Density kg m−3

T Temperature K

cp Specific heat capacity J kg−1 K−1

s Volumetric heat capacity J m−3 K−1

Q Internal heat generation W m−3

κ Heat conductivity W m−1 K−1

t Time s

α Coefficient of thermal expansion (CTE) K−1

r Thermal stress coefficient Pa K−1

u Displacement vector m

σ Stress tensor Pa

t Surface traction vector Pa

ε Strain tensor -

D Material stiffness tensor Pa

nn Number of nodes

nel Number of elements

nen Number of element nodes

N Number of time steps

M Number of constraints

Table 1: Descriptions and notations of the physical variables used in the report
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Mathematical notations

Notation Description

∂(·)
∂x

Explicit derivative (a.k.a. partial derivative)

D(·)
Dx

Implicit derivative (a.k.a. total derivative)

ẋ = Dx
Dt

Time derivative

∇ =
(
D(·)
Dx

, D(·)
Dy
, D(·)
Dz

)T
Vector differential operator

I Identity matrix

D(·)
Dx

=
(
D(·)
Dx1

, D(·)
Dx2

, . . .
)T

Vector derivative

·
∣∣
Ω

Evaluated at Ω

|| · || Euclidean distance (L2 norm)

≡ Equality by definition

Table 2: Descriptions of the mathematical notation used in the report
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Chapter 1

Introduction

Applied with a change in temperature, materials expand, and in some rare cases they
contract. This property called thermal expansion most commonly causes headaches
for engineers, as in the case with sun kinks on rail tracks where the heat of the sun
causes the rails to buckle. But this intrinsic feature can also be used in ingenious de-
signs. Example of this is the bimetallic thermometer, which uses two materials with
different thermal expansion coefficients to cause a bending force in the instrument
when subject to a temperature change. Another interesting application is micro
grippers, where the joule heating from an applied electrical current causes a local
temperature rise which in turn results in a bending force, as seen in figure 1.1. This
force could then be used to grip a carbon nanofiber (∼ 100 nm in diameter), for
example.

Figure 1.1: Working principle of an electrothermally actuated micro gripper. In the
open state (above) the inner legs of the gripper are heated as marked in red. To
reach the closed state (below), the outer legs are instead heated.
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Both these designs are examples of thermal actuators. A thermal actuator uses
thermally induced expansion as a mechanism for the creation of motion [1] and can
be at the macro as well as the micro scale. The thermal expansion effect is what
creates the coupling between the thermal field and the mechanical (displacement)
field.

However, the design of a perfect thermal actuator may be non-intuitive and hard to
find. A structured and powerful tool for finding the optimal design which increases
the performance or have a special behavior is topology optimization. Since its birth
in the late 1980’s, topology optimization as a method has gained a lot of traction
in both academia and industry. It most popular usage is within stiff structures and
compliant mechanism, but the principles are just as applicable for thermal actua-
tors. The general idea of topology optimization is to define a design domain with
applied boundary conditions where the optimal design will be found, parametrize
the domain in a suiting manner and insert the parameters into a non-linear opti-
mization algorithm which minimizes a given objective function. The result is then
interpreted for manufacturing. These steps are illustrated in figure 1.2.

Figure 1.2: Overview of the topology optimization process. The first step is the
definition of the design domain and the boundary conditions. The second step is
the parametrization, followed by the third step where the optimizer iteratively finds
a better and better design. The last step is the interpretation of the optimized
design.

Topology optimization has successfully been used to design high-performance ther-
mal actuators [2]. However, most of the optimization is done assuming steady-state
conditions and single material designs. To take time-dependent effects into consid-
eration when optimizing thermal actuators, transient analysis of the heat transfer
must be considered and integrated into the optimization process. Multiple materials
might as well extend the potential of the designs found.

The report is divided into 6 chapters. Chapter 2 covers all the theory relevant for
the thesis, including the FE formulations for the thermal system and the mechanical
system, the density based topology optimization method and the general method
for acquiring the sensitivities for a problem with respect to the design parameters.
Chapter 3 covers the implementation of a Matlab program and the modular structure
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of the codebase. In this chapter, the cases studied are also presented. In chapter 4,
the results from the cases described in the previous chapter are presented. Chapter
5 covers the evaluation and discussion of the results and chapter 6 ends the report
with a short section about the potential future work that could be taken up on.

1.1 Purpose and objective

This master’s thesis seeks to develop and study a general framework for solving
topology optimization problems related to transient thermo-mechanical systems,
including optimizing for multiple materials. The research in this thesis is therefore
at a basic level, exploring the fundamental potential of this topic. However, as
proof of concept, the framework will be applied on thermal actuators. The idea of
the framework is however to be general and would be suitable to use for any other
thermo-mechanical topology optimization problem with a time-transient effect, for
example time-transient thermal stress optimization.

To develop and evaluate this framework in a structured way, the problem is divided
into several sub-problems. The first would be to develop a basic framework for solv-
ing topology optimization problems for transient heat conduction. Secondly, another
framework for using topology optimization for finding compliant mechanism actu-
ated by a uniform temperature field would be developed. Once these two frameworks
would successfully be in place, they would be coupled to finally form a framework
optimizing topologies of time-transient thermal actuators. Lastly, multiple materials
would have to be incorporated into the framework.

The main components needed for these frameworks are numerical models of the gov-
erning equations, normally Finite Element Method (FEM) models; the optimizer of
the mathematical problem derived from the topology optimization problem; deriva-
tions and implementation of the sensitivities of these before mentioned models; pre-
processing of the geometries and post-processing of the results.

1.2 Scope

The thesis will be limited to small deformations due to thermal expansion and use
the linear Finite Element Method theory alongside linear isotropic material models.
Materials properties are assumed to be temperature independent to simplify the
solution of the governing equations. The final framework is set to work for 3D
geometries, both structured and unstructured finite element discretizations.
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1.3 Previous work

The concept of topology optimization was first introduced back in 1988 by Bendsøe
and Kikuchi [3], which demonstrated that not only the shape of a structure could
be optimized by systematic numerical methods, but the topology as well. In [3], the
homogenization method was used to minimize the elastic energy of a design subject
to external forces. Since then, the field of topology optimization has greatly evolved
and is now used widely in industry to find new, non-intuitive designs of everything
from the internals of airplane wings, to microscopical grippers.

Topology optimization has also proved useful in optimizing thermal systems, sum-
marized in a survey paper by Dbouk [4]. Here the studies are divided by whether
they model conductive, convective or conjugated heat transfer. Of the heat conduc-
tion systems mentioned in the paper, only one study by Zhuang et. al. have taken
transient effects into consideration when trying to minimize the heat compliance
[5]. The same author did later publish an article [6] where the objective function
was the maximum temperature and multiple materials were also distributed in the
design. Long and Wang have also studied the optimization with multiple materials
and time-transient effect [7]. In a study by Wu and Zhang, the minimization of the
maximum temperature is further studied along with the effect of the transient time
period [8].

Looking at compliant mechanism, a recent survey paper was published which covers
the state of the art related to compliant mechanism [9], including thermal actuators.
The study of thermal actuators is quite extensive, however, papers taking the effect
of time into consideration are relatively rare. What is especially interesting is a study
done in 2004 by Li et. al which looks at thermal actuators under time-transient
effects [10]. It is the first study to take transient effects into account. Moreover,
Sigmund systematically studied the field of thermal actuators with non-linear effects
and multi-materials and also derived a theoretical performance limit for any thermal
actuator [11] [12]. In a conference paper [13], a transient thermomechanical system
is optimized on and at the same time, a new penalization optimization method
is described. The review paper on compliant mechanism also covers the usage of
multiple materials in the optimization, showcasing the alternative techniques for
interpolating the material properties of the models.
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Chapter 2

Theory

2.1 Transient conductive heat transfer

2.1.1 Governing equations

The time-dependent heat equations are generally derived from the conservation of
energy on an infinitesimal element, stating that the net power entering the element
through its boundary in addition to the power being generated inside the element,
should equal the change of internal energy in the element with respect to time.
By denoting the internal heat generation as Q [W m−3], the heat flux vector as
q [W m−2] and temperature as T [K], this statement can be expressed as the equation

−∇ · q +Q = ρcpṪ , (2.1)

where Ṫ is the time derivative of T and ρ [kg m−3] and cp [J kg−1 K−1] are the density
and the heat capacity respectively. All quantities above are assumed to be functions
of space and time, except the density and the heat capacity, which are assumed to
only be functions of space.

For purely conductive heat transfer, the macroscopic relationship between the heat
flux and the gradient of the temperature can be described with Fourier’s law:

q = −κ∇T. (2.2)

The minus sign shows that the heat flows to the regions with lower temperature,
hence a negative temperature gradient. The second order positive definite tensor
κ [W m−1 ◦C−1] is called the thermal conductivity and in a Cartesian system, it is
represented as
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κ =

κxx κxy κxz

κyx κyy κyz

κzx κzy κzz

 . (2.3)

For the rest of this report, thermally isotropic material will be considered, where
the matrix consists of only 1 independent component, κ, therefore making κ = κI
where I denotes the identity matrix.

With Fourier’s law inserted into (2.1) and with all the terms moved to the left hand
side yields

∇ · (κ∇T ) +Q− ρcpṪ = 0, (2.4)

which is referred to as the transient (conductive) heat equation. As conduction is
the only heat transfer mechanism considered, this is the single governing equation
dictating how the temperature field evolves over time.

For the governing equations to be solvable, a body of interest must be specified
alongside boundary conditions. For an arbitrary body, the physical space it occupies
may be denoted Ω, see figure 2.1. The body is subject to a prescribed temperature
at part of the boundary of Ω, ∂ΩT . A boundary condition of this type is essential to
solve the system, and is therefore named essential boundary condition or Dirichlet
boundary condition. At another part of the boundary, ∂Ωq, the heat flux is known.
This kind of boundary condition is called natural boundary condition or Neumann
boundary condition. As transient heat is studied, an initial condition must be stated.
All together the problem is to find the temperature field T (x , t) which satisfies the
following equations


∇ · (κ∇T (x , t)) +Q(x , t)− ρcpṪ (x , t) = 0 ∀x ∈ Ω, t ∈ [0, tf ]

T (x , t) = T ′(x , t) ∀x ∈ ∂ΩT , t ∈ [0, tf ]

qn(t) = −κ∇T (x , t) · n = q′n(x , t) ∀x ∈ ∂Ωq, t ∈ [0, tf ]

T (x , 0) = T0(x ) ∀x ∈ Ω

, (2.5)

where the prime on T ′ and q′n denotes that these are prescribed quantities on the
boundaries ∂ΩT and boundary ∂Ωq, respectively. T0 is the initial temperature dis-
tribution and tf denotes the time duration for which the temperature field will be
solved.

Strong formulation to weak formulation

The transient conductive heat equation as it is expressed in (2.4), is given in a strong
(differential) formulation. To solve the thermal problem with the Finite Element
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Figure 2.1: Description of the body and the boundaries for the thermal problem.

Method, it must instead be given in a weak (variational) formulation. What follows
are the steps for transforming the strong formulation to a weak formulation.

First, the notion of a virtual temperature δT (x , t) is introduced, which is an imaginal
variation of T satisfying the Dirichlet and Neumann boundary conditions. The first
step is then to multiply (2.4) by the virtual temperature, namely

δT (∇ · (κ∇T ) +Q− ρcpṪ ) = 0. (2.6)

As (2.6) holds for every point in Ω it may be integrated over the entire body.

∫
Ω

δT (∇ · (κ∇T ) +Q− ρcpṪ ) dΩ = 0 (2.7)

With the goal of removing the divergence operator from the equation above, the
term related to the divergence is integrated with the Gauss-divergence theorem,
stating that

∫
Ω

δT∇ · (κ∇T ) dΩ =

∫
∂Ω

δT (κ∇T ) · n d(∂Ω)−
∫

Ω

∇(δT ) · (κ∇T ) (2.8)

The symbol n denotes the normal of the body’s surface. Inserting (2.8) into (2.7)
and denoting the normal heat flux at the surface q · n as qn results in the weak, or
variational, formulation

∫
∂Ω

δTqn d(∂Ω) +

∫
Ω

(∇(δT ))T (κ∇T )−
∫

Ω

δTQ dΩ +

∫
Ω

δTρcpṪ dΩ = 0 (2.9)
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Figure 2.2: Spatial approximation of the body Ω.

The strong and weak form are equivalent, but the weak formulation is beneficial in
the sense that no second order derivative of the temperature is present. It is therefore
the weak formulation that is the basis for the approximation and transformation to
a finite set of algebraic equations, which will be the subject of the next section.

2.1.2 Solving the heat equations with the Finite Element
Method

Discretizing in space

The variational formulation is very difficult to solve analytically for more than simple
geometries. To handle complex geometries, numerical methods must therefore be
employed. Without knowing how the field looks like, it is then discretized in space,
and approximated as the interpolation of these discrete values. At the same time,
the body is approximated to be made up by finite number of element, cf. figure
2.2. These elements are to no surprise called finite elements. The discrete points
inside the body and on its boundary are called nodes and the nodes together with
the wireframe connecting the nodes and defining the finite elements, form a mesh.

At the nodes, the field variables are defined as scalar values, or nodal temperatures.
The information about the temperature field is replaced by a vector of nodal values,
namely
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T =


T1

T2

...

Tnn

 , (2.10)

where Ti denotes the temperature at node i and nn is the total number of nodes.

The temperature field is then approximated as an interpolation of these values

T (x , t) ≈
nn∑
i=1

Ni(x )Ti(t) = N (x )T (t), N =
[
N1 N2 . . . Nnn

]
(2.11)

N is the global shape function matrix and Ni shape functions. The shape function
Ni has the property of equaling 1 at node i and 0 at all other nodes, and interpolates
the values in between. Notice also how (2.11) separates the approximation in space
and time into the shape functions and nodal values respectively. A consequence is
that the same interpolation can be used for the time derivative, Ṫ = N (x )Ṫ (t),
where Ṫ (t) is the time derivative of the nodal temperatures.

In between nodes, the interpolation from the shape functions decides how to inter-
polate the nodal temperature values. In figure 2.2, the position x is inside a finite
element. The interpolation will then only take the nodal temperature values of that
element into consideration. A special trick is then to reduce the globally sized shape
function matrix N and temperature vector T into a locally sized shape function
matrix and temperature vector.

T ≈ N (x )T (t) = N (x )E eE
T
e T (t) = N eT e, ∀x ∈ Ωe (2.12)

The expansion/reduction matrix for element e maps the local node numbering for
element e to the global numbering/vice versa, see more in appendix A. In (2.12),
N E e is substituted with the local shape function matrix for element e, N e, and
ET
e T with the local nodal temperature vector, T e. In the local region of an element,

these vectors hold all the relevant information for interpolating inside that element.
N e and T e are have the dimension nen, number of element nodes. Using the local
numbering of the nodes, these vectors may be written as

N e =
[
N e

1 N e
2 . . . N e

nen

]
T e =


T e1
T e2
...

T enen

 . (2.13)

The superscript e marks that the numbering is local. The expansion matrix can later
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map this numbering to the global numbering used in (2.10) and (2.11). Another
important equality from (2.12) is

N (x ) = N e(x )ET
e ∀x ∈ Ωe (2.14)

The same discretization and interpolation method is used on the virtual tempera-
ture, yielding

δT (x , t) = N (x )δT (t) (2.15)

Inserting these approximations, (2.11) and (2.15), into the weak formulation (2.9)
results in

∫
∂Ω

δT TN T qn d(∂Ω) +

∫
Ω

∇(N δT )T (κ∇(N T ))

−
∫

Ω

δT TN TQ dΩ +

∫
Ω

δT TN TρcpN Ṫ dΩ = 0

(2.16)

As the nodal vectors, δT , T and Ṫ are independent on position, they may be
moved outside the integrals.

δT

[∫
∂Ω

N T qn d(∂Ω) +

∫
Ω

(∇N )Tκ∇N dΩT

−
∫

Ω

N TQ′ dΩ +

∫
Ω

N TρcpN dΩṪ

]
= 0

(2.17)

As the virtual temperature is arbitrary, leads to the equality

∫
∂Ω

N T qn d(∂Ω) +

∫
Ω

BTκBdΩT −
∫

Ω

N TQ dΩ +

∫
Ω

N TρcpN dΩṪ = 0 (2.18)

Here he gradient of the shape functions, ∇N is denoted with B . To make the
notation of the integrals simpler, some symbols are introduced, as seen below. f l
is called the boundary load vector, f v the volume load vector, K TT the thermal
stiffness matrix and C the heat capacity matrix. (2.18) may then be written as in
(2.23).

f l ≡
∫
∂Ω

N T qn d(∂Ω) (2.19)
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f v ≡
∫

Ω

N TQ dΩ (2.20)

K TT ≡
∫

Ω

BTκBdΩ (2.21)

C ≡
∫

Ω

N TρcpN dΩ (2.22)

f l + K TTT − f v + CṪ = 0 (2.23)

Rearranging and adding the two load vectors together to a single load vector f ,
makes

CṪ + K TTT = f (2.24)

This is the finite element formulation discretized in space. However, it also needs
to be discretized in time to end up with a set of algebraic equations to solve. The
next section covers that.

Discretizing in time

In the last section, the field variables were discretized into finite points in space. The
result was equation (2.24). This equation has however still a time derivative present.
To acquire a finite set of algebraic equations, the field variables are discretized in time
as well. The domain [0, tf ] is discretized into a set of time steps, [t0, t2, . . . , tN ].
At each time step, we define the quantities at that time as follows.

T (n) ≡ T (t = tn), Ṫ
(n) ≡ Ṫ (t = tn), f (n) ≡ f (t = tn), ∀n = 0, 1, . . . , N

(2.25)

To eliminate the time derivative, equation (2.24) is integrated with respect to time
between two arbitrary time steps tn−1 and tn.

∫ tn

tn−1

K TTT (τ) dτ +

∫ tn

tn−1

CṪ (τ) dτ =

∫ tn

tn−1

f (τ) dτ (2.26)

As the material parameters are assumed to be constant over time, leads to the
matrices K TT and C moving outside the integrals. The integration of the time
derivative equals a difference in temperature,

∫ tn
tn−1

Ṫ (τ) dτ = T (tn) − T (tn−1),

which together with (2.26) becomes

11



K TT

∫ tn

tn−1

T (τ) dτ + C (T (n) −T (n−1)) dτ =

∫ tn

tn−1

f (τ) dτ (2.27)

As the temperature function with respect to time, T (τ), is sought after, it is un-
known and so also the integral over it. The integral is therefore approximated as a
weighted sum of the temperatures at the two bounds of the integral multiplied by
the time difference:

∫ tn

tn−1

T (τ) dτ ≈ (θT (n) + (1− θ)T (n−1)))(tn − tn−1), θ ∈ [0, 1] (2.28)

The integration over the load vector f in (2.27) does not necessarily have to be ap-
proximated, as the full loading history should be known beforehand. It is however
common that the load vector is approximated in the same fashion as the nodal tem-

peratures. To keep it general, it is kept as is and denoted f̄
(n) ≡ 1

∆tn

∫ tn
tn−1

f (τ) dτ .
By using the notation ∆tn for the time difference at step n: tn − tn−1, and by
inserting (2.28), (2.27) can take its final form

K TT (θT (n) + (1− θ)T (n−1)))∆tn + C (T (n) −T (n−1)) dτ = ∆tnf̄
(n)

(2.29)

Arranging all the terms with T (n) on the left hand side and all the other terms on
the right hand side and dividing by ∆tn yields

(θK TT +
1

∆tn
C )T (n) = (K TT (θ − 1) +

1

∆tn
C )T (n−1) + f̄

(n)
(2.30)

The equation above follows the format where all the quantities on the right hand side
are known, and the only unknown in the left hand side is T (n). The temperatures in
time can therefore be retrieved in an simple recursive matter, where only the initial
temperatures T (0) have to be known. In a residual format, the equation is instead
written as

R
(n)
T (T (n),T (n−1)) ≡ (θK TT +

1

∆tn
C )T (n) − (K TT (θ − 1) +

1

∆tn
C )T (n−1) − f̄

(n)

≡ AT (n) −BT (n−1) − f̄
(n)

= 0

(2.31)

The most common choices of θ are 0, 1 or 1/2. These integration schemes are then
called the forward Euler, backward Euler and Crank-Nicolson scheme, respectively.
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Stiffness and heat capacity matrices

The thermal stiffness matrix and heat capacity matrix defined in (2.21) and (2.22)
are integrals of the shape function matrix or the gradient of the shape function
matrix, over the domain Ω. If the integrals’ domain instead is divided into elements,
the integral may be calculated as a sum of smaller integrals. The heat capacity
matrix can be expressed as

C ≡
∫

Ω

N TρcpN dΩ =
nel∑
e=1

∫
Ωe

N TρcpN dΩ. (2.32)

The equality from (2.14) may then be used on the integral, which gives

C =
nel∑
e=1

E e

∫
Ωe

N T
e ρcpN e dΩET

e =
nel∑
e=1

E eceE
T
e . (2.33)

The equality states that the global shape function matrix in the local domain Ωe

equals the expansion matrix times the local shape function matrix. This gives that
the heat capacity matrix can be seen as made up of the sum of local heat capacity
matrices ce, which are then expanded to the global size. This process is also called
assembly and is the same for the thermal stiffness matrix as well.

K TT =
nel∑
e=1

E e

∫
Ωe

(∇N e)
Tκ(∇N e) dΩET

e =
nel∑
e=1

E ek eE
T
e (2.34)

The benefit of the assembly process is that the local stiffness matrices ce and k e are
much smaller in size and are identical for congruent elements.

Final formulation

With the residual equation formulated in (2.31), the finite element formulation with
boundary conditions can be compactly expressed as


R

(n)
T (T (n),T (n−1)) = 0 n = 1, . . . , N

T
(n)
i = T ′(x i, tn) ∀x i ∈ ∂Ω

(n)
T , n = 1, 2, . . . , N

qn(x , t) = q′n(x , t)

T
(0)
i = T0(x i) i = 1, 2, . . . , nn

(2.35)

This serves as the state equations for the temperature field. Whenever R
(n)
T (T (n),T (n−1)) =

0 is used later in the report, this actually refers to the whole system in (2.35).
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2.2 Thermo-elasticity

2.2.1 Governing equations

The governing equation for the mechanical system stems from the law of mechanical
equilibrium. In a continuum, it may be stated as three coupled equations, one for
each dimension.

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ bx = 0 (2.36)

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ by = 0 (2.37)

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

+ bz = 0 (2.38)

To write these three equations into one matrix equation, the second order stress
tensor is written in Voigt notation.

σ =
[
σxx σyy σzz σxy σxz σyz

]T
(2.39)

As the stress tensor is symmetric, makes it possible to write the above equations in
a more compact manner

∇̃T
σ + b = 0 , (2.40)

where the body force vector b = [bx, by, bz]
T and the matrix differential operator ∇̃

is defined as

∇̃ ≡



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y


(2.41)

The vector equation (2.40) is the strong formulation of the governing equation for
the elasticity problem. To connect (2.40) with the primary unknown u(x , t), a con-
stitutive relationship and a kinematic relation must be established. The kinematic
relation is stated as
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ε(x , t) = ∇̃u(x , t), (2.42)

where the second order strain tensor is written in Voigt notation as ε, just as the
stress tensor in (2.39). The displacements are denoted u = [ux, uy, uz]

T and are
functions of space and time.

The strain can be divided into several contributions. In this thesis, elastic strains,
εel, induced by a stress field and thermal strain, ε0, induced by temperature change,
are the only strains considered, making the total strain ε = εel + ε0. The thermal
strain relates to a temperature change and do only contribute to the normal strains

ε0 =



αx

αy

αz

0

0

0


∆T = α∆T (2.43)

α denotes the coefficient of thermal expansion (CTE) and ∆T is the temperature
difference against a reference temperature for which no thermal strain is present:
∆T = T − TR. For an isotropic material, the coefficients of thermal expansions are
all equal, giving α = α[1, 1, 1, 0, 0, 0]T .

Just as with the thermal problem, some kind of constitutive relationship must be
introduced, in this case to couple the stresses with the strains. In this report, the
constitutive relationship that will be used is Hooke’s law, stating that there is a
linear relationship between the stresses and strains, expressed in matrix format as

σ = Dεel (2.44)

The constant material stiffness matrix D (note the difference towards the stiffness
matrix K ) is in the general case of an anisotropic material a 6 x 6 matrix with 36
independent components. However, for a linear isotropic material, the number of
independent components are 2, for example given with the engineering parameters
Young’s modulus E and Poisson’s ratio ν. Combining (2.42), (2.43) and (2.44)
together with the contribution to the total strain yields

σ = D(∇̃u −α∆T ). (2.45)

The body for which the governing equations are applied are denoted Ω, displayed
in figure 2.3 together with the boundary conditions. The body is also subject to
a prescribed displacement at part of the boundary of Ω, ∂Ωu. At another part

15



Figure 2.3: Description of the body and the boundaries for the mechanical problem.

of the boundary, ∂Ωt, the traction t is known. In addition to these Dirichlet and
Neumann boundary condition, another boundary condition called Robin boundary
condition is considered. This condition specifies how the traction is dependent on the
displacements at a certain part of the boundary, called Ωs. The governing equations
together with the boundary conditions are presented below. The primary unknown
to solve the system for is u(x , t). Notice how no initial condition is needed as none
of the governing equations are history dependent.



∇̃T
σ(x , t) + b = 0 ∀x ∈ Ω, t ∈ [0, tf ]

σ(x , t) = D(∇̃u(x , t)−α∆T (x , t))

u(x , t) = u ′(x , t) ∀x ∈ ∂Ωu, t ∈ [0, tf ]

t(x , t) = σ(x , t) · n = t ′(x , t) ∀x ∈ ∂Ωt, t ∈ [0, tf ]

t(x , t) = σ(x , t) · n = f (u(x , t)) ∀x ∈ ∂Ωs, t ∈ [0, tf ]

(2.46)

Strong formulation to weak formulation

In a similar fashion as for the heat equation, including the introduction of a virtual
displacement δu , the weak form is derived for (2.40). For the full calculations, the
reader is referred to [14]. The resulting weak form is then

∫
Ω

(∇̃δu)Tσ dΩ =

∫
∂Ω

(δu)T t d(∂Ω) +

∫
Ω

(δu)Tb dΩ, (2.47)

where t = [tx, ty, tz]
T is the surface traction on ∂Ω. Inserting the constitutive

relationship into (2.47) yields the final weak formulation for the elasticity problem.
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∫
Ω

(∇̃δu)TD(∇̃u −α∆T ) dΩ =

∫
∂Ω

(δu)T t d(∂Ω) +

∫
Ω

(δu)Tb dΩ (2.48)

2.2.2 Solving the equilibrium equations with the Finite El-
ement Method

As with the thermal problem, the mechanical problem must be discretized in space
and time to be solved. The same partitioning into finite elements is done for the
mechanical problem.

In contrast to the thermal problem, where the unknown temperature field is a scalar
field, the displacements field is a vector field. Every node in the mesh then have
3 degrees of freedom, one for each component of the displacement. When ordering
all these into a vector, one option is to stack the components for each nodes on
top of each other and insert into a column vector. The nodal displacement vector
is denoted with a bar to differentiate it from the continuous displacements field
variable.

ū =



u1,x

u1,y

u1,z

u2,x

...

unn,z


(2.49)

, where ui,x denotes the displacement in the x-direction at node i et cetera.

The interpolation of these values is then done similarly to what was done in (2.11).

u(x , t) ≈
nn∑
i=1

Ni(x )

ui,x(t)ui,y(t)

ui,z(t)

 (2.50)

Writing this as a matrix product, results in the following global shape function
matrix

u(x , t) = N (x )ū(t), N =

N1 0 0 N2 0 0

0 N1 0 0 N2 0 . . .

0 0 N1 0 0 N2

 (2.51)
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The underlining of the shape function matrix, N , is used to distinct it from the one
used for the temperature in (2.11). Similarly, the global shape function matrix and
nodal displacement vector may be reduced to local size as with the temperature.
The only difference is then that E e now maps a larger set of degrees of freedom.
The resulting shape function matrix and nodal element displacement vector look
like

N e =

N e
1 0 0 N e

2 0 0 . . .

0 N e
1 0 0 N e

2 0 . . .

0 0 N e
1 0 0 N e

2 . . .

 ūe =


ue1,x
ue1,y
ue1,z

...

uenen,z

 (2.52)

The same discretization and interpolation method is used on the virtual displace-
ment

δu(x , t) = N (x )δū(t) (2.53)

The approximations for the displacement and virtual displacement is inserted into
(2.48).

∫
Ω

(∇̃(N δū))TD(∇̃N ū −α∆T ) dΩ =∫
∂Ω

(N δū)T t d(∂Ω) +

∫
Ω

(N δū)Tb dΩ

(2.54)

All terms are moved to the left hand side and the nodal virtual displacement vector
may be moved outside the integrals, as it is independent on position.

δū

[∫
Ω

(∇̃N )TD∇̃N dΩū −
∫

Ω

(∇̃N )TDα∆T dΩ−∫
∂Ω

N T t d(∂Ω)−
∫

Ω

N Tb dΩ

]
= 0

(2.55)

As the virtual displacements are arbitrary leads to the equality

∫
Ω

BTDB dΩū −
∫

Ω

BTDα∆T dΩ−∫
∂Ω

N T t d(∂Ω)−
∫

Ω

N Tb dΩ = 0

(2.56)
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Here the gradient of the shape functions, ∇N is denoted with B . To make the
notation of the integrals simpler, some symbols are introduced, as seen below. f l
is called the boundary load vector, f v the volume load vector, f 0 the thermal load
vector, K uu the stiffness matrix. (2.56) may then be written as in (2.61).

f l ≡
∫
∂Ω

N T t d(∂Ω) (2.57)

f v ≡
∫

Ω

N Tb dΩ (2.58)

f 0 ≡
∫

Ω

BTDα∆T dΩ (2.59)

K uu ≡
∫

Ω

BTDB dΩ (2.60)

K uuū = f l + f v + f 0 (2.61)

The stiffness matrix K uu is assembled in the same fashion as the thermal stiffness
matrix, as seen in (2.34). (2.61) is the Finite Element formulation for the elasticity
problem. As no unknown quantity is time dependent, there is no need to discretize
in time. In residual format, the equation is written as

Ru(ū) ≡ K uuū − f l − f v − f 0 = 0 (2.62)

Together with the boundary conditions, the final formulation of the discretized me-
chanical problem is as below


Ru(ū) = 0

u i = g(x i) ∀x i ∈ ∂Ωu,

t(x ) = t ′(x ) ∀x ∈ ∂Ωt,

t(x ) = k′(x )u(x ) ∀x ∈ ∂Ωs,

(2.63)

2.3 Coupled thermo-mechanical system

Until now, the thermal system and the mechanical have been studied independently
of each other. In the mechanical problem, the temperature field was assumed to be
known. Now, an unknown temperature field is instead considered. The field is set
to be time dependent and is retrieved as the solution of the thermal problem (2.35).
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This solution would then be the input as temperature change in the mechanical
problem (2.46). In the coupled system, Ω refers to the same body for both weak
formulations, (2.9) and (2.48). However, the boundary conditions in the thermal
problem and the mechanical problem are independent of each other.

The thermal problem is approximated with the FE formulation as derived in section
2.1.2 and presented in (2.18). For the mechanical problem, the result is a bit differ-
ent. As the temperature is discretized into N + 1 time steps, leads to the existence
of N +1 nodal displacement vectors ū (n), n = 0, 1, . . . , N . In (2.56) the temperature
difference is approximated by

∆T = N (T (n) −TR) (2.64)

for each time step n = 0, 1, . . . , N . This implies that there are N + 1 solutions to
(2.56), just as mentioned above. The vector TR consists of the reference temperature
in the nodes. They are assumed to all be 0 to simplify the following expressions.
All this results in (2.62) instead being written as

Ru(ū
(n),T (n)) = K uuū

(n) − f l − f v −K uTT (n) = 0 , (2.65)

where

K uT =

∫
Ω

BDαN dΩ. (2.66)

This thermo-mechanical stiffness matrix K uT is assembled just like the other stiff-
ness matrices.

Since the displacements depend on the thermal problem, but the temperature does
not depend on the mechanical problem, the problem described here is said to be
one-way coupled. The full coupled system can now be written as



R
(n)
T (T (n),T (n−1)) = 0 n = 1, 2, . . . , N

Ru(ū
(n),T (n)) = 0 n = 0, 1, . . . , N

T
(n+1)
i = T ′(x i, tn) ∀x i ∈ ∂Ω

(n)
T , n = 1, 2, . . . , N

qn(x , t) = q′n(x , t) ∀x ∈ ∂Ω
(n)
q

T
(0)
i = T0(x i) i = 1, 2, . . . , nn

u i = u ′(x i) ∀x i ∈ ∂Ωu,

t(x ) = t ′(x ) ∀x ∈ ∂Ωt,

t(x ) = k′(x )u(x ) ∀x ∈ ∂Ωs,

(2.67)
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2.4 Density based topology optimization

Density based topology optimization is one of several methods used to solve the
material layout design problem presented in the introduction. Other commonly
used methods are the level-set method and evolutionary structural optimization. As
the name suggest, the density based method introduces a density field on the design
domain to determine where material should appear and disappear. As the Finite
Element Method is heavily incorporated into topology optimization methods, the
densities are defined on the finite elements. Generically speaking, the densities are
design parameters to the topology optimization problem, as they are the tuning
properties to finding the optimal design. With one design parameter per finite
element, denoted φe for element e, the whole set of design parameters can be collected
in a vector, as follows

φ =
[
φ1 φ2 . . . φne

]T
, (2.68)

where ne is the number of elements. This vector parametrizes the design domain
and take any value in the design space Φ which will be defined in a following section.
The role of the design parameters are to determine the material to use in a certain
element for the optimal design.

To distribute more than two materials, it is common to introduce multiple design
parameters per element (this depends on the chosen material interpolation model).
In the case of three materials, two design parameters per element are introduced,
φI and φII . φI determines whether an element consists of material 1 or the other
materials. φII then determines whether an element consists of material 2 or material
3.

As the design parameters determine the material distribution, it governs the ma-
terial properties in the elements. For a thermo-mechanical problem, the material
properties in element e are functions of the design parameter over the same element,
φe, accordingly

E = E(φe), κ = κ(φe), s = ρ · cp = s(φe), r = E · α = r(φe) (2.69)

The density and heat capacity, and Young’s modulus and CTE are gathered to a
single property to simplify the formulation. The product of the density and heat
capacity, here denoted s, is called the volumetric heat capacity. The product of
Young’s modulus and the coefficient of thermal expansion, here denoted r, is called
the thermal stress coefficient. As these material properties now are considered func-
tions of the design parameters, leads to the residual equations to also be functions
of the design parameters

R
(n)
T (φ,T (n),T (n−1)) = A(φ)T (n) −B(φ)T (n−1) − f̄

(n)
(2.70)
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Ru(φ,T
(n), ū (n)) = K uu(φ)ū (n) −K uT (φ)T (n) − f l − f v (2.71)

Next in the optimization process is to formulate what quantity to optimize and
under which conditions.

2.4.1 Mathematical representation

No matter which topology optimization problem considered, there must be a measure
to represent the performance of a design. This measure is stated so the problem is
to minimize the measure. When for example optimizing for stiffness, the measure
is compliance which should be minimized. For the optimization of a compliant
mechanism, however, the goal is to maximize the output at a certain point, which
is measured as the negative displacement of that point, as minimizing the negative
displacement actually maximizes the displacement. When subject to minimization,
the measure is commonly referred to as an objective function, in this report denoted
g0.

Alongside the objective function are the constraints of the problem. Examples of
constraints are that the total mass of the design must not surpass a certain limit. An
optimization problem may be subject to several constraints, here denoted gi ≤ 0, i =
1, 2, . . . ,M where M is the total number of constraints. The objective function
and constraint functions depend in general on the design parameters and the state
variables. As the state equations are also dependent on the design parameters, they
must be included to implicitly couple the design parameter to the state variables.

For a general transient thermo-mechanical topology optimization problem P , where
the state variables are discretized as in section 2.3, the mathematical representation
is as follows.

P :



min
φ∈Φ

g0(φ; T (0),T (1), . . . ,T (N); ū (0), ū (1), . . . , ū (N))

subject to



R
(n)
T (φ; T (n),T (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(φ; ū (n),T (n)) = 0 , ∀n = 0, 1, . . . , N

g1(φ; T (0),T (1), . . . ,T (N); ū (0), ū (1), . . . , ū (N)) ≤ 0
...

gM(φ; T (0),T (1), . . . ,T (N); ū (0), ū (1), . . . , ū (N)) ≤ 0

(2.72)

Design space

For a material design layout problem with two materials, the design parameters are
usually defined in such a way that a value of φe = 0 should be interpreted as only
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material 1 in that element and φe = 1 as only material 2 in that element. Allowing
φ to only take the values 0 or 1, i.e. discrete values, seems then to be a natural
choice. However, if gradient based methods are to be used by the optimizer later
in the process, the design space is required to be continuous. A solution is then to
define the design space as 0 and 1 plus everything in between.

Φ = { φ | 0 ≤ φ ≤ 1} (2.73)

This type of relaxation of the problem (allowing more designs to be feasible) do
however introduce other problems discussed below.

2.4.2 Material interpolation models

The first and obvious consequence of the relaxation of the topology optimization
problem, is that a solution may consists of intermediate design values, i.e. values
where the design parameter are in the gray area between 0 and 1. The cumbersome
question is: how should a design with intermediate values be interpreted, as a mate-
rial with intermediate properties normally can not be manufactured? At the same
time the question arises, how should an intermediate design value affect the material
properties? The answers lies primarily in the choice of material interpolation model.

A material interpolation model decides how a material property should be interpo-
lated in the interval of intermediate design values. Two of the most used interpo-
lation model are Solid Isotropic Material with Penalization (SIMP), first suggested
in 1989 [15] and Rational Approximation of Material Properties (RAMP), proposed
in 2001 [16]. The idea behind these interpolation models is to penalize intermediate
designs. Together with a resource constraint on the density (e.g. a mass constraint),
it will drive the optimizer to prefer values of either 0 or 1. For the Young’s modulus,
the SIMP interpolation model is

E(φe) = E1 + φpe(E2 − E1), (2.74)

where E1 and E2 are the Young’s modulus of material 1 and 2, respectively. The
parameter p in (2.74) is called the penalty factor, and is usually chosen such that
p ≥ 3 [17]. RAMP on the other hand interpolates with a rational expression

E(φe) = E1 +
φe

1 + q(1− φe)
(E2 − E1) (2.75)

Both interpolation models can be seen in figure 2.4. For multi-material optimization,
the material interpolation models are represented by functions with several design
parameters as input. Using SIMP or RAMP for optimization with 3 materials (and
2 design parameters per element), the interpolation model is just applied twice to
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Figure 2.4: Example of SIMP and RAMP interpolation for different choices of pa-
rameters.

calculate the material properties. For the case of Young’s modulus and SIMP, it
would look like

E(φe,I , φe,II) = E1 + φpIe,I
[
E2 + φpIIe,II(E3 − E2)− E1

]
(2.76)

With this kind of interpolation, the first design parameter, φI , has precedence over
φII for determining the material. The other material properties are interpolated in
the same way, by replacing E in the equations above with the material property of
interest.

2.4.3 Regularization

It is a well known fact for density based topology optimization that SIMP introduces
numerical instabilities such as checkerboard designs. A popular solution to this
problem is to regularize the problem via filtering techniques, which also sets a length
scale for the smallest features of the optimal design.

The filtering techniques employed in this report is extensively described in the lit-
erature, for example by Bruns & Tortorelli [18], and is called density filtering. The

main idea of the filtering is to introduce a filtered design parameter field φ̂ that is
the weighted unfiltered design φ in the surrounding elements. The interpretation,
is that φ̃ represents the physical design and φ can instead be seen as the raw input
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(a) Unfiltered design with
checkerboard pattern

(b) Density based filtered de-
sign

(c) Filtered and projected
design

Figure 2.5: Showing the effect of the filtering technique and projection on a simple
linear design

parameter to the optimization without any physical meaning. A general description
of the density filtering technique follows.

φ̂e =

∑ne
i=1we(x i)φivi∑ne
i=1we(x i)vi

, (2.77)

where vi denotes the volume of element i and the position xi is normally taken to be
the geometric center of element i. In matrix notation, the weighting can be written
as

φ̂ = Wφ, Wij =
wi(x j)vj∑ne
k=1 wi(x k)vk

(2.78)

It can be seen in figure 2.5b how the filtering affects the design. The weighting
normally only takes the closest elements into consideration. A simple and common
weighting function is a linearly decaying radial function.

we(x ) =

{
R− ||x − x e|| if ||x − x e|| < R

0 otherwise
(2.79)

R here denotes the weighting radius.

The filtering techniques do however unavoidably re-introduce intermediate designs
as seen in figure 2.5b.

2.4.4 Projection

Even if the filtering solves the checkboard pattern problem and introduces a mesh-
independent length scale on the design, it also reintroduces the problem with the
intermediate design values. A solution which produces more ”black and white”
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Figure 2.6: Heaviside projections with the threshold at 0.5. Notice how the smooth
approximation of the Heaviside function approaches the discrete function when β is
increased.

designs and pertains the length scale is Heaviside projection together with a robust
formulation of the topology optimization problem.

The principle of Heaviside projection is to define a threshold between 0 and 1, where
all the intermediate design parameters below the threshold are projected to 0 and
all the ones above the threshold are projected to 1. A Heaviside projection function
H(φe) according to this principle is seen as a solid line in figure 2.6. This function
is however not continuous, which is necessary for the gradient based optimizers. A
smooth approximation of the Heaviside projection function can be created as

H(φe) =
tanh(βη) + tanh(β(φe − η))

tanh(βη) + tanh(β(1− η))
(2.80)

The approximated function has two parameters: η, which sets the threshold and β,
which controls the steepness of the approximation as seen in figure 2.6. The steepness
parameter β is usually set low in the beginning of the optimization to avoid making
the system too sensitive, and gradually increased throughout the optimization. The
Heaviside projection is preferably used together with some kind of regularization
technique.

Robust formulation

Together with the Heaviside projection, a robust formulation of any mass con-
strained topology optimization problem can be defined. A robust formulation creates
a new problem to which the solution should be more robust to errors in the manu-
facturing process. This technique has the benefit of preserving the minimal length
scale of the optimal design, which is otherwise lost when applying the Heaviside

26



Figure 2.7: The different projections for ∆η = 0.2 and β = 16

Figure 2.8: Example of a projected eroded, intermediate and dilated design in the
order from left to right.

projection to the design and also the benefit of avoiding one-node hinges. [19]

The steps of a robust formulation are outlined in [19]. First, three different projected
designs are defined, one eroded, one intermediate and one dilated.

eφ = H(φ̂, η = 0.5−∆η) (2.81)

iφ = H(φ̂, η = 0.5) (2.82)

dφ = H(φ̂, η = 0.5 + ∆η) (2.83)

∆η decide the margin of the threshold. In figure 2.7 and 2.8 examples of the different
projections functions and resulting designs can be seen. Moreover, a new objective
function is defined as the maximum of the objective function with the three different
designs as input.

ḡ0 ≡ max
(
g0(eφ̄; eT (0), . . . , eT (N); eū (0), . . . , eū (N),

g0(iφ̄; iT (0), . . . , iT (N); iū (0), . . . , iū (N),

g0(dφ̄; dT (0), . . . , dT (N); dū (0), . . . , dū (N))
) (2.84)

The left-sided superscript of the state variables (e.g. eT (0)) denotes that they are
the solution to the corresponding state equation with either the eroded, intermediate
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or dilated design as input. There are therefore three sets of state equations to solve
for the robust formulation:

{
R

(n)
T (eφ; eT (n), eT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
eφ; eT (n), eū (n)) = 0 , ∀n = 0, 1, . . . , N

(2.85)

{
R

(n)
T (iφ; iT (n), iT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
iφ; iT (n), iū (n)) = 0 , ∀n = 0, 1, . . . , N

(2.86)

{
R

(n)
T (dφ; dT (n), dT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
dφ; dT (n), dū (n)) = 0 , ∀n = 0, 1, . . . , N

(2.87)

The intermediate design is taken as the design to actually manufacture and use.
The eroded and dilated designs are interpreted as designs with production errors.
The maximum function of the robust formulation makes sure these designs have a
considerably good performance, sort of acting as a safe margin for manufacturing
errors. This also prevents non-manufacturable one-node hinges to appear in the
optimal design.

It is assumed that any problem under the robust formulation has a mass constraint.
Without a robust formulation, a simple mass constraint for a design would look like

gm(φ) =
nel∑
i=1

ρ(φi)vi −m∗ ≤ 0 (2.88)

The mass limit m∗ limits how much material can be used in the optimal design.
For a robust formulation, the input to the mass constraint is the worst projected
design, which in this thesis will be the dilated design for the material interpolation
model chosen on the density. However, the original constraint should hold for the
final design, which for the robust formulation is the intermediate design. To make
sure the mass constraint holds for the intermediate design, a dilated mass limit is
used, m∗d.

gm(dφ) =
nel∑
i=1

ρ(dφi)vi −m∗d ≤ 0 (2.89)

The dilated mass limit is then updated regularly over the course of the optimization,
to make sure the constraint holds for the intermediate design.

m∗d =

∑
ρ(dφi)vi∑
ρ(iφi)vi

m∗ (2.90)
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The general problem P stated as in (2.72) is with a robust formulation instead
written as

Pr :



min
φ∈Φ

ḡ0

s.t.



{
R

(n)
T (eφ; eT (n), eT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
eφ; eū (n), eT (n)) = 0 , ∀n = 0, 1, . . . , N{

R
(n)
T (iφ; iT (n), iT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
iφ; iū (n), iT (n)) = 0 , ∀n = 0, 1, . . . , N{

R
(n)
T (dφ; dT (n), dT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
dφ; dū (n), dT (n)) = 0 , ∀n = 0, 1, . . . , N

gm(dφ) ≤ 0

g1(iφ; iT (0), iT (1), . . . , iT (N); iū (0), iū (1), . . . , iū (N)) ≤ 0
...

gM(iφ; iT (0), iT (1), . . . , iT (N); iū (0), iū (1), . . . , iū (N)) ≤ 0

(2.91)

2.4.5 Optimizers

With the topology optimization problems formulated as mathematical optimization
problems such as P or Pr, the problem of finding a material distribution design has
turned into minimizing a mathematical function under certain constraints. Tradi-
tional mathematical optimizers may be employed to solve these problems. However,
since solving the state equations to evaluate the objective function for a certain set
of design parameters is very expensive from a computational point of view, spe-
cial optimizers are used in topology optimization. The common ground for these
optimizers is that they approximate the non-linear, non-convex problem P with a
convex, separable problem P ′, which can be exactly solved. Iteratively approxi-
mating P at the current design and solving P ′ to find a new, better design will
eventually converge into a local minimum using these methods. Another common
feature of most optimizers used in topology optimization, is that they are gradient
based, meaning that the gradient of the objective function and constraints must be
given to approximate the problem. To fully approximate P around an arbitrary
design φk the following first order derivatives must be known:

Dgi
Dφ

∣∣∣∣∣
φ=φk

, ∀i = 1, 2, . . . ,M (2.92)

One popular optimizer for topology optimization is the Method of Moving Asymp-
totes (MMA), which was introduced by Svanberg in 1987 [20]. For more details
about MMA and optimizers, the reader is referred to [21].
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2.4.6 Sensitivity analysis

In order to determine the derivatives in (2.92), a sensitivity analysis of the functions
gi, i = 0, 1, . . . ,M with respect to φj, j = 1, 2, . . . , nel is required. As gi in general
is a function of the design parameters but also the state variables, gives that the
chain rule must be used to fully determine the derivative.

Dgi
Dφj

=
∂gi
∂φj

+
N∑
n=0

∂gi

∂T (n)

DT (n)

Dφj
+

N∑
n=0

∂gi
∂ū (n)

Dū (n)

Dφj
(2.93)

The explicit derivatives ∂gi
∂φj

, ∂gi
∂T

and ∂gi
∂ū

are directly given from the expression of gi.

The implicit derivatives of the state variables, DT
Dφj

and Dū
Dφj

, are not as easily found.

They may be calculated by implicitly deriving the state equations, but this method,
called the direct method, has to be done for every φj, j = 1, 2, . . . , nel and is thus
computationally expensive for any case with a high number of design parameters.
A better suited method for the problems encountered in this thesis is the adjoint
method. The following derivations closely follows those done in [22]. The first step
in the adjoint method is to define an augmented version of the function gi

Gi ≡ gi −
N∑
n=1

(λ
(n)
i )TR

(n)
T −

N∑
n=0

(γ
(n)
i )TRu (2.94)

The variables λi and γi are dependent on φ and are called the adjoint variables.
They are arbitrary vectors with the same dimensions as T and ū respectively.
The augmented function Gi equals gi since the state equations always equals zero.
Finding the sensitivity of Gi is thus equivalent to finding the sensitivity of gi. Dif-
ferentiating (2.94) with respect to φj result in

DGi

Dφj
=
Dgi
Dφj

−
N∑
n=1

(λ
(n)
i )T

DR
(n)
T

Dφj
−

N∑
n=0

(γ
(n)
i )T

DRu

Dφj
(2.95)

Notice how the derivatives of the adjoint variables Dλ
Dφj

and Dγ
Dφj

disappear, since the

state equations equal zero, as mentioned before. The expansion of Dgi
Dφj

is already

given in (2.93). The expansion of DRT

Dφj
and DRu

Dφj
are similarly expanded as

DR
(n)
T

Dφj
=
∂R

(n)
T

∂φj
+
∂R

(n)
T

∂T (n)

DT (n)

Dφj
+

∂R
(n)
T

∂T (n−1)

DT (n−1)

Dφj
(2.96)

and
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DRu

Dφj
=
∂Ru

∂φj
+
DRu

∂ū (n)

Dū (n)

Dφj
+
DRu

∂T (n)

DT (n)

Dφj
(2.97)

Inserting (2.96), (2.97) and (2.93) into (2.95) yields the lengthy expression

DGi

Dφj
=
∂gi
∂φj

+
N∑
n=0

(
∂gi

∂T (n)

)T
DT (n)

Dφj
+

N∑
n=0

(
∂gi
∂ū (n)

)T
Dū (n)

Dφj
−

N∑
n=1

(λ
(n)
i )T

(
∂R

(n)
T

∂φj
+
∂R

(n)
T

∂T (n)

DT (n)

Dφj
+

∂R
(n)
T

∂T (n−1)

DT (n−1)

Dφj

)
−

N∑
n=0

(γ
(n)
i )T

(
∂Ru

∂φj
+

∂Ru

∂ū (n)

Dū (n)

Dφj
+

∂Ru

∂T (n)

DT (n)

Dφj

) (2.98)

This expression still has the implicit derivatives of the state variables present, just
as with (2.93). However, if the adjoint variables λi and γi are chosen in a specific
way, the implicit derivatives may be annihilated from the expression. To see how
this is done, the expression in (2.98) is divided into an explicit part and an implicit
part.

DGi

Dφj
=

DGi,E

Dφj︸ ︷︷ ︸
Explicit part

+
N∑
n=1

(
DGi,I

Dφj

)(n)

T
+

N∑
n=0

(
DGi,I

Dφj

)(n)

ū︸ ︷︷ ︸
Implicit part

(2.99)

The first term collects all the explicit derivatives. The sums
∑N

n=1

(
DGi,I

Dφj

)(n)

T
and∑N

n=0

(
DGi,I

Dφj

)(n)

ū
collects all the terms with the implicit derivatives DT (n)

Dφj
, n = 1, 2, . . . , N

and Dū(n)

Dφj
, n = 0, 1, . . . , N , respectively. The explicit part is defined as

DGi,E

Dφj
≡ ∂gi
∂φj
−

N∑
n=1

(λ
(n)
i )T

∂R
(n)
T

∂φj
−

N∑
n=0

(γ
(n)
i )T

∂Ru

∂φj
−

(λ
(1)
i )T

∂R
(1)
T

∂T (0)

DT (0)

Dφj
− (γ

(0)
i )T

∂Ru

∂T (0)

DT (0)

Dφj

(2.100)

The implicit derivative DT (0)

Dφj
is included in the explicit part, as this derivative is

known (most of the time it is 0 as the initial temperatures are most often set to
be constant). The implicit part related to the temperature is a bit more difficult to

express. Below follows the expressions for every term in
∑N

n=1

(
DGi,I

Dφj

)(n)

T
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(
DGi,I
Dφj

)(1)

T
≡

[(
∂gi

∂T (1)

)T
− (λ(1))T

∂R
(1)
T

∂T (1)
− (λ(2))T

∂R
(2)
T

∂T (1)
− (γ(1))T

∂Ru

∂T (1)

]
DT (1)

Dφj(
DGi,I
Dφj

)(2)

T
≡

[(
∂gi

∂T (2)

)T
− (λ(2))T

∂R
(2)
T

∂T (2)
− (λ(3))T

∂R
(3)
T

∂T (2)
− (γ(2))T

∂Ru

∂T (2)

]
DT (2)

Dφj

...(
DGi,I
Dφj

)(N−1)

T
≡

[(
∂gi

∂T (N−1)

)T
− (λ(N−1))T

∂R
(N−1)
T

∂T (N−1)
− (λ(N))T

∂R
(N)
T

∂T (N−1)
−

(γ(N−1))T
∂Ru

∂T (N−1)

]
DT (N−1)

Dφj(
DGi,I
Dφj

)(N)

T
≡

[(
∂gi

∂T (N)

)T
− (λ(N))T

∂R
(N)
T

∂T (N)
− (γ(N))T

∂Ru

∂T (N)

]
DT (N)

Dφj


(2.101)

For the implicit part related to the displacement, the expression is much simpler to
write out

(
DGi,I

Dφj

)(n)

ū
≡

[(
∂gi
∂ū (n)

)T
− (γ(n))T

∂Ru

∂ū (n)

]
Dū (n)

Dφj
, ∀n = 0, 1, . . . , N (2.102)

To annihilate the implicit derivatives, the expressions inside the square brackets in
(2.101) and (2.102) must equal zero. This creates a system of equations to solve for
λ and γ, namely

(
∂R

(1)
T

∂T (1)

)T
λ

(1)
i =

∂gi

∂T (1)
+

(
∂R

(2)
T

∂T (1)

)
λ

(2)
i +

(
∂Ru

∂T (1)

)
γ

(1)
i

(
∂R

(2)
T

∂T (2)

)T
λ

(2)
i =

∂gi

∂T (2)
+

(
∂R

(3)
T

∂T (2)

)
λ

(3)
i +

(
∂Ru

∂T (2)

)
γ

(2)
i

...(
∂R

(N−1)
T

∂T (N−1)

)T
λ

(N−1)
i =

∂gi

∂T (N−1)
+

(
∂R

(N)
T

∂T (N−1)

)
λ

(N)
i +

(
∂Ru

∂T (N−1)

)
γ

(N−1)
i

(
∂R

(N)
T

∂T (N)

)T
λ

(N)
i =

∂gi

∂T (N)
+

(
∂Ru

∂T (N)

)
γ

(N)
i


(2.103)
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and

(
∂Ru

∂ū (n)

)T
γ

(n)
i =

∂gi
∂ū (n)

(2.104)

These equations are the adjoint variants of the first order approximation of the
residual equations 2.31 and 2.65, except for the quantities ∂gi

∂T (n) and ∂gi
∂ū(n) . As these

quantities have the same form as the loads in the original state equations, they
are usually called adjoint loads. The adjoint loads are in general different for each
function gi. That is why the adjoint system consisting of (2.103) and (2.104) must
be solved for each function gi, i = 0, 1, . . . ,M .

The solution to the adjoint system, the adjoint variables λ and γ, are then inserted
into (2.100), which is also the final expression for the sensitivity of (2.99), as the
implicit parts have been annihilated.

Lastly, if a density filter and Heaviside projection is used on the design parameters
which are the input to gi = gi(φ; . . . ), the derivatives with respect to φj in (2.100)
are replaced with derivatives with respect to φj.

Dgi
Dφj

is still the input to the optimizer

and the chain rule is therefore applied

Dgi
Dφj

=
nel∑
k=1

Dgi

Dφk

Dφk

Dφ̂k

Dφ̂k
Dφj

(2.105)

The derivative of the filtered design parameter Dφ̂k
Dφj

can be derived from (2.77) which
gives

Dφ̂k
Dφj

= Wkj (2.106)

where Wkj is defined in (2.78). The derivative of the projected density parameter
Dφk
Dφ̂k

is derived from (2.80), and gives

Dφk

Dφ̂k
=
DH(φ̂k)

Dφ̂k
=

β
[
1− tanh2(β(φ̂k − η))

]
tanh(βη) + tanh(β(1− η))

(2.107)
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Chapter 3

Implementation

In the previous chapter, the theory to construct a topology optimization algorithm
was covered. In this chapter, the practical details are covered instead, presenting
the specific details on how the program used in this thesis operates. This includes
an overview of the solution process, from defining a geometry to plotting the result;
the pseudo-code for the topology optimization algorithm and the overall design of
the code. The program is written in Matlab and is open-sourced (retrievable at
[23]). The code is highly modular and provides a simple way to add new topology
optimization problems and FEM models, for example electromagnetic or non-linear
mechanical FEM.

3.1 Implementation overview

The process of constructing and solving a general transient linear coupled thermo-
mechanical topology optimization problem (referred to as a run), can be outlined
by a number of steps. The steps follows, and are described more in detail below.

1. Pre-process:

(a) Define the discretized geometry and time domain.

(b) Select the FEM model(s) to use.

(c) Set boundary conditions on the FEM model.

2. Define materials and set material interpolation models used in the FEM model.

3. Instantiate the TO problem with the FEM model as input.

4. Set an initial design.

5. Run the optimization algorithm and receive the optimal design.
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6. Post-process:

(a) Plot the optimal design.

(b) Plot the state variables for the optimal design.

A run begins with a pre-processing step, which involves the definition of the geometry
and the TO FEM model or models used. The boundary conditions are also defined
in this step. Next, the materials to use and the material interpolation models are
defined and inputted to the TO FEM model. The TO FEM model is input to a
predefined topology optimization problem. The number of materials (single or multi-
material) determines how many design parameters the optimization problem will
have. The initial design to the problem is then set and inputted to the optimization
algorithm. This algorithm is where the majority of the computational time is spent
when performing a run, and is therefore outlined with algorithm 1. The termination
criteria for the while-loop in the algorithm is generic and can for example be a limit
on the number of optimization iteration (e.g. k < 100) or a limit on the iteration
step (e.g. ||φ(k) − φ(k−1)|| < 10−6). The outputted design from the optimization is
then plotted to show how the design looks like. The state equations are also solved
for the final design and the state variables plotted.

3.2 Design of the modular Topology optimization

solver

The implementation overview in the previous section describes how a single run is
performed. However, several different topology optimization problems, FEM mod-
els, different number of materials and perhaps also different optimizers should be
studied. In addition, a great control of different parameters in the process is needed
to study the influence of these parameters. These criteria may be fulfilled with
a modular codebase which also allows for easy control of the whole topology opti-
mization process. What is described in this section is the codebase written alongside
this master’s thesis. The criteria to keep the codebase modular and the topology
optimization controllable have constantly been incorporated into the code.

The entire TO solver is programmed in Matlab. This choice of programming lan-
guage is motivated by its mathematical features, optimized routines, object oriented
features and ease of use for the developer. For the optimization, a Matlab inter-
face to a library called NLopt [24] has been used. The library offer several different
gradient-based algorithms, such as the Method of Moving Asymptotes (MMA) and
sequential quadratic programming (SQP).

The unstructured geometry input supported are .GMSH-files, as this format is open-
sourced and lightweight. The output format are VTK-files, which is a lightweight
and widely recognized format. The freely available program Paraview is used to
post-process the results.
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Algorithm 1: Topology optimization algorithm

Input: Initial design φ{0}

Output: Final design φ{K}

1 k := 0;

2 Set φ{k} := φ{0};
3 if filtering activated then
4 Calculate weight matrix W ;
5 else
6 Set W := I
7 end
8 if projection activated then
9 Set the Heaviside approximate function H;

10 else
11 Set H(x) = x;
12 end
13 while not termination criteria do

14 φ̂
{k}

:= Wφ{k};

15 φ
{k}

:= H(φ̂
{k}

);
16 for timestep n ← 0 to N do

17 Solve the state problem R
(n)
T (φ

{k}
);

18 Set the temperature load f
(n)
0 = K uTT (n);

19 Solve the state problem Ru(φ
{k}

);

20 end
21 Calculate the function values g0, g1, . . . , gM ;
22 for timestep n ← N to 0 do
23 Solve γ(n) in the adjoint problem (2.104);

24 Set the adjoint load from γ(n);

25 Solve λ(n) in the adjoint problem (2.103);

26 end

27 Calculate the sensitivities Dg0
Dφ

, Dg1
Dφ

, . . . , DgM
Dφ

;

28 Insert the values and sensitivities to an optimizer to find φ{k+1};
29 k := k + 1;

30 end

31 Set φ{K} := φ{k}
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Figure 3.1: Schematics showing the principles of the job manager.

Job Manager

To performs several runs in a systematic way, the runs are described in so called
Jobs and stored by a Job Manager. When a job is run by the job manager, the
TO problem and initial design declared for that job are sent to the optimizer, which
performs non-linear mathematical optimization on the TO problem. The optimizer
therefore calls the functions of the TO problem each iteration to find the next design.
When the termination criteria are met, the optimizer stops and outputs the optimal
design back to the job to store. The results of a job may be plotted directly in
Matlab, or exported to a VTK-file. A schematic view of a job manager is shown in
figure 3.1.

TO Problem

The topology optimization (TO) problem described by the jobs are pre-defined
and must be a subclass to an abstract class called TopOpt. A TO problem en-
capsulates the problem functions g0, g1, . . . , gM and their first order derivatives
Dg0
Dφ

, 1g0
Dφ
, . . . , DgM

Dφ
along with the TO FEM models necessary to resolve the state

variables present in the TO problem. The input to a TO Problem is a design in the
form of a design parameter vector φ{k}, with its size determined by the number of
materials used in the problem. The output is then the function values and values
of the first order derivatives for the provided design. A schematic view of a TO
problem is shown in figure 3.2.
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Figure 3.2: Schematic showing what is included in a TO problem object and what
it takes as input and outputs when sent to an optimizer.

FEM Models

Several different TO problems are to be run by the program which leads to the need
of several FEM models. Also, because structured mesh and unstructured mesh dif-
fer when implementing the methods used in a FEM model, there is a need of many
different FEM classes. Much of the properties and methods can however be shared
between the classes, so a family tree of the FEM classes was created. In figure 3.3
the class tree structure is visible. At the top of the tree is the common class of all
FEM classes, FEMBase, holding the most common properties like the element con-
nectivity mapping and node coordinates. For the thermal and mechanical problem
there are separate common classes for these problems as well. They hold most of
the properties and implements most of the methods related to the Finite Element
Method. These common classes then have one subclass for the structured mesh
and one for the unstructured mesh. Each concrete subclass then have a topology
optimization related subclass which holds the design parameters for optimization
and allows for material interpolation when calculating the material properties in
different elements. Lastly, the coupled topology optimization class inherits from the
thermal TO FEM model and has the mechanical one as a property. This technicality
is needed as inheritance from both would have conflicts and inheritance from none
would make the class not fulfill the interface of any FEM class.

3.3 Studied problems

To validate the correctness of the TO problems implemented and evaluate the results
from the TO solver, 4 different test cases have been studied together with a real-life
application.
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Figure 3.3: Class tree of the Finite Element Method classes and their topology
optimization (TO) counterparts, marked with dark blue. The gray boxes mark
classes not yet implemented.

If not stated otherwise, the meshes used in the test cases have consisted of isopara-
metric quadrilateral or hexahedron finite elements, ordered in a structured way. For
the 2D cases, the thickness of the geometry is set to 1 m. For the time integration of
the temperature, the backward Euler method has been used. The standard penal-
ization parameter setting has been 3. To generate stiff thermal actuators, a linear
spring has been connected to the output node for all cases on max displacement. The
termination criterion has been |g0(φ{k} − g0(φ{k−1})| < 10−7 · |g0(φ{k})|. The SIMP
material interpolation model has been used. For the cases with multi-materials and
2 design parameters to interpolate, the penalization for φI and φII has been the
same. In all cases, MMA has been used as the optimizer.

For all the details describing how the test cases were implemented, the reader is
referred to the GitHub repository (commit 92e8600b0) and the files describing the
runs, run1.m - run5.m.

Test case 1

The first test case is the minimization of the maximum temperature in a 2D square
body by distributing two material, one with low thermal conductivity and one with
high thermal conductivity (see table 3.1 for exact property values). The body, seen
in figure 3.4, is heated by a point load in the middle of the geometry, constant over
time. In all four corners, the heat is able to flow out of the body, thanks to the
temperature being prescribed at the corners. The initial temperature is uniformly
0 K all over the body, the same as the temperature at the corners.
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Figure 3.4: The geometry and boundary conditions for test case 1. The 2D domain
has dimensions 0.1m× 0.1m.

To have a smooth objective function, the max function is approximated by a smooth
maximum. The smooth maximum function used in this test case is the following,
taken from [8]

smax(x1, x2, . . . , xN ; a) =

∑N
i=1 xia

xi∑N
i=1 a

xi
(3.1)

Care must be taken when computing this function in the implementation, as it may
very likely lead to floating point overflow. A simple solution to this is to normalize
the temperatures when calculating the maximum temperature.

The smooth maximum function is applied in two steps to receive the maximum
temperature, first taking the maximum of every nodal temperature for each time
step, then taking the maximum over every time step. The only constraint included
in the optimization problem is a volume constraint restricting material 2 to take up
a maximum of 20 % of the volume.

Materials ρ cp κ E ν α

Material 1 1 5E5 0.1 - - -

Material 2 1E3 1E3 10 - - -

Table 3.1: Properties of the materials used in test case 1 and 2.

P1 =


min
φ∈Φ

g0 = smax
(

smax(T (1)), . . . , smax(T (N))
)

s.t.

R
(n)
T (φ̂; T (n),T (n−1)) = 0 , ∀n = 1, 2, . . . , N

g1(φ̂) =

∑
i φivi
V ∗

− 1 ≤ 0

(3.2)
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Figure 3.5: Geometry for test case 3. All side except the right one are fixed. The
dimensions of the 2D domain are 400nm× 400nm.

Test case 2

The geometry in test case 1 is extended in test case 2 into 3D and into a cube with
dimensions 0.1 m × 0.1 m × 0.1 m. The heat from the point heat is then able to
dissipate through the 8 corners of the cube.

Test case 3

The third test case looks at a thermo-elastic problem, where the temperature change
over the domain is uniform and fixed at 100K. The objective function is to maximize
the displacement at the center of the right side of the domain, as seen in figure 3.5.
This is done by distributing 3 different materials. The first material represents void.
The two others are low conducting metals, but differ in their CTE, see table 3.2.

Materials ρ cp κ E ν α

Material 1 (void) 1E-3 1E9 1E-3 100E3 0.3 0

Material 2 1 1E6 10 100E9 0.3 1E-5

Material 3 1 1E6 10 100E9 0.3 2E-5

Table 3.2: Materials used in the optimization of test case 3 and 4.

The objective function can be calculated as the product of the nodal displacement
vector due to the temperature change and an imaginary force F . This force is
usually referred to as a dummy load. As the goal is to maximize the displacement,
the objective function takes the negative value of the displacement product. At the
output is also a linear spring with stiffness 1× 107 N m−1.

A robust formulation is also used on this problem to avoid 1-node hinges in the
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design. The threshold shift ∆η is set to 0.2 in the implementation. The sensitivity
of the max function in ḡ0 is replaced by the sensitivity of the objective function with
the maximum value in the current iteration. The mass constraint takes the dilated
design as input and limits the mass of non-void material to 20 % of the mass of a
design taking up the entire domain with material 3. Material 2 and 3 have here the
same density, which leads to no one of them being preferred over the other when it
comes to the mass constraint.

P3 =



min
φ∈Φ

ḡ0 = max(g0(dφ), g0(iφ), g0(eφ))

g0 = −F T ū

s.t.



Ru(
dφ; dū) = 0

Ru(
iφ; iū) = 0

Ru(
eφ; eū) = 0

gm(dφ) =

∑
i ρ(dφI,i)vi

m∗d
− 1 ≤ 0

(3.3)

Test case 4

The fourth test case is a proper transient thermo-mechanical topology optimization
problem, with the same objective function as in test case 3. The difference is that
the temperature field is variable and controlled by the heat transfer equations. The
heating is caused by a prescribed temperature of 100 K at the left corners, see figure
3.6. The initial temperature is uniformly set to 0 K. Depending on the simulated
time, tf , the temperature input will have different possibility to affect the whole
domain, and in theory, this should affect the optimal design to the TO problem. A
spring with the same stiffness as in test case 3 is connected to the output node.

The materials allowed in the design are the same as in test case 3, see table 3.2.
Notice how the volumetric heat capacity s is set to be the same in the void and the
non-void. This prevents the void to gain a too high temperature compared to if it
had a lower volumetric heat capacity.
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Figure 3.6: Geometry for test case 4. The displacements on all sides are fixed,
except on the right side. In the left corners, the temperature is prescribed and
everywhere else the boundary is adiabatic. The dimensions of the 2D domain are
400nm× 400nm.

P4 =



min
φ∈Φ

ḡ0 = max(g0(dφ), g0(iφ), g0(eφ))

g0 = −F T ūN

s.t.



{
R

(n)
T (eφ; eT (n), eT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
eφ; eū (n), eT (n)) = 0 , ∀n = 0, 1, . . . , N{

R
(n)
T (iφ; iT (n), iT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
iφ; iū (n), iT (n)) = 0 , ∀n = 0, 1, . . . , N{

R
(n)
T (dφ; dT (n), dT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
dφ; dū (n), dT (n)) = 0 , ∀n = 0, 1, . . . , N

gv(
dφ) =

∑
i
dφI,ivi

V ∗d
− 1 ≤ 0

(3.4)

Thermally actuated disassembly mechanism

The last case is an optimization of a real-life application, namely a thermally actu-
ated disassembly mechanism. The principle of the mechanism is described in [10],
where it is also optimized. The thermally actuated mechanism should be able to
snap-fit into place to assemble two different parts. Snap-fit mechanism are com-
monly made of elastic material like plastic and act as the working principle in side
release buckles. To later disassemble the two parts, an applied heat increases the
temperature in the mechanism and thermal expansion causes it to bend, allowing
the two parts to release from each other.

The heating is assumed to be applied for a limited time, to prevent unnecessary
thermal expansion, but also because reaching steady-state conditions take time,
which is undesirable when disassembling.
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(a) Disengagement and retention schemat-
ics.

(b) Design domain for the disassembly
problem. The 2D geometry has the dimen-
sions 10 cm× 10 cm.

Figure 3.7: Disassembly concept

This concept of an thermally actuated disassembly mechanism is transferred into a
topology optimization problem, where the displacement in a certain part should be
maximized. This formulation resembles test case 4, but an extra constraint must
be formulated for this application. As the mechanism should be able to engage
and retain the two parts without them releasing, it must have a certain stiffness
in the retention direction. This constraint act as a limit on the compliance of the
mechanism when applied with a force, see figure 3.7.

P5 =



min
φ∈Φ

ḡ0 = max(g0(dφ), g0(iφ), g0(eφ))

g0 = −F T ūN

s.t.



{
R

(n)
T (eφ; eT (n), eT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
eφ; eū (n), eT (n)) = 0 , ∀n = 0, 1, . . . , N{

R
(n)
T (iφ; iT (n), iT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
iφ; iū (n), iT (n)) = 0 , ∀n = 0, 1, . . . , N{

R
(n)
T (dφ; dT (n), dT (n−1)) = 0 , ∀n = 1, 2, . . . , N

Ru(
dφ; dū (n), dT (n)) = 0 , ∀n = 0, 1, . . . , N

gv(
dφ) =

∑
i
dφI,ivi

V ∗d
− 1 ≤ 0

ḡ1 = max(g1(dφ), g1(iφ), g1(eφ))

g1 = −F T
2 ū2

Ru(
dφ; dū2 ) = 0

Ru(
iφ; iū2 ) = 0

Ru(
eφ; eū2 ) = 0

(3.5)
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Chapter 4

Topology optimized results

4.1 Test case 1

Test case 1 as described in the implementation chapter was implemented into the TO
solver and the results of the topology optimization was studied for different choices
of penalization for the SIMP material interpolation model together with different
choices of simulated time, tf . The results can be seen in table 4.1

4.2 Test case 2

Test case 2 is an extension of test case 1 into 3 dimensions. It is used mainly to
showcase the possibility to optimize 3D geometries. Only one topology optimization
test case 2 was performed, with tf = 500 s and the SIMP penalization parameters
set to 3: pκ = 3, ps = 3.

4.3 Test case 3

For the third test case, the SIMP penalization parameter for the Young’s modulus
and the thermal stress coefficient have been varied. In table 4.2, the optimal designs
for different penalization parameters are shown. The value of the objective function
for these designs are given in table 4.3. One of the results are displayed with the
optimal design undeformed and deformed in figure 4.2. In all these images the void
is transparent and material 2 and 3 are depicted with yellow or blue material, or
intermediate colors (e.g. green) for intermediate materials.
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tf (pκ, ps) = (2, 2) (pκ, ps) = (2, 3) (pκ, ps) = (3, 2) (pκ, ps) = (3, 3)

100 s

500 s

2’000 s

10’000 s

Table 4.1: Optimal design for different time intervals and penalization parameters.
The yellow areas are filled with material 1 and the dark blue areas are filled with
material 2.
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(a) Orthographic top view (b) Perspective view

Figure 4.1: Optimal design for the 3D problem. To view the material distribution
of material 1, a contour surface have been drawn in yellow at φ̂ = 0.5. Material 2
fills the rest of the volume of the cube.

(a) Orthographic top view (b) Perspective view

Figure 4.2: Scale factor 10
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- pr = 2 pr = 3 pr = 4

pE = 2

pE = 3

pE = 4

Table 4.2: Optimal design for different penalization parameters.

g0 pr = 2 pr = 3 pr = 4

pE = 2 -2.4984 -1.0926 -1.2900

pE = 3 -1.3332 -3.1667 -1.6276

pE = 4 -0.8860 -2.4815 -2.0685

Table 4.3: Values of the objective function for the designs in table 4.2, scaled by a
factor 106.
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(a) Undeformed design
(b) Temperature distribu-
tion after tf seconds.

(c) Deformed design (with a
scale factor 10).

Figure 4.3: Optimal design for the thermally actuated disassembly mechanism.

4.4 Test case 4

The results for the fourth test case show how the optimal design varies with the
SIMP penalization parameter used, seen in table 4.4 and the corresponding objective
function values in table 4.5. Note how a study for ps was not performed, as the
volumetric heat capacity was set to be the same for all materials in this test case.

In table 4.6, the optimal design for different tf can instead be seen. In these runs,
the SIMP penalization parameters were chosen to be pκ = 2, pE = 3 and pr = 4.
This choice was based on the best performing results of previous runs.

The last design in table 4.6 performs best in terms of displacement, where the
objective function takes the value −1.4019 (scaled with a factor 106).

4.5 Thermally actuated disassembly mechanism

The thermally actuated disassembly mechanism problem was run for tf = 600 s at
all penalization parameter set to 3. The result is seen in figure 4.3.
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- 2 3 4

pκ

pE

pr

Table 4.4: Different optimal design when varying one penalization parameter at the
time between 2 and 4. The parameter that has been varied are written in the first
column. All other penalization parameters have then been set to 3.

g0 2 3 4

pκ -1.2267 -1.0393 -1.1734

pE -0.8248
... -0.6914

pr -0.7056
... -1.1087

Table 4.5: The values of the objective function for the cases in table 4.4, scaled with
a factor 106
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tf 0.001 s 0.01 s 0.1 s 1 s

Table 4.6: Optimal design and final temperature for different time intervals
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Chapter 5

Discussion

From a broad perspective, the main objectives of the thesis have been achieved
through the results presented in this report, to develop a working thermo-mechanical
TO solver for transient heat transfer. The real-life application clearly shows how
the TO solver finds a design which successfully actuates due to thermal expansion,
caused by a transient temperature field. Furthermore, all the test cases are in line
with previous results (except for test case 4 for which there are not previous results)
from other authors.

The robust formulation rendered satisfactory results, successfully preventing 1-node
hinges. However, as this is not the main focus of the thesis, its effects will not be
discussed here.

5.1 Verification against previous results

The results from test case 1 in table 4.1 tries to replicate the results in the paper
by Wu et. al [8]. Several results differ from the replicated results, but the overall
features are there and the transition from circular designs to cross-like designs hap-
pens in the same range for the simulated time, tf . The reason for the differences in
the design are thought to be from numerical settings, such as the mesh resolution
or the normalization of the temperatures.

The second test case is an extension of test case 1 and have the same settings as for
the designs with tf = 500 s and (pκ, ps = (3, 3)) in table 4.1. As expected the 3D
design showcase the same type of features as the 2D design, only in three dimensions.

The results for the third test case in table 4.2 are best compared to the results by
Sigmund [12]. Notice how there are several differences in material properties and
spring stiffness between test case 3 and the cases Sigmund looked at. However,
some features are still occurring in both cases, for example the slightly angled,
thickened bars in (pE, pr) = (3, 3) or the compliant structure with several hinges
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and bars in (pE, pr) = (2, 2). It is also noticed from the results for test case 3 that
the penalization parameters have a great impact on the final optimal design and
that the thermo-elastic problem seem to have local minimum where the designs are
fundamentally different from each other.

5.2 Study of the transient thermo-mechanical prob-

lem

Test case 4 studies the topology optimization of transient thermal actuators. No
previous work using this test case for transient thermal actuators was found and
therefore there are no other results to compare to.

The first thing to study in the results is the influence of the elapsed time, tf . This
should hopefully have a significant effect on the design, as it is the reason why
transient heat transfer is simulated at all. The optimal designs in table 4.6 show
how the elapsed time influences the problem. The conducting paths are similar
for all designs. For the case with the shortest elapsed time, the area of increased
temperature is limited to the ”legs” of design, and should be the reason why green,
intermediate, material is present in the tip. The optimizer does not prefer any
material over the other, thus leaving it to what was initially set. Another interesting
observation to make it how all designs use both materials in the design to cause
bending motions, even for the design where the elapsed time is 1 s. For a large tf
that in the end generates designs where the temperature field becomes uniform, the
optimal design should resemble the ones from test case 3. The boundary conditions
of test case 4 makes it however not possible to directly compare the results. If the
boundary condition in test case 4 was extended to all sides of the domain except
the right one, a more fair comparison could be made.

The best performing design for the uniform temperature field are all single-material.
Why the designs in test case 4 are all instead multi-material design is not clear. An-
other important study is the one done on test case 4 regarding different penalization
parameters, with the results in table 4.4. To notice from the results are how the
relationship between the penalization parameter for E and r seems to be important.
A high penalization on E compared to the penalization on r is correlated to low
performing designs. The optimal designs for pE = 4 and pr = 2 in table 4.4 showcase
this pattern. They are both very similar in design as well. A flaw with the com-
bined interpolated material property r, is that it may induce different penalization
on Young’s modulus in the stiffness matrix K uu and the thermal stiffness matrix
K uT . It would be interesting to do a direct comparison with interpolating the CTE
separately instead.

A reoccurring problem which is related to compliant mechanisms (and therefore
also thermal actuators) is that the mass constraint is not always fulfilled. There
is no direct correlation between the displacement and the volume of the structure,
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making it difficult to penalize intermediate design values. The penalization simply
have not the same effect as for a minimum compliance problem. The route chosen
in this thesis was to use Heaviside projection and a robust formulation to force
intermediate values to the extremes. Another methods, like direct penalization of
intermediate values in the objective function, has not been explored properly.

5.3 Thermally actuating disassembly mechanism

As mentioned, the disassembly mechanism is supposed to act as a more applicable
case. It is therefore interesting to discuss the performance and the final design in
detail. From a topology optimization point of view, the design should be consid-
ered satisfactory, as the geometry is clearly defined and the the design actuates a
noticeable distance. From a functional perspective however, it is disputable how
useful the thermally actuating disassembly mechanism is. An issue is the perfor-
mance, as the displacement compared to the size of the mechanism is small. For the
materials chosen, the actuating time is also quite long, 10 min. A third issue is the
multi-material. Even though manufacturing components with complex distribution
of multiple material is possible via 3D-printing, no study has been done on the cost
of this, nor how good the interface between two material tolerate stress, something
which is generated by design in the optimal design.

A topic for the future could be to investigate the potential of thermal actuator
and larger displacements. This should preferably also include a study on the most
suitable materials to use to achieve large displacements in a short time.
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Chapter 6

Future work

This thesis has explored a broad topic related to transient thermo-mechanical topol-
ogy optimization. Because of the many parameters affecting the optimization and
the design, a lot of questions are still unanswered, for example where thermal actu-
ators may be used besides micro grippers.

In the paper by Sigmund on thermal actuators [11], Sigmund looks at geometri-
cal non-linearities and also incorporates a non-linear model into the optimization.
Through this, he showed how modelling non-linearities resulted in different design
which were also performing better. To model the thermal actuators in a better way,
large displacements and geometrical non-linearities must be taken into considera-
tion. To implement this would simply mean to create a new non-linear mechanical
FEM model, see figure 3.3 for the existing classes. Simulating non-linearities is
however much more computationally expensive.

Another topic to study further has already been mentioned in the discussion, the
potential of thermal actuators. Sigmund present in his paper [11] a theoretical
limit on the work performed by a linear thermal actuator. In the second part [12],
he also derives a similar limit for multi-material design which shows how single-
material design for most material choices are superior to multi-material ones. These
limits do however not consider transient heat and the global temperature differences
achievable through this. Imagine for example a thermal actuator with two material,
one conducting and one isolating. If it would be possible to distribute the material
in such a way that only parts of the actuator was heated, large differences in strain
would be achievable, resulting in bending forces.

Lastly, since the transient thermo-mechanical TO problem has been handled in
such a general way throughout this thesis, much of the principle and implementa-
tions done in this thesis is applicable to any other transient thermo-mechanical TO
problem, unrelated to thermal actuators. An example could be the minimization of
the compliance in a structure, having a constraint on the maximum thermal stress
induced by a time-dependent heat flow.

55



Appendix A

Expansion and reduction matrices

In the context of the finite element method, a expansion matrix E , sometimes called
kinematic matrix [21, p. 181], expands a local vector related to a finite element into
the size of the global vector and maps the local numbering of the degrees of freedom
to the global numbering, filling all the empty elements in the vector with zeros.
The operation is exemplified below with the local shape function matrix, which is
expanded to the size of the global shape function matrix. Note that no additional
information from any other elements are added to the global matrix, but because of
the behavior of shape functions, this global matrix is sufficient in the local domain
of the element.

N
∣∣∣
Ωe

= N ee = E eN e (A.1)

Here N ee have the matrix dimensions [ndof×1], N e [ndofe×1] and E e then having
the dimensions [ndof× ndofe], where ndof is the total number of degrees of freedom
and ndofe is the number of degrees of freedom in element e.

Taking the transpose of the expansion matrix, ET
e , can then be denoted the reduction

matrix, which takes a globally sized matrix and reduces it to the size of a local
matrix, where only the information related to the finite element e is kept, and all
other is discarded.

The elements of an expansion matrix are either 0 or 1, distributed so that the sum
over each column equal 1 and the sum over each row equal either 0 or 1. A general
structure is shown below.
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E =



0 1 0 0

0 0 0 0
...

0 0 0 0

0 0 1 0

0 0 0 0
...

0 0 0 0

1 0 0 0

0 0 0 1



(A.2)
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