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Abstract

Self-Organizing Network (SON) functions include self-configuration, dy-
namic optimization and self-healing of networks. In the era of 5G, mobile
operators are increasingly exploring areas of SON through Machine Learn-
ing (ML) techniques. It is seen that 5G packet switched networks are
often hit with radio link failures, an important Key Performance Indicator
(KPI). Reasons for a dropped call ranges from a failed handover to cover-
age/capacity issues. In current networks, such issues are resolved by KPI
analysis, but these metrics are not always service/user specific. The aim
with this master’s thesis work is to investigate how well ML techniques can
be applied to predict a call drop in real-time networks.

In the thesis, ML techniques, namely neural networks and logistic re-
gression were used to classify the link status. Initially, the parameters which
characterize a link connection, e.g. the Reference Signal Received Power
(RSRP), Block Error Rate (BLER) and similar parameters were investi-
gated. This was followed by applying ML to the selected parameter(s) and
classifying a bad link (with failure) from a good link (without failure), this
was the first phase of the thesis. The next phase was forecasting a radio link
failure before one occurs. This forms phase two of the thesis and the start
of the self heal process where, counter measures could be taken to avoid a
radio link failure. Counter measures for self-healing was not covered in the
thesis. This thesis only focuses on phase one and two of predicting a radio
link failure.
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Popular Science Summary

Today with the increasing use of cellular networks, there’s an expected
sharp increase in network traffic. An interesting fact is that phone calls
are getting longer. Call drops i.e. calls that are ”dropped” (terminated)
without any of the parties intentionally interrupting the calls are commonly
experienced in networks. Avoiding call drops helps improve quality of ser-
vice. Self organized network is a technology which helps simplify complex
networks and ensures better service. Machine learning plays a key role in
it. With human limitations in place, machine learning, a subset of artificial
intelligence helps to visualize behaviours and see patterns beyond human
recognition.

In the thesis, machine learning approaches are used to predict a radio
link failure. A network may transfer (hand over), a user connection from the
current cell to another cell, so that the user terminal will experience higher
signal strength. This process is called a handover and an interruption here
causes radio link failure. So it is important to minimize radio link failure in
cellular networks for a better user experience. Deteriorating signal strength
is one of the key indicators investigated in the thesis in determining a radio
link failure. Real time data from live networks may seem unpredictable but
machine learning approaches discussed in this thesis helps predict whether
a connection would experience a link failure or not. There are a number
of parameters causing a link failure, these parameters are inputs to the
machine learning models and the result is a classified output which is - link
failure or not. This thesis also involves a time series analysis which helps
forecast a radio link failure much ahead of time. If a failure is forecast, it
is possible to take counter action and prevent the same, this forms parts
of the self healing process. This thesis mainly focuses on the classification
and forecast of a radio link failure.
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Chapter 1
Introduction

1.1 Background and motivation

By the end of 2019, there were over 13 million 5G subscribers globally and
by the end of Q1 2020, about 10 percent of 4G operators launched 5G
networks [1]. 5G is not just another faster G but it is a platform for next
generation technology standard for cellular networks. One important factor
is to not only focus on use cases but also zoom in on relevant use places.
Ensuring coverage would mean avoiding Radio Link Failure’s (RLF’s). Es-
tablishing good coverage also helps innovate network deployment strategy
and it’s then possible to build networks with precision. Customer satisfac-
tion is the result of a well planned deployment.

Technology is the key to global economic and sustainable development.
As a part of current trends with a 5G boost, the information and com-
munications technology industry is clearly driven by intelligent algorithms
which helps visualize beyond ordinary solutions. 5G is the theme for 2020
with a clear ramp up of device numbers, emerging early use cases and new
technologies such as ML, gain traction.

Arthur Samuel, the pioneer of ML defines machine learning as an ap-
plication of artificial intelligence that provides systems the ability to au-
tomatically learn and improve from experience without being explicitly
programmed. There has been research where ML modeling is chosen for
data centric networks [2]. However, there is no extensive research done on
whether ML would be a good choice in predicting and healing a call drop
in comparison to the traditionally prevalent solutions. Hence we aim to
investigate this in the thesis.

1.2 Purpose and aims

With millimeter wave (mmW) frequencies, the problem of RLF is more
prominent. This is because the high frequencies do not penetrate surfaces
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2 Introduction

easily making it prone to link failures.
Initially the thesis aims at finding parameters which characterize a link

connection, for e.g. the Reference Signal Received Power (RSRP), block
error rate and similar parameters. The aim with this master’s thesis work
is then to investigate how well ML techniques can be applied to predict and
heal a call drop in packet switched networks. Ultimately, predicting link
failures would help build stable, high quality networks, as expected from
5G.

1.3 Methodology

Trouble Reports (TRs) indicating radio link failures were evaluated in com-
parison to normal reports with no reported radio link failure. Evaluating
TRs was found to be insufficient to observe transitions in a call leading to a
radio link failure. So, there was a need to run simulations. The simulations
were performed using an Ericsson simulator named Redhawk, which sim-
ulates radio link failure scenarios. Data for ML were collected by running
these simulations.

The common set of characteristic parameter(s) of radio link failure’s
were found from the logs. ML was then applied to the selected parameter(s)
to observe how well ML classifies a bad link with failure from a good link.
This classification forms the first phase of the thesis. The second phase
was forecasting a radio link failure. In the thesis, a time series analysis was
performed on the chosen parameter(s) to forecast a RLF. The time series
model would forecast a link failure much ahead of time thus helping to
prepare for poor network conditions. Refer figure 1.1 for the block diagram
denoting the two phases.

1.4 Limitations

Once RLFs are forecast, fast recovery measures would help in overcoming
the RLFs. A possible third phase should include a ML algorithm, which
would help “self-heal” RLFs. The ML algorithms would be trained to avoid
bad link scenarios and this aids in self-healing. The thesis is limited to phase
one and two alone. The third phase would be more of an ambitious aspect
of the thesis but is left for future work.

1.5 Related work

The author explored several literature sources related to machine learning
and RLF. Increased call drops were observed in the summer months [3].
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Figure 1.1: Block diagram of the two phases in this thesis

Time series models were used to study the behaviour of radio links dur-
ing summer. This report also involved a detailed study of the dynamics
that affect the performance of mobile communication networks (KPIs for
example). The authors of the report found that RSRP was one of the most
important feature for explaining variation in Dropped Call Rate (DCR)
over time. The authors however collected data from public data reposito-
ries and not from live networks or simulations. This makes the results less
effective to see patterns in real-time network.

In another report, deep learning based link failure mitigation techniques
and ML models were proposed [4]. Signal level and quality measurements
like RSRP, reference signal received quality, signal to interference plus noise
ratio were the parameters investigated. Advanced ML models were used to
classify a bad link from a good link. The authors however ran a simulation
which involved only one scenario with a user moving along a straight line,
while in reality it is possible to have multiple scenarios.

Tutorials on beam management in NR along with beam management
procedures like P1, P2,P3 have been described in the references [5][6]. NR
fundamentals required for the thesis was found in the book [7]. Detailed
study of Neural network fundamentals can be found in [8][9]. These article
provide sufficient information for understanding the various algorithms used
to train neural networks and optimization techniques.
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1.6 Challenges

One of the main challenges was to get relevant RLF occurring logs (con-
taining relevant parameters) which would be the data for the ML model
to train on. Another challenge was to choose an apt ML algorithm that
meets our purpose. Live network data is currently not used for real-time
predictions. The areas of 5G RLF predictions using ML remain unexplored
and this means that there is a dearth of existing techniques to build upon.



Chapter 2
Technical background

2.1 Beam Management

To interpret parameters that characterize a link connection it is important
to understand beam management. The ultimate task of beam management
is, to establish and retain a suitable beam pair, i.e., a transmitter-side beam
direction and a corresponding receiver-side beam direction that together
provides good connectivity [7]. In NR, the signal reporting are based on
either Synchronization Signal (SS) or Channel State Information (CSI) ref-
erence signals. Many radio products have a fixed number of wide beams,
these wide beams also include a fixed number of narrow beams [6].

P1, P2, P3 are important procedures designed for beam management.
The User Equipment (UE) measurements from these procedures are rele-
vant to the thesis. UE is a mobile device used by an end user to commu-
nicate. gNodeB (gNB) is a terminology used in 5G for base transceiver
station. P1 is the initial beam selection process. The gNB broadcasts
SSBs [6]. The SS Block (SSB) beams are also called wide beams. The UE
measures and selects a suitable beam and reports it to gNB.

P2 involves beam refinement and beam tracking for transmitter (gNB).
In beam refinement the gNB transmits CSI reference signals (CSI-RS). The
UE measures them and reports Reference Signal Received Power (RSRP)
for CSI-RS. The gNB then selects a narrow beam and starts transmitting
to the UE on the selected narrow beam. Beam tracking involves switching
narrow beam as the UE moves. After beam refinement if the preferred
CSI-RS resource changes, the gNB updates the selected beam and starts
transmitting to the UE on the updated beam. Beam tracking between wide
beams: the gNB transmits SSBs and the UE measures the SSB and reports
RSRP for the SSB.

P3 involves beam adjustment for receiver (UE). The gNB fixes a beam
and a beam sweep is performed on the UE side on reference signals. The UE
measures and selects the best beam and uses the best beam for subsequent

5



6 Technical background

receptions. However, the UE does not report back to the gNB unlike in P1
and P2 [6]. Refer figure 2.1 for beam management processes.

This thesis is limited to using SSB RSRP measurements.

Figure 2.1: Beam management

2.1.1 Report configuration - Reference Signal Received Power (RSRP)

RSRP is the key indicator of the signal strength in 5G networks. The gNB
transmits reference signals to the UE, the UE then measures the power
in the received signal and reports back to the gNB. These reports of the
received power are known as RSRP and are required when performing cell
selection or handover. RSRPs are reported using the logarithmic power
unit, dBm. The RSRP measurements are made on Cell-specific Reference
Signal (CRS) in LTE (according to 3GPP TS 36.211). As mentioned in the
above section, the RSRP reporting in NR are based on either SS or CSI-RS
[7]. The CSI-RS measurements are made on the narrow beams where the
traffic payload is transported.

2.1.2 Radio Link Control (RLC) retransmissions

The RLC protocol layer is a layer 2 protocol. It is located above the Medium
Access Control (MAC) layer and below the Packet Data Convergence Pro-
tocol (PDCP) layer [8]. RLC, MAC and PDCP are user plane protocols.
The data entity from/to a higher protocol layer is called Service Data Unit
(SDU) and the entity from/to a lower protocol layer entity is called a Pro-
tocol Data Unit (PDU). RLC protocol delivers SDUs from PDCP layer to
the RLC entity in the receiver. The RLC entity handles segmentation of
SDUs, RLC retransmissions and duplicate removal [7]. In the following
part, the focus is mainly on RLC retransmissions as it is used in the thesis.

Retransmission of missing PDUs is one of the main features of RLC.
The RLC retransmission procedure ensures the delivery of error-free data
to the higher layers [7]. This error-free delivery is possible because a se-
quence number is assigned to each SDU header. On evaluating the sequence
numbers of the received PDUs, it is possible to detect the missing PDUs
and request a retransmission [7].
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RSRP and RLC retransmissions were the two input features for the
machine learning models. The machine learning approaches used in this
thesis are further described in chapter 3.

2.2 An overview of the simulator

New Radio (NR) services like low-latency and ultra reliable communication
are emerging. To keep up with the requirements it is important to have
good link connections. Call drops are usually caused by RLFs, which can
be detected by the UE [9]. In principle, RLF occurs when a device moves
out of coverage from a currently serving cell. In this case there’s a need to
re-establish the connection to a new cell or sometimes even a new carrier
[7]. With ML, data is the key and like mentioned in the previous chapter,
there was a need to run simulations to collect data and create a data set for
ML. A data set is a term used to refer to a collection of data used for ML.
The simulations were performed on an Ericsson simulator named Redhawk.
The simulator was capable of generating high band traffic. The simulator
already had a RLF occurring setup in place. The mobility enabled setup
operated at mmW frequency (28 GHz), had a bandwidth of 200 MHz and
had beam management. More changes were added in this basic setup to
observe more RLF behaviours to build on.

2.3 RLF triggers as observed on the simulator

The Radio Resource Control (RRC) is a control plane protocol defined
in 3GPP. One of the functions of RRC protocol is to control the RRC
connection which is responsible for the communication between UE and
gNB, along with setting up bearers and mobility [7]. Signaling Radio Bear-
ers (SRBs) are used to transmit the RRC messages to the UE. The SRB
is initially mapped to the common control channel during establishment
of connection. Later, on establishing a connection, the SRB is mapped
to the dedicated control channel[7]. Data Radio Bearer (DRB) is used
to carry data related to Evolved Packet switched System (EPS) bearers.
’EPS Bearer’ is a pipe line through which data traffic flows within EPS
[10]. Proper SRB and DRB’s RLC retransmission parameter settings can
improve mobility performance [11].

In NR, the devices can be in three states viz. RRC CONNECTED,
RRC INACTIV E, RRC IDLE states. In the connected state, data
transfer is possible as the RRC context is established, connection to the
core network is also established. If the UE discontinues the RRC connec-
tion, there is no connection to the core network, the RRC context is not
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established, and the UE further progresses to RRC idle state [7]. In the
RRC inactive state the RRC context is established and connection to the
core network is also established. However no data transfer is possible. If a
RLF occurs, the UE loses connection.

Listed below are the most common RLF triggers on the simulator.

• RLC delivery failure DRB - maximum number of transmissions reached.

• Delivery failure SRB - maximum number of transmissions reached.

• Random access channel failure - maximum number of preamble trans-
mission attempts reached.

• Downlink out of synch detected in Layer 1.

• Handover procedure timed out.

The most commonly encountered RLF trigger in this thesis was : exceeding
the maximum number of RLC retransmissions on DRB. The RRC connec-
tion reestablishment procedure gives the UE an option to try to re-connect
if an RLF occurs. In a connected state, the device does not get to decide
about handovers. It makes a decision based on the relative power of a
measured SS block compared to the current cell, the device reports back
the measurements to the network. The network then makes a decision as
to whether or not the device is to handover to a new cell. This reporting
is done using RRC signaling [7]. From the NR spec, the timer T310 was
triggered everytime a link goes bad. In the simulator, the parameter named
”ueRadioLinkFailureTimeT310” was set to 1000 ms. These are timers used
by the UE in RRC CONNECTED, RRC IDLE case. This timer played
a key role in labelling the data set for ML. Details on the ML approaches
used are described in the next chapter.

2.4 User scenarios

Inorder to collect data for ML, three different realistic user scenarios were
created using simulations on Redhawk. For the sake of simplicity, the
author chose to have a UE mounted on the centrally located base station.
Refer figures 2.2, 2.3 and 2.4.

On the simulator, one of the parameters named ”lossProbabilityFunc-
tion” gave an option to choose between different propagation models like
Spatial Channel Model (SCM), line of sight model etc. It represents the
path loss experienced by the signal between the base station and the UE.
This function was set to ”none” initially, but was changed to SCM later
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in the simulation so as to build the SCM user scenario. Following are the
three distinct user scenario specifications.

1. SCM -π/4 mover

• Cell radius = 100 m.

• ”lossProbabilityFunction” set to SCM.

• UE moves straight in an angle = -π/4 (with reference to the x-axis)

• Number of UE = 1.

• Number of sites = 7.

• Number of sectors per site = 3.

Figure 2.2: User scenario - SCM

2. Circular mover - low speed

• Cell radius = 225 m.

• Number of UE = 1.

• Number of sites = 7.

• Number of sectors per site = 3.

• UE moves in a circle.

• UE speed 0.833 m/s (moves slowly)

3. Straight mover - increased Speed
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Figure 2.3: User scenario - circular mover

• Based on circular mover scenario.

• Number of UE = 1.

• Number of sites = 7.

• Number of sectors per site = 3.

• UE moves in a straight line along the x axis, positive direction.

• UE speed increased from 0.833 m/s to 10 m/s.

Figure 2.4: User scenario - straight mover
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2.5 Log specifications

With the help of the simulator it was possible to have a deployment with
7 sites and 3 sectors per site. Thus a total of 21 cells were present in
the data logs collected by running the above three scenarios, starting from
”cellIndex” 0-20. Each of these cell indices had 12 ”beamIndex” i.e. wide
beams. Refer figure 2.5 The author was interested in analyzing the RSRP
of the wide beams (SSB beam) that the UE measures as the best wide
beam, on the current serving cell.
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Figure 2.5: A snip of the log files showing 12 ”beamIndex” i.e. wide
beams

In the simulator, the “bestRsrpLog” was enabled, which reported only
the best wide beam RSRP of each cell. The parameter ”bestCellIndex” is
made up of the cellId 1-21 and wide beam index 1-12. Thus there were 21
”bestRsrp” logs at every point in time the wide beams were measured. It
was possible to keep track of which cell the UE was in and then choose the
RSRP related to that cell. It is assumed that the UE was on the best wide
beam.

In the log file for the SCM scenario, two RLFs occurred at 1.5 and 3.4
seconds. Figure 2.6 shows the RSRP of the best SSB beams when RLF
occurred. The RLC retransmissions were usually followed by a RLF. In
some cases, there are retransmissions but the link recovers and the retrans-
missions are not followed by RLFs.
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Figure 2.6: RSRPs of different SSB beams when RLF occured

RSRPs of the three user scenarios

On plotting the best wide beam RSRPs (see figures 2.7, 2.8, 2.9) of all the
three user scenarios, the RSRP levels were initially low for about a second
but eventually start improving. This is because the UEs were placed right
on top of the central base stations as seen previously. In the circular mover
scenario (figure 2.8) the UE moves with a very low speed hence there is
little fluctuations in the power levels.

Figure 2.7: RSRP for the SCM scenario
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Figure 2.8: RSRP for the circular mover scenario

Figure 2.9: RSRP for the straight mover scenario



Chapter 3

Machine Learning Approach - Phase 1

3.1 Introduction to Machine learning

Machine Learning is an application of Artificial Intelligence (AI) for a future
with 5G and beyond. It allows 5G networks to be more predictive in real-
time. Machine learning promises to assist ICT developers to study traffic
data, detect security threats and predict behaviour of networks. Because of
this, ML enabled networks can become self-organizing, self-optimizing and
self-healing. ML is broadly classified as unsupervised learning, reinforce-
ment learning, and supervised learning.

3.2 Unsupervised Learning

In contrast to supervised learning, the unsupervised learning does not in-
clude pre-labeled outputs. This means there are no expected outputs or
targets assigned. The model looks for patterns and learns from these pat-
terns with minimum supervision. Hence the name unsupervised learning.

3.3 Reinforcement learning

Another branch of machine learning is the Reinforcement Learning (RL)
which is seen as the science of optimal decision making. Similar to unsu-
pervised learning, the reinforcement learning doesn’t have a supervisor, but
has a reward signal a.k.a feedback signal. The goal in RL is to maximize
positive rewards through interaction between agents and environments [12].
In terms of RL, agent is represented as the brain who controls with the help
of algorithms. An agent is able to take actions or influence its environment
(data) and collect rewards. The agent gets both the observations and the
reward coming in, thereby decision is made.

15



16 Machine Learning Approach - Phase 1

3.4 Supervised Learning

The goal of supervised learning is to learn and develop predictive models
(rules) based on input and output relationship. Labeled data (usually ac-
tual outputs) are provided to help the learning process and enable a model
to behave in a certain way, hence the name supervised learning. Refer figure
3.1. This thesis is based on supervised learning, as labeled data is used.

Figure 3.1: Block scheme of supervised learning process, showing
the output dataset being provided to the input dataset for train-
ing purpose

3.5 Choosing an apt ML model

A significant finding in ML is that no single ML model is ideal or suitable
for all problems [13]. The data is the key here and the performance of ML
models also depend on a number of other parameters for instance, the use
case, problem defined and the dimensions (number of input features) of
the data set. Hence it is a good practice to compare the performance of
different ML models to the most suitable one that fits the problem defined.

3.6 Artificial Neural Networks

There are three main types of Artificial Neural Networks (ANN), they are :
Multi-layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs). We now discuss MLP in detail as
it is used in this thesis.
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3.7 Multi-layer Perceptrons

The multi-layer perceptron model was used for binary classification in this
thesis. Since there’s no single ML model that is suitable for all problems,
another supervised learning model namely logistic regression was investi-
gated for comparison sake. Both the models are discussed further in this
chapter. Multi-layer Perceptrons (MLPs) also known as deep neural net-
works are the most classical Neural Networks (NN). MLP is a supervised
learning model which consists of an input layer, hidden layer(s) and output
layer(s) connected by weighted connections.

The input is usually a vector multiplied by weights and added to a bias.
Refer equation 3.1. Hidden layer(s) are the layers in between the input and
output layers. Each of these layers consists of neurons or nodes. Typically,
a neuron calculates the weighted average of its input, and this sum is passed
through a nonlinear function, a.k.a activation function. The bias added to
the input vector and weights, shifts the activation function by adding a
constant to the input. Bias also makes it possible to fine-tune the output
of the MLP.

Consider m as the number of dimensions for input. Given a set of
features (input), X = x1, x2, x3...xm and a target (output) Ŷ , MLP has the
ability to learn the mapping between the output and the input. The model
learns this mapping using an algorithm called back-propagation. Back-
propagation adjusts the weights of the connections in a way to minimize
the difference between actual output and desired output [14]. It also keeps
on updating the weights repeatedly (learning process). As mentioned in the
previous chapter, RSRP and RLC retransmissions were the two features
(inputs) provided to the MLP model. MLP is suitable for a classification
problem as in our case [15].

The hidden nodes in MLP are labeled as, h = h11, h
1
2, h

1
3...h

1
n. These

hidden nodes have superscript one as they represent the first hidden layer.
i.e. h11 represents the first node of the first hidden layer and so on. Similarly,
the weight set for the first hidden layer is W 1 = w1

1, w
1
2...w

1
m. As mentioned

previously, the general equation is given by a dot product summation of
the weights, input and adding a bias to it.

z =

m∑
i=1

wixi + bias (3.1)

Sigmoid activation was the chosen activation function for this thesis. It
is defined as a smooth nonlinear function that is monotonically increasing
and has an S shape [18]. The activation function is given by,

σ(z) =
1

1 + e−z
(3.2)
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The output of this activation function is in the range 0 to 1. This fulfills
the requirement of binary classification and was hence the chosen activation
function for this thesis. More about the sigmoid function is discussed in the
next section. Further, z acts as an input to the activation function σ(z),
such that h11 = σ(z). Similarly it is possible to calculate the output for the
second hidden node within h1 i.e h12 and so on. Once all outputs of the
hidden layer(s) are calculated, they are used as inputs (call new input) to
find Ŷ . The hidden layer weights are labeled as W h. As seen before, the
new input is represented as h1 = h11, h

1
2, h

1
3..h

1
n. So the final output is the

dot product of the new input and hidden layer weights [16]. The general
equation 3.1 with xi as an input is now modified with the new input and
can be written as follows.

z =
n∑
i=1

wh1i h
1
i + bias (3.3)

From equation 3.3, the final output is:

Ŷ = f(z) (3.4)

In short, each layer of MLP is found by calculating the values of the nodes
in the previous layer and applying weights and bias. These values are then
passed to the subsequent node and so on. It is also possible for a node
to have several input weights [15]. Every node then applies an activation
function to the input weights, creating a singular value for the given node.
After the values in all the nodes (in a layer) have been calculated, the
process repeats with the next set of weights [16].

The MLP was used in the phase one of the thesis to classify a good link
from a radio link failure [17]. The performances, the prediction accuracy of
each of this model are described further in this chapter. This here completes
the method used in phase one of the thesis to classify a RLF.

3.8 Logistic regression

Logistic regression is commonly used in (binary) classification problems as
in our case. In logistic regression, the target (dependent variable) must be
a binary variable containing 1 (good radio link) or 0 (bad link) i.e. the
logistic function f(x) has two results, either 0 or 1. The logistic function
takes any real input x, where x ∈ R , and outputs any number in the range
0 to 1. The logistic function is a S-shaped curve given by:

f(x) =
L

1 + e−k(x−x0)
(3.5)
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Refer figure 3.2. There are three important parameters to note. The pa-
rameter L is the maximum value of f(x), it is set to 1 (standard). The
parameter x0 is the (x value) curve’s midpoint. The parameter k is the
steepness (logistic growth) of the curve [18]. Thus, x can be any variable
and determining x is important in understanding logistic regression.

Figure 3.2: Logistic function graph on the x-interval (-10,10)

Both the models, the MLP and logistic regression were investigated in
the phase one of the thesis to classify a bad link with failure from a good
link without failure. The performances, the prediction accuracy of each of
these models and the best pick amongst these two models are further stated
in the next chapter.



20 Machine Learning Approach - Phase 1



Chapter 4
Results and analysis - Phase 1

4.1 Neural networks

The inputs to the neural network were provided using the rolling win-
dow algorithm. Initially a window of 2 was chosen, the input rows looked
like {RSRPt0, RSRPt1, RETXt0, RETXt1}, {RSRPt1, RSRPt2, RETXt1,
RETXt2}, {RSRPt2, RSRPt3, RETXt2, RETXt3} and so on. Here RSRPt0
and RSRPt1 are the first and second RSRPs’ from the data set respectively.
This is followed by RETXt0 and RETXt1 which are the first and second
RLC retransmissions from the data set. Refer figure 4.1 for an example of
rolling window.

Different window sizes were investigated and compared. A window of
size 100 was used in the thesis for the two input features. With a window
size of 100, the number of input nodes expand to 200 instead of 4 (when
using the window size 2). Thus sampling the data set by rolling window
facilitates the generation of more training samples.

Figure 4.1: An example of the rolling window with window size 3

Each window is a training example for the neural network model to train
on. The topology of the neural network used in this thesis was similar to
figure 4.2. A total of 32 neurons in each of the 2 hidden layers were used.

The overall classification accuracy using NN was 97.5%. Refer figure
4.3. For the NN a total of 585 samples were chosen as unseen data (test
data). From the confusion matrix in figure 4.4, True Negative (TN) + True
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Positive (TP)/ False Negative (FN) + False Positive (FP) + TN + TP gives
the total accuracy percent. From the confusion matrix, it is seen that all
91 samples are true negative i.e. correctly classified as having RLF. Out
of the 585 samples, 97.1% of them were correctly classified as not having a
RLF and 100% i.e. all of the data was correctly classified for having a RLF
as seen from the confusion matrix.

Figure 4.2: NN model topology with two hidden layers

Figure 4.3: NN classification model with 97.5 % accuracy



Results and analysis - Phase 1 23

Figure 4.4: NN model confusion matrix with true and false positive
values (test data)

4.2 Logistic regression

Similar to the NN, the inputs to the logistic regression model were provided
using the rolling window algorithm, with a window size of 100. The overall
classification accuracy using logistic regression was 94%. Refer figure 4.5.
A total of 975 samples were chosen as test (unseen) data. Out of these,
96.2% were correctly classified as not having RLF and 88.8% were correctly
classified as having RLF. Refer the confusion matrix in figure 4.6.

With the data set used in this thesis, the performance of NN model out-
shines the performance of logistic regression. This is because deep neural
networks have the ability to capture and learn complex relations between
the inputs much better than logistic regression. As data sets have non lin-
earities involved, NN can deal with them easily whereas logistic regression
fails to do so. But, on the other hand NN may be subjected to overfitting
due to the use of hidden layers. Again, there are regularization algorithms
to avoid overfitting.
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Figure 4.5: Logistic regression model with 94% accuracy

Figure 4.6: Logistic regression model confusion matrix with true
and false positive rates (test data)



Chapter 5
Machine Learning Approach - Phase 2

5.1 Time series analysis

Time Series Analysis (TSA) is used for analyzing time series data i.e. data
ordered in a sequence in time. This helps in extracting useful statistics and
helps study other characteristics of the data [19]. In time series analysis,
the time is the input on the x-axis (independent variable) and the goal is
to forecast future values based on previous time series observations for e.g.
stock market forecasting.

Time series analysis were used for the phase two part of this thesis to
forecast the RSRP. There are two important aspects in Time Series (TS):
stationarity and autocorrelation in the target variable.

5.1.1 Stationarity

A time series is said to be stationary if it has constant mean and variance,
which do not change over time. There are two main reasons which make
a TS non stationary, they are the seasonality and the trend. Seasonality
is the periodic (seasonal) variations in the observations. For e.g. increase
in foliage each year during autumn. Trends denote either an increasing or
decreasing tendency of a TS data over time. Also, unlike seasonality, trends
do not repeat periodically.

To check if a TS is stationary or not, Dickey-Fuller test is performed on
the TS dataset. This test either supports or rejects the null hypothesis. The
null hypothesis states that if p > 0, the null hypothesis is supported, the
time series has a unit root and thus the process is non-stationary. If p = 0,
there is strong evidence against null hypothesis and the null hypothesis is
rejected. The process is then considered stationary as the data has no unit
root.

The TS is further made stationary by taking a ”first difference” i.e.
shifting the TS and then checking the stationarity again. If the TS still
supports null hypothesis, the process is repeated till the TS gets stationary.
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5.2 Seasonal autoregressive integrated moving average

Seasonal Auto Regressive Integrated Moving Average (SARIMA) is a model
that can fit any TS portraying non-stationarity and seasonality. It consists
of AutoRegressive (AR) and Moving Average (MA) model in combination
with order of integration (I).

For the MA(q) model, the parameter q represents the largest lag after
which other lags are insignificant [20]. The parameter q can be found from
the Auto Correlation Function (ACF) plot. To define ACF, let {yt} denote
a time series given by:

{yt} = {...yt−1, yt, yt+1, ...} (5.1)

The time series {yt} is (covariance) stationary if,

E[yt] = µ for all t (5.2)

cov(yt, yt−j) = E[(yt−µ)(yt−j−µ)] = γj for all t and j (5.3)

In equation 5.3, γj is called the jth order or lag j autocovariance of {yt}.
The plot of γj against j is called the autocovariance function [21]. The
autocorrelations (similarity between the observed samples as a function of
time lags between them) of {yt} are given as,

ρj =
cov(yt, yt−j)√
var(yt)var(yt−j)

=
γj
γ0

(5.4)

From equation 5.4, the plot of ρj against j is called ACF. Refer chapter 6
for the ACF plot.

The AR(p) model is a regression of the time series, where the current
value is based on the previous values with some time lags. It takes the
parameter p which denotes the maximum value of lag after which all other
lags are insignificant. The parameter p can be found from the Partial Auto
Correlation Function (PACF) plot. The PACF is mainly associated with
estimating the sequence of AR models [21], the AR(p) model is given by,

yt−µ = φ1(yt−1−µ) + ...+ φp(yt−p−µ) + εt (5.5)

in lag operator notation this can be written as,

φ(L)(yt−µ) = εt (5.6)

In equation 5.6, φ(L) = 1−φ1L−...−φPLp. It can be shown that the AR(p)
is stationary given the roots of the characteristic equation are outside the
complex unit circle [21]. Refer equation 5.7.
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φ(z) = 1− φ1z − φ2z2 − ...− φpzp = 0 (5.7)

The PACF is used to identify AR(p) models [22]. The estimation of the
sequence of AR models can be done as,

zt = φ11zt−1 + ε1t

zt = φ21zt−1 + φ22zt−2 + ε2t
...

zt = φp1zt−1 + φp2zt−2 + ...+ φppzt−p + εpt

(5.8)

here zt = yt−µ is the demeaned (mean-zero) data. The coefficients φjj for
j = 1...p (i.e., the last coefficients in each AR(p) model) are called the
partial auto-correlation coefficients. For an AR(p) all of the first p partial
autocorrelation coefficients are non-zero, and the rest are zero for j > p
[21]. It is possible to plot both ACF and PACF using the plot acf() or
plot pacf() functions from the statsmodels library in Python.

The parameter d is the number of differences involved so as to make the
TS stationary. Further, the seasonality component s(P,D,Q, s) is added.
Here s is the season’s length i.e. the number of points where the signal
is present as observed from ACF and PACF. The parameters P and Q
are same as p and q mentioned previously but for the seasonal component
s. Finally, D is the order of integration which is the number of differ-
ences required to remove seasonality from the TS [20]. Thus we get the
SARIMA(p, d, q)(P,D,Q, s) model.

The author wanted to check if there’s seasonality or trends present in
the TS that caused the non-stationarity and hence chose the SARIMA
model since it is known to capture seasonality well.

5.3 Long Short Term Memory

LSTM is an artificial Recurrent Neural Network (RNN) which is commonly
used for TSA. LSTM is capable of learning past data sequences (long term
memory). Similar to MLP, these models train using the back-propagation
algorithm. The architecture of LSTM comprises of three gates [23]:

5.3.1 Input gate

The function of this gate is to determine the input sequences which would
be used to modify the memory. Sigmoid activation function chooses which
values (0,1) can be let through the gates [23]. The tanh function prioritises
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Figure 5.1: LSTM

these values, which are passed based on the weightage (ranging from -1 to
1). Refer figure 5.1.

it = σ(Wi[ht−1, xt] + bi)

Ct = tanh(Wc[ht−1, xt] + bc)
(5.9)

5.3.2 Forget gate

The sigmoid function checks the previous state (ht−1) and the input(Xt)
and outputs a number between 0 (”forgets” this) and 1 (keeps this) for each
number in the cell state (ct−1)

ft = σ(Wf [ht−1, xt] + bf ) (5.10)

5.3.3 Output gate

The output is decided by the input and the memory of the block. The tanh
function is multiplied with the output of Sigmoid.

ot = σ(Wo[ht−1, xt] + bo)

ht = ottanh(ct)
(5.11)



Chapter 6
Results and analysis - Phase 2

6.1 Seasonal autoregressive integrated moving average

For the straight mover scenario, the augmented dickey fuller test p value
was found to be 0.244 as seen in figure 6.1. This supports null hypothesis
and indicates non stationarity.

Figure 6.1: Example of non-stationary process in the straight mover
scenario

For the SARIMA model, the value for p is determined by observing
the Partial Auto Correlation Function (PACF) plot, which gives p = 4.
The value of q can be found from the Auto Correlation Function (ACF)
plot, which gives q = 1. Refer figure 6.2 for the PACF and ACF plots.
The parameter d is the number of differences to make the TS stationary.
The decaying plots of ACF and PACF denote that the TS has been made
stationary.

The forecasted RSRP at 9 seconds is about -92.2 dBm. Refer figure 6.3.
The Mean Absolute Percent Error (MAPE) is a measure used to find the
accuracy of a forecast system. It is calculated as :
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Figure 6.2: Example of ACF and PACF for the straight mover sce-
nario

M =
1

n

n∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ (6.1)

Where At is the actual value and Ft is the forecast value [22]. In this
calculation, the absolute value is summed for every forecasted point in time
and divided by n, which is the number of fitted points. Using SARIMA the
MAPE is 2.43%

Figure 6.3: Forecast results for a straight mover scenario
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6.2 Long Short Term Memory

The forecasted RSRP at time 10 seconds is about -93.5 dBm. The MAPE
of predictions were found to be 2.81%. Thus the performance of SARIMA
outshines the performance of LSTM. Though LSTM learns better, the data
set involves some trends and seasons which the SARIMA seems to capture
well. In the straight mover scenario the RSRP has a seasonal pattern
occurring which has been captured better by SARIMA than LSTM.

Figure 6.4: Forecast results for a straight mover scenario
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Chapter 7

Conclusions and future work

This thesis motivated the need for investigation within the areas of RLF in
5G networks. The RLF problems are more prominent at mmWave frequen-
cies. This is because the high frequency waves do not penetrate surfaces
easily. As call drops are commonly caused by RLFs, they can be a ma-
jor problem with 5G networks hence it is important to focus on getting
high coverage in important spots. Ensuring good coverage would imply
overcoming RLF.

This thesis falls under the umbrella of SON, where self healing is a
functionality of SON. The aim with this thesis was to investigate how well
ML can be used to classify and forecast a RLF ahead in time. This forms
stepping stones for self-healing. In the networks of the future, such RLF’s
are expected to self heal. This can be done by either avoiding interference
by applying a beam switch locally or by using an antenna tilt. The angle
for the antenna tilt can be predicted by using advanced ML algorithms.

In this thesis, the author explored the two supervised learning algo-
rithms namely the NN and logistic regression. It is however possible to
investigate more ML algorithms and models to observe the behaviors. The
drawback now is big NN and large storage requirements. Reducing the
window size, means also shrinking the NN. The drawback is that storing a
long window size per UE requires loads of memory. If that can be shrunk
it is a huge gain. Especially if the performance of the NN is retained. To
take one step further, it would be a good idea to consider evaluating either
less or more neurons to see if it is possible to optimize inference but at the
same time retain performance. Here, inference is the process of using a
trained ML algorithm to make predictions.

With ML, data is the key and this thesis motivates the need for collect-
ing relevant data by running Redhawk simulations. More scenarios can be
generated by running these simulations and a data set with a combination
of several of such scenarios can be created. This is because in reality there
are several such scenarios occurring together at the same time.
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RSRP and RLC retransmissions were the parameters investigated as
triggers for a RLF as part of this thesis. More parameters like the BLER,
HARQ can be explored and intelligent machine learning algorithms that
can detect and report deviations from such ideal parameters can be used.
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