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Abstract

Damage to DNA can cause death to an individual cell and serious harm to the host or-
ganism. Photosensitized reactions are one cause of DNA damage. It can lead to destructive
chemical reactions targeted to a base of the DNA as well as a breakage along one or both of
the DNA strands. Due to this, quantifying and understanding photosensitized driven DNA
damage is an important topic of research.

From experimental data of fragmenting fluorescently stained linear double-stranded DNA
in nanochannels, we will extract the non-observable single-stranded cleavage rate (nicking
rate) from observable times of double-stranded cleaves (cuts), which lets us quantify the rate
of DNA damage. To do this, we present a new probabilistic model that connects the cutting
rate to the time of cuts. We present two distinct models for the cutting rate, the first one is
analytical and the second is based on simulations.

We find through validation on synthetic data with known nicking rates that using the
cutting rate from the simulation-based model yields more accurate estimates of the nicking
rate compared to using the cutting rate from the analytical model. In addition, we manage to
estimate the nicking rate for three experimental data sets with varying illumination strength.
From these estimates, we conclude that the nicking rate, as expected, increases with increasing
illumination strength.

We hope that this study will serve as proof of concept for our new methodology to estimate
the nicking rate and provide a good starting point for other studies which want to add to the
knowledge of nicking rate estimation under different conditions.



Popular science – measuring the invisible

Claiming around 8 million lives yearly, cancer is one of the deadliest diseases world-wide. Due
to its negative impact on human well-being, improving our knowledge about cancer and working
towards more effective treatments in the future is essential.

Accumulation of damage to our genes can lead to cell death or severe harm to the host or-
ganism. To better understand the processes that result in gene damage, it is important to study
deoxyribonucleic acid (DNA) damage. DNA damage can be studied in various ways, e.g., by ex-
posing the DNA to, cutting enzymes, high energy radiation, oxygen or visible light. In this work,
we study DNA damage caused by the exposure of oxygen and visible light.

We know that harmful reactants, such as free radicals, take part in chemical reactions that can
cause damage to our DNA. We also know that light and oxygen can increase the creation of free
radicals. The rate of DNA damage is crucial since our bodies need to keep up with the reparation
processes and avoid accumulation of mutations. It is thus important to ask how oxygen and light
change the rate of DNA damage, which are both present in our daily lives.

In this work, we will look at DNA damage through experiments of DNA in nanometer-sized
channels captured using a fluorescence microscope. Even though the scale of the experimental setup
is very small, it is not small enough to obtain the DNA damage directly. To better understand
what limits our observations of DNA damage, we begin by picturing the DNA as a spiraling ladder
structure. The ladder’s two side-rails and rungs, correspond to the two main strands and base-
pairs of the DNA, respectively. Free radicals may chemically react with one of the strands and
break it, or analogously damage one of the rails on the ladder. When such a single-stranded break
(nick) happens the DNA is still held together as one molecule due to the connection of base-
pairs to the other strand, just as the ladder is still in one piece held together by the rungs. This
process of single-stranded breaks is not observable with the microscope. On the other hand, if yet
another single-stranded break occurs close enough on the opposite strand on the DNA we obtain a
double-stranded break (cut), it has the effect of damaging both side-rails between the same pairs
of rungs on the ladder. In this case, the DNA molecule divides into two molecules, a constellation
which can be observed with the microscope, once the DNA fragments has diffused apart within
the nanochannel.

Since we want to know at which rate the nicks occur but can only observe the cuts, we are
challenged to measure something non-observable. To tackle this, we here introduce a new stochas-
tic model, which can estimate the nicking rate given a series of observed cutting times using a
functional form for the rate of cuts. As the microscope has a limited resolution, we cannot observe
the exact time of the cuts in the experiments and the functional form for the cutting rate must
account for this fact. To do this, we have simulated all parts of the experiments to obtain the
observable functional form for the cutting rate. By performing simulations for different nicking
rates, we obtain different functional forms for the observed cutting rate. Each of these observed
cutting rate functions, together with the observed cutting times, is then used in the stochastic
model to deduce the likelihood of the current nicking rate. The observed cutting rate function that
gives the highest likelihood corresponds to our estimate of the nicking rate.

With this study, we hope that our new method to measure the rate of DNA damage can find
its way into the hands of more researchers who can keep expanding the knowledge of DNA damage
and use our method to measure the nicking rate under different experimental conditions.
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1 Introduction

Deoxyribonucleic acid (DNA) is of utmost importance to all living organisms. Within its double
helical structure it contains the key for both current and future generations’ survival. With its
clever system of repeated blocks of simple information, in form of base-pairs (bp) spaced by merely
3.4 Ångstrom, it encodes the most complex proteins. The molecule we today call DNA was
discovered in 1868 by F. Miescher [1, 2] although we are perhaps more familiar with the structural
model proposed by Watson and Crick [3]. The model proposed by Watson and Crick remains valid
for many of the key features we assign DNA with current knowledge. For example, each base is
bound to the complementary base by hydrogen bond and only pair up as AT or GC. In addition,
the chemical structure is such that molecules, for example proteins, can bind to the DNA molecule
for various purposes, including replication.

As the central storage unit for life, damage to the DNA can be a serious threat to survival.
We call a change in the structure of the DNA through chemical addition or disruption to a base,
as well as cleavage of one or two strands, DNA damage [4]. When a base is damaged, a wrong
complementary base may be inserted during replication. In addition, cleavage of both strands
could result in a repair (through DNA repair enzymes) that is different from the original genome.
Both of these two cases could lead to mutations in the next stage of replication if the organism
does not detect the fallacious DNA. Although mutations play an important role in the biological
evolution, a harmful mutation passed on to successive cells can lead to cancer. To stop this,
there are multiple processes which deal with DNA repair, unfortunately these processes are not
100 % effective. Accordingly, the interplay between DNA damage and DNA repair is of highest
importance for all living organisms, with evidence that direct repair after DNA damage is the most
effective and easiest way of repair [5].

In this study, we will focus on photosensitized driven DNA damage [6]. Nanochannels are used
to stretch fluorescently stained linear double-stranded DNA (dsDNA) which are subsequently im-
aged using fluorescence microscopy. As an already established tool used to study the mechanical
properties [7] and large-scale sequence information [8] of DNA, fluorescently stained dsDNA in
nanochannels will in this study instead be used to analyze single-stranded breaks (nicks) result-
ing in double-stranded breaks (cuts). In detail, this involves measuring the time of cuts in the
experimental data as a function of illumination strength (the non-visible nicking rate is extracted
through modeling). Single-stranded breaks, in whatever way they are created, do not result in a
double-stranded break unless two nicks are located close enough on the opposite strands within half
the fraying distance. Here, fraying is the notation of thermally induced DNA unzipping [9], which
depends on temperature, DNA sequence and buffer composition. The relation between nicks and
cuts leads to a non-trivial relation between the rate at which nicks happen and the rate at which
the observable cuts happen. To quantify this relation, both in theory and in real experiments, we
will in this study develop a mathematical model as well as a simulation model.

The relation between the dose of nicks and resulting cuts has earlier been subject to multiple
studies. For example, formulas predicting the fraction of super-coiled, circular, linear and frag-
mented DNA in bulk are presented in [10]. Another example, the yield of nicks and cuts and their
corresponding dependence as function of radiation dose, measured through ratios of fragmented
DNA in bulk, are present in [11]. In addition, multiple studies have performed measurements of
the fraying distance [12, 13, 14], with significantly varying results.

There are some main characteristics of the earlier studies we will try to improve upon in this
work. Each of the earlier studies used the proportion of molecules in different stages (super-coiled,
circular, linear and fragmented) or subsets of them as an observable. We intend to use another
observable which can be applied to a few molecules or, in theory, a single molecule. We also note
that the earlier experiments were performed in bulk, here we will instead use data from experiments
of fluorescently stained linear dsDNA in nanochannels which allows us to see each molecule and
exclude damaged ones. Accordingly, we hope to, in this preliminary study, give a good first order
of magnitude estimate of nicking rates for DNA in nanochannels for limited amounts of data.
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2 Problem statement and thesis outline

We will in this section state the problem that this work intends to solve and outline the new
theoretical-experimental platform for DNA nick analysis presented in Figure 1. In Figure 1, there

Experiments of dsDNA in nanochannels

Estimated
nicking rate

Bayesian parameter

estimation

A.

C.

B.

D.

Image analysis:

fragment detection

and basic processing

Physical model: 

Time series of cut events:

(Nanochannel extension)

from single−stranded nicks

to double−stranded cuts

t = t0:

t = t1:

t = t2:

t = t3:
~t = (t1, t2, t3)

Figure 1: A schematic overview of the theoretical-experimental platform. The working process of this study
begins by obtaining the experimental data of dsDNA stained with fluorescent molecules in nanochannels undergoing
fragmentation (see box A.). In the four images taken at different times we show the same DNA molecule. The
DNA is observed, and can be separated from the background, via the concentration of fluorescent molecules which
determines the brightness of the pixels (value along z-axis in the images). Furthermore, the DNA is, as can be seen
in the images, stretched out. This is due to the confinement imposed by horizontally aligned (along the x-axis)
nanochannels of a width approximately equal to one pixel. We can in the images see that cuts appear along the
initial intact molecule as time progress and is split into 4 observable fragments at t = t3. The three last images taken
at t = t1, t2 and t3 correspond to the time at which we can observe a new cut. In addition, we see that the limited
resolution extends the region of bright pixels far outside the confinement of the nanochannels. The experiments
were done by Jason Beech (Jonas Tegenfeldt group, Lund University). The next stage in the work is to perform
image analysis on the experimentally obtained images with the goal of detecting individual fragments. The output
of the image segmentation procedure then undergoes simple processing to obtain time series of cut events (box B.).
To describe the experimental data in box A. we presented a physical model which connects the rate of nicks and the
observed double-stranded cut times in a probabilistic manner (box C.). Lastly, the time series of cuts from box B.
and the physical model from box C. are combined in a probabilistic Bayesian framework which outputs an estimate
of the nicking rate (box D.). In this thesis we will present work to cover the theoretical framework of box B., C.
and D..

are 4 parts which we will now cover in some detail.
In Figure 1, box A., we find a brief overview of the experiments and the type of data pro-

duced. The experiments consist of obtaining microscope images of fluorescently stained dsDNA in
nanochannels undergoing fragmentation. Here we have chosen to zoom in on a single molecule to
visualize the cuts better, the full image contains several molecules spread out in several nanochan-
nels. The experiments were done by Jason Beech (Jonas Tegenfeldt group, Lund University). The
details of the experiments as well as the working procedure are presented in section 3.1.

In Figure 1, box B., we find the data extraction part from the experimentally obtained images.
Here the goal is to observe time series of cut events. The knowledge of the time at which each image
is obtained allows us to deduce a time series of cut events via the number of fragments in each
image. The limited resolution of the microscope images poses a major challenge for this procedure
to be accurate. The procedure of the image analysis and time series extraction is presented in
section 3.2.

In Figure 1, box C., we find the theoretical framework, presented in section 3.3, aiming to
describe the cutting process observed in the experiments seen in box A.. This is the central part
of this work of this thesis, and we present, in section 3.3.1, a new theoretical framework connecting
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the observable cuts and the underlying nicking rate given a functional form of the cutting rate.
Since the experiments have two major issues: (i) the images have limited spatial resolution and,
(ii), the fragments diffuse with a limited rate, we will present two different models for the functional
form of the cutting rate used in the theory presented in section 3.3.1. The first cutting rate model,
model I, is analytical and ignores the experimental issues. We present model I in section 3.3.2. The
second model, model II, is based on simulations and intends take the experimental shortcomings
into account. To deal with issue (i) and (ii), model II attempts to simulate artificial microscope
images of fragmenting DNA in nanochannels, including limited resolution and diffusive behavior,
to obtain an empirical functional form of the cutting rate. We present model II in section 3.3.3.

In Figure 1, box D., we find the probabilistic Bayesian framework used to estimate model
parameters. The probabilistic framework, described in section 3.4, needs a physical model for
observed cut times and corresponding experimental data with time series of cuts in order to estimate
model parameters.

To conclude, we will in this study use the new experimental-theoretical platform presented
in Figure 1 to estimate the single-stranded nicking rate. To do this, we will develop two new
probabilistic models, which can connect the nicking rate with the observed times of cuts. We
first test these new models on synthetic movies to check their applicability before analyzing real
experimental movies.

3 Methods

In this section, we will present the methodological material of this work according to the framework
in section 2 (Figure 1). The content of the material will have a brief character to keep clarity of
the structure. Details and technicalities are discussed in the appendices.

3.1 Experiments

Here, we present the experimental procedures and details behind the work of obtaining videos
of diffusing DNA in nanochannels performed by Jason Beech (for example images from one such
video see Figure 2). All experiments were performed in a silicon device with a quartz cover-slide.

10 µm

(a) t = 0 s (b) t = 3 s (c) t = 6 s

Figure 2: Example images from one experimental movie. Here, we show three different images taken at
three different times containing fragmenting dsDNA diffusing in nanochannels. In each image, we can see ∼ 40
molecules. We observe the DNA molecules as the bright regions. The images in box A. (Figure 1) showed a limited
field of view, containing one molecule, from the movie presented here. The nanochannels (not directly visible) are
horizontally aligned and each one stretches over the whole width of each image. The width of each nanochannels is
100 nm (approximately one pixel) in the vertical direction. Furthermore, we can see that the DNA molecules are
stretched out in the same direction as the nanochannels due to confinement. (a): In this image we see the initial
stage of the experiment where most molecules are intact and similar in length. (b): At later times, we start to notice
that several molecules have been cut, giving rise to shorter fragments. (c): At this late stage in the experiment we
see how the majority of molecules have undergone substantial fragmentation. The images are all 512 × 512 pixels
wide and high and the pixel size is 0.16 µm. Experiments performed by Jason Beech (Jonas Tegenfeldt group, Lund
University)

The nanochannels were 100 nm wide and 150 nm deep. To capture the needed images, a 100x
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objective was used with a numerical aperture of 1.4. Data of the relationship between voltage
and luminosity of the lamp used to illuminate the sample is presented in Appendix A. Two types
of driving gases were used to obtain different nicking rates, oxygen and nitrogen, respectively,
applied with a pressure of 250 mBar. For all experiments, λ-phage DNA was used stained with
1 dye per 5 base-pairs (ρ = 1/5) using YOYO1 molecules. The buffer used for all experiments
was a 0.5×TBE buffer. To maximize the presence of a single gas at the time of the experiments,
the device was put under pressure for 4 hours when using nitrogen and 2 hours using oxygen as
driving gas before the insertion of DNA into the nanochannels was done. Once the system was
saturated with a single gas and the DNA been inserted into the nanochannels, the lamp cover was
removed, and the video acquisition took place until the initial molecules were highly fragmented.
The exposure time, ∆T , used to capture a single image was 0.1 s, i.e., 10 images were captured
every second. The acquisition of videos was performed for three different illumination strengths,
25, 50, and 75 % of maximum voltage for both nitrogen and oxygen as driving gas. For details
about the fabrication of the nanofluidic system used, preparation of the DNA and the imaging
system, we refer to Appendix A.

3.2 Image analysis and time series extraction

In this section, we present a working method to extract time series from fragmenting DNA diffusing
in nanochannels based on image segmentation. The data consist of different stacks (videos) of gray

scale images ~S =
{
~I1, ~I2, ..., ~INim

}
taken with a separation ∆T in time. Each image is a two-

dimensional matrix ~Ii = I(x, y)i with x ∈ [1, xmax] and y ∈ [1, ymax], where xmax and ymax is the

width and height of the images in terms of pixels. Three representative images from one video ~S,
at three different time points, are shown in Figure 2.

10 µm

(a) t = 0 s (b) t = 3 s (c) t = 6 s

Figure 3: Illustration of fragment detection and choice of acceptable data. Here, we have zoomed in
on the top left corners of the images in Figure 2 to improve the visibility of individual molecules and allow for
illustration of the data extraction procedure. The images in Figure 2 have here been segmented to detect all regions
containing DNA, marked as regions with borders of various colors (not large green or red rectangles). In the first
time instance, t = 0 s (Figure 3a), all molecules which are considered acceptable are enclosed with green rectangles
2 times higher and 4 times longer than the original molecule. All the non-acceptable molecules are enclosed by
red rectangles. Molecules may be marked as non-acceptable due to: too long or too short (indicating merge
with another fragment/molecule or already fragmented), too close to other fragment(s) or molecule(s) (enclosing
rectangles overlap) and partly outside image (enclosing rectangle extends outside the image). In the second time
instance, t = 3 s (Figure 3b), we have excluded all non-acceptable molecules. Here, we can also observe that we
detect multiple fragments inside a single green rectangle which initially only contained one molecule. In the last
time instance, t = 6 s (Figure 3c), we observe that an increasing number of fragments are detected and that most
of the fragments are rather short, in some cases so short that we failed to detect them.

From a given video, we want to extract the time at which a new cut happens for each individual
DNA molecule that is intact in the initial frame. To do this, we used the following procedure:

1. Locate all DNA molecules in the first frame. To do that, we segment the first image into
signal and background (using the segmentation technique described in Appendix B) which
returns the boundaries of all detected molecules as can be seen in Figure 3a.
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2. Find a rectangular area which is likely to contain a given DNA molecule at all time frames.
To do this, we define, for each intact molecule, a rectangle which is 2 times higher, 4 times
longer and centered around the initial molecule.

3. Exclude all non-acceptable molecules. To do this, we exclude all molecule which larger
rectangles overlap or extend outside the image, as well as all molecules which observed length
does not satisfy the criterion

Lest − 3σ < Lobs < Lest + 3σ. (3.1)

Here, Lobs is the observed length, Lest the estimated expected observed length and σ the
standard deviation of Lest. We use Eq. (G.1) to compute Lest and Eq. (G.2) to compute σ.
Non-acceptable molecules are surrounded by larger red rectangles in Figure 3a.

4. Count the observed number of cuts at each time frame, Ñcuts(k), for all molecules (k labels
different time frames). We do this by segmenting each image and count the number of
detected fragments in each rectangle (example segmentation in Figure 3b and 3c). The
number of cuts is one less than the number of fragments.

5. Estimate the actual number of cuts, Ncuts(k), at each time frame k from the observed number

of cuts. To do this we define Ncuts(k) = max
(
Ñcuts(j)

)
with j ∈ [1, k], i.e., the cumulative

max in time of the observed number of cuts.

After completion of steps 1-5 above, we have obtained a time series with the actual number of
cuts, Ncuts(k), for a specific molecule at time frame k.

Let us here comment on two things in the data extraction procedure just described. Firstly,
we take the cumulative max in time of the observed number of cuts to minimize the effects of
missed cuts. Missed cuts are caused by two or more fragments located closer to each other than
the resolution limit given by our segmentation technique. We can estimate the resolution limit to
be approximately equal to σPSF given in Eq. (F.2). In this study σPSF ≈ 222 nm or equivalently
1.4 pixels. Thus, missed cuts can be present when a cut recently happened and the two resulting
fragments have not yet diffused apart a distance longer than the resolution limit, or when already
separated fragments diffuse together a distance closer than the resolution limit. Secondly, the
choice of height and width in step 2 is based on observations of multiple image sequences and aims
to produce rectangles of a size such that we balance the degree of fragment enclosure with data
loss.

We now seek the time series of cuts ~t. For a specific molecule we can identify the time frames
when a cut happened, ~kcut, by satisfying the following condition

Ncut(k + 1)−Ncut(k) > 0 for k ∈ [1, Nim]. (3.2)

We note that in Eq. (3.2) we need to account for the fact that multiple cuts could have happened
from time frame k to k + 1. Therefore, one value of k appears equally many times as the increase
in cutting number between consecutive images. The time series of cuts for a single molecule is thus
given by

~t = ~kcut∆t. (3.3)

We have here assumed that the first image in ~S was taken at t = 0, if the recording of images
started before the experiment itself we translate the indices of the images as i = i − it=0. Note
that, for a given video, we will obtain a set of individual time series ~t equal to the number of
accepted molecules in the first image Nmol, i.e., ~τ =

{
~t1,~t2, ...,~tNmol

}
.

3.3 The physical models

In this section, we present the theoretical framwork of box C. in Figure 1. This work consists
of three main parts. Firstly, we present the new probabilistic model for the observed times of
cuts given a functional form for the cutting rate, r(t), in section 3.3.1. After this, we present an
analytical model for r(t) (model I) in section 3.3.2. Lastly, we present a simulation-based model
for r(t) (model II) in section 3.3.3.
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3.3.1 From nicks to cuts

In this section, we introduce a new probabilistic model for the observed times of cuts given a
function for the rate of cuts r(t). To tackle this problem, we begin by approaching it from a
general perspective utilizing a state like waiting time model for the cuts presented in [15], chapter
15.2.3.

The model proceeds as followed: Consider a time interval t ∈ [0, T ]. Divide this time interval
into N shorter time intervals where time interval i is given by [ti−1, ti]. We assign our system two
possible states σi = 0 and σi = 1 for having no cut and a cut in time interval i, respectively. The
evolution of our system in time can now be described by a set of σ values representing the state in
each time interval, ~σ = (σ1, σ2, ..., σN ). We now ask: assuming that each state is independent of
any other state, what is the probability of observing ~σ? We can write this as product of individual
probabilities

P̃ (~σ) =

N∏
i=1

P̂ (σi). (3.4)

To deduce the probability of σ = 0 and σ = 1, respectively, we need to confront the physical
world of rate equations. We realize that the probability of observing a cut in time interval i can
be related to the rate of cuts at that time. We write this probability as P̂ (σi = 1) = r(ti)δt.
Where r(t) is the cutting rate at time t and δt is the length of the time interval. The probability
of not having a cut in time interval i is then given by P̂ (σi = 0) = 1 − P̂ (σi = 1) = 1 − r(ti)δt.
Assuming that 1 � r(ti)δt, we can, using the exponential approximation e−x = 1 − x + O(x2),
rewrite P̂ (σi = 0) ≈ e−r(ti)δt. With this approximation the total probability for a set of cuts at
times ~t = (t1, t2, ...tn), i.e., a time series of cuts, can be written as

P
(
~t
)
≈

(
n∏
i=1

r(ti) δt

)
e−

∑N
j=1 r(tj)δt. (3.5)

We note that the probabilities P̂ (σi = 1) for all time intervals in which a cut happened are still
included in the product above. Although not correct, the error will vanish later when we let the
length of the time intervals approach zero.

At this point we need to realize that P (~t) ≈ p(t1)δt · p(t2)δt · ... · p(tn)δt, where p(t) is the
probability density function for observing a cut at time t. Dividing both sides of Eq. (3.5) with
(δt)n and letting δt approach zero, we obtain

p(~t) =

n∏
i=1

p(ti) ≈ r(t1) r(t2) ... r(tn) e−
∫ T
0
r(t′)dt′ . (3.6)

We point out that p(~t) is a joint probability density function for all observed cuts and has dimension
time−n. Furthermore, we observe that Eq. (3.6) is valid for any choice of model for r(t). This
observation will prove itself useful later as we want Eq. (3.6) to be valid for r(t) from both model I
and model II. With that, we will now continue and search for a model, and an associated functional
form for r(t), which satisfactorily connects the rate of nicks to the rate of observable cuts.

3.3.2 Model I for r(t)

To deduce the relationship between single-stranded nicks and double-stranded cuts we will now
introduce a physical model that attempts to predict r(t).

Considering the cutting rate r(t), we realize that it can be represented by the probability of
having a cut at time t given that a new nick is introduced, Pcut(t), multiplied by the number of
attempts at that time κ. With that in mind, the cutting rate becomes

r(t) = κPcut(t). (3.7)

The number of attempts to cut at each time, κ, is nothing but the nicking rate per length, which
we denote as α, multiplied by the length of the molecule that can be nicked

κ = 2Lα. (3.8)
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Here the factor 2 enters the equation since we have two strands in the DNA that are susceptible
to nicking. Note that the unit of L determines the unit of α. In this study L is given in base-pairs
which means we measure α as the nicking rate per base-pair. In Appendix C, we perform, as
additional material, a calculation which links α to the concentration of molecules that nick the
DNA in the surrounding buffer.

We now need to find the quantity Pcut(t) in order to recover the expression for the cutting
rate. Instead of going directly for Pcut(t) we ask: given one nick at one of the strands, what is the
probability Qnick for a new nick to be placed within a distance of ξ/2 in both directions on the
opposite strand from the original nick, assuming it to be uniformly likely along the whole strand?
(In Appendix D we cover the fraying distance, ξ, in more detail and theoretically estimate it to
approximately 1 base-pair). The answer is

Qnick =
ξ

L
, (3.9)

where L is the total length of one of the strands. Equivalently we can say that the probability of
not placing the new nick within a distance of ξ/2 in both directions from the original nick on the
opposite strand is

Qno nick = 1−Qnick = 1− ξ

L
. (3.10)

We here point out that once we place a new nick on one of the strands we have to reconsider
Eq. (3.10) the same number of times as there are nicks on the opposite strand. Therefore, the
probability of having no new cut at some instance is given by

Pno cut = (Qno nick)nL = (1− ξ

L
)nL. (3.11)

Note that we rewrote the number of nicks as nL, where n is the density of nicks. After inspection
of Eq. (3.11) and invoking the assumption that L� ξ (L ∼ 104), we can make the approximation

Pno cut ≈ e−ξn. (3.12)

It is here important to note that n = n(t) as the density of nicks changes with time. Now, we
can finally return to specifying the probability of having a cut for each new nick and find, using
Eq. (3.12), that

Pcut(t) = 1− Pno cut = 1− e−ξn(t). (3.13)

With this, we can finally write down the cutting rate given in Eq. (3.7) as

r(t) = 2αL(1− e−ξn(t)). (3.14)

We have so far deduced an expression for the cutting rate which can be used in Eq. (3.6) to
perform parameters estimation given a time series of cuts but one thing remains to be clarified,
the nicking density n(t). We assume, in accordance with [10], that the nicking process can be
described as a Poisson process resulting in a linear increase of the nicking density equal to

n(t) = αt+ n0, (3.15)

where n0 is the initial nicking density.
We will now analyze some properties of r(t) in Eq. (3.14). For short times, we have 1� ξn(t),

which allows us to Taylor expand to first order, yielding

r(t) ≈ 2αLξ(αt+ n0). (3.16)

We can now choose to look at the case when n0 = 0. Integration of r(t) in Eq. (3.16) with n0 = 0
from 0 to T gives the expected number of cuts

〈Ncuts〉 = α2LξT 2, (3.17)

and shows that the nicking process, with a linear increase of nicks in time, results in a cutting
process where the number of cuts is quadratic in time.
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At this point, we can also note that it is possible to estimate the time and how many nicks
we need in order to observe the first cut. Solving Eq. (3.17) for T and making the substitution
Nnicks = TαL gives, when solved for Nnicks,

〈Nnicks〉 =

√
L〈Ncuts〉

ξ
. (3.18)

We have so far not only derived a functional form for the cutting rate, but also realized that the
relation between nicks and cuts is related in the non-obvious way found in Eq. (3.17).

3.3.3 Model II for r(t)

In this section, we will outline the procedure used to obtain a simulation-based cutting rate func-
tion, r(t). To that end, we perform simulations that intend to mimic the data presented in Figure 2.
For a more detailed algorithm, we refer to Appendix F. In addition, we present, in Appendix G,
theory which allows us to estimate the observed length of dsDNA in nanochannels. On top of that,
we cover the basics of DNA diffusion in nanochannels in Appendix H.

The problem at hand here is that we are, from the experiments presented in section 3.2,
presented with blurred time series of cuts, i.e., time series of cuts obtained under the influence of
limited spatial resolution due to camera physics and limited diffusion rate of fragments. These
two properties give rise to hidden, delayed and disappearing cuts. Thus, model I for r(t) may be
inaccurate and biased for experimentally obtained data. Luckily, Eq. (3.6) is valid for all r(t),
which allows us to choose any r(t) that better corresponds to the physical world. To do this, we
intend to simulate 〈Ncuts〉(t), corresponding to Eq. (3.17), and obtain a realistic version of r(t)
for experimental data by taking the time derivative of 〈Ncuts〉(t). By simulating r(t) for different
values of the nicking rate α, we can then estimate the correct α value using the theory in section 3.4
for a given set of time series of cuts.

To simulate a single version of r(t) for a specific set of parameters, we use a four-step procedure,
including theory from the Gillespie simulation method [16, 17, 18]: (i) Simulate the single-stranded
nicking process, (ii) simulate the diffusion process of the resulting fragments (iii) generate a syn-
thetic movie from (i) and (ii), (iv) segment the synthetic movie and estimate the number of actual
cuts, using the procedure described in section 3.2. Finally, we repeat step (i)-(iv) M times to
obtain reliable statistics. To do this, we assume that all four steps are independent of each other
such that we can perform them separately. Below we describe, in brief, the four steps.

Single-stranded nicking

We begin with the simulation of the single-stranded nicking process. This process is primarily
governed by the nicking rate per nicking site denoted as α and the number of available nicking
sites Nns = 2Nbp, where Nbp is the number of base-pair along one strand of the DNA. The nicking
process is closely related to the chemical decay process [17]. Let us assume that each nicking site
can only be nicked once. The simulation of the nicking process is given by:

1. Initialize.

2. Sample a Gillespie time to the next nick.

3. Place a nick at a randomly chosen site and update running time.

4. Check if cut happened by locating nicks on the opposite strand within half the fraying
distance, if yes: save the current time of cut, split the fragment which was cut and save the
fragment constellation at the time after the cut.

5. Repeat from step 2 until stopping time is reached or all sites are nicked.

With the method just described we have simulated a unique stochastic series of single-stranded
nicks on a DNA molecule of length Nbp in base-pairs and obtained all positions and times of
resulting cuts.
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Diffusion of fragmenting DNA molecules

At this point we will deal with the second step, outlining the stochastic diffusion simulation process
for several fragments simultaneously diffusing in one dimension. Using the output from the single-
stranded nicking process the diffusion simulation process is:

1. Initialize using the cutting times from the nicking process.

2. Compute observed length and position of all fragments.

• First instance: place the initial molecule at its start position.

• Second or later cut instance: place all fragments according to the previous positions
except for the fragment that was cut, whose children fragments are to be placed side by
side conserving the center of mass of the parent fragment.

3. Sample a Gillespie time to the next move.

4. Randomly sample a fragment with weights according to their individual diffusion constants
(the diffusion constant is inversely proportion to the contour length, see Appendix H). Also
sample, with equal probabilities, a direction to move.

5. Move the fragment if it will not result in an overlap with another fragment.

6. Save the current positions of all fragments together with the current time.

7. Repeat from step 3 until stopping time of current instance, if we passed current cut time
return to step 1, or quit if we passed last cut time.

Let us here point out some details regarding the simulation procedure just described. Firstly,
we note that the simulation of the diffusion process is made between the cut instances produced
by the nicking simulation such that the lengths of the fragments are constant in all simulations.
Furthermore, we update the simulation time also for failed attempts to move due to resulting
overlap with another fragment [19].

Generating a synthetic movie from the diffusion simulation

Now, we will present an algorithm that translates the previously simulated trajectory of the diffus-
ing DNA fragments into a synthetic movie mimicking the experimental fluorescent images captured
using a microscope and a EMCCD camera. We do this as followed:

1. Divide the simulation time of the diffusion process into intervals equal to the acquisition time
(see section 3.1).

2. Create an artificial background image of photon counts.

3. Create an empty signal image of same size as the background image.

4. While the simulation time is smaller than the start time of the next time interval of image
acquisition:

(a) Compute the exposure time before move for current fragment positions.

(b) Sample the number of photons emitted in each pixel based on the exposure time.

(c) Add photon numbers to signal image.

5. Add background and signal image to get total photon count image and convert this image
to the final image with correct pixel counts by applying the experimental setups optical and
camera specific properties.

6. Save the final image and repeat from step 2 for all time intervals of image acquisition.
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We will now mention a few important parts when simulating a synthetic movie from diffusion
trajectories. Firstly, it is important to take the optical setup and camera parameters used in the
experiments into account. This includes the gain setting, the quantum yield, noise contributions,
the numerical aperture and the photon to electron conversion factor. Furthermore, the separation
in time between images ∆t and acquisition time of each image plays a crucial role. In this study
these two quantities are the same.

In addition, we present in Appendix I synthetic images generated according to the procedure
described above and compare these to real experimental images.

Estimating r(t) from the synthetic movie

In order to estimate Ncuts(t) from the synthetic movie, we use the method presented in section 3.2
modified to only include steps 4 - 5 from the list.

In order to get 〈Ncuts〉(t) found in Eq. (3.17), we need to redo the simulations, starting from
the single-stranded nicking process up until this point, several times such that we can take the
average of many Ncuts(t) for all time instances. With 〈Ncuts〉(t) at hand we obtain the cutting rate
for model II as

r(t) =
d〈Ncuts〉(t)

dt
. (3.19)

Since only a limited number of Ncuts(t) can be simulated, we expect statistical fluctuations in
both 〈Ncuts〉(t) and r(t), respectively. To decrease the fluctuations, we choose to apply a mean
filter in time on r(t) of length 10∆t, based on empirical grounds, which in real conditions would
correspond to an averaging over one second.

We make a final note on the structure and division of the four steps of the simulation pro-
cedure described in this section. In the detailed algorithm of the complete simulation presented
in Appendix F, we still make the separation between the single-stranded nicking process and the
diffusion process. On the other hand, we perform, due to high memory requirements of saving
the trajectories of all diffusing fragments and all synthetic movies, the diffusion simulation, the
generation of synthetic images and the image segmentation simultaneously. This allows us to only
save the previous positions of all fragments and instead update the photon count in the signal
image as we proceed through the simulation. Although different, the two approaches will produce
equivalent results.

We can here note that, in addition to r(t), the simulations can create blurred as well as non-
blurred time series of cuts. To obtain a blurred time series of cuts we utilize the same strategy
already outlined in section 3.2 with Eq. (3.2) and Eq. (3.3) using Ncuts(t) obtained from a single
synthetic movie. The non-blurred time series of cuts can be obtained directly as an output from
the single-stranded nicking simulation.

Furthermore, we point out that it is possible to obtain a third version of r(t) from the single-
stranded nicking simulation. This cutting rate resembles the cutting rate we would observe without
the influence of hidden, delayed or disappearing cuts and should be consistent with r(t) from model I
if the assumptions we made to derive it are true. To obtain r(t) from the single-stranded nicking
simulation, we do the following: (i) simulate M individual nicking processes (ii) for each simulation
save Ncuts(t) (with time discretized into intervals using ∆t) (iii) take the average of all Ncuts(t) to
obtain 〈Ncuts〉(t) (iv) use Eq. (3.19) with 〈Ncuts〉(t) to obtain r(t). In Appendix K, we show that
r(t) from the nicking simulation and r(t) from model I yield consistent results.

3.4 Bayesian parameter estimation

In this section, we cover the basics of parameter estimations using Bayesian data analysis. Equipped
with a stochastic model, we want to estimate its parameters ~θ given some data. To do this, we use
Bayes theorem [20]

p(~θ |data) =
p(data | ~θ)p(~θ)

p(data)
. (3.20)

Here, p(~θ |data) is the conditional probability density of ~θ given some data, p(data | ~θ) is the

conditional probability density of the data given ~θ, p(~θ) the prior probability density of observing
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~θ and p(data) the probability density of observing the data. The factor p(data) in Eq. (3.20) is
referred to as the evidence and can for purposes of parameter estimations be omitted an Eq. (3.20)
becomes

p(~θ |data) ∝ p(data | ~θ)p(~θ). (3.21)

Conveniently, Bayes rule thus lets us relate p(data | ~θ) (what we have) to p(~θ |data) (what we want),
given a prior probability density, through proportionality.

In this study, will use two different stochastic models to estimate two different parameters.
Firstly, we will use Eq. (3.6) to estimate the nicking rate, this means that ~θ = α and the data is
given by a number of time series of cuts. Secondly, we will use Eq. (H.2) to estimate the diffusion

constant. In this case, ~θ = D, where D is the diffusion constant, and the data consists of molecule
positions.

Here, we present the procedure used to estimate the nicking rate. To begin with, we note that
the cutting rate is dependent on the nicking rate, i.e., r(t) = r(t, α). We want to estimate the

most likely value of ~θ = α using the stochastic model in Eq. (3.6) combined with Eq. (3.21) given

data in form of N times series of cuts ~t(n) = (t
(n)
1 , t

(n)
2 , ..., t

(n)
T ), where n ∈ [1, N ] labels different

time series. To do this, we firstly define a function which is proportional to the joint probability
density function for a single time series of cuts, ~t(j), using Eq. (3.6) as

y(~t(j) |α) =

T∏
i=1

r(t
(j)
i , α)e−

∫ t(j)
T

0 r(t′,α) dt′
[
U(t

(j)
i − t

(j)
i−1)

]
(3.22)

where t
(j)
0 = 0. In addition, U(x) is defined to be 0 if x < 0 and 1 if x ≥ 0. Extending Eq. 3.22 to

include all time series of cuts as well as a prior probability we obtain

p(~t(n) |α)p(α) ∝
N∏
j=1

y(~t(j) |α) [H(α− αmin)−H(α− αmax)] . (3.23)

Note that we chose a uniform prior probability density p(α) ∝ H(α−αmin)−H(α−αmax), where
H(·) is the Heaviside step function [21]. Here, αmin and αmax denotes the lower and upper bounds
of α, respectively. We also note that the right-hand side of Eq. (3.23) is proportional to p(α |~t(n)).
This allows us to estimate the most likely nicking rate by varying α as to maximize the right-hand
side of Eq. (3.23).

Let us now present the procedure used to estimate the diffusion constant, D. To begin with,
in this case ~θ = D and the data is now given by N molecules center of mass trajectories ~x(n) =

(x
(n)
1 , x

(n)
2 , ..., x

(n)
T ), where n ∈ [1, N ] labels different trajectories. The positions in the trajectories

are sampled with time intervals ∆t and the center of mass of a molecule is the midpoint between
its edge pixels located furthers to the left and right in the horizontal direction of the image,
respectively. To estimate the most likely value of D we vary it as to maximize p̃(D | ~x(n)), which
is proportional to

p̃(~x(n) |D)p̃(D) ∝
N∏
j=1

T∏
i=2

1√
4πD∆t

e−
(x(j)
i
−x(j)

i−1)
2

4D∆t [H(D −Dmin)−H(D −Dmax)] . (3.24)

Here, we chose a uniform prior probability density p̃(D) ∝ H(D − Dmin) − H(D − Dmax), with
Dmin and Dmax begin the lower and upper bounds for D, respectively. We note that ∆t must
be chosen sufficiently large such that the difference in displacement between the sampling times
resembles a normal distribution. To ensure this, we systematically increase ∆t until the estimated
D has reached a plateau. The value of D at this plateau is our final estimate of D.

4 Results

Here, we present the results of this study according to the following structure: Firstly, we present
an estimation of the diffusion constant for an intact DNA molecule diffusing in a nanochannel
(used in model II). After that, we will compare r(t) from model I with r(t) from model II for
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different nicking rates. Next, we will estimate the nicking rate for synthetic movies with known
ground truth values of the nicking rate using both model I and model II. Lastly, we will estimate
the nicking rate for experimental movies using model II. More elaborate discussions of the results
will be saved to section 5.

For all the results presented in this section, we used some fixed values of parameters and
constants (if nothing else is mentioned) listed in Table 1.

Table 1: Fixed numerical values of parameters used in this study.

Parameter Numerical value Unit Description Reference

D 0.0635 µm2/s Diffusion constant section 4.1
L 48490 bp Contour length of λ-DNA [22]
ρ 1/5 YOYO1 dye to base-pair ratio Appendix A
ξ 1 bp Fraying distance Appendix D
n0 0 1/bp Initial nicking density
〈N̄cuts〉 50 Wanted number of cuts in simulation
M 600 Number of simulations
Tmin 13 s Minimum simulation time
λbg 100 s−1 Average photon number – background
λsig 1300 s−1 Average photon number – signal
λYOYO1 509 nm Emitted wavelength from YOYO1 [23]
∆T 0.1 s Image acquisition time section 3.1
αmin 0.0001 1/s · bp Lower boundary for nicking rate
αmax 0.005 1/s · bp Upper boundary for nicking rate
Dmin 0.01 µm2/s Lower boundary for diffusion constant
Dmax 0.5 µm2/s Upper boundary for diffusion constant

4.1 Estimation of diffusion constant

In this section, we present an estimate of the diffusion constant D as a function of ∆t by maximizing
the right-hand side of Eq. (3.24). We measured the trajectories of the DNA molecules up until the
first cut appeared for low rates of nicking, i.e., data acquired with nitrogen as driving gas. We have
here assumed that 3 different data sets can be combined even though the illumination strength
varies between them. All experiments were performed using a buffer of strength 0.5×TBE. The
result can be seen in Figure 4.

In Figure 4 the estimated value of the diffusion constant decreases rapidly the first second,
followed by a slower decrease after that. For ∆t > 5 s the decrease is not observable and the
fluctuations between individual points becomes insignificant. Fitting a constant to the estimated
values for the diffusion constant for ∆t > 5 s yields Dest = 0.0635 µm2/s. To show that the
obtained negative log-likelihood functions for each value of ∆t are well behaved and yield a robust
estimate of D, we show for three different values of ∆t, in Appendix J, the corresponding negative
log-likelihood functions.

4.2 Comparison between r(t) from model I and model II

Here, we present how r(t) from model I and model II compare for three different values of the
nicking rate. The results can be seen in Figure 5.

In Figure 5 we can see that r(t) from model I and r(t) from model II are significantly different at
most times for all three nicking rates. The only correspondence is found for the lowest nicking rate
at short times seen in Figure 5a. We conclude from these results that including the experimental
properties and limitations as well as the limited accuracy of the image segmentation technique
makes a difference for the functional form of r(t). Furthermore, we can also see that the discrepancy
between the two models increases for an increasing nicking rate.
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Figure 4: Estimation of diffusion constant. Plot of the diffusion constant estimation as a function of time
between position samples ∆t and final estimate of the diffusion constant, Dest. We note that the drop in D is fast
up until ∆t ∼ 1 s, after that it slows down to transition into almost zero after ∆t = 5 s. The estimate of D appears
to plateau for ∆t > 5 s, which indicates that D(∆t > 5) are good data points for estimating the diffusion constant.
The fitted constant of the values of D for ∆t ≥ 5 s gives Dest = 0.0635 µm2/s. We point out that the number of
samples decrease with increasing ∆t, so the variance in D increases when ∆t increases.
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(a) α = 0.0001 1/s · bp.
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(c) α = 0.004 1/s · bp

Figure 5: Comparison between r(t) from model I and model II. Here we have plotted r(t) from model I
and model II for three different nicking rates separately. We can see that r(t) from model II tends to deviate more
from r(t) from model I with increasing nicking rate. For α = 0.0001 1/s · bp found in Figure 5a we observe that
r(t) from model I and model II agree rather well for short times but starts to deviate significantly from each other
after t > 100 s. The correspondence for short times between r(t) from model I and model II can not be observed
in Figure 5b or 5c. This indicates that model II, where we included experimental constraints of limited spatial
resolution and finite diffusion rate for fragments, may be increasingly important for increasing nicking rates.

4.3 Nicking rate estimation on synthetic movies

In this section, we present estimations of the nicking rate for blurred time series of cuts from
synthetic movies with three different ground truth nicking rates using r(t) from model I and
model II. The ground truth nicking rates for the synthetic movies are: α = 0.001, α = 0.002 and
α = 0.004 1/s · bp, respectively. For each value of α we produced 30 individual synthetic movies
from which 30 blurred time series of cuts were extracted.

4.3.1 Model I

We start by presenting estimations of the nicking rate using r(t) from model I. The results can be
seen in Figure 6.

In Figure 6, we can see that the ground truth nicking rate is not recovered in any of the three
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(c) α = 0.004 1/s · bp.
αest = 0.0014± 0.00007 1/s · bp

Figure 6: Nicking rate estimation on synthetic movies using model I. Here, we have plotted the negative
log of the right-hand side of Eq. (3.23), which is proportional to p(α |~t(n)), using r(t) from model I for three sets of
blurred time series of cuts. The blurred time series of cuts are obtained from synthetic movies with three different
values of ground truth nicking rates (marked with a dashed red vertical line). We observe that the estimated nicking
rates do not correspond to the ground truth nicking rate, within the error margins, for any of the nicking rates.
Furthermore, we observe that the estimated nicking rate tends to increasingly deviate from the ground truth for
increasing values of the ground truth nicking rate. On the other hand, the model returns estimates in the right
order of magnitude for all values of the nicking rate.

cases. For the lowest nicking rate the estimation is only a factor 2 wrong. However, for the two
higher values of the nicking rate, we see that the estimate deviates increasingly from the ground
truth values.

4.3.2 Model II

Here, we present estimations of the nicking rate using r(t) from model II. The results can be seen
in Figure 7.
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Figure 7: Nicking rate estimation on synthetic movies using model II. Here, we have plotted the negative
log of the right-hand side of Eq. (3.23), which is proportional to p(α |~t(n)), using r(t) from model II. The data
consists of the same three sets of blurred time series of cuts from synthetic movies used to obtain the results in
Figure 6. The ground truth nicking rates are marked with dashed red vertical lines. We observe that the estimate
of the nicking rate, αest, corresponding to the value of α that gives lowest value of negative log-likelihood function,
is accurate for α = 0.001 and also rather good for α = 0.002 1/s · bp. The estimate for α = 0.004 1/s · bp does not
recover the ground truth value but the variance in the estimate is large.

We observe in Figure 7 that the estimated nicking rate is accurate for the lowest ground truth
value. Furthermore, the estimated nicking rate for α = 0.002 1/s · bp (seen in Figure 7b) is also
rather accurate. Regarding the estimate of the highest ground truth nicking rate (Figure 7c) we
see that it deviates from the correct answer, but the uncertainty in the estimate is large as we can
see from the flat negative log-likelihood function. From these observations, we see that model II
provides good estimates of α, but where the variance in the parameter increases with an increasing
nicking rate.
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4.4 Nicking rate estimation on experimental movies

In this section, we present estimations of the nicking rate for three sets of blurred time series of
cuts obtained from experimental data with oxygen as driving gas using r(t) from model II. The
experimental data sets are obtained at three different illumination strengths: 25, 50 and 75 %
applied voltage out of maximum voltage for the lamp. For each illumination strength, 25, 50 and
75 %, the corresponding set of blurred time series of cuts contained 21, 33 and 30 individual blurred
time series of cuts of various length, respectively. The results can be seen in Figure 8. For the
interested reader, we present corresponding results using r(t) from model I in Appendix L.

0 0.002 0.004

2

3

4

5

10
2

(a) 25 % illumination strength.
αest = 2.5 · 10−3 1/s · bp

0 0.002 0.004

2

4

6

8

10

10
2

(b) 50 % illumination strength.
αest = 3 · 10−3 1/s · bp

0.001 0.003 0.005

2

4

6

8

10
2
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Figure 8: Estimation of nicking rate for experimental movies using model II. Here, we have plotted the
negative log of the right-hand side of Eq. 3.23, which is proportional to p(α |~t(n)), using r(t) from model II for three
sets of experimentally obtained blurred time series of cuts. The three sets of blurred time series of cuts have been
obtained with oxygen as driving gas for three different illumination strengths, 25, 50 and 75 %, respectively. We can
observe that the curvature of the negative log-likelihood curves are small around their minimum values, especially
for the case in Figure 8c, indicating a large uncertainty in the estimated nicking rates. The estimated values of the
nicking rate, αest, correspond to the nicking rate which gives the lowest value of the negative log-likelihood function.

The results in Figure 8 show that the estimated nicking rate is increasing for increasing illumi-
nation strength. Furthermore, we can see in Figure 15a and 15b that the negative log-likelihood
functions both have well defined minimums. Regarding the negative log-likelihood function in
Figure 15c, we can also observe a minimum, but it is less apparent compared to those from the
negative log-likelihood functions in Figure 15a and 15b. Lastly, we point out that the negative
log-likelihood functions in Figure 8, in difference to the estimated nicking rates, are the final results
as they represent the distributions of α in our model for each given data set.

5 Discussion

Based on the results presented in this study, we are optimistic about the possibility of measuring
the nicking rate from experimental data of dsDNA in nanochannels. It appears that model II can
satisfactorily estimate the nicking rate even if the variance in the parameter estimate increase with
increasing values of the nicking rate. Furthermore, we can observe that using r(t) from model I
leads to a consistently larger underestimation of the nicking rate compared to using r(t) from
model II. This difference seems to increase for increasing values of the ground truth nicking rate.
This conclusion is supported by the notion that cuts will take time before becoming visible due to
the dynamics of diffusion and limited resolution in the images, which in turn delay the observed
cut time leading to a smaller estimate of the nicking rate. The results presented in section 4.3 with
known values of the ground truth nicking rate allow us to observe the magnitude of this error as
well as whether or not we can satisfactorily eliminate it with more elaborate models for r(t).

We should point out that this study does not provide any insight into how good we have, through
the synthetic movies from model II, managed to mimic the experimental movies. This study only
provides an alternative way, which is sufficiently consistent and physically more plausible compared
to model I for experimental data, to deduce the functional form of the cutting rate function. To
this end, let us add a more detailed discussion regarding some parts of this work.
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5.1 The diffusion constant

Let us here look at the result obtained in section 4.1 where we estimated the diffusion constant.
In the result we observe that the estimate of the diffusion constant is dependent on ∆t. We have
during the estimation chosen a range of ∆t such as to maintain a statistically large enough sample
without excluding too much of the plateau region. The estimated value might be significantly
different from the true value, but it appears to be at the same order of magnitude as obtained
by [7] and we have, for the purpose of this study, considered it to be satisfactory taking into
account other plausible sources of error. To change the diffusion constant, away from the right
value, appears to be a plausible extension for further work in order to test how sensitive the
estimate of the nicking rate is to the estimate of the diffusion constant.

5.2 The fraying distance

Here we will consider ξ, the fraying distance, and how we dealt with it in this study. In this study,
we choose to set ξ = 1 bp, meaning that a double-stranded cut can only appear when two nicks
are located between the same two base-pairs. The estimation in appendix D shows that indeed ξ
should be close to 1. It is true that the probability of opening a single base-pair is low, but we
did not specify during how long time it attempted to open as well as if there are multiple chances
of opening. To clarify, our simple model does not consider that base-pairs may attempt to open
with a certain rate for all times. This could be the reason our estimation of the fraying distance
is significantly smaller than those presented by [12, 13, 14]. We can here see the possibility of
improving upon the methodology of this study by incorporating proper simulations utilizing the
dynamics of the base-pair opening where time scales matter. In addition to this, it might also
be of value to take into account the difference in energy required to open up a specific base-pair
combined with the specific sequence of base-pairs for the λ-DNA used in this study. Lastly, we see
the possibility of not fixing ξ. This would mean that we instead estimate both ξ and α.

5.3 Initial nicking density

Yet another quantity, which we did not devote a substantial amount of time to is the initial nicking
density n0. Likewise, our study does not provide any insight into whether this quantity might be
important for the estimation of the nicking rate. Setting n0 = 0, as we did in this study, assumes
that the DNA has no single-stranded nicks when the experiment starts. This is most likely not the
case in many experiments, but the importance of this effect would require some further analysis.
Using Eq. (3.18) with L = 48490 base-pairs and ξ = 1 base-pair, we find that approximately
200 single-stranded nicks are required before one cut appears. In case we can guarantee that no
double-stranded cuts exist before we start the experiment this would lead to a rough estimate of the
initial nicking density equal to n0 ∼ 0.002. We conclude that n0 is most likely small but the overall
nicking density is probably also small, thus the interplay would have to be further investigated.

5.4 Model comparison

Regarding the comparison between r(t) from model I and model II in section 4.2 we found a large
discrepancy. Here we discuss three possible reasons to this discrepancy.

Firstly, we discuss the observed discrepancy as a possible effect of the diffusion rate and the
resolution limit. The limited resolution in the experimental movies results in fragments located
closer than the resolution limit to be observed as a single fragment. A limited diffusion rate, in
turn, limits the distance a fragment, on average, diffuses during a certain time. The combination
between a non-zero resolution limit and a finite diffusion rate yields a delay between the time at
which a cut happens and when we can observe it. It is thus reasonable that the effects on the
observed cutting rate is small when this time delay is much shorter than the time between new
cuts, and conversely large when the time delay is much longer than the time between new cuts.
Since we showed that the cutting rate is linearly dependent on the nicking rate (Eq. (3.14)) this
reasoning should also hold for the nicking rate. This partly motivates why the discrepancy between
r(t) for model I and model II increases for an increasing nicking rate.
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Secondly, we discuss the observed discrepancy as a potential effect of the limited size of the
synthetic images. Recall that we set the width of the synthetic images to 4 times the length of
the initial molecule. This means that fragments can diffuse out of the image, as is the case for the
fragments in the real images, and the number of observable fragments thus decrease. From this,
we can conclude that there should exist a draining effect on the number of cuts due to a finite
image size. To this we need to add that a finite image size, together with a non-zero resolution
limit, results in a maximum number of fragments we can observe.

Lastly, we discuss the discrepancy as possible effect of disappearing cuts. Here, we note that
fragments can visually merge with each other when they are located closer to each other than the
resolution limit. This effectively results in a smaller number of observable cuts. It is reasonable to
assume that the number of cuts that we miss due to this effect is proportional to the total number
of cuts, thus the effect should be important for long times and high nicking rates as we observed
in the comparison between r(t) from model I and model II.

5.5 Model consistency

Let us first note that we have shown, in Appendix K, that r(t) from model I is consistent with r(t)
obtained from the nicking simulation. This indicates that the assumptions made to derive r(t) in
model I hold true in the parameter regime we used in this study.

Regarding model II and its capability of recovering the ground truth nicking rate, we observe
that it is capable to do this for the lower values of nicking rates and deviate slightly for the highest
value of the nicking rate. Here, we need to point out that the variance in estimated nicking rate
for the highest ground truth nicking rate is large since the curvature around the estimate nicking
rate value in the negative log-likelihood function is small. This leads us to believe that estimating
nicking rates for ' 0.004 1/s · bp might be challenging for data similar to that used in this study.
One reason for this might be the fact that the diffusive rate should set an upper bound for the
maximum rate of new cuts that we can observe.

5.6 Estimation of nicking rate from experimental data

Let us here discuss the estimation of the nicking rate from the experimental movies. We begin
by pointing out that the estimated nicking rate increases for increasing illumination strength.
This is expected since we know that photosensitized driven DNA damage increases for increasing
illumination strength. We also point out that the estimated nicking rate is only a part of the
result presented in section 4.4. The more complete results are the distributions of the nicking rates
given by the negative log-likelihood functions for the different illumination strengths. Furthermore,
comparing the estimates of the nicking rate from the synthetic movies and experimental movies
we observe that the estimated nicking rates are all found in the same order of magnitude. This
consistency indicates that the synthetic movies should describe the experimental movies reasonably
accurate. In addition, we observe that the negative log-likelihood function in Figure 8c shows no
distinct minimum, which leads us to believe that the nicking rate for the experimental data obtained
with 75 % illumination strength is situated around the upper limit of what we can estimate with
the current method and data. To that end, larger amounts of experimental data would most likely
allow for more accurate estimates of the nicking rate.

5.7 Model applicability

Here we will cover some aspects of the applicability of model I and model II. When looking at the
applicability of model I compared to model II, we can deduce that model I is easier to use and
apply for a given set of time series. To that end, there are several benefits with using model I:
it is computationally fast, it is easy to implement, it offers the practical possibility of uncertainty
estimation and it can be supported by a theoretical reasoning. On the other hand, these benefits
are of little value if the model cannot recover the ground truth nicking rate correctly. From the
results in this study this seems to be the case when the ground truth nicking rate grows large.

Regarding model II, we conclude that it improves upon some shortcomings of model I but
creates new, practical, problems. Model II is computationally intense, and the time needed to
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obtain a few instances (∼ 10) of the cutting rate function for different values of the nicking rate
is on the order of hours or days depending on the available computational resources. This makes
model II unpractical for purposes of scanning through a large set of nicking rate values when there
are no good prior guesses. On the other hand, already simulated cutting rate functions can be
stored and reused for experiments with the same conditions.

6 Summary

In this study we have presented a new way to quantify photosensitized driven DNA damage from
experiments of fragmenting fluorescently stained dsDNA in nanochannels. In detail, we have de-
veloped a new methodology based on both analytical and simulation-based models to measure the
non-visible nicking rate from observable times of cuts in the data. We found, during validation
of nicking rate estimations on synthetic data, that the simulation-based model (model II) out-
performed the analytical model (model I) in terms of accuracy. In addition, we have successfully
managed to estimate the nicking rate for experimental data. From the estimations, we observe
that the nicking rate increases with increasing illumination strength.

7 Outlook

We hope that this work can come to use in future studies and provide a good base from which to
improve the estimation of nicking rates from DNA in nanochannels. With that said, there are a
number of possible extensions and improvements that can be made to the work presented in this
study.

To begin with, we would like to estimate the nicking rate for arbitrary experimental conditions.
Thus, we would determine the nicking rate as a function of, e.g., buffer strength, temperature,
oxygen concentration and illumination strength. With that, we hope to obtain a better knowledge
of the nicking rate and with theory explain the empirically obtained behaviors.

To enable accurate estimations of the nicking rate for arbitrary experimental conditions, there
are several things which the current method needs to improve upon. Firstly, we see a need to
improve the theory describing the probability of base-pair opening by including its dependency
on the DNA sequence as well taking time scales into account. Furthermore, we would most likely
need to improve the current method used to detect cuts with, in order to estimate nicking rates for
high illumination strengths in combination with high levels of oxygen. Lastly, we may also want
to investigate the implications of using a non-zero initial nicking density.

In case satisfactory improvements can be made to increase the accuracy of the nicking rate
estimation, we would still require additional experiments in order to measure the nicking rate
for arbitrary experimental conditions. The new experiments would have to assure that only one
parameter was varied at a time. Additionally, it would be much beneficiary to acquire more data
for each set of experimental conditions than we had access to in this study. This would allow for
nicking rate estimates with lower variance, a necessity if it turns out that the variations within one
of the experimental condition are small.
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Appendices

Appendix A Details of experimental setup

A.1 Properties of the illumination source

Here, we have plotted the relationship between applied voltage and luminosity of the lamp used
in the experimental setup. The result can be seen in Figure 9.
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Figure 9: Relationship between applied voltage and illumination strength. Here, we have plotted the
intensity of the lamp used to illuminate the sample as a function of applied voltage. We see how the intensity
is increasing with increasing voltage throughout the voltage range. The trend seems to be non-linear and dI/dU
appears to decrease with increasing voltage.

In Figure 9 we see how the illumination intensity response to variations in voltage is well-
behaved and increases slightly slower than a linear response, especially for the higher values of the
voltage.
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A.2 Fabrication of nanofluidic systems

Here, we present, for reproducibility, the details of the procedure used to fabricate the nanofluidic
systems. The compilation of the material here presented describing this procedure is done by Jason
Beech.

The fabrication was performed by Joachim Fritzsche at Chalmers. Fabrication of the nanofluidic
systems was carried out in cleanroom facilities of Fed. Std.209 E Class 10 100, using electron-beam
lithography (JBX-9300FS / JEOL Ltd), optical lithography (MA 6 / Suss MicroTec), reactive-ion
etching (Plasmalab 100 ICP180 / Oxford Plasma Technology), electron-beam evaporation (PVD
225 / Lesker), magnetron sputtering (MS150 / FHR), deep reactive-ion etching (STS ICP / STS)
and wet oxidation (wet oxidation / Centrotherm), fusion bonding (AWF 12/65 / Lenton), and
dicing (DAD3350 / Disco). In particular, the fabrication comprised the following processing steps
of a 4”-silicon (p-type) wafer: Thermal oxidation: Wet oxidation in water atmosphere for 780
minutes (min) at 1050 ◦C (2 µm thermal oxide).

Reactive-ion etching of alignment marks: (a) Spin coating HMDS at 3000 rpm for 30 s
and soft baking (HP) at 115 ◦C for 2 min. Spin coating S1813 (Shipley) at 3000 rpm for 30 s and
soft baking (HP) at 115 ◦C for 2 min. (b) Expose alignment marks for 8 s in contact aligner at
6 mW/cm2 intensity. (c) Development in MF-319 (Microposit) for 60 s, rinsing in water and drying
under N2-stream. (d) RIE for 20 min at 30 mTorr chamber pressure, 150 W RF-power, 50 sccm Ar-
flow, 50 sccm CHF3-flow (800 nm etch depth in silicon). (f) Removal of resist in S1165 (Microposit)
at 75 ◦C, rinsing in water and drying under N2-stream. Reactive-ion etching of nanochannels: (a)
Electron-beam evaporation of 20 nm Cr (hard mask). (b) Spin coating ZEP520A : anisole (2:1)
(ZEONREX Electronic Chemicals) at 2000 rpm for 60 s and soft baking (HP) at 180 ◦C for 10
min. (c) Electron-beam exposure of lines (110 nm width, 20 µm pitch) at 2 nA with a shot pitch
of 4 nm and 280 µC/cm2 exposure dose. (d) Development in n-amyl acetate for 120 s, rinsing in
isopropanol and drying under N2-stream. (e) RIE for 10 s at 40 mTorr chamber pressure, 40 W
RF-power, 40 sccm O2-flow (descum). RIE for 90 s at 20 mTorr chamber pressure, 50 W RF-power,
200 W ICP-power, 20 sccm O2-flow, 50 sccm Cl2-flow (selective Cr hard-mask etch). RIE for 100 s
at 8 mTorr chamber pressure, 50 W RF-power, 50 sccm NF3-flow (30 nm etch depth in thermal
oxide).

Reactive-ion etching of microchannels: (a) Spin coating HMDS at 3000 rpm for 30 s and
soft baking (HP) at 115 ◦C for 2 min. Spin coating S1813 (Shipley) at 3000 rpm for 30 s and soft
baking (HP) at 115 ◦C for 2 min. (b) Expose microchannels for 8 s in contact aligner at 6 mW/cm2

intensity. (c) Development in MF-319 (Microposit) for 60 s, rinsing in water and drying under N2-
stream. (d) RIE for 30 min at 30 mTorr chamber pressure, 150 W RF-power, 50 sccm Ar-flow, 50
sccm CHF3-flow (1200 nm etch depth in silicon). (f) Removal of resist in S1165 (Microposit) at
75 ◦C, rinsing in water and drying under N22-stream.

Deep reactive-ion etching of inlets: (a) Magnetron-sputtering of 200 nm Al (hard mask).
(b) Spin coating S1813 at 3000 rpm for 30 s and soft baking (HP) at 115 ◦C for 2 min. (c) Expose
inlets for 10 s in contact aligner at 6 mW/cm2 intensity. (d) Development in MF-319 for 60 s, rinsing
in water and drying under N2-stream. (e) Aluminum wet etch (H3PO4:CH3COOH:HNO3:H2O
(4:4:1:1)) for 10 min to clear the hard mask at inlet positions. (f) Deep reactive-ion etching (SF6
/ C4F8 based Bosch process) of inlets through the substrate. (g) Removal of Al-hard mask in
aluminum wet etch (see above) for 60 min. Fusion bonding: (a) Cleaning of the substrate together
with a lid (175 µm thick 4-pyrex, UniversityWafers) in H2O:H2O2:HCl (5:1:1) for 10 min at 80 ◦C,
and in H2O:H2O2:NH3OH (5:1:1) for 10 min at 80 ◦C. (b) Pre-bonding the lid to the substrate
by bringing surfaces together and manually applying pressure. (c) Fusion bonding of the lid to the
substrate for 5 hours in N2 atmosphere at 550 ◦C (5 ◦C/min ramp rate).

Dicing: Cutting nanofluidic chips of 25 µm x 25 µm size from the bonded wafer using a resin
bonded diamond blade of 250 µm thickness (Dicing Blade Technology) at 35 krpm and 1 mm s−1

feed rate.

A.3 Preparation of DNA

Lambda phage DNA (dam-, dcm-, Thermo Fisher Scientific Inc, MA, USA) at 0.8 µM was stained
with YOYO-1TM (Life Technologies, Carlsbad, CA, USA) at a ratio of 1 dye molecule per 5 base
pairs. TBE was added to final concentrations of between 0.02 and 5×TBE and beta mercapto
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ethanol (BME) to a final concentration of 0.5 (BME is commonly used at concentrations up to 3
to suppress photodamage. Since we are interessted in observing photodamage we have reduced the
amount of BME but retain 0.5 in order to have buffer conditions similar to those normally used
for our experiments and to suppress some photo-bleaching).

A.4 Imaging system

All images were taken through an inverted Nikon Eclipse Ti microscope (Nikon Corporation, Tokyo,
Japan) with a 100x oil immersion objective (CFI Apo TIRF, Nikon Corporation, Tokyo, Japan)
and captured using an Andor Ixon back illuminated EM CCD camera (Andor Technology, Belfast,
Northern Ireland). Films were acquired in epifluorescence using a Lumencor SOLA light engineTM

(Lumencor Inc, OR, USA) and a FITC filtercube.

Appendix B Image segmentation

Here, we describe the procedure used to segment a gray-scale image into signal and background
based on regional classification. In the classification challenge, we are given an image ~I = I(x, y)
with x being the row and y the column. In addition to this information, we are in this study given
the wavelength of the emitted light λ. The task is now to classify each pixel I(x, y) for all x and y
as either signal or background. To do this, we use the algorithm provided by Jens Krog which we
now present for completeness. The algorithm is structured as followed:

1. Convolve I(x, y) with a Laplacian-of-Gaussian filter, LoG(x, y), to obtain Ĩ(x, y) = I(x, y) ∗
LoG(x, y) with

LoG(x, y) =
x2 + y2 − 2σ2

σ4
e−

x2+y2

2σ2 , (B.1)

where σ = σPSF given by Eq (F.2).

2. Segment Ĩ(x, y) according to

Ĩ0(x, y) =

{
1 if Ĩ(x, y) ≥ 0

0 if Ĩ(x, y) < 0.
(B.2)

3. Trace all boundaries where Ĩ0(x, y) = 1 borders to Ĩ0(x, y) = 0 as to obtain closed contours.

4. For all closed contours compute a score h (for calculation of h see below).

5. Inspect the histogram of scores and set a threshold value to separate false contours from real
contours.

With the above algorithm every closed contour now encloses a signal region, the objects are confined
by their border pixels.

Let us now describe the calculation of the edge score value h. Given a set of boundary pixels
belonging to a closed contour, the procedure goes as followed:

1. Compute the gradient direction for all pixels in Ĩ(x, y) as [24]

θ = tan−1

(
Ĩy

Ĩx

)
, (B.3)

with Ĩx and Ĩy being the partial derivatives of Ĩ(x, y) with respect to x and y, respectively. In
the computation of θ, keeping track of the quadrant we are located in is necessary to obtain
the correct angle of direction.
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2. Define a walking distance ω equal to the distance between the minimum value and the
maximum value of a 1-d artificial binary edge convolved with a Gaussian and 1-d LoG filter
using σ = σPSF given by Eq. (F.2) in both convolutions. The artificial edge E(x) is given by

E(x) = H(x) ∗G(x), (B.4)

with H(·) being the Heaviside step function and G(·) the normalized Gaussian distribution.
Compute the distance between the values of x that give the minimum and maximum value
of

Ψ(x) = E(x) ∗ LoG(x) (B.5)

to obtain the walking distance as

ω = |xΨmax
− xΨmin

|. (B.6)

3. For each pixel in the closed contour walk a distance ω parallel to the gradient direction in
both directions starting from the current pixel of interest. When walking in the negative
gradient direction sum all visited pixel values of Ĩ(x, y) to obtain h̃n. When walking in the
positive gradient direction sum all visited pixel values of Ĩ(x, y) to obtain h̃p. The score hi
for pixel i in the contour is given by hi = h̃p − h̃n. The total score h for the contour is given
by h =

∑
i hi.

Appendix C Diffusion to capture

DNA damage is the process by which free radicals interact with the backbone of the DNA. This
process should reasonably depend on the amount of free radicals in the surrounding solution of the
DNA. It is also reasonable to assume that the amount of nicks that happen along the DNA under
a certain amount of time is proportional to the concentration of free radicals in the surrounding
solution. To formalize this, a computation will be performed which links these loose assumptions
into a mathematical model.

Let us now formalize the problem and state the assumptions. We begin by assuming that
the DNA can be seen as a cylindrical object of radius a and length L. Outside the cylinder
forming the DNA, we have another, larger, cylinder of radius b and length L enclosing the smaller
one. In the volume between the cylinders a buffer with certain concentration c(r) of free radicals
exist. Furthermore, we assume that the concentration of free radicals only depends on the radial
coordinate and is held constant at the surface of the outer cylinder. Yet another assumption is
that all free radicals that arrive at the surface of the DNA will react, i.e., the DNA is a perfect
absorber. These assumptions are in line with the calculations done in chapter 13.3 in [15].

With all the assumptions in place we can now move on to the mathematical formulation of the
problem. The overall motion of the free radicals in the buffer can be modeled with the steady state
diffusion equation, favorably expressed in cylindrical coordinates with only r dependence, as [25]

d

dr

(
r

d c(r)

dr

)
= 0. (C.1)

The general solution to Eq. (C.1) is obtained as

c(r) = A+B ln(r). (C.2)

Let us at this point invoke two boundary conditions. The assumption about the DNA being a
perfect absorber implies that c(a) = 0. Furthermore, the assumption that the concentration at
the outer radius b is held constant at some value implies that c(b) = c0. With these two boundary
conditions and some manipulations Eq. (C.2) can be written as

c(r) =
c0

ln(b/a)
ln(r/a). (C.3)

With the final expression of the concentration in place we can use Fick’s first law

j(r) = −Ddc(r)

dr
(C.4)
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to calculate the flux, j(r). Utilizing our expression of the concentration in Eq. (C.3), we find the
flux as

j(r) = −D c0
ln(b/a)

1

r
. (C.5)

With the flux at hand we can now compute the number of free radicals that arrive at the surface
of the DNA per time unit using the fact that

dn

dt
= −j(r)A. (C.6)

Here A represents the area exposed to the buffer, which in our case is the area of the inner cylinder
given by A = 2πaL. Furthermore, we realize at this point that the quantity dn

dt is quite a special
one and represents, in physical terms, the total number of nicks per second, a quantity we denote
as κ. With Eq. (C.6) evaluated at r = a and the area of the DNA surface, we can write down the
number of free radicals arriving at the surface per time unit, or equivalently the total nicking rate,
as

dn

dt
= κ = D

2πLc0
ln(b/a)

. (C.7)

If numerical values of the included parameters are given, we can use Eq. (C.7) to estimate the total
nicking rate of the DNA analytically. We can make the interesting observation that the nicking
rate and concentration of free radicals seem to be linearly dependent on each other in steady state.

Appendix D The fraying distance

Here, we will deal with the fraying distance, ξ, and attempt to estimate it. To begin with, we need
to look closer at structure of the DNA. In very simple terms, the DNA consists of two strands
with numerous base-pairs connecting the strands, much like a ladder, as can be seen in Figure 10.
The structure of the DNA stops two single-stranded nicks from forming a double-stranded cut if

DNA backbone stacking bond

base−pair

DNA fraying

fraying distance

hydrogen bondsingle−stranded nick open base−pair

Figure 10: A schematic illustration the dsDNA molecule and its constituent parts.

they are not located between the same base-pairs, but only two a certain degree. Base-pairs can,
through a stochastic process, open up which makes the structure deviate from the notion of a rigid
ladder [26, 27, 28, 29]. The distance at which two single-stranded nicks can form a cut, ξ/2, is thus
governed by the individual probabilities of base-pairs opening.

Let us start with the basics of base-pair opening. Here, we begin by assuming that the dye
molecules (from the fluorecent staining) do not effect the base-pair opening process. We also
assume that the energy needed to open a locked in base-pair is given by ∆G = 2∆Gst +∆Ghb [29].
Here, ∆Gst is the stacking energy and ∆Ghb the hydro-bond energy, respectively, which are marked
in Figure 10. Since the DNA is nicked, we omit the ring factor as no internal bubble needs to
be created. Assuming one base-pair is open, we only need to break a single stacking interaction
and a hydrogen bond to open a second base-pair. This results in the total opening energy ∆G̃ =
∆Gst + ∆Ghb. According to [29] the probability to open up a base-pair associated with a certain
energy cost, ∆E, is given by Popen = e∆E/RT , where ∆E in our case is either ∆G or ∆G̃ and
R = 1.9872 cal/(K mol) is the gas constant [30] and T the absolute temperature.
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To estimate half the fraying distance we want to estimate the expectation value of the random
number of consecutively open base-pairs. With Popen from above, we can write this down as

〈m〉 =
e

∆Gst
RT

∑∞
n=1 ne

∆G̃
RT n

1 + e
∆Gst
RT

∑∞
n=1 e

∆G̃
RT n

. (D.1)

Let us set k = e
∆Gst
RT and r = en

∆G̃
RT , further assuming that r, k < 1. Some standard geometric

series [21] turn the above expression into

〈m〉 =

kr
(1−r)2

1 + kr
1−r

=
kr

(1− r)(1− r + kr)
. (D.2)

We use this quantity to estimate the fraying distance as

ξ := 2 < m > +1 =
2kr

(1− r)(1− r + kr)
+ 1. (D.3)

Where we included the additional 1 to account for the spacing between one base-pair.
It is now time to calculate a numerical value for the quantities r and k, such that we can get

a feeling for the magnitude of ξ. To do this we need values of ∆Gst and ∆Ghb. The temperature
and salt dependent calculation for these quantities is done in Appendix E. For T = 20 ◦C and a
sodium concentration of 0.1 molar we find that r = 0.0298 and k = 0.0608. Plugging these two
values into (D.3) gives ξ = 1.0038 base-pairs. It is clear that the estimate of ξ is very close to one
and that the effect of base-pair opening, under our assumptions, is small for experiments in room
temperature with standard salt concentrations.

Appendix E Base-pair opening energy

Here, we will present the calculations of the energies needed to open up base-pairs, as a function of
temperature and salt concentration, for both AT and GC base-pairs. The task of obtaining values
for the stacking energy, ∆Gst, and the hydrogen bond energy, ∆Ghb, is not trivial. Measurements
of the 16 different (10 unique) energies needed to open up an individual base-pair have been accom-
plished through a series of separated, non-chronological, experiments [31, 32, 33]. The challenge
has been to separate the free energy required by breaking a bond between adjacent base-pairs
and the complementary bases [33]. We will now present the calculations performed in [29], and in
addition make an approximate for the total energy needed to open up any base-pair.

We begin by computing ∆Ghb for both AT and GC base-pairs as followed

∆Ghb
AT = ∆GAT −

1

4

∑
AT,TA,AA,TT

∆Gst
KL, (E.1)

∆Ghb
GC = ∆GGC −

1

4

∑
GG,GC,CG,CC

∆Gst
KL. (E.2)

Here, we have
∆GKL = ∆S(TMKL − T ), (E.3)

where KL is either AT or GC and ∆S = −24.85 cal/mol K. TMKL is the melting temperature for
the different bases and is given by

TMAT = 355.55 + 7.95 ln
(

[NA
+

]
)

(E.4)

for the AT base-pairs and

TMGC = 391.55 + 4.89 ln
(

[NA
+

]
)

(E.5)

for the GC base-pairs. The unit of TMKL is Kelvin. Furthermore, [NA+] is the concentration of
sodium in the buffer.

26



Now, we continue by computing the stacking energies, ∆Gst
KL. The stacking energies for T = 37

◦C and [NA+] mol is given in [29]. These stacking energies depend on temperature in the following
way

Gst
KL,temp = Gst

KL + 0.026(T − Tref) (E.6)

with Tref = 37 ◦C. They also depend on sodium concentration as

Gst
KL,salt = Gst

KL − 0.2 ln

(
[NA

+
]

Cref

)
(E.7)

with Cref = 0.1 molar.
At this point, we make the approximation that the only stacking energy we need is the average

of all stacking energies

∆G̃st =
1

16

∑
KL

∆Gst
KL. (E.8)

With this, we can compute the total energy needed to open a single AT base-pair as

∆G̃1st
AT = ∆Ghb

AT + 2∆G̃st (E.9)

and correspondingly for a GC base-pair we have

∆G̃1st
GC = ∆Ghb

GC + 2∆G̃st. (E.10)

The energy to open a second base-pair, next to an already open one, we assume can be computed
as

∆G̃2nd
AT = ∆Ghb

AT + ∆G̃st (E.11)

for a AT base-pair and
∆G̃2nd

GC = ∆Ghb
GC + ∆G̃st (E.12)

for a GC base-pair. Evidently the energies in Eq. (E.11) and Eq. (E.12) are also valid when we
want to open the Nth base-pair, assuming the neighboring one is already open.

Appendix F Detailed simulation description – Model II

Here, we present the detailed procedure used to obtaining r(t) for model II.
To simulate a single instance of Ncuts(t) for a specific set of parameters, we use the following

method:

• Perform nicking simulation.

1. Set tmax according to Eq. (F.1), t = 0 and initiate original molecule of length equal to
the number of base-pairs.

2. Generate a uniformly distributed random number r ∈ [0, 1] and calculate the Gillespie
time step given by τ = − ln(r)/

∑
i αi with αi being the nicking rate for each individual

nicking site i which has not been nicked.

3. If t+ τ < tmax proceed to 4 otherwise go to step 10.

4. Generate a weighted random integer F between 1 and the current number of fragments
with weights according to the sum of the non nicked sites nicking rates on each fragment.

5. Generate a random integer number N between 1 and the number of non nicked sites on
the current fragment F weighted according to the nicking rate of each non nicked site.

6. Place a nick on fragment F on the N :th non nicked position or split fragment in two if
opposing nick exist within a distance ξ/2.

7. If fragment been split update into two fragments accordingly.

8. Save the current fragment constellation and time.

9. Return to step 2.
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10. Output all fragment lengths after all cut instances and the times of all cuts.

• Perform diffusion simulation.

1. Load output from the nicking simulation above.

2. Divide the time interval [0, tmax] into T intervals of length ∆T during which we want to
create a synthetic image. Denote the time at the end of each interval, tk, with k ∈ [1, T ],
an image recording time.

3. Place the initial molecule at start positions = 0.

4. Compute the observed length of the molecule according to Eq. (G.1).

5. Create a background image four times longer than the initial molecule and 20 times
higher than σPSF , also create a signal image of equal size as the background image
with all pixel values being zero.

6. Set the stopping time equal to the time of the next cut: tstop = tcut(count) if count ≤
countmax, otherwise go to step 16.

7. Place all non cutted fragments on same position as last simulation instance and replace
the cutted fragment (unless on count = 1) with the two corresponding fragments next
to each other conserving center of mass.

8. Compute the hop-rates for all fragments.

9. Generate a uniformly distributed random number r ∈ [0, 1] and compute the waiting
time τ = − ln(r)/µ.

10. Sample one fragment to move with probabilities proportional to their corresponding
hop-rates.

11. Sample with equal probability if fragment should be moved left or right.

12. Check if we can move the fragment due to spatial occupation of other fragments, if
yes: save current positions as previous positions, move fragment and update time to
t = t+ τ . If no: update time and save current position as previous position.

13. Check if we passed the current image recoding time.

– If no: Go to step 14.

– If yes:

∗ Add photon contribution up until the image recording time to the signal image.

∗ Perform photon to readout procedure on signal image.

∗ Add background and signal image to obtain the final image, perform segmention
on the final image after applying the PSF filter.

∗ Count and save the number of detected molecules.

∗ Do step 5 and add photon contribution from image recording time to current
time to the new signal image.

∗ Go to step 15.

14. Add photon contribution up until the current time.

15. Check if we passed a cut time, if yes: if count < countmax increment count by one and
return to step 5, else go to step 16. if no: return to step 9.

16. Return number of detected fragments at all times an image was recorded.

To make the algorithm above complete we need to add some detailed information about certain
steps:

• nicking site: one nicking site is the space between two base-pairs where a nick can happen.
The total number of sites is given by 2(N − 1) where N is the number of base-pairs.
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• tmax: The time at which we stop the simulation. We calculate this time using Eq. (3.17) as

tmax = ∆T · floor

max

((
〈N̄cuts〉
(α2Lξ))

)1/2

, Tmin

)
∆T

 (F.1)

with 〈N̄cuts)〉 being the wanted number of cuts for the simulation and Tmin the shortest
required simulation time.

• synthetic image: a synthetic image created to mimic a real image of DNA in nanochannels
used to count number of detectable fragments in.

• create background image: Generate a complete background image with image counts accord-
ing to the procedure in Appendix M using λ = λbg.

• σPSF: The standard deviation of the theoretical point spread function [34]. We calculate it
as

σPSF =
1.22λYOYO1

2LpNA
(F.2)

with λYOYO1 being the wavelength of the incoming light, Lp the pixel size and NA the
numerical apparatus assuming that it can be approximated as Gaussian with the width
equal to the Rayleigh resolution limit [35].

• hop-rates: The hop-rate for each fragment is given by [17]

ν =
D

h2
(F.3)

with D given by Eq. (H.3) and h being the pixel size.

• µ: The sum of all hop-rates, in both left and right direction is denoted as µ = 2
∑
i νi.

• add photon contribution: We here generate for each signal pixel a Poisson number with
λ = λsig(dt/∆T ) with λsig being the mean number of photons that arrive in the acquisition
time ∆T and dt being the time from the previous hop time to, either the current time, or
the image time.

• photon to readout procedure: Here we apply the procedure described in Appendix M skipping
the step of generating number of incoming photons according to the Poisson distribution
and instead use the number of collected photons in the signal pixels as input value Nph in
Eq. (M.3).

• segmentation: Division of an image into signal and background regions, respectively. For
details see Appendix B.

• PSF filter : Convolution of the image with the theoretical Gaussian point spread function [34]
as filter.

The algorithm outputs the observed number of fragments as a function of time which obeys the
following relation

Nfrag(tk) = Ncut(tk) + 1, (F.4)

from which we can obtain number of cuts at all times, Ncut(tk). Here, we convert Ncut(tk) =
max (Ncut(tj)), with j ∈ [1, k], to obtain the cumulative max number of fragments in time.

After simulating M instances of Ncut(tk), N
(n)
cut (tk), with n ∈ [1,M ], we obtain

〈Ncut〉(tk) =
1

M

M∑
i=1

N
(i)
cut(tk), (F.5)

which is the model II version of Eq. (3.17).
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Appendix G Extension of DNA in nanochannels

Here, we theoretically estimate the extension of DNA in nanochannels. A lot of effort has been
devoted to this matter [36]. In the theoretical estimates, the observed length of a linear dsDNA
molecule in a nanochannel is formulated as a function of the Kuhn length, lK , the depletion
width, δ, the channel dimensions and the effective DNA width w [37, 38]. The way this estimate
is formed depends on the type of regime working with. Commonly, one distinguish between 4
regions: classical Odijk, de Gennes, extended de Gennes and bulk phase listed in decreasing level
of confinement [39].

In this study we are primarily interested in estimating the DNA extension for the extended de
Gennes regime due to the size of the nanochannels used in the experiments. For DNA molecules
in nanochannels abiding the conditions of the extended de Gennes regime, an exact theory of the
mean extension and variance exists [40]. Based on that theory, it is possible to write down the
mean extension µ and the variance σ2 with bounds on the errors as following [41]

µ = 0.9338(84)

(
lKw

DwDh

)1/3

L, (G.1)

σ = 0.364(17) (LlK)
1/2

. (G.2)

Where the Kuhn length, lK , is equal to twice the persistent length, Dw and Dh the width and
height of the almost squared channel and L the contour length of the polymer. For numerical
values of w and lK for buffers with various ionic strengths we refer to [37]. In this study the
experiments were performed using a buffer strength of 0.5×TBE. Furthermore, Dw = 100 nm and
Dh = 150 nm.

The contour length of the DNA is not only dependent on the number of base-pairs in the
polymer, but also on the amount of staining with fluorescent dyes. In this study we will make the
same assumption as [37] and assume that each dye contribute with 0.44 nm to the contour length.
Usual levels of staining ranges from 5 to 10 base-pairs per dye molecule. We denote this ratio of
dyes per base-pair as ρ. Given a molecule with Nbp base-pairs, a length per base-pair of 0.34 nm
and a staining ratio ρ, the contour length becomes

Lcont = 0.34Nbp + 0.44ρNbp nm. (G.3)

We note that the affect of staining on lK have not reached a consistent answer in the literature so
far [42, 43].

For λ-phage DNA used in this study (Nbp = 48490 bp and ρ = 1/5), we use Eq. (G.3) to
estimate Lcont = 20754 nm or ≈ 130 pixels (1 pixel = 160 nm). The mean extension µ, given by
Eq. (G.1), can from this be compute to µ = 8269 nm or ≈ 52 pixels. For the later computation we
used, in addition to Lcont = 20754 nm, the numerical values for a 0.5×TBE buffer from [37] for w
and lK as well as Dw = 100 nm and Dh = 150 nm.

Appendix H Diffusion of DNA in nanochannels

Diffusion is an extensively researched field [44] and is applicable to many physical processes in
nature. Let us now turn to some basic formulations of diffusion. The simplest form of diffusion is
Brownian motion in one dimension. The probability density function, f(x, t), for a one dimensional
particle can be written as [44]

df(x, t)

dt
= D

d2f(x, t)

dx2
. (H.1)

D is the diffusion coefficient for the particle and has the unit m2/s. The solution to Eq. (H.1) for
a particle initially located at x0 is given by

f(x, t) =
1√

4πDt
e−

(x−x0)2

4Dt . (H.2)
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We see that the solution is a normal distribution with mean x0 and variance 2Dt. Equation (H.2)
describes the time evolution of the probability density function for the Brownian particle.

We now move on to diffusion of DNA in nanochannels. In this study we will make the assump-
tion that each base-pair contributes to the total drag according to the Rouse model [45]. This
assumption together with Einsteins relation [44], D = kBT/ζ, with ζ being the friction coefficient,
kB Boltzmanns constant and T the absolute temperature, results in D ∝ L−1, with L being the
contour length of the DNA. With D ∝ L−1, we can estimate the diffusion constant D as a function
of an arbitrary contour length L according to

D = D0
L0

L
, (H.3)

where D0 is some predetermined reference diffusion constant for the corresponding contour length
L0.

Here, we note that blob theory, in difference to the Rouse model, predicts that D ∝ µ−1, with
µ being the observed extension of the DNA [7]. In addition, [7] suggested that a model which
combines Rouse diffusivity and blob theory fits their data better than any of them, individually.
This is of interest since their experimental conditions are similar to those of this study. In any
case, Eq. (H.3) lets us predict the diffusion constant of a DNA molecule with arbitrary contour
length, if we know it, given a predetermined reference diffusion constant for blob theory as well as
Rouse diffusivity. This holds true since Eq. (G.1) predicts that µ ∝ L.

Appendix I Comparison – synthetic and real images

Here, we show four images from two synthetic movies generated using the procedure described
in section 3.3.3. We also show, for comparison, four images of two individual molecules from the
experimental movie in Figure 2. We begin by presenting the synthetic images generated using the
numerical values found in Table 1 as input for the simulations and α = 0.002 1/s ·bp, in Figure 11.

t = 0 s:

t = 3 s:

t = 4.5 s:

t = 6 s:

(a)

t = 4.5 s:

t = 0 s:

t = 3 s:

t = 6 s:

(b)

Figure 11: Example images of two different molecules from two synthetic movies. Here, we present two
sets of four images taken at different times from two synthetic movies generated using the procedure in section 3.3.3.
The numerical values used in the simulations of both image sets in Figure 11a and 11b, respectively, can be found
in Table 1 with the addition of α = 0.002 1/s · bp. We can observe that the DNA molecule (seen as the bright
region in contrast to the darker background regions) for t = 0 s (in both Figure 11a and 11b) is horizontally aligned
and intact. As time progress, we observe that visible cuts start to appear and the molecules fragment into smaller
fragments which diffuse in different directions.

We continue by presenting the real images in Figure 12.
Let us here comment on the images presented in Figure 11 and 12. To begin with, there are

clear similarities between the synthetic and real images indicating that the synthetic movies have
potential to mimic the experimental movies satisfactorily. Both the synthetic and real images
contain an observable blurring of the edges around the fragments, which adds to an uncertainty
in the number of actual fragments in each image. Furthermore, we can observe that the rate of
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t = 4.5 s:

t = 0 s:

t = 3 s:

t = 6 s:

(a)

t = 3 s:

t = 6 s:

t = 4.5 s:

t = 0 s:

(b)

Figure 12: Example images of two different molecules from one experimental movie. Here, we present
two sets of four images taken at different times of two different molecules from the movie in Figure 2. We can,
as for the case in Figure 11, observe that the DNA molecule (seen as the bright region in contrast to the darker
background regions) for t = 0 s (in both Figure 12b and 12a) is horizontally aligned and intact. On the other hand,
we can now observe a difference in length between the two initial molecules. Furthermore, we can also observe that
the intensity varies along each of the molecules. As for the synthetic images, we can here observe, as time progress,
that visible cuts start to appear and the molecules fragment into smaller fragments.

diffusion for the synthetic and real images seems to be on the same order of magnitude comparing
the spread of fragments at the same time instances. On the other hand, there are also clear
differences between the synthetic and real images. Firstly, we can observe that the DNA molecules
in the real images differ in length at the first time instance, which is not the case in the synthetic
images. Secondly, we can see that the intensity along the fragments in the real images, in difference
to the synthetic ones, varies substantially. Lastly, we can also observe that the total intensity of
the fragments in the real images seems to decrease with time, which we do not observe in the
synthetic images.

Appendix J Additional material for estimation of diffusion
constant

Here, we present three negative log-likelihood plots from the diffusion constant estimations obtained
using three different values of dt. The plots can be seen in Figure 13.
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(a) Here, ∆t = 2 s and D = 0.073 ±
0.002 µm2/s.
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(b) Here, ∆t = 5 s and D = 0.065 ±
0.003 µm2/s
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(c) Here, ∆t = 9 s andD = 0.064 ±
0.003 µm2/s

Figure 13: Three examples of negative log-likelihood plots from the diffusion constant estimation. Here,
we have plotted the negative log of the right-hand side of Eq. (3.24), which is proportional to − ln

(
p̃(D | ~x(n))

)
, for

three different values of ∆t. We can in each of the plots observe that there exists a well behaved minimum and the
variance around these minimum values are relatively small.

We can in Figure 13 observe that the negative log-likelihood functions are well behaved for all
three cases of ∆t.
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Appendix K Comparison between r(t) from model I and the
nicking simulation

Here, we present how r(t) from model I compares to the actual cutting rate obtained from the
nicking simulation for three different nicking rates. To simulate r(t) from the nicking simulation we
used the numerical values of the needed parameters, in addition to the nicking rate, from Table 1.
The results of the comparisons can be seen in Figure 14.
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Figure 14: Comparisons between r(t) from model I and the nicking simulation. Here, we plot the
analytical r(t) from model I together with the simulated r(t) obtained through the nicking simulation for three
different values of the nicking rate. We observe that the two different models for r(t) agree well for all three nicking
rates. Furthermore, we see how the simulated version of r(t) tends to fluctuate more for lower values of the nicking
rate, which can be seen when comparing the result in Figure 14a with those in Figure 14b and 14c. We conclude
that r(t) from model I can accurately describe the cutting rate obtained from the single-stranded nicking simulation.

In Figure 14, we can see that r(t) from model I and r(t) obtained from the nicking simulation
agree well for all three nicking rates. This indicates that the approximations we made when
deriving r(t) in model I are good for the parameters used in this study. Furthermore, we observe
that the fluctuations in r(t) obtained from the nicking simulations increase for decreasing values
of the nicking rate.

Appendix L Nicking rate estimation on experimental data
using model I

Here, we present estimations of the nicking rate for the three sets of blurred time series of cuts
obtained from the experimental movies of different illumination strength used in section 4.4, using
r(t) from model I. The results can be seen in Figure 15.
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(a) 25 % illumination strength.
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(b) 50 % illumination strength.
αest = 0.0015± 0.00006 1/s · bp
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(c) 75 % illumination strength.
αest = 0.0018± 0.00009 1/s · bp

Figure 15: Estimations of nicking rate on experimental movies using model I. Here, we have plotted the
negative log of the right-hand side of Eq. 3.23 using r(t) from model I for experimentally obtained blurred time
series of cuts. The blurred time series of cuts have been obtained with oxygen as driving gas for three different
illumination strengths, 25, 50 and 75 % respectively. We observe that the increase in estimated nicking rate is not
linearly proportional to the illumination strength.
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We observe in Figure 15 that the estimated nicking rates increase for increasing illumination
strength. Furthermore, we can conclude that the increase in the estimated nicking rate is not
linearly proportional to the increase in illumination strength.

Appendix M Generating an artificial image

Here, we describe the process of generating a synthetic image according to the background dis-
tribution for a EMCCD camera. We follow the procedure in [46]. Note that, we describe the
procedure used to generate one image count given that Nph photons hit the pixel, a procedure that
should be repeated for all individual pixels in the synthetic image.

To begin with, we assume that the number of incoming photons is

Nph ∼ P (λ), (M.1)

i.e., Nph is a random number with Poisson distribution of mean and variance λ (we use ∼ to denote
that we draw a random number from the distribution that follows)

P (λ) =
λie−λ

i!
. (M.2)

Where, i belongs to the natural numbers and λ > 0. Let us now assume that we are given λ and
have generated one number Nph. From this, the number of incoming electrons is given by

Nie ∼ P (λ̃) (M.3)

where λ̃ = NphQE + c, with QE being the quantum efficiency and c the clock-induced charge. The
number of outgoing electrons, Noe, obtained after the electron multiplication process is

Noe ∼ Γ(Nie, EMgain) +G(0, σR). (M.4)

Here, Γ(x, y) is the Gamma distribution, G(0, y) is the normalized Gaussian distribution centered
around zero, EMgain the electron multiplying gain factor and σR the read noise of the EMCCD
camera. The final output value in terms of pixel counts is

Nout = min

(
floor

(
Noe

eADU

)
+N0, 65535

)
, (M.5)

where eADU is the electrons per analog-to-digital unit, N0 the baseline offset and 65535 the largest
possible image count.

In order to create the complete synthetic image we now need to generated equally many in-
stances of Nout as there are pixels in the image. Furthermore, in this study we used the numerical
values in Table 2 to generate the synthetic images.

Table 2: Numerical values used in the production of artificial EMCCD image counts.

Parameter Value

QE 1
c 0.002

EMgain 245
σR 74
eADU 45
N0 100
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