
A Relation Between Anderson

Acceleration and GMRES

Gustaf Lorentzon

Bachelor’s thesis

2020:K17

Faculty of Science

Centre for Mathematical Sciences

Numerical Analysis

C
E

N
T

R
U

M
SC

IE
N

T
IA

R
U

M
M

A
T

H
E

M
A

T
IC

A
R

U
M

I

LUND UNIVERISTY

Abstract

Numerical Analysis

Centre for Mathematical Sciences

A Relation Between Anderson Acceleration and GMRES

by Gustaf Lorentzon

A very common type of problem within mathematics and numerical anal-

ysis are fixed-point problems, which can arise as sub-problems of optimization

methods, differential equations solvers and much more. The most basic iterative

approach for fixed-point problems is fixed-point iteration, special cases of which

actually date back as far as the Babylonians, where it was used to to find the

square roots of positive numbers. An issue with fixed-point iteration is that it

can be very slow, as a consequence, acceleration methods have been developed,

which are, not surprisingly, methods for speeding up fixed-point iteration. One

of these methods are called Anderson acceleration, which has a very strong re-

lationship with GMRES, an algorithm for solving systems of linear equations,

which at first glance, seems completely unrelated. The purpose of this thesis is

to investigate the theory behind this relationship and to test it numerically.

II

Contents

1 Introduction 1

2 Theory 5

2.1 GMRES . 5

2.1.1 Characterization . 5

2.1.2 The GMRES Algorithm 7

2.2 Anderson Acceleration and GMRES 9

2.2.1 A system with a preconditioner 20

2.2.2 AA with the Least Square Problem on Unconstrained Form 21

3 Numerical Implementation 25

3.1 The Finite Difference Method and Implicit Euler 25

3.1.1 Implementation . 27

3.2 Results . 29

3.3 Discussion . 32

III

IV CONTENTS

Chapter 1

Introduction

Firstly, this thesis is a review of [3] and unless specified otherwise, all sections

up until the numerical implementation are heavily, if not completely, based on

[3].

A very common type of problem within mathematics and numerical anal-

ysis are fixed-point problems, which can arise as sub-problems of optimization

methods, differential equations solvers and much more. We define a fixed-point

problem by the following.

Problem 1.1.

Assume we have g : Rm → Rm, then finding x ∈ Rm such that

x = g(x) (1.1)

is a fixed-point problem.

In some cases it is possible to solve this directly using analytical methods, but

in other cases this can be extremely difficult or even impossible, therefore it is

natural to look for alternative approximation methods. A way of reformulating

the fixed-point problem is to define f(x) ≡ g(x) − x and instead formulating

it on the equivalent root form; 0 = f(x) = g(x) − x. This relation allows

us to measure how good an approximation is by seeing how close the fixed-

point residual; ‖f(x)‖2, is to zero, and iterative methods aim to get better

1

2 CHAPTER 1. INTRODUCTION

approximations by successively making the fixed-point residual smaller for each

iteration. The most basic iterative approach to solving Problem 1.1 is fixed-

point iteration, special cases of which actually date date back as far as the

Babylonians, where it was used to find the square roots of positive numbers [1].

Algorithm FPI (Fixed-Point Iteration).

Given x0

for k = 0, 1, ... do;

Set xk+1 = g(xk)

An issue with Algorithm FPI is that it does not always converge, and even

in the cases where it does converge, it might do so very slowly. A way of dealing

with these problems is to use acceleration methods, which can potentially speed

up the convergence process and in some cases even decrease the likelihood for

divergence. There are many different acceleration methods, but we will put our

focus on an algorithm which we refer to as Anderson Acceleration, which we

formulate as in [3];

Algorithm AA (Anderson Acceleration).

Given x0 and m ≥ 1

Set x1 = g(x0)

for k = 1, 2, ...

Set mk = min{m, k}

Set Fk = (fk−mk
, ..., fk), where fi = g(xi)− xi

Determine α(k) = (α
(k)
0 , ..., α

(k)
mk)T that solves

min
α(k)=(α0,...,αmk

)T
‖Fkα‖2 such that

mk∑
i=0

αi = 1. (1.2)

Set xk+1 =
∑mk

i=0 α
(k)
i g(xk−mk+i)

Note that Algorithm AA can be run without truncation by replacing the first

line of the for loop by mk = k.

3

Now we shift our focus to another very common problem within linear alge-

bra known as a system of linear equations.

Problem 1.2.

Assume we have a non-singular matrix A ∈ Rm×m and a vector b ∈ Rm. Then,

Ax = b, (1.3)

is known as a system of linear equations.

Once again there are many ways of directly solving Problem 1.2, with the

most straight-forward approach being to apply Gaussian elimination. But in

the case where the m in Problem 1.2 is extremely large, this direct approach

might be impossible to execute within a given time frame, in which case one

might use an approximation method instead. GMRES is an example of such a

method, the details of which are discussed in section 2.1.

What is interesting is that Anderson Acceleration, an algorithm for solving

fixed-point problems, and GMRES, an algorithm solving large systems of linear

equations, have a very strong relation. To summarize this relation shortly, in

the case where g is linear, the algorithms are equivalent in the sense that, under

a few additional assumptions, the iterates of either algorithm can be obtained

directly from the iterates of the other algorithm. In this thesis we will show this

relation theoretically and test it numerically.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Theory

2.1 GMRES

This entire section is based on the description of GMRES given by [2] and to

not litter the text with references it is implied that the information is taken

from [2].

2.1.1 Characterization

A non-symmetric system of linear equations is a problem of the type (1.3),

where A is non-symmetric, and it is something which can arise from many

different problems. In the case where m is extremely large, the system might

be impossible to solve within a given time frame by using Gaussian elimination,

since it simply takes too many computations.

Instead one might look for iterative methods which approximate the solu-

tion and converge to it. If we then perform enough iterations we will get an

approximation so close to the exact solution that it is the best approximation

given our computer accuracy and its floating point arithmetic. If this is achieved

then the approximation will be just as good as finding the exact solution, since

the exact solution within floating point arithmetic would then be equal to the

approximation.

5

6 CHAPTER 2. THEORY

One way one often goes about this approximation process is to use Krylov

subspace methods, one of which is called Generalized Minimized Residual, or

GMRES for short, which is described below. Since the main issue of the problem

above is that the dimension m of the solution space is too large, finding a way of

looking for a solution in a subspace of Rm with significantly smaller dimension

would be very convenient. Krylov subspace methods are a way of doing exactly

this.

Definition 2.1.

Assume we have the linear system of equations Ax = b with A ∈ Rm×m, b ∈ Rm

and an initial guess for a solution x0. Then we denote the initial residual by r0 =

b−Ax0 and define the kth Krylov subspace as Kk = span{r0, Ar0, ..., A
k−1r0}

Given Kk, we can approximate the solution to Ax = b by instead looking for

a solution in the restricted solution space x0 + Kk := {x = x0 + x̂k|x̂k ∈ Kk}.

What characterizes the kth iterate xk of GMRES is that the norm of the residual

rk = b−Axk is minimized, that is, xk solves

‖rk‖2 = min
xk∈x0+Kk

‖b−Axk‖2 (2.1)

and at every iteration the GMRES algorithm efficiently finds the solution to

(2.1). As long as stagnation is not reached, in the sense that Ak−1 = I, the

dimension of the solution space x0 + Kk will grow, and therefore we hope to

get increasingly better solutions. The algorithm terminates when the residual

‖b−Axk‖2 is lower than a prespecified tolerance, when stagnation is reached,

or when a prespecified maximum number of iterations have been reached. Note

that in an implementation the number of iterations k � m, since if the number

of dimensions of the solution space x0 + Kk of the sub-problem is on the same

order as m, the method would just be extremely ineffective.

Another equivalent formulation of the GMRES minimization problem which

is more convenient for implementation is finding x̂k such that

x̂k = arg min
x̂k∈Kk

‖b−A(x0 + x̂k)‖2 = arg min
x̂k∈Kk

‖r0 −Ax̂k‖2 , (2.2)

2.1. GMRES 7

or, if we have a that {z1, ..., zk} is a basis for Kk, then we can use the reformu-

lation x̂k =
∑k
i=1 α

(k)
i zi and state the problem as finding α(k) = (α

(k)
1 , ..., α

(k)
k)

such that

α(k) = arg min
α=(α1,...,αk)∈Rk

∥∥∥∥∥r0 −A
k∑
i=1

αizi

∥∥∥∥∥
2

. (2.3)

The GMRES iterate is then characterized by

xk = x0 + x̂k = x0 +

k∑
i=1

α
(k)
i zi. (2.4)

2.1.2 The GMRES Algorithm

Below we have further details of how GMRES is executed which can be skipped

without loss of continuity, the explanation closely follows that of [2].

GMRES is an algorithm which at every iteration efficiently finds the x̂k which

solves the least square problem (2.2). Since Kk is a k-dimensional subspace of

R, the solution space will be of significantly lower dimension for any reasonable

number of iterations, but x̂k is still a [m × 1] vector. With the intention of

representing x̂k as a [k × 1] vector, we set up an orthogonal basis for Kk using

the Arnoldi iteration1. In the k’th step of the Arnoldi iteration we have the

relation

AQk = Qk+1Hk, (2.5)

where the columns of Qk form an orthonormal basis of Kk, with respect to the

Euclidean norm. Thus we can represent any element x̂k ∈ Kk as x̂k = Qkyk

with yk ∈ Rk and we have successfully reduced the dimension of the problem

since we can rewrite (2.2) into

min
yk∈Rk

‖r0 −AQkyk‖2 = min
yk∈Rk

‖r0 −Qk+1Hkyk‖2 , (2.6)

where the second equality follows from (2.5).

Since r0/ ‖r0‖2 is the first column in Qk+1 we have that r0 ∈ img(Qk+1) and

the second term is in img(Qk+1) by definition, furthermore we have that Qk+1 is

1[2] provides details of the Arnoldi iteration for the interested reader.

8 CHAPTER 2. THEORY

an orthogonal matrix. Thus, multiplying the argument of the norm with QT
k+1

from the left will not change the value of the norm and we can rewrite (2.6) into

min
yk∈Rk

∥∥QT
n+1r0 −Hkyk

∥∥
2
. (2.7)

But since r0 is orthogonal to all but the first column, by construction, we have

that QT
n+1r0 = ‖r0‖2 e1 where e1 is the first column of the [k + 1] × [k + 1]

identity matrix. So if we define the function J : Rk → R as

J(y) :=

∥∥∥∥(‖r0‖2 e1 −Hky

)∥∥∥∥
2

, (2.8)

we can rewrite (2.7) into

min
yk∈Rk

J(yk) (2.9)

and if we recall that x̂k = Qnyk, we can conclude that

xGMRES
k = x0 +Qkyk, (2.10)

where yk minimizes J(y). We can formulate the above process as an algorithm

[2]:

Algorithm GMRES.

Given x0

Set r0 = b−Ax0 and q1 = r0/ ‖r0‖2
2. Iterate:

for j = 1, 2, ..., k, ..., until satisfied do;

Set hi,j = (Aqj , qj), i = 1, 2, ..., j,

q̂j+1 = Aqj −
∑j
i=1 hi,jqi

hj+1,j = ‖q̂j+1‖2 , and

qj+1 = q̂j+1/hj+1,j

Find yk which minimizes minyk∈Rk J(yk)

Form the approximate solution: xGMRES
k = x0 +Qkyk

where (. , .) denotes the dot product and qi denotes the ith column of Qk.

2.2. ANDERSON ACCELERATION AND GMRES 9

2.2 Anderson Acceleration and GMRES

In this section we explore some very strong relations between Algorithm AA

and GMRES. To begin with we assume throughout this section that Anderson

Acceleration is applied to a linear function the form g(x) := Ax + b with A ∈

Rm×m and b ∈ Rm. The logic supporting Algorithm AA can easily be made

clear in this case. At iteration k we have that

xk+1 =

mk∑
i=0

α
(k)
i g(xk−mk+i) = g

(mk∑
i=0

α
(k)
i xk−mk+i

)
= g(xmin), (2.11)

with xmin =
∑mk

i=0 α
(k)
i xk−mk+i. Furthermore, the fixed-point residual of xmin

is

g
(mk∑
i=0

α
(k)
i xk−mk+i

)
−

mk∑
i=0

α
(k)
i xk−mk+i =

mk∑
i=0

α
(k)
i fi (2.12)

and if we take the norm of this we get precisely what α(k) minimizes in (1.2).

Hence, xmin is the weighted average of {xk−mk
, ..., xk} with minimal fixed-point

residual, and to obtain the next iterate we plug this into g.

Now that we understand how Algorithm AA works in the linear case, one

might ask how this relates to GMRES, which is applied to a system of linear

equations, not a fixed-point problem. In Algorithm AA we are looking for a

fixed-point x such that

Ax+ b− x = 0 (2.13)

and by rearranging this equation we get

b+ (A− I)x = 0⇔ (I −A)x = b. (2.14)

Thus, finding a fixed-point of a linear function g(x) = Ax + b and solving the

linear system of equations (I −A)x = b are equivalent formulations of the same

problem.

What we are going to show, is that if GMRES is applied to the system (I −

A)x = b and Algorithm AA is applied to g(x) = Ax+b, then these are equivalent

in the sense that the iterates of each algorithm can be obtained directly from the

iterates of the other algorithm. This is true under some assumptions, firstly we

10 CHAPTER 2. THEORY

assume that we do not apply truncation in Algorithm AA, that is; mk = k. We

also assume both algorithms start at the same initial point, denoted xAA0 = x0

for AA and GMRES respectively. Since GMRES is applied to (I − A)x = b,

we denote, for each j, the jth iterate of GMRES as xGMRES
j and the residual

is defined as rGMRES
j := b − (I − A)xGMRES

j . The Krylov subspace generated

by (I − A) and rGMRES
0 will be Kj := span{rGMRES

0 , (I − A)rGMRES
0 , ..., (I −

A)j−1rGMRES
0 }. We summarize all the assumptions below, as formulated in [3]:

Assumption 2.2 ([3], Assumption 2.1).

1. g(x) = Ax+ b for A ∈ Rm×m and b ∈ Rm

2. Anderson acceleration is not truncated, i.e., mk = k for each k

3. (I −A) is non-singular

4. GMRES is applied to (I −A)x = b with initial point x0 = xAA
0

We now move on to the main theorem, as formulated in [3].

Theorem 2.3 ([3], Theorem 2.2).

Suppose that Assumption 2.2 holds, and that, for some k > 0, rGMRES
k−1 6= 0

and also
∥∥rGMRES
j−1

∥∥
2
>
∥∥rGMRES
j

∥∥
2

for each j such that 0 < j < k. Then∑k
i=0 α

(k)
i xAA

i = xGMRES
k and xAA

k+1 = g(xGMRES
k).

Before we move on to the proof of the theorem, there are some additional

assumptions specified in the theorem that have some implications. Firstly, we

see that we do not allow for stagnation in the GMRES algorithm before iteration

k, or in other words, the norm of the residual is decreasing with each iterate. At

iteration k, we do allow for rGMRES
k−1 = rGMRES

k 6= 0, a case which is investigated

in Proposition 2.8.

Moreover, the theorem allows for the case rGMRES
k = 0, which is discussed

and investigated in remarks 2.5 and 2.7 and Proposition 2.6.

Proof. Firstly, for i = 1, ..., k we define zi := xAA
i − x0. Now we prove the

theorem in two steps, by proving the two claims below, from which the theorem

directly follows.

2.2. ANDERSON ACCELERATION AND GMRES 11

Claim 1. For 1 ≤ j ≤ k, if {z1, ..., zj} is a basis of Kj , then
∑k
i=0 α

(k)
i xAA

i =

xGMRES
k and xAA

k+1 = g(xGMRES
k).

Claim 2. For 1 ≤ j ≤ k, {z1, ..., zj} is a basis of Kj .

We begin with proving Claim 1. Firstly, as defined in Algorithm AA, we have

f0 = g(x0)−x0 = Ax0+b−x0 = b+(A−I)x0 = b−(I−A)x0 = rGMRES
0 , (2.15)

where everything follows from definitions. For i = 1, ..., k we have that

fi = g(xAA
i)− xAA

i

= AxAA
i + b− xAA

i

= A(zi + x0) + b− (zi + x0)

= b+Ax0 − x0 +Azi − zi

= b− (I −A)x0 − (I −A)zi

= rGMRES
0 − (I −A)zi,

(2.16)

where in the third equality we substitute xAAi = zi + x0 from the definition of

zi and the rest is simply rearranging. From (2.15) and (2.16) we get that, for

the Fj of Algorithm AA and any α = (α0, ..., αk)T, we have

Fjα =

j∑
i=0

αifi = α0f0 +

j∑
i=1

αifi

= α0r
GMRES
0 +

j∑
i=1

αi(r
GMRES
0 − (I −A)zi)

=

j∑
i=0

αir
GMRES
0 −

j∑
i=1

αi(I −A)zi

= rGMRES
0

(j∑
i=0

αi
)
− (I −A)

j∑
i=1

αizi,

(2.17)

where we use (2.15) and (2.16) in the third equality.

From this we will be able to show that α(j) = (α
(j)
0 , ..., α

(j)
j)T with α

(j)
0 =

1−
∑j

1 α
(j)
i solves

min
α=(α0,...,αj)T

‖Fjα‖2 such that

j∑
i=0

αi = 1 (2.18)

12 CHAPTER 2. THEORY

if and only if (α
(j)
1 , ..., α

(j)
j) solves

min
(α1,...,αj)T

∥∥∥∥∥rGMRES
0 − (I −A)

j∑
i=1

αizi

∥∥∥∥∥
2

. (2.19)

The logic behind the equivalence is as follows, from (2.17), we see that (2.18)

is equivalent to the problem

min
α=(α0,...,αj)T

∥∥∥∥∥rGMRES
0

(j∑
i=0

αi
)
− (I −A)

j∑
i=1

αizi

∥∥∥∥∥
2

such that

j∑
i=0

αi = 1,

(2.20)

which is the same as

min
α=(α0,...,αj)T

∥∥∥∥∥rGMRES
0 − (I −A)

j∑
i=1

αizi

∥∥∥∥∥
2

such that

j∑
i=0

αi = 1. (2.21)

In the above argument, we can see that α0 does not affect the norm, so we can

use this degree of freedom to remove the constraint by setting α0 = 1−
∑j
i=1 αi.

From this we get the equivalence of the solution of (2.18) and (2.19).

We now use the assumption of Claim 1 that {z1, .., zj} is a basis for Kj . From

this we see that (2.19) is in fact a GMRES minimization problem on the form

(2.3), where (α1, ..., αj) are the coefficients of the basis elements of the Krylov

subspace. A consequence of this is that the solution α(j) = (α
(j)
0 , ..., α

(j)
j)T to

(2.18), also satisfies the the following relation

j∑
i=0

α
(j)
i xAAi = α

(j)
0 xAA0 +

j∑
i=1

α
(j)
i xAAi

= α
(j)
0 xAA0 +

j∑
i=1

α
(j)
i (x0 + zi)

= x0

(j∑
i=0

α
(j)
i

)
+

j∑
i=1

α
(j)
i zi

= x0 + x̂GMRES
j = xGMRES

j ,

(2.22)

where the last equality follows from (α
(k)
1 , ..., α

(k)
j)T being the solution to (2.19).

This proves the first part of Claim 1.

Now we apply g on both sides of (2.22) to show the second statement of

2.2. ANDERSON ACCELERATION AND GMRES 13

Claim 1

g(xGMRES
j) = g

(j∑
i=0

α
(j)
i xAAi

)
=

j∑
i=0

α
(j)
i g(xAAi) = xAA

j+1, (2.23)

where the second equality follows from the linearity of g and the third follows

from the definition of the next iterate in Algorithm AA. From this, Claim 1 has

been proven and we move on to proving Claim 2.

We prove Claim 2 by induction over j and thus begin with the basic case of

z1 being a basis for K1 = span{rGMRES
0 }. It follows from the definition of z1

that

z1 = xAA
1 − x0 = g(x0)− x0 = rGMRES

0 (2.24)

and what is left to show is that rGMRES
0 is non-zero. From the assumption

of the theorem we have that rGMRES
k−1 6= 0 and

∥∥rGMRES
j−1

∥∥
2
>
∥∥rGMRES
j

∥∥
2

for

j = 1, .., k − 1, thus, we have∥∥rGMRES
0

∥∥
2
>
∥∥rGMRES

1

∥∥
2
> ... >

∥∥rGMRES
k−1

∥∥
2
> 0. (2.25)

Therefore z1 = {rGMRES
0 } is a basis for K1 and for the basic case k = 1 the

theorem is proven.

Now we assume k > 1 and use that, for some 0 < j < k, {z1, ..., zj} is a

basis for Kj as an induction hypothesis to prove that {z1, ..., zj+1} is a basis for

Kj+1. We do this by first proving that zj+1 ∈ Kj+1 and then that zj+1 /∈ Kj .

Firstly, we have that

zj+1 = xAA
j+1 − x0g(xGMRES

j)− x0 =

= AxGMRES
j + b− x0 + xGMRES

j − xGMRES
j

= b− (I −A)xGMRES
j − x0 + xGMRES

j

= rGMRES
j − x0 + xGMRES

j

= rGMRES
j + x̂GMRES

j ,

(2.26)

where the second equality follows from Claim 1. Moreover, by the induction

hypothesis, x̂GMRES
j can be represented by the basis {z1, ..., zj}, so we get

zj+1 = rGMRES
j +

j∑
i=1

α
(j)
i zj , (2.27)

14 CHAPTER 2. THEORY

for the (α
(j)
1 , ..., α

(j)
j)T which minimize (2.19), since x̂GMRES

j =
∑j
i=1 α

(j)
i zj for

this α
(j)
j by the characterization in (2.3). From the definition we have that

rGMRES
j = b− (I −A)xGMRES

j = b− (I −A)(x0 + x̂GMRES
j)

= b− (I −A)x0 − (I −A)x̂GMRES
j

= rGMRES
0 − (I −A)x̂GMRES

j .

(2.28)

Moreover, we have that rGMRES
0 ∈ Kj+1 and (I − A)x̂GMRES

j ∈ Kj+1, which

implies rGMRES
j ∈ Kj+1. By the induction hypothesis the second term of

(2.27) is also in Kj+1, thus, we conclude that zj+1 ∈ Kj+1. Furthermore,

since
∥∥rGMRES
j−1

∥∥
2
>
∥∥rGMRES
j

∥∥
2
≥
∥∥rGMRES
k−1

∥∥
2
> 0, it follows from Lemma 2.4

that rGMRES
j /∈ Kj . From this and (2.27) we can conclude that zj+1 cannot de-

pend linearly on {z1, ..., zj}, which implies that {z1, ..., zj+1} is a basis for Kj+1.

Thus, the induction proof of Claim 2 is done and the theorem is proven.

To complete the proof of Theorem 2.3, we also need to prove the following

supportive lemma.

Lemma 2.4 ([3], Lemma 2.4).

Suppose that GMRES is applied to Mx = b with M non-singular. If
∥∥rGMRES
j−1

∥∥
2
>∥∥rGMRES

j

∥∥
2
> 0 for some j > 0, then rGMRES

j /∈ Kj.

Proof. For the sake of simplifying the proof, we define K0 ≡ {0}. For ` ≥ 0,

denote r` := rGMRES
` and x` := xGMRES

` and the orthogonal projection onto

(MK`)⊥ by π`.

To begin with, we prove that πjrj−1 = rj by induction over ` = 1, ..., j. We

have that

‖r`‖2 = min
x̂`∈K`

‖b−M(x0 + x̂`)‖2 = min
x̂`∈K`

‖r0 −Mx̂`‖2

= min
y`∈MK`

‖r0 − y`‖2 ,
(2.29)

from which it follows by the minimizing property that; y` = Mx` is the orthog-

onal projection of r0 on MK` and r` is the orthogonal projection of r0 on the

orthogonal complement (MK`)⊥, or in other words

π`r0 = r`. (2.30)

2.2. ANDERSON ACCELERATION AND GMRES 15

The base case ` = 1 follows directly from this, so we make the induction hy-

pothesis that; for some k such that 1 < k ≤ j, we have that π`r`−1 = r` for all

1 ≤ ` < k and we need to show that this implies πkrk−1 = rk. We begin by

observing that the induction hypothesis implies that

πkrk−1 = πkπk−1rk−2 = ... = πk...π0r0. (2.31)

Since M is nonsingular, we have MK`−1 ⊂MK`, and consequently (MK`)⊥ ⊂

(MK`−1)⊥, for ` = 1, ..., j. Therefore, we are dealing with orthogonal projec-

tions to successively smaller nested subspaces and it follows that

πk...π0r0 = πkr0. (2.32)

As a consequence of (2.30), (2.31) and (2.32), we have that πkrk−1 = πkr0 = rk,

which completes the induction and proves that πjrj−1 = rj .

With this property proven we go on to finish the proof by contradiction.

From the assumptions of the Lemma we have that rj 6= 0 for some j > 0. Then if

we assume rj ∈ Kj , we get that rj ∈ Kj∩(MKj)⊥ ⊂ Kj∩(MKj−1)⊥. Moreover,

we have thatKj = span{r0,Mr0, ...,M
j−1r0} andMKj−1 = span{Mr0, ...,M

j−1r0}.

If we let {q1, ..., qj} and {q2, ..., qj} be orthogonal bases for Kj and MKj−1 re-

spectively, so that q1 is the additional dimension of Kj , then we see that q1 is the

only dimension shared by Kj and (MKj−1)⊥. Consequently, Kj ∩ (MKj−1)⊥

is a one-dimensional subspace, which contains both rj−1 and rj , which implies

that rj = λrj−1 for some λ ∈ R. But then rj = πjrj = λπjrj−1 = λrj by the

relation proved above. Since rj 6= 0 we have that λ = 1, which implies rj = rj−1

and ‖rj‖2 = ‖rj−1‖2, which contradicts an assumption of the Lemma and we

can conclude that rj /∈ Kj .

Remark 2.5.

If in addition to the assumptions of Theorem 2.3 we have that rGMRES
k = 0,

that is, the GMRES algorithm finds an exact solution after k iterations, then

rGMRES
k = b− (I −A)xGMRES

k = 0

⇔ b+AxGMRES
k = xGMRES

k

⇔ g(xGMRES
k) = xGMRES

k .

(2.33)

16 CHAPTER 2. THEORY

Moreover, by Theorem 2.3, we have that in this case xAA
k+1 = g(xGMRES

k) =

xGMRES
k , which is a fixed-point, and thus the AA algorithm would find an exact

solution and terminate after k + 1 steps.

We now derive the following proposition which shows us some further impli-

cations in the case where rGMRES
k = 0.

Proposition 2.6 ([3], Proposition 2.6).

Suppose that the assumptions of Theorem 2.3 hold. Then rank Fk ≥ k, and rank

Fk = k if and only if rGMRES
k = 0.

Proof. We use the relation (2.17) developed in the proof of Theorem 2.3, with

j = k, and we see that Fkα = 0 with α = (α0, ..., αk)T if and only if

(I −A)

k∑
i=1

αizi = rGMRES
0

(k∑
i=0

αi
)
, (2.34)

from which it follows that

(I −A)

k∑
i=1

αizi = 0⇔ rGMRES
0

(k∑
i=0

αi
)

= 0⇔
k∑
i=0

αi = 0, (2.35)

where the last equivalence follows from rGMRES
0 6= 0. Furthermore, since (I−A)

is of full rank and {z1, ..., zk} are linearly independent, we have that

(I −A)

k∑
i=1

αizi = 0⇔ α = 0. (2.36)

Therefore, when considering non-trivial solutions to Fkα = 0, that is, solutions

where α 6= 0, it follows from (2.35) and (2.36) that
∑k
i=0 αi = λ for some

λ ∈ R\{0}. Now suppose we have two non-trivial solutions α = (α0, ..., αk)T

and ᾱ = (ᾱ0, ..., ᾱk)T to Fkα = 0 such that

k∑
i=0

αi = λ and

k∑
i=0

ᾱi = λ̄. (2.37)

Then from (2.34) and (2.37) we have(I −A)
∑k
i=1 αizi = λrGMRES

0

(I −A)
∑k
i=1 ᾱizi = λ̄rGMRES

0

(2.38)

2.2. ANDERSON ACCELERATION AND GMRES 17

which is equivalent to

(I −A)

λ

k∑
i=1

αizi = rGMRES
0 =

(I −A)

λ̄

k∑
i=1

ᾱizi

⇔ (I −A)

λ

k∑
i=1

αizi −
(I −A)

λ̄

k∑
i=1

ᾱizi = 0

⇔ (I −A)

λλ̄

(
λ̄

k∑
i=1

αizi − λ
k∑
i=1

ᾱizi

)
= 0

⇔ (I −A)

λλ̄

k∑
i=1

zi(λ̄αi − λᾱi) = 0.

(2.39)

Consequently, from the same argument as before that (I − A) is full rank and

{z1, ..., zk} is linearly independent, we have

λ̄α− λᾱ = 0⇔ α = (λ/λ̄)αi, (2.40)

which means any two nontrivial solutions depend linearly on each other and

therefore Dim(Ker(Fk)) is at most 1. From the definition of Fk we have that it

has k + 1 columns, which implies rank Fk ≥ k.

What is left to prove is that rank Fk = k if and only if rGMRES
k = 0. We

have that rank Fk = k if and only if there exists an α = (α0, ..., αk)T such that∑k
i=0 αi = λ > 0 and Fkα = 0. If we define α(k) = (α

(k)
0 , ..., α

(k)
k)T = (1/λ)α

then
∑k
i=0 α

(k)
i = 1 and if we plug this into (2.34) we get

(I −A)

k∑
i=1

α
(k)
i zi = rGMRES

0

⇔ rGMRES
0 − (I −A)

k∑
i=1

α
(k)
i zi = 0,

(2.41)

which is the GMRES minimization problem in (2.19). Thus, it follows by defi-

nition that rGMRES
k = 0 if and only if (2.41) holds and consequently, rGMRES

k =

0⇔ rank Fk = k.

Remark 2.7.

According to Proposition 2.6, when rGMRES
k = 0 we get that Fk ∈ Rm×(k+1)

is not of full rank. But since (2.19) is a least square problem with a unique

18 CHAPTER 2. THEORY

solution, which is equivalent to (2.18) under the assumptions of Theorem 2.3,

we have that (2.18) has a unique solution, which implies that xAAk+1 can still be

determined uniquely.

As previously mentioned, the assumptions of Theorem 2.3 allow for stagna-

tion of GMRES in the kth step, that is; rGMRES
k−1 = rGMRES

k 6= 0 and in the

following proposition we investigate what implications this has on Algorithm

AA.

Proposition 2.8 ([3], Proposition 2.8).

Suppose that the assumptions of Theorem 2.3 hold and that rGMRES
k−1 = rGMRES

k 6=

0, then xAA
k+1 = xAA

k .

Proof. For j = k − 1 we know that (2.19) has a unique solution α(k−1) =

(α
(k−1)
1 , ..., α

(k−1)
k−1)T. Furthermore, since rGMRES

k−1 = rGMRES
k we have that the

unique solution of (2.19) for j = k is α(k) = (α
(k−1)
1 , ..., α

(k−1)
k−1 , 0)T since for this

α(k) we have

rGMRES
k = rGMRES

0 − (I −A)

k∑
i=1

ziα
(k)
i

= rGMRES
0 − (I −A)

k−1∑
i=1

ziα
(k−1)
i = rGMRES

k−1 .

(2.42)

With this α(k) and Theorem 2.3 we get

xAA
k+1 = g(xGMRES

k) = g
(k∑
i=0

α
(k)
i xAA

i

)
=

k−1∑
i=0

α
(k−1)
i g(xAA

i) = xAA
k .

(2.43)

From Proposition 2.8 we see that stagnation of GMRES in the kth step

implies that xAA
k+1 = xAA

k , meaning stagnation of Algorithm AA in the (k+ 1)th

step. This in itself does not seem too bad since GMRES does not break down

upon stagnation and can continue making progress, but we will see that this is

not the case for Algorithm AA.

2.2. ANDERSON ACCELERATION AND GMRES 19

It follows by definition that fk+1 = g(xAA
k+1) − xAA

k+1 = g(xAA
k) − xAA

k = fk,

meaning the last two columns of Fk+1 are the same. This means that the least

square problem (1.2) is rank deficient for Fk+1 and lacks a unique solution. An

approach to deal with this problem could be to add further specification of how

to pick α(k+1), so that xAA
k+2 can be uniquely determined, but we will see that

this would be pointless.

In iteration k, the unique solution to (1.2) is α(k) = (α
(k)
0 , ..., α

(k)
k)T. In

iteration k + 1, the argument of the norm in (1.2) can be rewritten into

Fk+1α
(k+1) = α

(k+1)
0 f0 + ...+ α

(k+1)
k fk + α

(k+1)
k+1 fk+1

= α
(k+1)
0 f0 + ...+ (α

(k+1)
k + α

(k+1)
k+1)fk.

(2.44)

Therefore, any solution to (1.2) in iteration k+1 satisfies α(k+1) = (α
(k)
0 , ..., α

(k)
k−1, (1−

λ)α
(k)
k , λα

(k)
k)T for some λ ∈ R. From this and the fact that xAA

k+1 = xAA
k we get

the next iterate

xAA
k+2 =

k+1∑
i=0

α
(k+1)
i g(xAAi)

=

k−1∑
i=0

α
(k)
i g(xAAi) + (1− λ)αkkg(xAA

k) + λαkkg(xAA
k+1)

=

k−1∑
i=0

α
(k)
i g(xAAi) + ((1− λ) + λ)g(xAA

k)αkk

=

k∑
i=0

α
(k)
i g(xAAi) = xAA

k+1 ∀λ ∈ R,

(2.45)

or in other words, no matter how we specify the solution of (1.2) for iterate k+1,

we have that xAA
k = xAA

k+1 = xAA
k+2. From this we see that fk+2 = fk+1 = fk

and repeating this process shows that xAA
k = xAA

k+1 = xAA
k+2 = ..., meaning that

if stagnation occurs, Algorithm AA can make no further progress.

Moreover, if two successive iterates are nearly the same so that xAA
k+1 ≈ xAA

k ,

then we expect ill-conditioning of the least squares problem (1.2) in floating

point arithmetic. Therefore, a practical implementation of the algorithm should

terminate in either of these scenarios. This is a numerical weakness of Algorithm

AA not prevalent in GMRES, which does not break down upon this type of

20 CHAPTER 2. THEORY

stagnation.

Additionally, if GMRES would stagnate in the sense that (I − A)k−1 = I

then it would follow that Kk = span{rGMRES
0 , ..., rGMRES

0 (I−A)k−2, rGMRES
0 } =

Kk−1, implying rk = rk−1 and hence Algorithm AA would also stagnate.

2.2.1 A system with a preconditioner

In this subsection we consider problem (1.3) with a preconditioner. A precon-

ditioner is commonly used to speed up the process of solving a system of linear

equations, and is typically an easily obtained approximation of the inverse of A,

multiplied from the left to improve the system while using an iterative process

such as GMRES.

Definition 2.9.

Assume we have a system of linear equation as in Problem 1.3 and that M−1 ∈

Rm×m is a non-singular matrix, then

M−1Ax = M−1b (2.46)

is a left preconditioned system with the preconditioner M .

If we also use the the matrix splitting A = M −N with M,N ∈ Rm×m and

M is non-singular, then we can reformulate the problem

M−1Ax = M−1b⇔M−1(M −N)x = M−1b

⇔ (I −M−1N)x = M−1b⇔M−1Nx+M−1b = x.
(2.47)

It is now a fixed-point problem with g(x) ≡ (M−1N)x+M−1b. In the following

corollary of Theorem 2.3, we use this to show that Anderson Acceleration ap-

plied to this g without truncation is, in the same sense as previously, equivalent

to GMRES applied to the left preconditioned system M−1Ax = M−1b. We

summarize our assumptions below.

2.2. ANDERSON ACCELERATION AND GMRES 21

Assumption 2.10 ([3], Proposition 2.9).

1. A = M −N , where both A ∈ Rm×m and M ∈ Rm×m are non-singular.

2. g(x) = M−1Nx+M−1b for b ∈ Rn

3. Anderson acceleration is not truncated, i.e., mk = k for each k

4. GMRES is applied to the left preconditioned system M−1Ax = M−1b

with initial point x0 = xAA
0 .

Our notation is the same as before except rGMRES
j ≡M−1b−M−1NxGMRES

j .

Corollary 2.11 ([3], Corollary 2.10).

Suppose that Assumption 2.10 holds and that, for some k > 0, rGMRES
k−1 6= 0

and also
∥∥rGMRES
j−1

∥∥
2
>
∥∥rGMRES
j

∥∥
2

for each j such that 0 < j < k. Then∑k
i=0 α

(k)
i xAA

i = xGMRES
k and xAA

k+1 = g(xGMRES
k).

Proof. We know that A = M −N is non-singular, therefore multiplying by the

non-singular matrix M cannot reduce the dimension of the image space and we

get that M−1A = M−1(M − N) = (I −M−1N) is non-singular. If we now

replace A and b of Theorem 2.3 with Â := M−1N and b̂ := M−1b respectively,

then we see that all the assumptions are satisfied.

Due to the numerical weakness discussed at the end of Section 2.2, Algorithm

AA is not recommended as a substitute to preconditioned GMRES, but the

option does exist.

2.2.2 AA with the Least Square Problem on Unconstrained

Form

Before moving on to testing the relation between Anderson Acceleration and

GMRES numerically, we note that there are several equivalent forms of the

least squares problem (1.2), which can have different advantages. In the imple-

mentation later, an unconstrained form is used, so that the QR algorithm can

22 CHAPTER 2. THEORY

be used to solve the system, since this was recommended in [3]. We will use the

equivalent form of (1.2);

min
γ=(γ,...,γmk−1)T

‖fk −Fkγ‖2 , (2.48)

where Fk = (∆fk−mk
, ...,∆fk−1) with ∆fi = fi+1 − fi for each i, and where α

and γ are related by
α0 = γ0

αi = γi − γi−1 for 1 ≤ i ≤ mk − 1

αmk
= 1− γmk−1

. (2.49)

It follows from the lemma below that they are indeed equivalent.

Lemma 2.12.

In iteration k of Algorithm AA, α(k) solves (1.2) if and only if γ(k) solves (2.48),

where α(k) and γ(k) are related by (2.49).

Proof. Firstly, we have that the argument of the norm in (2.48) can be rewritten

as follows

fk −Fkγ = fk −
mk−1∑
i=0

γi(∆fk−mk+i) =

fk −
(mk−1∑

i=0

γifk−mk+i+1 −
mk−1∑
i=0

γifk−mk+i

)
=

fk −
(mk∑
i=1

γi−1fk−mk+i −
mk−1∑
i=0

γifk−mk+i

)
=

fk − fkγmk−1 + γ0fk−mk
+

(mk−1∑
i=1

(γi − γi−1)(fk−mk+i)

)
=

(2.50)

(1− γmk−1)fk + γ0fk−mk
+

(mk−1∑
i=1

(γi − γi−1)(fk−mk+i)

)

=

mk∑
i=0

αi(fk−mk+i) = Fkα,

where we used relation (2.49) in the second to last equality. From this it follows

that γ(k) solves (2.48) if and only if α(k) solves

min
α=(α0,...,αk)T

‖Fkα‖2 such that (2.49) holds. (2.51)

2.2. ANDERSON ACCELERATION AND GMRES 23

Furthermore, we have from (2.49) that for 2 ≤ j ≤ mk − 1

γj = αj + γj−1 = αj + (αj−1 + γj−2) = ... =

j∑
i=0

αj (2.52)

and using the above relation we see that (2.49) implies αmk
= 1 − γmk−1 =

1 −
∑mk−1
i=0 αi, from which it follows that

∑mk

i=0 αi = 1. Therefore, γ(k) solves

(2.48) if and only if α(k) solves

min
α=(α0,...,αk)T

‖Fkα‖2 such that

mk∑
i=0

αi = 1, (2.53)

which is the same as (1.2).

Lastly, the next iterate of Algorithm AA can be obtained directly from γ(k)

by

xk+1 = g(xk)−
mk−1∑
i=0

γ
(k)
i [g(xk−mk+i+1)− g(xk−mk+i)], (2.54)

since

g(xk)−
mk−1∑
i=0

γ
(k)
i [g(xk−mk+i+1)− g(xk−mk+i)]

=g(xk) +

mk−1∑
i=0

γ
(k)
i g(xk−mk+i)−

mk∑
i=1

γ
(k)
i−1g(xk−mk+i)

=g(xk)− γ(k)
mk−1g(xk) + γ

(k)
0 g(xk−mk

) +

mk−1∑
i=1

(γ
(k)
i − γ(k)

i−1)g(xk−mk+i)

=α(k)
mk
g(xk) + α

(k)
0 g(xk−mk

) +

mk−1∑
i=1

α
(k)
i g(xk−mk+i)

=

mk∑
i=0

α
(k)
i g(xk−mk+i) = xk+1,

(2.55)

where we use (2.49) in the third equality.

24 CHAPTER 2. THEORY

Chapter 3

Numerical Implementation

3.1 The Finite Difference Method and Implicit

Euler

In this section we consider the differential equation
Ut(x, t) = Uxx(x, t) + f(x), x ∈ [0, 1], t > 0

U(0, t) = U(1, t) = 0

U(x, 0) = U0(x)

, (3.1)

for some given functions f and U0, where the subscripts indicate with respect

to what variable the derivative is taken. For some choices of f and U0 it is

rather simple to solve this problem analytically, but for other choices it can be

extremely hard or even impossible, therefore it is natural to look for ways to

find an approximate solution. In this section we will place our focus on the

finite difference method, a way of approximating U(x, t) through discretization,

which is described below.

Firstly, we discretize the interval [0, 1] on the x-axis by only considering a

vector of function evaluations of the points {x0, ..., xn}, where xi = i/n for

0 ≤ i ≤ n, which we will denote with an underline. We also discretize t by only

25

26 CHAPTER 3. NUMERICAL IMPLEMENTATION

considering t` = `∆t for ` ≥ 0, for some time step ∆t, where a superscript will

indicate which time step is considered. With the boundary condition U(0, t) =

U(1, t) = 0, we can simplify by disregarding the endpoints and only consider

{x1, ..., xn−1}. From this we get the discretization of the first line in (3.1):

U `t = U `xx + f, ` ≥ 0, (3.2)

where U `t = (Ut(x1, t`),, Ut(xn−1, t`))
T, U `xx = (Uxx(x1, t`),, Uxx(xn−1, t`))

T

and f = (f(x1),, f(xn−1))T.

Secondly, we approximate the first derivative of U with respect to x with

the difference quotient

Ux(xi, t`) ≈
U(xi+1, t`)− U(xi, t`)

∆x
,

0 ≤ i ≤ n− 1,

t` ≥ 0

, (3.3)

where ∆x = 1/n. By applying a similar process, we can get

Uxx(xi, t`) ≈
U(xi+1, t`)− 2U(xi, t`) + U(xi−1, t`)

∆x2
,

1 ≤ i ≤ n− 1,

t` ≥ 0

.

(3.4)

Moreover, the initial condition U(0, t) = U(1, t) = 0, implies Uxx(x1, t) =

U(x2,t`)−2U(x1,t`)
∆x2 and Uxx(xn−1, t`) = −2U(xn−1,t`)+U(xn−2,t`)

∆x2 . This gives us the

following approximate discretization of Uxx in {x1, ..., xn−1}

U `xx ≈ AU
`, (3.5)

where

A =
1

∆x2



−2 1 0 . . . 0

1 −2 1
...

0 1 −2
. . .

...
. . .

. . . 1

0 . . . 1 −2


, A ∈ R(n−1)×(n−1). (3.6)

and U ` = (U(x1, t`), ..., U(xn−1, t`))
T. This lets us approximate (3.2) by

U `t −AU
` = f, ` ≥ 0. (3.7)

3.1. THE FINITE DIFFERENCE METHOD AND IMPLICIT EULER 27

With this approximation we can apply the implicit Euler method over t,

which leads to the the following iterative process for finding approximations of

U ` at time t`

U `+1 = U ` + ∆t(AU `+1 + f), ` ≥ 0, (3.8)

where U0 = (U0(x1), ..., U0(xn−1))T.

On closer inspection we can see that (3.8) is a fixed-point problem and by

expanding and sorting the terms, we get the equivalent form

U `+1 = (∆tA)U `+1 + (U ` + ∆tf). (3.9)

Moreover, if at time t`, we let M := ∆tA, b := (U ` + ∆tf) and g(u) ≡Mu+ b,

then we get the problem on the form (1.1)

U `+1 = g(U `+1), (3.10)

where g is a linear function. Furthermore, we also get the equivalent system of

linear equations

(I −M)U `+1 = b, u ∈ Rn−1. (3.11)

Consequently, we can not only apply Anderson acceleration to problem (3.10),

but also GMRES to the equivalent problem (3.11).

3.1.1 Implementation

Since the primary purpose of (3.8) to us was to test the relation between Algo-

rithm AA and GMRES on a common problem, we only consider the case ` = 0,

since all following iterates could be obtained by solving a problem of the same

form.

For problem (3.8), the three solution methods, fixed-point iteration, Ander-

son Acceleration, and GMRES, were all implemented in Python as methods of

a class called FDM. The three inputs when creating an object of the class FDM

were n, f and U0. In the initialization of FDM, the following was created as

28 CHAPTER 3. NUMERICAL IMPLEMENTATION

attributes of the class. 
M = ∆tA

b = (U ` + f)

g(x) ≡Mx+ b

(3.12)

Additionally, three empty lists, called AAnormRes, fixPnormRes and GM-

RESnormRes were created as attributes, with the intention to store the relative

norm of the residual; ‖rk‖2 = ‖g(uk)− uk‖2 / ‖g(uk)‖2, for iteration k = 1, 2, ...,

where uk was the iterate of the respective algorithms.

Inputs for all methods of the class were an initial guess of the fixed-point U1,

and optional inputs ”tol” for the tolerance, ∆t for the size of the time step and

”it” for maximum number of iterations, with default values 10−15, 10−6 and 100

respectively. An additional input unique to Anderson Acceleration was m for

truncation, with default value −1, which represented truncation being inactive.

Regarding how the three methods were implemented, GMRES was imported

from the library scipy.sparse.linalg and the method in the class simply ran GM-

RES by providing the necessary inputs. Anderson acceleration was implemented

as in Algorithm AA, except that (1.2) was replaced with the unconstrained form

(2.48) and the update of the iterates was given by (2.54). Fixed-point iteration

simply followed Algorithm FPI.

All of the algorithms checked whether ‖rk‖2 < tol, at the end of every

iteration to determine whether or not convergence had been reached, in which

case they could declare success. Moreover, ‖rk‖2 was stored in AAnormRes,

fixPnormRes and GMRESnormRes for the respective algorithm. Furthermore,

the methods for both Anderson Acceleration and GMRES returned all of the

iterates and additionally, unique to the method for Anderson acceleration, was

that it also returned the list of the solutions γk to (2.48).

3.2. RESULTS 29

3.2 Results

Problem (3.8) at time step ` = 0 was solved using the methods of the class

FDM, for two different pairs of U0 and f , firstf(x) ≡ sin2(x)

U0(x) ≡ sin(πx)

(3.13)

and then f(x) ≡ cos2(x)

U0(x) ≡ x3 − 3
2x

2 + 1
2x

, (3.14)

where the initial guess for U1 = u0 was chosen as the zero vector, note that

both functions satisfy the initial conditions. Both cases were tested with both

n = 500 and n = 1000. Anderson acceleration was implemented on these cases

both with and without truncation. For ”tol”, ∆t and ”it”, the default values

10−15, 10−6 and 100 were used respectively. Plots of the relative norm of the

residuals against iteration number for the methods implemented on the 4 cases

can be seen in Figures, 3.1, 3.2, 3.3, and 3.2.

Lastly, the returns from the methods for Anderson acceleration and GMRES

were stored and then γk was translated to αk using relation (2.49). Theorem

2.3 could then be directly tested and for n = 500, the relations held true to an

order of about 10−16 for the first 10 iterations, which is very close to machine

precision, but when iteration 20 had been reached, the relations were on the

order of 10−14, likely due to round-off errors. For n = 1000, the relations held

true to an order of about 10−16 for the first few iterations, but at iteration 10

the inaccuracy had already reached an order of about 10−14, which is not too

surprising, since we expect worse approximation errors when dealing with larger

matrices.

30 CHAPTER 3. NUMERICAL IMPLEMENTATION

0 10 20 30 40 50 60 70 80 90 100
Iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

No
rm

 o
f t

he
 R

es
id

ua
l

Norm of the Residuals Against Iterations, n=500
Algorithm AA
Fixed-Point Iteration.
GMRES
Algorithm AA, m=3
Algorithm AA, m=7

Figure 3.1: The relative norm of the residuals at each iteration for different

algorithms implemented on (3.8) for ` = 0. Here we have n = 500, and the con-

ditions (3.13). Algorithm AA can be seen three times, since it was implemented

both without truncation and with m set to 3 and 7.

0 10 20 30 40 50 60 70 80 90 100
Iteration

10 4

10 3

10 2

10 1

100

No
rm

 o
f t

he
 R

es
id

ua
l

Norm of the Residuals Against Iterations, n=1000
Algorithm AA
Fixed-Point Iteration.
GMRES
Algorithm AA, m=3
Algorithm AA, m=7

Figure 3.2: The relative norm of the residuals at each iteration for different

algorithms implemented on (3.8) for ` = 0. Here we have n = 1000, and

the conditions (3.13). Algorithm AA can be seen three times, since it was

implemented both without truncation and with m set to 3 and 7.

3.2. RESULTS 31

0 10 20 30 40 50 60 70 80 90 100
Iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

No
rm

 o
f t

he
 R

es
id

ua
l

Norm of the Residuals Against Iterations, n=500
Algorithm AA
Fixed-Point Iteration.
GMRES
Algorithm AA, m=3
Algorithm AA, m=7

Figure 3.3: The relative norm of the residuals at each iteration for different

algorithms implemented on (3.8) for ` = 0. Here we have n = 500, and the con-

ditions (3.14). Algorithm AA can be seen three times, since it was implemented

both without truncation and with m set to 3 and 7.

0 10 20 30 40 50 60 70 80 90 100
Iteration

10 4

10 3

10 2

10 1

100

No
rm

 o
f t

he
 R

es
id

ua
l

Norm of the Residuals Against Iterations, n=1000
Algorithm AA
Fixed-Point Iteration.
GMRES
Algorithm AA, m=3
Algorithm AA, m=7

Figure 3.4: The relative norm of the residuals at each iteration for different

algorithms implemented on (3.8) for ` = 0. Here we have n = 1000, and

the conditions (3.14). Algorithm AA can be seen three times, since it was

implemented both without truncation and with m set to 3 and 7.

32 CHAPTER 3. NUMERICAL IMPLEMENTATION

3.3 Discussion

Firstly, the theory of Section 2.2, more specifically Theorem 2.3, was supported

by the numerical implementation since the relations of the theorem held true

very close to machine precision.

Secondly, we observe Figures 3.1, 3.2, 3.3 and 3.4. We see that in all of the

examples, the algorithms terminate either because of divergence or because the

maximum number of iterations was reached, but since this is a system without a

preconditioner, GMRES is expected to converge very slowly and therefore these

graphs seem reasonable.

In all of the figures, we can observe the close relationship between the iterates

of Algorithm AA and GMRES and see that the algorithms had nearly identical

convergence rates, which was far superior to that of fixed-point iteration. This is

great since one of the main issues of fixed-point iteration is that the convergence

rate can be too slow.

An important observation is that in Figures 3.2 and 3.4, the iterations of

GMRES seem to be very close to stagnation, but surprisingly, the stopping

criterion
∥∥xAA

k+1 − xAA
k

∥∥
2
< ε, implemented to safeguard against the numerical

weakness mentioned at the end of Section 2.2, was never close to being reached.

In the same figures, we can see that Anderson acceleration was convergent

while fixed-point iteration was not, which shows potential to deal with the other

main weakness of fixed-point iteration. However, whether or not Anderson

Acceleration can relieve fixed-point iteration of its issues in any nonlinear cases,

is beyond the scope of this thesis.

As for truncated Anderson acceleration, we see that it converged significantly

faster than fixed-point iteration in Figures 3.1 and 3.3, even for small choices of

m. In Figures 3.2 and 3.4 we can see that it only seemed convergent for m = 7.

However, to figure whether or not it is actually convergent in these cases, one

would have to run many more iterations, since we can see that for m = 3 it

appears convergent for the first 20-50 iterations, but then diverges.

3.3. DISCUSSION 33

To summarize, we have shown that in the linear case, Anderson acceleration

is, under some additional assumptions, equivalent to GMRES. Consequently,

Anderson acceleration is somewhat of a generalization of GMRES to nonlinear

cases. Moreover, we implemented Anderson acceleration numerically and were

able to obtain iterates for which the relations held true very close to machine

precision.

34 CHAPTER 3. NUMERICAL IMPLEMENTATION

Bibliography

[1] O. Kosheleva. “Babylonian method of computing the square root: Justi-

fications based on fuzzy techniques and on computational complexity”.

NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy In-

formation Processing Society. 2009, pp. 1–6. doi: 10.1109/NAFIPS.2009.

5156463.

[2] Youcef Saad and Martin H Schultz. “GMRES: A Generalized Minimal

Residual Algorithm for Solving Nonsymmetric Linear Systems”. SIAM J.

Sci. Stat. Comput. 7.3 (1986), pp. 856–869.

[3] Homer Walker and Peng Ni. “Anderson Acceleration for Fixed-Point It-

erations”. SIAM J. Numerical Analysis 49 (2011), pp. 1715–1735. doi:

10.2307/23074353.

35

36 BIBLIOGRAPHY

Bachelor’s Theses in Mathematical Sciences 2020:K17

ISSN 1654-6229

LUNFNA-4033-2020

Numerical Analysis

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

