
MASTER’S THESIS 2019

Automated Cooperative API
Regression Testing Using
Jenkins
Filip Olsson, Philip Ridderheim

ISSN 1650-2884
LU-CS-EX 2019-02

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2019-02

Automated Cooperative API Regression
Testing Using Jenkins

Filip Olsson, Philip Ridderheim

Automated Cooperative API Regression
Testing Using Jenkins

(A Design Science Study at Axis Communications)

Filip Olsson
dic11fol@student.lu.se

Philip Ridderheim
ada07pri@student.lu.se

May 9, 2019

Master’s thesis work carried out at Axis Communications.

Supervisors: Per Runeson, Per.Runeson@cs.lth.se
David Vagnell, David.Vagnell@axis.com

Examiner: Emelie Engström, Emelie.Engstrom@cs.lth.se

mailto:dic11fol@student.lu.se
mailto:ada07pri@student.lu.se
mailto:per.runeson@cs.lth.se
mailto:david.vagnell@axis.com
mailto:emelie.engstrom@cs.lth.se

Abstract

With the increasing focus on short development cycles and rapid release of soft-
ware updates the need to avoid wasting time has become a high priority. How-
ever, dependencies between di�erent software applications, e.g. the dependency
between an API and the consumer application, might pose a greater challenge
when it comes to validating a new software release. This master thesis project
employed a design science research approach to develop a method for minimiz-
ing wait time for validating a new update of an API. Two development teams
at Axis took part in a proof of concept implementation of a workflow aimed at
decreasing the validation time of new API releases. The decrease in validation
time is achieved by automating the triggering of the consumers’ tests upon de-
ployment of a new API version to the stage environment. By using the resulting
meta-data from the consumers’ API tests, greater confidence in the correctness
of the new API version can be achieved. The meta-data also enables an easier
approach to identify if a bug is API-side or consumer-side.

Keywords: regression testing, test artifact, test selection, Cooperative Regression Test-
ing

2

Acknowledgements

We would like to thank our supervisors Professor Per Runeson for his academic guidance and
David Vagnell for his help and guidance at Axis. We would also like to thank Emin Gigovic
and Ola Söder for being a part of the early development of this master thesis. And we would
like to extend our gratitude to Baldvin Gislason Bern for his input on how to expand on the
topics of this thesis in future work. We also would like to thank Emelie Engström for taking
on the role of our examiner. And finally we would like to thank Axis Communications AB
for providing the working environment and to extend our gratitude to its development teams
that have taken part and with a special thank you to the TST and IPA/PIA teams at Axis for
their expertise and cooperation in our studies.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Case Description . 7
1.3 Limitations . 8
1.4 Outline . 8

2 Theory 9
2.1 Introduction . 9
2.2 Testing and Regression Testing . 9
2.3 Agile Software Development . 10
2.4 Configuration Management . 11
2.5 API - Application Programming Interface 12
2.6 Related Work . 12

3 Research Method 15
3.1 Case Company . 15
3.2 Problem Statement and Objectives . 15
3.3 Research Questions . 16
3.4 Research Method . 16
3.5 Exploring Problem Areas . 19

3.5.1 Interviews . 19
3.5.2 Focus Group . 20

3.6 Designing an Artifact . 20
3.7 Artifact Evaluation . 21

4 Identification of Problem Areas 23
4.1 Interviews . 23

4.1.1 Participants . 23
4.1.2 Observations . 25
4.1.3 Conclusions . 26

5

CONTENTS

4.1.4 Technical Variables and Limitations 27
4.1.5 Generalization of the Current Workflow Regarding API Releases . 28

4.2 Focus group . 29
4.2.1 Participants . 29
4.2.2 Discussion . 29
4.2.3 Validation of the Focus Group Findings 30
4.2.4 Technical Variables and Limitations 30

5 Design 31
5.1 Possible Solutions . 31

5.1.1 Requested Consumer Blackbox API Regression Testing Against Stage
Environment . 31

5.1.2 Triggered Consumer Blackbox API Regression Testing Against Stage
Environment . 32

5.1.3 Inter-group Time Limited Exchange of Testers 34
5.2 Summary . 34

6 Implementation 37
6.1 Technical Environment . 37

6.1.1 Jenkins . 37
6.1.2 Version Control . 38
6.1.3 Programming Language . 38

6.2 Workflow . 38
6.3 First Implementation Design . 39
6.4 Second Implementation Design . 39

7 Results and Evaluation 41
7.1 Evaluation Process . 41
7.2 Evaluation Meeting . 41

7.2.1 Participants . 41
7.2.2 Results and Validation . 41

7.3 Questionnaire . 42
7.3.1 Participants . 42
7.3.2 Results and Validity . 42

8 Conclusions 45

9 Future Work 47

Bibliography 49

Appendix A Interview Protocol 55

6

Chapter 1

Introduction

1.1 Background
Software development can often be very complex and may include dependencies between
di�erent software modules, e.g. an application having a dependency on an API. Therefore
it is important to ensure the quality of the software before it is released. However, when
releasing software a trade-o� must be made between how much time to spend on testing the
software and how quick the software should be released.

It is not enough to only ensure that newly added features work correctly since there is also
the risk of regressions appearing in the software. Software regressions are bugs that appear
in the previously working software after a change has been made. To protect against this it
is common to employ regression testing to ensure that e.g. new features has not introduced
new bugs in other parts of the software.

One solution to be able to test the software for regressions as well as save time during
testing before a release is to utilize automated regression testing. In this project, we explore
the possibility of cooperation between di�erent development teams regarding automated
regression testing of interdependent code to enable faster delivery time and less test overlap.

1.2 Case Description
This thesis work was conducted at Axis Communication, also referred to as Axis for short.
The company was founded in 1984 and started out by developing protocol converters which
enabled PC printers to connect to the IBM mainframe [1]. In 1996 Axis developed the first
network camera and is now one of the market leaders in network cameras and video encoders.

Axis was an early adopter of agile development methods, driven by both their quickly
expanding product portfolio and the high interdependency of its products. Agile allows
Axis to more quickly respond to changes a�ecting multiple development teams. The fact

7

1. Introduction

that di�erent development teams often are responsible for di�erent aspects of a product or
service also adds another layer of complexity. One solution for assuring the quality of new
software releases is the usage of regression testing. This thesis was initiated in a desire to
examine if regression testing of interdependent code between di�erent teams can be tested
in a cooperative manner in order to streamline the workflow.

1.3 Limitations
Since this master thesis project was conducted and centered around Axis Communications
limitations regarding the feasibility of the solution for other companies could exist.

1.4 Outline
The report starts with the theoretical background in chapter 2, detailing the key areas in this
thesis. It also contains the related work that is considered relevant to this thesis. Chapter 3
outlines the research questions for this thesis and the research method used. Chapter 4 de-
scribes how the possible solutions were elicited at Axis. Chapter 5 outlines the three possible
solutions that were the result of the elicitation process described in chapter 4. Chapter 6
goes through the chosen solution and how it is implemented in the context of an API de-
velopment team and a consumer team. Chapter 7 contains the results and their evaluation.
Chapter 8 outlines the conclusions that are drawn in this thesis. Lastly, possible future work
is described in chapter 9.

8

Chapter 2

Theory

2.1 Introduction
This chapter introduces the key concepts in this thesis and their position within the area
of software development. The most important concept being regression testing and how it
relates to regular software testing. Followed by agile software development, its main focus
and why it is a concept rather than a specific workflow.

As the thesis focuses on the interaction between development teams with regards to
regression testing, configuration management is an important aspect and is, therefore, ex-
plained how it is approached in an agile software development scenario. This is followed by
the detailing of the API and its function.

The chapter is concluded with an overview of related work within the field.

2.2 Testing and Regression Testing
IEEE defines software testing as [2]:

The process of operating a system or component under specified conditions, observ-
ing or recording the results, and making an evaluation of some aspect of the system or
component.

While regression testing is defined by IEEE as [2]:

Selective retesting of a system or component to verify that modifications have not
caused unintended e�ects and that the system or component still complies with its spec-
ified requirements

Many interpret regression testing to merely include running the regular test suites for all
the features additional times. This fails to capture the intended function of regression testing
as its main goals are as Leung and White notes [25]:

9

2. Theory

• Preserve the quality of the software; the modified software should be at least as reliable
as its previous version; this may be achieved in many ways; one possible method is to
insist that the same structural coverage is achieved by both versions of the software;

• Ensure the continued operation of the software; this is an important goal because some
users may become dependent on the software product, and software developers have a
responsibility to continue to provide the same service to users.

Due to the wide range of development methodologies applied across di�erent organizational
structures, the e�ort of regression testing is conducted at varying frequencies depending on
the methodology of the particular organizational structure [27][14]. As regression testing
serves a verificational purpose for the expected functionality, it is implemented as re-testing
of previously tested code and can be implemented on di�erent levels ranging from unit to
acceptance testing. Making regression testing not denotable as an independent level of soft-
ware testing in itself as it can be implemented on all levels of testing. Rather, regression
testing is a variant of the testing conducted at each specific level. [27].

Testing and regression testing have certain commonalities in both aim and application. Le-
ung and White define two such shared aims [25]:

• Increase one’s confidence in the correctness of a program.

• Locate errors in a program.

They both serve to verify the delivered functionality against the specified functionality. Though
with the clear distinction that testing focuses on the most current functionality and regres-
sion testing focuses on regressions i.e. that previously established functionality has not been
adversely e�ected [25][5].

Testing and regression testing share a lot in their application, especially relating to the
testing environment, which often is the same for the two. This makes test selection strategies
aimed at suite minimization a high priority for regression testing as it is often seen as a time-
consuming and costly e�ort [34][30].

2.3 Agile Software Development
IEEE defines agile development as [7]:

1. software development approach based on iterative development, frequent inspec-
tion and adaptation, and incremental deliveries, in which requirements and solutions
evolve through collaboration in cross-functional teams and through continuous stake-
holder feedback.

The core concept of agile development, adaptability, has its roots in the e�ort to streamline
the development process be able to quickly deliver a working solution. A side e�ect of this
is a lower overall cost of each project. By working to minimize e�orts that relate to tertiary
aspects of the deliverable, such as documentation, more time is spent on the core aspects of
the deliverable. Agile also focuses on close customer involvement as to minimize the reaction
time to changing requirements and as such long term planning is not considered a part of

10

2.4 Configuration Management

agile development. The fact that close customer involvement is premiered over long term
planning, interactions and individuals are focused on more than processes and tools needing
planning and consideration, as such tertiary e�orts are further minimized in agile [8][19].

While there is a general concept of agile development there is no central methodology
paired with its inception [19]. Coupled with the fact that each development organizations
and its constraints require adaptation to optimize productivity very few organizations use a
"best practice" implementation of an agile methodology [29].

As agile focuses on changes rather than following a plan the e�ort of regression testing
needs adapting. In a conventional development organization, regression testing is merely
performed at the end of development allowing for considerably more time planning than in
an agile organization. In agile, however, regression testing becomes very important as chang-
ing requirements necessitate the need for a concise e�ort to verify that expected functionality
is still present and hasn’t been lost [21]. This is often achieved by automating the regression
testing process to minimize the usage of manpower to complete the task. In turn, freeing up
the developers to focus on maintaining rather than executing the tests [6][35].

In an agile organization, the function of regular testing is usually performed by the de-
velopers themselves as to remain able to quickly adjust to changing requirements while re-
gression testing is a distinct and separate e�ort as its test selection process requires more
attention to be e�ective [12][24].

2.4 Configuration Management
IEEE defines Configuration management as [3]:

Configuration Management is a discipline applying technical and administrative
direction and surveillance to identify and document the functional and physical char-
acteristics of a configuration item, control changes to those characteristics, record and
report change processing and implementation status, and verify compliance with specified
requirements.

A concerted configuration management e�ort adds value to the project deliverables by en-
abling the tracking of the development process and enabling multiple developers too more
e�ectively work on the same project with a lowered overhead. Configuration management
is vital when it comes to versioning and traceability within a project. By utilizing the trace-
ability aspect of configuration management multiple development branches can be pursued
at the same time. The need for bug tracking and fixing necessitates a system for tracking
and associating the e�ort to correct it to the code in question in order to be able to trace its
origin, this is provided by configuration management [32][4].

The agile approach to development puts a higher demand on the quality of the configu-
ration management e�ort than conventional approaches. This is mainly due to the increased
volatility of the requirements making traceability relating to design decisions more impor-
tant [32]. When adding the dimension of a distributed development team, configuration
management becomes imperative to be able to e�ectively leverage all team members [15].

11

2. Theory

2.5 API - Application Programming Inter-
face

API or Application Programming Interface, is defined as [36]:

A set of subroutine definitions, protocols, and tools for building software. In general
terms, it is a set of clearly defined methods of communication between various compo-
nents.

The need for di�erent programs to be able to communicate without having access to the oth-
ers source code necessitates the need for an interface to enable the exchange of information,
the API enables this exchange to take place. As the interface does not give access to the code
of the program, the documentation that is provided with the API is as important as the API
itself. The quality of the API is of utmost importance so as to avoid unintended behavior
when the API is used [22][26].

2.6 Related Work
Searching for literature regarding inter-team testing generate few relevant results as of the
writing of this thesis. This is, however, a reasonable result as it is a point of intersection
between testing, requirements, development methodology, and organizational management.
This conclusion is further supported when examining literature studies and reviews [20]. The
main identified related areas of interest are:

• Duplicate test elimination

• API regression test selection and suite minimization

• Release validation time minimization

For each area of interest, a search was conducted to locate relating works. The search was
done using the service LUBSearch that includes a large number of databases of academic
works and industry white papers [10]. The search terms used for each area where the entire
area name and in addition, parts of the area name were used to further broaden the results.
From the results, three works were deemed to be tangential to this thesis work.

The area of duplicate test elimination is given little focus in current academia and is more
considered to be solved by suite minimization. Sharma and Singh note that [33]:

As the software program is updated and modified, test cases in a test suite can become
duplicative. Thus, it would be advantageous to identify and eliminate redundant test
cases in a test suite, allowing reduction in the test suite size which, in turn, can decrease
testing time and contribute to optimize maintenance e�ort for the test suite.

The approach of limiting duplicative tests also works to counteract the slippage of system-
wide understanding by the developers as they are made aware of the overlap in test cases in
di�erent parts of the system. This inevitably leads to a reduced development time as fewer
unnecessary tests are executed.

12

2.6 Related Work

Testing externally developed software components is usually a di�cult task as the infor-
mation about the component and its construction might be lacking. Chengying and Yang-
sheng note that [16]:

System tester generally can’t gain good comprehension to the internal structure of
component, so it will be fairly hard for them to perform testing on the system built by
externally-provided components. Particularly, it is extremely di�cult in the situation of
regression testing, and component users don’t know the details about change in compo-
nent, so they aren’t able to select the proper test cases to retest the modified system.

Focusing on the information exchange between the supplier and consumer of a component,
as relating to test cases rather than API-documentation, a greater understanding of the com-
ponent can be achieved by the consumer’s test organization and as such provide a higher level
of quality in the delivered end product. Especially in the case of regression testing as API-
documentation usually do not include expected functionality as previously established. By
looking at the test documentation also enables the consumers to more e�ectively target their
regression testing e�orts with regards to external components.

The di�culty of achieving a high level of quality with regards to external components is
also noted by Alagoz et al. [13]:

Since vendors of commercial o�-the-shelf (COTS) software components do not re-
lease their source code, detecting all fault states of black box systems becomes a much
more challenging task for the car manufacturer.

The issue of regression testing of external components is a large concern as it often leads to
the assumption that the supplier of the component has done all the testing needed which can
lead to unforeseen and hard to find bugs.

The area of release validation time minimization generated a large number of results but
they were either from a requirements standpoint and theoretical or practical and focused on
prototyping validation. None was found to be exploring validation time minimization within
an organization and from a regression testing or software testing in general, viewpoint. Tests
as Requirements as an area would be the closest but with the viewpoint of validation time
reduction seems to be unexplored within software testing. Especially, considering validation
from outside the development team and automated using consumer tests none the less.

13

2. Theory

14

Chapter 3

Research Method

3.1 Case Company
Axis uses agile development methods with small development teams. This enables a more
flexible development strategy to be able to faster respond to changing requirements and de-
sires for new features. Therefore this master’s thesis project has an agile software development
process as the foundation when developing and evaluating its proposed improvements.

3.2 Problem Statement and Objectives
The services and products provided by Axis are often the results of multiple development
teams that each are responsible for a di�erent aspect of the product or service. These inter-
dependencies create longer validation times since multiple development teams may have to
be part of the validation process. One additional aspect is that there is a chance that some
parts of the product or service is tested multiple times but by di�erent development teams.
Having this kind of test overlap could be a redundant use of time and resources.

The objective of this thesis project was to explore the possibility of cooperation regarding
regression testing to enable less test overlap and shorter validation times. The goals of this
thesis project summarized as the following:

1. Explore the current regression testing practices at Axis.

2. Create a proof of concept implementation of a cooperative regression testing workflow.

3. Evaluate the proof of concept implementation.

15

3. Research Method

3.3 Research Questions
The concept of cooperative regression testing had not had its relevance analyzed. Therefore
in order to analyze and evaluate if a cooperative regression testing e�orts could be applied
in a larger context at Axis an initial study regarding the current regression testing climate
at Axis had to be conducted. Thus exploring the current regression testing practices (RQ1)
and perceived challenges (RQ2) at Axis was deemed the first milestones. The last milestone
and main research question of this thesis is to investigate if a cooperative e�ort regarding
regression testing could result in decreasing the validation times of API releases (RQ3).

RQ1 How and by whom is regression testing performed today?

Research into how regression testing is performed at Axis and by whom needed to be con-
ducted to gain a better understanding regarding current regression testing practices. This
enables a better understanding of the interdependencies in products and services and how
current practices impact testing and validation.

RQ2 What are the main challenges for regression testing activities in large scale agile
software development?

To evaluate the potential benefits that cooperative regression testing can provide the main
challenges regarding regression testing at Axis needed to be investigated. The perceived re-
gression testing challenges are taken into consideration in the solution design and provide a
point of reference to which the implemented proof of concept can be evaluated.

RQ3 How can cooperative regression testing be used in API releases to decrease re-
gression test overlap and shorten validation time?

To investigate how cooperative regression testing could be utilized in API releases a proof
of concept design was implemented. This enabled the design to be tested and evaluated in
order to improve the solution design.

3.4 Research Method
The methodology used is based on Hevner’s guidelines for design science in information
system research, see table 3.1 [23]. Design science is an iterative approach and therefore the
research method employed must reflect that aspect [23]. The objectives and methods used
can be seen in figure 3.1.

The desire at Axis to examine if interdependent code between development teams could
be cooperatively tested had not had its relevance in a larger context investigated. Therefore
to explore the problem area and its relevance an initial study was conducted with interviews
from di�erent development teams, see guideline #2 in table 3.1. This initial study made the
foundation for the more focused study regarding cooperative regression testing (RQ 3) which
resulted in a proof of concept implementation. An overview of the work conducted can be

16

3.4 Research Method

Guideline Description
1 Design as an Artifact Design-science research must produce a viable

artifact in the form of a construct, a model, a
method, or an instantiation.

2 Problem Relevance The objective of design-science research is to de-
velop technology-based solutions to important
and relevant business problems.

3 Design Evaluation The utility, quality, and e�cacy of a design ar-
tifact must be rigorously demonstrated via well-
executed evaluation methods.

4 Research Contributions E�ective design-science research must provide
clear and verifiable contributions in the areas of
the design artifact, design foundations, and/or
design methodologies.

5 Research Rigor Design-science research relies upon the applica-
tion of rigorous methods in both the construction
and evaluation of the design artifact.

6 Design as a Search Process The search for an e�ective artifact requires uti-
lizing available means to reach desired ends while
satisfying laws in the problem environment.

7 Communication of Research Design-science research must be presented ef-
fectively both to technology-oriented as well as
management-oriented audiences.

Table 3.1: Hevner’s Design guidelines

seen in figure 3.2.

17

3. Research Method

Figure 3.1: Overview of the research method

Figure 3.2: Overview of the work conducted

18

3.5 Exploring Problem Areas

3.5 Exploring Problem Areas
When exploring regression testing challenges the first step is to examine published studies
regarding the subject area. However, there is no guarantee that the perceived challenges
regarding regression testing are the same at Axis. Thus to ensure the problem relevance a
case study needs to be conducted in order to gain insight in what developers at Axis perceive
as relevant challenges, see guideline #2 in table 3.1.

The initial study at Axis involved interviews with developers to gain a broad overview
of current regression testing practices and challenges at Axis. Thereafter a focus group was
used in a more pragmatic approach which resulted in a proof of concept implementation.

3.5.1 Interviews
We chose a semi-structured interview approach to maximize the amount and quality of in-
formation that could be collected [28]. When creating the interview protocol the format of
who, what, why, how and when was used as a framework for the flow of questions but since
the structure chosen is semi-structured the flow was not to be enforced during the inter-
views [31]. Instead, the format was used as a general idea of the interview progression and as
a checklist in order to ensure that every question was answered. In addition to the aforemen-
tioned format the interview was structured in a general sense to start with questions about
the interviewee and his/her background and then move on to questions about the team and
lastly move on to work practices and workflows, see appendix A.

To get a broad overview of regression testing practices at Axis di�erent development
teams needed to be represented. The development teams elicited for interviews needed to
be somewhat spread out over di�erent development branches in the organization as well as
the criteria that the development team utilized regression testing. Due to time constraints
and the size of the company, not all relevant development teams could be represented and
therefore six di�erent development teams were selected.

After conducting the interviews a thematic analysis was conducted. The analysis was con-
ducted by identifying di�erent problem areas regarding regression testing. The statements
made were then compiled after their corresponding theme which was then used to answer
RQ2.

The execution of the interviews can be summarized as:

1. Create the consent form and interview protocol

2. Conduct the interviews

3. Transcribe

4. Summarize and explore themes

5. Draw conclusions

19

3. Research Method

3.5.2 Focus Group
The focus group meeting was initiated with a presentation of the purpose of this master thesis
as well as the basic concepts of cooperative regression testing. The format of the meeting was
an open discussion where possible cooperative regression implementations where discussed.
Requirements and perceived improvements and risks of the aforementioned solutions where
also discussed.

The focus group was conducted in order to gain a pragmatic view of how improvements
can be made to regression testing in the context of an API supplier and its consumers. Thus
two appropriate development teams needed to be selected. One to represent the API and its
development and one to represent the consumer and its application where the API is used.
This is used to give a real-world example of how a solution could be formulated and was then
analyzed with the broader overview gained from the interviews on how a more generalizable
artifact could be designed.

The execution of the focus group can be summarized as:

1. Compile the material for the focus group

2. Conduct the focus group meeting

3. Transcribe

4. Summarize the result

5. Draw conclusions

3.6 Designing an Artifact
When using design-science the end result needs to be a viable artifact and needs to be able
to be represented and communicated e�ectively, see guideline #1 and #7 in table 3.1. To
ensure the viability and to present the final artifact in an e�ective manner, a proof of concept
implementation of a cooperative regression testing workflow was done.

The design process was based upon the knowledge gained from exploring the problem
area. The initial requirements were to have less test overlap and decrease validation time.
However, after conducting the focus group meeting the relevance of decreasing test overlap
was considered to be of less importance and was therefore not considered in the proof of
concept implementation. An additional design consideration was to make the design viable
in a larger context at Axis so that it can be implemented and used by other development
teams.

The artifact constitutes an automated workflow between an API development team and
a development team whose application consumes the API. The workflow is defined as the
consumers’ automated regression test suit being triggered when the API release is deployed
to the stage environment. This enables regression testing in the consumer application thus
ensuring that no regressions have occurred in the application as a result of the new API ver-
sion. The automation server Jenkins was used to implement an interpretation of the artifact
as a proof of concept in a project involving two interdependent development teams.

20

3.7 Artifact Evaluation

3.7 Artifact Evaluation
When using design-science the end result is a useful artifact to a relevant problem, see guide-
line #1 in table 3.1 [23]. Thus the problem relevance must be carefully studied and the artifact
evaluated to ensure that the artifact achieves its purpose, see guideline #2 and #3 in table 3.1.

The evaluation of the artifact was present at every step of the design and implementation
process. And the evaluation criteria is based on the exploration of the problem area and
on feedback from the development teams elicited for the proof of concept implementation.
There where two implementations of the proposed workflow. The second design addressed
and improved upon design considerations found in the first design.

After the second proof of concept implementation, an evaluation meeting with the in-
volved development teams was held in order to evaluate the end result. A survey was also
conducted to explore the opinions of development teams at Axis regarding the solution.

21

3. Research Method

22

Chapter 4

Identification of Problem Areas

This chapter presents the case study that was conducted at Axis Communications. The pur-
pose of the case study was to first investigate how regression testing is performed at Axis
and the perceived challenges. This was done to gain insight into the di�erent problem areas.
The knowledge regarding regression testing practices and challenges was then followed by
a focus group that involved two Axis development teams in order to conceptualize possible
improvements.

4.1 Interviews
The purpose of the interview series was to establish how regression testing is currently per-
formed at Axis and if it di�ered between comparable development teams enabling a better
understanding of the problem areas.

4.1.1 Participants
In total six participants were interviewed during the course of the study from two depart-
ments of Axis. All of the participants were either explicitly employed as testers or they had
software testing as part of their work duties. The participants formed a nonuniform group
in regards to academic background, amount of time at Axis and if they were employees or
consultants, see table 4.1.

The structure of the development groups also varied, such as:

• Developers do the regression testing themselves, without an assigned tester.

• One tester is assigned to the development team that leads the regression testing e�ort.

• A separate team is assigned to perform regression testing that is not part of the devel-
opment team.

23

4. Identification of Problem Areas

This variation of a diverse set of viewpoints enabled more generalized conclusions to be
drawn as noted by DiCicco-Bloom and Crabtree [17].

24

4.1 Interviews

Interviewee Role Years of Experience
A Experienced Engineer 10+
B Senior Engineer 10+
C Engineer 3-5
D Senior Engineer 5-10
E Engineer 3-5
F Test Consultant 5-10

Table 4.1: Interviewees

Code Area A�ected Description
C1 Organizational 6/6
C1.1 Roles 2/6 Lack of explicitly defined roles, relating to regres-

sion testing
C1.2 Workflow 4/6 Workflow di�erences between teams
C1.3 Planning 3/6 The planning within the team
C2 Tools 6/6
C2.1 Linkage 6/6 Linkage between planning and execu-

tion/reporting tools
C2.2 Appropriation 2/6 Appropriation of new tools
C3 Information 6/6
C3.1 Distribution 6/6 The flow of information between teams or end

consumers
C3.2 Documentation 3/6 The level of documentation with regards to trace-

ability of results
C4 API 5/6 Knowledge regarding the level of testing per-

formed outside of the team with regards to APIs

Table 4.2: Identified possible areas of improvement

4.1.2 Observations
During the interviews, di�erent perceived regression testing challenges were found. Such
as having di�erences in production and development environments. Since some products
and services are not suitable to be tested in the production environment software regressions
resulting from missed aspects when deploying to production can have a big impact. An-
other stated challenge was di�culty acquiring relevant test data to use in test cases and also
knowing when the test cases had covered enough test scenarios. One solution to estimate the
required test coverage is to utilize risk assessment when introducing new features. However,
missing important aspects or impact areas in the risk assessment were considered to be a
challenge. Creating a good workflow between interdependent development teams in regards
to the testing and validation was also considered challenging.

25

4. Identification of Problem Areas

After transcribing the interviews a thematic analysis was conducted where themes were
identified and possible areas of improvements were categorized after the major themes, see
table 4.2. The major themes were organizational, tools, information and API.

The organizational category includes how the development teams are comprised, how
workflows are managed and how planning in regards to regression testing is performed. The
interviewed development teams have di�erent approaches to regression testing which varied
greatly. Examples of di�erent approaches found were:

• Each test case was coded and followed with each test-run being saved including test
data.

• The regression testing was done in an exploratory fashion and was entirely at the indi-
vidual tester’s discretion with only a pass or fail being recorded for the entire test-run.

All development teams had, though, with di�erent approaches, a considered, to varying
degrees, methodology for their regression testing e�ort. The general purpose and added value
of regression testing were shared among all participants, namely that it enables the developers
to validate that previously expected functionality has not been inadvertently broken. The
vast majority of the participants considered have a generally well-balanced approach and
no drastic changes were required. Planning and execution of the regression tests were by
most teams conducted by personnel other than the developers who coded and generated the
regular testing cases. The planning of regression testing activities was conducted such that
the developers were included in the process.

Tool separation was equal throughout all participants teams i.e. the planning tool was
separate from the execution and reporting tool. Most development teams had plans of various
levels of maturity regarding the development of a linking function for their respective tools to
enhance the traceability in their system. A few teams also had plans to change planning tools
but not because of integration concerns but rather because of organizational improvements.

Very few had structures for linking requirements/stories to regression test cases, which
the participants not having such linkage conceded was a shortcoming. In almost all of the
participants’ development teams, a team-wide code review was standard for the regression
testing activities, but that most emphases was put on individual expertise for all participants
teams. All participants felt the need for better coordination with other development teams
and a large number felt that the information structure regarding what teams were using their
deliverables was in need of improvement. In contrast, they had a clear picture of who was
the product owner and that the product owner was involved in the planning of the project.

All of the participants reported that APIs created by other development teams at Axis
were used in their projects. No participant reported that specific API-tests were conducted
but rather their correct function was assumed. The lack of API-testing was compounded
by the fact that all but one participant reported that the APIs were accessed live and not
mocked during the regression testing phase. As the interviewed development teams’ overall
issues were similar, even though their constellations di�ered, would indicate that the above
observations are sound and to a large extent generalizable.

4.1.3 Conclusions
One major conclusion from the interviews is that a structure exists for all the interviewed
development teams such that a cooperating e�ort regarding regression testing of interdepen-

26

4.1 Interviews

dent API’s could be beneficial. All the interviewed development teams used API’s developed
by other groups at Axis and in some cases also maintained their own API’s that other devel-
opment teams at Axis are currently using making a cooperative e�ort a viable way of making
regression testing more e�cient within the organization. When considering the major per-
ceived regression testing challenges a cooperative regression testing e�ort could facilitate all
stated challenges, to a varying degree. Having a cooperative e�ort could act as a method of
gaining additional relevant test data as well as creating a broader coverage of test scenarios,
which in turn minimize the risk of bugs appearing in the final product. Since the consumers
know what scenarios the API will be used in, relevant test data and test scenarios in the form
of edge cases could be of great benefit to the developers of the API. This cooperation will, in
turn, create the need for continuous dialogue between the cooperating development teams.
This could result in workflow incompatibilities between the development teams having less
of an impact since upcoming events which could have a negative impact could be communi-
cated at an earlier stage with a continuous dialogue. When considering the grouped areas, Cx
in table 4.2, of improvement both the appropriation and linkage of tools were for the most
part already in consideration and in some cases as far as in the trial phase. Thus e�orts of try-
ing to improve these areas are already underway and therefore of less importance to this thesis
when considering which areas could benefit the most of further improvements. The other
grouped areas could also benefit from a cooperative regression testing e�ort thus ensuring the
problem relevance of the artifact. With a cooperative e�ort, continuous communication be-
tween the di�erent development teams would improve the flow of information which should
have a positive impact on information distribution between development teams. Depending
on how the communication is conducted, greater incentive on documentation of changes and
future improvements could be seen since it would be of relevance to the continuous dialogue.
With a continuous dialogue, an improvement in making the organizational workflows more
compatible could be facilitated.

The API area would see the most benefit to a cooperative e�ort. The cooperative e�ort
would increase knowledge about the usage of API’s, provide relevant test data, increase test
coverage as well as exchange areas of expertise between the di�erent development teams.

The background to this master thesis included looking at possible improvements to re-
gression testing regarding interdependent API’s and with the analysis of the interviews, it
is also clear that other areas of improvements and major perceived challenges regarding re-
gression testing could also be facilitated. The end conclusion for the interview series is that
there is great potential in improving the e�ciency of the regression testing e�ort at Axis as
there is a potential for a cooperative e�ort to improve feedback time and general awareness
between teams.

4.1.4 Technical Variables and Limitations
By recording the interviews in a video and audio format a lot of time spent taking notes was
reduced. This meant that a consent form needed to be developed which specified how the
collected data was to be handled and outlining the consent given by participating as well as
the rights to withdraw consent. The recordings were later transcribed into text in order to
be analyzed. Since this is a time-consuming process, time boxing on the interview questions
was used to ensure the interview was conducted within a reasonable time frame as well as en-
suring that every question had an appropriate allocated time slot. This was in practice hard

27

4. Identification of Problem Areas

to keep track of since the semi-structured format meant that the interview did not follow
a strict flow. However, the interviews never exceeded the allocated time frame so there was
never a need to stop the interviewee in order to get through all the questions on time.

4.1.5 Generalization of the Current Workflow Regard-
ing API Releases

To enable a discussion for the focus group regarding how a cooperative regression e�ort could
be designed a generalized workflow had to be illustrated.

From the interviews, it was observed that the current workflow within Axis is influenced
to a large degree by the agile approach to software development. The strive with an agile
approach is that releases should be done often and incrementally compared to the traditional
development approaches. Therefore a good and thought out approach to testing, building
and deploying is required to avoid introducing bugs into the deliverable. To this end, stage
environments are widely used at Axis where testing and building can be done iteratively and
the pre-release process can be automated in an e�ort to minimize overhead.

Figure 4.1: A workflow chart of the current workflow within Axis

In figure 4.1 the following steps are included in the release of a new version

1. The API developers push a commit to the stage environment. In the stage environment,
all the testing before release is done such as to ensure correct behavior of the software.

2. After the pre-release testing and any additional steps have been completed the new
version is pushed to the production environment.

3. The consumers can then access the new version of the deliverable.

28

4.2 Focus group

4.2 Focus group
The purpose of the focus group was to validate and further the process of conceptualizing
solutions based on the conclusions from the interview series.

4.2.1 Participants
In total four participants were elicited for the focus group. Two participants represented the
API development team with one being a developer and the other a tester of the chosen API.
Two developers represented the development team that consumes the API. The constellation
of the development team that consumes the API does not have explicitly delegated responsi-
bilities for the testing e�ort but is instead delegated to the developers after emerging needs.
However, two participants were sick on the day of the focus group meeting and could not
attend. The two participants who were present at the focus group meeting were the least
experienced (working at Axis) out of the two representatives from each development team.
This brought the validity of the findings from the focus group meeting in question. Therefore
additional validation for the findings needed to be facilitated, see section 4.2.3.

4.2.2 Discussion
The focus group meeting started with a short presentation about the aim of this thesis work
and a workflow example demonstrating a basic situation where a cooperative e�ort could be
performed by two interdependent development teams. An open discussion was held about
what the current workflow at the respective development teams are and how possible im-
provements could be made in regards to achieving a more cooperative approach to regression
testing.

Three possible designs on how cooperative regression testing could be implemented emerged
throughout the discussions. The designs were then evaluated by the participants on what pos-
itive impacts they could have but also risks involved in the designs. The three designs can be
described as:

1. The API consumers run their regression tests against a stage environment for the new
API release

2. The API consumers tag the regression test cases that includes calls to the specific API
and then the API developers can run the tagged regression tests before new releases

3. The developers and consumers of the API exchange testers for a short period of time
on a set basis

The possible foreseen improvements for all the di�erent designs included gaining valu-
able test data, exchange expertise, shorten validation time and gaining broader test coverage.
However, the designs were considered to have di�erent risks involved with them. Design 1
was the one considered to have the least entailing risk and was already in a somewhat degree
utilized by the API development team. However, design 2 was considered to have a consid-
erate risk of a bad return of invested time and might instead make the testing e�ort take up
more time and resources. Design 3 was considered to be a good system once implemented

29

4. Identification of Problem Areas

however the time and e�ort setting up the system and redoing the regression tests to include
the new functionality would have been significant. The design would also increase the need
for the consumers to keep their regression tests up to date regarding and over confidence in
a new release of the API might occur if the test cases by the consumers are not su�cient.
The last concern of design 3 was that a dilution of responsibility might occur by which the
testing e�ort of the API is pushed onto the consumers.

4.2.3 Validation of the Focus Group Findings
The validation of the focus group meeting was done by compiling the findings and ideas
from the focus group into a document for the participants who could not attend so that they
could review and provide feedback on the findings of the meeting. The document used the
same format as the focus group meeting in that it started with a short presentation of the
purpose of this master thesis as well as the same workflow example which could incorporate
cooperative regression testing between two interdependent development teams. It was done
this way to give the readers a frame of reference from which the discussed solutions could be
evaluated. After the introduction, the solutions discussed were listed with their respective
pros and cons. The document ended with describing what should be included in the feedback,
such as their thoughts on the proposed solution as well as if they could think of any additional
solutions. The document was also sent to one additional person who was not elicited for the
focus group but regularly performs testing tasks for the application development team. The
person in question is part of an external QA team.

The feedback received was that a cooperative regression testing e�ort could be of great
value. Design solution 2, in section 4.2.2, was seen as the design with the most potential.
An additional feature that was proposed for this solution was to include a response in the
form of an automatically generated email after the regression tests have been performed as
to inform the involved parties of the result. The external QA tester for the application team
also proposed that an additional solution could be for the application team to document what
functionality in the API was used by the application as a way of enabling the API developers
to better estimate risks assessments with new releases. This was argued to have the drawback
of being time-consuming when creating the documentation as well as when utilizing it when
performing a risk assessment. It was also deemed as having bad scalability since a lot of
consumers would create the need for overwhelming documentation.

An overarching sentiment was that test overlap was not a high priority as it was deemed
to be more beneficial to gain additional test coverage even if it resulted in increased test
overlap. Due to this fact, it was decided that test overlap minimization as stated in section
3.3 would be set aside for possible future work as it could be beneficial once a cooperative
regression testing workflow was put into place.

4.2.4 Technical Variables and Limitations
The focus group was audio recorded so that it could later be transcribed and further analyzed.
Thus a consent form had to be used for the same reasons as the interviews. Small changes
were made to the consent form which was mostly due to that only audio would be recorded
and not video. This decision came after transcribing the interview where it was determined
that the captured video had little use and instead was su�cient to capture only the audio.

30

Chapter 5

Design

5.1 Possible Solutions
From the focus group, three possible solutions could be compiled. The first solution centers
on the consumer regression tests being triggered by the consumers at the API developers
behest. The second solution removes the consumers from the triggering process and instead
has the consumer’s test being triggered by the AP developers. The third solution aims at
giving the testers better insight into the other team by having an exchange program where
testers switch places.

5.1.1 Requested Consumer Blackbox API Regression
Testing Against Stage Environment

This solution aims to improve the feedback time from the consumers for new releases of an
API. This is achieved by including the consumers’ test suites as part of the pre-release process
as can be seen in figure 5.1.

In figure 5.1 the following steps are included in the release of a new version

1. The API developers push a release to stage.

2. The consumers are requested to run their tests against the stage environment.

3. The consumers trigger the API tests.

4. The consumers API tests are run against the API stage environment.

By allowing consumer teams access to run API tests against the stage environment API re-
gressions can be mitigated or even avoided before a release. If coupled with better more proac-
tive communication the feedback and validation process before the release will be quicker

31

5. Design

Figure 5.1: Requested consumer blackbox API regression testing.

and more informed. This will enable the API developers to have a greater confidence in the
correctness of their releases.

This solution leverages the consumer’s tests such that they to a certain extent validate the
release prior to it going live. This solution would also enable a better exchange of ideas as a
side e�ect of the more proactive communication between API developer and consumer.

Stakeholders
The main stakeholders in this situation are:

• The API developers

• The consumers that are requested to test the staged API

• The consumers who are not requested to test the staged API

Limitations and Risks
The main limitations in this scenario are that the API developers do not get additional feed-
back only that it will be attained before the release to production. This solution will also
be limited by the response time of the consumers and their planning as they might not have
resources enough to complete their API regression testing in the allotted time given by the
API developers or at the specified time. This could lead to the API being tested by fewer con-
sumers before release lowering the e�cacy of this solution. Another risk is that having the
consumers perform their API tests before release adds a level of coordination and planning
that might hinder the API developers from maximizing their output.

5.1.2 Triggered Consumer Blackbox API Regression
Testing Against Stage Environment

This solution is a variation on the one in section 5.1.1 with the aim to further reduce the
feedback time by removing the need for the consumer to trigger their test suite as can be

32

5.1 Possible Solutions

seen in figure 5.2.

Figure 5.2: Triggered consumer blackbox API regression testing.

In figure 5.2 the following steps are included in the release of a new version

1. The API developers push a release to stage.

2. The API developers trigger the consumer’s API tests.

3. The consumer’s API tests are run against the API stage environment.

By having the consumers of the API curate a suite of tests that from the consumer per-
spective covers their access scope for the API. This suite would be part of their own normal
set of tests, for their deliverable, but it would be tagged as API tests. This would enable the
API developers to trigger the tests to run when a successful deploy to the stage environment
has been completed. Upon completion, both teams would be notified of the test results such
that failures can be addressed.

This would bypass the need for the consumer to schedule personnel to run the test suite
against the stage environment of the API. By having the same test report would ease the
communications and coordination e�orts between the consumers and API developers.

Stakeholders
The main stakeholders in this situation are:

• The API developers

• The consumers whose tests are run on the staged API.

• The consumers whose tests are not run on the staged API.

Limitations and Risks
The main limitation is that the API developers might over time push the responsibility of
testing the API towards the consumers, resulting in the risk of an unsatisfactory test suit

33

5. Design

or missed edge cases. Technical knowledge discrepancies relating to di�erences between the
consumers and API developers environments resulting in a large overhead in coordination
and education in order to get the scheme into e�ect. The consumers API tests might stagnate
and become outdated resulting in not being a good representation of the consumers API
access scope.

5.1.3 Inter-group Time Limited Exchange of Testers
This solution is aimed at increasing the cross-team awareness when it comes to their coun-
terparts regression testing e�orts.

By implementing a scheme to exchange testers between the API developers and con-
sumers a greater understanding for the other team’s functionality and testing approach can
be achieved through direct interaction with their test suites. This can also be done as a series
of recurring meetings to exchange ideas and compare current approaches in situations where
one team does not have specific testers.

Stakeholders
The main stakeholders in this situation are:

• The API developers

• The consumers whose testers are part of the exchange scheme.

• The consumers whose testers are not part of the exchange scheme.

Limitations and Risks
The main limitation of this solution is that some development teams lack dedicated testers.
The duration of the exchange would also greatly a�ect the value as there would be an initial
startup time each exchange cycle. In addition, the exchange would require support from
both development teams’ managers as it would mean an interruption in the work process.
The metrics to gauge the added value of this scheme would be hard to define as it would rely
on the subjective opinion of the exchanged testers.

5.2 Summary
The outcome of the interview study and focus group meeting was three di�erent solutions
for improving the regression testing e�orts with regards to a possible cooperative regression
testing e�ort by the API developer and consumer. Two of these focus on decreasing the
validation time of a new API release.

Solution 1 achieves this by having the API developers proactively require the consumers
to complete their regression tests against their staged version before it gets released to pro-
duction. However, there is no guarantee that there is a rapid response from the requested
consumers which will result in a longer validation time.

34

5.2 Summary

Solution 2 takes this change a step further and has the API developers trigger the con-
sumers’ regression test suites. Thus removing the need for the consumers to spend man hours
specifically when the API developers need them to. By extension solution 2 creates a greater
incentive for the consumers to keep their API regression tests up to date.

Solution 3 focuses on information and knowledge spreading by exchanging testers be-
tween the API developer team and the consumer team. This solution enables both teams
to gain a greater understanding for the other team’s work and thought process with regards
to test planning. However, the possible gains were di�cult to anticipate from this solution,
according to the focus group.

Based on the results from the interviews and the unanimous opinion of the focus group
the best solution was deemed to be solution 2.

35

5. Design

36

Chapter 6

Implementation

Based on the results from the interviews and the focus group the best solution was deemed
to be the solution from section 5.1.2. The solution comprises of the consumer’s test suit
being automatically triggered by a successful API deployment to the stage environment. This
chapter details the technical environment used to do a proof of concept of the solution and
to enable results and conclusions to be drawn on an actual implementation of the design.

6.1 Technical Environment
6.1.1 Jenkins
The main system involved in the evaluation of the chosen solution from section 5.1.2 is the au-
tomation server Jenkins, an open source system enabling the automation of key non-human
intensive parts of the software development process. Jenkins is an especially helpful automa-
tion tool in an organization focused around the continuous integration/delivery methodol-
ogy [11].

Jenkins is built to be modular, enabling its use with almost any programming or scripting
language and version control system. Jenkins is the clear choice in the proof of concept im-
plementation since it is widly used at Axis and is already being used by the two development
teams selected for the proof of concept implementation [9].

In the proof of concept implementations, the Jenkins server has jobs that are chained
together which creates a workflow like process. Each job has a main task which could be
deploying the software or running automated regression tests. The first job in the chain
is triggered when a new release is ready for deployment on the stage environment. If the
deployment is successful then it will trigger the next job in the chain and so forth. If a job is
not successful with its tasks then the metadata from the job can be examined to determine
the error. When the error has been handled then the job that failed can be triggered manually
to continue the workflow.

37

6. Implementation

6.1.2 Version Control
A key part in the scheme is a working approach to version control of the development projects
involved. Though the specific version control tool is not central to the scheme as Jenkins is
able to integrate with a wide array of di�erent version control systems.

For the chosen projects, at Axis, the version control systems were git for both the API
and consumer side. Git is one of the most common version control systems on the market
and open source enabling easier integration with 3rd party systems.

6.1.3 Programming Language
The two projects used in the proof of concept implementation were both written in Java.
The Java applications were built using the build automation tool Maven. However Jenkins
supports a wide array of di�erent automation build tools making a similar workflow imple-
mentation possible for projects in other programming languages.

6.2 Workflow

Figure 6.1: Visualization of the cooperative regression testing work-
flow.

The chosen implementation is applied to Jenkins using a workflow that can be seen in fig-
ure 6.1. As the developers of the API push a new version to the stage environment the Jenkins
server triggers a series of regression and integration tests created by the API developers, see
the API developers deploy and tests tasks in figure 6.1. If those tests are completed without
any test case failures a downstream job called subscription is triggered, see the subscription
task in figure 6.1. The subscription job serves the function of decoupling the API developers
own test job and the trigger which will start the consumers’ test suits. This enables an easier
grasp of the purpose for each of the chained Jenkins job. In addition, the subscription job
clarifies for the consumers of the API which job should trigger their API test suite job. This
enables the developers to compartmentalize information such that the handling of consumer
regression tests are separate from the tests conducted by the developers of the API.

As the subscription job is triggered, it, in turn, triggers a list of consumer-supplied and
curated test suites, see the consumer test task in figure 6.1. By comparing the metadata from
these results, conclusions can be made regarding the risk of a regression having occurred. By
automating the process of triggering the consumers’ API test suits runs the results are almost
immediate which enables a faster correction of any emerged regressions.

38

6.3 First Implementation Design

6.3 First Implementation Design

Figure 6.2: Visualization of the first implementation design.

The first implementation included making minor changes to already implemented Jenk-
ins jobs for the respective development teams, see figure 6.2. However di�erent Jenkins
servers were utilized by the development teams. To enable the adaptation of the above work-
flow to a scenario with separated Jenkins instances for the API development and the con-
sumers would need certain alternations to be made. A connection between the two servers
had to be designed in order to enable the subscription job to trigger the consumer API tests.
This was done by having a dedicated job that was triggered by the subscription job and which
sent a network message which triggered the consumer API tests. Two main issues for this im-
plementation would be upstream pipeline status notification and authentication.

The API and consumer projects being hosted on separate Jenkins instances would negate
the possibility of leveraging the Jenkins integrated downstream status notification as the
function is only available within the same Jenkins instance and no plugin to solve this issue is
widely available such that the notification information is bidirectional over separate Jenkins
instances.

The separation of Jenkins instances poses a need to authenticate the subscriptions job as
to be able to trigger the consumer API tests, this could either be done by using username
and password credentials or by way of tokens. The implemented solution used tokens in an
unencrypted network message which is not secure as the message could potentially be sni�ed
and therefore a better solution to this problem would be preferred.

6.4 Second Implementation Design
The second implementation of the workflow involved only one Jenkins server and mirrored
the flow in figure 5.2. The second implementation design can be seen in figure 6.3 and was
implemented due to the issues faced with the first implementation as well as the fact that the
consumer jobs were already planned to be moved to the same Jenkins instance as the API. The
consumer test suit was therefore implemented as a Jenkins job on the same Jenkins server.

39

6. Implementation

Figure 6.3: Visualization of the second implementation design.

This implementation also served to simplifying and improving this project’s implementation
as well as remove extraneous factors from the evaluation process.

Another adaptation was the change from running the consumer test suites against the
production environment to the stage environment as the regression test suites were not ver-
sion controlled such that the specific set of regression tests run for the current production
release was not easily accessible over time. The impact however of running the regression
tests against the consumer stage environments was deemed as having a low impact on the
results.

In this proof of concept implementation, it was decided in assent with the API devel-
opment team that the Jenkins integrated downstream status notification would handle the
immediate feedback from the results of the consumer API tests. This is done by Jenkins re-
porting the results of the consumer API testing job in three di�erent colors. Green being
everything passed, yellow meaning there were some warnings or tests that failed and red rep-
resenting critical errors. This would give the API development team a quick overview of the
results but any failures of the regression tests would generate an e-mail report sent to the de-
velopers of the application which would then have a deeper look and then report the findings
to the API developers.

The status notification can be easily expanded upon such as integrating it with dash-
boards and code review tools among others. However, the simplistic notification design of
the implementation is in this project deemed to be su�cient as the focus in the project is the
workflow and not the specific notification format.

40

Chapter 7

Results and Evaluation

7.1 Evaluation Process
A process of evaluation was established to both ensure that the system fulfills the needs of
Axis and to be able to collect relevant feedback from an academic perspective. Due to sprint
lengths and planning limitations, the main evaluation process was conducted using an evalu-
ation meeting consisting of relevant experts close to the involved projects at Axis. The eval-
uation meeting was then followed up by a questionnaire to further catch relevant feedback
and reflections from teams that were not involved in the implementation.

7.2 Evaluation Meeting
This meeting was used to evaluate the result of the proof of concept implementation. The
main point of the meeting was to analyze how the two development teams elicited in the
proof of concept implementation perceived the end result.

7.2.1 Participants
In total five participants were elicited for the evaluation meeting. Three participants rep-
resented the API development team with one being a developer, a tester and the product
owner of the chosen API. Two developers represented the development team that consumes
the API.

7.2.2 Results and Validation
From the API-team, the implementation and enacting of the workflow had been perceived
as simple and straight forward. It was seen as a clear improvement as it put focus on the

41

7. Results and Evaluation

need for the consumers to verify that they actually perform adequate tests against the API.
By running the consumers’ tests it gave the API-team a greater confidence that the release
fulfilled the de facto requirements set forth by the consumers.

By automating the triggering of the consumers’ API tests a lot of waiting and communica-
tions overhead can be avoided. By combining the results of multiple consumers, conclusions
can be made with regards to possible faults locations and severity further improving the con-
fidence level regarding the correctness of the release. Another benefit of automating this
process is that a shorter validation time can be achieved.

Regarding feedback, it was considered that the API-team should receive only Pass/Fail/Warning
status reports on the completed test runs through upstream/downstream notification on the
Jenkins dashboard. The consumer should, however, receive an email when a test case fail and
then be tasked with following up what has caused the failure and then contact the API-team.
This conclusion was made based on what type of information each team would be interested
in.

One decision taken during the evaluation meeting was that a questionnaire should be sent
out to internal API consumers that hadn’t been involved in the proof of concept implemen-
tation. This would also ease the consumers of that API into adopting the solution presented
in this thesis. The benefit of using consumers that haven’t been involved up to this point is
that they would be more impartial and unbiased in their responses and would give insight
into the opinions and willingness of API consumers to implement the suggested workflow
using Jenkins.

7.3 Questionnaire
To enable a broader and more impartial viewpoint on the implemented solution other inter-
nal consumers of the API’s developed by the API-team were elicited. This group involves a
large number of varied consumers using di�erent types of programming languages, testing
approaches, and team constellations.

With the questionnaire, a short description of the purpose of the survey and a description
of the proposed workflow was included. This was done so that the reader could gain an un-
derstanding about the implementation and its purpose before answering questions regarding
the subject.

7.3.1 Participants
From the questionnaire, a total of 9 responses were sent in over the course of a week. With
the distribution of di�erent team roles as can be seen in figure 7.1.

7.3.2 Results and Validity
The majority of the responses, 6 out of 9, answered that their team was currently using Jenkins
and 7 out of 9 responded that they were a part of their teams’ regression testing e�ort. The
majority had test cases that involved API-calls that were not mocked and only one answered
that they had no test cases that involved API-calls, see figure 7.2

42

7.3 Questionnaire

Figure 7.1: Respondents roles in their respective teams.

Figure 7.2: Question: Do you have test cases that involve API-calls?

The problem relevance of regression testing including API-calls is clear since almost ev-
eryone answered that they had experienced that an API update had resulted in bugs, see
figure 7.3. This sentiment could also be reflected in that the majority of the participants felt
that implementing the proposed workflow would benefit their work since the average points
given was 4.1 on a scale from 1 to 5, see figure 7.4. In contrast when questioned about if the
proposed workflow would improve the communication with the development team of the
API only an average score of 3.3 points were given.

Figure 7.3: Question: Has an API update resulted in bugs/broken
your product?

Regarding how the feedback structure should be handled there was some split opinions.
Almost half of the participants would like to have the same structure as the proof of con-
cept implementation where the consumers receive an email if a test case fails. The API-team
would only get feedback from watching the upstream/downstream notification on the Jenk-

43

7. Results and Evaluation

Figure 7.4: Question: Do you feel that the proposed workflow would
benefit your work?

ins dashboard. When asked to estimate how long it would take to implement the proposed
workflow there was no unified estimation. However, when asked about being interested in
this kind of workflow for their team the vast majority expressed an interest, see figure 7.5.

Figure 7.5: Question: Would you be interested in this kind of work-
flow for your team?

The validity of this survey is questionable since some participants were unsure about the
implications and di�culty of implementing said workflow. This could be the result of having
limited experience with Jenkins and/or that the information regarding the implementation
given not being adequate. However, the opinions and perception of the proposed workflow
are mostly positive with it being a perceived improvement to the current practices.

44

Chapter 8

Conclusions

The purpose of this thesis has been to design a cooperative regression testing e�ort that can
be implemented to shorten validation time for API-releases in cooperation with consumers
within the same company. The e�ort has been focused on producing a workflow that is
lightweight enough to be easily implemented and adjustable to be applicable to as many
development scenarios as possible.

The answer to RQ1 is that it is not a uniform group performing the regression testing at
Axis. Instead, the practitioners were of di�erent academic background, experience, work ti-
tles, and employment forms. How the regression testing was performed also di�ered greatly
with some development teams employing automated regression test suites while others per-
formed regression testing in an exploratory fashion.

The main regression testing challenges stated when researching RQ2 varied from:

• Having relevant test data

• Di�erences in production and development environment

• Knowing when you have covered enough test scenarios

• Creating a good workflow between inter-dependent teams

• Missing important aspects or impact areas in the risk assessment

Decreasing the regression test overlap in RQ3 was deemed to be of lower importance and
was thus decided to not be an integral part of the proof of concept implementation. It was
instead set aside as possible future work. The shortened validation time was however deemed
to be of high importance. A workflow comprising of a cooperative regression testing e�ort
to shorten the validation time before an API release was designed and validated using a proof
of concept implementation.

The analysis of exploring the problem areas shows that many of the main regression test-
ing challenges that developers face today could be eased with the use of a cooperative regres-
sion testing e�ort. To facilitate this, an IT artifact has been designed which consists of a

45

8. Conclusions

workflow involving interdependent development teams and a technical implementation us-
ing Jenkins. A proof of concept of this design was implemented and later evaluated to ensure
that it achieved the desired end result.

In order to implement such a regression testing e�ort, there are however two prerequi-
sites that heavily impact the feasibility of the implementation for the given software project.
The first and most crucial part is that there exists a dependency between software projects
such that this can be leveraged when performing regression testing. The second prerequi-
site is the utilization of automated regression testing that includes the functionality of the
aforementioned dependency in its test cases.

The observed benefits of implementing this workflow were a decrease in validation times
before release as well as increase the confidence in that the release does not break any expected
functionality from the consumers perspective. By automating the regression testing trigger,
the response time is improved if a regression is found. This enables the API development
team to correct the error faster and thus minimizing the risk of missing expected deadlines.
The fact that the API team will be able to trigger and validate their release against the func-
tionality the consumers expect, expressed as API-tests, doubles as a validation of the software
requirements.

If the consumers already have a well maintained automated regression test suite the
change over to the proposed workflow, as described in chapter 6, should be quick and easy
to implement. However, if the development teams are not familiar with using Jenkins this
would increase the time required to enact the change. The implementation does require
a good communication e�ort between the teams and it is crucial that responsibilities are
agreed upon so that the API developers and the consumers have a clear picture of how test
case failures are reported and followed up. If the consumers’ test suite includes many test
cases that do not test the functionality of the API it can be favorable to use test selection.
This can be done to e.g. reduce the run time of the regression tests.

The interview and focus group study gave a good overview of current work practices
at Axis. The study was a stepping stone, RQ1, that was necessary to be able to identify the
challenges as perceived by the developers and consumers of APIs within Axis. The challenges,
RQ2, was to a large extent focused on the communications e�orts between teams and less
often on technical aspects. As a result of the varied team constellations a workflow that would
both improve communications and also to a lesser extent improve the technical coordination
between teams, RQ3. The workflow was well received both by the teams involved in the
implementation and also by consumers of another API that had not been involved in the
thesis process giving credence to the conclusion that the workflow was sound.

46

Chapter 9

Future Work

This chapter includes topics regarding further research into the subject and also possible
features for the implementation which could benefit certain software projects.

• Design validation using a larger set of consumers: In this thesis, only one consumer was
used when implementing the proof of concept. However, the end goal is to use as many
consumers as possible in order to get better test coverage so that a higher correctness
confidence can be achieved. To better validate the design an implementation of the
workflow where more consumers are involved could bring forth new obstacles, such as
increased communication overhead.

• Determining consumer test coverage: It would be beneficial to enable a way of mea-
suring test coverage based on the consumers’ test suites. If this is possible it could
have a huge impact on the ability to analyze the results of a test run. The information
gathered could be used as metadata for the decision making process regarding when to
push to production.

• Including or using external consumers: When changing the scope of the implementa-
tion to include external consumers the implementation becomes more complex. Since
the workflow is not completely in-house, aspects regarding security and communi-
cations become more uncertain. One of the main aspects being confidentiality and at
what level information sharing would be appropriate with regards to di�erent types of
partnership agreements. However, it would be valuable to further research this subject
since the possible benefits could be worth-while.

• Examine the suitability of di�erent kinds of tests and dependency constellations: In
this thesis functional test cases have been the focus, software testing however also in-
volves non-functional tests such as testing the software under heavy load. Using dif-
ferent test types could be evaluated in the context of cooperative regression testing.
Other dependencies besides API and API consumers could be tested and evaluated.

47

9. Future Work

These constellations could include e.g. hardware platforms and the firmware running
on it.

• Code Review and Tests as Requirement tools: It would be beneficial to investigate
integrating the implementation with a code review tool such as Gerrit to enable better
tracking and validation of the test results. It would also be valuable to look into or
design a tool integration to support the e�ort of tests as requirements. This would
give the API developers even better confidence in the release correctness [18].

48

Bibliography

[1] The Axis story. https://www.axis.com/about-axis/history. [Online; accessed
20-Dec-2018].

[2] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990,
Dec 1990.

[3] IEEE Standard Glossary of Computer Languages. IEEE Std 610.13-1993, 1993.

[4] IEEE Standard for Configuration Management in Systems and Software Engineering.
IEEE Std 828-2012 (Revision of IEEE Std 828-2005), pages 1–71, March 2012.

[5] ISO/IEC/IEEE International Standard - Software and systems engineering – Software
testing –Part 3: Test documentation. ISO/IEC/IEEE 29119-3:2013(E), pages 1–138, Sept
2013.

[6] How to Optimize Regression Testing in Agile Development. https://www.scnsoft.
com/blog/regression-testing-in-agile-development, 2017. [Online; ac-
cessed 20-Dec-2018].

[7] ISO/IEC/IEEE International Standard - Systems and software engineering–Vocabulary.
ISO/IEC/IEEE 24765:2017(E), pages 1–541, Aug 2017.

[8] 12 principles behind the agile manifesto, 2018.
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/.

[9] About - Git. https://git-scm.com/about, 2018. [Online; accessed 5-December-
2018].

[10] Basic Search: Lund University Libraries. http://lubsearch.lub.lu.se/, 2018.
[Online; accessed 10-June-2018].

[11] Jenkins User Documentation. https://jenkins.io/doc/, 2018. [Online; accessed
10-November-2018].

49

https://www.axis.com/about-axis/history
https://www.scnsoft.com/blog/regression-testing-in-agile-development
https://www.scnsoft.com/blog/regression-testing-in-agile-development
https://git-scm.com/about
http://lubsearch.lub.lu.se/
https://jenkins.io/doc/

BIBLIOGRAPHY

[12] A. and N. Chauhan. A regression test selection technique by optimizing user stories in
an Agile environment. In 2014 IEEE International Advance Computing Conference (IACC),
pages 1454–1458, Feb 2014.

[13] I. Alagöz, T. Herpel, and R. German. A Selection Method for Black Box Regression
Testing with a Statistically Defined Quality Level. In 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pages 114–125, March 2017.

[14] E. Alégroth, R. Feldt, and H. H. Olsson. Transitioning Manual System Test Suites to
Automated Testing: An Industrial Case Study. In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, pages 56–65, March 2013.

[15] L. Bendix and C. Pendleton. Configuration Management: Mother’s Little Helper for
Global Agile Projects? In 2012 IEEE Seventh International Conference on Global Software
Engineering Workshops, pages 28–32, Aug 2012.

[16] M. Chengying and L. Yansheng. Regression testing for component-based software sys-
tems by enhancing change information. In 12th Asia-Pacific Software Engineering Confer-
ence (APSEC’05), pages 8 pp.–, Dec 2005.

[17] B. DiCicco-Bloom and B. Crabtree. The qualitative research interview. Medical Educa-
tion, 40(4):314–321, 2006.

[18] E. Engström M. Borg E. Bjarnason, M. Unterkalmsteiner. An industrial case study on
test cases as requirements. In T. Dingsøyr C. Lassenius and M. Paasivaara, editors, Agile
Processes in Software Engineering and Extreme Programming, pages 27–39. Springer Interna-
tional Publishing, 2015.

[19] Beck et. al. The Agile Development Manifesto. http://agilemanifesto.org, 2001.
[Online; accessed 20-Dec-2018].

[20] Vahid Garousi and Mika V. Mäntylä. A systematic literature review of literature reviews
in software testing. Inf. Softw. Technol., 80(C):195–216, December 2016.

[21] T. D. Hellmann, A. Sharma, J. Ferreira, and F. Maurer. Agile Testing: Past, Present, and
Future – Charting a Systematic Map of Testing in Agile Software Development. In 2012
Agile Conference, pages 55–63, Aug 2012.

[22] M. Henning. API: Design Matters. ACM Queue, 5(4), 2018.

[23] A. Hevner, S. March, J Park, and S Ram. Design science in information systems research.
MIS Quarterly, 28(1):75 – 105, 2004.

[24] P. Kandil, S. Moussa, and N. Badr. A methodology for regression testing reduction
and prioritization of agile releases. In 2015 5th International Conference on Information
Communication Technology and Accessibility (ICTA), pages 1–6, Dec 2015.

[25] H. K. N. Leung and L. White. Insights into regression testing (software testing). In
Proceedings. Conference on Software Maintenance - 1989, pages 60–69, Oct 1989.

50

http://agilemanifesto.org

BIBLIOGRAPHY

[26] B. A. Myers. Human-Centered Methods for Improving API Usability. In 2017 IEEE/ACM
1st International Workshop on API Usage and Evolution (WAPI), pages 2–2, May 2017.

[27] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler. The art of software testing. 2
edition, 2004.

[28] B. Regnell P. Runeson, M. Höst. Att genomföra examensarbete. 2006.

[29] A. Rauf and M. AlGhafees. Gap Analysis between State of Practice and State of Art
Practices in Agile Software Development. In 2015 Agile Conference, pages 102–106, Aug
2015.

[30] R. H. Rosero, O. S. Gómez, and G. Rodríguez. An approach for regression testing of
database applications in incremental development settings. In 2017 6th International
Conference on Software Process Improvement (CIMPS), pages 1–4, Oct 2017.

[31] P. Runeson and M. Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2):131, Dec 2008.

[32] S. Saito, Y. Iimura, A. K. Massey, and A. I. Antón. How Much Undocumented Knowl-
edge is there in Agile Software Development?: Case Study on Industrial Project Using
Issue Tracking System and Version Control System. In 2017 IEEE 25th International Re-
quirements Engineering Conference (RE), pages 194–203, Sept 2017.

[33] C. Sharma and S. Singh. Mechanism for identification of duplicate test cases. In Inter-
national Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), pages
1–5, May 2014.

[34] H. Suganuma, K. Nakamura, and T. Syomura. Test operation-driven approach on build-
ing regression testing environment. In 25th Annual International Computer Software and
Applications Conference. COMPSAC 2001, pages 323–328, Oct 2001.

[35] D. Talby, A. Keren, O. Hazzan, and Y. Dubinsky. Agile software testing in a large-scale
project. IEEE Software, 23(4):30–37, July 2006.

[36] Wikipedia. Application programming interface — Wikipedia, The Free En-
cyclopedia. http://en.wikipedia.org/w/index.php?title=Application%
20programming%20interface&oldid=850975267, 2018. [Online; accessed 24-July-
2018].

51

http://en.wikipedia.org/w/index.php?title=Application%20programming%20interface&oldid=850975267
http://en.wikipedia.org/w/index.php?title=Application%20programming%20interface&oldid=850975267

BIBLIOGRAPHY

52

Appendices

53

Appendix A

Interview Protocol

The interviews were carried out both in English and Swedish. In the case of Swedish the
questions were translated of hand. Subitems represent sought information rather than actual
questions.

1. What is your name and age?

2. What is you background?

2.1. Academic

2.2. Work, type and not necessarily where.

3. Where in the company do you work?

3.1. Employee or consultant?

3.2. Previous positions within the company?

3.3. Work tasks/duties/responsibilities?

4. How is your team comprised?

4.1. How is the sta�ng level on your team?

4.2. What roles do your team members have?

4.3. What are their levels of experience? Senior/junior

5. What projects do you work on?

5.1. Who are involved in your projects?

5.2. Are all the members of your team involved in the same projects?

5.3. What parts of the development structure do you work on?

55

A. Interview Protocol

6. Do your applications have any dependencies on software (e.g. web based api) that a
di�erent team in axis is the developers of?

7. How would you describe the purpose of regression testing?

7.1. What benefits does it bring your development team?

8. How is regression testing planned in your projects?

8.1. How is the workflow setup, does it di�er between projects?

8.2. Who is involved in the testing and regression testing activities?

8.3. Are the requirements linked to the test selection?

9. Are the dependencies a part of the test context? And if so how are the results handled?

10. How is responsibility distributed?

10.1. Is it explicitly delegated or implicitly?

11. Is it planned alongside other testing activities?

11.1. Is the same person responsible for planning the other testing as well?

12. How does quality assurance factor in to the regression testing workflow?

12.1. Expertise, code review, explicit measures?

12.2. Is the quality assurance verified by someone else than the one responsible for
planning?

13. What are the challenges you have encountered with regression testing?

13.1. What is going well and what is in need of improving?

14. When is software testing performed in your projects?

15. When is regression testing performed in your projects?

15.1. How is it iterated?

15.2. How is regression testing activities followed up during the course of the devel-
opment plan?

16. What tools are used during regression testing activities?

16.1. Are there separate tools for planning, exec and reporting or are they a suite?

16.2. How are the results reported/used?

17. Is there anything you want to add?

56

DEPARTMENT FOR COMPUTER SCIENCE | LUND UNIVERSITY | PRESENTED 2019-02-07

MASTERS THESIS Automated Cooperative API Regression Testing Using Jenkins
A Design Science Study at Axis Communications
STUDENTS Filip Olsson, Philip Ridderheim
SUPERVISORS Per Runeson (LTH), David Vagnell (Axis Communications)
EXAMINER Emelie Engström (LTH)

Using cooperative regression testing to
shorten validation times in API
development

POPULAR SCIENCE PAPER Filip Olsson, Philip Ridderheim

In application development the usage of APIs have become commonplace. This de-
pendency can be detrimental if a new API version introduces unexpected behaviour in
the applications consuming it. This work describes how to enable consumer validation
of API releases using a workflow aimed at reducing the validation time.

Regression testing is a type of testing that is used
to find unintended changes to already established
functionality, so called regressions. In agile de-
velopment regression testing is important as re-
quirements change in a more rapid pace than in
traditional development. Adding APIs that might
have different development cycles creates the ne-
cessity for a thought through workflow. One that
enables both the developers of the API and its con-
sumers to streamline the regression testing process
while still enabling communication and feedback
between them to work.
After researching the current regression testing

practices at Axis Communications a workflow was
designed to shorten the validation time for API
releases. The designed workflow was put to the
test with a proof of concept implementation using
the automation server Jenkins, see figure 1. Jenk-
ins enables jobs (tasks) to be chained together in
order to automate processes.
The purpose of the workflow is to leverage re-

gression tests already implemented for the con-
sumers applications when testing for regressions in
the API. The process of having the consumers also

test for regressions serves as a validation that the
new version of the API has not caused any regres-
sions in the consumers’ applications. The process
is automating this process shortens the validation
time.

The development teams involved in the proof of
concept implementation considered that the im-
plementation had achieved its goal.

Figure 1: The workflow implemented using Jenk-
ins jobs.

	Introduction
	Background
	Case Description
	Limitations
	Outline

	Theory
	Introduction
	Testing and Regression Testing
	Agile Software Development
	Configuration Management
	API - Application Programming Interface
	Related Work

	Research Method
	Case Company
	Problem Statement and Objectives
	Research Questions
	Research Method
	Exploring Problem Areas
	Interviews
	Focus Group

	Designing an Artifact
	Artifact Evaluation

	Identification of Problem Areas
	Interviews
	Participants
	Observations
	Conclusions
	Technical Variables and Limitations
	Generalization of the Current Workflow Regarding API Releases

	Focus group
	Participants
	Discussion
	Validation of the Focus Group Findings
	Technical Variables and Limitations

	Design
	Possible Solutions
	Requested Consumer Blackbox API Regression Testing Against Stage Environment
	Triggered Consumer Blackbox API Regression Testing Against Stage Environment
	Inter-group Time Limited Exchange of Testers

	Summary

	Implementation
	Technical Environment
	Jenkins
	Version Control
	Programming Language

	Workflow
	First Implementation Design
	Second Implementation Design

	Results and Evaluation
	Evaluation Process
	Evaluation Meeting
	Participants
	Results and Validation

	Questionnaire
	Participants
	Results and Validity

	Conclusions
	Future Work
	Bibliography
	Appendix Interview Protocol
	Tom sida

