
Hermod: A File Transfer Protocol Using Noise
Protocol Framework

Markus Åkesson
dat14mak

Department of Electrical and Information Technology
Lund University

Supervisor: Paul Stankovski Wagner
Daniel Jankovic
Stefan Chevul

Examiner: Thomas Johansson

June 12, 2020

c© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Transferring files between computers and servers has been an area of interest since
early days of the modern computer era. With the rise of distributed computing
and data centres, the interest has only grown stronger. Todays solutions for trans-
ferring files often rely on Secure File Transfer Protocol (SFTP) and Secure Shell
Protocol (SSH) for doing so securely. Any vulnerabilities in the protocols would
lead to a huge security gap to fill.

The newly released Noise Protocol Framework provides a promising tool for
designing a new secure file transfer protocol. The framework allows for the cre-
ation of Diffie-Hellman based protocols that provides confidentiality, integrity and
authentication. After a review of the security provided by SSH for SFTP, this
thesis provides a proof-of-concept for a new secure file transfer protocol developed
from the Noise Protocol Framework. In addition to the specification a reference
implementation is provided to allow further testing and benchmarking.

The proposed protocol, Hermod, eliminates the drawbacks in the configura-
tion procedure of SSH and SFTP servers while still providing the same security
properties. Hermod also comes with improved performance compared to SFTP,
especially for smaller files.

i

ii

Forewords

I would like to express my gratitude towards Advenica AB for allowing me to
pursue and complete this thesis. I would also like to thank my parents Stefan and
Karin and my sister Johanna for their support. A special thank you is directed to
Johan Petersson and Karin for proofreading my thesis.

At last I would like to extend my gratitudes to my three supervisors Daniel
Jankovic, Stefan Chevul and Paul Stankovski Wagner for their support through
out the thesis.

iii

iv

Table of Contents

1 Introduction 1
1.1 Purpose and Goals . 2
1.2 Scope . 2
1.3 Related Work . 2
1.4 Thesis Outline . 2
1.5 Information Security Concepts . 4
1.6 Cryptographic Protocols . 4
1.7 Secure Channel . 5
1.8 Symmetric Cryptography . 5
1.9 Asymmetric Cryptography . 6
1.10 Hybrid Cryptosystem . 7
1.11 Key Exchange . 7
1.12 Message Authentication Code . 8
1.13 Authenticated Encryption . 9
1.14 Attacks on Cryptographic Protocols 9

2 Secure Shell 11
2.1 The SSH Protocol . 11
2.2 Supported Algorithms . 14
2.3 SSH File Transfer Protocol . 14
2.4 Security Considerations . 14

3 Noise Protocol Framework 19
3.1 Noise State Machine . 19
3.2 Noise Patterns . 20
3.3 Security Properties . 23
3.4 Security Considerations . 24

4 Hermod: A Secure File Transfer Protocol using Noise 25
4.1 Security Goals . 25
4.2 Specification . 26
4.3 Key generation and Sharing . 31

v

5 Implementation 33
5.1 Overview . 33

6 Result 35
6.1 Security Overview of Hermod . 35
6.2 Security comparison between Hermod and SSH/SFTP 37
6.3 Performance . 37

7 Discussion 43
7.1 Noise . 43
7.2 Security . 44
7.3 Implementation . 45
7.4 Performance . 46
7.5 Future Work . 46

8 Conclusions 47

A Source Code 55

vi

List of Figures

1.1 Symmetric encryption . 5
1.2 Asymmetric encryption . 7

2.1 The relation between the SSH protocols. 12

4.1 Overview over the Hermod protocol. 27
4.2 Overview over the Hermod authentication and key exchange. 28
4.3 Overview over how requests are sent. 29

6.1 Comparison over average transfer times for large files in seconds. . . 39
6.2 Comparison over average transfer times for small files in seconds. . . 40

vii

viii

List of Tables

4.1 Table over the messages sent by the Hermod client and server . . . 29

6.1 Average execution time for the benchmark, as well as the standard
deviation, the minimum and maximum execution time, as reported by
Hyperfine. 39

6.2 Comparison of packets and bytes sent when uploading a file with
1000 bytes. 40

6.3 Comparison of packets and bytes sent when uploading a file with
10000 bytes. 41

ix

x

Listings

3.1 Noise handshake pattern. 21
3.2 Noise handshake pattern with pre-message pattern. 21
3.3 Noise protocol name. 23
4.1 Example of a client file. 30
4.2 Example of a server file. 30

xi

xii

Chapter1
Introduction

The amount of data being produced and stored on servers increase and more
devices are connected to the Internet. This creates a demand for secure, fast and
efficient protocols for file transfer.

Today’s alternatives for performing secure file transfers depend on protocols
conceived twenty years ago, and even if the protocols have received numerous
updates they still carry their old legacy. The legacy can be in the form of support
for insecure cryptographic primitives or extensive backwards compatibility making
the implementations larger, increasing the chances for bugs or flaws. This adds a
lot of complexity and makes the current protocols large and harder to evaluate.

The most common option used today, SSH File Transfer Protocol (SFTP),
relies on Secure Shell (SSH) to negotiate and secure the tunnel used for the transfer.
If a critical flaw or vulnerability in SSH was to be found, that would result in our
most popular file transfer protocol being useless, leaving our files vulnerable and
insecure during transmission over e.g. Internet. In order to minimize potential
damage from a vulnerability in SSH, developing an alternative protocol for secure
file transfer is needed. The new protocol would need to be separated from the SSH
ecosystem while offering, at least, the same security guarantees and performance.

In recent years a new framework for building secure cryptographic proto-
cols has been released as an alternative to SSH, Transport Layer Security (TLS)
and QUIC for securing communications tunnels, the Noise Protocol Framework
(NPF) [18, 23]. The Noise Protocol Framework contains, among other features,
support for mutual and optional authentication, identity hiding, forward secrecy
and zero round-trip encryption. This makes Noise a promising alternative to use
when securing the communication channel in a new file transfer protocol [23].

The main goal of this thesis was to provide a proof-of-concept for how a new
secure protocol for file transfer could be designed and how it would perform. In
order to ensure that the new protocol provides at least the same security guarantees
and performance as today’s alternatives a study of the security provided by SSH for
SFTP was first performed. The proposed protocol will rely on the Noise Protocol
Framework when it comes to establishing a secure communication tunnel. The
secure tunnel will provide authentication, confidentiality and integrity protection
for the transferred files. It also protects against eavesdropping and man-in-the-
middle attacks.

1

2 Introduction

1.1 Purpose and Goals

The goals of this thesis can be summarized as follows:

• Provide an overview of the security provided by SSH for SFTP.

• Develop a specification for a new secure file transfer protocol using the Noise
Protocol Framework.

• Provide a reference implementation.

1.2 Scope

The new protocol will target users that want to protect their file transfers against
an attacker that can eavesdrop on the communication as well as perform man-in-
the-middle attacks. It will not protect against an attacker that has physical access
to one of the endpoints.

The provided reference implementation targets the GNU/Linux operating sys-
tem. The application might be able to run on other UNIX based operating systems,
but it is beyond the scope of this thesis.

1.3 Related Work

The increase of data stored at data centres combined with the rise of the Internet of
Things has lead to an increase in research about file transfer protocols. However,
research mainly focuses on providing faster and more efficient alternatives and
minimizing the bandwidth and power usage.

The original File Transfer Protocol (FTP) sent the files unencrypted between
two endpoints. As the need for secure alternatives became larger, work began to
use FTP over TLS/SSL (FTP/S); the developers behind SSH also started working
on SFTP [14]. Other than that, there have not been much work on secure file
transfer protocols. IBM developed a new protocol in the mid 2000s, Fast Adaptive
and Secure Protocol (FASP) [44]. While FASP is an independent file transfer
protocol, it still relies on SSH for authentication and key negotiation. Today
FASP is the file transfer protocol used by IBM Aspera [1].

1.4 Thesis Outline

The thesis is structured as follows: Chapter 2 (Introduction to Cryptography and
Cryptographic Protocols) introduces the necessary knowledge needed to under-
stand how cryptographic protocols work and the cryptography used within them.
Chapter 3 (SSH) presents an introduction to SSH and an overview of the security
provided by SSH for SFTP. Chapter 4 (Noise Protocol Framework) provides an
introduction to the Noise Protocol Framework and the security it provides. Chap-
ter 5 (Hermod: A File Transfer Protocol using Noise) introduces the proposed
proof-of-concept for the new protocol. Chapter 6 (Implementation) introduces
and explains the implementation process of the protocol. Chapter 7 (Results)

Introduction 3

presents the results of the new protocol regarding its security and performance.
Chapter 8 (Discussion) provides a discussion around the specification and imple-
mentation while also presenting potential improvements and future work. Chapter
9 (Conclusions) presents conclusions drawn from the result and discussion.

4 Introduction

NoisechapterIntroduction to Cryptography and Cryptographic Protocols In
order to fully understand the content of this thesis, some essential concepts have to
be introduced. This chapter starts by introducing vital concepts that are needed
in order to reason about information security. Then an introduction of some
cryptographic protocols and secure channels follows. The chapter then continues
by introducing cryptographic primitives, before ending with an introduction to
some common attacks on cryptographic protocols.

1.5 Information Security Concepts

When reasoning about information security protocols there are a few concepts that
are used to describe some vital objectives or wanted features [29]. These concepts
are confidentiality, data integrity, authentication and non-repudiation.

Confidentiality means that only those authorized to have access to some data
should be able to access it.

Data integrity means protection against unauthorized data manipulation such
as insertion, deletion and substitution.

Authentication means identification, both of identities and data. Authenti-
cation can therefore be divided into peer entity authentication and data origin
authentication.

Non-repudiation means that an actor cannot deny having performed an oper-
ation, such as signing a contract.

1.6 Cryptographic Protocols

A cryptographic protocol is an algorithm or a series of steps describing a well-
defined sequence of actions, often between two or more parties, that need to be
performed in order to achieve a security objective [34, pp. 21–22]. The algorithm
often contains multiple cryptographic primitives such as encryption schemes, dig-
ital signatures, random number generators and hash functions.

In addition to the cryptographic primitives, a cryptographic protocol needs: a
transport layer, a message protocol, message identity and data representation.

The transport layer is responsible for transporting data between the involved
endpoints. The transported data could be files, keys or data from some application,
for example, the TLS protocol is used to securely tunnel application data between
two endpoints. This layer is also responsible for supplying the transmitted data
with confidentiality and integrity protection.

Message protocol and message identity mean that the packets or binary data
that are transmitted through the protocol must follow a predefined specific scheme.
A server must be able to translate the binary data into variables and data fields
to be able to understand what is being sent and received. Message identity is used
to identify that the message received actually is a message originating from the
protocol and not just random data or noise. The message identity also allows the
receiver to correctly parse the received data into the correct message type.

The data representation is used to translate the raw binary data into a prede-
fined representation that allows the receiver to process or parse the received data,

Introduction 5

act on it and perhaps create and transmit a response.

1.7 Secure Channel

A secure channel is a communication channel between two parties or devices over
which the transmitted data is protected against manipulation. An attacker can
learn nothing about the data that is being transmitted. In a perfect world an
attacker would not be able to gain any knowledge whatsoever about any data
being transmitted. However, it is hard to be protected against an attacker gaining
knowledge about data sizes, end points or the timing of the transmissions through
traffic analysis [13, p. 101].

In order for the transmitted data to be protected against an attacker, authen-
tication and encryption is needed. Authentication often is in the form of a Message
Authentication Code (MAC), Chapter 1.12, which protects the data against tam-
pering and ensures that the receiver can verify the origin of the transmitted data.
Encryption ensures that the data can only be viewed by the authorized receiver.

1.8 Symmetric Cryptography

Symmetric Cryptography uses a single shared key between the involved parties
for both encryption and decryption [34, p. 4]. This enables both parties to both
encrypt and decrypt the data using the same key, as seen in Figure 1.1.

Example text Example textRknzcyr grkg

Symmetric key

Plaintext PlaintextCipher text

Encryption Decryption

Figure 1.1: Symmetric encryption

As symmetric cryptography allows for high throughput and performance, it
is well suited for usage in environments where performance is critical or when
working with large data sizes. A disadvantage of using symmetric cryptography
is that the same key is used for both encryption and decryption. It is therefore
vital that the key is securely stored and shared between the parties. Another
disadvantage is that for every new party a user wants to share information with

6 Introduction

a new key is needed. This rapidly increases the number of keys that need to be
distributed and stored, and creates a key management problem. A system with n
users that can all communicate with each other needs to store n(n− 1)/2 keys [6].
A system with a thousand users that all can communicate with each other needs
to store close to half a million keys. This key management problem can be solved
by using asymmetric cryptography.

Symmetric encryption can be divided into two main categories of algorithms,
stream ciphers and block ciphers, based on how they operate on the input data.

1.8.1 Block ciphers

Block ciphers operates on a fixed length data block at a time [34, p. 4]. In order to
encrypt data that exceeds the algorithm’s block length there exist various modes
of operation, so called block cipher mode of operation [13, pp. 63–77]. These modes
describe how to apply the algorithm’s single block operation on multiple blocks,
how to pad shorter messages to the block length, and how the initialization vector
(IV) and the encryption key should be used for each block.

1.8.2 Stream ciphers

Stream ciphers treats the input data as a stream of bits or bytes. The encryption
key is used to create a key stream, together with an initialization vector. The two
streams are then combined, creating an encrypted output stream. Since two sepa-
rate streams are combined, the encryption operation is often based on exclusive-or
(XOR).

As stream ciphers treat the input data as a data stream, they are easy to use
when the input length is unknown as there is no need for padding the input data.
Stream ciphers are often also very simple to implement in hardware and are often
very fast; this makes them very popular for securing wireless connections and or
for systems with constrained resources.

1.9 Asymmetric Cryptography

Asymmetric cryptography or public key cryptography utilizes two keys, one for
encryption and one for decryption as seen in Figure 1.2. This can be compared
to one key for both encryption and decryption in symmetric cryptography. Public
key cryptography can be divided into three categories: key exchange or negotiation
algorithms, encryption algorithms and digital signature algorithms.

A benefit of using public key cryptography is that it simplifies the key man-
agement needed in order to share encrypted information. Only the decryption key,
the private key, needs to be stored securely.

Reusing the example from the section about symmetric encryption with 1000
users who all can communicate with each other, we now only need to store 1000
keys. The drastic decrease in stored keys comes from the fact that the users now
only need to share their public key, the encryption key, with everyone. Two com-
municating parties can now encrypt messages using the other party’s public key

Introduction 7

Example text Example textRknzcyr grkg

Plaintext PlaintextCipher text

Encryption Decryption

Public key Private key

Figure 1.2: Asymmetric encryption

and decrypt received messages using their own private key. Asymmetric cryptog-
raphy also removes the need for trusted third parties to share symmetric keys [6].

A disadvantage of using asymmetric cryptography instead of symmetric, is
that asymmetric cryptography is a lot slower. Public key cryptography is therefore
often used to negotiate symmetric encryption keys or for encrypting a symmetric
key.

1.10 Hybrid Cryptosystem

A hybrid cryptosystem is a cryptosystem that combines symmetric and asymmet-
ric cryptography. The hybrid cryptosystem can be viewed as a combination of an
asymmetric cryptosystem for key transportation and a symmetric cryptosystem
for data encapsulation [34, pp. 32–33]. The asymmetric cryptosystem is respon-
sible for encrypting and sharing a newly generated symmetric key with the other
party. The symmetric cryptosystem is then responsible for encrypting all trans-
mitted data during the sessions. The hybrid cryptosystem therefore has all the
advantages from both symmetric and asymmetric cryptography without any of
their disadvantages [38].

Hybrid crypto systems allow us to build efficient public key protocols and can
be found in most of today’s protocols for public key cryptography.

1.11 Key Exchange

The purpose of a key exchange or a key negotiation scheme is to construct a key
that can be used by the involved parties for the use within a protocol. The key
exchange is often the first step in a cryptographic protocol as it is responsible for
negotiating the key or keys that will be used for encryption.

1.11.1 Diffie-Hellman

The Diffie-Hellman protocol (DH) was one of the first asymmetric protocols, and
is used to negotiate a shared secret [13, pp. 181–192]. What makes the Diffie-

8 Introduction

Hellman protocol special is that it allows two parties to negotiate a shared secret
without having any prior knowledge about each other [13, pp. 181–192]. The
original algorithm uses multiplicative group of integers modulo p and the discrete
logarithm problem and is still used today. Today there also exist versions of the
original Diffie-Hellman protocol that use elliptic curves (ECDH) instead of the
multiplicative group of integers modulo p.

A = ga mod p (1.1)

B = gb mod p (1.2)

K = Ba mod p (1.3)

K = Ab mod p (1.4)

Two communicating parties, commonly referred to as Alice and Bob, start the
key exchange by agreeing on a modulus p and a generator g. Alice then chooses a
secret integer number a and calculates A using Equation 1.1; this A is then sent to
Bob. Bob then chooses a secret integer number b, calculates B using Equation 1.2
and sends it to Alice. Alice and Bob can now both calculate the shared secret, K,
using Equation 1.3 for Alice and Equation 1.4 for Bob.

1.11.2 Forward Secrecy

Forward secrecy is a crucial feature for cryptographic protocols. It ensures that
session keys are not compromised if the long-term private static key gets compro-
mised by an attacker. This ensures that an attacker cannot decrypt previously
recorded encrypted communication. As Forward Secrecy is such an important
feature in cryptographic protocols, the feature can be found in close to all major
cryptographic protocols such as TLS, SSH and Signal [28, 35, 43].

1.12 Message Authentication Code

A Message Authentication Code (MAC) is used to authenticate a message and to
detect message tampering and manipulation [13, pp. 89–90]. A MAC takes a secret
key K and a message of arbitrary length and produces a fixed size MAC output.
The secret key is shared between the sender and the receiver and ensures that only
they can calculate the correct output. The sender then calculates a MAC for the
message it wants to protect and appends the MAC to the output and sends the
concatenated message to the receiver. The receiver then recalculates the MAC of
the message received minus the MAC and compares it to the MAC attached to
the message. If they match, the message has not been tampered or manipulated
with and it originates from the sender.

Since a MAC takes a secret key as parameter it is also suitable for authenti-
cating that a message originates from the supposed sender. The receiver can be
sure the message originates from the sender if the MACs match, as long as the
secret key handled securely.

Hash functions are often used in the construction of MACs. The hash functions
can map the message to a fixed length output that can then be used together with

Introduction 9

the secret key to construct a MAC. This speed up the MAC calculation as only
the hash needs to be signed and not the complete message.

1.13 Authenticated Encryption

Authenticated Encryption (AE) or Authenticated Encryption with Associated
Data (AEAD) are forms of encryption that provide both confidentiality and au-
thentication of the protected data. Authenticated encryption schemes provide the
same properties that an encryption scheme and a message authentication code pro-
vide on their own. However, when using an AE or AEAD scheme these properties
are provided under a single, simpler interface.

The input to the encryption function of an authenticated encryption scheme
takes the data that will be encrypted and a key, and outputs a ciphertext and
an authentication tag. For decrypting, the authentication tag is calculated and
compared to the tag attached to the ciphertext. If the tags do not match, the
cipthertext is discarded. If the tags match, the ciphertext is decrypted and the
plaintext is returned. This ensures that only authenticated data is decrypted, and
a minimum of resources are spent on unauthenticated messages or data.

An AEAD algorithm also provides the option to check the integrity of an
encrypted message. This feature ensures that the message cannot be manipulated
and that it originates from an authenticated sender. AEAD can therefore replace
the more traditional approach of using separate algorithms for encryption and
MAC.

1.14 Attacks on Cryptographic Protocols

1.14.1 Man-in-the-middle Attack

In a man-in-the-middle attack an attacker secretly inserts itself in between two
communicating parties. The two parties believe they are communicating with
each other directly when in fact a third party has access to the communication.
The attacker can either passively eavesdrop and relay the communication or ac-
tively alter it. In order to prevent a man-in-the-middle attack most cryptographic
protocols include some kind of authentication for the endpoint.

1.14.2 Replay Attacks

A replay attack is an attack where the attacker first eavesdrops on a communication
channel and intercepts the communication between two parties before sending the
intercepted packets to the receiver. If an attacker eavesdrops and intercepts, for
example, a login attempt to a server, the attacker could try to gain access by
replaying the handshake. As the attack only involves sending packets, it is an
attack that is very simple to perform as there is no need, for example, to break a
key exchange scheme to get access to the session key.

In order to be protected against a replay attack, session identifiers, nonces
or timestamps can be used. The receiving party could, for example, only accept

10 Introduction

messages within a certain time frame. By using a new unique session identifier for
each session, the receiving party could discard messages if the provided identifier
does not match the identifier associated with the current session. This makes it
impossible for an attacker to replay messages from a different session.

Chapter2
Secure Shell

Secure Shell (SSH) is a protocol and a software package that provides secure con-
nections over insecure networks. SSH enables secure system administration, file
transfer, remote command-line and remote command execution to take place over
secured connections.

The protocol was first developed to provide a secure alternative to Telnet and
the Berkley protocols for remote shell, rlogin, rsh and rcp [30, 27, 31]. Today the
protocol is used in most data centers and larger enterprises [39]. SSH can also be
found embedded in many solutions for file transfer and system management.

2.1 The SSH Protocol

The Secure Shell Protocol follows a client-server model where the connection is
initiated by an SSH client connecting to an SSH server. The SSH client is respon-
sible for establishing the connection and is the driving party during the connection
and setup phase. During the setup phase the client authenticates the SSH server
using asymmetric cryptography.

Once a connection has been established, the SSH protocol uses symmetric
encryption and MAC to ensure that data exchanged between the client and the
server remain confidential and integrity protected. Connection specific algorithms
and parameters are negotiated during the setup phase.

The SSH protocol runs on top of TCP/IP and is built on top of three core pro-
tocols, with SFTP adding a fourth protocol [52]. Figure 2.1 provides an overview
of how the different protocols and applications in SSH are connected.

The SSH Transport Layer Protocol sits at the bottom of the protocols and is
responsible for the connection and for establishing a secure channel between the
client and the server [53]. When a client initiates a connection, this protocol is re-
sponsible for authenticating the server, negotiating session keys and cryptographic
algorithms to use. After the connection phase the Transport Layer Protocol pro-
vides the other SSH protocols with privacy, integrity protection and optional data
compression.

The SSH Authentication Protocol is responsible for authenticating the connect-
ing client to the server and operates on top of the Transport Layer Protocol [50].

The SSH Connection Protocol takes over after a successful client authentica-
tion, and just as the Authentication Protocol, it uses the secure channel provided

11

12 Secure Shell

TCP

SSH Transfer Protocol

Applications: ssh, sshd, scp, sftp, sftp-server

SSH Connection ProtocolSSH Authentication Protocol

SSH File Transfer Protocol

Figure 2.1: The relation between the SSH protocols.

by the Transport Layer Protocol [51]. The Connection Protocol is responsible for
providing a channel for tunneling data from the requested remote service. It also
enables multiplexing the secure tunnel into multiple channels.

The SSH File Transfer Protocol (SFTP) runs on top of the Connection protocol
and allows for remote access to a file system [49]. SFTP will be further introduced
in Section 2.3.

2.1.1 User Authentication

The SSH protocol supports multiple ways of user authentication, e.g. password,
public key, challenge-response based, host based and GSSAPI [41]. This thesis
analysis will focus on public key-based authentication, as it is the recommended
way of doing user authentication in SSH [26].

Public key authentication was originally added to the SSH protocol to support
secure automation, allowing for smooth integration into third-party applications or
scripts. Since then it has been the recommended way of conducting authentication
when using the SSH protocol as it provides a higher level of security compared to
password-based authentication.

The public key authentication method is built around the fact that the client
has a cryptographic key pair consisting of one public and one private key. The
client’s public key is then shared, either manually or through the ssh-copy-id ap-
plication, with the server and stored in the server’s authorized_keys file. When
a client connects, the server grants access if the private key matches a public key
the server has stored for that client. The client also maintains a file, known_hosts,
that contains the public key of server’s and hosts that the client trusts. If a server

Secure Shell 13

or a client updates their key pair, a mismatch will happen during the authenti-
cation. In case there is a new key pair for the server the client will be notified
and prompted to accept or discard the new key. If the client updated the key pair
without sharing the new keys with the server, the authentication will fail.

2.1.2 Key Exchange

A key exchange is performed in order to establish session keys for encryption
and authentication. The key exchange can be split into two stages. The first stage
negotiates the algorithms and parameters to use and a final stage where the actual
key exchange takes place. SSH also combines the key exchange with a signature
to provide explicit server authentication.

The explicit server authentication is used so the client can be sure it is talking
to the correct server [53]. By including the shared Diffie-Hellman secret, the
client can verify that the server knows the correct shared secret and is capable of
decrypting any data sent through the channel. The authentication is performed
by signing a hash. Equation 2.1 shows how the hash is calculated.

hash = HASH(Client identification string ||
Server identification string ||

Client message payload ||
Server message payload ||

Server public hostkey ||
DH value from client ||
DH value from server ||

DH shared secret)

(2.1)

2.1.3 Confidentiality

During the handshake an encryption algorithm will be negotiated, and a key ex-
change takes place, establishing a shared key used for encryption. After the key
exchange and algorithm negotiating is done the packet length, padding length
and padding fields as well as the payload must be encrypted using the negotiated
algorithm and key.

The benefit of negotiating new session keys for every new session is that if
the host keys are compromised, an attacker will not be able to decrypt data from
previous sessions.

2.1.4 Integrity

The SSH protocol uses a MAC tag that is computed from the unencrypted message
payload, the sequence number of the packet and from a shared secret as seen in
Equation 2.2.

mac = MAC(key, sequence_number ||message payload) (2.2)

14 Secure Shell

This ensures that messages cannot be tampered with and that the payload origi-
nates from the sender.

2.2 Supported Algorithms

The SSH protocol supports a wide range of algorithms for providing authentica-
tion, confidentiality and data integrity. In RFC4252 and RFC8332 the officially
supported algorithms are presented [50, 4]. Depending on the SSH implementa-
tion, other algorithms could be supported through implementation specific exten-
sions. The SSH protocol is more than twenty years old and it still provides support
for outdated algorithms. This means that users can create, configure and expose
vulnerable servers.

2.3 SSH File Transfer Protocol

The SSH File Transfer Protocol (SFTP) is a file transfer protocol and was added
in SSH2 (an updated version of the original SSH protocol) as a secure alternative
to FTP [49]. Initially SSH provided a secure version of the remote copy (rcp) tool
from Berkley, in the form of the Secure Copy (scp) application [27]. However,
the original scp application was very limited in features compared to FTP. When
developing SSH2, the developers saw an increased need for secure file transfer and
introduced SFTP as a more feature complete protocol for transferring files.

SFTP runs on top of the SSH Connection Protocol and has therefore all secu-
rity and authentication features provided by the SSH Transport Layer and Authen-
tication Protocols. Once a user is logged in and authenticated the SFTP protocol
is initiated. Since the SSH protocol is available on most corporate networks, it
has enabled SFTP to become widely adopted and it is now a standard part of
the SSH protocol suite and implementations are available for most systems. With
the introduction of SFTP, the insecure FTP has become obsolete and replaced.
FTP/S (FTP over SSL/TLS) is quickly getting replaced by SFTP as well [36].

The SSH ecosystem comes with the sftp shell command for Linux systems,
and is an interactive command line interface for using SFTP. With the addition
of the SFTP protocol in SSH2, the original scp was rebuilt to utilize the new STFP
protocol for the file transfers, providing two interfaces for the same protocol [11].

2.4 Security Considerations

2.4.1 Authentication

In the SSH protocol, it is up to the server to decide which method to use when
performing user authentication. The authentication is only as strong as the method
used for authentication. Configuring a server to accept a weak method for user
authentication exposes the underlying machines and network to an attacker.

When using public key authentication, it is assumed that the client’s host keys,
and the server’s private key are not compromised. Therefore it is recommended
to store the private keys encrypted. However, this is hard to enforce in practice

Secure Shell 15

and causes other problems when using ssh in scripts. If a clients private key is
compromised, an attacker has full unrestricted access to the server.

2.4.2 Man-in-the-middle

In order for the protocol to offer protection against a man-in-the-middle attack
the server’s public key must be securely distributed to the client. Should the keys
be insecurely distributed or stored, the client cannot verify that it is talking to the
correct server.

If the server key is securely distributed to the client and an attacker tries to
perform a man-in-the-middle attack the client will notice a mismatch between the
server key and the hostname. A warning will be shown to the user combined
with an option to abort the connection. The user should also be careful and not
automatically accept a new or changed server key.

The protection against man-in-the-middle attacks is therefore only as strong as
the key distribution is secure combined with the users’ and administrators’ ability
to verify the key/hostname relation.

A huge problem with the man-in-the-middle protection in SSH is that it relies
on ‘Trust on First Use’ for host keys [40]. When a user first connects to a new
server, the server’s key fingerprint is shown, and the connecting user is asked
whether to trust the key and continue on with the connection or to abort it.
Studies have shown that users tend to not verify the provided fingerprint and if
they do, they rarely verify the full fingerprint [16]. This side steps or weakens SSH
man-in-the-middle protection.

2.4.3 Forward Secrecy

As the SSH protocol uses Diffie-Hellman or elliptic curve Diffie-Hellman for ev-
ery session to generate a new session key, the protocol provides perfect forward
secrecy [35]. Should the private Diffie-Hellman parameters for either the client or
the server be revealed, the session key will also be revealed. It is therefore vital for
the implementation to securely discard these parameters when the key exchange
is completed.

2.4.4 Data Integrity

The SSH protocol provides data integrity protection in the form of a MAC. As the
SSH protocol uses a 32-bit MAC, information could start to leak after 232 packets
have been sent.

The MAC schemes used by the SSH protocol rely on SHA-1 or MD5, which are
both deemed to be insecure [37]. In 2017 Google announced they had successfully
performed a collision attack against SHA-1 [42]. MD5 has been vulnerable to
collision and pre-image attacks for years. These two algorithms are no longer
accepted by web browsers and warnings are issued when using them with TLS [47].

16 Secure Shell

2.4.5 Replay and Key Reuse

In order to protect oneself against a replay attack, the SSH protocol derives the
session key from pseudo-random data gathered from the key exchange process.
The SSH Authentication Protocol uses this to ensure that signatures from previous
sessions cannot be replayed. This also enables protocols running on top of SSH to
bind data to a session, thus preventing an attacker from replaying messages from
previous sessions.

Two sessions could theoretically have the same session key, but since the key
originates from a hash the probability for this to happen is minimal. The risk can
be further minimized by using a larger output string from the hash function.

2.4.6 Confidentiality

The ciphers used by SSH are the industry standards for encryption. The developers
have chosen to support eight different algorithms with a variety of key lengths. Due
to the age of the protocol, the recommended algorithms have changed and some of
the algorithms included in the protocol are no longer regarded to be secure enough,
e.g. 3DES. It is therefore up to the developers to suggest and recommend strong
default algorithms and up to the users to actually follow the recommendations.

2.4.7 Cipher suite

SSH supports a high number of cryptographic algorithms. While this allows users
to tailor the used algorithms for their own use case, it increases the code size
and maintainability cost. More supported algorithms mean that there are more
potential attack vectors, and the larger code size means that the risk for bugs
increases.

2.4.8 Configuration

The greatest security threat to SSH is through misconfiguration, by choosing weak
cryptographic primitives, or by using a compromised system. A user of the SSH
protocol cannot be expected to have deep knowledge in information security so
the potential for misconfiguration is high. The lack of knowledge in information
security also means that the users lack the ability to properly review and under-
stand the configuration and its security implications. Therefor, the users have to
rely on that the developers provides a sane default configuration.

Since the SSH client and the SSH server negotiate the algorithms used for
authentication, key exchange and encryption during the setup phase, it is possible
for a party configured to use secure primitives to be forced to use weaker primitives
due to the configuration of the other party.

The large number of supported primitives increase the risk of a vulnerability
being found. It also increases the chances of exposing a less secure server to the In-
ternet and it forces administrators and users to be up to date on the recommended
algorithms to use.

Secure Shell 17

2.4.9 Conclusions

The SSH Protocol offers a high level of security. The protocol, the family of appli-
cations and the protocol enable users to perform a wide range of tasks. However,
SSH has grown quite a bit since its first release and now comes with a large over-
head and complexity. SSH forces the users to configure the clients and servers
correctly while also forcing the developers to recommend safe algorithms for the
end users.

Within the SSH protocols all critical parameters are negotiated, e.g. the meth-
ods for server and user authentication and algorithms for exchanging session keys.
This adds a lot of complexity to the protocols and introduces potential attack
vectors.

For conducting file transfers using SFTP there is a lot of overhead and the pro-
cess involves four different protocols. The SSH Transport Layer Protocol needs
to agree on algorithms to use and perform server authentication. The SSH Au-
thentication Layer Protocol then needs to perform user authentication before the
SSH Connection Protocol can initiate a sftp channel and launch the sftp service.
Once the sftp service is started, the actual SFTP protocol can start. This process
is complex and can be streamlined.

Since SFTP runs on top of the other SSH protocols the whole SSH protocol
suite is needed even if a user only wants to share files and has no interest in remote
execution, proxy services or socket binding. It also means that the sftp service is
open for vulnerabilities in the other services and protocols.

A new secure file transfer protocol should focus on only providing secure file
transfer. This makes the specification and implementation smaller and easier to
review, verify and maintain.

18 Secure Shell

Chapter3
Noise Protocol Framework

The Noise Protocol Framework (Noise) is a new framework for creating crypto-
graphic protocols based around the Diffie-Hellman key exchange method [23, 25].
The framework primarily supports authentication, both mutual and optional iden-
tity hiding, forward secrecy and zero round-trip encryption.

Noise provides a lightweight framework that is not bound to any specific do-
main. As the framework relies on public and private keys for authentication there
is no need for a trusted third party. This enables Noise to be a competitive frame-
work for building protocols that utilizes the Diffie-Hellman protocol.

The features offered by Noise make it a promising alternative to TLS and SSH
for establishing secure communication channels, e.g. WhatsApp has replaced TLS
with a protocol based on Noise for mobile devices [48]. Noise can also be found
in the VPN protocol WireGuard, the decentralized network Lightning and in the
anonymous network I2P [12, 5, 24]. There is also a version of QUIC, that uses
Noise instead of TLS for the secure channel [18, 17].

The developers behind Noise have chosen to provide a few but carefully chosen
ciphers. The cryptographic primitives advocated by Noise have been chosen due
to their security and performance, allowing for the creation of protocols offering
competitive performance and security on all kinds of devices.

Another benefit with Noise is the notation introduced by the Noise framework
to describe handshake patterns. This notation makes it very easy to formally
verify the handshake patterns and in extension the created protocols. The ability
to easily create formal verifications of the handshake patterns allows developers
to prove that their protocol comes with the claimed security. Noise Explorer is a
tool that is developed to help verify Noise Patterns, and provides an overview of
the security properties the various patterns provide [22].

3.1 Noise State Machine

The core of the Noise Protocol Framework is a state machine that contains and
maintains a predefined set of variables. During the handshake these variables
are used by the state machine to perform the specific calculations needed by the
handshake pattern. The state machine is advanced by processing tokens from the
provided handshake pattern. The set of variables used and maintained by Noise
are the following [25]:

19

20 Noise Protocol Framework

• A local party’s static key pair - s

• A local party’s ephemeral key pair - e

• The remote party’s static public key - rs

• The remote party’s ephemeral public key - re

• A hash value that is calculated from the previous handshake data sent and
received - h

• A chaining key based on all previous DH outputs, used to derive the en-
cryption keys - ck

• Encryption key, recalculated every time ck is changed - k

• Counter based nonce - n

In order to begin the execution of a Noise protocol, you initialize a Hand-
shakeState by calling the Initialize method and providing a pattern and specify-
ing which algorithms should be used [25]. Depending on which pattern is speci-
fied, static keys are also provided to the state machine. After initialization, the
WriteMessage and ReadMessage methods are called to process each handshake
message. WriteMessage consumes a received message and the ReadMessage pro-
duces a message that can be sent to the remote party. These methods are also
responsible for any calculations that are needed in order to fully process the current
token. If any error is encountered the handshake has failed and the HandshakeState
object is deleted.

When the handshake is completed, all tokens in the patterns have been pro-
cessed and encryption keys have been negotiated, two CipherState objects are
returned: one object for encrypting messages from the initiator and one object for
decrypting messages that are received from the responder. The HandshakeState
object is also deleted. At this point messages can be encrypted or decrypted using
the EncryptWithAd and DecryptWithAd methods on the relevant CipherState. If
an error is encountered at any point from here on the CipherState object is deleted
and the session is terminated.

3.2 Noise Patterns

The main building block when working with the Noise Protocol Framework is the
Noise handshake patterns, used to describe Diffie-Hellman based protocols. A
handshake pattern is a sequence of messages, defined by tokens, that describes
how information flows in the handshake. The tokens used in the patterns, map to
the variables that are stored in the state machine. By using the token system, it is
very easy to quickly understand what data is being sent and how it is used by the
framework. The patterns and tokens also make it easy to both reason about and
formally verify the security they intend to provide. In order for the two involved
parties to have some predefined shared data, Noise supports so-called pre-message
patterns that represent some shared data, such as public keys.

The set of tokens Noise patterns are made of are the following [25]:

Noise Protocol Framework 21

• Ephemeral key pair generated by the sender, stored in the e variable - e

• The sender transmits the static public key. Is taken from the s variable and
encrypted if k is not empty - s

• A Diffie-Hellman operation between the initiator’s key pair. The first letter
determines if the initiator’s static or ephemeral key is used, likewise the
second letter determines if the responser’s static or ephemeral key is used.
- ee, es, ss, se

The Noise patterns are named with one or two letters. The first letter refers
to the static key of the initiator [25]:

• No static key for initiator - N

• Static key for initiator known to responder - K

• Static key for initiator transmitted to responder - X

• Static key for initiator immediately transmitted to responder - I

The second letter refers to the static key of the responder [25]:

• No static key for responder - N

• Static key for responder known to initiator - K

• Static key for responder transmitted to initiator - X

This thesis will follow the notation used in the Noise specification for the Noise
patterns [25].

Noise NN pattern :
A l i c e : Bob :

−> e
<− e , ee

Listing 3.1: Noise handshake pattern.

Noise KK pattern :
A l i c e : Bob :

−> s
<− s
. . .
−> e , es , s s
<− e , ee , s s

Listing 3.2: Noise handshake pattern with pre-message pattern.

22 Noise Protocol Framework

The Noise pattern NN , show in Listing 3.1, describes a Noise pattern for
performing an unauthenticated Diffie-Hellman handshake. The pattern has two
messages: the sender starts by sending its ephemeral public key and the recipient
responds by sending an ephemeral public key. The two ephemeral keys are then
used to create ee by performing a Diffie-Hellman calculation.

The KK pattern, as show in Listing 3.2, describes a Noise handshake pattern
involving a pre-message pattern. Before the handshake is initialized, the parties
have at some point earlier in time securely exchanged static keys. The sender
initiates the handshake by transmitting an ephemeral key and constructing es and
ss. The recipient responds by sending an ephemeral key allowing for the creation
of ee, and calculates ee and ss. When the initiator has received the response from
the original recipient, it can calculate ee. The full list of patterns supported by
Noise is available in the Noise specification [25].

3.2.1 Noise Algorithms

In order to initialize and use the Noise state machine a set of algorithms must be
specified.

For the key exchange a Diffie-Hellman algorithm must be chosen. This algo-
rithm will be used to generate the public and private key pairs. An encryption
algorithm must also be chosen and will be used for encryption and decryption of
packet data. A hashing algorithm must also be designated. The hashing algo-
rithm will in addition to hashing be used for deriving keys, using a Hash-based
Key Derivation Function (HKDF).

3.2.2 Cipher Suite

The Noise framework differs from most of the popular protocols for establishing
a secure channel in that it comes with a small supported cipher suite. Noise
comes with support for two elliptic-curve Diffie-Hellman key negotiation schemes,
the Curve25519 and the Curve448. Two algorithms for authenticated encryption,
AES-GCM and ChaChaPoly1305. Two hash algorithms with 256 bits output,
SHA256 and BLAKE2s and finally two hash algorithms with 512 bits output,
SHA512 and BLAKE2b.

3.2.3 Validity Rules

In order for a pattern to be valid, it must not only be syntactically correct, but
it must also conform to four validity rules [25]. If the pattern described fulfill
all four validity rules, the pattern should be executable and provide the security
guarantees the pattern is specified to have. The validity rules are as follow:

1. Diffie-Hellman operations can only be performed using keys both involved
parties possess.

2. A key cannot be sent more than once during a handshake.

3. Each Diffie-Hellman calculation may only be performed once.

Noise Protocol Framework 23

4. After a Diffie-Hellman operation on a remote public key and a local static
key the local party is not allowed to call the ENCRYPT method without
first performing a Diffie-Hellman operation on its local ephemeral key and
the remote key.

In order to initialize a Noise state machine an ASCII string is passed to the
Initialize method. The string specifies the Noise pattern, the Diffie-Hellman func-
tion, the AEAD function and the hash function and starts off with "Noise_",
Listing 3.3 shows how such a string could look.

Noise_KK_25519_ChaChaPoly_BLAKE2b

Listing 3.3: Noise protocol name.

The string specifies theKK pattern, the Curve25519 for Diffie-Hellman, ChaChaPoly1305
for authenticated encryption and BLAKE2b for hashing.

3.3 Security Properties

Protocols built using the Noise framework provide security tailored to the specific
needs of the protocol thanks to the Noise patterns. Each Noise pattern comes
with different source and destination properties; the properties are also tied to
each message in the handshake. Choosing the correct pattern is therefore vital
when creating a protocol using the Noise framework.

In order to make it easier to overview the specific security properties provided
by a certain Noise pattern, Kobeissi, Nicolas, and Bhargavan created the Noise
Explorer [20]. The Noise Explorer allows for automated modelling and verification
of arbitrary Noise protocols and pattern analysis over the handshakes for each
pattern. It is available as both a command line and a web application [22].

3.3.1 Source Properties

The source properties are a set of properties that handle the level of authentication
a recipient is provided when receiving messages from a sender. There are three
levels of authentication that can be provided by the Noise framework [25].

The first property is no authentication. This property provides no authentica-
tion which means that the payload could have been sent by anyone.

The second property is sender authentication vulnerable to key-compromise
impersonation (KCI). This property authenticates the sender using static-static
Diffie-Hellman. When using a protocol with this property, it is vital that the long
term key belonging to the recipient is stored securely. If this key gets compromised
the authentication can be forged.

The third source property is sender authentication resistant to key-compromise
impersonation. This property authenticates a sender using ephemeral-static Diffie-
Hellman. The authentication is performed with the sender’s static key pair and
the recipient’s ephemeral key pair and is resistant to forging assuming the private
keys are not compromised.

24 Noise Protocol Framework

3.3.2 Destination Properties

The destination properties are a set of properties that handle the level of con-
fidentiality that the payload is provided to the sender. There are six levels of
confidentiality that can be provided by the Noise framework [25].

No confidentiality offers no confidentiality and the payload is transmitted with-
out any encryption to the receiver.

Encryption to an ephemeral recipient offers the payload forward secrecy as it
is using ephemeral-ephemeral Diffie-Hellman. The payload can however be sent to
anyone as the sender is not authenticating the receiver.

Encryption to a known recipient, forward secrecy for sender compromise only,
vulnerable to replay. Protocols with this property encrypt the payload based only
on the static key of the recipient. If the recipient’s static keys are compromised
the payload can be encrypted. The payload is also vulnerable to replay attacks as
only static keys are used in the Diffie-Hellman operation.

Encryption to a known recipient, weak forward secrecy encrypts the payload
based on an ephemeral-ephemeral and ephemeral-static Diffie-Hellman operation.
As the sender has not verified the relation between the recipient’s ephemeral key
pair and the static key pair, the ephemeral key can be forged by an active attacker.
If an attacker gains access to the recipient’s private static key the payload can be
encrypted.

Encryption to a known recipient, weak forward secrecy if the sender’s private
key has been compromised encrypts the payload based on an ephemeral-ephemeral
Diffie-Hellman combined with an ephemeral-static Diffie-Hellman using the recip-
ient’s static key pair. Should the sender’s static key be compromised, an attacker
could compromise new sessions and decrypt their payloads. However, past sessions
are still secure.

Encryption to a known recipient, strong forward secrecy encrypts the payload
based on an ephemeral-ephemeral Diffie-Hellman combined with an ephemeral-
static Diffie-Hellman using the recipient’s static keys. As long as the private key
of the ephemeral key pair stays secure and the recipient is not impersonated by
an attacker the encrypted payload cannot be decrypted. This is the strongest
destination property offered by Noise.

3.4 Security Considerations

When using a Noise pattern that uses static public keys, it is important to re-
member that Noise only verifies that the other party possesses the corresponding
private key. The overlaying protocol or application still needs to decide if the
remote party’s key should be accepted or discarded.

As with all protocols that use nonces and ephemeral keys it is important that
they do not get reused. Reusing a nonce with the same encryption key would
render the provided confidentiality useless for the affected data.

If the overlaying protocol or application changes the Noise protocol, either the
pattern or the algorithms, the keys must be recalculated. Reusing the keys with
a new protocol could leak information about the keys, compromising the session.

Chapter4
Hermod: A Secure File Transfer

Protocol using Noise

Hermod is the proposed proof-of-concept protocol for conducting secure file trans-
fer. The protocol aims to provide a secure protocol that should be easy to use for
the end user. SFTP provides a secure protocol but gives the user the responsibility
to ensure a secure configuration is used. Hermod aims to remove the need for the
user to control options related security, enabling the user to focus fully on using
the protocol.

Hermod will utilize the Noise Protocol Framework for creating a secure tunnel
between the client and the server. By using the Noise Protocol Framework, Her-
mod will be provided with strong security. Noise will provide Hermod with Diffie-
Hellman based static keys for authentication and strong authenticated encryption
to provide confidentiality and data integrity to the data transmitted through the
secure tunnel.

4.1 Security Goals

In order to provide a secure protocol and rival SFTP when it comes to secure file
transfer a few properties must be supported. Forward secrecy must be provided
to ensure that the transmitted data is secure should a device or party become
compromised. It protects past sessions in case an involved party’s static keys are
leaked in the future. In order to provide forward secrecy Hermod will derive the
session keys from ephemeral key pairs.

Mutual authentication is needed to ensure that the correct and expected par-
ties are involved in the communication. Noise provides authentication based on
pre-shared asymmetric public static keys and allows for both client and server au-
thentication. The usage of authenticated encryption also ensures that not only the
handshake provides authentication, but every transport packet sent. Noise tags
every message with a 128-bits authentication tag to ensure packet authentication.

Data integrity ensures that messages cannot be tampered with without detec-
tion and is needed to ensure the files transmitted using Hermod arrive without
outside manipulation. Hermod, being based on Noise, will provide Data integrity
by using authenticated encryption with associated data.

25

26 Hermod: A Secure File Transfer Protocol using Noise

Replay protection is needed to protect the protocol from replay attacks. The
protection ensures that an attacker cannot replay messages or handshakes to es-
tablish a new connection or force the party to accept data or request once more.

Another goal of Hermod is to remove the need for the user to have a deep
knowledge of information security, being up to date on cryptography and reading
manuals to create a secure system. The protocol will provide no options for con-
figuring security properties. Key sizes and algorithms will all be specified in the
protocol and will not be configurable. The user can then focus on looking after
authorized keys and known hosts.

The properties must also be provided in a small package. Keeping the protocol
small, especially the operations regarding handshakes and confidentiality, makes
the protocol easier to be implemented, reviewed, verified and maintained. This is
important to ensure that potential attack vectors are kept at a minimum.

4.2 Specification

4.2.1 Design

Hermod aims to be a simple protocol with minimum overhead. To accomplish
that the protocol offers minimal configuration and removes all of the negotiation
about algorithms that can be found in most other protocols.

A Hermod session can be divided into two stages. The first stage is responsible
for authentication of both the client and the server combined with negotiating a
session key for encryption. The second stage handles the uploading or downloading
of files to or from the server. Uploading or downloading is done by sending a
request to the server which then responds accordingly, either by preparing to
receive file content or by sending a file back to the client. An overview of how a
Hermod session progresses can be seen in Figure 4.1.

Similar to SSH, Hermod uses text files for storing information about authorized
clients, known servers, public and private keys. Hermod also borrows the concept
of aliases from SSH, but instead of making them optional they are used by default
in Hermod. When a client adds information about a new server it is given an alias.
This alias is then used to reference the remote server. By using aliases, a client
does not need to remember a specific host name or its IP. Hermod differs from
SSH by forcing the use of aliases whereas in SSH they are optional.

4.2.2 Cryptographic Algorithms

Since Hermod utilizes the Noise Protocol Framework for authentication, encryp-
tion and integrity protection it is bound to use the algorithms supported by Noise.

For Authenticated Encryption with Associated Data, Hermod uses the
ChaChaPoly1305 scheme. AES could offer better performance due its hardware
support through the AES-NI extension to the x86 instruction set. However,
ChaChaPoly1305 allows for high performance in software implementations and
does not rely on the instructions provided by AES-NI for fast encryption and
decryption.

Hermod: A Secure File Transfer Protocol using Noise 27

Close

Authentication
and key

exchange

Request

Payload

Figure 4.1: Overview over the Hermod protocol.

Hermod uses the BLAKE2s hash algorithm as a cryptographic hash function.
BLAKE2s offers 256 bits of output and excellent performance on 32-bit architec-
tures. Its big brother BLAKE2b is another algorithm that would suite the Hermod
well; it offers 512 bits of output but comes with a decline in performance on non
64-bit architectures. One of the goals for Hermod is to not be bound to any spe-
cific domain and architecture thus making BLAKE2s a better choice, allowing for
better performance on embedded systems with 32-bit CPU architectures.

For elliptic-curve Diffie-Hellman, Hermod uses the Curve25519 algorithm. The
Curve488 algorithm is also supported by Noise and offers more bits of security by
sacrificing some performance. However, Curve25519’s level of security is still high
and seems to be the recommended algorithm [21].

4.2.3 Noise Pattern

Hermod utilizes the KK Noise pattern consisting of a pre-shared static key and
an ephemeral key for both the client and the server [25].

The Noise Explorer shows that after a successful handshake the KK pattern
ensures that the data transmitted is provided with sender and receiver authenti-
cation, message secrecy and strong forward secrecy [19].

28 Hermod: A Secure File Transfer Protocol using Noise

Authentication and Key Exchange Handshake

The handshake between the client and server is initialized by the client sending an
initialization message containing its identification token and an ephemeral public
key. The receiver then performs the first step in the Noise pattern and responds by
sending a response message containing the server’s ephemeral public key. Both the
initiator and receiver can now complete the calculations required by the pattern
for deriving a session key and move into the transport mode. An overview of the
handshake can be seen in Figure 4.2.

ID-Token
Ephemeral public key

Ephemeral public key

Figure 4.2: Overview over the Hermod authentication and key ex-
change.

4.2.4 Transport Layer

The data transmitted by the Hermod protocol after a successful handshake is
protected by AEAD encryption from the ChaChaPoly1305 algorithm. By using
Authenticated Encryption with Associated Data, the transmitted data are pro-
vided with confidentiality, data integrity and authentication. The communication
can only be decrypted by an attacker with knowledge about the ephemeral private
keys and that at the same time impersonates the responder.

In order to add another layer of protection and to minimize the impact of an
attacker getting knowledge about the session key, a new session key for encryption
is generated for each gigabyte of data sent.

Messages

Data is sent between the client and the server as messages. The messages consist
of a type, a length field and a payload. This allows the receiver to ensure that it
received expected data by just checking the message type. The messages sent by
Hermod can be seen in Table 4.1 on Page 29.

Hermod: A Secure File Transfer Protocol using Noise 29

Message Type Sender Description
Init Client Initialize a handshake
Response Server Respond to a handshake Init message
Request Client Request to upload or download a file
Payload Both The contained data is file content
Metadata Server Metadata about the file that will be trans-

ferred to the client
EOF Both Signals end of file
Error Both Signals an error
Close Client Close the connection
Okay Both Signal that all is ok
Rekey Both Signal that a new encryption key should

be generated
Unknown Internal Used internally if the message type does

not correspond to any of the above types

Table 4.1: Table over the messages sent by the Hermod client and
server

4.2.5 File Transfer

As Hermod is a secure file transfer protocol, the central part of the protocol is the
uploading and downloading of files. In order for a client to upload or download
a file to or from the server, a request is sent to the server as seen in Figure 4.3.
The request can either be an upload request, which means that the client wants
to upload a file, or a download request in which case the client wants to download
a file from the server. A Hermod session can consist of multiple requests, sent
synchronously, in order to facilitate the need to upload or download multiple files.

File content

Source path
Destination path

Method

Figure 4.3: Overview over how requests are sent.

For uploads, the file content is sent directly to the server without any overhead.

30 Hermod: A Secure File Transfer Protocol using Noise

For downloads a metadata message is sent before the file content. This allows the
client to get knowledge about if the requested path is a directory or a file and its
size. The format could easily be extended to support sending file permissions and
other meta data of interest.

4.2.6 Client Data

The client maintains a directory, known_servers, that contains a file for each
server it trusts. The file name is an alias for the server and is chosen by the user
at creation. In the file the servers host name or IP address is found together with
the client’s static key pair for that server, its identification token and the server’s
public key. If the client tries to connect to a server, not previously known or if the
information mismatches, the connection attempt will be stopped.

The id token serves as identification for the client when it connects to a server
and allows the server to find the corresponding public static key. The token is a
32-bit random string that is generated at the same time as the public static key for
the client. Both the identification token and the keys are stored Base64 encoded.

Listing 4.1 showcases what a server entry, stored in known_servers, can look
like.

Hostname : 1 2 7 . 0 . 0 . 1 : 4 4 4 4
PublicKey : 5EMaAeNeqX+o1lHEhL2LsJKWM/Ee9AWIH1gFhYrpX1A=
PrivateKey : RUjOZYhmJa2DMsY3ukFGNpqGAqI2PuRVb2bjuwXTOMo=
IdToken : wrmcv3lFUVQ=
ServerKey : hP6bUrXjogziTJJZ0TOFjLWdyFjwoNpjq+4JGI1CkHs=

Listing 4.1: Example of a client file.

4.2.7 Server Data

The server maintains a file, authorized_clients, that contains clients that are au-
thorized to establish a connection. For each client, the client’s id token and public
static key is stored. In addition to the authorized_clients file the server maintains
a file for its public static key, server_key.pub and one file for its private static key,
server_key. All keys are encoded using Base64.

If a client connects and its id token it is not found in the authorized_clients
file, the connection will be closed. In addition, the handshake will fail if the static
key provided does not match the key stored together with the id token.

dea2b412 :AAAAC3NzaC1lZDI1NTE5AAAAIB7U . . .
dea2b413 :BAAAC3NzaC1lZDI1NTE5AAAAIB7U . . .
dea2b414 :CAAAC3NzaC1lZDI1NTE5AAAAIB7U . . .

Listing 4.2: Example of a server file.

Listing 4.2 shows an example of how a server’s authorized_clients file can look like.
The file contains authorized clients. Each line corresponds to an identification
token for a client and its public static key.

Hermod: A Secure File Transfer Protocol using Noise 31

4.3 Key generation and Sharing

In order to securely generate an identification token for the client and the static
key pair for both the server and the client, a command line interface is provided.
For the server, the application will generate the static key pair and store the keys
in the correct place. For the client, the application will generate a new static key
pair and a new identification token. The keys and the identification token will
then be stored in a file together with the hostname or IP address of the server.
The file name will be the alias for the server. The user will then have to manually
distribute the credentials to the server or the clients that will need access.

32 Hermod: A Secure File Transfer Protocol using Noise

Chapter5
Implementation

In addition to the specification of Hermod, this thesis provides a reference imple-
mentation. The implementation is written in the Rust programming language.
By providing a reference implementation it allows for testing and benchmarking
of the protocol, making a comparison to existing solutions easier.

The reference implementation allows for file transfer, key generation and key
sharing. Key sharing is supported to enable users to share their keys with a server
similar to ssh-copy-key, removing the need to do key management manually.

Rust

Rust is a recently released systems programming language, initially developed by
the Mozilla Foundation [32, 33]. The Rust programing language allows developers
to create fast and memory-efficient programs with no runtime and with no garbage
collector. Rust comes with a rich type system and with an ownership model
for memory allocations. The ownership model guarantees both memory-safety
and thread-safety at compile time, eliminating multiple classes of bugs during
compilation.

Both Microsoft and Google reports that more than 70% of all bugs in Windows
10 and Chrome are related to memory-safety [45, 7]. By using Rust (and its
ownership model) for the implementation, memory-safety bugs should be scarce,
ensuring the implementation is reliable and stable.

Rust also supports writing asynchronous applications, through its zero-cost
futures, which comes in handy when writing network applications. For a short
introduction to Rust async-await I recommend reading the blog post Async-await
on stable Rust [2]. Our reference implementation relies on the async-std library
for asynchronous I/O operations and for running tasks [3, 46].

5.1 Overview

5.1.1 Noise

Hermod uses the snow crate for the Noise implementation [10]. Snow supports
the latest revision of the Noise Protocol Framework [25].

33

34 Implementation

The snow crate provides us with a builder struct, allowing us to specify the
Noise Protocol and which keys we should use. This struct can then build a Hand-
shakeState object that will construct all the necessary messages our Noise pattern
needs for its handshake. After a successful handshake the HandshakeState can be
transformed into a TransportState that can encrypt and decrypt byte buffers.

After a TCP connection is established between the client and the server, an
Endpoint object is created. The Endpoint object wraps the TCP connection and a
TransportState object from snow. This gives us a simple API to use; we just need
to call the send method on the Endpoint object and pass in a buffer to encrypt.
The endpoint object will then encrypt the message using the TransportState ob-
ject before sending the message through the TCP connection. Receive is just as
simple: just call the recv method on the Endpoint which then reads from the TCP
connection, decrypts the received bytes read and passes a message back to the
caller.

5.1.2 Server

The server is written in an asynchronous fashion using Rust’s built in support
for async-await and supports both logging and running as a background daemon.
The central part of the server is the main loop listening for new incoming TCP
connections and spawning a new async task for each new connection. Each con-
nection then performs a handshake, using Noise with the help of the snow crate,
before entering its own listening loop that receives and handles incoming messages
from the client.

5.1.3 Client

The client is just as the server written in an asynchronous fashion. It initiates
a TCP connection to the server before authenticating itself to the server and
establishing a secure tunnel using Noise. The client object is initiated with a
config that contains a list of files, if it is an upload or download request and
information about which server to connect to.

5.1.4 Requests

Requests are structs that contain a source path, a destination path and a request
type, download or upload. The source path is the path of the file that is to be
uploaded or downloaded and the destination path points out where to store the
uploaded or downloaded file. The request type specifies if it is an upload or a
download that should take place.

The request structs can be serialized using the bincode format [8]. This ensures
that the structs take up minimal space when transmitted over the secure channel
while also allowing the structs to be easily extended in the future.

File data is transferred in chunks and the data is sent and received in order.

Chapter6
Result

This chapter presents the result from the thesis. Both security and performance
related results are presented.

6.1 Security Overview of Hermod

This section provides an insight into the security provided by Hermod.

6.1.1 Authentication

When using Hermod the authentication is based on elliptic-curve Diffie-Hellman,
which assumes that the private key is stored and handled securely. Should the
secret key of any involved party become compromised the party’s communication
can be forged.

As Hermod uses the KK pattern the first handshake message is vulnerable
to a key impersonation attack, since the initiator cannot be sure the message is
delivered to the correct recipient. It is only when the initiator receives a response
it can be reassured it is talking to the correct receiver.

Even though Noise can verify that a matching static key pair is used in the
handshake, the Hermod server must still decide on whether or not the key should
be allowed access. This is why a random 32-bits identification token is included
in the handshake. The connecting client must provide a matching token and key
pair to the server for a successful authentication. If the identification is unknown
to the server, the client is not allowed access.

If the token and the key or the hostname and the key does not match the
authentication must fail.

6.1.2 Confidentiality

The Hermod protocol provides confidentiality by using AEAD, more specifically is
uses the ChaChaPoly1305 algorithm. This assures that packets arrive encrypted,
integrity protected and authenticated.

A goal of the Noise Protocol Framework is to ensure that encrypted data being
sent should be indistinguishable from random noise. An attacker should not be
able to draw any conclusions about the plaintext sent through the secure tunnel

35

36 Result

by eavesdropping on a file transfer. Due to the fact that messages are not padded
when sent, a passive attacker could gain knowledge about message length.

After a successful handshake, the KK pattern ensures that the following en-
crypted data is provided message secrecy and strong forward secrecy. As long
as the ephemeral private keys of both the client and the server stay private, the
encrypted data cannot be decrypted.

6.1.3 Data Integrity

By using the ChaChaPoly1305 algorithm for AEAD we gain both encryption and
data integrity in one step. The Poly1305 algorithm provides authentication and
integrity protection by calculating a 128-bits tag over the ciphertext. When de-
crypting the received message, the message is first checked by the Poly1306 algo-
rithm and if the tags do not match, the message can be discarded. This ensures
that any message that gets tampered with or manipulated in any other way, will
not be accepted.

6.1.4 Trust

As with all protocols using asymmetric cryptography a certain level of trust is
needed. Both involved parties must take necessary precautions in order to ensure
that their private keys stay secure.

In Hermod it is also vital that the client’s token is stored securely and that
the client’s known_servers and the server’s authorized_clients file is not tampered
with. Any manipulation of this file would either allow an attack or render no one
available to connect.

6.1.5 Replay and Key Reuse

Since the protocol uses ephemeral keys, packets from one session cannot be re-
played in a later session. In order to replay a handshake, an attacker must have
access to the responder’s static private key.

If the ephemeral keys are reused this would come with catastrophic conse-
quences. The patterns’ validity rules do not allow for patterns that reuse ephemeral
keys. Should keys be reused anyway during the communication an attacker could
gain knowledge about the data that is being sent.

6.1.6 Identity Hiding

The identification token is sent in plain text in the handshake initiation message.
This means an attacker eavesdropping on the communication gets full knowledge
about a client connecting to a server. Since the client uses a unique identification
token for every server, an attacker gets no knowledge if the same client talks to
different servers.

Result 37

6.1.7 Configuration

With Hermod there is little need for configuration to have a secure system. Hermod
removes the need for disabling insecure algorithms and authentication methods.

As Hermod uses public static keys combined with an identification token for
client authentication it is important that they are stored and distributed securely.
Should an attacker get access to both the key and the token they get full access
to the server.

For server authentication the server’s public key is used combined with the
hostname. Just as with the client’s credentials it is important that the server’s
credentials are handled securely when it comes to storage and distribution.

6.2 Security comparison between Hermod and SSH/SFTP

This section aims to compare the security properties of Hermod with those of
SSH/SFTP.

From the table below we can observer that Hermod and SSH/SFTP comes
with similar security properties with some minor differences. The protocols differs
in which algorithms are supported for ensuring Forward Secrecy and in how the
protocols provide data confidentiality and integrity. They also differ in how new
or unknown keys are handled and in the size of their cipher suite.

Hermod:

• Public key Authentication

• Forward Secrecy

– ECDH

• Data Confidentiality & Integrity

– AEAD

• No ‘Trust on first use’

• Minimal cipher suite

SSH/SFTP:

• Public key Authentication

• Forward Secrecy

– DH or ECDH

• Data Confidentiality & Integrity

– Encryption + MAC

• No ‘Trust on first use’

• Large cipher suite

6.3 Performance

This section will provide some insight into the performance of Hermod and how
it relates to SFTP. Both transfer times and data sent by the protocols will be
looked on.

6.3.1 Transfer time

Setup

The tests are done between two lxd containers running on an AMD Ryzen 2700x
CPU. The times are measured using the hyperfine tool, which provides us with

38 Result

statistical analysis over the execution time from multiple runs [9]. Hyperfine runs
the benchmark a minimum of 10 times or until it can provide an accurate result
from a statistical standpoint.

When testing the transfer times four scenarios are used. The four scenarios
are presented below.

1. Sending a file with size 10GB

2. Sending a file with size 1GB

3. Sending a file with size 500MB

4. Sending a file with size 10KB

5. Sending the Hermod source directory, 18 files with sizes ranging from 331
bytes to 21K for a total of 108KB.

In order to get a better understanding of how Hermod compares to SFTP when
it comes to performance it is benchmarked against both scp and sftp. Both scp and
sftp uses the Secure File Transfer Protocol but provide two different interfaces for
it, with sftp offering a more interactive interface. By including both scp and sftp
a deeper understanding of how different interfaces can affect the performance of a
protocol is reached. Both scp and sftp used the chacha20-poly1305@openssh.com
extension for encryption.

Result

The data provided by hyperfine after running the benchmarks is presented in
Table 6.1 on Page 39. The result can also be seen in Figure 6.1 on Page 39 for
larger files and Figure 6.2 on Page 40 for smaller files.

When looking at the performance of Hermod relative to SFTP, we can quickly
see that when transmitting small files Hermod outperforms SFTP with a factor
close to 25 When we increase the file size to 500MB, 1GB and 10GB the gap
between Hermod and scp closes somewhat, but Hermod is still comfortably ahead
when looking at the average times.

The one result that stands out, is the result from scp for the 10GB file. The
standard deviation for scp is much larger and so is its maximum time compared
to Hermod and sftp. This can probably be attributed to some outer disturbance,
especially as the minimum and the average time does not stand out compared
to the other applications. SCP even has the best minimum time of the three
applications, this further points to that its average time is skewed by a few round
in which the system was affected by some outer disturbance.

Result 39

Application File Mean Standard deviation Min Max
Hermod 10G 41.94 0.94 40.45 43.49
Hermod 1G 4.34 1.09 3.94 7.44
Hermod 500M 1.94 0.01 1.92 1.96
Hermod 10K 0.01 0.0 0.01 0.02
Hermod Hermod source 0.02 0.0 0.02 0.03
scp 10G 47.7 11.61 39.51 72.31
scp 1G 4.65 0.98 4.07 7.38
scp 500M 2.46 0.09 2.39 2.68
scp 10K 0.55 0.02 0.52 0.57
scp Hermod source 0.54 0.02 0.52 0.59
sftp 10G 45.07 1.44 42.79 47.83
sftp 1G 5.2 0.72 4.88 7.22
sftp 500M 2.77 0.24 2.62 3.43
sftp 10K 0.54 0.03 0.52 0.58
sftp Hermod source 0.55 0.02 0.53 0.58

Table 6.1: Average execution time for the benchmark, as well as the
standard deviation, the minimum and maximum execution time,
as reported by Hyperfine.

Figure 6.1: Comparison over average transfer times for large files in
seconds.

40 Result

Figure 6.2: Comparison over average transfer times for small files
in seconds.

6.3.2 Data sent

In Table 6.2 and Table 6.3 the number of packets and bytes sent when transferring
two different files are shown. This gives a good view of the overhead added by
Hermod and SFTP when it comes to transferring files. As for the transfer times
benchmark, both the scp and the sftp applications are included when looking at
SFTP.

The number of bytes and the number of packages sent are captured using
tcpdump.

Program: Hermod scp sftp
File size in bytes: 1000 1000 1000
Packets sent: 9 34 38
Packets received: 8 26 27
Packets total: 17 60 65
Bytes sent: 1648 6017 6401
Bytes received: 493 4485 4897
Bytes total: 2141 10502 11298

Table 6.2: Comparison of packets and bytes sent when uploading a
file with 1000 bytes.

Result 41

Program: Hermod scp sftp
File size in bytes: 100000 100000 100000
Packets sent: 16 103 111
Packets received: 12 57 52
Packets total: 28 160 163
Bytes sent: 101031 108785 109753
Bytes received: 701 6133 6383
Bytes total: 101732 114918 116146

Table 6.3: Comparison of packets and bytes sent when uploading a
file with 10000 bytes.

42 Result

Chapter7
Discussion

This chapter will evaluate and analyze the specification of the Hermod secure file
transfer protocol. We will also discuss building protocols using Nosie and the
reference implementation. The focus will be on how Hermod compares to SFTP
when it comes to security and performance, and the benefits of using the Noise
Protocol Framework.

7.1 Noise

The Noise Protocol Framework has proven itself to be very useful when designing
Hermod. Instead of designing a state-machine for authentication and key deriva-
tion we have been able to focus on choosing a Noise pattern that fits Hermods
security needs.

When using Noise it is important to remember that the authentication that is
done when using a pattern with static keys only verifies that the party possesses
the corresponding private key. For user authentication it is important for the
protocol to include some other way of identification to ensure that the static key
is allowed to connect.

The Noise patterns make it easy to find a pattern that fits your needs when
creating a new protocol. As each pattern comes with its own set of payload security
properties and identity hiding, it is important that you choose the correct pattern.
It is also important to understand the implications of using the chosen pattern
and what security properties it comes with. Choosing the wrong pattern can lead
to devastating consequences, depending on the use case.

Due to the small and focused scope of Noise, it is very easy to incorporate it
when creating a new protocol. Noise gives you a way of creating a secure channel
and encrypts and decrypts the data provided. The developer is still in charge over
implementing user authentication and for sending and receiving packets. The fact
that Noise operates on raw byte buffers makes it "message type" agnostic, allowing
the developers to decide what kind of message format should be used, e.g. JSON.

Another huge benefit of using Noise when creating new protocols is that all
protocols that use Noises have the same process for authentication and key ex-
change. This speed up the review process of a new protocol as focus can be on
ensuring that the correct Noise pattern is being used depending on the security

43

44 Discussion

level wanted. Noise removes the need for understanding and reviewing a new pro-
cess or state machine for authentication and key negotiation for each new protocol.
The Noise Protocol Framework also facilitates the implementation of a protocol.
If a verified Noise implementation is used, we can be sure that the authentication
and key exchange is done securely and correctly.

7.2 Security

When comparing Hermod with SFTP, both protocols provide similar security prop-
erties. Both protocols provide confidentiality, data integrity and authentication for
the data that is sent through the secure tunnel. In addition, both protocols gen-
erate session keys with strong or perfect forward secrecy, ensuring that past file
transfer sessions stay secure if the private keys should be compromised.

The main difference when it comes to the security is the absence of configura-
tion needed in order to get a secure Hermod client and server.

7.2.1 Credentials

Both the server and the client rely on the credentials of the other party being
stored securely. Should an attacker gain access to the client’s credentials the
attacker would be able to fetch files from an unknowing server. This is a problem
that can be found in SSH as well.

A potential solution to this problem would be to use some form of two-factor
authentication using data that is not stored on the client’s machine. This would
however make the application harder to use in scripts and increase the complexity
of the protocol.

As Hermod is using static keys in combination with an identification token
from the client for authentication and key derivation we cannot completely get
away from storing credentials for the clients and server. In SSH, the keys can
be optionally encrypted for added protection. As this does not affect the protocol
itself, it is better to leave the decision on how to securely store the keys to each act
of implementation. By only specifying the format, developers are free to choose
their own method of storing the credentials when implementing the protocol. This
allows the credentials to be stored in clear text or encrypted on a disk, smart card
or USB drive.

7.2.2 Configuration

A goal for Hermod was to remove the need for extensive configuration when set-
ting up a new client or server. In comparison to SFTP, a user does not need to
worry about enabling secure ciphers and options while disabling the insecure ones.
Hermod provides no way for the user to (miss-) configure a system and aims to
provide sane ciphers options by default.

In Hermod the only configuration needed for the server is to generate a static
key pair and for the client to generate a static key pair and an identification token
for each server it wants to conduct file transfers with. There is no need to specify
which algorithms to use, what kind of authentication methods are as in SSH. Users

Discussion 45

are not exposed to or forced to interact with any settings that affect the security
of Hermod. Another benefit is that less background knowledge is needed to set up
a secure system.

The decision to remove most of the configuration found in SSH and SFTP
allows Hermod to support fewer ciphers, making the attack vector smaller. The
support for fewer configuration options should also make the implementation sim-
pler and by extension easier to review and verify. A protocol with lots of config-
uration options opens itself up to segregation as different implementations could
support only part of all the options. This could make different implementations
incompatible with each other. Creating a protocol that is easy to both implement
and review allows for faster adoption as there are less edge cases to handle and
implement.

When designing a new protocol or application there is a fine line between being
configurable, customizable and hard to use. Providing the user with the option
to configure and customize an application for its use case can be a good thing.
Crossing the fine line towards being hard to use when designing secure protocols
and applications can have devastating consequences. Users could for example
configure the service to use insecure ciphers or allow access to unwanted parties.
Increasing the number of options available for configuration and customization also
increases the number of edge cases and potential bugs that need to be handled,
thereby increasing the specification and implementation.

7.3 Implementation

The reference implementation relies on Rust’s built in support for asynchronous
programming. This should allow for a better hardware utilization at the cost
of some added latency. In order to handle incoming connections not only asyn-
chronously but also in parallel, a multi-threaded asynchronous runtime is used.
Rust’s support for asynchronous programming is still quite new which in return
makes the surrounding ecosystem and libraries new. This means that there is still
a lack of knowledge of when asynchronous programming is preferable over more
traditional multi-threading. As we are implementing a file transfer protocol, we
should be mostly IO-bound, which should mean that asynchronous programming
should work just fine. It is also a trade-off between chasing an efficient implemen-
tation and minimizing the latency for the file transfers.

As our implementation targets Linux, there is new interesting work being done
that adds support for high-performance asynchronous I/O to the Linux Kernel.
The new interface, io_uring, allows for asynchronous buffers I/O and could offer
an improvement over the current I/O API. The interface is however quite new,
added in kernel 5.5 and 5.6, which means that we would either limit ourselves to
users with the latest kernel or we would increase the size of the implementation and
increase the code base. Due to the fact that io_uring is still new, there is still an
uncertainty as to how big of an improvement the new interface will bring and what
bugs and quirks exist. As Hermod is a file transfer protocol, any improvements to
doing I/O operations would indirectly benefit our protocol.

46 Discussion

7.4 Performance

The fact that the gap between Hermod and scp/sftp decreases as the file size
grows, can probably be attributed to the fact that the overhead matters less the
greater the file size is. As we can see in Tables 6.2 and 6.3, the overhead from
Hermod is much lower compared to SFTP for smaller files. When the file size
increases, the impact the protocols overhead has decreased. When the overhead
constitutes smaller percentages of the transmitted data, the difference between the
various protocols and applications should become smaller, which we can observe
in Figure 6.1 and Figure 6.2.

As SFTP is an older protocol, it has had more time for optimizations com-
pared to Hermod, which should mean that the performance of Hermod can be
improved on. While the overhead from the handshake cannot be removed or op-
timized away, the file transfer and the reading and writing to files can probably
be better optimized in Hermod. Analyzing the performance of Hermod and un-
derstanding where it spends time could lead to improvements in the performance
moving forward.

7.5 Future Work

Since the latest release of the Noise Protocol Framework a new hash algorithm
from the Blake family has been released. The new algorithm, Blake3 [15], offers
increased performance and comparable security to the Blake2 algorithms [15].
A huge part of the increased performance comes from the fact that there is a
significant reduction in the hashing rounds in Blake3 compared to Blake2. This is
quite controversial and needs more research but Blake3 could be a good addition to
Noise, especially as it could remove the need for users of Blake2 to choose between
using a 32-bit or 64-bit version of Blake2.

Performance gains in cryptographic algorithms is always appreciated as it
would lower the latency and speed up the file transfers, especially for larger files
sizes. However, performance gains should not jeopardize the security the algorithm
provides. Another benefit of using Blake3 instead of Blake2, is that in Blak3 the
creators have been able to remove the need for a separate implementation for 32-
bit or 64-bit platforms. This makes the algorithm easier to use in libraries and
developers do not need to sacrifice one platform.

Hermod would also benefit from secure credentials distribution. Currently
credentials are distributed manually; by extending the protocol with an API for
distributing the credentials users could share the credentials with a trusted server
without needing physical access or using a third-party application.

Chapter8
Conclusions

In this thesis a proof-of-concept for a new protocol for secure file transfer was
created. The new protocol tries to learn from and mitigate some of the drawbacks
found in SSH and SFTP.

In order for us to create a new protocol for secure file transfer that rivals
SFTP we first looked into how SSH works and what security it provides SFTP.
We followed that up with an introduction of the Noise Protocol Framework and
looked at the security Noise provides. After we had introduced Noise, we created
a specification for our new protocol and created a reference implementation for
testing.

With Hermod we have managed to provide a file transfer protocol that is
small, simple, secure and comes with little overhead. The small overhead that
Hermod comes with, allows it to really shine for smaller files while still providing
an improvement over existing solutions for larger files.

By using the Noise Protocol Framework in Hermod, there is no need to create
a new method for public key authentication and key exchange. This allowed us
to spend more time focusing on the file transfer and the implementation which
simplified and speeded up the process. Throughout this thesis we have managed
to show that even though the Noise Protocol Framework is still young, it has
great potential and provides a lot of benefits when working with or developing
cryptographic protocols and secure tunnels.

47

48 Conclusions

Bibliography

[1] Aspera. Last Accessed 2020-04-30. url: https://www.ibm.com/
products/aspera.

[2] Async-await on stable Rust! Last Accessed 2020-04-29. url: https:
//blog.rust-lang.org/2019/11/07/Async-await-stable.html.

[3] async-std. Last Accessed 2020-04-29. url: https://async.rs/.

[4] D. Bider. Use of RSA Keys with SHA-256 and SHA-512 in the Secure
Shell (SSH) Protocol. RFC 8332. RFC Editor, Mar. 2018.

[5] BOLT 8: Encrypted And Authenticated Transport. Last Accessed 2020-
05-04. url: https://github.com/lightningnetwork/lightning-
rfc/blob/master/08-transport.md.

[6] Chapter 6 Introduction to Public keycryptography. Jan. 16, 2020. url:
https : / / www . eit . lth . se / fileadmin / eit / courses / edi051 /
lecture_notes/LN6a.pdf.

[7] Catalin Cimpanu. Chrome: 70% of all security bugs are memory safety
issues. Last accessed 2020-05-27. url: https://www.zdnet.com/
article/chrome-70-of-all-security-bugs-are-memory-safety-
issues/.

[8] Crate bincode. Last Accessed 2020-04-29. url: https://docs.rs/
bincode/1.2.1/bincode/.

[9] Crate hyperfine. Last Accessed 2020-04-29. url: https://crates.
io/crates/hyperfine.

[10] Crate snow. Last Accessed 2020-04-29. url: https://docs.rs/snow/
0.7.0-alpha4/snow/index.html.

[11] Richard Silverman Daniel J.Barret. SSH The Secure SHell: The Defini-
tive Guile. O’Reilly, 2001. isbn: 0596000111.

49

50 BIBLIOGRAPHY

[12] Jason A. Donenfeld. WireGuard: Next Generation Kernel Network
Tunnel. Whitepaper. Wireguard. url: https://www.wireguard.
com/papers/wireguard.pdf.

[13] Niels Ferguson et al. Cryptography engineering: design principles and
practical applications. Wiley, 2010. isbn: 9780470474242.

[14] P. Ford-Hutchinson. Securing FTP with TLS. RFC 4217. http://
www.rfc-editor.org/rfc/rfc4217.txt. RFC Editor, Oct. 2005.
url: http://www.rfc-editor.org/rfc/rfc4217.txt.

[15] Github: Blake3. Last Accessed 2020-05-11. url: https://github.
com/BLAKE3-team/BLAKE3/.

[16] Peter Gutmann. Do Users Verify SSH Keys? Tech. rep. Aug. 2011.
url: https://www.usenix.org/system/files/login/articles/
105484-Gutmann.pdf.

[17] Mathias Hall-Andersen et al. “NQUIC: Noise-Based QUIC Packet
Protection”. In: Proceedings of the Workshop on the Evolution, Perfor-
mance, and Interoperability of QUIC. EPIQ’18. Heraklion, Greece: As-
sociation for Computing Machinery, 2018, pp. 22–28. isbn: 9781450360821.
doi: 10.1145/3284850.3284854. url: https://doi.org/10.1145/
3284850.3284854.

[18] M. Thomson J Iyengar. QUIC: A UDP-BAsed Multiplexed and Scure
Transport draft-ieft-quic-transport-27. RFC. RFC Editor, Feb. 2020.
url: https://tools.ietf.org/html/draft-ietf-quic-transport-
27.

[19] KK Handshake Pattern Analysis. Last Accessed 2020-05-07. url: https:
//noiseexplorer.com/patterns/KK.

[20] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan. “Noise
Explorer: Fully Automated Modeling and Verification for Arbitrary
Noise Protocols.” In: 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), Security and Privacy (EuroS&P), 2019 IEEE
European Symposium on (2019), pp. 356–370. issn: 978-1-7281-1148-
3. url: http://ludwig.lub.lu.se/login?url=https://search-
ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&db=
edseee&AN=edseee.8806757%5C&site=eds-live%5C&scope=site.

[21] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security.
RFC 7748. RFC Editor, Jan. 2016.

[22] Noise Explorer. Last Accessed 2020-05-05. url: https://noiseexplorer.
com/.

[23] Noise Protocol Framework. Last Accessed 2020-01-16. url: http://
noiseprotocol.org/.

BIBLIOGRAPHY 51

[24] NTCP 2. Last Accessed 2020-05-03. url: https://geti2p.net/
spec/ntcp2.

[25] Trevor Perrin. The Noise Protocol Framework. Reversion 34. July
2018. url: http://noiseprotocol.org/noise.html.

[26] Public Key authentication for SSH. Last Accessed 2020-05-03. url:
https://www.ssh.com/ssh/public-key-authentication.

[27] rcp. Last Accessed 2020-05-03. url: https://www.ssh.com/ssh/rsh.

[28] E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. RFC Editor, Aug. 2018.

[29] E. Rescorla and B. Korver. Guidelines for Writing RFC Text on Se-
curity Considerations. BCP 72. http : / / www . rfc - editor . org /
rfc/rfc3552.txt. RFC Editor, July 2003. url: http://www.rfc-
editor.org/rfc/rfc3552.txt.

[30] rlogin. Last Accessed 2020-05-03. url: https://www.ssh.com/ssh/
rlogin.

[31] rsh. Last Accessed 2020-05-03. url: https://www.ssh.com/ssh/rcp.

[32] Rust. Last Accessed 2020-04-29. url: www.rust-lang.org.

[33] Rust language. Last Accessed 2020-04-29. url: https://research.
mozilla.org/rust/.

[34] Bruce Schneier. Applied cryptography : protocols, algorithms, and source
code in C. 5th ed. Wiley, 1996. isbn: 0-8493-8523-7.

[35] Session Key. Last Accessed 2020-05-03. url: https://www.ssh.com/
ssh/session-key.

[36] SFTP – SSH Secure File Transfer Protocol. Last Accessed 2020-05-25.
url: https://www.ssh.com/ssh/sftp/.

[37] Nigel P. Smar. Algorithms, Key Size and Protocols Report (2018).
Tech. rep., 4g. url: https://www.ecrypt.eu.org/csa/documents/
D5.4-FinalAlgKeySizeProt.pdf.

[38] Nigel P. Smart. Cryptography : an introduction. 3rd ed. McGraw-Hill,
2003. isbn: 0077099877.

[39] SSH (Secure Shell). Last Accessed 2020-04-30. url: https://www.
ssh.com/ssh/.

[40] SSH Keys. Last Accessed 2020-05-25. url: https://www.ssh.com/
ssh/key/.

[41] SSH(1). Last Accessed 2020-05-03. url: https://man.openbsd.org/
ssh.

52 BIBLIOGRAPHY

[42] Marc Stevens et al. Announcing the first SHA1 collision. Feb. 2017.
url: https://security.googleblog.com/2017/02/announcing-
first-sha1-collision.html.

[43] The Double Ratchet Algorithm. May 25, 2020. url: https://signal.
org/docs/specifications/doubleratchet/.

[44] The fasp solution. Last Accessed 2020-04-30. url: https://downloads.
asperasoft.com/en/technology/fasp_solution_3/the_fasp_
solution_3.

[45] Liam Tung. Microsoft: Here’s how we’re killing a class of memory
security bugs in Windows 10. Last accessed 2020-05-27. url: https:
//www.zdnet.com/article/microsoft-heres-how-were-killing-
a-class-of-memory-security-bugs-in-windows-10/.

[46] Welcome to async-std. Last Accessed 2020-04-29. url: https://book.
async.rs/overview/async-std.html.

[47] Andrew Whalley. SHA-1 Certificates in Chrome. Nov. 2016. url:
https://security.googleblog.com/2016/11/sha-1-certificates-
in-chrome.html.

[48] WhatsApp Encryption Overview. Whitepaper. Wireguard, 2017. url:
https://scontent.whatsapp.net/v/t61.22868-34/68135620_
760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-
Whitepaper.pdf?_nc_sid=41cc27&_nc_ohc=uyKLZq9R_nQAX8JcADy&
_nc_ht=scontent.whatsapp.net&oh=4df2f77787eb45c6894233cc1d121b45&
oe=5EB1D5D3.

[49] T. Ylonen and S. Lethinen. SSH FIle Transfer Protocol draft-ietf-
secsh-filexfer-02. RFC. RFC Editor, Oct. 2001.

[50] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication
Protocol. RFC 4252. http://www.rfc-editor.org/rfc/rfc4252.
txt. RFC Editor, Jan. 2006. url: http://www.rfc-editor.org/
rfc/rfc4252.txt.

[51] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Pro-
tocol. RFC 4254. http://www.rfc-editor.org/rfc/rfc4254.txt.
RFC Editor, Jan. 2006. url: http://www.rfc-editor.org/rfc/
rfc4254.txt.

[52] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architec-
ture. RFC 4251. http://www.rfc-editor.org/rfc/rfc4251.txt.
RFC Editor, Jan. 2006. url: http://www.rfc-editor.org/rfc/
rfc4251.txt.

BIBLIOGRAPHY 53

[53] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer
Protocol. RFC 4253. http://www.rfc-editor.org/rfc/rfc4253.
txt. RFC Editor, Jan. 2006. url: http://www.rfc-editor.org/
rfc/rfc4253.txt.

54 BIBLIOGRAPHY

AppendixA
Source Code

The code for the reference implementation is hosted at github, https://github.
com/MarkusAkesson/Hermod.

55

