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Abstract

STEM EDS is a common technique used for
compositional mapping in materials. The
vasts amounts of raw data produced by STEM
EDS is suitable for advanced analysis using
methods in unsupervised machine learning.
One powerful method is Principal Compo-
nent Analysis (PCA) which can automatically
discover significant chemical correlations in a
sample. Although more powerful than clas-
sical analysis, there are limits to how weak
chemical correlations PCA can detect. Faced
with a limited data collection time, it is of
great importance to know how data collection
parameters in the STEM affects PCA perfor-
mance. In this work, the effect of image size
and X-ray counts has been investigated using
simulated STEM EDS datasets. It was found
that decreasing overall image size while in-
creasing counts per pixel both increases the
chances of discovering weak chemical corre-
lations and improves the overall PCA accu-
racy. Furthermore, use of varimax factor ro-
tations has been investigated as a way to im-
prove interpretability of PCA results. Finally,
a real sample originating from a tungsten-
carbide cutting tool which had been turned in
a titanium alloy was analysed using the pre-
sented methods. This analysis confirmed the
existence of an expected pure tungsten phase
but also lead to the discovery of an unexpected
ridge-like structure in the adhered alloy mate-
rial.
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1 Introduction

1.1 Motivation and main objectives

So-called Energy Dispersive X-ray Spectroscopy
(EDS) mapping in the Scanning Transmission Elec-
tron Microscope is a method that can be used to
identify and quantify different chemical species in a
sample [1]. The raw data obtained from EDS-maps,
called spectrum images, is suitable for advanced anal-
ysis using algorithms in multivariate statistics and
machine learning, which has previously been demon-
strated [2][3]. These algorithms take advantage of
the large redundancy of information contained in the
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spectrum images and enable automatic identification
of chemical species.

Although these algorithms improve the analysis of
data, there are limits to how weak signals that can
actually be identified and discerned. In most arti-
cles utilizing these algorithms for spectrum images,
there is often no motivation behind the choice of col-
lection parameters, such as ratio of pixels to total
X-ray counts when collecting the EDS map in the
microscope. Limiting values for the accuracy of a cer-
tain type of algorithm, Principal Component Analy-
sis (PCA), and the relation to samples size, has re-
cently been theoretically explored in [4]. The over-
all goal of this work is to find optimal collection pa-
rameters when using PCA for distinguishing chemi-
cal phases in EDS-maps. More specifically, the opti-
mal relationships between sample size and total X-ray
counts will be explored.

The method of EDS-mapping is used in a wide range
of materials. Here, the focus will be on metal machin-
ing tools and their interaction with a workpiece ma-
terial. Signals generated in particular from a sample
consisting of a piece of used cemented carbide cutting
tool (WC grains bonded together with Co) turned in
a titanium alloy (Ti6Al4V). When using such a cut-
ting tool, high temperatures arise which in turn lead
to diffusion between the tool surface and the working
material. New chemical species are formed at the con-
tact interface which affect the service life of the tool,
but the mechanism is still not fully understood. To
optimize service life, an understanding of what and
where new phases occur is required. Previous stud-
ies has found evidence of carbon depletion from the
WC grains that leads to the new phases bcc-W and
TiC being formed at the interface between grain and
adhered Ti6Al4V material [5][6][7]. Present in the W-
C phase diagram, is a W2C inter-metallic phase [8].
The question arises then, is this phase also present
in between the WC grain and the newly discovered
bcc-W phase, and if so, can it be detected? In this
work, it is explored under which conditions these new
phases can be detected by the use of PCA.

2 Theory and background

2.1 Spectrum imaging

In a scanning transmission electron microscope, the
electron beam is focused down to a small probe. De-
flection coils then raster the electron beam across a
thin sample. An electron detector sitting underneath
the sample collects transmitted electrons into a set
of pixels that build up an image. Sample composi-

tion and density are factors that affect the amount of
transmitted electrons and are major sources of con-
trast in the electron image. This is the main signal
output in a STEM [9].

A secondary signal that can be detected and which
this work focuses on, are characteristic X-rays. The
electrons in the beam have energies (100 keV-300
keV) that are well above of what is required to eject
electrons in the core shells of the sample atoms. The
atomic relaxation occurring after an ionisation event
sends out an X-ray photon with an energy charac-
teristic of the particular atomic species and electron
transition. A single atomic species can send out pho-
tons of a couple of different energies, but the relative
ratio of photons of different energies emitted is di-
rectly related to the probability of a specific atomic
transition occurring. This makes a specific atomic
species recognisable by it’s X-ray energy ”footprint”.
A distinct chemical species, that has a fixed ratio be-
tween its constituent atomic species, also has a recog-
nisable X-ray footprint.

An X-ray spectrometer can detect and discern X-ray
photons of different energies. A voltage is generated
when a photon hits the detector. This voltage, which
is proportional to the photon energy is then digitized
and saved as a discrete value, called a count in digi-
tal bins called energy channels. Each energy channel
will record counts from all photons within a small
and specific energy interval. The range of energies
recorded in a single energy channel is variable and is
called the energy resolution. The number of chan-
nels is also variable but commonly set to multiples
of 2n. The histogram of collected photon counts ver-
sus energy channel is then presented in a spectrum.
Simulated X-ray spectrum from a couple of different
chemical species can be seen in figure 1. They contain
2048 energy channels with a resolution of 6 eV/chan-
nel. Due to various electronic noise, the sharp energy
lines arising from discrete transitions in the atom,
become smeared out over several energy channels in
the collected spectrum, and a particular transition
will show up as a Gaussian peak. In the end, we are
talking about collections of characteristic peaks for
different atomic species. These are named according
to the characteristic element and electron transition.
For example, C Kα is an X-ray energy that corre-
sponds to the electron transition from the L shell to
the K shell in a Carbon atom. A spectrum gener-
ated from a specific chemical species, such as WC,
will contain peaks characteristic for both Carbon as
well as Tungsten.

As such by putting an X-ray spectrometer inside the
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STEM above the sample, an X-ray spectrum can be
collected and saved for every (x,y) position that is
scanned by the electron beam. The longer the elec-
tron beam stays in the same (x,y) position, its dwell
time, the more characteristic X-ray photons are gen-
erated and collected as counts. Then, the raw data
is organized into a 3-dimensional ”data cube”, where
a spectrum is saved in each pixel[9]. An analogy is a
digital RGB image where each pixel has three color
channels: red, green and blue. In the case of X-ray
spectrum, we are dealing with often 2048 ”color” (en-
ergy) channels.

This data cube contains vasts amount of data. For
example, an image with 512 by 512 pixels with a
detector set for 2048 channels will generate a data
cube with 512x512x2048 = 536 870 912 data points!
The assumption in all multivariate statistical analy-
sis methods is that far from all these data points are
independent variables [10]. This is logical since we
know that the spectrum collected in each pixel arises
from characteristic peaks from only a few chemical
species. Thus most of the image can instead be de-
scribed by linear combinations of only a few indepen-
dent components. The goal of MSA methods is to
find these independent components. Going back to
the RGB image analogy: imagine an image that con-
sists only of varying amounts of the colors yellow and
pink. Instead of describing each pixel as a combina-
tion of the three variables red, green and blue, we can
describe the image in another basis with only two ba-
sis vectors: yellow and pink. These new basis vectors
are linear combinations of red green and blue. The
hope is that these new basis vectors represent some-
thing physical. In the following discussion, these new
basis vectors will be called component vectors.

One thing to note going forward is that the methods
analysed in this work does not take into considera-
tion the relative position of each pixel. Instead, all
pixels are treated as m measurements of n channels
(or variables). Thus, the 3-dimensional data cube can
instead be flattened and visualised as an m x n data
matrix D, where each row is a measurement/sample
of n channels.

2.2 Principal component analysis and
Singular Value Decomposition

2.2.1 Linear model of data

As previously hinted, an underlying assumption of
the EDS data is that the intensity of a characteristic
X-ray peak is directly proportional to the abundance
of the element from which it originates. Taking this

concept one step higher: the intensity of a collection
of characteristic peaks (here called source spectra)
originating from a distinct chemical species is also di-
rectly proportional to the abundance of that species
in the sample. It is therefore logical to describe the
spectrum in each pixel as some linear combination of
a few source spectra. To clarify, source spectra as
captured by a spectrometer are simply vectors con-
taining the values of each energy channel. The task
at hand is then to find these vectors corresponding to
source spectra and their linear combination in each
pixel from a dataset. Unfortunately, even though a
dataset was originally created from source spectra,
there exists an infinite amount of ways to describe
the same dataset with linear combinations of other
vectors that does not represent the source spectra.
In other words, there is no unique representation of
the data. What is assumed in the principal compo-
nent analysis following is a spiked covariance model
used by Nadler [11]. The implications of it was tested
experimentally to fit well to spectrum imaging by
Potapov [12]. In this model, each observed sample
vector x originates from linear combinations of q com-
ponents plus a noise term ε

x =

q∑
j=1

ujv
T
j + εεεT (1)

All {uj}qj=1 component weights are random variables
and uncorrelated to each other. All {vj}qj=1 compo-
nent vectors are orthogonal to each other. The noise
term εεε is a multivariate Gaussian noise vector with
zero mean and fixed variance σ2, i.e. the noise is as-
sumed to be homoscedastic. The model’s assumption
of orthogonality between component vectors does not
make much sense physically applied to spectrum im-
ages, where orthogonality between source spectra is
in no way logical to suspect[3]. What it provides,
is a unique way to linearly describe a dataset. For
any given dataset there is only one set of component
vectors and weights that fulfill these constraints.

2.2.2 Principal component decomposition

Principal component analysis is a factor analysis
method that segments the data matrix D into the
product of a m x n matrix T and a n x n matrix P
as such

D = TPT (2)

[3]. In other words, each row (the spectrum at pixel
i) si in the data matrix D is segmented into the sum

si =

n∑
j=1

tjp
T
j (3)
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Where pj is a n x 1 -dimensional component vector
representing a column in P and tij is the abundance
or weighting of that component in pixel i. Equation 3
looks very similar to equation 1, differing only in the
missing noise term and the fact that usually n >> q.
The goal is to find the underlying q principal compo-
nents and to accomplish this PCA enforces the same
constraints on the extracted components as in the
spiked covariance model. Each column in T and P
have to be orthogonal and orthonormal respectively.
This has the added effect of making the decomposi-
tion unique. Furthermore, PCA orders the rows and
and columns in T and P so that the first component
explains most of the variance in D, the second com-
ponent explains the second most variance and so on.
Ideally then, the first q extracted components will in-
clude true signal variance and the rest n− q will only
explain the noise variance σ2 and can be discarded
from analysis. For the purpose of dimensionality and
possibly noise reduction, a lower rank estimation of
D can be constructed as

TpP
T
p = Dp ≈ D (4)

Where subscript p denotes that only the first p
columns in the matrices are kept. One final prop-
erty of the PCA decomposition is that an estimation
with the p first components in equation (4) is the
best p-rank estimation of the data matrix that ex-
ists [3]. This implies that unless the mean has been
subtracted from D before decomposition, the first ex-
tracted component will always represent the mean,
since that is the rank 1 best estimation of D.

Imagine a completely noise-free (i.e, σ = 0) dataset,
with m >> 1 samples that can theoretically be de-
scribed using one component (u,v) in the spiked co-
variance model. We assume that the first component
in a PCA decomposition of this dataset is equal to v

p1 ≡ v (5)

And call it the true component. The reason for defin-
ing the spiked covariance model is now apparent. If
we now add noise to the dataset and perform a PCA
decomposition, we obtain the first component vector
p∗
1. Since we know it is unique, we can directly inter-

pret it as a noisy estimate of v.

2.2.3 Singular Value Decomposition and
PCA implementation

One way to calculate the matrices T and P under the
PCA constraints is by Singular Value Decomposition.
This is an algorithm that decomposes D into three
matrices

D = UΣVT (6)

The PCA matrices T and P can then simply be ob-
tained as

T = UΣ

P = V
(7)

U is called a left singular vector with dimensions m x
n, V is a right singular vector with dimensions n x n.
Both U and V are orthogonal. Σ is a diagonal matrix
containing the singular values of D ordered after sig-
nificance. That is, the singular values are the square
root of the eigenvalues of DTD ordered in a descend-
ing order. V contains the corresponding eigenvectors
of DTD [3]. The j:th largest eigenvalue of a noise-free
dataset divided by the number of samples m will be
denoted λj and corresponds to the underlying com-
ponent signal variance of component j

λj =
j:th largest eigenvalue of DTD

m
(8)

This definition is appropriate for spectrum imaging,
as it makes the explained variances λ independent on
sample density (the number of samplesm per scanned
area) [13].

2.2.4 To subtract mean or not?

In general PCA literature, one is often advised to sub-
tract the mean from all samples as a pre-processing
step. This is called mean centering. In this case the
mean would be the sum spectra divided by the num-
ber of pixels. It is advised against specifically in the
case of spectrum imaging by Keenan et al.[10][3], and
has been shown to not make a difference in the fit to
the data. Although it is argued to improve the ”in-
terpretability” of the obtained components according
to Potapov [13]. In this work, no mean centering will
be performed. Instead varimax factor rotations will
be used to enhance interpretability of obtained com-
ponents.

2.2.5 Varimax factor rotation

As mentioned, the assumption of orthogonality be-
tween the extracted component vectors is not based
on any real properties of X-ray spectrum of different
chemical species, making the PCA extracted com-
ponents rather abstract [3]. For example, a com-
ponent vector and/or its corresponding weight may
contain negative values, which would correspond to
negative intensities, having no real physical interpre-
tation. One way to bring the extracted components
closer to physical reality is by the use of factor rota-
tions [10][14][15]. These are based on the fact that,
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given an invertible rotation matrix R, the extracted
PCA matrices can be rotated as such

D = TPT = T(RR−1)PT = (TR)(R−1PT ) = T̈P̈
T

(9)
While still providing the same fit to the data. Us-
ing a rotation matrix R, we can rotate the basis vec-
tors in either the spatial domain (column vectors in
T) or the spectral domain (column vectors in P) to
”simpler structures”. In practice, this can be viewed
as enhancing contrast in one one of the domains. In
this work, a varimax rotation is performed in the spa-
tial domain. This basically assumes that the signal
in a given pixel si, should be described by a linear
combination of as few component vectors as possi-
ble. Imagine an orthogonal rotation matrix R. Given
the left singular vector U, varimax tries to find the
R that maximizes the variance of the squares of the
elements in the matrix product UR. The new rotated
factor matrices are obtained as

T̈ = UR

P̈ = VΣR
(10)

Besides increasing contrast in the spatial domain, this
also relaxes the orthognality constraint in the spec-
tral domain. In other words, the columns in P̈, the
rotated component vectors, no longer have to be or-
thogonal, hopefully now more resembling real spec-
tra.

2.2.6 Theoretical PCA threshold

In unsupervised machine learning and PCA litera-
ture, one finds the notion of a phase transition, or
”threshold” where the fraction of samples to mea-
sured variables needs to exceed a certain value in
order to be able to find a component in a noisy
dataset[16][17][18]. In the spiked covariance model
used by Nadler, it was found that for PCA to be
able to detect a component in a one-component noisy
dataset even remotely, the following inequality has to
be fulfilled. (

σ2

λ

)2

<
m

n
(11)

In other words, the term m
n has to be bigger than the

square of the ratio of noise variance σ2 to component
signal variance λ. We can approximate the absolute
noise variance σ2 in a dataset as

σ2 =
1

mn

m,n∑
i,j

(sij − s∗rij)2 ≈

1

mn

m,n∑
i,j

Var(s∗ij) =
1

mn

m,n∑
i,j

sij

(12)

[13] Where si
∗
j
r is one realisation of the Poisson ran-

dom variable si
∗
j in pixel i and energy channel j. The

last equality follows from the fact that the variance
of a Poisson random variable is equal to its expected
value. The noise level σ2 cannot be calculated on ex-
perimental data in this way since sij is not known.
This is one advantage of using simulated datasets
where each value sij is known.

Additionally, if we define the PCA extracted compo-
nent vector from the noisy dataset as v∗, and its dot
product with the true component vector v as

R2 =
v∗vT

||v∗||||v||
(13)

Nadler showed that, given the inequality in equation

11 is satisfied

R2 =
m
n

(
λ
σ2

)2 − 1

m
n

(
λ
σ2

)2
+ λ

σ2

(14)

If the inequality is not satisfied, the expected value of
R2 is zero, meaning no information of the true vector
v is expected to exist in v∗. This theory will be tested
in the simulations following.

2.3 Poisson noise and scaling

The usual definition of noise in hyperspectral PCA
literature assumes homoscedasticity[19][12][4]. This
implies a noise term ε with constant variance σ2 over
all energy channels, as what is assumed in the lin-
ear model in equation 1. In reality, measurements
involving counting events are corrupted by noise of a
Poissonian nature [20]. This means that the variance
of a random variable is equal to the expected value
of that same variable. And so the assumption of ho-
moscedasticity does not hold. In their article, Keenan
and Kotula propose a solution for this problem by
a transformation of the measured data into a space
where the noise is approximately homoscedastic [20].
Subsequent PCA can then be performed under the
assumption of homoscedastic noise. The derivation
of the transformation is lengthy, but in short utilizes
an estimate of the random variable variance as simply
the mean of the sampled variable. The transforma-
tion can be expressed as

D̃ = G−1/2DH−1/2 (15)

Where D is the original unfolded mxn data matrix
with m pixels and n energy channels. G is a mxm
matrix with a mx1 vector dm along its diagonal. dm
is obtained first by summing all counts in each spec-
trum, and then dividing the elements by the number
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of energy channels n. Similarly, H is a nxn matrix
diagonalised by dn that consists of the sums of all
counts in each energy channel over all measurements
divided by m. After PCA is performed on the scaled
dataset, the obtained factors T̃ and P̃ can be inversely
scaled back to the original space as

T = G1/2T̃

P = P̃H1/2
(16)

The matrices T and P does not technically have or-
thogonal columns anymore but they ”can be consid-
ered principal components in the sense that they pro-
vide a basis that maximally accounts for the chemi-
cally related variation in the data” [20]. For subse-
quent varimax rotation, the factors can be reorthog-
onalized first according to an fPCA algorithm pre-
sented by Keenan [3]. Alternatively, another SVD
can simply be performed on the dataset reconstructed
with p components

TpP
T
p = Dp = UΣVT (17)

3 Methods

3.1 Spectrum and spectrum image
simulation

In order to assess the accuracy of the presented anal-
ysis methods, one must know the exact composition
of a sample. Since this is very hard to obtain experi-
mentally, simulated samples are better suited. Using
the free microanalysis software DTSA-II [21], Monte-
Carlo simulations of interactions between high energy
electrons and various materials was used to obtain
characteristic X-ray spectra. These spectra were then
linearly combined to build noise-free data sets accord-
ing to various models. To simulate the conditions in
a STEM, the electron beam was set to 300 keV. Each
characteristic spectrum was obtained by selecting a
Monte Carlo simulation of a 100 nm thick and 1000
um wide block of the specified material on a sub-
strate of None (=vacuum) in the software. The to-
tal electron dose, defined as time · current was set
to 0.1 nAs. All available X-ray generation modes
were selected: Characteristic primary, Characteris-
tic secondary, Brehmstrahlung primary and Brehm-
strahlung secondary. To detect X-rays generated in
the MC-simulation, a simulated SDD detector with a
10 mm2 detector area and 2048 energy channels was
used. For every characteristic spectra a few different
resolutions were used. 5, 6, 10 and 20 eV/channel. In
table 1, the densities specified for the MC simulations
are presented. The resulting noise-free spectra using

Table 1: Materials densities used in spectrum simu-
lations

Material Density (g/cm3)
TiC 4.95 [22]

Ti6Al4V 4.43 [23]
W 19.26 [24]

WC 15.65 [25]
W2C 17.23 [26]

6 eV/ch can be seen in figure 1. These will be re-
ferred to as source spectra. The values in the energy
channels are not integers and instead interpreted as
the expected number of counts, as opposed to actual
number of counts, and these values scale linearly with
electron dose.

3.1.1 Two component gradient model

This model simulates a sample were the composition
changes from chemical species s1 to s2 linearly along
the x-axis. An image grid m with x x y pixels, given
any source spectra arrays s1 and s2, the model is
generated as

for row in range (1 , y ) :
for column in range (1 to x ) :
k = column/x
m[ row , column ] = k∗ s1 + (1−k )∗ s2

A visualisation of the generated model is presented
in figure 2.

3.1.2 Cutting tool interface model

A model of the interface between the used cutting tool
with adhered alloy material can be seen in figure 3.
The theorised W2C species increases gradually from
WC over the span of around 30 nm.

3.1.3 Counts and adding noise

Each noise-free dataset was first scaled by some con-
stant so that the mean counts per pixel was equal to
one, but keeping the relative differences between pix-
els. Datasets were then scaled to the desired mean
counts per pixel c̄. Noise was then added using a Pois-
son random number generator. If the value of channel
j in pixel i is denoted sij in the noise-free data set,
then the corresponding value si

∗
j in the noisy dataset

is drawn from a Poisson distribution with parameter
sij as such

si
∗
j ∼ Po(sij) (18)

A realisation of this using a spectrum of only WC can
be seen in figure 4b.
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Figure 1: Noise free spectra generated by Monte-Carlo simulations in the DTSA-II software. The y axis can
be interpreted as the expected number of counts. The detector is configured for 6 eV/ch.
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Figure 2: Gradient model. The source spectra s1 in-
creases linearly as a function of x-position from right
to left. The opposite is true for source spectra s2.

Figure 3: Model of used cutting tool interface with
adhered Titanium alloy. Ti6Al4V (Green), TiC (yel-
low), W (pink), W2C (white), WC (black). Red line
shows where a linescan was sampled.

4 Results and Discussion

4.1 Two component system simula-
tions. WC and W2C

Because the two spectra from WC and W2C are very
similar and may be the most difficult to distinguish
in classical analysis, a model built with these two
spectra are of great interest to analyse. A particularly
low variance model is constructed with W2C to the
left gradually changing to WC to the right according
to the two component gradient model described in
Methods. This could for example simulate the signal
coming from an area where a WC and W2C grain lies
on top of each other with varying relative thicknesses.
The model consists of 10x50 = 500 pixels and the
results of PCA on a noise-free dataset generated from
this model can be seen in figure 5.

It is clear that the first principal component simply
represents the mean spectrum. It also has a very
large explained variance of λ1 = 3.26 · 106. Compo-
nent 2 essentially pronounces the differences between
each spectrum to the mean and it has an explained
variance of only λ2 = 85.3. The carbon C Kα peak is
clearly identified and positive. Looking at the compo-
nent 2 weighting map shows that the carbon content
is correctly shown to gradually increase closer to the
WC phase and decrease closer to W2C. 4 of the 5
tungsten peaks are negative implying anticorrelation
to carbon. They increase gradually towards W2C.
Interestingly, the W Mβ seems to correlate with car-
bon content. This may be an effect arising from WC
having lower density than W2C. Density affects the
X-ray intensity in that higher density materials ab-
sorb more low energy X-rays before they are able to
escape from the material. This may therefore be the
best fit to explain this effect.

4.1.1 Pixels versus mean counts-per-pixel

Next, tests were performed on a WC-to-W2C model
with added Poisson noise. To directly test for a given
total counts C, whether it is better to sample a few
pixels m, with high mean counts per pixel c̄ or vice
versa, a batch test was performed. Initially the gra-
dient model was used to create the dataset with WC
and W2C as before but with dimension 10x50000 pix-
els. m samples was then randomly selected from the
initial dataset and noise was subsequently added. To-
tal counts was always C = 107 but divided on the m
samples. So a large number of samples m means a
low mean counts-per-pixel c̄ and vice versa. This pro-
cedure is thought to simulate varying the number of
pixels per physical area selected in the microscope
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(a) (b)

Figure 4: 200 count WC spectrum a) Pure WC spectrum, b ) WC spectrum with added Poisson noise

or the effect of binning post acquisition. Binning
is an operation where the values of all energy chan-
nels of adjacent pixels are added together, effectively
increasing the mean count per pixel but decreasing
spatial resolution. For every dataset, PCA was per-
formed and the accuracy R2 of the extracted noisy
component v∗

2 to its equivalent true component v2

was recorded.

The simulation results can be seen in figure 6. It is ob-
served that increasing the number of samples m while
reducing the mean counts-per-pixel reduces the accu-
racy R2 of the extracted principal component vector
v∗
2. This also approximately follows the theoretical

values calculated with equation 14. Whats more, the
predicted threshold in equation 11 seems to predict
the observations very well. All datapoints with val-
ues below the threshold, seems to have components
vectors that are almost orthogonal to the true ones.
Looking at a datapoint well above the threshold, at
m = 1000, c̄ = 9991 as seen to the lower left in fig-
ure 6. This extracted component seems to have a
well defined carbon peak as in the pure component
v2 in figure 5, as well as peaks representing W M
and L peaks. In contrast, the extracted component
vector for a datapoint below the threshold has no pro-
nounced carbon peak. Additionally, an equal amount
of positive and negative spikes in close energy prox-
imity can be seen were the W peaks are expected.
This isotropic appearance may be a clue for when a
component vector only represents noise. Indeed, the
third component extracted from this noisy dataset
which can be seen in figure 7, which should only rep-
resent noise, since it is extracted from a 2 component
system, has spikes with generally no preferred direc-

tion.

An attempt to explain the observed relationship be-
tween m and c̄ now follows.

First an investigation of the noise level as defined in
equation 12 is required. With this definition the noise
level of an dataset will increase linearly with counts.
If we multiply the pure dataset with a constant c̄
to increase the mean count per pixel, and then add
Poisson noise, mathematically, s̃∗ij ∼ Po(c̄sij), then

σ̃2 =
1

mn

m,n∑
i,j

Var(s̃∗ij) =
1

mn

m,n∑
i,j

c̄sij ∝ c̄ (19)

This relationship was also confirmed experimentally.

Another way to define the true eigenvalue of the j : th
component can be defined as

λj = Var(uj)||vj ||2 (20)

referring back to the spiked covariance model [27][11].
Here Var(uj) signifies how component vector vj
varies across the sample. Consider scaling a com-
ponent with c̄, by multiplying with each element in
vj

λ̃j = Var(uj)||c̄vj ||2

= Var(u)c̄2||vj ||2 ∝ c̄2
(21)

Referring back to the threshold equation 11 and the
theoretical estimated dot product R2 in equation 14,
we see that λ and σ2 always appear together as a
fraction of each other λ

σ2 . From equation 19 we know
that the noise level scales linearly with counts, σ2 ∝ c̄
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Figure 5: Component vectors (left column) and respective weightings (right column) for the simulated
noise-free W2Cc-to-WC dataset.
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Figure 6: Batch test of the dot product between the extracted noisy component vector v∗
2 to the true

component vector v2 in the W2C-to-WC model. Total counts was at a constant 10 million while varying
the the sample size. The plot can also be viewed as increasing the mean counts per pixel c̄ going from right
to left along the x-axis. An example of an extracted component at above the threshold at m = 1000 is
displayed. A clear carbon peak can be seen. In the example of an extracted component vector below the
threshold at m = 1324 no distinguished carbon peak can be seen. The spikes present in the components
below the threshold have an isotropic appearance with almost equal positive and negative amplitudes.
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Figure 7: A component vector extracted from the
simulated W2C-to-WC model that contains only
noise. Spikes with isotropic appearance can be seen.

and so the fraction of noise to component variance
will always scale according to

σ2

λ
∝ c̄

c̄2
=

1

c̄
(22)

Extending this, given total counts of C = mc̄, as-
suming σ2 = kσ c̄, and λ = kλc̄

2 with some constants
(kσ, kλ), the threshold equation 11 can be rewritten
as

kσ
kλ

(m
C

)2
<
m

n
(23)

The two terms in this equation equal each other at
some critical value mcrit in where an increase in m
will always result in being below the threshold. Ad-
ditionally, the theoretical dot product in equation 14
can be rewritten as

R2 =

(
kλ
kσ

)2
C
n −

m
C(

kλ
kσ

)2
C
n + kλ

kσ

(24)

If the total counts C is large enough, if m −→ 0
then R2 −→ 1. This means, that for a given total
counts C, increasing the number of pixels (and de-
creasing the count per pixel accordingly) will reduce
the accuracy of the extracted component explaining
the appearance of the plot in figure 6. This form of
the equation also implies that the accuracy increases
with total counts C.

From the results in the batch test, suitable values
that ensure being above the threshold, in a WC-W2C
model dataset was determined to be 10 x 50 = 500
samples and 9.53 million total counts. A dataset with

these parameters was generated for further investiga-
tion. PCA was performed before adding noise to ex-
tract values for σ2 and λ and these noise-free results
have been presented earlier in figure 5. Results of
PCA on the noisy dataset can be seen in 8. The noise
level was calculated to σ2 = 9.23 according to equa-
tion 12. The components have been reorthogonalised
as described in section 2.3. Component 1 looks un-
changed compared to the true component v1 in figure
5, whereas component 2 can clearly be viewed as a
noisy estimation of v2 and its weighting. It is ob-
served that the explained variance of component 2
in the noisy dataset has increased to λ∗2 = 120 due
to the added noise variance, approximately following
the prediction of [11]

λ∗2 =

(
1 +

n

m

σ2

λ2

)
(λ2 + σ2) = 136.4

.

The threshold in equation 11 is satisfied and calcu-
lating the predicted discrepancy between noisy and
pure component as

R2
2 =

m
n

(
λ2

σ2

)2 − 1

m
n

(
λ2

σ2

)2
+ λ2

σ2

= 0.658

yields a bit lower estimate than the real measured
value of

v∗
2vT2

||v∗
2||||v2||

= 0.783

In the hope of obtaining components representing real
spectra, varimax factor rotation was performed in the
spatial domain as described in section 2.2.5. The
results of rotations on the pure and noisy PCA com-
ponents can be seen in figure 9 and 10 respectively.
The orthogonality constraint on the component vec-
tors has been lifted and they all now represent some-
thing more similar to physical spectra. The weight-
ing for the two components are now also comparable
in amplitude. The expectation that the components
would perfectly represent the two source spectra from
WC and W2C however is not met. The component
vectors differ only slightly. If the components would
have represented the source spectra, then the weight-
ing of one component would always be zero in posi-
tions were the other reaches its maximum. Instead
the pure WC spectrum present at the right edge is
achieved by subtracting a small amount of compo-
nent vector 1 from component vector 2.

It seems like in this case, the non-rotated PCA re-
sults, although abstract, are perhaps easier to draw
conclusions from.
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Figure 8: Component vectors (left column) and respective weightings (right column) for the simulated
W2Cc-to-WC dataset with added noise on a total of 9.53 million counts.
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Figure 9: Rotated component vectors (left column) and weightings (right column for the simulated noise-free
W2C-to-WC dataset.
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Figure 10: Rotated component vectors (left column) and weightings (right column for the simulated W2C-
to-WC dataset with added Poisson noise on 9.53 million total counts.
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4.2 Multi component systems simula-
tions

4.2.1 Interface

Since the interface model (figure 3) captures all the
variance across the x-axis, and based on the results
found in section 4.1.1 that counts per pixel should be
preferred over sample size, a decision was made to
only analyse this model by a linescan over the inter-
face. In practice, this means a dataset consisting of
only a 150 pixels wide line across the interface was
analysed. This line is marked red in in figure 3. This
line captures all variance in this model, while at the
same time having the maximum amount of counts-
per-pixel c̄ possible for any chosen total counts C.
PCA on the pure dataset is presented in figure 11.
The first component exactly represents the W spec-
trum and has a easily interpretable weighting. The
second component seems to represent the TiC and
Ti6Al4V spectrum added together. It has a high
weighting to the far left in the Ti6Al4V region, where
carbon should not be present. This carbon is there-
fore cancelled by component 3. Component vector 3
has a large positive carbon peak and the weighting is
negative in the Ti6Al4V region. This way of think-
ing about the components as adding and subtract-
ing from each other is necessary and may eventually
lead to the right conclusions about sample compo-
sition but is very time-consuming. Component 5 is
a perfect example of when PCA yields a completely
uninterpretable result even on noise-free data as a
consequence of the orthogonality constraints.

Performing varimax rotation on the obtained factors
produces remarkable results. The first three com-
ponent vectors seem to exactly represent the three
source spectra W, TiC and Ti6Al4V respectively as
can be seen in figure 12a. Looking at their respective
weightings in figure 12b, they are also mapped out
spatially along the line exactly as the source spectra
are in the underlying model. The last two compo-
nents v4 and v5 exhibits the same behaviours as in
the two-component system. Both of them are a mix-
ture of the WC and W2C source spectra differing only
slightly. v4 has a slightly higher carbon peak than v5.
The W2C area to the far right on the line is achieved
by a large weighting of C4 with a small amount of C5
subtracted. The weightings of components C4 and
C5 are thus also the only ones containing negative
values.

Scaling this dataset to 10 million total counts and
adding noise and performing rotated PCA yields the
results in figure 13. Essentially a noisy variant of
figure 12. The weighting of component 5 is extremely

noisy but can still be distinguished. Interestingly,
noise seems to only be reflected in the component
weightings, not the vectors.

In conclusion, on this model, performing varimax ro-
tation on the PCA components drastically improves
interpretability, both on pure and noisy data, except
for areas with a gradient of WC to W2C. It may
be the case that generally, systems containing source
spectra that are only present mixed in gradients are
not as well suited for varimax spatial rotation. Since
all pixels in the gradient are linear combinations of
more than one source spectra, this goes against the
underlying assumption made for this kind of rota-
tion. This would also confirm the conclusion made
by Keenan [14], where he argues that the minimum
requirement for a successful rotation, is that each un-
derlying chemical component needs to have at least
one selective pixel. That is, at least one location
where all except one chemical component are equal
to zero. In the other limit where all pixels are se-
lective, varimax factor rotation will produce vectors
that are the best approximation possible in a least-
square sense to the underlying source spectra [28]. In
this simulated interface model, we know that there
are pixels with pure W2C (pixel 100-110) and pure
WC (pixel 105-150), but mixing also occurs in pixels
in the gradient area. And so the system is some-
where in between the two limits. Therefore, a logical
assumption would be that the more selective pixels
a system has, the better varimax factor rotation can
approximate the underlying chemical source spectra.
This raises the question if binning operations, where
signals from neighbouring pixels are combined for an
increased S/N ratio, while improving overall PCA
accuracy, lowers the chances of discovering the real
underlying chemical source spectra using factor rota-
tions.

4.3 Experimental results

4.3.1 Interface

An experimental electron image of a used WC-Co cut-
ting tool turned in Ti6Al4V can be seen in figure 14.
The adhered Ti6Al4V material can be seen with dark
contrast to the left, and the brighter contrast WC
grains to the right. Figure 15 shows a magnified im-
age of the interface with a WC grain. A suitable area
to perform a linescan over the interface is marked in
yellow in this figure. Unfortunately, the EDS soft-
ware does not allow exporting of the raw data for a
true linescan, only EDS maps. To get around this,
EDS mapping was performed in the yellow area cor-
responding to 50 x 466 pixels. A total of 1.657 ·107
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Figure 11: PCA results of noise-free linescan (red line in figure 3) over the simulated interface. Component
vectors 1 to 5 are shown to the left and their respective weightings to the right
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(a) Rotated PCA component vectors from the linescan over the simulated interface in figure 3. Components 1 to 3
can be seen to exactly represent source spectra used to construct the model

(b) Weightings of the rotated components whose corresponding component vectors can be seen in (a).

Figure 12: Results of rotating the principal components vectors and weights obtained from the linescan over
the simulated interface.
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(a) Rotated PCA component vectors from the linescan with added noise over the simulated interface in figure 3.
Noise does not seem to affect the component vectors who look identical to the ones in figure 12 (a).

(b) Weightings of the rotated components whose corresponding component vectors can be seen in (a).

Figure 13: Result of performing factor rotations on a noisy dataset consisting of a linescan over the simulated
interface with
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Figure 14: STEM HAADF image. Overview of used
cuttingtool interface. WC grains to the right in bright
contrast. Adhered Ti6Al4V material in low contrast
to the left

counts was collected. The sum map can be seen in
figure 16 that show the sum of all channels in each
pixel. The data was subsequently binned to a line
of 1 x 150 pixels. This procedure hopefully does not
introduce significant artifacts to the data. The sum
spectrum, i.e. the sum of all pixels in each channel
can be seen in figure 17. It is evident that the W Mα

is the highest peak and dominates the image. The
second highest is Copper Kα which is expected since
the sample holder was made of copper and is always
present as a system generated peak as a function of
electron scattering [9]. A classical window analysis
where a characteristic peak intensity is viewed over
all pixels can be seen in figure 18. The main W Mα

peak is the overall strongest signal and can be seen
to increase from the left with a maximum at around
pixel 70, after which slowly decreasing a bit. This
supports the existence of a bcc-W region in the mid-
dle of the interface. In this sample, the Cu signal
seems to follow the overall intensity of the sum map.
In fact it seems to be a direct linear function of the
total counts in each pixel on the line. It was found
that for the total counts in pixel i, xi, the Copper Kα

signal yi very precisely follows the relationship

yi = 0.01486xi − 275 (25)

This linear fit to the sum signal can be seen in figure
19. This means that the Cu signal varies exactly as

Figure 15: STEM HAADF image of interface between
WC grain and adhered Ti6Al4V material. Area used
for linescan is marked in yellow

Figure 16: Map of the sum of all energy channels
summed for the EDS map obtained in the the yellow
area in figure 15

Figure 17: Sum spectrum of EDS map obtained in
the yellow area in 15
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Figure 18: Energy window analysis of the line over
the interface. Lower image shows a magnification of
the weaker signals C and Al.

the mean across the sample. This will hopefully mean
that the unavoidable Cu signal does not increase the
rank of the data matrix, i.e. it will not show up as
its own independent principal component. This be-
haviour was confirmed during simulations for a com-
ponent that varies according to the mean.

Before analysis of PCA results was made, the number
of components to treat as significant, i.e. the rank of
the data, needed to be determined. This was done
by discarding component vectors with isotropic ap-
pearances as described in section 4.1.1 along with the
”knee” method described in [29]. The knee method
is performed on a plot of the explained variances
λ∗1, λ

∗
2..., λ

∗
n plotted in a descending order. This anal-

ysis resulted in the consideration of 4 significant com-
ponents i.e. the rank of the data matrix was deter-
mined to be 4.

An attempt was made to use the more robust rank
estimator developed by Kritchman and Nadler [27].
During trials of this algorithm on noisy simulated
datasets scaled for Poisson noise, it predicted the
right number of factors only on datasets were n was
comparable in size to m. Therefore this method was
deemed unreliable. It should be noted that it always
provided a very good estimate of the noise level on
simulated data. Some minor modifications to this al-
gorithm may be all that is needed for a good rank
estimator for STEM EDS data.

Figure 19: Plot showing the linear relationship be-
tween the Cu signal and total counts in each pixel.
Blue line shows a linear fit of the sum signal to the
Cu Kα peak.

PCA was performed on the line data and the result-
ing components are shown in figure 20. The first
component is as usual recognised as the mean spec-
trum, PC1 is the sum spectrum in figure 17 divided
by the number of pixels. Here we can see that the the
middle area contributes the most in increasing the
overall counts, corresponding well to the sum map.
PC2 show the anti-correlation of W and Cu to Ti, Al
and V. Presumably, this component corresponds to
the Ti6Al4V signal and its difference to the mean.

PC3 has a very large positive carbon peak anticorre-
lated to W and Ti. This suggests a carbon component
that varies independently of W. If W and C was al-
ways together in the form of WC (i.e. correlated), a C
peak would have shown up in PC2 together with W,
as anti-correlating to Ti6Al4V. Considering this and
the weighting of PC3 supports the theory of a bcc-W
region from pixel 50 to 75. Furthermore we can see
this component increasing a bit into the Ti6Al4V re-
gion to the far left. This may indicate that some of
the carbon has diffused from WC, into the Ti6Al4V
alloy.

PC4 shows basically only an anticorrelation of W to
Cu. It is really hard to see what this is representing,
especially looking at its complex weighting. One key
observation though is that this is an additional com-
ponent dominated by W that varies independently of
the others.

Factor rotation was then performed on the obtained
PCA components on the interface linescan and the
results are shown in figure 21. The component vec-
tors now look more like real spectra, as a direct con-
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Figure 20: PCA component vectors (left) and corresponding weights (right) obtained from experimental
data from the the linescan over the interface. Characteristic peaks for different elements are indexed with
arrows corresponding to their signs
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sequence of the orthogonality constraint being lifted.
Unfortunately, this has also led them to all look quite
similar. There is a similar looking cluster of W and
Cu peaks in C1, C3 and and C4. Also, the largest
peak in C1, C3 and C4 is the W Mα peak. Look-
ing at the C1 vector it seems to be the one most
closely representing the WC spectrum (mixed with
Cu). The only difference to C3 seems to be a slightly
larger C peak. In fact all component vectors have C
Kα peaks, where C1 has the biggest followed by C3,
C4 and C2. Looking at their weightings, C1 seems
to increase and stabilise into a weighting of about
0.15 the right. At the same time all other component
weights goes to zero. Basically, to the far right, C1
can describe the data all by itself and should be inter-
preted as coming from WC. In fact, overall there are
4 locations on the line were a single component de-
scribes all the data all by itself, i.e. when the weights
of all other components are zero. These points also
coincide with the maxima of each component. These
are found following the horizontal purple line in fig-
ure 21 b. C1 is representative of the data at pixel
149, C2 at pixel 7, C3 at pixel 73 and C4 at pixel
41. In conclusion then, going from left to right across
the interface we can first observe an initial compo-
nent rich in Ti (C2) changing into a region with a
component with reduced Ti but enriched in C and W
(C4). This changes into a component with essentially
no Ti but high in W and a small increase in C (C3).
The line finally ends with a component rich in W and
even more C (C1).

If the underlying structure resembles the simulated
model, the collected counts should be enough to dis-
tinguish between W, WC and W2C. Conclusive evi-
dence for any W2C phase could not be found by re-
lating to the results from simulations. However, it
was found that carbon anticorrelates with tungsten
in some places (PC3 in figure 20) which is strong ev-
idence for areas where C is not in the form of WC.
Furthermore, the finding of 4 significant components
suggests that some of the theorised new species exists
here, if one assumes the Cu signal does not increase
the rank of the data. In other words, 2 of the three
chemical species (W, W2C and TiC) may be present.
This is not at all a trivial conclusion if one were to
look only at the plot of a carbon energy window over
interface as in figure 18.

Next, a larger EDS map of the whole area in figure
15 was acquired and the sum map can be seen in fig-
ure 22. Initially this data cube was 512 x 448 pixels
(m = 229376). On the raw data, the rank of the
matrix was determined to be 2. The knee method
actually estimated the rank to 3, but by performing

PCA and looking at the isotrophy of the component
vectors, component vector 3 consisted only of a ex-
tremely small spike in the positive and negative di-
rection, and was completely indistinguishable from
components 4, 5, 6,..n in appearance and, therefore
most likely represented noise.

Finding only 2 significant components across this
very large and complex area suggested that many
components probably had signal variances below the
noise level and were therefore impossible to retrieve
initially. Knowing that increasing the counts per
pixel affects noise eigenvalues and signal eigenvalues
differently, binning to a range of different sizes was
performed while observing the resulting eigenvalues
of DTD, λ∗j . A plot can be seen in figure 23. Indeed,
it is clear that by binning, two additional eigenval-
ues, hopefully originating from signal variance, break
away from the rest. From this, the conclusion was
that eigenvalues 1 to 4 behave as signal variances,
and eigenvalues 5 and onward behave purely as noise.
Keeping the 4 first signal eigenvalues above the noise
level, while still retaining adequate spatial resolution,
a dataset binned to m = 1554 (37 x 42 pixels) was
chosen for PCA.

The resulting PCA components and weightings can
be seen in figure 24. The first component repre-
sents the mean once again and can be seen being the
weighted strongest to the right, following the strong
signal from W.

The second component shows the anticorrelation of
Ti and Al to the mean and its weighting suggests
that this component reperesents the Ti6Al4V alloy.
The third component is very interesting. An anti-
correlation between Ti and V is evident. Ti and V
are classically hard to separate since the Ti Kβ peak
exactly overlaps the V Kα peak. Since peaks com-
ing from the same atomic species would theoretically
never anticorrelate to eachother, and the fact that the
V Kβ is also visible is evidence of Ti and V varying in-
dependently of eachother. Correlating positively with
V in component 3 is Al and surprisingly also Fe. Ti
is also seen correlated with C. Looking at the compo-
nents weighting, a distinct ridge can be seen crossing
vertically over the whole image. PC3 can then be
interpreted as follows: on the ridge lies a higher con-
centration of V, Al and Fe. An alternative view is
this: to the left of the ridge, where the weighting of
PC3 is negative, can be seen as region enriched with
Ti and C.

PC4 shows a strong positive carbon peak, and some
anticorrelation to Ti and W. The greatest impact of
this component can be seen to the right in the image.
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(a) Rotated component vectors from experimental data obtained for the linescan over the interface. Characteristic
peaks for different elements are indexed with arrows corresponding to their signs

(b) Rotated component vectors for the corresponding component weights in
(a). Purple line helps to show were weights are close to zero.

Figure 21: Results of rotating the PCA components obtained from experimental data from the the linescan
over the interface.
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Figure 22: Sum map of EDS map obtained over the
whole area in figure 15

Figure 23: Plot showing the effect of rebinning on
the eigenvalues of DTD, where D is the flattened EDS
map in figure 22. Increasing the binning factor means
going from right to left in the figure. In descending
order, λ1, λ2, λ3, λ4 are plotted in dark blue, orange,
green and red respectively. The rest of the eigenval-
ues are clustered tight together and seem to decrease
the same way. They are therefore consider to only
represent noise.

The weighting starts out as positive while quickly be-
coming negative, meaning carbon is subtractded from
the darkest region in the image. This supports the
theory of a C depletion of WC at the interface.

Factor rotation gives the results in figure 25. The
first component shows something that most closely
resembles the W spectrum so far (ignoring the Cu
peaks). It has a small contribution of Ti but essen-
tially no C. C3 is very similar to C1 but it has the
C peak and its W peaks are of slightly lower inten-
sity. Therefore, the conclusion is that C1 represents
W and C3 represents WC. The difference between
C2 and C4 is in contrast not as easy to explain. C4
seems to have some W mixed in with a bit more C.
C2 also has some Al. Clearly they both represent
something with a lot of Ti but exactly what is hard
to tell. The ridge structure is also apparent in both
of them, weighted negative in C2 and positive in C4.

In conclusion, on this bigger map of the interface, W
and WC species have been identified at the interface
were they were expected. A ridge not visible in the
electron micrograph was found where there is some
anticorrelation mainly between Ti and V and possibly
Fe. This ridge could be the subject of further work,
investigating the presence of TiC or perhaps a VC
phase.

5 Conclusions and outlook

In this work, the limits of PCA on hyperspectral EDS
maps has been investigated. Previously, the effect of
sample size on the accuracy of PCA has been eval-
uated which predict an increase in accuracy for the
blunt increase in the number of pixels[4][12]. However
these models assume a constant noise level. If phased
with a limited collection time, it was found in this
work, both theoretically and on simulated datasets,
that counts should preferably be collected in as few
pixels as tolerable to be able to resolve low variance
components. However, rebinning pixels in a dataset
post acquisition seem to have the same positive effect
and can substantially help in discovering low variance
signals. It may also be beneficial to investigate the
benefits of binning the spectrum data in the energy
axis as well [30]. Although not included here, limited
testing on simulated datasets found no substantial
difference for energy binning.

It was shown on one of the simulated datasets that
varimax factor rotations in the spatial domain can
make the PCA components easier to interpret as
physical spectra. However, on experimental datasets,
even if the components look like physical spectra,
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Figure 24: Results of PCA performed on the experimental EDS map over the interface. Characteristic peaks
for different elements are indexed with arrows corresponding to their signs on the components to the left.
The mapping to the right includes a colorbar that specifies the weighting. Note that the weights can have
negative values. A distinct ridge structure can be seen in the weighting of PC3, which is not visible in the
HAADF image in figure 15.
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Figure 25: Results of the rotated PCA components performed on the experimental EDS map over the
interface. Note that even though the peaks in the component vectors are all positive, the mapping of the
weight shows some negative values.
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mixing of peaks from several elements can occur that
may not correspond to actual chemical species. Pre-
sumably, these kinds of rotations work better on
datasets with many selective pixels, that is, many
locations where only one chemical component is
present. This may be a relationship suitable for fur-
ther investigation.

For the cuttingtool sample. No conclusive evidence
for a W2C phase could be found, even when the
according to simulations required amount of counts
was collected. Some areas where Ti anticorrelates to
V was found. This implicitly implies that by using
PCA, it is possible to distinguish V from Ti on EDS
maps which is difficult to do classically due to major
peak overlaps.

As the rotated factors contain mixes of several ele-
ments, a next step may be to perform cluster analysis.
So called fuzzy KMeans clustering can be performed
to separate out spectra from individual atomic species
although this method requires a lot of a priori knowl-
edge about the sample [31]. Alternatively, varimax
rotations in the spectral domain is another method
that can be tried to maximize the differences between
component vectors [15].

Finally, referring back to equation 20, if it is discov-
ered that the value of the explained variances in a
dataset depends almost exclusively on how much the
source spectra differ from each other, it may be possi-
ble to, through simulations, predict the counts needed
to discover suspected chemical species in a sample
purely based on how their source spectra differ from
each other, without knowledge about sample geome-
try.
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[7] J. Garćıa, M. Lattemann, E. Coronel, and
I. Sadik, “Interaction between cemented carbide
and ti6al4v alloy in cryogenic machining,” 06
2017.

[8] K. Korniyenko and Materials Science Inter-
national Team, MSIT R©, “The C-W phase
diagram: Datasheet from MSI Eureka in
SpringerMaterials,” copyright 2007 MSI,
Materials Science International Services
GmbH, Stuttgart. [Online]. Available: https:

28

https://doi.org/10.1093/jmicro/dfz036
https://www.wiley.com/en-se/Techniques+and+Applications+of+Hyperspectral+Image+Analysis-p-9780470010860
https://www.wiley.com/en-se/Techniques+and+Applications+of+Hyperspectral+Image+Analysis-p-9780470010860
https://www.wiley.com/en-se/Techniques+and+Applications+of+Hyperspectral+Image+Analysis-p-9780470010860
http://www.sciencedirect.com/science/article/pii/S0304399116302480
http://www.sciencedirect.com/science/article/pii/S0304399116302480
http://www.sciencedirect.com/science/article/pii/S004316481730248X
http://www.sciencedirect.com/science/article/pii/S004316481730248X
http://www.sciencedirect.com/science/article/pii/S0263436817306972
http://www.sciencedirect.com/science/article/pii/S0263436817306972
https://materials.springer.com/msi/phase-diagram/docs/sm_msi_r_10_010004_01_full_LnkDia0


//materials.springer.com/msi/phase-diagram/
docs/sm msi r 10 010004 01 full LnkDia0

[9] D. B. Williams and C. B. Carter, Transmission
Electron Microscopy. Springer, Boston, MA,
2009.

[10] “X-ray and eels imaging,” in Transmission Elec-
tron Microscopy - Diffraction, Imaging, and
Spectrometry, B. Carter and D. B. Williams,
Eds. Springer International Publishing, 2016,
ch. 16, pp. 439–466.

[11] B. Nadler, “Finite sample approximation results
for principal component analysis: A matrix
perturbation approach,” Ann. Statist., vol. 36,
no. 6, pp. 2791–2817, 12 2008. [Online].
Available: https://doi.org/10.1214/08-AOS618

[12] P. Potapov, “On the loss of information in
pca of spectrum-images,” Ultramicroscopy, vol.
182, pp. 191–194, 2017. [Online]. Available:
https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85021964404&doi=10.1016%2fj.
ultramic.2017.06.023&partnerID=40&md5=
bcde149e60238c244a9e73bdc7b9020d

[13] ——, “Why Principal Component Analysis
of STEM spectrum-images results in unin-
terpretable loadings?” Ultramicroscopy, vol.
160, pp. 197 – 212, 2016. [Online]. Avail-
able: http://www.sciencedirect.com/science/
article/pii/S0304399115300577

[14] M. R. Keenan, “Exploiting spatial-domain
simplicity in spectral image analysis,” Surface
and Interface Analysis, vol. 41, no. 2, pp. 79–87,
2009. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/sia.2949

[15] V. S. Smentkowski, S. G. Ostrowski, and
M. R. Keenan, “A comparison of multivariate
statistical analysis protocols for tof-sims spec-
tral images,” Surface and Interface Analysis,
vol. 41, no. 2, pp. 88–96, 2009. [Online].
Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/sia.2973

[16] A. Buhot and M. B. Gordon, “Phase
transitions in optimal unsupervised learn-
ing,” Phys. Rev. E, vol. 57, pp. 3326–
3333, Mar 1998. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevE.57.3326

[17] T. L. H. Watkin and J. P. Nadal, “Optimal
unsupervised learning,” Journal of Physics A:
Mathematical and General, vol. 27, no. 6,
pp. 1899–1915, mar 1994. [Online]. Avail-

able: https://doi.org/10.1088%2F0305-4470%
2F27%2F6%2F016

[18] N. Ipsen and L. Hansen, “Phase transition in pca
with missing data: Reduced signal-to-noise ra-
tio, not sample size!” in Proceedings of Machine
Learning Research, vol. 97. International Ma-
chine Learning Society (IMLS), 2019, pp. 5248–
5260, 36th International Conference on Machine
Learning, ICML 2019 ; Conference date: 10-06-
2019 Through 15-06-2019.

[19] N. Faber, M. Meinders, P. Geladi, M. Sjöström,
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6 Appendix A: Algorithms and Python implementation

Rescale data for Poisson noise

Transforms data into new space where noise is uniform. D is an unfolded mxn image. Returns the scaled
data D along with the matrices sqrt(G) and sqrt(H). After performing matrix decomposition on D and
obtaining matrices T and P you should invert scaling with T = root G*T and P = root H*P.

def r e s c a l e P o i s s o n (D) :
import numpy as np

m = np . shape (D) [ 0 ]
n = np . shape (D) [ 1 ]
aG = np . squeeze (np .sum(D, a x i s =1))/n
bH = np . squeeze (np .sum(D, a x i s =0))/m
root G = np . s q r t (aG ) [ : , np . newaxis ]
root H = np . s q r t (bH ) [ np . newaxis , : ]
#ignore d i v i d e by zero and s e t NaNs to 0
with np . e r r s t a t e ( d i v id e=” ignore ” , i n v a l i d=” ignore ” ) :

D = D/( root G∗ root H )
return np . nan to num (D ) , root G , root H

Varimax factor rotation

Implemented from the function ”varimax” in the R language, adapted for python here https://en.

wikipedia.org/wiki/Talk:Varimax_rotation. Phi is the factor matrix to be rotated and R is returned
as the calculated rotation matrix. In this article Phi = T, but this function can also be used to calculate a
rotation matrix based on P, i.e. in the spectral domain.

def varimax ( Phi , gamma = 1 . 0 , q = 20 , t o l = 1e−6):
import numpy as np
p , k = Phi . shape
R = np . eye ( k )
d=0
for i in range ( q ) :

d o ld = d
Lambda = np . dot ( Phi , R)
temp1 = np . dot (Lambda , np . diag (np . d iag (np . dot (Lambda .T, Lambda ) ) ) )
temp2 = np . dot ( Phi .T, np . asar ray (Lambda)∗∗3 − (gamma/p) ∗ temp1 )
u , s , vh = svd ( temp2 )
R = np . dot (u , vh )
d = np .sum( s )
i f d/ d o ld < t o l :

break
return R
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