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Abstract

Heart rate variability (HRV) is a measurable property used to describe
the naturally occurring time differences between heartbeats and has
shown to help with identifying both physiological and psychological
disorders. HRV signals of 97 individuals were analyzed using spectral
analysis. The data was non-stationary but was analyzed using station-
ary estimation methods, in which the original data was segmented into
shorter, overlapping segments. Different lengths were investigated, all
overlapping by 50%. The analysis used different non-parametric spec-
tral estimates in order to find the method which provided the most
accurate description of the frequency content. The resulting cross
spectrum were related to the age, BMI and sex of the participants
using multi-linear regression. For BMI and sex, no significant corre-
lation was found but for age, a negative correlation was determined
(p < 0.001), consistent with previous research. The model was unable
to account for large parts of the inherent variation, indicating that
a model with more covariates could be more appropriate. While the
spectral estimation techniques showed great promise, more advanced
methods such as stationary estimation methods or multi-taper meth-
ods might yield better results.



Populärvetenskaplig sammanfattning

Det mänskliga hjärtat sl̊ar i genomsnitt mellan 60 och 100 slag per
minut, däremot varierar det exakta antalet. Heart Rate Variability,
förkortat HRV, är ett kardiologiskt begrepp som mäter den naturliga
tidsvariationen mellan hjärtslag. HRV kan användas för att identi-
fiera b̊ade fysiska och psykiska åkommor, vilket är möjligt d̊a HRV
p̊averkas av nervsystemet. Det har exempelvis p̊avisats att man kan
identifiera och förhindra hjärtattacker innan de skett med hjälp av
HRV-mätningar.

Ett aktivt omr̊ade inom HRV-forskning är att identifiera relationer
mellan HRV och olika variabler. Anledningen till detta är att man
vill kunna hitta samband där man, p̊a ett effektivt sätt, kan förhindra
samt kontrollera olika åkommor. Det har bland annat identifierats
länkar mellan posttraumatiskt stressyndrom och HRV samt diabetes
och HRV. Däremot behöver man ocks̊a fastställa samband mellan en-
klare parametrar och HRV, s̊a som ålder och kön, för att kunna utes-
luta och kontrollera för dem i mer komplexa analyser.

I det här arbetet s̊a undersöktes det hur ålder, BMI och kön relat-
erar till HRV. Det skedde en datainsamling där 97 stycken individer
fick andas fortare och fortare, medan deras hjärt- och andningssignaler
registrerades. Syftet var att undersöka HRV under en mer p̊afrestande
än avslappnande situation. Spektralanalytiska metoder användes för
att analysera HRV och andningssignalerna. Slutligen kunde endast
en signifikant länk mellan ålder och HRV bekräftas.
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1 Introduction

Understanding how variations in heart rate relate to different physiological and psy-
chological factors has been the subject of extensive research during the latest decades
[3]. Heart rate has been shown to be an indicator of several health issues and it is
also used by individuals in order to optimize their training and recovery [8]. This
thesis will analyze the variations in heart rate and investigate possible relationships
with the physiological factors, age, BMI and sex.

1.1 Background

The human heart is myogenic which means that the contractions are initiated from
the heart itself by the cardiomyocytes, the heart’s muscle cells [19, pp. 136-137]. More
specifically, it is the sinoatrial node (SA node) which acts as a natural pacemaker and
is thereby responsible for the contractions, around 60-100 beats per minute (bpm).

Heart rate variability (HRV) is an important physiological phenomenon which mea-
sures the small time changes between consecutive heartbeats. Different methods can
be used to measure HRV, both invasive and non-invasive methods. Electrocardiog-
raphy (ECG) is the most commonly used method since it is non-invasive but also
because it registers the electrical impulses that run through the hearts conducting
system. ECG may thereby detect heartbeats not initiated by the SA node [12]. This
exclusion then ensures that the time, measured in milliseconds, is between two con-
secutive R’s (see Figure 1), known as an RR interval. HRV measures the RR interval
to determine the consecutive time changes.

Figure 1: ECG recordings of two consecutive heartbeats and the RR interval between
them.

HRV is affected by the autonomic nervous system (ANS), causing HRV to be an
important measurement of many different physiological, and psychological reactions
[5]. The ANS is responsible for unconscious and involuntary physiological actions,
such as heartbeat and breathing. There are two parts to the ANS, the sympathetic
nervous system (SNS) and the parasympathetic nervous system (PNS) which both
influence bodily functions but in opposite ways. The SNS increases the adrenaline
to the SA node, which in turn prepares the body for physical activity by increasing,
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for example, breathing, heart rate and one’s energy level. Additionally, the SNS is
also responsible for our stress reaction, known as the ”fight or flight” response. PNS,
on the other hand, regulates digestion and resting, which relaxes the body and slows
down energetic functions [10].

SNS has been associated with the so called low frequency (LF) interval (0.04-0.15
Hz) and PNS with the high frequency (HF) interval (0.15-0.4 Hz) [1]. This creates an
opportunity in which frequency domain analysis may give an insight into the balance
and strength between the parasympathetic and sympathetic activity [18, p. 590].
A healthy individual’s nervous system is efficient in changing between the SNS and
the PNS, leading to high variability in heart rate, and thereby a higher HRV value.
Lower HRV tends to show that the SNS is in dominance, implying that an individual
is in bad health whereas a high HRV means the PNS activity is strong and that the
individual is healthy [5]. It has in addition been shown that HRV can be useful in
identifying both cardiovascular and non-cardiovascular diseases before their outburst
which may help to prevent sudden cardiac death among other disease [1].

There are factors which have a strong impact on HRV such as age, sex and both
physiological and psychological conditions and disorders [15]. Age has shown to be
strongly correlated with HRV, where infants have the highest HRV values and the
values thereafter decrease with age. Women have lower HRV values than men but
these inequalities have shown to become less prominent post-menopause [11]. Many
disorders have been connected with decreasing HRV, especially somatic diseases. For
the past years, there has been an increased focus on psychological disorders, such
as depression and post traumatic stress disorders, where tests have shown that such
disorders have lower HRV values as well [4].

Respiratory sinus arrhythmia (RSA), which is the natural variability in heart rate
during respiration, has been shown to correspond to high-frequency HRV. HRV in-
creases during inspiration and decreases during expiration [14]. RSA is usually present
in young and in healthy adults whereas it fades with age and tends to be lacking for
individuals with various stages of cardiovascular diseases [9]. It is thereby of great
importance to investigate and analyze HRV both by itself and in combination with
different factors, in order to obtain valuable information regarding an individuals’
health.

1.2 Aim of thesis

The aim of this thesis is to use different spectral estimation methods and time intervals
in order to find which combination yields the best estimation of the cross-spectrum be-
tween HRV and respiratory signals. The considered methods will be the periodogram,
the modified periodogram and the Welch method and the time segments will be either
15 s, 30 s or 60 s. The relation between some covariates (age, BMI and sex) and HRV
will be analyzed, with an attempt to find a multi-linear regression model.
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2 Mathematical theory

2.1 Spectral Analysis

Spectral analysis is a statistical technique where the spectral properties of a signal
are investigated using the Fourier transform. It is sometimes referred to as frequency
domain analysis since we view signals in the frequency domain, where it is easier to
detect periodicities. In applications we use the discrete Fourier transform which we
recall to be defined as

X(f) =
n−1∑
t=0

x(t)e−i2πft, (2.1)

where x is the input signal and n is the number of data points. Spectral analysis has
been shown to be an important tool in several research fields, for example physics and
biomedical science, since it can make underlying relations between systems clearer [2].
The following subsections are mainly based on the material in [7].

2.1.1 Power spectral density

The power spectral density (PSD) is a function in the frequency domain which shows
where the variation in frequency is strong and where it is weak. The PSD has two
interchangeable definitions, either as the Fourier transform of the covariance function
(also known as the auto-correlation function), r(τ), i.e.

Rx(f) =
∞∑

τ=−∞

r(τ)e−i2πfτ (2.2)

or as the average of the squared magnitude of the Fourier transform in the n → ∞
limit

Rx(f) = lim
n→∞

E
[

1

n

∣∣X(f)
∣∣2] . (2.3)

As these definitions require an infinite number of samples, methods to estimates the
PSD are used in applications. This can be done using parametric or non-parametric
methods. The methods presented in this section are solely non-parametric, meaning
that they make direct use of the data with no assumptions apart from stationarity.

2.1.2 Periodogram

The periodogram is the simplest and most basic estimate of the PSD and is defined
as

R̂x(f) =
1

n

∣∣X(f)
∣∣2 . (2.4)
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This estimate is clearly based on equation (2.3) but can be rewritten to be more
similar to equation (2.2) in the following way

R̂x(f) =
1

n
X(f) ·X(f) =

1

n

n−1∑
t=0

n−1∑
s=0

x(t)x(s)e−i2πf(s−t)

=
1

n

n−1∑
τ=−n+1

n−1−|τ |∑
t=0

x(t)x(t+|τ |)e−i2πfτ =
n−1∑

τ=−n+1

r̂x(τ)e−i2πfτ , (2.5)

where τ = s− t and r̂x(τ) is the estimate of the covariance function.

A good estimate has an approximate unbiasedness, E[R̂x(f)] ≈ R(f), and a low

variance, Var[R̂x(f)] ≈ 0 [2]. From the calculation in [7, pp. 243-244], we know that
the variance approaches

Var[R̂x(f)]→

{
R2
x(f) for 0 < |f | < 0.5,

2R2
x(f) for f = 0 and ± 0.5,

(2.6)

as n → ∞. We thereby conclude that R̂x is an inconsistent estimator which we will
combat later by introducing multiple windows. Instead, lets turn to the expectation
value which we calculate as follows

E[R̂x(f)] =
n−1∑

τ=−n+1

= E[r̂x(τ)]e−i2πfτ

=
n−1∑

τ=−n+1

(
1−|τ |

n

)
rx(τ)e−i2πfτ −−−→

n→∞

∞∑
τ=−∞

rx(τ)e−i2πfτ = Rx(f), (2.7)

where we make use of [7, Theorem 2.5] in the second equality. This shows that when
n is large, the periodogram is an unbiased estimator of the PSD. However for small
n, as is common in applications, we have that

E[R̂x(f)] =
∞∑

τ=−∞

kn(τ)rx(τ)e−i2πfτ , (2.8)

where kn(τ) is the lag window, defined as kn(τ) = max(0, 1− |τ |
n

). We then introduce
the Fejér Kernel, Kn, as the Fourier transform of the lag window, as

Kn(f) =
n−1∑

τ=−n+1

kn(τ)e−i2πfτ =
sin2(nπf)

n sin2(πf)
. (2.9)
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Figure 2: The absolute value of the Fejér kernel Kn(f) in logarithmic scale.

The reason for the bias in the periodogram can be explained by the use of Figure 2.
The height of the sidelobes remains high and roughly the same independently of n,
causing leakage form frequencies with greater powers compared to those with lower
powers. Reduced bias can thereby be obtained by changing the ”shape” of the the
main- and sidelobes which will be discussed next.

2.1.3 Modified periodogram

One method used to reduce the bias is to apply a window by replacing kn(τ) with an
arbitrary window function w(τ) yielding what is known as the Modified Periodogram

R̂x(f) =
1

n

∣∣∣∣∣∣
n−1∑
t=0

x(t)w(t)e−i2πft

∣∣∣∣∣∣
2

. (2.10)

The Hanning window is the most commonly used window and is defined as

h(t) =
1

2
− 1

2
cos

(
2πt

n− 1

)
, t = 0, 1, . . . , n− 1, (2.11)

and can be normalized into w(t)

w(t) =
h(t)√

1
n

∑n−1
t=0 h

2(t)
. (2.12)

Different windows affect the main- and sidelobes differently, but a rule of thumb is
that the wider the mainlobe is, the faster the sidelobes will decrease. It is easiest to
compare windows by their corresponding window spectrum, denoted as Kw(f), which
is the Fourier transform of w(t).
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Figure 3: Hanning window spectrum in logarithmic scale.

Comparing Figure 2 and Figure 3 we can see that the Hanning window has a broader
mainlobe and lower sidelobes. The width of the mainlobe for the Hanning window
is 4/n whereas the width of the periodogram mainlobe is 2/n which signifies that
Hanning is less efficient at resolving close peaks but in return has less leakage than
the periodogram, due to a faster decrease for the sidelobes.

2.1.4 The Welch method

There is also the possibility of using multi-window methods such as the Welch method
in order to reduce the variance. This method divides the data into shorter segments
and uses an overlap technique, resulting in K windows, a specified window-length L
and a certain percentile overlap p, which usually is 50%. The Welch method is defined
as

R̂av(f) =
1

K

K∑
k=1

R̂x,k(f). (2.13)

This can be viewed as the averaged modified periodogram, given that they use the
same window [6]. Given n, p and K, we can determine the length L of each window
as

L =
n

pK + 0.5
. (2.14)

Reduction of the variance is obtained if the correlation between R̂x,k(f) and R̂x,l(f)
is small, for k 6= l. If that is the case, then

V[R̂av(f)] =
1

K2

K∑
k=1

K∑
l=1

C[R̂x,k(f), R̂x,l(f)] =
1

K2

K∑
k=l

V[R̂x,k(f)]

≈ 1

K
R2
X(f), (2.15)

by the use of the approximation for large n in equation (2.6). The Welch method then
reduces the variance by a factor K compared to the normal and modified periodogram.
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2.1.5 Cross-spectrum

The cross-spectrum is a tool used in spectral analysis to describe the correlation
between two signals. It is a complex-valued function of frequency and is defined as

Rxy(f) =
∞∑

τ=∞

rxy(τ)e−i2πfτ , (2.16)

where rxy(τ) is the cross-covariance function. The cross-spectrum can be written in
polar form as Rxy(f) = Axy(f)eiΦxy(f), where Axy and Φxy are known as the amplitude
function and phase function respectively. We can estimate the cross-spectrum as

R̂xy(f) =
1

n
X(f) · Y (f) =

n−1∑
τ=−n+1

r̂xy(τ)e−i2πfτ , (2.17)

akin to equation (2.5). Estimating the cross-spectrum can be done using different
methods and X(f) and Y (f) can thereby be defined in different ways. Using the
periodogram method gives the definitions

X(f) =
n−1∑
t=0

x(t)e−i2πft, Y (f) =
n−1∑
t=0

y(t)e−i2πft, (2.18)

whereas the modified periodogram gives

X(f) =
n−1∑
t=0

x(t)w(t)e−i2πft, Y (f) =
n−1∑
t=0

y(t)w(t)e−i2πft. (2.19)

The Welch method uses equation (2.19) before taking the average.

2.1.6 Coherence spectrum

The magnitude squared coherence spectrum is defined as

κ2
x,y(f) =

∣∣Rx,y(f)
∣∣2

Rx(f)Ry(f)
=

Axy(f)2

Rx(f)Ry(f)
, κ2

x,y(f) ∈ [0, 1] (2.20)

and is also known as the normalized cross-spectrum. It is a statistic tool used to
determine dependence between the two signals, X and Y , where κ2

x,y(f) = 1 means
that the signals are linearly dependent and κ2

x,y(f) = 0 means that they are inde-
pendent. Calculating the coherence spectrum using the periodogram or the modified
periodogram gives

κ̂2
x,y =

∣∣Rx,y(f)
∣∣2

Rx(f)Ry(f)
=

1
n
X(f)Y (f) · 1

n
X(f)Y (f)

1
n
X(f)Y (f) · 1

n
X(f)Y (f)

≡ 1, (2.21)

which will not allow us to read off any information about the relationship since it is
constant. If we instead use the Welch method, equation (2.13), we have that

κ̂2
x,y =

∣∣∣ 1
K

∑K
j=1 R̂xy,j(f)

∣∣∣2
1
K

∑K
j=1 R̂x,j(f) 1

K

∑K
j=1 R̂y,j(f)

=
1
nK

∑K
j=1Xj(f)Yj(f) · 1

nK

∑K
j=1Xj(f)Yj(f)

1
nK

∑K
j=1Xj(f)Xj(f) · 1

nK

∑K
j=1 Yj(f)Yj(f)

. (2.22)
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Equation (2.22) shows that the use of averaging techniques, such as the Welch method,
results in the coherence spectrum being non-constant, as in equation (2.21). Further-
more, a non-constant coherence spectrum is thereby a good measure of dependence
between the two signals, R̂x(f) and R̂y(f), for different frequencies.

2.2 Regression analysis

Regression analysis is a mathematical tool enabling characterization and identification
of relationships for a given data set and can be done for multiple factors [16]. There
is a dependent variable, Y , and one or more independent variables, Xk, and it is the
relation between them which is of interest. There are many methods of regression
such as linear, quadratic and logistics, all widely used in fields such as medicine, the
social sciences, and business. The theory in this section is mainly based on [13].

2.2.1 Multi-linear regression

In multi-linear regression we have a model with k covariates and n observations. The
i:th observation consists of the k + 1 tuple (yi, xi,1, . . . , xi,k) and we say that Yi is a
dependent variable, whereas Xi,j is an independent variable for j = 1, . . . , k. They
are related as

Yi = β0 + β1Xi,1 + β2Xi,2 + . . .+ βkXi,k + εi, (2.23)

where εi is the random normally distributed error in each observation and β0, . . . , βk
are the coefficients which we wish to determine. In order to obtain the estimations
we use a method called the least squares method in which one minimizes e2

1 + . . .+ e2
n

in 
y1

y2
...
yn


︸ ︷︷ ︸

y

=


1 x1,1 x1,2 ... x1,k

1 x2,1 x2,2 ... x2,k
...

...
...

. . .
...

1 xn,1 xn,2 ... xn,k


︸ ︷︷ ︸

X


b1

b2
...
bk


︸ ︷︷ ︸

b

+


e1

e2
...
en


︸ ︷︷ ︸

e

, (2.24)

where we say that bj is an estimate of βj. Minimizing ||e|| we find that

b = (XTX)−1XTy, (2.25)

where we require the existence of the inverse of XTX in order for a unique solution
to exist. After estimating βj as bj the discrepancy is accounted for by εj. From this
we can determine the necessary εj and evaluate the effectiveness of our method. We
can finally write our model in matrix form as

Y = Xβ + ε. (2.26)

Evaluating the effectiveness of the model is done by calculating p-values and the
coefficient of determination, also know as R2. This is a measure of how well a model
can account for the inherent variation in the data and is defined as

R2 = 1−
∑

i εi∑
i(yi − ȳ)

, R2 ∈ [0, 1]. (2.27)

A high value indicates that the model can account for the variation in the independent
variables.

8



3 Data analysis

3.1 Data descriptions

The data for this thesis was gathered from 47 women and 50 men, aged 20 to 61.
Individuals taking medication known to affect the heart rate or who were suffering
from any kind of cardiovascular disease were excluded. For every participant, age,
BMI, sex, and stress levels were noted, as well as respiratory and heart rate data, each
collected during a 5-minute interval with a sampling frequency of 4 Hz. The data was
recorded using two devices, a strain gauge attached to the individual’s chest for the
respiratory signals and electrocardiography (ECG) for the heart rate. The breathing
and HRV measurements were made as the participants performed a chirp breathing
task, in which the individual was told to breathe following a metronome which began
at 0.12 Hz and then slowly increased to 0.35 Hz.

Figure 4: One of the participants’ raw HRV and respiratory data.

3.2 Spectral analysis

In order to ensure approximate stationarity, some adjustments were made to the orig-
inal data. The mean was adjusted to 0 and only the first 4 minutes of measurements
were used, corresponding to the first 960 samples. As can be seen in Figure 4, the
HRV does not appear to behave like a stationary process and the data was there-
fore divided into shorter segments, in order to make it more stationary. All segments
overlapped by 50% and different segment lengths of 15, 30 and 60 seconds were tested.

All calculations and estimation methods were performed independently for all partic-
ipants. Zero padding, with N = 4096, was used during the FFT calculations in order
to make the sample length longer, making it easier to detect peaks. The modified
periodogram and the Welch method both used a Hanning window and different num-
bers of windows were implemented for Welch; 2, 4 and 8. The cross-spectrum was
computed between the respiratory and HRV data, and the coherence spectrum was
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thereafter calculated. For each segment, the cross-spectrum was divided into LF (low
frequency, 0.04 - 0.15 Hz) and HF (high frequency, 0.15 - 0.4 Hz) while the rest of
the spectrum was discarded. Each participant had their HF and LF powers summed
up over all segments, for each estimation method separately. This resulted in a total
of three HF values and three LF values per participant.

3.3 Regression analysis

Three covariates were used in the regression analysis; age, BMI, and sex. Previous
research indicated that a linear relationship between HRV and the covariates was to be
expected which was the motivation for a multi-linear model. To ensure that there were
no correlations between the covariates, a correlation coefficient was calculated prior
to the analysis which showed no correlation between the covariates. A total of seven
regression models were tested and the p-values and the coefficient of determination,
R2, were considered in the process of determining whether the models should be
rejected or not. The significance levels considered were 0.1, 0.05, 0.01 and 0.001,
denoted as ,* **, *** respectively in the tables in the next section.
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4 Results and discussion

4.1 Spectral analysis

To determine which time interval ∆t yielded the best results, 3 aspects were consid-
ered; stationarity, performance for the different estimation methods, and performance
of the Welch squared coherence spectrum. In the earlier segments (beginning of the
chirp breathing task), a more stationary behavior was observed for ∆t = 15, 30 s than
for ∆t = 60 s, while ∆t = 15 s was determined to be the most stationary for the later
segments.

Before evaluating the performance of the different estimation methods, the Welch
method had to be configured. To decide how many windows, K, should be used,
K = 2, 4, 8 were tested. For K = 8 it was nearly impossible to detect peaks in the
cross-spectrum while for K = 2 the resulting cross-spectrum was very similar to those
obtained using the periodogram and modified periodogram. Therefore, K = 4 was
chosen together with a 50% overlap, which is customary. This resulted in a window
length of 6 seconds, 24 samples. This was then used for all subsequent calculations.

The different time intervals had a similar effect on all of the different estimation
methods and their respective cross-spectrum. The peaks got narrower, the longer
the segments became and the value of the power decreased as the time intervals got
shorter. This can be observed by comparing Figure 5 and 6 below. Note that for all
figures, the middle segment of the same participant is shown.

Figure 5: Periodogram cross-spectrum,
normal and log scale with ∆t = 15 s.

Figure 6: Periodogram cross-spectrum,
normal and log scale with ∆t = 60 s.

The Welch coherence spectrum was also greatly affected by the different time intervals.
For greater values of ∆t, the squared coherence spectrum had an irregular behavior
and no clear dependence on frequency, as can be seen in Figure 7.
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Figure 7: Welch squared coherence spectrum for ∆t = 15, 30, 60 s.

The coherence spectrum for ∆t = 15 s gave some noteworthy result with respect to
the LF and HF intervals. For the middle segment, κ2

xy varied between 0.5 and 1 for the
LF interval (0.16 to 0.6 Hz), indicating a strong dependence for most of the interval.
For the HF interval (0.6 to 1.6 Hz), however, κ2

xy varied between 0 and 0.5 indicating
some dependence between the respiratory signal and HRV. The same effect, but not
as strong, was observed for ∆t = 30 s whereas ∆t = 60 s showed no clear dependence
for either interval. The results indicated that ∆t = 15 s was preferable, but it should
be noted that the Welch method is less efficient at detecting peaks, which may have
caused the coherence spectrum to show greater dependence for lower frequencies than
what should be expected. Nonetheless, we still conclude that ∆t = 15 is the most
appropriate time interval to choose considering the coherence spectrum.

The chirp breathing task meant that the participants were breathing faster towards
the end compared to the beginning. We therefore looked at average power for seg-
ments starting at different times. This was done for all time variations, methods, and
the LF/HF intervals. This showed no significant difference between the time intervals
apart from the graph becoming smoother for ∆t = 60 s in comparison to ∆t = 15 s.
All three methods generated similar results, with the exception of the Welch average
which was slightly lower than the other two during the LF interval and slightly higher
during the HF interval. The graphs also showed that the average Welch powers got
closer to the other two estimates as ∆t increased. The LF powers decreased as the
time increased whereas the HF powers increased, both were consistent with literature
as can be seen in the figures below.
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Figure 8: Average LF power as a func-
tion of the start time of each segment,
for all three methods, ∆t = 15 s.

Figure 9: Average HF power as a func-
tion of the start time of each segment,
for all three methods, ∆t = 60 s.

Three estimated cross-spectrum, of a random participant, are shown in the Figures
10, 11 and 12. The main noticeable variation was the differences in the widths of the
peaks around 0.16 Hz, their ruggedness, and their heights since the Welch peak was
lower than the other two. Logarithmic scales are included to highlight behavior in
the HF interval.

Figure 10: Periodogram cross-spectrum,
the middle segment for one of the par-
ticipants at ∆t = 15 s.

Figure 11: Modifed periodogram cross-
spectrum, the middle segment for one of
the participants at ∆t = 15 s.

Figure 12: Welch cross-spectrum, the middle segment for one of the participants at
∆t = 15 s.
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There was a strong resemblance between the Periodogram and the Modified peri-
odogram as can be seen in Figures 10 and 11, whereas the Welch method behaved
differently. This qualitative resemblance is quantized in the table below.

Table 1: Average powers for ∆t = 15 s.

Periodogram (10−3) Modified Periodogram (10−3) Welch (10−3)

Low Frequency 6.05 6.07 3.96
High Frequency 3.83 4.25 4.44

The HF powers had similar values for all three methods while a significant differ-
ence was observed for the LF powers. Powers of the periodogram and the modified
periodogram were very close while the Welch method had a much lower value. The
difference between these powers was most likely due to the peak of the cross-spectrum
being lower in Welch than for the other respective methods, as can be observed in
Figures 10, 11 and 12.

4.2 Regression analysis

4.2.1 Covariates

Three covariates were chosen for the regression analysis but they had to be evaluated
in order to discard any bias or internal correlation. Evaluating the bias was done by
examining the different distributions of the covariates, such as age distribution for the
two sexes. This was done in order to determine that, for example, not all females were
young and all males old. If that had been the case, then the results may have been
influenced negatively and sex would therefore not be a suitable covariate to choose.
However, none of the covariates showed any prior bias and example can be seen below
between age and sex.

Figure 13: Age distribution for the two sexes.

The average and median age for the respective sexes strengthen the above results due
to them being close. The average ages were 30.72 and 28.34, and the median ages
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were 27 and 25, for males and females respectively. It was shown that females tended
to have lower BMIs than males but that should not cause any bias since healthy adult
males tend to have a higher BMI’s than healthy adult females [17]. The calculation
of the correlation coefficients showed no strong correlation, as can be seen in Table 2.

Table 2: Correlation between the covariates.

Age : BMI Age : Sex BMI : Sex

0.154 0.126 0.315

The value between BMI and sex is greater than when they were compared individually
with age, which is in agreement with previous statements. The correlation might be
of interest for the later regression analysis however, and was therefore noted, but not
sufficient enough to be discarded.

4.2.2 Results

All regression models were calculated for all three time intervals ∆t = 15, 30, 60 s. A
majority of the models were rejected due to low significant levels in combination with
low R2 values. The only model which was not rejected was the simple regression model
for age, at a significance level of less than 0.001. This was true for all values of ∆t
which only strengthen the dependent relationship between age and HRV, presented
in Section 1.1. The age regression results for ∆t = 15 s can be seen in the Table 3.

Table 3: Final age regression model for ∆t = 15 s.

Method β0 (10−3) β1 (10−3) p-value β1 R2

Periodogram LF 11.6 −0.19 3.56 · 10−5 *** 0.165
Periodogram HF 6.97 −0.11 21.8 · 10−5 *** 0.135
Modified periodogram LF 11.6 −0.19 3.24 · 10−5 *** 0.167
Modified periodogram HF 7.78 −0.12 16.3 · 10−5 *** 0.140
Welch LF 7.6 −0.12 4.28 · 10−5 *** 0.162
Welch HF 8.3 −0.13 8.34 · 10−5 *** 0.151

The result of the age model for ∆t = 30, 60 s showed very similar result to those in
Table 3, implying yet again that age is highly correlated with HRV. Furthermore, all
R2 values were low which in turn meant that the models did not account for most of
the inherent variance. This can be seen clearly in Figures 14 and 15.
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Figure 14: LF power as a function of age,
∆t = 15 s, for the modified periodogram
and the associated regression model.

Figure 15: HF power as a function of age,
∆t = 15 s, for the modified periodogram
and the associated regression model.

There was a great variation in power for participants between the ages of 20 to
35, which may have been why the model was unable to account for the inherent
variations. The obtained powers varied greatly between participants, for all methods,
and the average powers may, therefore, have been misleading. In order to highlight
this difference, the highest and lowest LF and HF values will be presented. The
minimum and maximum values differed by a factor of 1000, as can be seen in Table
4, indicating that there may be something else influencing the results.

Table 4: Differences in the value of power for ∆t = 15 s. All values scaled by 10−3.
Periodogram Modifed periodogram Welch

Min Max Difference Min Max Difference Min Max Difference
LF 0.14 18.8 ∆18.7 0.13 18.6 ∆18.5 0.096 12.5 ∆12.4
HF 0.23 13.1 ∆12.9 0.22 13.7 ∆13.4 0.17 14.3 ∆14.2

During the analysis, all models based on either BMI and/or sex were rejected, which
was inconsistent with the background information in Section 1.1, this will be dis-
cussed later. BMI was chosen as a covariate since it can be used as a measurement
to determine if an individual is in a good health and HRV is known to be linked to
individual health.

Table 4 showed a great variance between the powers, even within the different LF and
HF intervals, which may be one reason why BMI and sex were not suitable covari-
ates. Results which vary as much as these did, tend to imply that there may be other
underlying factors present. All participants were interviewed about their individual
stress-levels which showed high variations among the participants. Previous studies
have shown that psychological disorders influence HRV, indicating that if some par-
ticipants experienced much stress, that may have masked other ”simpler” covariates
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such as BMI and sex. These ideas are only hypotheses however and needs to be ana-
lyzed further in future studies but might have been a reason for the large differences
and rejections of the models. Nonetheless, stress was not a covariate of interest in this
analysis and the possible influences stress might have had on the results can therefore
only speculations. Furthermore, age appeared to have had a stronger correlation with
HRV than the other covariates, resulting in the age model not being rejected.

On the other hand, BMI and sex might have been unsuitable covariates because
the methods used were not suitable for this data set. All spectral analysis methods
assumed stationarity which could have lead to results which complicated the regres-
sion analysis. Using non-stationary methods may then give different results, in which
BMI and sex are suitable covariates. In addition, combinations of several covariates
may sometimes help to bring out relations between covariates which would be hidden
otherwise. If such a covariate exists for either BMI or sex, then the lack of that co-
variate may have lead to inconclusive results. Changing the mathematical methods
might, therefore, give different results.

A noticeable difference between the LF and HF intervals were the general results
obtained. Evaluating all values of ∆t showed that the LF models had lower signifi-
cance levels throughout, which may have been a result of RSA influence. As RSA is
known to be reflected in HF intervals, and only present in youngsters, then that may
have led to nonconforming results, since the regression analysis involved both young-
sters and older participants. RSA is not reflected in the LF interval and is thereby
not a problem for a varying age range. Conclusively, the LF models might have had
higher significance levels because there were fewer inconsistencies in comparison to
the HF interval as, based on the RSA influence.

Choosing an appropriate value for ∆t was difficult because all time intervals yielded
more or less the same result. One method to compare them was to look at how the
estimated parameters related to the average power. All values of ∆t showed that β1

was ≈ −3% of the average power for the respective method and time interval. This
implied that all estimations had roughly the same relation between their powers and
the estimated age coefficients. Additionally, it was observed that the LF estimates
had a higher percentages than the HF estimates which was in concordance with there
being a difference between the two intervals. This is specified further in Table 1.
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Table 5: The estimated ratio between the estimated age covariate coefficient and the
average power for ∆t = 15, 30, 60 s.

Average power (10−3) Estimated β1 (10−3) Percentage

∆t = 15 ∆t = 30 ∆t = 60 ∆t = 15 ∆t = 30 ∆t = 60 ∆t = 15 ∆t = 30 ∆t = 60

Periodogram
LF

6.05 3.26 1.57 −0.19 −0.10 s −0.050 -3.10% -3.16% -3.20%

Modified
Periodogram
LF

6.07 3.22 1.60 −0.19 −0.10 −0.052 -3.09% -3.19% -3.26%

Welch LF 3.96 2.61 1.36 −0.12 −0.083 −0.043 -3.11% -3.20% -3.25%

Periodogram
HF

3.83 3.26 1.57 −0.11 −0.041 −0.016 -2.77% -2.63% -2.38%

Modified
Periodogram
HF

4.25 3.22 1.60 −0.12 −0.045 −0.013 -2.82% -2.68% -2.35%

Welch HF 4.44 2.61 1.36 −0.13 −0.056 −0.019 -2.94% -2.68% -2.63%

Regarding the choice of ∆t, one thing was particularly distinguishable. Namely the
varying significance levels for the estimated age covariate coefficients, as age was
linearly combined with none, one or both of the other covariates. All significant levels
were lower than 0.001 for ∆t = 15 s whereas the other two ∆t had higher significance
levels. Conclusively, combining this with the results obtained in the spectral analysis
yielded the conclusion that ∆t = 15 s was the most appropriate time interval to
choose.
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5 Conclusions

This thesis has focused on processing and analyzing a data set obtained from 97 indi-
viduals, where their heart rate and respiratory signals were measured. Several factors
were also noted and age, BMI, and sex were chosen to be the main focuses of this
thesis. Two parts were considered, spectral analysis and regression analysis. Spectral
analysis was done with three different methods; the periodogram, the modified peri-
odogram, and the Welch method. Multi-linear regression was used for the regression
analysis.

The data was segmented in order to obtain stationarity and three different time
intervals were considered; ∆t = 15, 30, 60 s. These time intervals were used for all
calculations in both analyses and it was finally concluded that ∆t = 15 s was the
most appropriate to choose. Reasons for this included the effects on stationarity, the
performance of the estimation methods, the Welch squared coherence spectrum and
the significance levels of the regression models.

The three methods did not vary greatly in the estimations they provided. For the
LF interval, the periodogram and the modified periodogram showed similar powers
for all ∆t, whereas the Welch power was significantly lower. During the HF interval,
however, all methods generated approximately the same power, where the highest
power was obtained by the Welch method. Deciding the best estimation model for
this data set was thereby not as straight forward as choosing ∆t. All estimations,
regardless of method and time difference, indicated an increase in frequency as time
increased. During the HF interval, however, the Welch method delivered the lowest
p-values and highest R2 for all ∆t and was therefore chosen. For the LF interval,
all methods had similar p- and R2 values, although the modified periodogram had a
slight edge and was therefore chosen.

The age regression model was the only model which was not discarded. Some differ-
ences were shown for different values of ∆t but ∆t = 15 s showed the most preferable
result. More specifically, ∆t = 15 s had the lowest significance levels for all methods
and for both the LF and HF interval.

Performing analysis based on HRV related data is a noninvasive method to obtain
information on different physiological aspects. This can in turn help to identify and
prevent both physiological and psychological disorders which is beneficial in many
fields. In this analysis, we investigated how age and HRV relate to one another. De-
spite not being able to draw conclusions about the correlation between HRV and BMI
and/or sex, the results indicated that stress might be a covariate of interest in future
studies. A possible improvement is, therefore, to do a new analysis with stress as a
covariate. Another possible improvement would be to change the mathematical meth-
ods and models. The spectral analysis could consist of non-stationary or parametric
methods such as ARMA, and the regression analysis could use either more covariates
in a multi-linear model or perhaps a different model, i.e. a model with correlated
covariates or a quadratic model. Nonetheless, age was significantly correlated with
HRV, with p< 0.001.
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