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Abstract

In this work the photoelectric effect is explored through simulations of the phase shift that

an IR-field can induce into an electron wave packet and the photoelectron distribution over

frequency components that is produced in the photoionization of an atom with a attosecond

pulses made of XUV photons. The IR-field is sent along two attosecond pulses made of XUV

photons towards a 3D momentum spectrometer were there is a gas that can be photoionized

and the photoelectrons can be measured. The IR-field gives a phase shift to an electron wave

packet (photoelectron). The XUV attosecond pulses can be Fourier transformed from time to

frequency domains enabling to know the temporal structure and the spectrum of light fields.

The kinetic energy distribution of the photoelectron is closely related to the XUV light field

distribution in the frequency domain (spectrum), by applying the Einstein equation. However

the intensity of the kinetic energy distribution follows the rules of quantum mechanics, and

not the rules of optics. This study shows that analogies can be done within the framework

of the strong field approximation.

The simulated photoelectron distribution over frequency components were simulated with

an IR-field with a wavelength of 820 nm, an intensity of 1012 W/cm2, a momentum of 1.9

·10−24 kg·m/s and a standard deviation of 0.3 PHz. The attosecond pulses made of XUV

photons were set to have a standard deviation of 30 PHz and a frequency of 100 PHz.

The separation between the attosecond pulses made of XUV photons was set to 1.3 fs.

The phase shifted attosecond pulses made of XUV photons were plotted in order to give a

picture of them. Then there Fourier transform was presented together with the phase shifts

that was put into each XUV attosecond photon pulse. In the case with two attosecond

pulses made of XUV photons the Fourier transform had to be shifted in time in order to

make the result reasonable. In the case of two attosecond pulses made of XUV photons

interesting patterns in the photoelectron distribution over frequency components occur. In

order to explore the photoelectron distributions deeper more phase shifts have to be used in

attosecond pulses made of XUV photons and then Fourier transformed. Thus giving more

photoelectron distributions that can be studied.
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1 Motivation

The phenomenon of photoionization was first discovered by the physicist Heinrich Rudolf

Hertz, in 1887. In 1905, Albert Einstein proposed an explanation to this phenomenon,

connecting the discovery of H.R. Hertz to the work of Max Planck. Later in 1916, the

physicist Robert Millikan performed the first experiment that could confirm the prediction

of A. Einstein by measuring the Planck constant, h, with photoionization [5]. With the

emergence of extreme ultraviolet (XUV) attosecond (10−18 s) pulses at the beginning of

the millennium, the possibility to control photoionization was envisioned. In recent years,

experiments made in Lund [6] achieved control over photoinization by combining the XUV

radiation with an Infra-Red (IR) laser beam.

Figure 1: Set-up used in the experiment referred to in this work. Before the wedge pair there
is a pulses-shaped electric field indicated, here IR-pulses are coming from the laser (0). (1)
Wedge pair which an Infra-red (IR) laser goes into. (2) Achromatic lens which focuses the
light. (3) High pressure jet of argon gas, where XUV attosecond pulses are generated. To
separate the XUV and IR fields, the beams are sent into (4) which also acts as a differential
pumping hole. After that an Al (aluminium) filter (5) is there to take completely away the
IR field. (6) Toroidal mirror which focuses the XUV attosecond pulses in the experimental
chamber where a 3D momentum spectrometer (8) is used to study the ionization of helium.
It is the photoionization in (8) that is simulated in this work but the IR-field is then let in
to (8) along with the XUV attosecond pulses. [6]
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Here is a short summary of the important parts shown in Fig.1, that is relevant for this

work:

• Before the wedge pair (1) there is a laser (0) sending a pulse in the IR-field (infra-red

electric field) into the experimental setup. Different values for this electric field will be

varied in the beginning of this work giving different phase shifts to an electron wave

packet.

• In (3) the attosecond pulses made of XUV photons are created and together with the

IR-field they can travel into the toroidal mirror (6) and be focused. Giving that in the

ray of light that is (7) there can be attosecond pulses made of XUV photons together

or not together with an IR-field (the IR-field can be filtered out).

• The electric field that is in (7) then travels into (8) where the attosecond pulses made

of XUV photons photoionize the gas that is in there. This process produces electrons

that can be phase shifted by the IR-field.

In the following figure three electron wave packets along with an IR-field is shown.

Figure 2: In this figure three electron wave packets together with an IR-field is shown. The
amplitude of the electron wave packets, EWPs, is different from the one for the IR-field to
point out that they are describing different particles.
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For different positions in time the EWP gets a phase shift corresponding to the amplitude

of the IR-field. The phase shift is calculated through a formula that will be presented later.

More importantly is that the EWP is created at the time when a XUV photon attosecond

pulse photoionize an atom. Having two XUV photon attosecond pulses with a separation

of 1.3 fs (which will be looked at later) would in the figure above correspond to having two

EWPs. Each EWP separated by 1.3 fs and each EWP at the same position in time as the

corresponding XUV photon attosecond pulse.

The process of photoionization and the electron wave packet picking up the phase shift

from the IR-field can be formulated as follows.

• Step 1: Atom + h·fXUV ⇒ Atomic Ion + Electron Wavepacket

• Step 2: Atomic Ion + Electron Wavepacket+ h·fIR ⇒

Atomic Ion + Phase modulated Electron Wavepacket

The XUV attosecond pulses originates from high-harmonic generation in gases using an

ultra-short near infra-red laser. Fig.1 illustrates this process, where the carrier-to-envelope

phase of the laser is adjusted (1) before being focused (2) into an argon gas jet (3). The XUV

radiation is spatially filtered from the Infrared laser at (4) and (5) and then refocused (6) in

the experimental chamber (8) where an electron spectrometer allows to study the interaction

of XUV attosecond pulses with an atomic target in a gas.

2 Theory

The formulas used in this report will be presented in this section. There will be subsections

to group the formulas in order to keep a better overview of them. The first section being

”Light field”.

2.1 Light field

Starting with some basic but important relations used through out the work. Through the

following formula the electric field is given.
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E(t) = − ∂

∂t
A(t) (1)

where E is the electric field only dependent on time t and A is the vector potential [1]. This

means that the vector potential is calculated through integrating the electric field, as follows.

A(t) = −
∫ t

O
E(t′)dt′ . (2)

Where O is a point in time where the primitive function to E(t′) is 0.

In this work the following formula relating the averaged intensity to the magnitude of the

electric field will be used.

I =
1

2
cε0E

2
0 ⇒ E0 =

√
2I

cε0
(3)

where c is the speed of light, ε0 is the permittivity of vacuum and E0 is the magnitude of the

electric field [1].

Below is the electric field of a train of pulses with the amplitude from Eq.3.

E(t) =

√
2I

cε0
·

n∑
j=1

ei(ωt+φj)e−
1
2
a2(t−jT )2

(4)

where n is the number of pulses, i is the imaginary unit, ω is the angular frequency, φj is the

phase shift for the j:th pulse, a = 1/σ where σ is the standard deviation and T is the time

between the pulses [4]. When using one pulse, φj and T could be set to 0.

For pulses that are separated in time, which is the case for the XUV attosecond pulses

used later in this work, the following would be the case extrapolating from Eq.4.

E(t) =

√
2I

cε0
·

n∑
j=1

ei(ω(t−jT )+φj)e−
1
2
a2(t−jT )2

(5)

In Fig.3 and Fig.4 some of the fundamental equations and electric fields used in this work

are presented as graphs.
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Figure 3: In this figure the vector potential that through Eq.1 gives the electric field and its
envelope and through Eq.3 gives the intensity. The electric pulse has a frequency of 100 PHz
(approximately a wavelength of 3 nm) and its inverse standard deviation from Eq.4 has been
set to 30 PHz. The electric pulse with these values will be used in the result section of this
work later.

Figure 4: In this figure an IR-filed and a XUV-filed both being pulses are shown. The
XUV-field is the same as the electric pulse in Fig.3 but three of them instead of one and the
IR-field has a wavelength of 820 nm and an inverse standard deviation of 0.5 PHz. The three
attosecond pulses made of XUV photons are separated in time with 1.3 fs.
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2.2 Electron wave-packet

An electron wave-packet is a way of describing an electron with a wave-packet. A wave-packet

is composed of more than one wave. The waves build up the wave-packet together through

superposition – also known as interference.

In this work XUV attosecond pulses will photoionize an atom and thus produce photo-

electrons which also can be thought of as electron wave packets because of the wave-particle

duality.

The following equation

i
∂

∂t
ψ(r̄, t) =

[
p̂2

2
+ Ā(t) · p̂+

Ā(t)2

2

]
ψ(r̄, t) (6)

has a solution called the Volkow wave which describes a free electron interacting with an

electric field. The Volkow wave is given by Eq.7.

ψV (r̄, t) =
1

(2π)3/2
e
i

[
q̄·r̄−

∫ t
0

(
q2

2
+Ā(t′)·q̄+ Ā(t′)2

2

)
dt′
]

(7)

where q̄ is a wave vector, r̄ is the spacial position as a vector, Ā is the vector potential and

p̂ is the momentum operator. [8]

2.3 Electron wave-packet phase modulation due to a laser field

When an atom or a molecule gets extra energy the electron can be emitted from the atom or

molecule. If the energy given to the atom during photoionization is higher than the ionization

potential, Ip, the electron gets free from the Coulomb field of the atom or molecule. The

energy is given from a photon with energy hf , where h is the Planck constant and f is the

frequency of the photon. The electrons kinetic energy is the difference between the energy

of the photon and the energy of the ionization potential, Ek = hf − Ip. The kinetic energy,

Ek, of the electron is connected to the electron velocity, v, as follow:

Ek =
mev

2

2
. (8)

where me is the rest mass of the electron. Introducing the momentum of an electron
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p = mev , (9)

and inserting in into Eq.8, it gives how the momentum depends on the kinetic energy:

p =
√

2Ekme . (10)

As discussed earlier, the electron will be influenced by a strong laser field, and will acquire a

phase shift, ΦIR, that is related to its travel in the oscillating electrical field[6]. This phase

shift can be calculated as follows:

ΦIR(p̄, t) = − e

me~

∫ ∞
t

p̄ · Ā(t′)dt′ (11)

where e is the electric charge of the electron, ~ is the reduced Planck constant divided by

p̄ is the momentum of the electron and Ā is the vector potential. This expression can be

simplified to a 1-dimensional problem in the case of linearly polarized light and the electron

emitted along this polarization axis.

An analytical expression can be found for this phase shift, in the case of a Gaussian pulse

∫ ∞
t

e−
1
2
a2t′2 cos(ωt′) dt′ = −e−

1
2
a2t2 sin (ωt) · 1

ω
+ 2

a2

ω2
t cos(ωt)e−

1
2
a2t2 . (12)

On the left-hand side of Eq.12 the exponent of e has a t′2 which can be changed to t′2n, where

n is an integer. This will give a new result on the right-hand side of Eq.12. The result will

start with the same term as in the right-hand side of Eq.12 except for the exponent of e.

Then there will be new terms which will all have a 1/ω of order two ( (1/ω)2 ) or higher.

The angular frequencies, ω, when using XUV are on the order of PHz. Which means that

the second term on the right-hand side in Eq.12 is on the order of 10−15 smaller than the

first term on the same side in Eq.12. This would lead to the following – for XUV – good

approximation up to 10−15.

∫ ∞
t

e−
1
2
a2t′2n cos(ωt′) dt′ ≈ −e−

1
2
a2t2n sin (ωt) · 1

ω
. (13)
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2.4 Goal - Time Frequency analysis

In this work the phase shift from an applied IR-field (infrared) was one part of what was

looked upon. This was to see how the phase shift varies over time but firstly the integrator

that was used in the code was investigated to see what error it had. The test of the integrator

was done through taking a function much like those that were used later for the phase shifts.

This function was then differentiated by hand and then integrated with the integrator. The

original function and the result of the integration was then plotted in one plot with the

difference between the two functions in a plot below the first plot, section 3.2 Calculation of

the phase modulation.

In the next step when plotting the phase shifts, parameters like wavelength, momentum

and intensity was varied in order to visualize how the phase shift is dependent on them.

Then the idea was to send in two XUV attosecond pulses. The XUV attosecond pulses

got each their own phase shift shaped like the phase shift from an IR-field induced into an

electron wave packet at the position that they were at with respect to the IR-filed. Through

photoionization these phase shifted XUV attosecond pulses produce photoelectrons. The

distribution of photoelectrons over frequency components was calculated through the Fourier

transform of the phase sifted XUV attosecond pulses.

A complex function f(t) can be defined as follows according to the Fourier theorem.

f(t) =

∫ ∞
−∞

F (ν)ei2πνtdν . (14)

Where F (ν) is the Fourier transform of f(t), ν is the frequency, i is the imaginary number

and t is time. [3]

The Fourier transform to f(t) can then be calculated to be as follows.

F (ν) =

∫ ∞
−∞

f(t)e−i2πνtdt . [3] (15)

The time spent on different parts of this project was the following. The first month was

spent on reading up on this field of physics, learning formulas and concepts important for

this project. During the next month the code was started on. It was understood that not

all integrators work equally good. Which resulted in the testing of the integrator which can
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be seen in the method section 3.1 Numerical integration. After that the phase shifts were

worked more upon. The resulting figures that were produced through the code for the phase

shifts are presented in the section 4 Results and Discussion. After that the phase shifts were

used in the XUV photon attosecond pulses and then Fourier transformed in order to show the

photoelectron distribution over frequency components which also can be seen in the section

4 Results and Discussion. While the phase shifts and Fourier transforms where looked at the

written part of the work was started. Which all together resulted in this work which in the

next section will be about the method.

3 Method

The phase shifts were used for 2 and 3 attosecond pulses made of XUV photons. For different

positions with respect to the IR-field the attosecond pulses made of XUV photons got different

phase shifts. They each had a separation of 1.3 fs between each other as they were put at

different positions again with respect to the IR-field. The attosecond pulses made of XUV

photons were thus separated in time and got the phase shifts at different times or positions

(they are the same quantity in the sense that the speed of light is c, the XUV-field and

IR-filed travel with the same speed). The phase shifted XUV photon attosecond pulses were

Fourier transformed in order to see the photoelectron distribution over frequency components

that they would create for each time if they were to interact through photoionization.

First the attosecond pulse made of XUV photons is presented in order to give a picture

of it. The phase shifts were also presented in order to illustrate what was coming. Then,

for both the 2 and 3 pulse cases, the electric field over time was plotted. In the end the

intensity of the Fourier transformed electric field (attosecond pulses made of XUV photons)

was plotted together with the phase shifts specific for those pulses.

3.1 Numerical integration

In order to check the integrator used to calculate the phase shifts a test function

E(t) = 2e−t
2

cos(10t) (16)
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was defined. Which corresponds to an electric field with an amplitude of 2 units of V/m, an

angular frequency of 1016 Hz since the time is measured in units of 10−15 s, fs.

The test function was differentiated and then through the integrator integrated. This

new function was plotted together with the original test function. The difference was plotted

in another plot. A difference suitable for this project was assumed to be achievable. It was

achieved with the code in 6.1 Code for Fig.5. The figures, Fig.5 and Fig.6, show the quality

of the numerical integrator used for the code in order to calculate the phase shifts and the

Fourier transforms.

3.2 Calculation of the phase modulation

In order to calculate the integral in Eq.11 the integrator in 6.1 Code for Fig.5 was used. In

the plots the envelope of the phase shifts and a color map of the phase shifts were plotted.

Thus giving a view over the smaller variations of the phase shift with the color map and a

bigger view independent of the smaller variations with the envelope.

All numerical values to evaluate the phase shifts were calculated using Eq.11 with the

following values for the constants.

e = 1.60218 · 10−19 C, me = 9.10939 · 10−31 kg, ~ =
6.62608 · 10−34 Js

2π

and c = 299792458 m/s .

4 Results and Discussion

4.1 Phase Modulation due to the external laser field

In the following plots in this section different parameters will be varied. If their value is not

stated in the figure or in the description of the figure, then the following values have been

used.
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Figure 5: Here is the result of a numerical integral that also shows the difference between
the real and the differentiated and then integrated version of the same function, Eq.16. The
limit where the primitive function to the differentiated function should be 0 has been set to
−π. The difference is around -1.034·10−4 with its exact value and variation shown in this
figure.

Figure 6: Here is the result of a numerical integral that also shows the difference between
the real and the differentiated and then integrated version of the same function, Eq.16. The
limit where the primitive function to the differentiated function should be 0 has been set to
−10 · π and is the limit used in the rest of the codes. The difference is in this case nearly
always 0.
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I = 1012 W/cm2, λ = 820 nm, pe = 1.9 · 10−24 kg ·m/s, n = 2. (17)

4.1.1 One pulse case

In the two figures below, Fig.7 and Fig.8, the phase shift is dependent on the momentum of

the electron according to Eq.11. The momentum was varied between (0 to 2)·10−24 kgm/s

because that had been done in a figure in the paper referred to in Fig.1, and time was varied

from -6 fs to 6 fs because that will include all the phase shifts.

Figure 7: In this figure the result from when the momentum of the electron and time has
been varied is presented. The integer n from Eq.13 has been set to 1. The inverse standard
deviation from Eq.4 has been set to a = 0.5 PHz. The envelope in the upper part of the graph
show how much the phase shift has been magnified. When the amplitude of the envelope is 1
the phase shift is what it would be without an envelope and if the amplitude of the envelope
is 0 the phase shift is also 0.
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Figure 8: In this figure the result from when the momentum of the electron and time has
been varied is presented. The integer n from Eq.13 has been set to 2. The inverse standard
deviation from Eq.4 has been set to a = 0.3 PHz.

In figure, Fig.9, the wavelength of the IR-field has been varied between 700 nm and 1.7

µm and the time has been varied between -6 fs and 6 fs.

In the next figure, Fig.10, how the phase shift varies with time is plotted with different

values for n. It gives an intuitive sense of why to choose n = 2. n = 1 is too spread out in

time and has a too smooth decrease in amplitude. n = 3 is too sharp thus it might be hard

to produce in a lab. n would correspond to how the IR-filed that is sent out from the laser

looks.
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Figure 9: In this figure the result from when the wavelength and time has been varied is
presented. For the left most colourbar, a), the intensity has been set to 1011 W/cm2. For
the colourbar in the middle, b), the intensity has been set to 5 · 1011 W/cm2. For the right
most colourbar, c), the intensity has been set to 1012 W/cm2. The intensities are set to
these values so that the high harmonic generation can happen which is important for the
experiments referred to in Fig.1. The inverse standard deviation from Eq.4 has been set to
0.1 PHz. We can see that for higher wavelengths there will be less fluctuations in the IR-field
which gives the phase shift in this figure. For the intensity it can be seen that a higher
intensity gives a bigger span between the biggest and the smallest phase shift.

Figure 10: In this figure a comparison between different values on the integer n from Eq.13
is presented. In the experiments the integer n = 2 is used. A value of 0.5 PHz has been used
for the inverse standard deviation a from Eq.4.
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4.1.2 A Pulse train composed of three pulses

In the following figure, Fig.11, the momentum of the electrons and time has been varied as

in Fig.8 but now for a Pulse train composed of three pulses. They have a separation of 2 fs

between each other.

Figure 11: In this figure the result from using the same values as in Fig.8 but for three pulses
is presented. One pulse is shifted with -2 fs, one pulse at 0 fs (the same as in Fig.8) and one
pulse shifted with +2 fs. The inverse standard deviation from Eq.4 has been set to a = 0.2
PHz. When the amplitude of the envelope is 1 the phase shift is what it would be without
an envelope and if the amplitude of the envelope is 0 the phase shift is also 0.

In the following figure, Fig.12, the wavelength and time has been varied for the same

situation as in Fig.11.
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Figure 12: In this figure the result for the same situation as in Fig.11 is presented but here
the wavelength and time has been varied. The inverse standard deviation from Eq.4 has been
set to a = 1.4 PHz. When the amplitude of the envelope is 1 the phase shift is what it would
be without an envelope and if the amplitude of the envelope is 0 the phase shift is also 0.

4.2 Temporal-Frequency analysis

This subsection will start with showing the XUV photon attosecond pulse in the following

figure, Fig.13, which will be used for the simulations.

Figure 13: In this figure the attosecond pulse made of XUV photons that will be used in the
following simulations is presented. It has a frequency of 100 PHz and its inverse standard
deviation from Eq.4 has been set to 30 PHz.
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In the following figure, Fig.14, the phase shifts used in this section are plotted.

Figure 14: In this figure the different phase shifts are plotted. ϕ2 and ϕ3 are both originating
from the phase shift in Fig.8 but with the momentum set to 1.9 ·10−24 kg·m/s and a separation
of 1.3 fs between each other since that is the separation between the XUV attosecond pulses.
Two differences are also plotted in order to see around what point the XUV attosecond pulses
should be symmetric.

4.2.1 Two attosecond pulses made of XUV photons

In figure, Fig.15, the first set of attosecond pulses made of XUV photons are plotted. It can

be seen that the pulse that is 1.3 fs in front of the other pulse gets the phase shift 1.3 fs

before the other pulse.

In the next figure, Fig.16, the Fourier transform of the electric field shown in Fig.15 has

been calculated. That Fourier transform has then been amplified according to Eq.3 and the

values from 17 are used.

In this paragraph I will clarify what has been done when plotting the following figure,

Fig.16. In Fig.15 the real part of the XUV attosecond pulses is plotted using the following

formula.

E(t) =

√
2I

cε0
· Re

(
n∑
j=1

ei(ω(t−jT )+φj)e−
1
2
a2(t−jT )2

)
(18)
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Figure 15: In this figure the first set of pulses are plotted over time, their separation is viewed
on the y-axis. The colours show the amplitude of the electric field that the photons represent.
I have used the same values as before.

Which is the real part of Eq.5 . This equation can be Fourier transformed according to Eq.15

giving the following.

EF (ν) =

√
2I

cε0
·
∫ ∞
−∞

Re

(
n∑
j=1

ei(ω(t−jT )+φj)e−
1
2
a2(t−jT )2

)
· e−i2πνtdt (19)

Where I have used 10·π instead of ∞. In Fig.5 and Fig.6 it can be seen why this is a good

approximation. The Fourier transformed electric field is now made into an intensity but

Eq.19 is complex and Eq.3 is only for real values. The left part in Eq.3 can be modified as

follows.

I =
1

2
cε0|E0|2 (20)

Where |E0|2 is the modulus square of the electric field. Now the electric field in Eq.19 can

be put in Eq.20 as follows giving the intensity of the Fourier transformed electric field.

IF (ν) = I ·

∣∣∣∣∣
∫ ∞
−∞

Re

(
n∑
j=1

ei(ω(t−jT )+φj)e−
1
2
a2(t−jT )2

)
· e−i2πνtdt

∣∣∣∣∣
2

(21)

Writing out the modulus square in Eq.21 gives the following expression.
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IF (ν) = I

[∫ ∞
−∞

Re

(
n∑
j=1

ei(ω(t−jT )+φj)e−
1
2
a2(t−jT )2

)
cos(−2πνt)dt

]2

+I

[∫ ∞
−∞

Re

(
n∑
j=1

ei(ω(t−jT )+φj)e−
1
2
a2(t−jT )2

)
sin(−2πνt)dt

]2

(22)

Which is plotted on the right-hand side in the following figure, Fig.16.

Figure 16: In this figure the phase shifts are shown to the left and the different photoelectron
distributions over frequencies are shown to the right. Thus you could transform the frequen-
cies on the x-axis to energies through multiplying by Plank’s constant. Then you would have
to know what ionization potential the atoms or molecules that you are photo ionizing have.
Below that energy the photoelectron distribution that you have will not contribute to the
photoelectron distribution of that case. That is according the formula that Einstein proposed
(which is an approximation) although one can also take into account for quantum physics
which makes it more complicated. For each time on the x-axis in Fig.15, here represented
by the time with the phase shifts, the Fourier transformed phase shifted XUV attosecond
pulses have different distributions over frequencies given to the photoelectrons. The code
was running for ∼7 minutes in order to produce this figure.

It can be seen that the photoelectron distribution do not have any symmetry in time.

That is not reasonable since the phase shifts have symmetries in time, around t = 1.3/2

fs, and there is nothing special about t = 1.3/2 fs. The same photoelectron distribution

should emerge although the phase shifts are symmetric around another point in time than

t = 1.3/2 fs. Time is not what gives the photoelectron distribution it is the XUV attosecond
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pulses and there phase shift that gives the photoelectron distribution. The phase shifts are

put into the attosecond pulses made of XUV photons which then also have symmetry –

around an inversion axis. These pulses are then Fourier transformed and the result is not

symmetric around t = 1.3/2 fs. The explanation is that the Fourier transform does not have

any symmetry around t = 1.3/2 fs. It has its symmetry around t = 0 fs. In order to get

a result that has some symmetry around t = 1.3/2 fs the time in the exponential part of

the Fourier transform, Eq.15, has to be shifted to t = 1.3/2 fs. Which has been done in the

following figure.

Figure 17: In this figure the phase shifts are shown to the left and the different photoelectron
distributions over frequencies are shown to the right. Thus you could transform the frequen-
cies on the x-axis to energies through multiplying by Plank’s constant. Then you would have
to know what ionization potential the atoms or molecules that you are photo ionizing have.
Below that energy the photoelectron distribution that you have will not contribute to the
photoelectron distribution of that case. That is according the formula that Einstein proposed
(which is an approximation) although one can also take into account for quantum physics
which makes it more complicated. For each time on the x-axis in Fig.15, here represented
by the time with the phase shifts, the Fourier transformed phase shifted XUV attosecond
pulses have different distributions over frequencies given to the photoelectrons. The code
was running for ∼14 minutes in order to produce this figure.
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5 Conclusion and Outlook

In this work attosecond pulses made of XUV photons producing photoelectrons through

photoionization were looked at. First different phase shifts that could be induced into an

electron wave packet were looked at. These phase shifts were produced by an IR-field. One

IR-field with specific values giving a pattern of phase shifts was chosen. Then two XUV

photon attosecond pulses were chosen with a separation between each pulse of 1.3 fs. The

attosecond pulses made of XUV photons got a phase shift shaped like the one from the chosen

IR-field. The attosecond pulses made of XUV photons were placed at different positions in

time with respect to the IR-field. For each position in time they got the corresponding

phase shift. These phase shifted attosecond pulses made of XUV photons were then Fourier

transformed into components in the Fourier plane representing the photoelectron distribution

produced in photoionization.

One IR-field that gave phase shifts that were put into the XUV photon attosecond pulses

was looked at in this work. In order to further look into this, more of the phase shifts plotted

in section 4.1 should be used for the attosecond pulses made of XUV photons. Making a

video could be a good option but having a fast computer would be recommended since it

takes a while (around 15 min/figure) to get one plot of the Fourier transformed attosecond

pulses made of XUV photons. Which can be seen in the section 4 Results and Discussion

under each figure with a set of Fourier transformed attosecond pulses made of XUV photons.
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6 Appendix; Code written in Python

6.1 Checking the integrator

import matplotlib.pyplot as plt

from pylab import *

from math import *

import scipy

from scipy.integrate import quad

import seaborn as sns

# the function to be integrated:

def f(x):

return -4.0*e**(-x**2)*x*np.cos(10*x) - 20*e**(-x**2)*np.sin(10*x)

x = arange(-3, 3, 0.0001)

Der = [ -4.0*e**(-x**2)*x*np.cos(10*x) - 20*e**(-x**2)*np.sin(10*x) for x in x]

y sin = []

y cos integrated = []

for element in x: y sin.append( 2* (np.e**(- element**2 ))*np.cos( 10*element ) )

y cos integrated.append(quad(f, -pi*10, element)[0] - sin(pi))

print( y sin[0] )

L = len(x)

M = []

for i in range(L):

MT = y cos integrated[i] - y sin[i]

M.append(MT)

print( M[0] )

sns.set style(”ticks”, ”xtick.major.size”:7, ”ytick.major.size”:7)

fig = plt.figure()

axes1 = fig.add axes( [0.08, 0.6, 0.9, 0.35] )
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sns.set(font scale=1.8)

axes1.plot(x, y sin, ’r’, label= ’Original function’)

axes1.plot(x, y cos integrated, ’b’, label=r’The differentiated ’

’\n’

r’and integrated function ’ )

axes1.set ylabel(’Units of electric field’, size=20)

axes1.set xlabel(’Time in fs’, size=20)

axes1.set xlim(-3, 3)

axes1.set title(’Functions’, size=25)

leg = axes1.legend();

axes1.legend(loc=’lower left’, frameon=False)

axes1.grid()

sns.set style(”ticks”, ”xtick.major.size”:7, ”ytick.major.size”:7)

ax = fig.add axes( [0.08, 0.1, 0.9, 0.32] )

ax.set title(’Difference between the two functions’, size=25, fontdict=None, loc=’right’)

ax.set xlim(-3, 3)

ax.plot(x, M, ’y’)

ax.set ylabel(’Difference’, size=20)

ax.set xlabel(’Time in fs’, size=20)

ax.grid()

show()

6.2 Plotting of phase shifts for Fourier transform

import seaborn as sns

import matplotlib.pyplot as plt

from pylab import *

from math import *

import scipy

from scipy.integrate import quad
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# the function to be integrated:

def f(x, omega, a):

return ( - (1/omega) * (np.sin( omega*x )) * (np.e**( - (1/2)* (a**2 )* x**4 )) )

# Pre sets

Intensity = (10**(8))

e = 1.60218 * 10**(-19)

m e = 9.10939 * 10**(-31)

h bar = ( 6.62608*10**(-34) ) / (2*np.pi)

elc p mag = 1.9 * 10**(-24) # around 12 eV

PAmp = - Intensity*( e/(m e * h bar) ) * elc p mag

C = 299792458

Lambda = 8.20*10**(-7)

omega = 2*np.pi* (C/Lambda ) * 10**(-15)

omega fs comp = 10**(-30)

E 0 = 8.8541878176*10**( -12 )

E mag = sqrt( 2/( E 0 * C ) )

a = 0.3

# Main

xR = arange(-6, 6, 0.02)

phi1 = []

for elmer in xR:

Par1 = E mag*omega fs comp*PAmp*quad(f , elmer, 10*np.pi, args=(omega, a) )[0]

phi1.append( Par1 )

print(Par1)

phi2 = []

for elmer in xR:
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Par2 = E mag*omega fs comp*PAmp*quad(f , elmer + 1.3, 10*np.pi, args=(omega,

a) )[0]

phi2.append( Par2 )

print(Par2)

Phi = []

Xer = len(xR)

for i in range(Xer):

Phi.append( phi2[i] - phi1[i] )

print(Phi[0])

phi3 = []

for elmer in xR:

Par3 = E mag*omega fs comp*PAmp*quad(f , elmer - 1.3, 10*np.pi, args=(omega,

a) )[0]

phi3.append( Par3 )

print(Par2)

Phi = []

for i in range(Xer):

Phi.append( phi2[i] - phi1[i] )

print(Phi[0])

PhiPrim = []

for i in range(Xer):

PhiPrim.append( phi2[i] - phi3[i] )

print(PhiPrim[0])

fig = plt.figure()

ax2 = fig.add axes( [0.08, 0.1, 0.87, 0.8] )

sns.set(font scale=1.8)

ax2.plot(xR, phi3, ’orange’, label=’$ \u03C6 1$’)

ax2.plot(xR, phi1, ’b’, label=’$ \u03C6 2$’)

ax2.plot(xR, phi2, ’r’, label=’$ \u03C6 3$’)
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ax2.plot(xR, Phi, ’–c’, label=’$ \u03A6 $ = $ \u03C6 3$ - $ \u03C6 2$’)

ax2.plot(xR, PhiPrim, ’–m’, label=’$ \u03A6 ´$ = $ \u03C6 3 $ - $ \u03C6 1 $’)

ax2.set ylabel(’ Phase shifts in radians ’, size=20)

ax2.set xlabel(’Time in fs’, size=20)

ax2.set title(’ Phase shifts ’, size=25)

leg = ax2.legend();

ax2.legend(loc=’lower left’, frameon=False)

6.3 Heat maps

6.3.1 Plot of phase shift dependent on momentum and time

import seaborn as sns

import matplotlib.pyplot as plt

from pylab import *

from math import *

import scipy

from scipy.integrate import quad

def f(x, omega, a, n):

return ( - (1/omega) * (np.sin( omega*x )) * (np.e**( - (1/2)* (a**2 )* x**(2*n) )) )

# Pre sets

Intensity = (10**(8))

e = 1.60218 * 10**(-19)

m e = 9.10939 * 10**(-31)

h bar = ( 6.62608*10**(-34) ) / (2*np.pi)

elc p mag = 1.9 *10**(-24) # around 12 eV

PAmp = - Intensity*( e/(m e * h bar) ) * elc p mag

C = 299792458

Lambda = 2.80*10**(-7)
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omega = 2*np.pi* (C/Lambda ) * 10**(-15)

omega fs comp = 10**(-30)

E 0 = 8.8541878176*10**( -12 )

E mag = sqrt( 2/( E 0 * C ) )

a = sqrt( 2)

n = 2

# Main

xR = arange(-4, 4, 0.02)

p = arange(0, 1.9, 0.02)

Z = []

for i in p:

ZP = []

for elmer in xR:

ZP.append( E mag*omega fs comp*PAmp*i* quad(f , elmer, 10*np.pi, args=(omega,

a, n) )[0] )

Z.append( ZP )

print(Z[0][0])

# Plotting

ax = sns.heatmap(Z, xticklabels=xR, yticklabels=p)

xlabels = [’:3.1f’.format(x) for x in xR]

ylabels = [’:3.1f’.format(y) for y in p[::-1] ]

LABELLimX = 25

LABELLimY = 15

ax.set xticks(ax.get xticks()[::LABELLimX])

ax.set xticklabels(xlabels[::LABELLimX])

ax.set yticks(ax.get yticks()[::LABELLimY])

ax.set yticklabels(ylabels[::LABELLimY])

plt.title(’Phase shift’, size=20)
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plt.ylabel(’ Momentum of electron in 10∧(-24) kgm/s ’, size=15)

plt.xlabel(’Time in fs’, size=15)

6.3.2 Plot of three attosecond pulses made of XUV photons without imports

and presets

# the function to be integrated:

def f(x, omega, a):

return ( - (1/omega) * (np.sin( omega*x )) * (np.e**( - (1/2)* (a**2 )* x**4 )) )

# Main

xR1 = arange(-6, 6, 0.01)

phi1 = []

for elmer in xR1:

Par1 = E mag*omega fs comp*PAmp*quad(f , elmer, 10*np.pi, args=(omega, a) )[0]

phi1.append( Par1 )

print(Par1)

phi2 = []

for elmer in xR1:

Par2 = E mag*omega fs comp*PAmp*quad(f , elmer + 1.3, 10*np.pi, args=(omega,

a) )[0]

phi2.append( Par2 )

print(Par2)

phi3 = []

for elmer in xR1:

Par3 = E mag*omega fs comp*PAmp*quad(f , elmer - 1.3, 10*np.pi, args=(omega,

a) )[0]

phi3.append( Par3 )

print(Par3)

def f(x, omega, a, fas, fasPrim):
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return ( (np.cos( omega*(x + fas) + fasPrim )) * (np.e**( - (1/2)* (a**2 )* (x + fas)

**2 )) )

INTENSITY = []

OMEGA = 100

xlen= len(xR1)

xR2 = arange(-1.5, 1.5, 0.005)

for i in xR2:

INTENSITYTemp = []

for j in range(xlen):

p1 = phi1[j]

p2 = phi2[j]

p3 = phi3[j]

# E-field

# Inter = Intensity * E mag*(f(i, OMEGA, 30, 0, p1) + f(i, OMEGA, 30, -1.3,

p2) + f(i, OMEGA, 30, +1.3, p3) )

# its intensity

Inter = (Intensity**2) * ( (f(i, OMEGA, 30, 0, p1)**2 ) + (f(i, OMEGA, 30, -1.3,

p2) **2) + (f(i, OMEGA, 30, +1.3, p3)**2) )

INTENSITYTemp.append( Inter )

INTENSITY.append( INTENSITYTemp )

print(INTENSITY[0][0])

sns.set style(”ticks”, ”xtick.major.size”:7, ”ytick.major.size”:7)

fig = plt.figure()

axes1 = fig.add axes( [0.1, 0.11, 0.9, 0.77] )

sns.set(font scale=1.8)

# Electric field

# axes1 = sns.heatmap(INTENSITY, xticklabels=xR1, yticklabels=xR2,

# cbar kws= ’label’: ’Elecric field in V/m’ )

# Its intensity
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axes1 = sns.heatmap(INTENSITY, xticklabels=xR1, yticklabels=xR2,

cbar kws= ’label’: ’Intensity in W/m2 ’ )

xlabels = [’:3.0f’.format(x) for x in xR1 ]

ylabels = [’:3.1f’.format(y) for y in xR2[::-1] ]

LABELLimX = 100

LABELLimY = 100

axes1.set xticks(axes1.get xticks()[::LABELLimX])

axes1.set xticklabels(xlabels[::LABELLimX], fontsize=20)

axes1.set yticks(axes1.get yticks()[::LABELLimY])

axes1.set yticklabels(ylabels[::LABELLimY], fontsize=20)

axes1.set title(r’ XUV attosecond photon pulses’

’\n’

r’ with different phase shifts picked up in time ’, size=25)

axes1.set xlabel( ’ Time in fs ’, size=20)

axes1.set ylabel(’ Separation in time, fs ’, size=20)

6.3.3 Fourier transform of three attosecond pulses made of XUV photons with-

out imports and presets

# Main

xR = arange(-6, 6, 0.05)

phi1 = []

for elmer in xR[::-1] :

Par1 = E mag*omega fs comp*PAmp*quad(f , elmer, 10*np.pi, args=(omega, a) )[0]

phi1.append( Par1 )

print(Par1)

phi2 = []

for elmer in xR[::-1] :

Par2 = E mag*omega fs comp*PAmp*quad(f , elmer + 1.3, 10*np.pi, args=(omega,

a) )[0]

phi2.append( Par2 )
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print(Par2)

phi3 = []

for elmer in xR[::-1] :

Par3 = E mag*omega fs comp*PAmp*quad(f , elmer - 1.3, 10*np.pi, args=(omega,

a) )[0]

phi3.append( Par3 )

print(Par3)

Phi = []

Xer = len(xR)

for i in range(Xer):

Phi.append( phi2[i] - phi1[i] )

print(Phi[0])

PhiPrim = []

for i in range(Xer):

PhiPrim.append( phi2[i] - phi3[i] )

print(PhiPrim[0])

def f(x, omega, a, fas, fasPrim):

# E-field

return ( (np.cos( omega* (x + fas) + fasPrim )) * (np.e**( - (1/2)* (a**2 )* (x + fas

) **2 )) )

# Intensity

# return (Intensity**2) *( (np.cos( omega* (x + fas) + fasPrim )) * (np.e**( - (1/2)*

(a**2 )* (x + fas ) **2 )) )

def Foriercos(x, freq, PHI1, PHI2, PHI3, OMEGA):

return ( ((f(x, OMEGA, 30, 0, PHI1))) + ((f(x, OMEGA, 30, -1.3, PHI2))) + ((f(x,

OMEGA, 30, +1.3, PHI3))) ) * (np.cos( -2*(np.pi)*freq*x ))

def Foriersin(x, freq, PHI1, PHI2, PHI3, OMEGA):

return ( ((f(x, OMEGA, 30, 0, PHI1))) + ((f(x, OMEGA, 30, -1.3, PHI2))) + ((f(x,

OMEGA, 30, +1.3, PHI3))) ) * (np.sin( -2*(np.pi)*freq*x ))
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INTENSITY = []

FR = arange(0, 30, 0.1)

xlen= len(xR)

for j in range(xlen):

p1 = phi1[j]

p2 = phi2[j]

p3 = phi3[j]

INTENSITYTemp = []

for i in FR:

INTERT = (Intensity**2) * ( ((quad(Foriercos , -10*np.pi, 10*np.pi , args=(i, p1,

p2, p3, 100) )[0])**2) + ((quad(Foriersin , -10*np.pi, 10*np.pi , args=(i, p1, p2, p3, 100)

)[0])**2) )

INTENSITYTemp.append( INTERT )

INTENSITY.append( INTENSITYTemp )

print(INTENSITY[0][0])

sns.set style(”ticks”, ”xtick.major.size”:7, ”ytick.major.size”:7)

fig = plt.figure()

axes1 = fig.add axes( [0.32, 0.15, 0.65, 0.75] )

sns.set(font scale=1.8)

axes1 = sns.heatmap(INTENSITY, xticklabels=xR, yticklabels=Phi,

cbar kws= ’label’: ’Intensity in W/m$∧2$ ’ )

xlabels = [’:3.0f’.format(x) for x in FR ]

ylabels = [’:3.1f’.format(y) for y in Phi ]

LABELLimX = 20

LABELLimY = 5

axes1.set xticks(axes1.get xticks()[::LABELLimX])

axes1.set xticklabels(xlabels[::LABELLimX], fontsize=20)

axes1.set yticks(axes1.get yticks()[::LABELLimY])

axes1.set yticklabels(ylabels[::LABELLimY], fontsize=0.01)
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axes1.set title(r’ Electron distribution over frequencies; from XUV attosecond photon

pulses ’

’\n’

r’ with different phase shifts picked up in time ’, size=25)

axes1.set xlabel(’ Frequency in PHz ’, size=20)

ax = fig.add axes( [0.1, 0.15, 0.2, 0.75] )

ax.set ylim(-6, 6)

ax.plot( phi3, xR[::-1] , ’orange’, label=’$ \u03C6 1$’)

ax.plot( phi1, xR[::-1], ’b’, label=’$ \u03C6 2$’)

ax.plot( phi2, xR[::-1], ’r’, label=’$ \u03C6 3$’)

ax.plot( Phi, xR[::-1], ’–c’, label=’$ \u03A6$ = $ \u03C6 3$ - $ \u03C6 2$’)

ax.plot( PhiPrim, xR[::-1], ’–m’, label=’$ \u03A6 ´$ = $ \u03C6 3$ - $ \u03C6 1$’)

ax.set xlabel(’ Phase shifts in radians ’, size=20)

ax.set ylabel(’Time in fs’, size=20)

ax.set title(’ Phase shifts ’, color=’C0’, size=25)

leg = ax.legend();

ax.legend(loc=’lower left’, frameon=False)
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