
MASTER’S THESIS 2019

E�cient Deep Learning
Architectures for
Super-Resolution
Adam Thuvesen

ISSN 1650-2884

LU-CS-EX 2019-23

DEPARTMENT OF COMPUTER SCIENCE

LTH | LUND UNIVERSITY

EXAMENSARBETE

Datavetenskap

LU-CS-EX 2019-23

E�cient Deep Learning Architectures for
Super-Resolution

Adam Thuvesen

E�cient Deep Learning Architectures for
Super-Resolution

(Evaluation and Design)

Adam Thuvesen
dic14ath@student.lu.se

October 2, 2019

Master’s thesis work carried out at Sony Mobile in Lund.

Supervisors: Volker Krüger, volker.krueger@cs.lth.se

Sebastian Raase, sebastian.raase@sony.com

Examiner: Pierre Nugues, pierre.nugues@cs.lth.se

Abstract

The purpose of this thesis was to analyze e�cient neural network architec-
tures for Super-Resolution. This is a technique used to upscale low resolution
images to high resolution. In recent years rapid development has been made
with the use of deep convolutional neural networks. Although the networks have
achieved impressive visual upscaling performance they have as a consequence also
been very deep, resulting in large and slow networks. This has led to di�culties
in applying them in real-world applications.

Therefore, the focus of this thesis has been on small and e�cient network
architectures. The work was divided into a two step process. First, we performed
an extensive quantitative evaluation of di�erent techniques. Then we designed a
model based on the most promising empirical data. The model was assessed with
quantifiable practical and visual metrics. In this lightweight network category,
themodel achieved satisfying results with similar practical performance but with
superior visual quality compared to other models employing e�cient state-of-
the-art techniques. Subjectively, the perceptual quality of the upscaled images is
high, clearly outperforming traditional methods such as B-spline interpolation.
Finally, we also showed that it is possible to prime the network towards di�erent
visual objectives by adapting the loss function and achieve a greater degree of
customizability.

Keywords: Super-Resolution, Machine Learning, Deep Learning, Convolutional Neural

Networks, E�cient Architectures

2

Acknowledgements

First I would like to thankVolker Krüger as supervisor for his general support andmeaningful
discussion throughout this thesis. I would also like to thank Sebastian Raase at Sony for all
the good feedback on the report. Lastly, thanks to Sony and the camera team which provided
a friendly and helpful environment for this work.

3

4

Contents

1 Introduction 9

1.1 Super-Resolution . 9

1.2 Research Problem . 9

1.3 Previous Research . 10

1.4 Layout . 13

2 Background 15

2.1 Single Image Super-Resolution . 15

2.2 Machine Learning . 16

2.2.1 Loss Function . 17

2.2.2 Artificial Neural Network . 17

2.2.3 Convolutional Neural Network . 17

2.2.4 Activation Function . 19

2.2.5 Depthwise Separable Convolution 20

2.2.6 Grouped Convolution . 21

2.2.7 Linear Low-Rank Convolution . 21

2.2.8 Upsampling Layer . 21

2.2.9 Bottleneck Layer . 21

2.2.10 Expansion Layer . 22

2.2.11 Residual Block . 23

2.2.12 MobileNet Block . 24

2.2.13 WDSR Block . 25

2.2.14 SRDenseNet Block . 26

2.2.15 ResNeXt Block . 26

2.2.16 SqueezeNet Block . 27

2.2.17 Cascading Mechanism . 28

2.2.18 General Adversarial Network . 28

2.2.19 Network Interpolation . 30

5

CONTENTS

3 Method 31
3.1 Approach . 31

3.1.1 Evaluation . 31
3.1.2 Design . 33

3.2 Data set . 35
3.3 Training . 35

3.3.1 General Adversarial Network . 36
3.4 Setup . 36
3.5 Evaluation . 36

3.5.1 Method . 36
3.5.2 Metrics . 37
3.5.3 Metric limitations . 37

4 Result 39
4.1 Evaluation . 39

4.1.1 Residual Blocks . 39
4.1.2 Kernels . 41
4.1.3 Residual Blocks or Kernels . 43
4.1.4 Activation Function . 44
4.1.5 Residuals . 44
4.1.6 Expansion Layer . 45
4.1.7 Bottleneck Layer . 45
4.1.8 Depthwise Separable Convolution 46
4.1.9 Grouped Convolution . 47
4.1.10 Linear Low-Rank Convolution . 48
4.1.11 Block Structure . 49
4.1.12 WDSR Block . 49
4.1.13 MobileNet Block . 50
4.1.14 SRDenseNet Block . 51
4.1.15 ResNeXt Block . 52
4.1.16 SqueezeNet Block . 53
4.1.17 Cascading Mechanism . 54
4.1.18 Summary of Findings . 56

4.2 Design . 58
4.2.1 Proposed Model - Dense WDSR . 58
4.2.2 Images . 62
4.2.3 Comparison to Large Networks . 68

5 Discussion 71
5.1 E�ciency . 71
5.2 Visual Quality . 72
5.3 Assessment Criteria . 73
5.4 Training . 74
5.5 Applicability . 75
5.6 Improvements . 76

6 Conclusion 77

6

CONTENTS

Bibliography 79

Appendix A Evaluation Details 85
A.1 Evaluation Details . 85

A.1.1 Evaluation of Techniques . 85
A.1.2 Evaluation of The Proposed Model 88

Appendix B Additional Images 91
B.1 Mean Absolute Error Loss . 92
B.2 Content Loss . 93
B.3 General Adversarial Network (Perceptual Loss) 94
B.4 Network Interpolation . 95
B.5 Comparison Side-by-side . 96

7

CONTENTS

8

Chapter 1

Introduction

This chapter gives an introduction to the thesis, including an initial explanation of the topic
and the purpose of this work. It states the research problem and describes the previous re-
search. This includes an overview over the most relevant terminology and concepts, where
the most important ones will be explained in more detail in the background chapter. At last,
the outline of the report is explained.

1.1 Super-Resolution

Super-resolution (SR) is a technique used to enhance the resolution of an image. Increasing
the resolution of an a low resolution image is a notoriously challenging problem due to the
fact that it could correspond to multiple high resolution images. This has been proven to be
an intractable problem [3]. The field of super-resolution has been gaining attention in recent
years because of great improvements in image reconstruction quality. The technique can be
applied to a wide variety of areas, such as flight and satellite imaging, medical image analysis,
video streaming and surveillance. The field can be divided into single-image super-resolution
(SISR) and multi-image super-resolution (MISR). This thesis focus is on SISR due to its higher
e�ciency.

1.2 Research Problem

The purpose of this thesis is to analyze e�cient neural network architectures for super-
resolution; specifically focusing on model size, run time and still maintaining high visual
quality of the upscaled images. In recent years great progress has been made. However, the
models have been getting larger and larger; from the first successful network with 3 layers
to the recent ones with 160 layers [18]. Consequently, the models have been computation-
ally demanding, being both large and slow to run. With the rise of mobile phones and the

9

1. Introduction

Internet-of-Things (IoT), there is an increasing interest in building faster and smaller models.
This is crucial to apply deep learning solutions for super-resolution to real-world applications
where the memory and computational resources are limited. Currently, these solutions are
still mainly in research.

This thesis can be divided into two parts: evaluation and design. The objective of the
evaluation is to analyze di�erent neural network architecture for super-resolution. Then,
based on this evaluation the goal is to use the most successful techniques to design a small and
e�cient network. Hence, we want to investigate if super-resolution is applicable to these
light networks and if so, how could you design such e�cient architectures?

The objective was to find a suitable balance between the practical performance (like the
number of parameters of the model and the run time of the upscaling procedure) and the
visual performance (the quality of the generated image). By basing the network on an exten-
sive evaluation of di�erent techniques, we also get a better understanding of why a network
performs as it does, an area in deep learning which generally is overlooked. To evaluate the
success of the proposed model, existing super-resolution networks will be compared. These
will be assessed using the most common image reconstruction metrics. However, judging
quality of images is inherently subjective. Therefore a qualitative, i.e. visual, evaluation is
also performed. Finally, we investigate the possibility of customization. The purpose of this
was to see to what extent it is possible to prime the model to generate images with di�erent
visual objectives. This would ease the deployment to fields where the image requirements
might di�er substantially.

1.3 Previous Research

The research field of deep learning solutions for computer vision tasks exploded after the ap-
pearance of AlexNet in 2012 [16]. The proposed convolutional neural network (CNN) showed
tremendous performance enhancement compared to previous methods for object classifica-
tion. This led to research into deep learning methods in a wide variety of other computer
vision tasks, including super-resolution. To get an idea of the exponential increase in interest
of convolutional neural networks see Fig. 1.1 where the Google searches for the term is shown
over time.

Figure 1.1: Google searches for "convolutional neu-
ral network" since 2004 (Data source: Google Trends
(https://www.google.com/trends)).

10

1.3 Previous Research

In 2014, the CNN was successfully applied to super-resolution for the first time [4]. The
network consisted of only three layers: a feature extraction layer, a non-linear mapping layer
and a reconstruction layer. The network, called Super-Resolution Convolutional Neural Network
(SRCNN), approximated the complex mapping between a low resolution input image and
a high resolution target image and achieved state-of-the-art performance compared to the
traditional methods, such as B-spline interpolation. This marked a shift in super-resolution
research towards deep learning methods. Since then, many e�cient network architectures
and techniques have been suggested. In this report, the architecture is defined as the entire
network structure and techniques is used as a broad umbrella term for various improvement
methods for the network, such as applying certain layer types and operators (more about this
in the background chapter).

A year later, the Fast Super-Resolution Convolutional Neural Network (FSRCNN) was pro-
posed. This was the first network to use the transposed convolutional operator (also known as
deconvolution) which is a backward convolutional operator. Thus, instead of upsampling the
input image it downsamples it to a lower dimension. This made it possible to train the model
on small images and scale up the images in the end [5]. This idea was improved with the E�-
cient Sub-Pixel Convolutional Neural Network (ESPCN) in which the deconvolutional layer was
substituted with the sub-pixel-convolutional layer; a similar but more e�cient upsampling
technique [25] which now is the standard. This method expands the input in channel domain
(depth) instead of in spatial domain (width and height) and then reorganizes the output in
accordance to a given mapping criteria.

Kim et al. presented a learning method for training very deep networks called residual
learning [13] in 2015. The model, called Very Deep Super Resolution (VDSR), used shortcut
connections which are connections that skips one or more layers. These were used to build
a so-called residual block. Instead of learning the true mapping between the low resolution
image and high resolution image directly, with residual learning the network tries to learn the
residual (di�erence) between the two. This was expanded further when researchers proposed
the Residual Convolutional Neural Network (ResNet), which used residual learning to build an
even deeper model containing 152 layers [7]. This network has been a popular foundation for
new networks since. Although this model initially was developed for image classification (as
many are) it has been popular as a base for super-resolution as well.

Mark Sandler et al. released a model type particularly focused on being small and fast in
2016. Two versions have been proposed: MobileNetV1 and MobileNetV2 [9][24]. These mod-
els’ main purpose have been visual tasks like image classification and image detection. The
latter network introduced a new interesting concept: the inverted residual block with linear
bottlenecks. This was a residual block with shortcut connections between the thin feature
maps (meaning low number of feature maps) instead of the thick (meaning high number of
feature maps) allowing the model to use a lower number of kernels. The linear bottlenecks
were used to drastically reduce the computational complexity. Furthermore, it applied the
use of depthwise separable convolution which is a factorized type of convolutional operator
that divides the convolution into two smaller sub-parts.

After multiple publications had proven the utility of shortcut connections, Huang et
al. evolved them by connecting each layer with all preceding layers [10]. By using densely
connected layers, the Dense Convolutional Neural Network (DenseNet) improved feature propa-
gation and reduced the number of parameters significantly. Also, it alleviated the vanishing
gradient problem. This is a common problem that may appear when training a network if the

11

1. Introduction

gradient becomes too small, preventing the weights from updating its values. This basically
stops the model from improving. The use of densely connected layers was later developed
and adapted for super-resolution resulting in the Super-Resolution Dense Convolutional Neu-
ral Network (SRDenseNet) which employed similar ideas [26]. This was shown to be a very
computationally e�ective approach for super-resolution as well.

Xie et al. proposed an e�cient aggregated residual transformation block in 2016. This
block used cardinality groups and performed the convolution cardinality-wise [28]. The idea
was to exploit wideness instead of deepness and performing the convolution in parallel. To
do this they used the grouped convolution operation, first proposed in AlexNet in 2012 [16].
This block consisted of three parts: splitting the input feature maps into smaller groups,
transforming each group through convolution and aggregating the output. The model, called
ResNeXt, came second in the ILSVRC 2016 competition in object classification.

The same year N. Indola et al. published the work of a small network called SqueezeNet
[11]. The model used blocks with an initial expansion of features followed by a compression
of features. The block was divided into two paths, one for gaining information from the
spatial domain and one in the channel domain. This proved to work very well, decreasing
the overall computational cost and still keeping the accuracy high.

In 2017, Lim et al. won the NTIRE 2017 super-resolution competition with their En-
hanced Deep Super-Resolution Network (EDSR) [18]. This became the new state-of-the-art by a
large margin and the model brought a few new ideas. The most important one was a simpli-
fication of the blocks by removing batch normalization layers. Batch normalization is used
to normalize the weights with the purpose of speeding up training. These were previously
used extensively in deep networks but was proved to distort the quality in super-resolution
networks. A second improvement was to significantly increase the depth of the output fea-
ture space, i.e. the number of feature maps in each layer. This was followed up the year after
in the NTIRE 2018 super-resolution competition when the Wide Deep Super-Resolution Net-
work (WDSR) won and achieved new state-of-the-art performance [30]. Yu et al. proposed
an EDSR-like network architecture but with higher e�ciency and accuracy. They applied
the use of expansion layers before activation functions which enabled a greater degree of
information gain. This was combined with compressing the expanded features with linear
low-rank convolution. This enabled the network to have very thin residual mappings. They
also trained with weight normalization which is a technique used for reparameterization of
the weight vectors, allowing higher learning rates.

Another noticeable network in the same competition was the Cascading Residual Network
(CARN) [2]. This was a residual network with a novel cascading mechanism applied both
locally between residual blocks and globally between CARN-blocks. This mechanism re-
sembles the densely connected layers seen in SRDenseNet. The authors’ focused not only on
an e�cient structure but also speed which is an area with limited research.

In 2016 Ledig et al. developed a new innovative approach of solving the task of super-
resolution. The purpose was to specifically improve recovering fine details, which has been a
di�cult problem for conventional methods [17]. The researchers developed a super-resolution
general adversarial network (SRGAN) and a perceptual loss function. Instead of using a pixel-
wise loss which is the standard approach the perceptual loss measures the Euclidean distance
in high-level feature space between the network being trained and a pre-trained network.
This approach was successful and showed great improvement of recreating photo-realistic
images which are visually more pleasing.

12

1.4 Layout

1.4 Layout

This report is divided into 6 chapters. This chapter contains the introduction to the topic
and a brief overview over previous research. Chapter 2 is the background chapter includ-
ing all necessary theory. It specifically covers the explanation of all the various techniques
mentioned here in the previous research section and which later will be used in the eval-
uation. Chapter 3 explains the method in detail. Here is information about the general
approach, evaluation, design, data set and training described. Thereafter is the result pre-
sented in Chapter 4. The result chapter is divided into an evaluation part and a design part.
The former contains the empirical data gathered from the evaluation. The latter contains
the proposed network, including quantitative metrics regarding general performance and
qualitative data in the form of the generated images. This is followed up in Chapter 5 by a
discussion where di�erent aspects are analyzed, such as e�ciency, training and applicability.
Finally, in Chapter 6 the conclusion is presented.

13

1. Introduction

14

Chapter 2

Background

This chapter contains the theory. This includes relevant terminology and background infor-
mation of which this thesis work builds upon. This part includes an initial overview over the
topic and a step-wise walk-through towards more specific techniques for building small and
e�cient architectures.

2.1 Single Image Super-Resolution

Single image super-resolution (SISR) is a technique used to obtain a high resolution image
from a single low resolution image (for convenience super-resolution and single image super-
resolution will be used interchangeably). This is a very challenging problem since the low
resolution image could correspond to various high resolution images [29].

There are three di�erent categories of approaches to solve this problem. The first are
interpolation-based methods such as B-spline interpolation. This simple traditional method
has been widely used for a long time. The advantage of this method is speed but it severely
lacks in accuracy [29].

The second approach is based on reconstruction. These methods rely heavily on a priori
knowledge regarding imaging properties to specify an output space. In general, this approach
is superior to the first but is often complex and the performance decreases quickly when the
scale factor increases [29].

The third method are learning based methods. Learning-based methods have been gain-
ing more attention in recent years, see for instance the work by He et al. (2015), Huang et al.
(2016) and Lim et al. (2017) and is now dominant in research due to their general superior
performance [29]. The idea is to use a mathematical approach by exploiting the statistical
relations between low and high resolution images. To analyze these mappings a data set of
low resolution input images and corresponding high resolution targets is needed. Generally,
di�erent classes of machine learning algorithms are applied to find these mappings. The
most successful approach in super-resolution has been the use of neural networks. A simple

15

2. Background

schematic overview of the process is shown in Fig. 2.1 where the network takes an input im-
age and upscales it to a higher resolution. This learning-based method with the use of neural
networks is what will be used in this work. Approaching the problem from an e�ciency
standpoint, defined as a network with low practical metrics (model size and run time) and
high visual metrics (the image reconstruction quality), leads to the question of how to build
these models. There are two main approaches: focus on an e�ective architectural design or
apply transfer-learning. Transfer-learning is a way of transferring the knowledge obtained
by one model (e.g. a large one) to another model (e.g. a small one). This work is dedicated to
the first approach since this attacks the problem explicitly.

Network

Low resolution
 input image

Network upscaling
the resolution

High resolution
output image

Figure 2.1: A schematic overview over super-resolution where a net-
work takes a low resolution image as input and outputs a corre-
sponding high resolution image.

2.2 Machine Learning

Machine learning (ML) is a branch of the broader field of artificial intelligence (AI). The core
concept of machine learning is to let the models learn by themselves and without being ex-
plicitly programmed on how to solve a problem. The fundamental resource for such a model
is data. These mathematical models use algorithms and statistics to find patterns and rela-
tions in the data to gain knowledge. Thus, the quality of the data is crucial to build excellent
models generalizing well to new data.

There are di�erent categories of machine learning methods, such as supervised learning,
unsupervised learning and reinforcement learning. In this work supervised learning will be the
approach since this is what super-resolution mainly relies on. Supervised learning can be
divided into two separate stages: training and prediction. For the training stage, a labeled
data set is required. Each data sample in such a set consists of a pair, where each input has a
corresponding output class. The model is trained to find the mappings between the two to
be able to predict from a given input what the correct output should be. Formally this can
be defined as given a data set D with n samples in the form of {(~x1, y1), ..., (~xn, yn)}, where
~xi is the input feature vector and yi the corresponding class, the model searches to learn the
approximator function f (~x) = y. An example of this could be a cat breed classifier, where
the input ~x is an image of a cat and the corresponding class y is the breed. Once the model
has been trained it can be applied to new data for prediction [6].

16

2.2 Machine Learning

2.2.1 Loss Function

The loss function (or optimization function) is a core component of a machine learning model
and it is what the model uses to improve the performance. By minimizing the loss function
the di�erence between the model prediction and correct prediction decreases, leading to
better accuracy. There are many di�erent types of loss functions and one of most widely
adopted for imaging tasks is the mean squared error (MSE) [29]. The mathematical definition
looks like this:

MSE =
1

M N

M−1
∑

x=0

N−1
∑

y=0

[I(x, y) − J(x, y)]2 (2.1)

where I is the target image and J the predicted image, both with the spatial dimensions M

x N (width and height). It is a pixel-wise measurement of the di�erences between the two
images.

A similar loss function is the mean absolute error (MAE). Instead of squaring the pixel
di�erences we compute the absolute value between them. It is defined as follows:

MAE =
1

M N

M−1
∑

x=0

N−1
∑

y=0

|I(x, y) − J(x, y)| (2.2)

where the variables are defined as in Eq. 2.10. The main di�erence between MSE and MAE
is that since the former squares the di�erence between the predicted value and the correct,
the relative error has a higher influence on it (if it is larger than one). This makes it useful if
large errors are regarded as much more costly than equivalent small errors. If this is not the
case MAE is more robust since it will not being a�ected as much.

2.2.2 Artificial Neural Network

An artificial neural network (ANN) is a machine learning framework heavily inspired by the
human brain. It consists of artificial neurons which are connected in layers to enable infor-
mation to flow through the network. At each neuron a computation is made with the use
of an activation function, which processes the input and generates an output. With the use of
a non-linear activation function the network can learn complex non-linear mappings. Each
neuron also has a weight assigned to it. This weight represent the importance of the node in
the structure and will be adjusted during training to adapt the network to the given task. The
network can therefore be seen as a universal approximator function, by updating the weights
any sophisticated function can theoretically be mapped - this is the main power of the ANN.
The network shown in Fig. 2.2 has four layers and the data flows from the input neurons to
the left, through the hidden layers in the middle, to the output neuron on the right. Using a
single output neuron like in this case, the network produces a final binary output prediction
[22].

2.2.3 Convolutional Neural Network

A convolutional neural network (CNN) is a certain type of ANN, particularly suitable for solv-
ing computer vision tasks. The architecture is inspired by the visual cortex in the brain, which

17

2. Background

Figure 2.2: An artificial neural network with four layers, one input
layer with 10 neurons, two hidden layers with 5 neurons each and an
output layer with 1 neuron.

organizes the neural connections to only respond to input in a restricted area of the visual
field (the receptive field). This allows the network to have a very e�cient shared-weight
structure [6].

The most important part of a CNN is the convolutional operator (the term operator will
be used as a general term for describing various types of convolutions). Convolution is a
mathematical operation which produces a new integrable summation function by letting
two input functions interact. The interaction can be seen as geometrically sliding one over
the other. The continuous version can be defined as:

h(t) = (f ∗ g)(t) =

∫ ∞

−∞
f (τ)g(t − τ) dτ =

∫ ∞

−∞
f (t − τ)g(τ) dτ (2.3)

where f and g are two integrable functions, t is the time, τ is the shift and h(t) the new inte-
grable function. With images the discrete version is applicable and can formally be expressed
as follows:

h(n) = (f ∗ g)[n] =

∞
∑

m=−∞
f [m]g[n − m] =

∞
∑

n=−∞
f [n − m]g[m] (2.4)

where f and g are two discrete functions and h(n) the convoluted result. An example of the
operation is shown in Fig. 2.3. In this figure the first function can be seen as the input image,
the second function as the kernel (also known as filter) and the result is the output feature map.

In a CNN this operation is computed multiple times at each convolutional layer with
di�erent kernels. This allow the network to get a feature representation of the image focusing
on di�erent parts, where one kernel could be designed as a filter for certain edges and another
for specific lines. Together these feature maps can be seen as the knowledge gained by the
network at each layer. For each layer there is also an increasing level of abstraction.

The perhaps second most important part of a CNN is the activation function. This func-
tion is employed in between convolutional layers with the purpose of, as previously men-

18

2.2 Machine Learning

0
0
0
0
0
0
1

1
0
0
0
0
1
1

1
1
0
1
1
1
0

1
1
1
1
1
1
0

0
1
1
1
1
1
0

0
0
1
0
0
0
0

0
0
0
0
0
0
0

1 1
1
1

1
1

1
1

1 1 1
1
1

1
0

0
0

0

4 3 4 1
1
1
1
3

2
2
3
3

4
3
3
1

3
4
1
1

3
1
1
0

1

3

0 1
0
1

1
0

0
1

1

* =

Image Kernel Feature map

Figure 2.3: A visualization of how the convolutional operator works
given an image I , a kernel K and the output feature map I ∗ K .

Image Kernels Feature maps

Figure 2.4: A convolutional operation in a CNN: an input image
with three channels (RGB) which is passed through a convolutional
layer with 5 di�erent kernels and outputs 15 feature maps.

tioned, allow the network to learn complex non-linear mappings. This is crucial for success-
fully upscaling images to higher resolutions.

2.2.4 Activation Function

The activation function defines the output of a neuron by taking the input and mapping
it to a defined output space. There are many di�erent activation function, each with their
own advantages and disadvantages. Some of the most popular are the binary step function, the
logistic function and the rectified linear unit (ReLU). ReLU has gaining in popularity in recent
years due to its speed and was in 2017 the most popular one for deep neural networks. The
ReLU is defined as:

f (x) = x+ = max(0, x) (2.5)

hence, it outputs zero for negative input values and x otherwise. A non-linear activation
function such as the ReLU allows the model to learn complex non-linear mappings.

19

2. Background

2.2.5 Depthwise Separable Convolution

A standard convolution is applied to both the spatial dimensions and the channel dimension
simultaneously. Given an image of height H , width W and N color channels, the standard
convolutional operator with M kernels of size K · K and M output channels would have the
computational cost:

C = H ·W · N · K2 · M (2.6)

This operator is thus proportional to H, W, N, M and
√

K .
Depthwise separable convolution is another type of convolutional operator. It is a factor-

ized convolution which divides it into two steps: one for the spatial domain (depthwise) and
one for the channel domain (pointwise). First the depthwise convolution performs the op-
eration on each input channel independently. Then, a 1x1 pointwise convolution is applied
that blends the channels by computing linear combinations between them (a 1x1 pointwise
convolution meaning a convolution with a kernel size of 1x1) [24]. Thus, the first step can
be regarded as a spatial filtering for the width and height and the second as an depthwise
expansion in channel domain.

32
feature
maps

32
feature
maps

Depthwise spatial
separable convolution (3x3)

32
feature
maps

128 feature maps

Pointwise convolution (1x1)

Figure 2.5: Depthwise separable convolution visualized in two steps.
First in the spatial domain (left) and then in the channel domain
(right).

The computational cost for the depthwise convolution is:

C1 = H ·W · N · K2 (2.7)

and for the pointwise convolution:

C2 = H ·W · N · M (2.8)

giving the total cost as the sum of the two:

C = C1 +C2 = (H ·W · N · K2) + (H ·W · N · M) = H ·W · N · (K2 + M) (2.9)

where M ≫ K2. With common values for the output channel, e.g. M = 64 and K = 3,
the computational cost decreases with a factor of about 1/8 compared to the standard op-
erator. It should be noted that with such a big decrease in computational complexity, the
drawback of this operation is often a reduction in accuracy. This trade-o� between compu-
tational complexity and visual performance is very common.

An example of this operation can be visualized in Fig. 2.5 where the left part is the
depthwise convolution and the right part the pointwise convolution. In the figure the parts

20

2.2 Machine Learning

coloured in blue are the feature maps, i.e. the representation of the image at that stage, and
the parts coloured in green are the convolutional layers.

2.2.6 Grouped Convolution

The grouped convolution is another e�cient operator which is quite similar to the depthwise
separable convolution. In grouped convolution the channels of the feature maps are divided
into groups and the operation is performed group-wise. With the same previously defined
variables in Section 2.2.5 above, the computational cost with a group size of G is:

C =
H ·W · N · K2 · M

G
(2.10)

where H ·W ·N ·K2 ·M ≫ G. This results in an approximate 1/G decrease in computational
cost compared to the standard operator [2]. But just as with depthwise separable convolution
the drawback is a possible decrease in visual performance.

2.2.7 Linear Low-Rank Convolution

Linear low-rank convolution is another form of convolutional operator that is based on a spe-
cific type of factorization. The main idea is to factorize a large convolutional kernel into two
smaller. This operation stacks a 1x1 pointwise convolution to reduce the number of feature
maps, with a 3x3 convolution for the spatial feature extraction. This operator has specifically
been shown to reduce the model size e�ectively, enabling the network to be deeper or wider
with an equal parameter budget. Therefore, it basically functions as a form of bottleneck
layer (more about bottleneck layers in Section 2.2.9 below) [30].

2.2.8 Upsampling Layer

To upscale the resolution of an image, the model must apply an upsampling layer to increase
the spatial dimensions. One such layer is the transposed convolutional layer. This is basically
an inverted convolutional operator, mapping the input feature from a lower dimension to a
higher dimension. It does this by first expanding the input in the spatial domain and then
performing a normal convolution, as shown in Fig. 2.6. The most popular technique is the
more e�cient sub-pixel convolutional layer [25], shown in Fig. 2.7. The sub-pixel convolution
does not explicitly increase the spatial dimensions of each feature map as in the transposed
layer. Instead it exploits the channel domain by expanding it and then restructure the output
through a mapping criteria. The input is the low resolution feature map and the output
after the mapping is the high resolution feature map. This decreases the total computation
compared to the transposed convolution.

2.2.9 Bottleneck Layer

A bottleneck layer is used to compress the feature representation to a lower dimension [24],
or more simply put: reduce the number of feature maps. This can be achieved by adding
a convolutional layer with fewer feature maps as output than input. The purpose of this

21

2. Background

1. Initial feature map 2. Expansion in spatial
domain (width and height)

3. Convolution to get a the upscaled
outputted feature map

Figure 2.6: Transposed convolution.

1. Initial feature map 2. Expansion in
channel domain

3. Reorganize to get
 the upscaled outputted feature map

Figure 2.7: Sub-pixel convolution.

operation is to decrease the computational complexity and make the network more e�cient.
The drawback being that it also leads to less information being gained, leading to a possible
loss in accuracy.

64 feature
maps

3x3 Convolution

Bottleneck layer

32 feature maps

Figure 2.8: A bottleneck layer reducing the number of feature maps.

Another type of bottleneck layer is the 1x1 pointwise convolution. This is a convolutional
layer with a kernel size of 1x1. This means that it does not perform any feature extraction
in the spatial dimension but only the channel dimension. This operator does not reduce the
number of feature maps but greatly decreases the computational cost by the small kernel
size and can therefore be regarded as a computational bottleneck layer. In 2.8 a standard
bottleneck layer is shown, here reducing the number of feature maps by half.

2.2.10 Expansion Layer

An expansion layer is basically the opposite to a bottleneck layer. Instead of compressing
the feature representation to a lower dimensional space, an expansion layer increases it to a

22

2.2 Machine Learning

higher dimensional space [30].

64 feature
maps 128 feature maps

3x3 Convolution

Expansion layer

Figure 2.9: A3x3 convolutional layer with a 2 times expansion factor.

See Fig. 2.9 for a visualization where the feature dimension increases by a factor of 2, i.e.
the number of feature maps, through a 3x3 convolutional expansion layer (a 3x3 convolution
meaning a convolution with a kernel size of 3x3). The advantage of using a higher number of
feature maps is that it allows the network to compute more representations and gain more
information which leads to improved visual performance. The drawback is that it increases
the computational complexity, hence the expansion factor is often employed in conjunction
with some sort of bottleneck layer.

2.2.11 Residual Block

The residual block (also referred to as just a block) are for many networks the foundational
building stone. A block can be defined as a small coherent structure of multiple layers and
activation functions. These are stacked consecutively multiple times forming the main struc-
ture of the network. While standard blocks only transform the input to output, a residual
block forwards both its inputs and its outputs. The input thus skips a layer. This type of
connection is called a shortcut connection or (skip connection) and is used extensively in deep
networks. With an input x (identity mapping) and the true mapping y(x), the standard block
would try to learn the mapping function h(x) = y(x). In a residual block, it would instead
try to map h(x) = r(x) as:

r(x) = Output − Input = y(x) − x (2.11)

In other words, it tries to learn the residual r(x) - the di�erence between the input and
output. The benefit of this approach is that it has been observed to enable deeper networks
as well as increased accuracy.

23

2. Background

Layer

+

x

r(x)	=	y(x)	-	x

y(x) identity
mapping

Figure 2.10: A residual layer.

One reason for this is that for a small residual r(x), the true output y(x) is approximately
equal to the input x which is easy to compute [7]. A residual layer can be seen in Fig. 2.10. But
this concept can also be applied to a block structure. These so called residual blocks are used
extensively and an example of such a block can be seen in Fig. 2.11. This block has 64 feature
maps and contains a convolutional layer, a ReLU activation function, a second convolutional
layer and a residual adding the input and the output together. In this figure the information
flows from left to right.

64 feature
maps

64 feature
maps

64 feature
maps

64 feature
maps

+

3x3 Convolution 3x3 ConvolutionReLU

Residual

Figure 2.11: A standard residual block.

2.2.12 MobileNet Block

The MobileNet block used inverted residuals with linear bottlenecks. This block combines bot-
tleneck layers and expansion layers. It takes a low-dimensional input representation which
is expanded to a higher dimension by an 1x1 expansion layer. It is then passed through a 3x3
depthwise separable convolution and is subsequently projected back to the low-dimensional
input representation by a 1x1 pointwise convolution. In this block the shortcut connections
are between the low dimensional bottleneck layers.

For a comparison, take a look at the standard residual block above again, shown in Fig.
2.11. This block has a convolutional layer, an activation function and a second convolutional
layer. It keeps the same dimensionality for the output feature maps throughout the block, in
this example 64. Another slightly more e�cient block structure is the residual bottleneck
block shown in Fig. 2.12. This structure can be described as dimensionality-wise moving
from high→ low→ high.

24

2.2 Machine Learning

128 feature maps 128 feature maps

+

3x3 Convolution 3x3 ConvolutionReLU

Residual

32 feature
maps

32 feature
maps

Figure 2.12: A residual bottle-
neck block.

128
feature maps

128
feature maps

+

1x1 Convolution ReLU

Residual

32 feature maps

Depthwise Separable
 convolution

ReLU
1x1 Convolution

32 feature maps

Figure 2.13: A MobileNet based block.

This can now be compared to the structure seen inMobileNet, the inverted residual block
where the residuals are between the thin feature maps (low dimension) instead of the thick
(high dimension). This gives rise to a low → high → low dimensional design as shown in
Fig. 2.13. This block was specifically designed for e�ciency regarding both computation
and memory consumption [24]. By using this structure it was possible to keep a high visual
performance with a lower number of kernels.

2.2.13 WDSR Block

The Wide Deep Super-Resolution Network (WDSR) uses two unique block types: WDSR A-
blocks and WDSR B-blocks, which are similar to the inverted residual block with residuals
between the thin feature maps but do not employ depthwise separable convolution [30]. In-
stead the block uses standard convolution and expansion layers. The two blocks are visualized
in Fig. 2.14 and Fig. 2.15.

128 feature maps 128 feature maps

+

3x3 Convolution 3x3 ConvolutionReLU

Residual

32 feature maps32 feature maps

Figure 2.14: WDSR A-block.

196 feature maps 196 feature maps

+

1x1 Convolution 3x3 ConvolutionReLU

Residual

32 feature
maps

32 feature
 maps

1x1 Convolution

32 feature
maps

Figure 2.15: WDSR B-block.

The A-block uses a 3x3 expansion layer with a factor of 4, a ReLU activation function
and a 3x3 bottleneck layer. The B-block uses a 1x1 expansion layer with a factor of 6, a ReLU
activation function and a linear low-rank convolution which factorizes the second layer into
a 1x1 convolution and a 3x3 convolution. The expansion layers were only used before the
activation functions which proved to increase the visual performance e�ectively. By applying
the linear low-rank convolution in the B-block it was also demonstrated that even greater
expansion factor can be used (6x-9x) leading to superior accuracy with the same parameter
budget. Both blocks also apply a residual mapping.

25

2. Background

2.2.14 SRDenseNet Block

In Super-Resolution Dense Convolutional Neural Network (SRDenseNet) a customized dense
block was developed. This is a block type with densely connected layers, which incorporate
features from multiple layers by progressively adding shortcut connections to subsequent
layers. Each 3x3 convolutional layer gets and increasing amount of input for each level and
the various convolutions are separated by a ReLU activation function. An overview over a
block with densely connected layers can be seen in Fig. 2.16, where the black arrows are the
shortcut connections. This technique proved to increase the visual performance at a low cost
in practical performance. It also enabled the network to not be as deep.

3x3 Conv

ReLU

3x3 Conv

ReLU

Input

3x3 Conv

ReLU

Output

3x3 Conv

ReLU

Figure 2.16: A SRDenseNet based block with 4 convolutional layers.

The theory behind the design is that features from di�erent layers reflect various ab-
straction levels which can be exploited to gain more information. Furthermore, multi-level
shortcut connections make the propagation of information faster throughout the network. It
also alleviates the vanishing-gradient issue. This is a problem occurring in networks employing
gradient-based learning methods. If the gradient becomes very small it prevents the weights
in the network to change and as a consequence it can stop the model from converging [26].

2.2.15 ResNeXt Block

The ResNeXt block is based on the fact that wider networks are computationally more ef-
fective than deeper networks. The philosophy was to use multiple convolutional paths in
parallel, which was proven to be a successful approach enabling an e�cient block structure.

The researchers used a three step operation for each block in what is called aggregated
residual transformation: splitting the input feature maps into smaller groups, transforming
each group through convolutional operations and finally aggregating the output to restore
the input dimensionality [28]. This can be implemented in multiple di�erent ways. One
option is to use grouped convolution by performing the convolution in small independent
channel subgroups. Another is to use multiple smaller standard convolutions in parallel.
An overview over a ResNeXt based block can be seen in Fig. 2.17. This block consists of
three paths and each path is divided into 5 layers. First a 1x1 pointwise convolution and a

26

2.2 Machine Learning

1x1 Conv

ReLU

Input

Output

1x1 Conv

ReLU

1x1 Conv

ReLU

3x3 Conv

ReLU

3x3 Conv

ReLU

3x3 Conv

ReLU

1x1 Conv 1x1 Conv 1x1 Conv

Figure 2.17: A ResNeXt based block with 3 groups.

ReLU activation function. Then a 3x3 convolution for spatial feature extraction followed
by another ReLU activation function before the final 1x1 pointwise convolution. The three
paths are then added together to get the output.

2.2.16 SqueezeNet Block

The SqueezeNet is another type of network which also was developed for e�ciency, specifi-
cally regarding size. The block used in the network consists of three layers. First a bottleneck
layer with a light 1x1 pointwise convolution. This layer reduces the number of feature maps
drastically. Next, two expansion paths: one 1x1 pointwise convolution and one 3x3 convo-
lution. These were used to restore the initial feature dimension of the input. After each
operation a ReLU activation function was applied. Finally, the two paths were concatenated
to get the final output [11]. An overview of the block is presented in Fig. 2.18.

1x1 Conv

ReLU

1x1 Conv

ReLU

Input

Output

1x1 Conv

ReLU

Figure 2.18: A SqueezeNet block.

27

2. Background

2.2.17 Cascading Mechanism

Grouped Conv

ReLU

Grouped Conv

ReLU

Input

1x1 Conv

Output

Figure 2.19: A CARN based resid-
ual block.

Multiple CARN
based blocks

1x1 Conv

Multiple CARN
based blocks

1x1 Conv

Input

Multiple CARN
based blocks

1x1 Conv

Output

Figure 2.20: A global cascading
mechanism between blocks.

The cascading mechanism seen in theCascading Residual Network (CARN) is quite similar to
the dense layers in SRDenseNet. It is a technique to incorporate features frommultiple layers
to enable feature reusage. Unlike the dense block the cascadingmechanism takes all the input,
concatenates them and passes it through a 1x1 pointwise convolution. The mechanism can
be applied not just locally inside blocks but also globally between blocks, enabling even more
feature information flow between di�erent abstraction levels [2]. This type of cascading was
proven to be useful for speed, partly due enabling the use of fewer blocks and still maintaining
a high accuracy. An overview over the CARN-block with two grouped convolutions and a 1x1
bottleneck can be seen in Fig. 2.19 and a schematic overview over the cascading mechanism
between blocks can be seen in Fig. 2.20.

2.2.18 General Adversarial Network

General adversarial network (GAN) is a type of network consisting of a generative part and a
discriminative part. This type of network can be applied to various tasks but are especially
good at image generation tasks. The core concept is to let the networks have two opposing
goals, which leads to a competition between them. The generator network tries to generate
images as similar as possible to the real images while the discriminator network tries to dis-
tinguish the generated images from the real ones. The training objective of the generator is
to maximize the discriminator loss, i.e fooling the discriminator. The discriminator on the
other hand, optimizes its objective function to get as good as possible at di�erentiating the
generated (fake) images from the real images. Thus, the generator will generate images as
closely resembling the real as possible [17].

28

2.2 Machine Learning

Generator

Discriminator

High
resolution

images

Low
resolution

images

Real or
fake

image?

Real image
sample

Fake image
sample Loss

Figure 2.21: A schematic overview of a general adversarial network.

An overview of a GAN can be seen in Fig. 2.21. In this example the generator takes
training data in the form of low resolution images and generates high resolution images.
These generated images are fed to the discriminator alongwith the real high resolution images
where the discriminator tries to di�erentiate them.

Content Loss and Perceptual Loss

In 2017, a new type of loss function was developed specifically design to be part of a general
adversarial network [17]. Instead of operating in pixel-space as the standard loss functions
(using the pixel-wise Euclidean distance), it operates partly in feature-space. This loss func-
tion, called perceptual loss, consists of two parts: a content loss and an adversarial loss. For the
content loss a pre-trained CNN (VGG19) was used for evaluating the performance by ex-
tracting high-level features from images produced by this network and comparing them to
the images produced by the generator. The idea was to not focus on per-pixel similarity but
rather the high-level perceptual similarity.

The definition of the content loss can be stated as:

ISR
VGG/i, j =

1

Wi, jHi, j

Wi, j
∑

x=1

Hi, j
∑

y=1

(φi, j(I
HR)x,y − φi, j(G(ILR)x,y)

2 (2.12)

where φi, j is the feature map at convolution layer j and before the max-pooling layer i in
the VGG19 network, IHR the high resolution image and ILR the low resolution image. The
loss is the Euclidean distance between the features of the high resolution image IHR and the
generated image G(ILR), both extracted from the pre-trained network. By using this loss
function the model tries to minimize the high level feature representations of the target and
the prediction.

The second part of the perceptual loss was the adversarial loss. This loss function was
used to encourage the generator network to produce images which fools the discriminator
network, defined as:

lSR
GEN =

N
∑

n=1

− log DθD(GθG(ILR)) (2.13)

29

2. Background

Here is N the number of image samples, GθG(ILR)) the generated image from the gen-
erator (parameterized by the weight vector θG) and DθD(GθG(ILR)) is the probability of the
discriminator (parameterized by the weight vector θD) falsely predicting the generated image
as the real high resolution image.

The perceptual loss is the combination of the content loss and the adversarial loss. This
loss works as balance between the two and can be stated as:

lSR
= ISR

VGG/i, j + 10−3 · lSR
GEN (2.14)

For reaching a good balance, the 10−3 factor was experimentally found to be most suc-
cessful.

2.2.19 Network Interpolation

Network interpolation is used to build a model based on a combination of multiple input mod-
els. Its purpose is to create a balanced model; a trade-o� between the trained networks [27].
Let’s say we have a model A trained with mean absolute error as loss function and model B
trained with perceptual loss as loss function. Knowing that di�erent loss functions lead to
di�erent results it is possible to reach an optimal trade-o� between the two. An interpolation
network θI can be computed with the interpolation parameter α = [0, 1]:

θI = (1 − α) · θA + α · θB (2.15)

By adjusting the interpolation parameter α the network can easily be primed towards
the weights of either input network to find the most perceptually pleasing result. This of
course requires the input models to be exactly alike in their structure, otherwise the weight
vectors would represent di�erent abstraction levels. A benefit of this approach, rather than
training a network containing a combined loss, is that it is both simpler and faster, since the
technique allows evaluation of di�erent interpolation values instantly without extra training
required.

30

Chapter 3

Method

In this chapter the method is described. It contains the approach; defining what work will be
done and specifically how it will be done. The approach was a two-step process with an eval-
uation part and an architectural design part. It includes information about the training, the
data sets and the software and hardware setup. Finally, the evaluation is described explaining
both what methods and metrics will be used as well as an analysis of its limitations.

3.1 Approach

The main objective of this work was to:

(a) Evaluate e�cient neural network architectures to gain knowledge of what techniques
are successful.

(b) Design a small and e�cient model based on the result from the evaluation and investi-
gate possible customizability options to prime the model to di�erent visual objectives.

This work can therefore be divided into a two main parts: evaluation and design.

3.1.1 Evaluation

The first step of the evaluation was implementing a network to use as a base network. This
network was used to evaluate the di�erent techniques. It was based on theWDSRA network
but adapted to a very low parameter budget of 300 k parameters. It was compressed by
reducing the depth of the network, i.e. the number of residual blocks. WDSR was chosen
since it is the current state-of-the-art and delivers great e�ciency and general performance.
This network is referred to as WDSR A-XS (XS referring to extra small).

31

3. Method

The second step was to evaluate the e�ciency of various aspects. For each aspect, a
model was implemented and trained for a 2x upscaling factor with WDSR A-XS as foun-
dation. Thus, all evaluated models had identical first and last parts to make the assessments
more comparable, i.e maximize the number of constant variables. This includes the initial
convolutional layer, the final upsampling layers and a global residual connection. The base
architecture is shown in Fig. 3.1 where the various techniques were implemented in the main
part of the network coloured in blue. The model was then evaluated for its size and as a
trade-o� between the practical and visual metrics. The purpose was to find an optimal bal-
ance between the two, i.e high e�ciency with low run time and parameter count but high
visual quality.

Blocks

Low resolution
input image

+

3x3 convolution 3x3 convolution Upsampling layers

High resolution
output imageGlobal residual

Figure 3.1: The WDSR base architecture.

This assessment included looking into a wide variety of architectural design choices.
These are all listed below and for more implementation details see Appendix A.1.1.

General Design

1. Depth (number of residual blocks)

2. Kernels (number of kernels and kernel sizes)

3. Residual blocks or kernels (depth vs width)

4. Activation functions (in each block)

5. Residuals (locally and globally)

Layer Types

1. Expansion layers for various factors

2. Bottleneck layers for various factors

Convolutional Operators

1. Depthwise separable convolution

2. Grouped convolution

3. Linear low-rank convolution

32

3.1 Approach

Efficient Residual Blocks

1. Block structure (dimensional shape)

2. WDSR blocks

3. MobileNet block

4. SRDenseNet block

5. ResNeXt block

6. SqueezeNet block

7. Cascading block

These were chosen after the literature study as being highly relevant for building e�cient
super-resolution networks. The blocks tested are from existing networks, all six being based
on quite di�erent design philosophies. The blocks evaluated in this work were not identical
to the one proposed in the papers but customized to fit into the WDSR network base struc-
ture. They were also adapted to the very low parameter budget and updated in accordance
with the latest research as of spring 2019 (such as removing batch normalization layers). This
was done to make the blocks more comparable.

3.1.2 Design

The second part of this thesis was the design. Based on the evaluation result and the gained
knowledge, we developed an e�cient network architecture using the most promising tech-
niques. This network was then evaluated both quantitatively to other models and qualita-
tively with the generated images. For this assessment multiple networks were implemented
based on the previously analyzed blocks. A few extra networks were also built, such as apply-
ing the cascading mechanism to the SRDenseNet based model and replacing grouped con-
volution with standard convolution in the ResNeXt model. The proposed small model was
also compared with much larger super-resolution models. The last two winners of the global
NTIRE super-resolution competition was used for this purpose (EDSR and WDSR), both
approximately 15x as large as the proposed one. All assessed models are listed below and for
more implementation details see Appendix A.1.2.

33

3. Method

1. WDSR

(a) WDSR A-XS

(b) WDSR B-XS

2. MobileNet block

(a) MobileNet XS

(b) MobileNet S

3. SRDenseNet block

(a) SRDenseNet A S

(b) SRDenseNet B S

(c) SRDenseNet cascading

(d) SRDenseNet P

4. ResNeXt block

(a) ResNeXt SC A XS

(b) ResNeXt SC A S

(c) ResNeXt SC B XS

(d) ResNeXt SC B S

(e) ResNeXt GC cascading

5. SqueezeNet block

(a) SqueezeNet XS

(b) SqueezeNet S

6. Cascading block

(a) Cascading SC

(b) Cascading SC

7. Large networks

(a) EDSR

(b) WDSR A

Finally, as part of the design process we also investigated customizability. We wanted to
see to what extent the networks can be adapted for specific applications since di�erent use
cases may require di�erent visual qualities. All training for generating the images was done
for 4x upscaling instead of 2x to make the di�erences between the images from the models
more distinct. The proposed network was therefore trained with di�erent loss functions to
nudge it towards di�erent visual goals; MAE (mean absolute error) for maximizing PSNR
(peak signal-to-noise ratio, see Section 3.5.2 below) and content-loss for maximizing feature

34

3.2 Data set

similarity. It was also used a generator network in a GAN (general adversarial network) to
minimize the perceptual loss. This GAN setup was an adapted light version of the SRGAN-
network in [17] with a discriminator employing half the parameter count and significantly
lower run time. To find the optimality between these network types a final interpolation
network was built and evaluated for di�erent interpolation values.

3.2 Data set

The data set used was the DIV2K data set which is a high resolution diverse set provided by
Timofte et al. from ETH Zürich [1][12]. This data set is widely used and one of the standard
sets for super-resolution. It consists of 900 RGB images depicting a wide variety of objects
at high resolution. Each sample in the set contains three bicubically downsampled versions
for each of the high definition images: 2x, 3x and 4x. In this work we used only the 2x and 4x
variants. For visual evaluation purposes another small but popular data set called Set14 was
also used, mainly due to its wide use in academia.

3.3 Training

The data set was divided into three independent sets: 700 images were used for training,
100 images for validation and 100 images for testing. Each image was divided into smaller
patches of size 48x48 for the input and 96x96 for the 2x upscale target and 196x196 for 4x
upscale target. The networks were trained on all three image channels (RGB). Each image
was also randomly flipped horizontally and randomly rotated by 90, 180 or 270 degrees. This
data augmentation was performed to expand the data set and decreases the risk of possible
overfitting, i.e. underperformance due to the model starting to incorporate the noise in the
training data. All image patches was subtracted with the RGB-mean values for the data set
and then normalized between 0 and 1. The images were cropped with the upscaling factor
+ 6 pixels from the border. All of this was in line with the training setup used in [30]. The
preprocessing and training setup used for this work was the WDSR/EDSR adapted Keras
version by [15].

When evaluating networks with the use of a specific operator or layer type, each training
session was set to 100 epochs. Since these models were relatively small this was in our case
regarded as su�cient to evaluate a technique and draw a conclusion on its usefulness (also due
to computational and time limitations). For the assessment of the larger models, the training
session was 500 epochs and for the comparison with the heaviest state-of-the-art models it
was set to 1000 epochs. This was to make sure the larger models got enough training time
and not were severely underfitted to the data, i.e. not reaching its full potential. The number
of iterations was in all cases set to 500 and the batch size to 16. If the validation score reached
a new high, the model was saved. As loss function was MAE used and as optimizer AdamW
with β1 = 0.9, β2 = 0.999 and ǫ = 10−8. This is an optimizer based on the Adam optimizer,
which in itself is an e�cient stochastic optimizer [14]. AdamW is very similar but adds
weight normalization, which is a way of reparameterizing the weight vectors [19] which has
been proven to enable a higher learning rate [30]. The learning rate was initially set to 0.001
and halved every 200 epochs. All hyperparameters were the same for all evaluations.

35

3. Method

3.3.1 General Adversarial Network

Training a GAN di�ers substantially from training a standard network. However, most of
the preprocessing remained the same. A few noticeable di�erences were the removal of data
augmentation which was regarded as unnecessary when training an already complex model
which is hard to train. An additional tanh activation function was added before the final up-
sampling layer in the generator since this has been shown to increase the generators accuracy
[23]. This is a non-linear activation function that outputs a value between -1 and 1 instead of
max(0, input) as with ReLU. Some label noise of 0.05 was also applied to make the training
more stable and the generator more robust. This is a way of randomly assigning some noise
both to the labels of the generated images and the high resolution images. Finally was the
AdamW optimizer replaced with the Adam optimizer for simplicity reasons.

The GAN consists of two networks: the generator and the discriminator. The generator
was pre-trained for 500 epochs with MAE as loss function. This was done to speed up the
training time. Thereafter, the weights of this model were loaded onto the generator network.
For each iteration, the two networks were trained simultaneously with opposite goals. The
discriminator was trained on the real high resolution images and the generated images with
the objective of correctly classifying the high resolution images as real and the generated im-
ages as fake. The generator on the other hand, was trained as part of the GAN structure
by taking low resolution images as input and generating high resolution images to fool the
discriminator. The discriminator then classified the images as either real or fake as a mea-
surement of how well the generator performed. The GAN was trained with a perceptual loss
(for more details see Section 2.2.18 above). The training session was set to 500 epochs and
each epoch consisted of 500 iterations with a batch size of 16, similar to the standard training
procedure. The setup used for the GAN training was the Keras implementation of SRGAN
provided by [15].

3.4 Setup

All models were implemented in Python 3.6 with Keras as deep learning framework and the
Tensorflow backend. The hardware setup was a machine with Ubuntu 18.04, 16 GB RAM
and a Nvidia GTX 1080 TI graphics card running CUDA 9.2 and cuDNN 7.3.

3.5 Evaluation

3.5.1 Method

After each training epoch a validation was performed with the the validation set of 100 im-
ages, i.e. feeding low resolution images as input to the model, predicting the high resolution
image andmeasuring the PSNR (peak signal-to-noise ratio, see Section 3.5.2 below) and SSIM
(structural similarity index, see Section 3.5.2 below) on all three RGB channels. When the
model had completed the training the evaluation was done on a separate test set of 100 im-
ages. Just as with the validation during training the model predicted the high resolution
image from the low resolution input image, measures the PSNR and SSIM but also the run

36

3.5 Evaluation

time of the prediction to get a direct speed measurement.

3.5.2 Metrics

To evaluate the performance of a model a metric is needed. In super-resolution it is possible
to divide them into two categories, visual and practical. For the quantitative visual mea-
surements two metrics were used: Peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM). PSNR is a pixel-wise measurement measuring the reconstruction error after
denoising. It is defined as:

PSNR = 10 log10

MAX2
I

MSE
(3.1)

where MAX2
I
is the maximal pixel value and MSE is the mean squared error between the

pixels of the images, defined in 2.10 [21]. Thus, by using MSE as loss function the PSNR is
per definition maximized.

In addition to PSNR, SSIM was used. This is a reconstruction measurement taking into
consideration high frequency details. It is based on three components: luminance (L), con-
trast (C) and structure (S). Given two images I and J it can mathematically be formulated
as:

SSIM(I,J) =
[

L(I , J)α ·C(I , J)β · S(I , J)γ
]

(3.2)

where

L(x,y) =
2µxµy + c1

µ2
x + µ

2
y + c1

(3.3)

C(x,y) =
2σxσy + c2

σ2
x + σ

2
y + c2

(3.4)

S(x,y) =
σxy + c3

σxσy + c3

(3.5)

Regarding the second type of metrics, practical, two of the most important factors for
any general use are the number of parameters (size) and the run time (speed). The former
was measured in thousands (k) and the latter in milliseconds (ms) as a direct measurement
on the used system.

3.5.3 Metric limitations

Due to the inherent subjective nature of image evaluation it is di�cult to develop good quan-
titative assessment criteria. There is ongoing research for the optimal quantitative metrics
for super-resolution. Currently, none is completely satisfactory. Models using MSE as loss
function will maximize the PSNR, which is in general fine but has proven to be slightly bi-
ased towards blurry images that lack in detail recreation. This is due to the loss function
measuring the averaged pixel values of the respective images [17]. Also, it has been shown to
be slightly sensitive to noise [8].

37

3. Method

SSIM was partly developed to also take the reconstruction of the high frequency content
into account. Hence, SSIM computes per pixel rather than averaging like in PSNR. A draw-
back of the SSIM is that it is a much more complex metric and has been demonstrated to
perform badly on JPEG images [8]. PSNR is more straightforward and faster to compute.
However, there is still a very strong correlation between the two metrics. In general, a high
PSNR score leads to a high SSIM score and vice versa.

For evaluating the run time it was directly measured on the used system. This have both
advantages and disadvantages. A disadvantage is that it is system dependent making the ob-
tained result harder to reproduce without a similar setup. An advantage is that it in contrast
to a more theoretical metric has proven to be more reliable. A theoretical option would
be to use floating operations per second (FLOPs), but this indirect metric does not necessarily
correlate with the actual run time on the platform as noted in [20]. This is partially due to
di�erent platform characteristics and the number of memory access operations.

38

Chapter 4

Result

This chapter is divided into an evaluation part and a design part. The evaluation section 4.1
contains all the empirical data obtained from the various assessments. The data is analyzed
and related to previous research and findings. The following design section 4.2 includes the
presentation and underlying theory of the proposed network architecture. It also contains
all the upscaled images from this network and a comparison between the networks trained
with various optimization functions.

All models in the evaluation section were trained for a 2x upscaling factor. It was noted
earlier that the evaluations with SSIM (structural similarity index) were very similar to the
PSNR (peak signal-to-noise ratio) and was hence omitted and this applies to all evaluations.
In the qualitative part where the generated images are presented the models were trained for
a 4x upscaling factor to enhance the visual di�erences.

4.1 Evaluation

4.1.1 Residual Blocks

The first aspect to look into for e�ciency gains might be the depth of the model, i.e. the
number of residual blocks. What is of interest is at what depth does the relative PSNR im-
provement becomes too costly, leading to a high parameter count and long run time. It is
reasonable to assume that a larger model would achieve better reconstruction quality but
poorer practical metrics due to its size.

In Fig. 4.1 the y-axis represents the run time and the x-axis the number of parameters.
The marked circles are the number of residual blocks used in that specific network. Fig. 4.2
shows the visual performance in terms of PSNR (y-axis) over the number of parameters (x-
axis). This diagram setup is used for all evaluations in this section where the parameter count
di�ers substantially between the compared models, i.e. when model size is of interest.

39

4. Result

Figure 4.1: Number of residual blocks
and the practical metrics for WDSR A.

Figure 4.2: Number of residual blocks
and the visual metrics for WDSR A.

We aremainly interested in finding values that lead to low practical metrics and relatively
high PSNR per parameter. Figs. 4.1 and 4.2 show the result obtained by compressing the
WDSR A network to a specific number of residual blocks. In Fig. 4.1, the data indicates as
expected that using more blocks increases the practical metrics. There seem to be a positive
linear correlation between the parameter count and run time. As Fig. 4.2 shows, increasing
the number of blocks greatly increases the PSNR in the beginning, but the gains level o�
when increasing the depth beyond 4-8 blocks. A deeper network leads to higher relative
PSNR but also to significantly larger models. Hence, 4-8 blocks seem to be suitable values to
keep the model both small and to achieve a reasonably good PSNR.

Figure 4.3: Number of residual blocks
and the practical metrics for WDSR B.

Figure 4.4: Number of residual blocks
and the visual metrics for WDSR B.

A very similar pattern emerges when analyzing the depth for the WDSR B-block, as
shown in Figs. 4.3 and 4.4. In comparison to the A-block, the B-block uses linear low-rank
convolution which makes it approximately 4x as parameter e�cient but also slower. As an
example, 4 WDSR A-blocks and 16 B-blocks both reach 300 k parameters but the former a
144 ms run time and the latter a 340 ms run time (this is also the reason why the assessment
starts at 4 blocks instead of 1 block as in the previous case).

In Fig. 4.3 a similar positive linear correlation between the blocks can be seen. For the
reconstruction quality in Fig. 4.4 the relative improvement starts to decrease at 16 blocks.
Thus, following an analogous analysis as for the WDSR A-block, 16-32 blocks would be the
corresponding suitable values for the WDSR B-block. However, with 32 blocks the model
starts to become quite large. Since one of the top priorities is to keep the model small, 16
blocks would probably be a the more preferable choice for this study.

40

4.1 Evaluation

4.1.2 Kernels

Number of Kernels

Figure 4.5: Number of kernels and the
practical metrics.

Figure 4.6: Number of kernels and the
visual metrics.

Another factor for possible e�ciency improvements are the number of kernels used in
each layer. Generally, the more kernels used the larger the model and the longer the run
time. What is of interest here is analyzing the impact the kernel number has on respective
metrics. The data shows a positive linear correlation between the number of parameters and
run time as shown in Fig. 4.5. For the visual assessment there is a linear increase until about
48 kernels. For kernel numbers higher than 48, the relative performance gain is reduced.
However, with only one data point for kernel numbers higher than 48 this result is not very
reliable. But with that in mind, the data indicates that 32-48 kernels would probably be
the best range for an e�cient trade-o�: maintaining a small model while keeping relatively
high visual performance. In comparison to most networks these are low values, where 64-128
kernels often are employed [18][24], this saves a lot on the practical performance side.

Kernel Size

Figure 4.7: Kernel sizes and the practi-
cal metrics.

Figure 4.8: Kernel sizes and the visual
metrics.

The kernel size also has a clear impact on the model size and run time. In Fig. 4.7, a posi-
tive linear correlation between the two can be seen. For the visual metrics, the improvement

41

4. Result

of PSNR per parameter increases until the 3x3 kernel. Thereafter, larger kernel sizes have
diminishing returns. From the data it appears that using a kernel size larger than 3x3 is not
very beneficial. Although the 3x3 convolution is widely used it is unclear why a 4x4 or 5x5
would not be superior regarding PSNR. It might be due to CUDA optimizations for the 3x3
convolution or insu�cient training [20].

42

4.1 Evaluation

4.1.3 Residual Blocks or Kernels

Figure 4.9: Residual block, Kernels and
the parameter count.

Figure 4.10: Residual block, Kernels
and the run time.

Figure 4.11: Residual block, Kernels and visual metrics.

An interesting trade-o� is the one between the number of residual blocks (depth) and
the number of kernels in each layer (width). When comparing decreasing or increasing the
number of residual blocks versus the number of kernels, with a low fixed parameter budget
of 300 k, the data seems to be quite clear. The practical metrics are visualized in Fig. 4.9,
where the light blue bar represents the parameter count and Fig. 4.10, where the dark blue
bar is the run time. Here does smaller bars imply a lighter network, meaning a low parameter
count and low run time. The visual metrics is shown in Fig. 4.11, where the light red bar is
the PSNR. The higher the bar the better the reconstruction quality (this diagram setup with
the three figures will be used for all evaluations where the size is relatively similar between
the compared models).

The use of 4WDSRA blocks with 32 kernels (noted 4RB 32K) achieves the most optimal
trade-o� with the highest PSNR and better practical metrics than the comparable 8 residual
blocks with 24 kernels and 16 residual blocks with 16 kernels. Using less than 4 residual
blocks clearly impacts the visual quality too much. Extrapolating this result for the WDSR
B block would lead to an optimal depth-width ratio of 16 residual blocks with 32 kernels.

43

4. Result

Figure 4.12: Activation functions and
the parameter count.

Figure 4.13: Activation functions and
the run time.

Figure 4.14: Activation functions and the visual metrics.

4.1.4 Activation Function

A various number of ReLU activation functions were applied to each block. One model with
only one function between the first and second layer, a second model with an additional
ReLU between the second layer and the residual, and a third model with yet another ReLU
after the residual. It is possible to conclude that the number of activation functions (ReLU)
does not seem to a�ect neither the parameter count nor the run time significantly as shown
in Figs. 4.12 and 4.13. However, applying more than one activation function does reduce the
PSNR as shown in Fig. 4.14. Concerning the practical metrics this result was not the expected
outcome. Since the ReLU is an element-wise operation a reasonable hypothesis would be a
longer run time for more operations. But the ReLU is e�cient as pointed out by previous
research [20] and may explain why the impact is so low. More activation functions also leads
to reduced PSNR. This finding is consistent with what [30] among others have concluded
where the reconstruction quality is distorted by too many non-linear functions between the
convolutional layers.

4.1.5 Residuals

In this assessment local residuals (in each block) and global residuals (from the initial input
layer to the final upsampling layer) were tested. Four models were implemented: one with
only a local residual, one with only a global residual, one with neither and one with both.
Removing a local or a global residual did not seem to have a significant a�ect on neither

44

4.1 Evaluation

Figure 4.15: Residuals and the parame-
ter count.

Figure 4.16: Residuals and the run time.

Figure 4.17: Residuals and the visual metrics.

parameters nor run time as seen in Figs. 4.15 and 4.16, but reduces accuracy, see Fig. 4.17.
The residuals are evidently important and should be employed on both a local and global
level, confirming the theory in [7]. In addition, this also holds from an e�ciency standpoint.

4.1.6 Expansion Layer

To evaluate the expansion layer multiple models were built with various expansion factors.
When analyzing the plot for the parameter and run time, visualized in Fig. 4.18, it can be
inferred that there is a positive linear correlation between them. In the relative PSNR plot,
shown in Fig. 4.19, a similar correlation can be derived until an expansion factor of about
6x. For a larger value like 8x, the gain has diminished. This data is in line with what was
concluded in [24] and [30] where a 4x-6x expansion factor was chosen as appropriate values.

Although an expansion layer clearly improves the relative PSNR it should preferably be
applied in conjunction with some sort of compression layer if a small and e�ective network
is of interest.

4.1.7 Bottleneck Layer

Multiple di�erent bottleneck layers were tested with a various number of output feature
maps. Compared in Fig. 4.20, are the di�erent compression levels as well as a 1x1 pointwise
bottleneck layer, which reduce the computational complexity in the convolution but not the
output dimension. Here does the value define the dimension of the output space (the lower

45

4. Result

Figure 4.18: Expansion layers and the
practical metrics.

Figure 4.19: Expansion layers and the
visual metrics.

the output dimension, the higher the compression). From the data it is possible to infer that
the bottleneck layers have a substantial e�ect; the higher the compression factor the lower the
parameter count. Without any bottleneck layer the model becomes much larger and slower
(note the logarithmic x-axis).

Figure 4.20: Bottleneck layers and the
practical metrics.

Figure 4.21: Bottleneck layers and the
visual metrics.

For the relative PSNR shown in Fig. 4.21 it can be derived that a higher compression
factor leads to a lower PSNR (note the logarithmic x-axis). This is expected since it has such
a high impact on the practical metrics. Worth noticing in both figures is the 1x1 pointwise
bottleneck layer which seems to achieve the best trade-o� with the lowest parameter count
and run time as well as a relative high PSNR per parameter (comparable to the use of 32
kernels). For small models, the benefit of bottleneck layers are clearly supported by previous
research as well as the empirical data obtained here [9][24].

4.1.8 Depthwise Separable Convolution

The depthwise separable convolution was implemented in three di�erent ways. One model
applied it in the first layer in each block, one in the second layer and one in both layers. It
successfully made the model lighter with a significant reduction of parameters but had no
major a�ect on the run time, see Fig. 4.22 (where the operation is noted DSC). In 4.23 it
can also be seen that the operation has a fairly high negative impact on the relative PSNR
compared to the model using standard convolutional operators (noted No DSC). If used, it

46

4.1 Evaluation

seems to give the best result if only applied in the first layer since the practical performance
is superior and the PSNR similar.

Figure 4.22: Depthwise separable con-
volution and the practical metrics.

Figure 4.23: Depthwise separable con-
volution and the visual metrics.

This result is not in line with result in [24], where it was used for other computer vision
tasks as an e�cient operation with good overall performance. The discrepancy in run time
might come from the used system setup, with an ine�cient implementation in Keras and
CUDA being optimized for the standard 3x3 convolution, as pointed out by [20].

4.1.9 Grouped Convolution

The grouped convolution (GC) was tested with two models. The first used 8 groups and 16
kernels each and the second used 4 groups with 32 kernels each. From Fig. 4.24 the practical
performance shows a reduction in parameters but without impact on run time (rather a slight
increase). Regarding the visual performance shown in Fig. 4.25 the models perform quite
poorly with a drastic decrease in relative PSNR compared to the use of standard convolution
(noted No GC). The cost of reducing parameters with the operator seems very high.

Figure 4.24: Grouped convolution and
the practical metrics.

Figure 4.25: Grouped convolution and
the visual metrics.

Just like the depthwise separable convolution, grouped convolution has a great theoretical
foundation. But in practice, this is not visible in the data and the operator should probably
be avoided. Worth considering is the fact that the operator was manually implemented since
there was no support for grouped convolution in the Keras framework. This could certainly
a�ect its performance.

47

4. Result

4.1.10 Linear Low-Rank Convolution

The linear low-rank convolution (LLRC) is a form of factorized convolution. As previously
stated it uses a 1x1 pointwise convolution to reduce the output dimension followed by a 3x3
convolution for the spatial feature extraction. It therefore works as a sort of bottleneck layer
and is often used in conjunction with expansion layers.

Figure 4.26: Linear low-rank convolu-
tions and the parameter count.

Figure 4.27: Linear low-rank convolu-
tions and the run time.

Figure 4.28: Linear low-rank convolution and visual metrics.

In this evaluation various values for the expansion and the compression factor were tested
to find an optimal trade-o�. Five models were implemented with di�erent values but with
the same parameter budget, hence a higher expansion factor (increasing parameters) was used
with a higher compression factor (decreasing parameters) to balance them out.

The practical metrics are shown in Figs. 4.26 and 4.27. Here "5E / 0.1C" stands for a 5x
expansion layer followed by a 0.1x compression (a higher value indicates a higher expansion
or compression factor). It clearly shows that the use of the operator results in substantial
reduction in model size. The impact on run time is not at all as large. Also visible is the
increase in run time for the larger expansion and compression factors. The larger factors also
seem to lead to a reduction in relative PSNR, see Fig. 4.28. Therefore, these should probably
be avoided. The most viable option appears to be a 6x-8x expansion and a 0.2x-0.4x compres-
sion factor to reach a low run time and a relatively high PSNR. The result here is comparable
to what was concluded in [30], where the WDSR B-blocks employ a 6x-9x expansion factor
and a 0.2x compression factor. The model without linear low-rank convolution outperform
in PSNR due to its large size, as expected.

48

4.1 Evaluation

4.1.11 Block Structure

Figure 4.29: Block structures and the
parameter count.

Figure 4.30: Block structures and the
run time.

Figure 4.31: Block structures and the visual metrics.

In this assessment di�erent residual block structures were tested: the linear, the bottle-
neck and the inverted. The structure of these di�erent blocks can be seen as di�erent ways
of ordering the dimensions of the feature space in the block.

The parameter count shown in Fig. 4.29 and the run time in Fig. 4.30 are quite similar
for all block structures. The visual quality tells a di�erent story, see Fig. 4.31. Here the
PSNR is greatly increased with the inverted residual block. This is in accordance with the
latest research where the theory suggests enabling low dimensional feature maps as residual
connections are more e�cient, allowing deeper networks with an equal parameter budget.
Thus, these finding are in line with what has been shown in [24] and is also the structure
which is used in the WDSR and MobileNet blocks among other.

4.1.12 WDSR Block

The first block types to evaluate were the WDSR blocks (for more details see Section 2.2.13).
Two heavily compressedWDSR networks were built, one based onWDSRA-blocks and one
on WDSR B-blocks. These models are referred to as WDSR A-XS and WDSR B-XS and are
used as references to the other block type evaluations below.

Both have a very tight parameter budget of only 300 k parameters since small and e�cient
networks are of specific interest in this work. The WDSR A-XS has 4 residual blocks and

49

4. Result

Figure 4.32: WDSR A-XS, WDSR B-
XS and the parameter count.

Figure 4.33: WDSR A-XS, WDSR B-
XS and the run time.

Figure 4.34: WDSR A-XS, WDSR B-XS and the visual metrics.

employs expansion layers. The WDSR B-XS has 16 residual blocks and uses both expansion
layers and linear low-rank convolution.

Figs. 4.32 and 4.33 show the result of the practical metrics and visualized in Fig. 4.34 is
the visual evaluation. The data shows that the A-block is faster whereas the B-block achieves
superior visual quality.

4.1.13 MobileNet Block

Based on the MobileNet block, two models were implemented, a small (MobileNet S) and an
extra small (MobileNet XS) variant. The di�erence being the depth, i.e. number of blocks.
The block used inverted residuals and depthwise separable convolution (for more details see
Section 2.2.12).

In Figs. 4.35 and 4.36 is the practical performance visualized. Here the MobileNet blocks
have an equivalent number of parameters but a drastically higher run time compared to the
WDSR A-XS and WDSR B-XS models. For the visual evaluation, see Fig. 4.37, where they
achieve worse or similar performance. Overall, the blocks do not reach the level of perfor-
mance shown with the WDSR XS-models. However, this is partially expected since the use
of depthwise separable convolution previously lead to a negative impact on the accuracy.

50

4.1 Evaluation

Figure 4.35: MobileNet blocks and the
parameter count.

Figure 4.36: MobileNet blocks and the
run time.

Figure 4.37: MobileNet blocks and the visual metrics.

4.1.14 SRDenseNet Block

Multiple di�erent dense residual blocks were tested, all based on the philosophy of densely
connected layers (for more details see Section 2.2.14). Among these were a dense block com-
pressed to 3 layers with a residual mapping (SRDenseNet A S and SRDenseNet A XS) and
a second with the use of an extra 1x1 pointwise bottleneck layer (SRDenseNet B S and SR-
DenseNet B XS).

Figure 4.38: SRDenseNet blocks and
the parameter count.

Figure 4.39: SRDenseNet blocks and
the run time.

The general performance of the these models are promising. In Fig. 4.38, we can see
that the blocks are slightly larger but in Fig. 4.39 that they have a similar or lower run time

51

4. Result

Figure 4.40: SRDenseNet blocks and the visual metrics.

compared to the WDSR XS-models. Furthermore, the visual evaluation in Fig. 4.40 shows
slightly higher or similar PSNR for the various models. As pointed out in [26] the technique
is quite e�ective in achieving high reconstruction quality. The use of densely connected layers
is certainly of interest for building e�cient networks.

4.1.15 ResNeXt Block

Numerous ResNeXt-based blocks were also implemented and evaluated, all built with the
idea of exploiting wide networks instead of deep (for more details see Section 2.2.15). Two
networks were implemented based on the ResNeXt standard block: one with 4 groups and
one with 2 groups (ResNeXt GC XS and ResNeXt GC S). Two additional networks were im-
plemented by substituting the grouped convolution with a standard convolution (ResNeXt
SCAXS and ResNeXt SCA S). Finally, two blocks with standard convolution, an additional
1x1 pointwise bottleneck layer and an extra residual mapping were implemented (ResNeXt
SC B XS and ResNeXt SC B S). The result from all these six models regarding the practical
performance is visualized in Fig. 4.41 and Fig. 4.42. The achieved PSNR is shown in Fig. 4.43.

From the empirical data it can be inferred that the networks with the standard convo-
lution outperform the ones with grouped convolution. This is in line with the results previ-
ously obtained for grouped convolution. The other models perform quite well. These models
achieve analogous PSNR and run time but with a slightly higher number of parameters in
comparison to theWDSR XS-models. From the e�ciency perspective the use of wide blocks
instead of deep can be concluded to be a viable option.

Figure 4.41: ResNeXt blocks and the
parameter count.

Figure 4.42: ResNeXt blocks and the
run time.

52

4.1 Evaluation

Figure 4.43: ResNeXt blocks and the visual metrics.

4.1.16 SqueezeNet Block

For the SqueezeNet blocks, three variants were implemented of di�erent depths (SqueezeNet
S, SqueezeNet XS, SqueezeNet XXS). All models used a 128 kernel expansion layer and a 32
kernel bottleneck layer in each block (for more details see Section 2.2.16).

Figure 4.44: SqueezeNet blocks and the
parameter count.

Figure 4.45: SqueezeNet blocks and the
run time.

Figure 4.46: SqueezeNet blocks and the visual metrics.

The evaluation shows quite promising practical performance, see Figs. 4.44 and 4.45,
where especially the SqueezeNet XXS-model outperforms the others. However, this model
does not hold up when analyzing the PSNR visualized in Fig. 4.46 where the data clearly
shows that the SqueezeNet-blocks are not really comparable to theWDSRXS-models (or the

53

4. Result

previously tested SRDenseNet or ResNeXt models). Only the SqueezeNet S-model manages
to reach a high PSNR but has worse practical performance than the WDSR XS-models.

4.1.17 Cascading Mechanism

The cascading mechanism was evaluated on four models (for more details see Section 2.2.17),
twowith CARNblocks with the use of grouped convolution (CascadingGC S andCascading
GC XS) and two with CARN blocks with the use of standard convolution (Cascading SC S
and Cascading SC XS).

54

4.1 Evaluation

Figure 4.47: Cascading mechanisms
and the parameter count.

Figure 4.48: Cascading mechanisms
and the run time.

Figure 4.49: Cascading mechanisms and the visual metrics.

The evaluation of parameters and run time can be seen in Fig. 4.47 and in Fig. 4.48 re-
spectively, where it is possible to conclude that they all achieve a low run time but with a
slightly higher number of parameters. Especially the Cascading GC S stands out with almost
a doubled model size. The visual assessment in Fig. 4.24 indicates that the models using
grouped convolution perform poorly. This was also what could be derived from earlier eval-
uation of the grouped convolution operation. However, applying the cascading mechanism
to the other block types with standard convolution achieves equivalent PSNR compared to
the WDSR XS-models. The cascading mechanism can be concluded to be viable technique
to apply.

55

4. Result

4.1.18 Summary of Findings

General Design

From the empirical data some important knowledge can be derived, first concerning some
general design choices. To achieve a good e�ciency trade-o�, the number of residual blocks
for the WDSR XS-networks can be inferred to be 4-8 blocks for the A-block and 16 for
the B-block. Thereafter, there are diminishing returns. Regarding kernels, using 32-48 with
a maximum size of 3x3 seems optimal. By assessing the trade-o� between the depth and
width the most convincing results were attained with 4 A-blocks with 32 kernels (and 16
B-blocks with 32 kernels). When evaluating the activation functions, which obviously are
crucial for building non-linear mappings, we can conclude that using them excessively should
be avoided. Best overall performance was reached with 1 ReLU in the block. We can also infer
from the data that using residuals, both locally and globally, is strongly recommended since
they do not a�ect the practical metrics significantly but improve the visual metrics.

Layer Types

Concerning the various layer types, the expansion layer performed well where a factor of 6x
can be regarded as the maximum value to use from an e�ciency stand-point. However, due
to the linear correlation between parameters and run time, it should probably be used in con-
junction with some sort of compression technique. The bottleneck layer showed substantial
a�ect on the practical evaluation, giving rise to smaller and faster models. Particularly of
interest was the 1x1 pointwise convolution, demonstrating the perhaps best balance.

Convolutional Operators

Regarding the convolutional operators, neither depthwise separable convolution nor the
grouped convolution gave satisfying results. The former worked well for reducing the model
size but not for the run time. It also showed mediocre relative PSNR score. A similar pattern
was obtained for grouped convolution but with a larger negative impact on visual perfor-
mance. Neither should probably be applied from an e�ciency standpoint where high visual
reconstruction quality is wanted. The assessment of the linear low-rank convolution gave
more promising results. We can conclude that it drastically decreased the model size and
that the optimal values for expansion and compression factors seemed to be a 6x-8x for ex-
pansion and 0.2x-0.4x for compression.

Efficient Residual Blocks

Finally, themost favourable block structure can be deemed to be the inverted block structure.
It outperform both the linear structure and the bottleneck structure. Regarding the di�erent
evaluated blocks a few achieved satisfying overall performance while others did not. The ones
that did not were mainly MobileNet and SqueezeNet. Both underperformed in the visual
quality assessment compared to the WDSR XS-models. Noticeable is that none of these
block types were specifically developed for super-resolution. However, neither the size nor
speed were very convincing either.

56

4.1 Evaluation

One block type that did perform well were the SRDenseNet blocks. The models were
marginally larger but had similar or lower run time compared to the WDSR blocks. They
also achieved likewise or greater performance in the visual evaluation. Also, the wider blocks
based on ResNeXt performed quite similarly to the SRDenseNet blocks (however, only in
models without grouped convolution). Lastly, the cascading mechanism proved its viability
by a small increase in visual metrics at a reasonable cost in model size. In addition to the
WDSR blocks, all of these three block types are definitely worth considering for an e�cient
architecture.

57

4. Result

4.2 Design

In this section the proposed model is first presented along with the theory behind it. The
model is then evaluated quantitatively tomeasure its general performance against comparable
models. Then, the model was as previously mentioned trained with various loss functions to
nudge it towards di�erent goals. These were:

(a) Mean absolute error loss to maximize PSNR.

(b) Content loss to maximize feature similarity.

(c) General adversarial network (perceptual loss) to maximize perceptual quality.

This section contains all the generated images for these di�erent models and a compar-
ison to the traditional B-spline interpolation technique (for more images take a look at Ap-
pendix B).

4.2.1 Proposed Model - Dense WDSR

8 DWDSR blocks

Low resolution
input image

+

3x3 convolution 3x3 convolution Upsampling layers

High resolution
output imageGlobal residual

Figure 4.50: The proposed DWDSR network.

The development of an e�cient architecture began by analyzing the gathered empiri-
cal data. Instead of randomly trying things out the network was built based on the most
promising techniques from the quantitative analysis. Here it is proposed as: Dense WDSR,
or DWDSR. The network uses the WDSR network as base structure and contains 8 residual
blocks, visualized in Fig. 4.50. This is the same structure used in all the previously performed
assessments. The design philosophy was based on four core ideas derived from the quantita-
tive analysis:

(a) The e�cient increase in reconstruction quality with the use of expansion layers.

(b) The drastic reduction in number of parameter with linear low-rank convolutions.

(c) The superior visual quality achieved through employing densely connected layers.

(d) The reduction in computational complexity by relying mainly on 1x1 pointwise con-
volutions.

58

4.2 Design

The block can be divided into three identical sub-blocks and each sub-block contains
three parts. An overview over the residual block is shown in Fig. 4.51. First, each sub-
block uses expansion layers (coloured in green) in conjunction with linear low-rank convo-
lution (LLRC, coloured in blue). The two are separated by a single ReLU activation function
(coloured in red).

Bottleneck (LLRC)

ReLU

6x expansion

Input

6x expansion

ReLU

Output

Bottleneck (1x1)

6x expansion

ReLU

Bottleneck (LLRC)

Bottleneck (LLRC)

Figure 4.51: The proposed DWDSR block.

In accordance with the best shown trade-o�, it uses an expansion factor of 6x for the
expansion layer and a compression factor of 0.2x for the linear low-rank convolution. This
enables a parameter-e�cient network. Second, this block is also densely connected (the black
arrows). Each sub-block applies a progressive increase of shortcut connections to subsequent
expansion layers, allowing the block to incorporate features frommultiple abstraction levels.
The connections are fed into the expansion layers and not the bottlenecks. The idea behind
this was that these layers have a higher dimensional output space, making them especially
suitable for feature extraction with more input data. This is also as the data showed a light
technique that increases accuracy e�ciently. And as previously pointed out in [26] it enables
the use of a less deep network and helps alleviating the vanishing gradient problem. Third,
an additional bottleneck layer (coloured in orange) is used to compute the final feature maps
from the block. As input this layer takes the output from each sub-block. This was proven
to reduce the computational complexity while still maintaining good reconstruction quality.

The empirical results of depth compared to width indicated that the use of 32 kernels
with 4 or 16 residual blocks were optimal for the WDSR A-block and B-block respectively.
On similar merits were 32 kernels with 8 residual blocks found to achieve a corresponding

59

4. Result

optimality for the DWDSR block.
Since neither the depthwise separable convolution nor the grouped convolution was

proven very e�ective, they were discarded in favor of standard convolutions. The network
mainly relies on 1x1 pointwise convolutions but also uses a 3x3 convolution in the linear low-
rank convolution, since only using the former was shown to reduce the accuracy. Further-
more, the block has an inverted dimensional structure since it was proven themost beneficial.
It also employs a relatively sparse usage of activation functions, one in each sub-block, be-
cause to many non-linear operations was demonstrated to distort the reconstruction quality.
Regarding residuals, both local residuals in each block and a global residual were applied.

So how well did the model perform? A quantitative assessment can be seen in Fig. 4.52
and Fig. 4.54 where DWDSR is compared to models employing previously proposed blocks
(the ones assessed in the evaluation section). All models were trained with an identical train-
ing setup (for more details see Section 3.3). The green bars in each figure refers to the pro-
posed network. For 2x upscaling the model’s parameter count was 316 k, the run time 308 ms
and the PSNR 34.51 (for 4x upscaling was the run time 98 ms and the PSNR 28.86). From
the diagrams it is possible to conclude that compared to the other models:

(a) The proposed model achieves a low parameter count.

(b) The proposed model achieves a similar run time.

(c) The proposed model achieves superior visual performance.

60

4.2 Design

Figure 4.52: Comparison between all models’ parameter count.

Figure 4.53: Comparison between all models’ run time.

Figure 4.54: Comparison between all models’ visual metrics.

61

4. Result

4.2.2 Images

Mean Absolute Error Loss

Figure 4.55: Image columns from left to right: the low resolution
input images, the B-spline interpolated images, the generated high
resolution images with MAE and the real high resolution images.

The proposed network was then trained with various loss functions for a more subjective
evaluation of its performance. First by minimizing MAE and the generated images can be
viewed in Fig. 4.55. In the figure, the image columns going from left to right corresponds to:
the low resolution input images, the traditional B-spline interpolated images (baseline), the
generated images from the DWDSR network and the real high resolution images. All images
presented here and in the rest of the result section use this figure setup, i.e. the generated
images from the model are presented in the third column. All images have been upscaled
by a factor of 4 and zoomed in to enhance the visual di�erences. The generated images are

62

4.2 Design

of size 4-6 MB from DIV2K data set (except a few being of 1 MB from the Set14 data set).
Subjectively the model seems to perform well. It clearly outperforms the B-spline interpo-
lation method. The upscaled images also closely resembles the real high resolution images.
The images are colourful but slightly too smooth, blurring out some of the details. This can
for instance be seen in the lack of graininess in the tail of the squirrel in the third row in Fig.
4.55.

Content Loss

Figure 4.56: Image columns from left to right: the low resolution
input images, the B-spline interpolated images, the generated high
resolution images with content loss and the real high resolution im-
ages.

The DWDSR was also trained with content loss as loss function with the purpose of
maximizing the feature similarity (for more details see Section 2.2.18). The images presented

63

4. Result

in Fig. 4.56 have been generated with such a model. There are apparent visual di�erences
between the images generated by this model and the previous. This model generate images
with better sharpness, being able to recreate more of the details seen in the high frequency
content. For instance, this is visible with the edges of the letters seen in the second row in
Fig. 4.56. A drawback is the noise that is quite distinct and not as apparent in the previous
MAE-model (note that this is not a PDF artifact but appeared in the pure images). This
noise can for instance be seen on the wings of the butterfly in the top row in Fig. 4.56 where
a grid-like pixel-pattern emerges. Comparing the two, the MAE-model looks to be visually
preferable due to better color recreation and less noise.

Figure 4.57: PSNR for networks trained with content loss and mean
absolute error.

In Fig. 4.57 the PSNR for the two models are compared. As expected, the network op-
timizing the content loss results in lower PSNR compared to the MAE-network. However,
the di�erence is larger than what we hypothesized. This indicates that PSNR is indeed very
sensitive to noise, confirming the research by [8] and previously discussed in 3.5.3.

64

4.2 Design

General Adversarial Network (Perceptual Loss)

Figure 4.58: Image columns from left to right: the low resolution
input images, the B-spline interpolated images, the generated high
resolution images with the GAN and the real high resolution images.

The DWDSR was also used as a generator in a general adversarial network (GAN) and
trained using perceptual loss to maximize perceptual similarity (for more details see Section
2.2.18 for the GAN and Section 2.2.18 for the perceptual loss). The generated images are
presented in Fig. 4.58. Visually, the performance of this model is likely the best of the three.
Just as with the content loss-model it is considerably better sharpness than with the MAE-
model. This is especially noticeable in the the third row in Fig. 4.58. The GAN is also
unarguably superior to the content loss-model due tomuch less noise in the generated images.
Possible drawbacks with thismodelmight be that there still seem to be some noise left and the
generated images are not quite as colourful compared to the MAE-model (for a comparison
side-by-side between all three models see Appendix B.5).

65

4. Result

Figure 4.59: PSNR for the networks trainedwith perceptual loss and
mean absolute error.

Presented in Fig. 4.59 is a PSNR comparison between the GAN-network and the MAE-
network. As expected, the network optimizing the perceptual loss results in lower PSNR
but not at all as low as what was observed with the content loss-network. The GAN actu-
ally manages to achieve superior visual reconstruction quality with a lower PSNR (clearly
demonstrating the noise sensitivity of PSNR).

66

4.2 Design

Network Interpolation

Figure 4.60: The generated images with interpolation networks with
three di�erent interpolation values: α = 0.25 (left column), α =
0.50 (middle column) and α = 0.75 (right column).

With three pre-trained DWDSR models primed towards di�erent optimization goals, the
perceptually best performing models - the MAE and the GAN-network - were used to im-
plement a few final interpolation networks (for more details about the technique see Section
2.2.19). The goal was to extract the best features from the two models, reaching an optimal
visual trade-o� between the two since both networks had their advantages and disadvan-
tages. The MAE-network excelled in colour recreation with low noise levels while the GAN
manages to recreate the details very well. The generated images are shown in Fig. 4.60. In
this figure the three columns show the images frommodels with three di�erent interpolation
values:

67

4. Result

(a) α = 0.25: priming the model 75 % towards the MAE-model (PSNR) and 25 % towards
the GAN (perceptual quality).

(b) α = 0.50: keeping the ratio 50 % between them.

(c) α = 0.75: priming it 25 % towards the MAE-model and 75 % towards the GAN.

It is possible to see a small gradual visual di�erence between the images in the left column
being more MAE-like to the images in the right column being more GAN-like.

4.2.3 Comparison to Large Networks

At last, a comparison was made between the small DWDSR and the larger state-of-the-art
models EDSR and WDSR. Larger in this context is in relation to the DWDSR and not in
relation to the competition size. These two are the winner of the last two years global NTIRE
SISR-competition (2017, 2018) [18][30]. They were implemented to be of a size of about 4.5
M parameters, roughly 15 times as big as DWDSR.

Figure 4.61: EDSR L, WDSR A L,
DWDSR and the parameter count.

Figure 4.62: EDSR L, WDSR A L,
DWDSR and the run time.

Figure 4.63: EDSR L, WDSR A L, DWDSR and the visual metrics.

The quantitative evaluation is shown in Fig. 4.61 for the model size, Fig. 4.62 for the run
time and Fig. 4.63 for the visual performance, where DWDSR is coloured in green. These
larger models have comparatively very poor practical performance but achieve impressive
reconstruction quality scores for 2x upscaling with an PSNR of 34.76 and 34.80 respectively.

68

4.2 Design

Figure 4.64: The generated images with DWDSR (left column), with
WDSR (middle column) and EDSR (right column).

This can be compared to the 34.51 achieved with DWDSR. These models were trained and
with MAE as loss function.

A comparison between the upscaled images of the three models is shown in Fig. 4.64.
The left column contains the images generated with our DWDSR, the middle column images
from WDSR and the right column images from EDSR. The quality of the images seem to be
quite similar and it is actually hard to distinguish them. For this reason, see Fig. 4.65 for a
closer comparison. Here it is possible to see minor improvements, for instance in the images
of the eyes in the top row or in the feathers of the bird in the bottom row.

69

4. Result

Figure 4.65: The generated images with DWDSR (left column), with
WDSR (middle column) and EDSR (right column).

70

Chapter 5

Discussion

This chapter contains a more detailed discussion and interpretation of the data. It is di-
vided into an analysis from an e�ciency perspective, a visual discussion, thoughts about the
training procedure, the possible applicability of the technique and finally relevant aspects for
improving and expanding this work.

5.1 Efficiency

The proposedDWDSRmodel achieved satisfying results in the quantitative evaluation. Com-
pared to all other included models regarding the practical metrics it reached a slightly lower
number of parameters and a slightly higher run time. The evaluation of the reconstruction
quality showed that the model achieved superior performance to all the other models. This
indicates that the evaluation of the techniques was in some sense successful since it led to the
proposed design performing well.

Concerning the di�erent convolutional operators, neither depthwise separable convolu-
tion nor grouped convolution did accomplish the desired result. Both reduced the number of
parameters but did not speed up run time. The depthwise separable convolution manage to
reach a decent reconstruction quality while the grouped convolution did quite poorly. This is
also what was concluded in [30], where both were dropped due to these factors. However, as
mentioned previously both have a theoretical foundation which is enticing. The discrepancy
between the theoretical and practical run time might partly be due to the implementation
in Keras not being e�cient (and as previously mentioned, grouped convolution is currently
not supported). Furthermore, CUDA is specifically optimized for the 3x3 standard convo-
lution [20]. This certainly a�ects the run time of the non-standard factorized methods [20].
Nonetheless, both operators have been used successfully in other computer vision tasks. It is
too early to discard them for super-resolution although the current state does not look very
convincing.

71

5. Discussion

Wide networks rather than deep are also a very interesting area from an e�ciency stand-
point. Of the five models reaching the highest PSNR (peak signal-to-noise ratio), did three
exploit wideness in some way. Either with the use of expansion layers or with wider blocks
(e.g. ResNeXt which uses multiple parallel convolutions). According to [30], its superiority
might come from expanding the feature space before activation function, leading to more in-
formation being passed through each block while still keeping a highly non-linear network.
The convolutions done in parallel might be based on similar merits.

The bottleneck layer was proven to be crucial for e�ciency as well. It is possible to
compress the output feature space quite heavily without a�ecting the visual performance too
much. The 1x1 pointwise convolution and linear low-rank convolution might be the two
most preferable options. The former is especially e�ective in reducing both the number of
parameters and run time. The result from the latter was close to what was concluded in [30].
It is also possible to combine these methods as in the proposed network, where both are used
used at di�erent stages in the residual block.

Also, just adding techniques which have proven useful individually, does not automat-
ically result in better performance. This was for example seen when adding the cascading
mechanism. It worked well for some models but not for others. A reasonable assumption
why it did not lead to any performance enhancement for the DWDSR is due to the densely
connected layers. This technique is quite similar and also based on increasing the flow of
information from di�erent abstraction levels. Thus, adding a cascading mechanism on top
of that was not useful.

Finally, it should also be noted that very di�erent architectures can achieve very similar
results. Of the best models one used WDSR B-blocks with a cascading mechanism, another
employed wide blocks with parallel convolutions and a third used densely connected layers.
This is somewhat enticing since it shows that there is not a single path to e�ciency. There
are certainly a lot more unknown great techniques that will be invented the years to come.

5.2 Visual Quality

The qualitative assessment of the generated images showed good overall results. The gener-
ated upscaled images from the best performing models drastically improve the visual qual-
ity of the input images and closely resembles the real high resolution images. The super-
resolution technique clearly shows its superiority compared to the conventional B-spline
interpolation method. We also showed how using various optimization function leads to
notably di�erent perceptual results. The standard MAE function did generally achieve good
images with a very low noise level and highly colourful images. Its drawback is mainly the lack
of recreating details. The content loss-model, which favored feature similarity did generate
images with greater detail recreation but at the cost of substantial noise. The GAN-network
accomplished impressive results by finding a middle ground, generating images with great
detail recreation while not giving rise to too much noise. A theory to why this model led to
images with less noise is that the generator network was forced to not only focus on content
quality but also fooling the discriminator network. Too much noise would likely be a way
for the discriminator to easily classify the generated images as fake, increasing the genera-
tor loss. Nonetheless, there is still some noise left which is apparent with certain images in
certain areas when zoomed in multiple times. This may be possible to at least partly fix by

72

5.3 Assessment Criteria

adjusting the perceptual loss. The result here is similar to what was concluded in [17], where
the GAN was able to outperform other network types in in realistic detail recreation.

The model trained with content loss achieved a very low PSNR. However, the visual dif-
ference did not seem to be at all as big. This also applied to the GANwith the perceptual loss,
where the PSNR was lower although it arguably generated images with higher quality. This
discrepancy does not reflect subjective perception and is a clear indication of the evaluation
metric not being optimal.

The interpolation network, favoring partly theMAE-network and partly theGAN-network,
also manages to generate convincing results. For instance when using an interpolation value
of 0.25, slightly nudging it towards the MAE-network but mainly relying on the GAN, the
noise from the latter could be reduced while still managing to recreate the details very well.
What is specifically enticing with the technique beyond the customizability, is the ability to
build new networks without having to re-train them. This is very time e�cient. It can also
be di�cult do define an appropriate loss function. This interpolation technique allows for
building multiple models and simply updating the weights in accordance with the desired
visual result. However, this was only tested for combining the MAE and the GAN. It is not
clear how well it would turn out for completely di�erent loss functions.

Lastly, it is important to emphasize that although the DWDSR trained as part of a GAN
did reach the best visual results it does not seem to be a single model type which is visually
superior to all other (at least not in all areas). This type of evaluation is in is essence very
subjective. It does not need to be a consensus regarding the visual quality of the images
generated from di�erent models and people will likely have di�erent opinions.

5.3 Assessment Criteria

There is clearly a rationale for researching for better assessment criteria. All networks need a
loss function and depending on what the objective is, it should be adapted for that particular
task. One problem with this is that for super-resolution it can be di�cult to explicitly state
a precise definition of what the objective of the task actually is. This is most likely the reason
why most networks employ MSE or MAE by simplicity, although these models might have
vastly di�erent use cases. There is a great need for developing clear and precise criteria and
definitions for di�erent applications. This would likely not only increase the performance of
a model for the particular task but also making the comparison between models developed
for di�erent purposes more fair.

At the moment it should be concluded that there is no one-size-fits-all loss function or
evaluation metric. It heavily depends on what the purpose of the network is and in what
area it should be applied. Arguably, it may in many cases be best to use a combination of
quantitative and qualitative metrics. The standard loss functions MSE and MAE both pro-
duces similar results by indirectly maximizing the PSNR. Since the PSNR often is the default
metric for the image recreation quality it is understandable that these are used extensively.
These functions do work well for most purposes. For instance, for medical image analysis a
MAE would probably be preferable since visually would the low noise levels be prioritized.
However, as seen there are areas where issues arises. Although the use of a GAN with a per-
ceptual loss results in lower PSNR, the visual quality is often superior as we have seen. This
discrepancy does not reflect the subjective perception of the image quality and is hence prob-

73

5. Discussion

lematic. An application where the perceptual loss would be suitable is for instance a mobile
photo application where most photos are of people, animals and landscapes.

5.4 Training

Trainingmodels are computationally demanding. Despite using a fast graphics card the train-
ing takes a lot of time, especially when training so many di�erent models. For this reason
the 100 epochs was established as limit for the smaller models and 500 epochs for the larger
ones. For the most part this was su�cient, at least to derive a conclusion of its utility in this
study. With a training time for the smaller models of 2-8 hours and for the larger 12-64 hours
a limit had to be set.

Figure 5.1: Loss during training the
DWDSR.

Figure 5.2: Validation loss during train-
ing the DWDSR.

Figure 5.3: PSNR during training the
DWDSR.

Figure 5.4: Validation PSNR during
training the DWDSR.

Figs. 5.1 and 5.2 show the training loss and validation loss during a 500 epoch training
for 4x upscaling session visualized. In Figs. 5.3 and 5.4 are the training and validation PSNR
during the same training session. It can be seen that both the loss and PSNR during train-
ing still seem to make slight improvements. Nonetheless, this is not as clear regarding the
validation (which is what matters). Therefor, the model appears to being at or close to its
maximum performance.

However, this might not be the case for all evaluations. The smaller models of 100 epoch
training session may have needed more training. This may very well apply to the larger EDSR

74

5.5 Applicability

and WDSR networks as well. Training each network longer would obviously decrease the
risk of possible underfitting, leading to a more reliable result. Thus, a possible improvement
would have been to train all models for longer. Additionally adding early stopping function-
ality to prevent overfitting would have been even better. This is a functionality that specifies
when the training should be regarded as completed, by setting up a fixed number of epochs
without improvement as a stop sign.

Finally, most of the trainingwentwell without anymajor problems. One smaller issuewas
encountered when training cascading networks. When applying the cascading mechanism an
instability sometimes arose where the loss would suddenly increase drastically. It could reach
levels so high it could not repair it in a reasonable time. This was solved by decreasing the
learning rate and re-start the training with previously saved weights.

5.5 Applicability

It is possible to conclude that even small models can be used for super-resolution. It has been
proven that with a small network with relatively fast run time it is still possible to achieve
satisfactory image quality for 2x-4x upscaling of low resolution images. By using various loss
functions or interpolation techniques it can also be inferred that the network can be adapted
for di�erent applications.

A relevant question for real-world applicability is what images sizes can be upscaled. The
input images were upscaled from a size of approximately 1000 x 700 (1.4 MB) (for 2x) or 500
x 350 (370 KB) (for 4x) to roughly 2000 x 1400 (3.8 MB). The maximum upscaling size was
1800 x 1350 (4.5 MB) (for 4x) to 7250 x 5450 (45 MB). The run time for upscaling the stan-
dard images were about 350 ms (for 2x) and 100 ms (for 4x) and for the large images 1800
ms (for 4x). These are low run times and would for the majority of real-world application
be su�ciently fast. However, it should be clearly stated that the machine used was powerful
with a GTX 1080 TI graphics card. In many real-world use cases such a machine will not
be available. How fast a model needs to be is obviously very dependent on its use case. For
medical image processing (e.g. MRI) or satellite image processing, the run time would prob-
ably not be of highest priority but rather the end result. Here, the technique would likely be
applicable today. For other areas with real-time usage where run time is important, like video
surveillance, military imaging equipment or automotive industry applications, it obviously
depends on the specific requirements. It is is however clear that neural network solutions
should not be overlooked.

To get super-resolution in the hands of consumers, an option would be to apply the tech-
nique to applications on lightweight devices. However, this would certainly put boundaries
on what could be accomplished. For mobile phones, there are currently two main issues:

(a) Hardware limitations

Memory and processing speed is crucial for a computationally demanding task like super-
resolution even for light models. It should certainly be feasible to upscale low resolution im-
ages but higher resolutions would be problematic. Theoretically one way to solve the problem
of uspcaling higher resolution images would be to split the image into smaller patches and
run the network on each of these separately and then reconstruct the image. This would
likely lead to a high run time. However, if the result is su�ciently good some delay would

75

5. Discussion

likely be acceptable from a user standpoint. A second solution would be to build extremely
small models. This would reduce the run time but also severly a�ect the visual quality.

(b) Platform support

In recent years the number of deep learning libraries has grown. For mobile platforms it
is limited but a few options are Google’s TensorFlow Lite, Qualcomm’s Snapdragon Neural
Processing Engine and Sony’s Neural Network Library NNabla. There is ongoing research
and development for these platforms. In computer vision, two areas being of most focus are
image classification and object detection. For this reason the networks and guides provided
by the libraries are often adapted for these tasks. This can be problematic for specialized
super-resolution networks since many platforms have limited support for customized lay-
ers and operators. This might partly explain why the technique for mobile use is very rare
today. But with the proven results achievable with light network architectures, the ongo-
ing development of these type of designs, the increasing support for mobile deployment and
progressively more computational power in the devices - it is hopefully just a matter of time
before we will see a wider use.

5.6 Improvements

There are numerous areas to which this work could be improved or further expanded. To
mention a few:

• Port to a mobile platform. It would be exciting to see how well the model would
perform in an environment with limited resources, such as a mobile phone and what
resolutions could be upscaled at reasonable run times.

• Hyperparameter tuning. By applying a hyperparameter search the performance of the
model might be able to improve.

• Increased training time (or computational resources). With more training time each
model would be more probable to reach its maximum performance, leading to more
reliable results for all evaluations.

• Train in compressed space. For instance, it would be possible to train in JPEG-space
with the purpose of speeding up the models. This would be very experimental but has
been demonstrated to work for other computer vision tasks.

76

Chapter 6

Conclusion

From the quantitative evaluation multiple di�erent techniques proved to be e�cient. The
four core components used for the proposed model were: expansion layers, linear low-rank
convolution, densely connected layers and relying mainly on the 1x1 pointwise convolution.
The performance of the DWDSR was satisfying regarding both the quantitative and qualita-
tive evaluations. It achieved a low parameter count and relatively fast run time as well as high
visual recreation quality. Subjectively the di�erence between the generated images and the
real high resolution images are small. It also clearly outperformed the traditional B-spline
interpolation technique. In comparison to other analyzed models built with state-of-the-art
techniques (in this very lightweight class), it obtains similar practical but slightly better vi-
sual performance. The initial assessment can therefore be deemed successful, since it enabled
the development of a well performing model.

With the use of a GAN the DWDSR network was also used as a generator. This model
manages to generate images with greater details. With the additional network interpolation
technique it was demonstrated that it is possible to nudge the model towards di�erent visual
objectives, giving rise to a greater degree of customizability by finding a suitable balance.
The network was also compared to the 15 times as large state-of-the-art EDSR and WDSR-
networks. These models achieved better visual performance but the proposed model was not
completely outperformed as shown in the generated images in 4.64 in the result chapter. It
therefore demonstrated its usability when e�ciency is of interest.

Furthermore, regarding e�cient super-resolution architectures it clearly does not seem
to be a single type of design which is superior to all other. All of the five models achieving the
highest visual evaluation scores were quite di�erent from each other. For instance, one was
based on a the cascading mechanism applied toWDSR B-blocks, a second relied on wideness
with parallel convolutions and a third used densely connected layers in conjunction with
expansion layers. We can conclude that there are multiple di�erent ways to design small and
e�cient networks.

It can also be concluded that more sophisticated models do not necessarily correlate with
better performing models. As previously shown in networks like WDSR, it is possible to

77

6. Conclusion

reduce the complexity by employing intelligent techniques and still achieve greater overall
performance. This was for instance seen with the more complex MobileNet-based model
with almost double the parameter count to the proposed network but with worse visual
reconstruction quality. This matches the philosophical idea of Occam’s Razor: given a set of
di�erent solutions, the least complex one with the fewest assumptions should be preferred.
This might in some sense also be relevant for machine learning.

Finally, model design is hard. It is evident that there can be big theoretical and practi-
cal discrepancies that beforehand can be di�cult to predict. Some techniques simply work
well for certain block types but not for others. Likewise, just because some operators are
applicable for another computer vision task does not automatically turn them into a success
for a di�erent task. This was seen with operators like the depthwise separable convolution
and grouped convolution. For this reason one could argue that a two-step approach, with
an initial assessment of various ideas and then basing the development of the obtained re-
sult, is a reasonable process. This gives a better understanding of why the network performs
as it does, instead of simply randomly trying things out and seeing the result as a magical
black box. Nonetheless, to gain knowledge testing is crucial and there does not seem to be a
way around actually implementing and evaluate the techniques. Designing machine learning
models has been described as an art rather than a science and there might be some truth to
that.

78

Bibliography

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 chal-
lenge on single image super-resolution: Dataset and study.
http://www.vision.ee.ethz.ch/ timofter/publications/Agustsson-CVPRW-2017.pdf.

[2] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and, lightweight
super-resolution with cascading residual network. CoRR, abs/1803.08664, 2018.

[3] Yang Chih-Yuan, Ma Chao, and Yang Ming-Hsuan. Single-image super-resolution: A
benchmark. pages 372–386, 09 2014.

[4] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution
using deep convolutional networks. CoRR, abs/1501.00092, 2015.

[5] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution
convolutional neural network. CoRR, abs/1608.00367, 2016.

[6] AurélienGéron. Hands-OnMachine Learning with Scikit-Learn Tensorflow. O’ReillyMedia,
Inc., 2017.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

[8] A. Hore and D. Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th International
Conference on Pattern Recognition, pages 2366–2369, Aug 2010.

[9] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: E�cient convolu-
tional neural networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[10] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional
networks. CoRR, abs/1608.06993, 2016.

[11] Forrest N. Iandola, MatthewW. Moskewicz, Khalid Ashraf, Song Han, William J. Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
<1mb model size. CoRR, abs/1602.07360, 2016.

79

BIBLIOGRAPHY

[12] Andrey Ignatov, Radu Timofte, et al. Pirm challenge on perceptual image enhancement
on smartphones: report. January 2019.

[13] Jiwon Kim, Jung Kwon Lee, and KyoungMu Lee. Accurate image super-resolution using
very deep convolutional networks. CoRR, abs/1511.04587, 2015.

[14] Diederik P. Kingma and Jimmy Ba. Adam: Amethod for stochastic optimization. CoRR,
abs/1809.00219, 2014.

[15] Martin Krasser. Super-resolution, 2018. https://github.com/krasserm/super-resolution.

[16] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Imagenet classification with
deep convolutional neural networks. pages 1097–1105, 2012.

[17] Christian Ledig, Lucas Theis, FerencHuszar, JoseCaballero, AndrewP.Aitken, Alykhan
Tejani, Johannes Totz, ZehanWang, andWenzhe Shi. Photo-realistic single image super-
resolution using a generative adversarial network. CoRR, abs/1609.04802, 2016.

[18] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced
deep residual networks for single image super-resolution. CoRR, abs/1707.02921, 2017.

[19] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017.

[20] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shu�enet V2: practical
guidelines for e�cient CNN architecture design. CoRR, abs/1807.11164, 2018.

[21] Dr. Rajesh Mehra. Estimation of the image quality under di�erent distortions. Interna-
tional Journal Of Engineering And Computer Science, 8, 07 2016.

[22] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[23] Alec Radford, LukeMetz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. CoRR, 2015.

[24] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Inverted residuals and linear bottlenecks: Mobile networks for classifica-
tion, detection and segmentation. CoRR, abs/1801.04381, 2018.

[25] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken, Rob
Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and video
super-resolution using an e�cient sub-pixel convolutional neural network. CoRR,
abs/1609.05158, 2016.

[26] T. Tong, G. Li, X. Liu, andQ. Gao. Image super-resolution using dense skip connections.
pages 4809–4817, Oct 2017.

[27] XintaoWang, Ke Yu, ShixiangWu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change Loy,
Yu Qiao, and Xiaoou Tang. ESRGAN: enhanced super-resolution generative adversarial
networks. CoRR, abs/1809.00219, 2018.

80

BIBLIOGRAPHY

[28] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. CoRR, abs/1611.05431, 2016.

[29] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, and Jing-Hao Xue. Deep
learning for single image super-resolution: A brief review. CoRR, abs/1808.03344, 2018.

[30] Jiahui Yu, Yuchen Fan, Jianchao Yang, Ning Xu, Zhaowen Wang, Xinchao Wang, and
Thomas S. Huang. Wide activation for e�cient and accurate image super-resolution.
CoRR, abs/1808.08718, 2018.

81

BIBLIOGRAPHY

82

Appendices

83

Appendix A

Evaluation Details

A.1 Evaluation Details

A.1.1 Evaluation of Techniques

General Design

1. Depth (number of residual blocks)

(a) Depth was evaluated for 1, 2, 4, 8, 16 and 32 residual blocks (WDSR A)

(b) Depth was evaluated for 4, 8, 16, 32 and 64 residual blocks (WDSR B)

2. Kernels (number of kernels and sizes)

(a) Evaluated number of kernels: 16, 32, 48 and 64

(b) Evaluated kernel sizes: 1x1, 2x2, 3x3, 4x4 and 5x5

3. Residual Blocks or Kernels (depth vs width)

(a) 1 residual block with 64 kernels

(b) 2 residual blocks with 48 kernels

(c) 4 residual blocks with 32 kernels

(d) 8 residual blocks with 24 kernels

(e) 16 residual blocks with 16 kernels

4. Activation functions (in each block)

(a) 1 ReLU (between first and second layer)

(b) 2 ReLU (an additional between second layer and residual)

85

A. Evaluation Details

(c) 3 ReLU (an additional between residual and output)

5. Residuals

(a) 1 local residual (in each block)

(b) 1 global residual

(c) No residuals

(d) Both local and global residual

Layer Types

1. Expansion layers (applied to the first layer)

(a) 1x expansion factor

(b) 2x expansion factor

(c) 4x expansion factor

(d) 6x expansion factor

(e) 8x expansion factor

2. Bottleneck layers (applied to the second layer)

(a) 8 kernels

(b) 16 kernels

(c) 24 kernels

(d) 32 kernels

(e) 1x1 pointwise bottleneck

Convolutional Operators

1. Depthwise separable convolution

(a) Applied to both layers

(b) Applied to only the first layer

(c) Applied to only the second layer

2. Grouped convolution

(a) 8 groups with 16 kernels each

(b) 4 groups with 32 kernels each

3. Linear low-rank convolution

(a) 5x expansion and 0.1x compression factors

(b) 6x expansion and 0.2x compression factors

(c) 8x expansion and 0.4x compression factors

(d) 10x expansion and 0.6x compression factors

(e) 12x expansion and 0.8x compression factors

86

A.1 Evaluation Details

Efficient Residual Blocks

Here are some used abbreviations:

• RB (residual block)

• K (kernels)

• FM (feature map)

• EXP (expansion factor)

• SC (standard convolution)

• DSC (depthwise separable convolution)

• GC (grouped convolution)

• LLRC (linear low-rank convolution)

• FL (first layer in WDSR A/B block)

• LL (last layer in WDSR A/B block)

1. Block structure (dimensional shape)

(a) Linear structure with 64 FM

(b) Bottleneck structure with 128 FM as default and 32 FM as bottleneck

(c) Inverted bottleneck structure with 32 FM as default and 128 FM as expansion

2. WDSR blocks

(a) WDSR A block: 4 RB, 32 K, 4x EXP FL

(b) WDSR B block: 16 RB, 32 K, 6x EXP FL

3. MobileNet block

(a) MobileNet XS: 12 RB, 32 K, DSC, 6x EXP FL

(b) MobileNet S: 16 RB, 32 K, DSC, 6x EXP FL

4. SRDenseNet block

(a) SRDenseNet A XS: 5 RB, 32 K, 3 layers

(b) SRDenseNet A S: 6 RB, 32 K, 3 layers

(c) SRDenseNet B XS: 5 RB, 32 K, 3 layers, extra residual, extra 1x1 bottleneck before
output

(d) SRDenseNet B S: 6 RB, 32 K, 3 layers, extra residual, extra 1x1 bottleneck before
output

87

A. Evaluation Details

5. ResNeXt block

(a) ResNeXt GC XS: 6 RB, 32 K, GC,

(b) ResNeXt GC S: 8 RB, 32 K, GC

(c) ResNeXt SC XS: 8 RB, 32 K, SC, 3 paths

(d) ResNeXt SC S: 10 RB, 32 K, SC, 3 paths

(e) ResNeXt SC B XS: 12 RB, 32 K, 3 paths, extra 1x1 bottleneck before output

(f) ResNeXt SC B S: 16 RB, 32 K, 3 paths, extra 1x1 bottleneck before output

6. SqueezeNet block

(a) SqueezeNet XXS: 4 RB, 32 K

(b) SqueezeNet XS 6 RB, 32 K

(c) SqueezeNet S 8 RB, 32 K

7. Cascading block

(a) Cascading GC XS: 18 CARN, 32 K, GC

(b) Cascading GC S: 9 CARN, 32 K, GC

(c) Cascading SC XS: 9 CARN, 32 K, SC

(d) Cascading SC X: 9 CARN, 32 K, SC

A.1.2 Evaluation of The Proposed Model

Here are some used abbreviations:

• RB (residual block)

• K (kernels)

• EXP (expansion factor)

• SC (standard convolution)

• DSC (depthwise separable convolution)

• GC (grouped convolution)

• LLRC (linear low-rank convolution)

• FL (first layer in WDSR A/B block)

• LL (last layer in WDSR A/B block)

88

A.1 Evaluation Details

1. WDSR

(a) WDSR A-XS 4 RB, 32K, 4x EXP

(b) WDSR A-XS 8 RB DSC FL, 4x EXP

(c) WDSR B-XS 16 RB, 32K, 6x EXP

(d) WDSR B-XS cascading, 32K

(e) WDSR B-XS 12 RB, 32K, DSC FL, 6x EXP

2. MobileNet block

(a) MobileNet XS: 12 RB, 32K, DSC, 6x EXP

(b) MobileNet S: 16 RB, 32K, DSC, 6x EXP

3. SRDenseNet block

(a) SRDenseNet A S, 4 RB, 32K, 3 layers,

(b) SRDenseNet B S, 8 RB, 32K, 3 layers,

(c) SRDenseNet cascading, 32K, 3 layers

(d) SRDenseNet P, 8 RB, 32K, 3 layers

4. ResNeXt block

(a) ResNeXt SC A XS, 12 RB, 32K, 3 paths

(b) ResNeXt SC A S, 16 RB, 32K, 3 paths

(c) ResNeXt SC B XS, 12 RB, 32K, 3 paths

(d) ResNeXt SC B S, 16 RB, 32K, 3 paths

(e) ResNeXt SC cascading, 32K, 3 paths

5. SqueezeNet block

(a) SqueezeNet S, 8 RB, 32K, 4x EXP

(b) SqueezeNet XS, 7 RB, 32K, 4x EXP

6. Cascading block

(a) Cascading SC XS: 9 CARN block, 32K, SC

(b) Cascading SC S: 9 CARN block, 32K, SC

7. Large networks

(a) EDSR, 24 RB, 32K, 96 K

(b) WDSR A, 64 RB, 32K, 32 K

89

A. Evaluation Details

90

Appendix B

Additional Images

91

B. Additional Images

B.1 Mean Absolute Error Loss

Figure B.1: Image columns from left to right: the low resolution
input images, the B-spline interpolated images, the generated high
resolution images with MAE and the real high resolution images.

92

B.2 Content Loss

B.2 Content Loss

Figure B.2: Image columns from left to right: the low resolution
input images, the B-spline interpolated images, the generated high
resolution images with content loss and the real high resolution im-
ages.

93

B. Additional Images

B.3 General Adversarial Network (Percep-
tual Loss)

Figure B.3: Image columns from left to right: the low resolution
input images, the B-spline interpolated images, the generated high
resolution images with the GAN and the real high resolution images.

94

B.4 Network Interpolation

B.4 Network Interpolation

Figure B.4: The generated images with interpolation networks with
three di�erent interpolation values: α = 0.25 (left column), α =
0.50 (middle column) and α = 0.75 (right column).

95

B. Additional Images

B.5 Comparison Side-by-side

Figure B.5: Generated images with MAE (left column), content loss
(middle column) and GAN (right column).

96

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2019-06-04

EXAMENSARBETE Efficient Deep Learning Architectures for Super-Resolution
STUDENT Adam Thuvesen
HANDLEDARE Volker Krüger (LTH), Sebastian Raase (Sony)
EXAMINATOR Pierre Nugues (LTH)

Effektiva Deep Learning Arkitekturer för
Super-Resolution

POPULÄRVETENSKAPLIG SAMMANFATTNING Adam Thuvesen

I Hollywood-filmer har man sedan länge på magiskt vis kunnat förbättra bildupplös-
ningen till arbiträra nivåer utan någon försämrad bildkvalité. I verkligheten är det
dock mycket svårt och beräkningstungt. Detta arbete utgår från denna problematik
för att analysera effektiva lösningar för Super-Resolution med djupa neurala nätverk.

Ett vanligt problem för alla som någon gång
tagit ett foto på långt avstånd, t ex på en konsert,
är bilder med dålig upplösning. Men att förbättra
bildupplösningen är svårt och resultatet blir med
de flesta traditionella algoritmerna inte särskilt
imponerande. En teknik för att lösa detta prob-
lem kallas Super-Resolution, där stora framgån-
gar uppnåtts genom att använda djupa neurala
nätverk. Dessa nätverk har dock i regel varit
oerhört komplexa och beräkningstunga, vilket har
lett till svårigheter att applicera dem i praktiken.
Med denna problematik som utgångspunkt har
detta examensarbete fokuserat på att analysera
effektiva nätverksarkitekturer för denna uppgift.
Målet har varit att undersöka hur man kan des-
igna ett nätverk med god prestanda som både
är litet och snabbt men samtidigt uppnår hög
kvalitet på de uppskalade bilderna.
För att lösa problemet delades arbetet upp i två

delar: först en evalueringsfas av diverse tekniker
och därefter en designfas där ett nätverk utveck-
lades baserat på den mest lovande evaluerings-
datan. Resultatet blev ett nätverk som uppnådde
subjektivt hög kvalitet på bilderna, vilken kan ses i
figuren, samt god prestanda i jämförelse med an-
dra effektiva nätverk i samma storleksklass: (1)
färre parametrar än de flesta, (2) liknande snabb-

Figure 1: Lågupplöst bild som input (vänster) och
genererad högupplöst bild (höger).

het och (3) bäst visuell kvalité på bilderna.
Resultatet tyder på att tekniken definitivt bör

vara applicerbar i en rad olika områden redan
idag. Men trots att nätverket är relativt litet och
effektivt så krävs ändå tillgång till god beräkn-
ingskapacitet. Således bör användningsområden
kunna vara applikationer där det finns tillgång
till detta, som t ex analys av medicinska bilder
eller för satellit- och flygfoto. För lättare en-
heter kvarstår problem, i huvudsak hårdvarube-
gränsningar samt plattformsupport. För att lösa
detta krävs mer forskning på ännu mindre och ef-
fektivare nätverk samt utökat support för att im-
plementera tekniken på lättare enheter.

	Introduction
	Super-Resolution
	Research Problem
	Previous Research
	Layout

	Background
	Single Image Super-Resolution
	Machine Learning
	Loss Function
	Artificial Neural Network
	Convolutional Neural Network
	Activation Function
	Depthwise Separable Convolution
	Grouped Convolution
	Linear Low-Rank Convolution
	Upsampling Layer
	Bottleneck Layer
	Expansion Layer
	Residual Block
	MobileNet Block
	WDSR Block
	SRDenseNet Block
	ResNeXt Block
	SqueezeNet Block
	Cascading Mechanism
	General Adversarial Network
	Network Interpolation

	Method
	Approach
	Evaluation
	Design

	Data set
	Training
	General Adversarial Network

	Setup
	Evaluation
	Method
	Metrics
	Metric limitations

	Result
	Evaluation
	Residual Blocks
	Kernels
	Residual Blocks or Kernels
	Activation Function
	Residuals
	Expansion Layer
	Bottleneck Layer
	Depthwise Separable Convolution
	Grouped Convolution
	Linear Low-Rank Convolution
	Block Structure
	WDSR Block
	MobileNet Block
	SRDenseNet Block
	ResNeXt Block
	SqueezeNet Block
	Cascading Mechanism
	Summary of Findings

	Design
	Proposed Model - Dense WDSR
	Images
	Comparison to Large Networks

	Discussion
	Efficiency
	Visual Quality
	Assessment Criteria
	Training
	Applicability
	Improvements

	Conclusion
	Bibliography
	Appendix Evaluation Details
	Evaluation Details
	Evaluation of Techniques
	Evaluation of The Proposed Model

	Appendix Additional Images
	Mean Absolute Error Loss
	Content Loss
	General Adversarial Network (Perceptual Loss)
	Network Interpolation
	Comparison Side-by-side

