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Abstract  

Methane is a potent greenhouse gas that plays a major role in climate change.  Significant 

uncertainty exists in the estimates of emissions from natural methane sources. This uncertainty 

in data is one of the primary scientific challenges in climate model. Geological seepage 

considered as the second largest natural source of methane after wetlands and today is 

recognized as a major contributor to atmospheric methane. This work focuses on positive 

methane fluxes to the atmosphere from sedimentary basins hosting natural gas and oil 

reservoirs termed as microseepage. Microseepage contributes to the global atmospheric 

methane budget and creates large uncertainties in the global methane atmospheric budget 

estimates (sources and sinks). The global coverage of methane microseepage is unknown, and 

data available today is based on estimates. With respect to global and regional estimates, the 

level of microseepage emission was established by assuming, a priori, that the full area of 

petroleum basins in dry climate produces positive fluxes of methane into the atmosphere. This 

assumption is subject to considerable uncertainties because microseepage does not occur 

throughout the entire petroleum field area. In this context, satellite remote sensing imagery was 

used to investigation areas affected by natural hydrocarbon microseepage using knowledge and 

data-driven based approaches. Knowledge-based approaches constructed based on the 

theoretical model established from literature targeting specific minerals and surface 

manifestations. The specific mineral groups or features were determined based on their 

reflectance and absorption characteristics. Methods in knowledge-driven approach include 

Band Ratio (BR), Principle Component Analyses (PCA) with Crosta technique and Mixture 

Tuned Matching Filtering (MTMF) classification. The data-driven approach used Support 

Vector Machine (SVM) algorithm. The SVM model was purely estimated from the 

multispectral image data based on occurrence and abundance of oil and dry hole wells and 

without any prior assumption of area mineralogical assemblage. The mapped microseepage 

extent exhibit some level of consistency between all models. Results were satisfactory enough 

judged by the level of consistency realized between all models for the mapped microseepage 

extent, which indicates statistical significance. The data-driven model yields best results, the 

gain in performance from using data-driven approach as compared to knowledge-based was 

relatively small. However, the long processing steps and time in the knowledge-based 

approaches gives merits to the data driven approach. The work demonstrated the potential of 

satellite remote sensing and its analysis in mapping hydrocarbons microseepage extent on 

regional or even global scale.  

Keywords: Geography, Geographical Information Systems, Hydrocarbon Microseepage, 

PCA, Crosta, Band Ratio, MTMF, Weight of Evidence, SVM, Methane Fluxes, Remote 

Sensing, Satellite Image Classification, Earth Observation, Mineral Classifications, Machine 

Learning. 
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1 Introduction 

1.1 Background and motivation 

Methane (CH4) is a potent greenhouse gas that plays a major role in climate change. It is the 

second most important greenhouse gas in terms of radiative forcing after carbon dioxide (CO2). 

Methane is released into the atmosphere through natural and anthropogenic sources. Significant 

uncertainty exists in the estimates of emissions from natural methane sources (Etiope, 2004, 

Etiope et al., 2008, Christensen et al., 2019, Van Amstel, 2012, Turner et al., 2019). This 

uncertainty in data is one of the primary scientific challenges in climate change model. 

Geological seepage considered as the second largest natural source of methane after wetlands 

(Etiope, 2015, Tang et al., 2017), and estimated to account for 15% of global natural methane 

emission (Ciais et al., 2013). Geological sources have wider classes including mud volcanoes, 

macro and micro seepage, geothermal and marine seepage (Etiope and Klusman, 2010a, 

Etiope, 2015, Etiope et al., 2019). This work focuses on positive methane fluxes to the 

atmosphere from sedimentary basins hosting natural gas and oil reservoirs termed as 

microseepage. Drylands which are part of petroleum basins and sedimentary basins may not 

show methane uptake or sink but positive exhalation into the atmosphere ranging from a few 

units to tens of mg m²־ d¹־ (Etiope and Klusman, 2010a). Microseepage contributes to the 

global atmospheric methane budget and creates large uncertainties in the global methane 

atmospheric budget estimates both sources and sinks (Etiope and Klusman, 2010b). The global 

coverage of methane microseepage is unknown (Etiope, 2005). The data available today is 

based on estimates driven by gridded database or by extrapolating the global estimates through 

multiplying average field measurements by estimates of area covered (Potter et al., 1996, 

Etiope and Klusman, 2010b, Etiope et al., 2019). With respect to global and regional estimates, 

the level of microseepage emission was established by assuming, a priori, that the full area of 

petroleum basins in dry climate produce positive fluxes of methane into the atmosphere 

(Etiope, 2005, Etiope and Klusman, 2010a). This assumption is subject to considerable 

uncertainties because microseepage does not occur throughout the entire petroleum field area. 

Therefore a correct assessment of the natural release of methane from different oil/gas basins 

are still of great value for improving the existing source-sink balance model. Here it is propose 

to use knowledge-driven and data-driven mapping approaches based on satellite remote sensing 

to provide improved overall regional estimates of microseepage extent. Mapping the boundary 

of a microseepage can help in a better understanding of methane positive fluxes spatial 

distribution, and then facilitates for more accurate predictions of soil uptake and sink which in 

turn leads to an improved atmospheric CH4 modelling. 

Hydrocarbon microseepages from Earth’s subsurface to the surface and their chemical, 

physical and biological interactions are well documented (Brown, 2000, Etiope, 2015). The 

chemical and physical interactions have always been an area of interest to geologists in the 

field of petroleum explorations as an important driver for new hydrocarbon potential. These 

interactions are studied under surface geochemistry (chemical) and structure geology 

(physical). 
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The fluxes of gases in the atmosphere resulting from hydrocarbons microseepage were always 

ignored and considered a negligible source of atmospheric methane. Hydrocarbon 

microseepage significance as atmospheric CH4 source was initially reported by Klusman et al. 

(1998) and Klusman and Jakel (1998).  Until the fifth Intergovernmental Panel on Climate 

Change (IPCC) assessment reports (AR5) that was issued in 2013 (Ciais et al., 2013) 

hydrocarbons microseepage was only considered as minor contributor to atmospheric methane, 

and was categorized under geological seepage. More recently, microseepage from 

hydrocarbons become an area of interest to the climate change and atmospheric science 

community. 

It has been difficult to determine the extent of microseepage and the rate of methane emission 

from dry lands. Uncertainties arise due to incomplete knowledge of the actual area of 

microseepage. Accurate and more reliable estimates can be obtained by performing as many as 

possible ground measurements from many different petroleum basins (Tang et al., 2017), an 

exercise that pose lots of challenges at regional or global scales. 

Methane emission from petroleum basins in dry climate remain ill-quantified (Reay et al., 

2010, Scafutto et al., 2018, Etiope and Klusman, 2010b) despite decades of research. For 

instance, the global potential microseepage has been projected to be 7 Tg yr−1 (Klusman et al., 

2000, Klusman et al., 1998) and  25 Tg yr−1  was suggested by Etiope and Klusman (2010a). 

Recent evaluations based on grid data modelling estimated the global gridded CH4 emission 

was 37.4±17.6 Tg yr−1 with hydrocarbon microseepage account for a total of 24(±9) Tg yr−1 

(Etiope et al., 2019). The wide range of projection indicates that there is still substantial 

uncertainty of microseepage estimates. 

In this context, remote sensing methods have been modelled and tested to identify hydrocarbon 

microseepage affected areas through the characterization of spectral features of microseepage 

in image data. The objective of the study is to investigate a comprehensive integrated multi-

method approach using satellite remote sensing in an attempt to improve the success rate of 

finding a localized alteration induced by onshore hydrocarbon microseepage. Such model can 

then facilitate evaluating the contribution of every sedimentary basin to natural methane 

inventory.  

1.2 Research questions and Aims 

The global emission from microseepage remains ill-quantified proven by wide range of 

projections and conflicting estimates. The discrepancies between estimates have been 

described and discussed in a wide body of literature (for example, (Reay et al., 2010, Scafutto 

et al., 2018, Etiope and Klusman, 2010b, Asadzadeh and de Souza Filho, 2017)). Uncertainties 

arise due to incomplete knowledge of the actual area of microseepage  (Etiope and Klusman, 

2010b). As it is hard to measure every drylands, this thesis aims to develop methods in satellite 

remote sensing that can assist in the detection of regional areas affected by hydrocarbon 

microseepage. 

The following research questions form the basis of the thesis: 
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1- Comparing knowledge-driven based methods PCA with Crosta technique and 

Band Ratio; which method is the most adopted to the determination of 

microseepage-induced surface alterations? 

2- Are there any significant difference between knowledge-driven and data-driven 

approaches in hydrocarbon microseepage characterizations? How do 

microseepage extent vary? 

3- Mixed spectral response from different materials on the ground is a common 

problem with low/moderate spatial resolution images. What possible unmixing 

approaches that can decompose the mixed pixels into a collection of pure 

spectral signatures? 

4- What is applicability of Landsat-8 OLI/TIRS data on the application of 

hydrocarbon microseepage characterization? 

1.3 Thesis outline 

The rest of this paper is organized as follows:  

 Section 2: provides background about the study area including some case histories. 

 Section 3: reviews the formation of seepage and the role of remote sensing in mapping 

alterations. 

 Section 4: describes the used dataset. 

 Section 5: explains the methods used. 

 Section 6: shows analysis results and describes models validations 

 Section 7: provides general discussions. 

 Section 8: provides a conclusions, as well as suggestions for future work. 
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2 Study Area 

2.1 Geographic position 

This study was conducted on the Fort Peck Indian Reservation located in the north-eastern part 

of Montana State in United State at 48°21′40″N 105°32′18″W (Figure 1). The reservation is 

177 km long (east to west) and 64 km wide (north to south). It extends over four counties and 

occupies around 8287 km². The reservation altitude ranges from about 930 meters in the north-

western part of the reservation to less than 579 meters in the south-eastern part. The Missouri 

River is the largest stream in the area and it extends over the southern boundary of the 

reservation. Creeks cross the reservation: Porcupine Creek flows on the reservation western 

boundary and Big Muddy Creek on the east boundary. At the central of the reservation the 

Poplar River flows south across the reservation to join the Missouri River. 

 

Figure 1 – Geographical location of the study area. 

2.2 Climate and Topography 

The reservation has a semi-arid, continental climate classified as BSk (cold semi-arid) under 

the Koppen climate classification system. It is situated within north-western Great Plains and 

is typically dominated by shrub and dwarf-shrub species. The region is characterized by three 

terrain types. The general terrain of the area is rolling to rough plains, Badlands broken by hills 

and isolated mountain ranges primarily used for livestock grazing.  The second type of terrain 

found on the southern part of the reservation near the major Missouri river tributaries. It is 

composed of a high bench lands encompassing farmland areas characterized by relatively 

fertile soils used for production of small grains and cattle grazing. The third terrain type is 
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situated towards the centre of the reservation on the Missouri River valley bottom and it is 

characterized by irrigated farmland with deciduous trees (Thamke, 1991). 

2.3 Geology 

The Fort Peck Indian Reservation is located on the western part of the Williston Basin. The 

outcropping sedimentary rocks on reservation are mostly shale and siltstone with some bids of 

sandstone, salt, bentonite and lignite (Mudge et al., 1977). Major sedimentary strata underlying 

the area are: Bearpaw Shale which is only exposed at the southern and western part of the 

reservation and it forms a terrain of small hills and Badlands topography. The Fox Hills 

sandstone which overlies the Bearpaw and it is exposed along the south-central part of the 

reservation. The Hell Creek formation which overlies the Fox Hills sandstone and it is exposed 

along the central and north central part of the reservation. The Fort Union formation which 

overlies the Hell Creek and forms a terrain of rolling landscape covered by grass with some 

sandstone benches at the eastern part of the reservation. Deposits of sand and gravel are 

widespread in the reservation. However, the Flaxville Gravel caps highland areas extended in 

much of the central and north-western parts of the reservation and contains the largest and most 

extensive deposit of sand and gravel (Mudge et al., 1977). 

Hydrocarbons in Williston basin province is mostly produced from three formations that 

belong to Mississippian – Devonian period. The lowermost is Three Forks formation that is 

immediately overlain by Bakken shale formation which underlies the Lodgepole formation. 

These formations cross the entire area of the reservation area and produce petroleum in the 

Williston Basin (Gaswirth and Marra, 2015).The main structural feature within the reservation 

include Poplar Dome, a northwest-trending asymmetrical anticline. The western part of the 

reservation is dominated by the Eastern Flank of the Bowdoin Dome. The Brockton-Froid fault 

zone extends northeast across the southeast corner. Other structural features include the Wolf 

Creek Nose, the Oswego, and the Bredette Nose (Mudge et al., 1977). 

2.4 Previous investigations and case histories 

Monson and Shurr (1993) mapped circular satellite tonal anomalies features also called 

curvilinears on Landsat images and suggested that these could represent micro-seepage 

chimneys. The subtle tonal anomalies is a concept used in hydrocarbon satellite remote sensing 

literatures (Zhang et al., 2011, Almeida-Filho et al., 1999, Schumacher, 1996, Yang et al., 

2000) to explain a phenomena or unusual colour tone observed on satellite images resembling 

blurring of the image at petroleum concentrations areas. The phenomena was also described as 

a peculiar hazy anomaly (Asadzadeh and de Souza Filho, 2017, Simpson, 1978).  These 

curvilinears were the primary reason for surface exploration work in the Fort Peck Reservation 

(Monson, 2000, 2001, 2003). Different surface hydrocarbon exploration techniques have been 

tested and the results documented hydrocarbon seepage on the Fort Peck Reservation. The 

work progressed in phased approach and assessed three separate study areas on the reservation: 

the Palomino Oil Field, the Wicape Prospect area and the Smoke Creek area. The largest study 

area was the Smoke Creek area which was further divided into three sub areas based on 

magnetic susceptibility measurements values: Smoke Creek Core, Lobo West and Site 
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26.  Complete sets of data and maps for each of the three study areas were compiled and 

documented in (Monson, 2000, 2001, 2003). 

Among the direct surface exploration techniques that have been employed are: soil gas survey, 

soil head gas analysis of basic hydrocarbon, soil acid extraction of gases, soil UV fluorescence 

and thermal desorption. The indirect methods are: soil microbial measurement, soil iodine and 

measurement of soil supplemental indicator such as redox potential (Eh), pH and conductivity. 

Two additional techniques (magnetic surveys) have been employed in phase II of the project: 

soil magnetic susceptibility and magnetometer.  
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3 Background 

3.1 Conceptual model of hydrocarbon microseepage 

Hydrocarbon in subsurface and due to high pressure at depth and weak areas in geological 

structure can escape and migrate to the surface (Salati, 2014, Brown, 2000, Etiope and 

Klusman, 2010b). Surface gas seepage is classified into different types based on its significance 

and implications. The names that normally appear in petroleum geology literatures are Seeps, 

Macroseeps, Microseepage, Microseeps and Miniseepage. These names are sometimes used 

improperly in scientific literatures which in turn creates some confusion (Etiope, 2015). The 

terms seeps or macro-seeps, also sometimes called macroseeps, refer to the visible focused 

manifestations. Microseepage, rarely written as micro-seepage, refers to invisible but 

detectable widespread exhalations from the soil. The seepage in all its types is traditionally 

restricted to the hydrocarbon-rich gas that is composed of methane and light alkenes, ethane, 

propane and butane with methane as the most predominant gas seep (Etiope, 2015). 

The natural origin of methane is classified into geological and modern methane. Modern 

methane (sometimes called recent gas) is the gas produced through the microbial activity in 

wetlands. The geological methane is the gas that is produced in deep source rocks with carbon 

older than 50,000 years. This is the gas that is used today for energy and termed as fossil gas 

(Etiope, 2015). Methane of geological origin is further classified into biotic and abiotic. The 

abiotic methane is produced by chemical reactions that do not require the presence of organic 

matter and is not related to hydrocarbons generations whereas biotic methane required the 

presence of organic matters. The biotic methane can originate from two types of processes: 

microbial (biogenic) and thermogenic. Microbial methane is the gas that is produced in 

sediment by bacterial action at relatively low temperatures up to 60–80 °C. Microbial gas 

indicate shallow gas source rocks. The thermogenic gas is produced by the thermal cracking of 

organic matter or oil at higher temperatures relatively up 190–200 °C. Thermogenic gas 

indicate deeper source rocks. The origin of both gases can be distinguished on the basis of 

chemical and carbon isotopic composition analysis (Etiope, 2015). In this study, when we 

investigate methane from hydrocarbon, we are concerned of investigating geological methane 

(i.e. biotic) and its associated alterations. 

3.2 Geological methane seepage and the role of atmospheric methane 

concentrations 

It has long been thought that methane flux in dry lands is generally negative, indicating that it 

flows from the atmosphere to the soil. The process derived and controlled by methylotrophic 

bacteria that consume methane from the soil (Striegl, 1993, Etiope and Klusman, 2010a, 

Etiope, 2015). Later in 1988, unexpected emissions of methane to the atmosphere were 

reported by Hao et al. (1988) indicating that the soil was not a sink, but a small source for 

atmospheric methane. The measurements were criticized as there was no explanation for the 

positive methane flux (Etiope and Klusman, 2010a). Later several studies (Klusman and Jakel, 

1998, Klusman et al., 1998, Klusman et al., 2000, Brown, 2000) have reported that dry lands 

which are part of petroleum basin can produce positive methane fluxes to the atmosphere. 
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Nevertheless, the attention to geological seepage in the scientific literature remained within the 

domain of interest of the oil industry. The fluxes of gases in the atmosphere resulting from 

hydrocarbons microseepage continued to be ignored and considered as a negligible source to 

atmospheric methane concentrations by atmospheric science and climate change community 

(Etiope, 2015). The reason behind that is due to the lack of seepage flux data and lack of the 

knowledge of the role of geological processes in the global methane budget.  

The air pollutant emission inventory guidebook released in 2009 (EEA, 2009) was the first to 

report comprehensively the geological seepage as natural CH4 source. The Intergovernmental 

Panel on Climate Change (IPCC) assessment reports (AR) did not consider geological seepage 

as natural CH4 source until the fifth assessment report (AR5) that was issued in 2013 (Ciais et 

al., 2013). However, AR5 did not properly classify the geological seepage nor comprehensively 

described the process instead it included it only as submarine seeps and related gas hydrates 

(Etiope, 2015). 

Today, it is known that the long term hydrocarbon microseepage in dry soil can overcome the 

methanotrophic consumptions and produce positive methane fluxes in the atmosphere in all 

petroleum basins (Schumacher, 2012, Etiope, 2015). These gases interact with soil and rocks, 

and bring about compositional changes. The surface manifestations of hydrocarbon 

microseepage can take many forms, including: 

 Direct alteration in soil, formation of new minerals  

 Indirect affect in vegetation’s (geobotanical anomalies) due to change in environment. 

 Thermal anomalies. 

 Specific spatial pattern and fragmentation in the surrounding area due to the changed 

environment. 

3.3 Methodologies for detection of gas Microseepage on Earth’s surface  

Methods for detecting gas microseepage are divided into direct and indirect methods (Etiope, 

2015). Direct methods relay on the in situ sampling of air and soil collected and stored for 

laboratory analyses using traditional surface geochemistry methods such as closed-chambers. 

Indirect methods are based on the recognition of chemical, physical, and biological changes in 

soils, sediments, rocks and vegetation using remote sensing methods. In this work the focus is 

on the onshore indirect gas detection using above the ground (atmospheric measurements) and 

in land (soils, rock and vegetation’s) satellite remote sensing methods. 

 Measurements in soil and sediments  

Microseepage from hydrocarbon is known to cause anomalies in surface sediments and soils. 

Schumacher (1996) has documented different hydrocarbon-induced alterations and surface 

expressions. These include geobotanical anomalies, formation of paraffin dirt, mineralogical 

changes such as formation of calcite, pyrite, iron oxides and enrichment of ferrous iron, 

bleaching of red beds and clay mineral alteration. 

Almeida-Filho et al. (1999), in one of the early satellite remote sensing studies for hydrocarbon 

microseepage detection, had used band ratio and band ratio difference using Landsat-Thematic 

Mapper images. The model used was based on the measurement of bleached material and 
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healthy vegetation cover. Bleaching of red beds occurs when microbial activities caused by 

microseepage cause oxidation reduction reactions on ferric oxide (Fe2O3) also abbreviated 

(Fe3+) rich soil and convert it to ferrous oxide (FeO or Fe2+). The process takes place through 

the removal of ferric oxide (hematite) to produce altered minerals in the surface (Schumacher, 

1996). This in turns leads to visible change of terrain pigmentation from red to green/grey. 

 Mapping the bleached materials was successful using the band ratio TM2/3 where TM2 has 

the spectral range of 052-0.60 µm and TM3 has range of 0.63-0.69 µm. The high value of the 

band ratio TM2/3 indicate a poor ferric iron material. However, in presence of vegetation, 

healthy vegetation will also have high reflectance value in band ratio TM2/3. Thus, the ratio of 

TM4/3 was used to differentiate areas of ferric iron oxides from areas of vegetation. TM4 has 

a spectral range of 076-0.90 µm.  

It was found that the pixels linked to the areas of bleached materials are better distinguished 

with the ratio TM2/3 versus the ratio difference (TM2/3±TM4/3).  The pixels with high 

reflectance value in band ratio TM2/3 and high reflectance value in the ratio difference of 

TM2/3 -TM4/3 would exhibit the spectral signature of bleached materials. On the other hand 

high responses in TM2/3 and TM4/3 ratios would exhibit the spectral signature of vegetation 

cover. 

Van der Meer et al. (2002) documented from different sources (e.g.,Segal and Merin, 1989, 

Elvidge, 1990, Schumacher, 1996) the spectral signature of different surface alterations 

induced by hydrocarbon microseepage. The most extensive studies were concerned with 

bleached red beds phenomena and ferric iron reduction, formation of carbonate content, clay 

mineral alteration and the anomalous spectral reflectance of vegetation. 

The bleached areas were diagnosed by the ferric iron which exhibits an absorption feature at 

0.9 µm and a sharp fall-off in reflectance to the blue from approximately 0.80 µm. As a result, 

the bleached areas were identified spectrally by the ratio of TM bands 2/3 which delineated the 

variations in ferric iron content. A very low 2/3 ratio value indicate a ferric iron rich areas, 

while high value indicated poor ferric iron rock (Van der Meer et al., 2002). 

Segal and Merin (1989) defined the variations in clay mineral content caused by microseepage. 

The variations were attributed to the conversion of normally stable illite clays to kaolinite as a 

result of the diagenetic weathering of feldspars. Kaolinite exhibits a strong absorption feature 

centred at 2.2 µm, and its subordinate (doublet) absorption feature centred at 2.16 µm. 

Kaolinite-rich rocks can be identified spectrally by high ratio of TM bands 5/7 associated with 

bleached exposures.  

Production of carbonate is one of the most known hydrocarbon induced alterations. Formation 

of the carbonates occur as a result of petroleum oxidation, stimulates particularly from methane 

(Schumacher, 1996). An increase in total carbonate in soil can be discriminated using TMS 

band-ratios for the wavelengths range of 1.550 - 1.650 µm, 1.985 - 2.085 µm, 2.037 - 2.137 

µm, and 2.039 - 2.193 µm. Calcite is the most common obvious carbonate, the bands mostly 

used to map its anomaly are from 1.8 to 2.6 µm - 1.8 µm, 2.0 µm, 2.16 µm, 2.35 µm and 2.55 

µm (Van der Meer et al., 2002). 
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Shi et al. (2010) found the spectral reflectance feature of the measured microseepage alerted 

rocks comes from the absorption spectrum of gypsum, ferric ion, hydroxyl ion and clay 

minerals. In comparison of altered and unaltered samples, it was found that the unaltered rocks 

have an intense absorption at 0.56 µm with relative high reflectance near 0.7 µm, while the 

altered rocks have an absorption at 0.7 µm. This was attributed to the presence of ferric oxide 

in the unaltered red bed. The ratio of band 2 to band 1 on ASTER sensor was used to extract 

related information since ferric oxide shows high reflectance in band 2. This ratio delineate red 

beds in white or bright pixels in the grayscale image. 

The ASTER band ratio of band 5 and band 4 was used to map ferrous oxide alterations. 

However, the presence of hydroxyl ion on the altered greyish green rocks shows an intense 

absorption near 1.4 µm, 1.95 µm and 2.21 µm, while those with the present of carbonate ion 

show absorption at 2.35 µm.  Some altered rocks shows also an absorption characteristic of 

gypsum, and multiple sets of gypsum veins were identified in those samples. 

The analysis of the alerted rocks shows high value at ASTER band 4, which was attributed to 

the formation of carbonate minerals such as calcite, dolomite and siderite. The band ratio band 

4 to band 9 was used to extract the information of carbonate minerals. Combining the analysis 

of spectroscopy and X-ray diffraction for the altered sample, it was found that carbonate 

minerals and ferrous oxide mineral are directly related to hydrocarbon seepage. Results 

demonstrated that mineralogical alterations induced by hydrocarbon seepage can be 

successfully revealed by using ASTER band ratios 2/1 for bleached red bed i.e. iron oxide 

bearing rocks. The band ratios 4/9 was used for mapping secondary carbonates. 

Salati et al. (2014) and (Wang, 2016) have conducted two different studies in Dezful 

Embayment, in south-west Iran. Both have used ASTER and World View-2 satellite sensors to 

identify and map hydrocarbons microseepage related surface alterations. Comparing both 

studies, both were able to map hydrocarbon alteration, however there are several differences in 

their observations mainly due to the different image processing and classification methods that 

were used.  

The alteration model in both studies was based on the result of (Salati, 2014) geochemical 

analysis. The analysis indicate that sulphur and gypsum have high concentration while calcite 

has low concentration in altered samples. On the other hand, the absences of gypsum, sulphur 

and high concentration of calcite was the characteristic of the unaltered samples. Gypsum was 

the main indicator of hydrocarbon microseepage surface alteration zone in the study area.  

On ASTER image the band ratios: 

 b2/b1 was used to indicate ferric iron 

 b5/b4 was used in (Wang, 2016) and b3/b1 was used in (Salati et al., 2014) to indicate 

ferrous iron 

 (b5+b7)/ b6 was used to indicate clays 

 (b7+b9)/b8 was used to indicate calcite 

 b4/(b9+b6) was used to indicate gypsum 

 NDVI was used to map vegetation’s health 
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The ferric oxide index, ferrous iron index and calcite index are higher in unaltered samples 

than altered samples while clay index and gypsum index are lower in in unaltered samples than 

altered field samples. Wang (2016) has identified that the band ratio b5/b4 can map ferrous 

iron in silicates and carbonates but it has limitation if it is associated with oxide and sulphate. 

In (Wang, 2016) much attention was given to the formation lithology types as testing same 

index in different lithology types were found to produce different results. For instance, gypsum 

is common mineral in evaporate formation, therefore it cannot be used as indicator for 

hydrocarbon microseepage while it is a good indicator in marly limestone formation. The 

altered field samples in the study area located within marly limestone formation which contains 

less carbonates. That explains why band ratio b5/b4 that was used to map ferrous iron index 

exhibit low value in altered samples than in unaltered samples.  

 On the WorldView-2 image the band ratio below were selected to map the surface alterations: 

 b2/b1 was used to indicate sulphur 

 b5/b3 was used to indicate ferric iron in (Wang, 2016) while band ratio b4/b7 in (Salati 

et al., 2014) 

 (b3*b4)/b2 was used to indicate iron oxide 

 (b3+b5)/b1 was used to indicate ferrous iron in (Salati et al., 2014) 

Salati et al. (2014) explains that hydrogen sulphide will be produced as a result of sulphur 

minerals reduction resulted from microseepage. Reaction of hydrogen sulphide with calcite in 

limestone will produce gypsum and native sulphur. Therefore sulphur absorption feature at 0.4 

µm can be used to map sulphur in WorldView-2 image for the altered samples. Accordingly, 

(Wang, 2016) used band ratio b2/b1 to map sulphur. On the other hand, and in reference to 

(Kalinowski and Oliver, 2004) the band ratio b5/b3 was used to indicate ferric iron and 

(b3*b4)/b2 was used to indicate iron oxide in (Wang, 2016). Both studies have used same 

satellite sensors in the same study area, however they have reported different results and 

observations 

Chen et al. (2017) have conducted a study using airborne hyper-spectral data on Xifeng Oilfield 

on China to detect hydrocarbon microseepage through the identification of altered mineral.  In 

their study they proposed to conduct mapping of hydrocarbons altered minerals based on 

previous studies (Defang, 1995, Saunders et al., 1999).  The availability of Fe2+ (ferrous), 

carbonate, and clay minerals in the overlying soil were used as an important indicator of 

microseepage alterations.    

The mapping result shows much siderite and calcite, but little illite and kaolinite were seen in 

microseepage area. It was found that the content of carbonate always distribute at the edges of 

hydrocarbon area which represent the scope of hydrocarbon microseepage. The measurement 

was based on the calculation of spectra absorption depths difference at 2150 -2220 nm and 

2300 nm and 2350 nm. These calculation was based on the assumption that at the edges of 

hydrocarbon accumulations, the contents of carbonate are higher while the contents of clay 

minerals are lower. The opposite condition is true at the centre of hydrocarbon area. The 

vegetation spectral index, fat index (FI) was used to simulate the detection of spectral 

absorption depths.  
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𝐹𝐼 =
(𝐻1 + 𝐻2)

|𝐻1 − 𝐻2|
 

Where  H1 represent the absorption depth of spectral feature of clay at 2218 nm (illite, 

kaolinite)  

H2 represent the absorption depth of spectral feature of carbonate minerals at 2350 nm (calcite, 

siderite) 

The larger the value of FI the higher the indication of surface anomaly as a result of 

hydrocarbon microseepage. The validation of field samples using X-ray diffraction (XRD) and 

spectrophotometer in laboratory showed there were higher calcium carbonate and lower illite 

concentrations, also higher concentration of ferrous oxide (Fe2+) and lower concentration of 

ferric oxide (Fe3+). This is the same phenomena explained earlier by (Shi et al., 2010)  as 

bleaching of red beds, however it is never been described as such by  (Chen et al., 2017). 

 Geobotanical anomalies 

Noomen (2007) studied the influence of gas seepage on vegetation. The study classified the 

effect of hydrocarbon gases (i.e., methane, ethane and natural gas). Also, it tried to segregate 

between the effects of gases and carbon dioxide concentration that is known to be accompanied 

with these gases.  More importantly, the effect was studied to determine if it was caused by 

gases themselves or by oxygen shortages. The experiment also simulated small and large gas 

leak effects. The researcher has tested different vegetation indices such as NDVI, LIC, and 

VOG. The result that was collected from the simulated gas leaks was used in a field study in 

an area that was known with a natural hydrocarbon seepage. Along with reflectance 

measurements, (Noomen, 2007) has studied vegetation diversity and spatial pattern. The result 

shows that the total vegetation cover increased with distance from the seep, the distribution and 

diversity of vegetation around the seep were clustered differently and created what the 

researcher has named it as “green ring”. 

Noomen (2007) concluded that natural gas and methane have not caused any significant 

changes to the morphology of the studied plants (maize and wheat) whereas ethane has affected 

the maize morphology. The effect of ethane and methane on maize was determined by leave 

reflectance. The main conclusion of the thesis is the change in plant growth or reflectance is 

attributed to the soil oxygen shortage that accompanies the leak.  

Noomen (2007) work focused on the concentrations of hydrocarbon gases on maize and wheat 

and the effect on their growth and reflectance. However, those plants are known of their 

tolerance to methane and might not be the best for the case study. Although there is much 

debate that terrestrial plants can produce CH4 under aerobic conditions. Methane during 

drought stress might have a beneficial response. It enhances the osmoti1c stress tolerance in 

maize by modelling sugar and ascorbic acid metabolism (Han et al., 2017). This point was 

unnoticed by Noomen (2007).  

Elvidge (1990) explains that changes in chlorophyll concentration would affect the reflectance 

properties of vegetation and produce a spectral shifts from visible part with absorption at 0.66 

and 0.68 µm to the red-edge absorption near 0.7 µm. Arellano et al. (2017) indicate that 
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hydrocarbon pollution will cause degradation in plants biophysical and biochemical parameters 

such as chlorophyll, pigment concentration, leaf and canopy index. Different plant species 

respond differently. The stress level on vegetation will vary based on intensity and the length 

of exposure. Response in plants can be explained by the reduction in plant cell activity, reduced 

plant growth or plant mortality caused by reduced rate of photosynthetic activity and plant 

transpirations (Arellano et al., 2017). Robson et al. (2004) found that some species will have 

certain stress tolerance to hydrocarbon pollution, however the general trend shows decrease in 

vegetation cover and species richness near to hydrocarbon seepage. 

Krupnik and Khan (2017) studied hydrocarbon microseepage related geobotanical anomalies 

around different US oil fields that have been confirmed with the presence of hydrocarbon 

microseepage. They have used Normalized Difference Vegetation Index (NDVI) based on 

Moderate Resolution Imaging Spectroradiometer (MODIS) to examine the impact of 

hydrocarbon seepage on vegetation. Depending on the season, the typical NDVI value in desert 

environments can range from 0.18 to 0.49. In (Krupnik and Khan, 2017) the average NDVI 

was calculated for the different oil fields. It was found that there is a trends in oil fields for the 

average NDVI value. NDVI decreases inside oil fields and increases in surrounding areas. 

NDVI is lower inside oil field may be an indication of an anaerobic rich environment explained 

by lower abundance of vegetation or stressed vegetation.  

 Fugitive methane direct measurements 

Fugitive methane is the fluxes of methane in the atmosphere that is released and elevated from 

different sources either biogenic or thermogenic origin. Here we are more interested in 

thermogenic sources that are linked to the natural degassing from the subsurface of oil and gas 

basins.  

The Scanning Imaging Absorption Spectrometer for Atmospheric Cartography 

(SCIAMACHY) running on board of ENVISAT satellite is one of the primary space-based 

imaging spectrometer used globally for observations and measurement of atmospheric 

compositions. These include trace of gases, aerosols and clouds. The instrument records the 

transmitted, backscattered and reflected radiation at high spectral resolution between 0.2 nm to 

0.5 nm in wide wavelength range between 240 and 2400 nm (Buchwitz et al., 2005). 

Despite the high spectral resolution of SCIAMACHY, it has a very low spatial resolution. On 

the other hand the instrument measures the total concentration of gases in earth atmosphere. 

This makes it difficult for such spaceborne sensor to identify and distinguish between the 

natural and anthropogenic sources. Indeed, it demonstrates a challenge to identify methane 

emission from hydrocarbon microseepage. 

 Hydrocarbon thermal anomaly 

Muhammad and Alki (2015) studied hydrocarbon microseepage related surface thermal 

anomalies in different oil fields in Baghdad, Iraq. The study assumed that the ambient 

temperatures on the earth’s surface is 300 ˚K (26.85 Celsius) with a dominant wavelength of 

9.66 μm. This was based on Wein’s Displacement Law, though it was not stated in (Muhammad 

and Alki, 2015) work.  
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The wavelength in the range between 8 - 14 μm was considered as the most appropriate 

wavelength to study microseepage related surface thermal anomalies. Landsat Enhancement 

Thematic Mapper plus (ETM+) also named Landsat 7 was selected for the study. Landsat band 

6 outputs two versions of the thermal data that are provided as two separate band files, high 

and low gain at 60m spatial resolution. The high gain is used to improve the radiometric 

sensitivity while low gain is used to prevent over bright areas. The estimated minimum and 

maximum emitted surface radiance in the study area on band 6 low gain band (0- 17.04 w/m 

²/μm/sr) and high gain (3.2-12.65 w/m ²/μm/sr). The thermal anomaly was determined as a 

function of change of the local areas from their surrounding radiation temperature. It was found 

that thermal anomaly between 1 and 5 ˚K was related to hydrocarbons microseepage 

(Muhammad and Alki, 2015). 

Muhammad and Alki (2015) methodology was not clearly described, that might be due to the 

translation from Arabic language to English, besides it lacked proper referencing. It is 

necessary to do a time series analysis rather than looking at just one time stamp when 

monitoring the thermal anomaly. Other strategy is to view night-time infrared imagery of the 

study area to avoid any generated heat from the sun during daylight hours which was not 

considered in (Muhammad and Alki, 2015). 

Suherman et al. (2014) investigated the influence of hydrocarbon seepage on land surface 

albedo and land surface temperature (LTS). The study focused on the statistical comparison 

analysis of albedo and LST between hydrocarbon microseepage area and non microseepage 

areas. Their theoretical base, hydrocarbon seepage can cause intrinsic change in 

thermodynamic properties of interacted surface material. This can leads to: loose of radiative 

transfer, reduce of convective overturning energy at the surface, decrease in emissivity and 

increase in surface albedo and land surface temperature. Therefore, areas with hydrocarbon 

seepage will have: 

 Lower vegetation density or vegetation stress that generally associates with an increase 

in the albedo. 

 Higher LST than the surrounding area with no hydrocarbon seepage. 

The visible to near infrared spectral regions were used for the determination of the increase or 

shift on albedo. The thermal infrared range was used for determination of land surface 

temperature, additionally, NDVI was calculated for vegetation stress analysis. The result shows 

that, albedo was positively shifted on seepage potential area. The positive shift in farm and 

forest areas was attributed to the developed bare land or stress vegetation as a result of 

hydrocarbon seepage and in turn cause the increase in the albedo. The no or slight negative 

shift for bare and town areas was attributed to mixed surface materials with hydrocarbon 

seepage that reduced the reflectivity and reduced the albedo. The comparison of land surface 

temperature shows slight positive shift in the forest and plantation areas, while farm, bare and 

town areas were negatively shifted. Shift on albedo and LST was positively correlated with 

NDVI value (Suherman et al., 2014). 
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3.4 Image and spectral processing methods 

There are variety of approaches for hydrocarbon microseepage mapping and characterizations. 

These approaches are normally categorized into data-driven and knowledge-driven methods 

(Asadzadeh and de Souza Filho, 2016).   

The data-driven approaches are mathematically based approaches derived by reference data. 

They are empirical models completely estimated from measured data. Therefore, modelling 

process is more objective. The data-driven approaches are sub-divided into learning based 

approaches and geostatistical based approaches.   

Weight of evidence (WofE) is an example of geostatistical based data driven approach that is 

widely applied in mineral exploration. For example (Hartley, 2014, Yuan et al., 2014, 

Zeghouane et al., 2016) used WofE model for mineral prospectivity mapping. Allek et al. 

(2016) used WofE to test the spatial association between known hydrocarbon fields and 

sedimentary residual magnetic anomalies. 

 Machine learning (ML) is a learning based data driven approach. It is a field of computer 

science and an application of artificial intelligence that uses mathematical models and 

algorithms to allow the systems to automatically learn and improve from experience without 

being explicitly programmed. Machine learning algorithms can offer solutions for prediction, 

approximation and classification problems. These approaches have achieved promising 

performance in mineral prospectivity mapping and hydrocarbon microseepage classifications.  

For instance, Wang (2016) has tested three different machine learning classifiers for finding 

hydrocarbon surface alterations. The tested classifiers are Support Vector Machines (SVM), 

Random Forest (RF) and Gradient Boosted Regression Tree (GBRT). Salati et al. (2014) have 

used Boosted Regression Tree (BRT) to map hydrocarbon alteration zones. The result showed 

BRT provided the best discrimination between altered and altered areas when compared to 

band ratio and PCA methods. The AdaBoost algorithm the so-called Adaptive Boosting was 

used by (Avcioglu, 2010) to map hydrocarbon microseepage related surface manifestations. 

AdaBoots has been shown to be effective in improving the accuracy of microseepage 

mappings, when compared to the results from Crosta technique.  

Principle Component Analysis (PCA), Band Ratio (BR) are band calculation knowledge based 

approaches used in remote sensing. These approaches depend on spectral/absorption 

characteristics of the mapped feature (Asadzadeh and de Souza Filho, 2016). The knowledge 

based approaches are physically based approaches, modelling process using these approaches 

is more subjective as it is centred at expert opinion.  

Below is a brief description of some of the ML algorithms and spectral processing methods 

used in the application of remote sensing image classification:  

 Support Vector Machines (SVM) 

Support Vector Machine (SVM) is a supervised classification method which use a non-

parametric statistical learning algorithm derived from statistical learning theory (Vapnik, 

2013). In its simplest form, SVM is a binary (two-class) classifier but it can function as a 
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multiclass classifier by combining several binary classifiers. SVM works by defining optimal 

hyperplane that provide the maximum margin to separate two classes (Cortes and Vapnik, 

1995, Huang et al., 2002). The data points that lie on the margin of the hyperplane called 

support vector and these are the points that define the optimal hyperplane of maximum margin. 

SVM can adopts nonlinear classification by using various types of kernels (linear, polynomial, 

radial basis function, and sigmoid) to define optimal hyperplane. Kernels are used to construct 

a linear separation between two points of different classes by embedding the data into high 

dimensional space. The main challenge in using SVM is to select the most appropriate kernel 

function type and its parameters. Kernel configuration plays a major role on SVM performance 

and classification accuracy (Cristianini and Scholkopf, 2002, Huang et al., 2002). SVM is not 

sensitive to overfitting and works well with few or small training samples (Mountrakis et al., 

2011). SVM includes a number of parameters (Zhu et al., 2009) these including kernel type, 

gamma and C or penalty, these parameter are used to tailor the behaviour of the algorithm to a 

specific dataset to attain better classification performance. 

 Weight of Evidence (WofE) 

Weight of Evidence (WofE) is a geostatistical data-driven approach that use Bayesian statistics 

to measure the strength of the spatial association between a particular condition and a set of 

data points. The core of WofE is the use of conditional, prior and posterior probabilities. WofE 

is a quantitative method that is relatively easy to interpret. Details of the mathematical 

explanation are thoroughly covered in (Bonham-Carter, 1990, Bonham-Carter, 1994). 

 Mixture Tuned Matching Filtering (MTMF) 

The Mixture Tuned Matching Filtering (MTMF - Boardman, 1998) is a target detection 

algorithm used for spectral mixture analysis. It was developed based on both Matched Filter 

(MF) model and Liner Spectral Mixing (LSM) model. MTMF takes the advantage of MF by 

means of performing partial unmixing and subpixel target abundance estimation without 

knowing the other background endmembers signatures.  

MTMF include three main steps: First, Minimum Noise Fraction (MNF) transformation is 

performed for dimension reduction. Then, matched filtering is performed through maximizing 

the response of a known endmember while suppressing the response of the background. 

Finally, the liner spectral mixing is used to avoid the drawbacks in MF by adding infeasibility 

images to the result to reduce the number of false positives found on MF (Boardman, 1998, 

Goodarzi Mehr et al., 2013). The result of MTMF is a set of rule images given as MF and 

infeasibility scores. These are usually represented as a greyscale image with values ranging 

from 0 to 1 for each pixel related endmember. Pixels with low infeasibility and high MF score 

(i.e., value of 1) indicate a very high degree of matching and correctly mapped pixels (Zadeh 

et al., 2014).    

 Spectral transformations methods 

The spectral transformation methods are used for spectral enhancement. These methods can 

emphasis certain features in the images and help in the identification of endmembers of the 

altered minerals that are associated with hydrocarbon microseepage. 



19 
  

3.4.4.1 Principle Component Analysis (PCA) 

The PCA is a spectral decomposition or transformation method that reduce the dimension, 

remove redundancy and minimize noise in multispectral data (Singh and Harrison, 1985). PCA 

converts correlated variables (original bands) on multispectral images into uncorrelated 

variables (principal component) by selecting uncorrelated linear combinations (so-called 

eigenvector loadings) of variables in such a way that each successively extracted linear 

combination, or principal component (PC), has a smaller variance (Singh and Harrison, 1985). 

PCA has been widely used to map mineral potential and hydrocarbon microseepage related 

alteration, see for example (Zhang et al., 2007, Avcioglu, 2010, Tangestani and Moore, 2000, 

Zhang et al., 2011, Liu et al., 2016)  

3.4.4.2 Band Ratio (BR) 

Band ratio is a technique that is used widely in remote sensing for spectral enhancement 

(Almeida-Filho et al., 1999, Almeida-Filho et al., 2002, Van der Meer et al., 2002, Zhang et 

al., 2007, Pour and Hashim, 2015). It works by dividing the digital numbers (brightness values) 

of the pixels in a spectral band by digital numbers from another band which results in new 

image. Band ratio has the ability to transform the data and reduce or minimize the effects of 

different environmental factors like topographic slope and shadows. It has successfully been 

used in mapping alteration zones (e.g.,Segal, 1983, Poormirzaee and Oskouei, 2010, Zhang et 

al., 2011, Mia and Fujimitsu, 2012, Hajibapir et al., 2014). 

3.4.4.3 Minimum Noise Fraction (MNF) 

MNF is another transformation method that is used to segregate noise in the data and also used 

to reduce the computational requirements for subsequent processing (Boardman and Kruse, 

1994). It is two cascade PCA transformations. The first transformation de-correlate and rescale 

the noise in the data by performing noise whiting based on the noise covariance matrix. This 

step will result in no band-to-band correlations and the noise in every band has unit variance. 

The second step is a standard principal components transformation that determine the inherited 

dimensionality through the examination of the final eigenvalues (Green et al., 1988).  

The image pixels are presented by eigenvalues in every MNF transformed band. The 

eigenvalues provides a measure of MNF information content, with progressively noisier bands 

approaching eigenvalues near zero. MNF eigen-images with values close to 1 contain mostly 

noise (Green and Boardman, 2000), the common practice is to exclude MNF components with 

eigenvalues less than 1.25 (Green and Boardman, 2000, Jensen, 2015). The number of MNF 

output bands are generally equivalent to the number of spatially coherent eigen channels i.e. 

number of input bands (Boardman, 1993).   

3.4.4.4 The Pixel Purity Index (PPI) 

The pixel purity index (PPI) is supervised endmember extraction algorithms. It identifies and 

locates the most spectrally pure or extreme pixels in multispectral and hyperspectral images 

(Boardman et al., 1995). As a pre-step, dimensionality reduction transformation is generally 

required using either the Principal Components Analysis (PCA) or Maximum Noise Fraction 

(MNF). The image spectra are treated as points in n-dimensional spectral space, where n is the 
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number of bands. PPI is computed by repeatedly projecting the data onto a random unit vector 

called skewers (Boardman, 1993, Boardman et al., 1995). Using a threshold value specified by 

the analyst the PPI can determines how many pixels are marked as extreme at the ends of the 

projected vector. PPI with large thresholds value can result in finding more extreme pixels 

which are less likely be pure endmembers.   A good threshold value should be approximately 

two to three times more than the noise level of the data (Stein et al., 2006).  After many repeated 

projections to different random skewers, pixels selected above a certain cut-off threshold for a 

number of times are recorded and the total number of times each pixel is marked as extreme is 

noted (Wu et al., 2013). 

When the iterations are complete, a PPI image is created in which the value of each pixel 

corresponds to the number of times that pixel was recorded as extreme. Bright pixels in the PPI 

images represent the more spectrally pure pixels and generally are the image endmembers, 

whereas darker pixels represent the less spectrally pure pixels (Boardman, 1993, Boardman et 

al., 1995, Stein et al., 2006). 

3.4.4.5 N-Dimensional Visualizer  

The n-Dimensional visualizer is multi-dimensional scatter plot chart, which has spectral 

brightness values plotted on its axes and allows the visualization and extraction of endmembers 

in multi- or hyperspectral imagery (Harris, 2006, Ahmad, 2012). Each graph axis refers to an 

individual spectral band, analysing two bands from the image will result into 2-D scatter plot 

(two axes). Analysing more than two image bands will form points cloud in the multi-

dimensional space. 

 Endmembers extraction methods 

Endmembers are the spectra that are chosen to represent pure surface of materials in image 

cube. Surface on earth is not homogeneous and composed of multiple mixed materials. A single 

pixel in a given scene from hyperspectral or multispectral image typically contains a mixture 

of reflectance of many distinct materials. The process that decomposes the mixed pixels into a 

pure pixels (endmembers) and determine their corresponding proportions (abundances) called 

spectral mixing models. There are two approaches to select spectra as endmembers from 

hyperspectral or multispectral images: 

3.4.5.1 Selection of endmembers from a spectral library 

In this method, spectral signatures are derived from spectral libraries built from field or 

laboratory measurements. Collected spectra should be then resampled and scaled to an input 

image wavelength. The advantage of this method is that reference endmember (library spectra) 

can be easily obtained. However, this approach might carry out some risk due to the fact that 

different materials may have similar spectral characteristic. In addition, these spectra are 

acquired under different conditions. An intermediate step is also required to calibrate the 

reference library spectra to the surface reflection (Roberts et al., 1998, Plaza et al., 2004, Harris, 

2006).  
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3.4.5.2 Selection of endmembers from the image 

Endmember reference spectra can be derived directly from the image data themselves. Steps 

to define endmembers include Minimum Noise Fraction (MNF) transformation, Pixel Purity 

Index (PPI) and n-Dimensional Visualization (nDV). In-scene endmembers have an advantage 

over spectral library endmember in that they have been obtained and collected at same scale. 

However, other external factors such as atmospheric contamination, radiometric calibration 

and elevation angle can influence the endmember selections (Roberts et al., 1998, Plaza et al., 

2004, Harris, 2006). 
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4 Data 

Due to the lack and absence of gas flux data and in order to assess the spatial distribution of 

the seepage area, this work has utilized oil and gas wells data to classify the areas with 

microseepage. Statistics for more than 2700 drilled wells around the world have shown that 

82% of wells drilled on prospect associated with microseepage anomalies resulted in 

discoveries compared to an average of 11% for those drilled without any associated anomalies 

(Schumacher, 2010). This suggests that the location of oil and gas wells corresponds closely to 

the spatial distribution of microseepage from hydrocarbon reservoirs. Because of the wealth of 

oil and gas wells data around the world that are made publicly available, the attempt to re-

assess the extent of microseepage using oil and gas wells data and satellite remote sensing can 

facilitate a more rapid and comprehensive evaluation of every sedimentary or petroleum basin 

contribution to atmospheric methane budget.            

4.1 Wells data 

Oil and gas data in the Fort Peck reservation was downloaded from Montana Board of Oil and 

Gas Conservation website (MBOGC, 2019). The data include all wells that were drilled in the 

region since 1900 until today, including the abandoned and currently producing wells. To 

prepare data for classifications, wells dataset were further categorized into two classes: 340 oil 

wells and 451 dry holes, where the oil indicate wells that have hydrocarbon fuel and dry hole 

indicate wells drilled for oil and gas but yielded none. Wells data were used as training and 

validation data for the classification. Assumption was built based on the hypothesis that, 

sedimentary basins hosting natural gas and oil reservoirs are frequently leaking, even in large 

and productive fields, causing gas to migrate vertically to the surface and in turn produce 

positive fluxes of methane to the atmosphere (Etiope and Klusman, 2010a, Etiope, 2015). 

Accordingly, in this study oil wells were used as an indicator of methane fluxes and dry hole 

as indicator of no fluxes.  

4.2 Satellite data  

 Landsat-8 OLI/TIRS data 

Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) Analysis 

Ready Data (ARD) image generated over conterminous United States (CONUS) covering the 

study area (ARD Grid Tile horizontal = 12, vertical = 2 and 3) was chosen and downloaded 

from US Geological Survey Earth Resources Observation and Science Centre (EarthExplorer, 

2018). Landsat ARD tile grid system is modified from the Web-Enabled Landsat Data (WELD) 

and based on the World Geodetic System 84 (WGS84) (Roy et al., 2010). Each tile contains 

5000 x 5000 30-meter pixels include all pixels acquired in a given day within its extents. ARD 

tile can intersect more than one row along a WRS-2 path (Dwyer et al., 2018). Table 1 and 

Table 2 list down the WRS-2 Path/Rows that intersected the study area ARD tiles. 
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Table 1 - WRS-2 Path/Row intersected with ARD tile h=12 V=2. 

WRS-2 Path WRS-2 Row 

35 25 

35 26 

36 25 

36 26 

37 25 

37 26 

 

Table 2 -WRS-2 Path/Row intersected with ARD tile h=12 V=3 

WRS-2 Path WRS-2 Row 

34 26 

34 27 

35 26 

35 27 

36 26 

36 27 

 

The Landsat scenes were acquired on 10th of November 2016. Landsat 8 satellite carries two 

sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). The spectral 

bands of the OLI sensor include nine visible, near-infrared and shortwave infrared bands. The 

TIRS instrument collects data in two long wavelength thermal bands.  Landsat 8 have an 

improved radiometric precision (signal-to-noise) performance when compared to Landsat 7 

(Roy et al., 2016) and provides moderate resolution imagery of 30 meter for multispectral 

bands 1 to 7 and 9 (Zanter, 2019). The thermal bands 10 and 11 are collected at 100 meters 

resolution and resampled to 30 meter in the delivered data product. The Landsat ARD product 

delivered in Albers Equal Area (AEA) conic map projection based on World Geodetic System 

84 (WGS84) datum (Barsi et al., 2014, Dwyer et al., 2018). The characteristic of Landsat 8 

OLI/TIRS are shown in Table 3. 

Table 3- Landsat 8 OLI/TIRS spectral characteristics. 

Bands Wavelength (micrometers) Resolution (meters) 

Band 1 - Ultra Blue (coastal/aerosol) 0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 

Band 3 - Green 0.533 - 0.590 30 

Band 4 - Red 0.636 - 0.673 30 

Band 5 - Near Infrared (NIR) 0.851 - 0.879 30 

Band 6 - Shortwave Infrared  1.566 - 1.651 30 

Band 7 - Shortwave Infrared  2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 

Band 9 - Cirrus 1.363 - 1.384 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 
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4.3 Spectral library 

The spectra for the identified minerals that are associated with hydrocarbon gas induced 

alteration have been obtained from U.S Geological Survey Spectral Library Version 7 (Kokaly 

et al., 2017) and resampled to Landsat image wavelength. The spectral library contains spectra 

measured with laboratory, field and airborne spectrometers with wavelength coverage spans 

the ultraviolet, visible, near-infrared, mid-infrared and far-infrared regions (0.2 to 200 

microns). It includes samples of minerals, rocks, soils, liquids, vegetation and other biologic 

materials and man-made materials. Along with spectra information, the library includes results 

of X-ray Diffraction, Electron Probe Micro-Analysis, and other analytical methods (Kokaly et 

al., 2017).  
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5 Methods 

5.1 Satellite data Image pre-processing 

Landsat-8 OLI ARD data for the study area was obtained from US Geological Survey Earth 

Resources Observation and Science Centre (EarthExplorer, 2018). Data package contains set 

of images. The analysis was mainly performed on two layers: surface reflectance and surface 

temperature layers. As pre-processing step and because the study area was covered by two 

image scenes, image mosaicking was performed on each band to create one scene of the study 

area. Subsequently, layer stacking was performed to combine all the mosaicked bands into a 

single image. The Landsat data includes a Quality Assessment (QA) band that includes all the 

contaminated pixels such as clouds, shadows, snow/ice, water, terrain occlusion and fill values. 

A mask was built from QA band. This mask is a binary image with values 0 and 1 representing 

cloudy/water pixels or no cloud/no water pixel respectively. By means of raster calculation all 

the contaminated pixels like clouds and water were masked out from the image. Finally, spatial 

image subset was performed to clip the image to study area for further image analysis.  

Flowchart depicted in Figure 2 provides a summary of the different steps implemented to 

classify hydrocarbon related surface alteration. Image pre-processing is the initial step that was 

used to prepare the image for analysis. In the second step, two spatial modelling techniques 

were developed and applied: knowledge-driven methods and data-driven method. The 

knowledge-driven model depends on expert opinions. The data-driven model is estimated from 

measured data. It uses statistical methods to quantify the spatial relationships between predictor 

maps (factors) and set of locations of discrete events, also called training site or ground truth 

points.   

The applied knowledge-driven model used different spectral transformation methods such as 

principal component analysis (PCA), minimum noise fraction (MNF) or band ratio. It also 

included a step for endmember determination and identification. Classification to estimate the 

fractional abundance of each mixed pixel was performed using mixture-tuned matched-

filtering (MTMF). Weights of evidence was performed on PCA and band ratio results to 

quantify the spatial associations between hydrocarbon microseepage and mineral anomalies. 

The data-driven model was performed in parallel using Support Vector Machine (SVM) 

classification to create the spatial relationship based on possible hydrocarbon gases fluxes and 

image spectral characteristics. 
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Figure 2- General workflow of methodology used for image calibration and mapping model (b is denoting image 
band, and PC is denoting PCA image).  
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5.2 Knowledge-based models 

 Principle Component Analysis (PCA) 

The principal component analysis (PCA) transformation was applied on Landsat-8 OLI data 

obtained for the study area. The first principal component (PC1) is composed of negative 

weighting from all bands (Table 4). This PC accounts for 96 percent of the total variance of the 

data. It does not contains any relevant spectral feature related to minerals; instead it contains 

information mainly related to albedo and topography information. PC2 contains the spectral 

feature relevant to vegetation indicated by the positive values in the green (band 3) and near-

infrared region (band 5). PC3, PC4 and PC5 can highlight minerals related spectral features 

because of the different contribution of positive and negative weights of eigenvector in each 

band specially band 6 and band 7. The subsequent PCs normally are excluded due to the noise 

as they contain very little data variance which can explain little or no variability of the data 

(Crósta and Moore, 1989, Loughlin, 1991).     

Table 4- Principal component (eigenvectors) of Landsat image covering the study area. 

Eigenvectors Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

PC 1 -0.113 -0.144 -0.201 -0.256 -0.428 -0.670 -0.478 

PC 2 -0.107 -0.086 0.004 -0.038 0.833 -0.108 -0.524 

PC 3 -0.153 -0.236 -0.412 -0.531 -0.122 0.638 -0.219 

PC 4 -0.004 0.160 0.223 0.528 -0.318 0.361 -0.643 

PC 5 -0.721 -0.489 -0.139 0.434 -0.010 -0.022 0.184 

PC 6 0.361 0.079 -0.824 0.420 0.078 -0.048 0.011 

PC 7 0.550 -0.803 0.205 0.089 -0.027 0.025 -0.032 

 

The Crosta method (Crósta and Moore, 1989) is commonly used with PCA and 

allows identifying principal components that contain spectral information about specific 

minerals such as clay minerals and iron oxides.  

In order to suppress the interference and concentrate the information on specific targeted 

minerals, Crosta technique was applied by reducing the number of PCA input bands to four 

bands. Those bands were chosen based on the spectral characteristics of hydrocarbon alteration 

associated minerals in VNIR and SWIR regions. Details of the selection are shown below and 

summarized in Table 5. 

 

Table 5- Summary of PCs selected from PCA transformation based on Crosta technique for Landsat 8. 

Minerals PC Bands 

Ferric and Ferrous Iron PC-2456 

Clay and Carbonate Minerals PC-2567 

PC-2467 

PC-3467 
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5.2.1.1 PC to indicate the presence of ferric and ferrous iron minerals and bleaching of red beds 

The OLI bands 2, 4, 5 and 6 were chosen to enhance the possibilities to detect ferric iron oxide. 

Ferric oxide is characterized by strong absorption in blue region measured by OLI band 2 and 

high reflectance in band 4. In the PCA, it can be examined by the eigenvector loading of band 

4 and band 2. Band 7 was omitted deliberately to avoid hydroxyl mapping.  

The areas with abundance of iron oxide or ferric rich surfaces are of less important for 

hydrocarbon microseepage anomalous concentration. Ferric oxide and ferrous oxide are two 

different types of iron oxides. However, iron oxide in remote sensing studies such as 

hydrothermal alteration mapping is always referred to as ferric ions and not ferrous ions. 

Ferrous oxide most of the times is referred to independently as ferrous minerals or ferrous iron. 

Presence of hydrocarbon microseepage result in removal or conversion of ferric ions (Fe3+) to 

ferrous ions (Fe2+), causing red bed bleaching (Schumacher, 1996, Van der Meer et al., 2002). 

The PC2456 is known in literature (Tangestani and Moore, 2000, Zhang et al., 2011, Mia and 

Fujimitsu, 2013, Liu et al., 2016) for mapping of ferric oxide. However, the same has also been 

used in number of studies to indicate the presence of ferrous iron minerals and beaching of red 

beds (Zhang et al., 2007, Zhang et al., 2011). The importance of this PC is in highlighting 

ferrous iron minerals and beaching of red beds apparently because it uses band 5 and 6 where 

ferrous iron has spectral characteristics in these two bands. 

5.2.1.2 PC to indicate the presence of clay and carbonate minerals 

Clays (so called Hydroxyl-bearing minerals) and carbonates have characteristic absorption in 

the SWIR range at wavelength of 2.1-2.4 µm measured in Landsat OLI band 7 and at the same 

time they have a very high reflectance in the wavelength range of 1.55-1.75 µm measured in 

band 6. Therefore, PCA can be examined by the eigenvector loading of band 6 and band 7 to 

determine which PC image will enhance the presence of clay and carbonates. 

The PCA on bands (2,5,6,7), (2,4,6,7) and (3,4,6,7) are typically used for clay and carbonate 

mapping (Tangestani and Moore, 2000, Zhang et al., 2011, Mia and Fujimitsu, 2013, Liu et al., 

2016). These three PCs were chosen and applied to Landsat-8 OLI images.  

 Band Ratio 

Band ratio technique has been applied through dividing the digital numbers (brightness values) 

of the pixels in a spectral band by another band which results in a new image. The selection of 

bands for highlighting specific minerals group or features were determined based on 

reflectance and absorption characteristics.  Table 6 summaries the spectral characteristic of 

different minerals assemblage on Landsat OLI.  
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Table 6 - Spectral characteristics of mineral assemblage on Landsat OLI bands. 

Mineral Band  2 

(Blue) 

Band 3 

(Green) 

Band4 

(Red) 

Band 5 (NIR) Band 6 

(SWIR) 

Band 7 

(SWIR) 

Ferric Iron Absorb  Reflect  Absorb Reflect  

Ferrous Iron Reflect Reflect Reflect Absorb Reflect Absorb 

Bleached Red Bed Reflect  Reflect Absorb   

Clay and Carbonates Reflect   Reflect Reflect Absorb 

Vegetation Reflect Reflect Absorb Reflect Reflect Absorb 

 

5.2.2.1 Ratios to indicate the presence of ferric, ferrous minerals and bleached red beds 

Ferric iron oxide-bearing mineral has high reflectance between 0.63 and 0.69 μm 

corresponding to band 4 (red) on OLI and high absorption between 0.45 and 0.52 μm 

corresponding to band 2 (blue) on OLI (Shi et al., 2010, Pour and Hashim, 2015, Ducart et al., 

2016). Therefore, ferric iron mineral can be detected by band 4/band 2 ratio on OLI.  On the 

other hand, a decrease in these ratios in conjunction with an increase in total reflected radiance 

will indicate bleached areas (Van der Meer et al., 2002, Zhang et al., 2007, Ducart et al., 2016). 

However, in presence of vegetation, this band can get confused and create vegetation 

interference. In the spectral region covered by Landsat-8/OLI the chlorophyll of the green 

vegetation absorbs strongly radiation of the red wavelengths at band 4 and reflects the near 

infrared at band 5. Thus, bands 4 and 5 can be used to differentiate areas of ferric iron oxides 

from areas of vegetation. Band ratio of (band 4/band 2) – (band 5/band 4) was used to map 

ferric iron oxide. The areas of interest for the study are the areas that are lacking the ferric iron 

which will be the inverse of this band ratio on OLI. 

The band ratio (band 4/band 2) x ((band 4 + band 6)/ band 5)) converted from Landsat 7 ETM+ 

documented in (Rockwell, 2013) has also been applied to highlight ferric iron bearing areas. 

This band is suggested to identify areas in which ferric iron are present with great abundance 

because it uses the near infrared band (OLI band 5). The near infrared is more sensitive to ferric 

iron crystal field absorption as well as grain size variations (Rockwell, 2004). As grain size 

increases, the absorption feature increase and reflectance level decrease, this in turn makes 

shifting in apparent reflectance minima to longer wavelengths.  

Bleached red beds can be mapped using band ratio band 3/band 4. The high value of the band 

ratio band 3/band 4 indicate a poor ferric iron material. Subsequently, healthy vegetation will 

also have high reflectance value in band ratio band 3/band 4. Therefore band ratios (band 

3/band 4) – (band 5/band 4) in Landsat 8 OLI was used to indicate the presence of bleached 

red beds subtracting the effect of vegetation interference. High value of this ratio indicate ferric 

iron poor rocks and low value indicate ferric iron rich rocks. Ferric iron poor rocks was the 

indirect indicator for the bleached material. 

The band ratio (band 3/band 6) + (band 4/band 5) has been used to map ferrous iron. The band 

6/band5 is widely used in literature (e.g., Pour and Hashim, 2014, Banerjee et al., 2019, Soe et 

al., 2005, Mia and Fujimitsu, 2012), however because ferric iron can have an absorption on 
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NIR and reflections on SWIR this band ratio was not used as it might create some interference 

between ferrous and ferric iron mapping. Because ferrous iron can produce a broad absorption 

on red and NIR in relative to green and SWIR, the band ratio (band 3/band 6) + (band 4/band 

5) was applied in this study. Areas that contain coarse-grained ferric iron might still get mapped 

using this band ratio index (Rockwell, 2013). 

5.2.2.2 Ratios to indicate the presence of clays and carbonates  

Clay or hydroxyl-bearing minerals  and carbonates are characterized by strong absorption 

feature near 2.1 – 2.4 μm correspond to OLI  band 7, and reflectance of 1.55–1.75 μm 

correspond to band 6 of Landsat-8 (Segal and Merin, 1989, Shi et al., 2010). 

Band ratio band 6/ band 7 is commonly used to map clay minerals in Landsat 8 (Zhang et al., 

2007, Zhang et al., 2011, Mia and Fujimitsu, 2013, Pour and Hashim, 2015, Liu et al., 2016). 

Similarities in the spectral feature and reflectance curves of vegetation and clay minerals in 

Landsat-8/ OLI bands 6 and 7 make their differentiation difficult. Vegetation have a high 

reflectance on band 6 and low reflectance in band 7. Band ratio band 5/ band 4 can highlights 

areas of green vegetation with abundant chlorophyll content. Therefore, on Landsat-8/OLI the 

band ratio band 5/ band 4 was subtracted from band ratio band 6/ band 7 to generate the clay 

index. 

5.2.2.3 TIR Ratios to indicate the presence of carbonates 

Carbonates with its two major mineral type, calcite and dolomite have spectral feature in the 

thermal infrared region. Simulating work in (Ninomiya, 2002) using Landsat-8 the band ratio 

b10/b11 was used to map carbonates. Areas with high carbonate content expected to show high 

value in this band ratio. 

Boolean logic (Table 7) was applied to combine the results from the different band ratios into 

a single classified map. 
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Table 7- Boolean algebra expressions used to generate mineral groups  image class 

Class Name Class  

Color 

Ferric iron 

b4/b2- 

b5/b4 

Ferric iron 

b4/b2* 

(b4+b6)/b5 

Ferrous iron 

(b3+b6)/ 

(b4+b5) 

Clays 

b6/b7-

b5/b4 

Bleached 

b3/b4 - 

b5/b4 

Vegetation 

b5/b4 

Carbonate 

b10/b11 

Minor Ferric  cyan X       

Major Ferric  red X X      

Ferrous yellow   X     

Ferric + 

Ferrous 

blue Not X X X     

Bleached 

Materials 

light 

orange 

    X   

Clays orange    X    

Clays and 

Ferrous 

dark cyan   X X    

Clays and 

Minor Ferric 

magenta X   X    

Clays and 

Major Ferric 

purple X X Not X X    

Dark 

vegetation’s 

dark green      X  

Carbonate Light 

green 

      X 

 

 Weights of evidence 

Visual analysis is widely used in microseepage satellite remote sensing literatures to 

characterize the spatial correlation between minerals and hydrocarbon microseepage. Thus, 

prediction models results are more of subjective decisions by the analysts.  Here, weight of 

evidence was used to quantitatively investigate the spatial association between hydrocarbon 

basin, indicated by oil wells, and mineral anomalies resulted from PCA with Crosta technique 

and band ratio analysis.  PCA and band ratio mineral maps were treated as evidential theme or 

predictor of hydrocarbon microseepage occurrence. These maps were reclassified and assigned 

an integer value. This process was deemed necessary because weight of evidence calculation 

requires integer raster. These raster’s were then combined into one evidential theme with 30 

classes for PCA and 19 classes for band ratio, each represent one class of mineral (See 

Appendix C). The cells that were highlighted by different minerals in different PC or band ratio 

images were lumped into a new category. For example, the cells that were marked in PC2456 

as ferric and in PC3467 as a bleached area, were assigned a class called ferric bleached areas.  

An import assumption in weight of evidence modelling is that each unit cell should contain at 

most one training site. The training sites of oil wells were reduced from 340 to 337 to make 

sure each training point is occupying a single unit cell, no reduction on number of training 

points were required for dry hole wells. A unit cells size of 900 m2 (30 m cell size) was selected 

based on map scale and after considering training points distributions. As the generated 
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evidential maps are of nominal data type, they were evaluated using categorical weights. The 

confidence level was arbitrarily chosen to be 80%, which roughly equals to Studentized 

contrast of 0.842. 

The training sites consist of two types of wells.  The weights were calculated twice: one time 

for oil wells to quantify the spatial relationship between the evidential theme and presence of 

hydrocarbon microseepage (positive evidence) and the other time for dry hole wells to quantify 

the spatial relationship between the evidential theme and absence of hydrocarbon microseepage 

(negative evidence). These evidences were combined to provide support of hydrocarbon 

microseepage evidence. Weight of evidence analysis result in a set of statistical measures 

which reflect the degree of spatial association including weights (W+ and W-), contrast (C) 

and Studentized contrast (CS).  

Weights (W+, W-) provide spatial association between the training points and the evidential 

theme. When the value of the weight W+ is positive and W- is negative, it indicates there are 

more anomalies on that particular class than would occur due to random chance. Conversely, 

when the weight of W- is positive and W+ is negative, it indicates that the training sites unlikely 

to occur within the pattern or theme class indicating absence of the mapped feature. The 

difference between the weights is known as the Contrast (C) which measures the overall 

correlation between the training site and the theme. A large positive contrast indicates positive 

correlation; whereas negative contrast indicates negative correlation. The Studentized Contrast 

(CS) is a student t-test that provides a measure of the uncertainty in C value and the degree of 

the significance. It is defined as the ratio of the contrast to its standard deviation. A large 

positive contrast with large Studentized contrast means the contrast is large compared to its 

standard deviation, implying the class or pattern is a useful predictor of the training sites. 

The statistics obtained from weight of evidence calculation are shown in Table 14 and Table 

15 in result section. Contrast value helped in inferring the strength of the spatial correlations. 

The weights were analysed to determine the classes with positive contrast. These evidence 

maps were reclassified to combine the selected classes. Weights were recalculated and the 

reclassified evidence maps were combined to generate a relative ranking of microseepage 

favorability areas for each PCA model and band ratio model. 

The reclassified two evidence maps resulted from weight calculation for PCA and band ratio 

models were then combined to generate a continuous scale probability map. To decide on the 

threshold that can define classes’ breaks, the Cumulative Area-Posterior Probability (CAPP) 

curve was created by plotting posterior probability of the Y-axis and cumulative area on the X-

axis Figure 3. Breakpoint was selected at (0.440968) to separate microseepage from non-

microseepage areas. Breakpoint (0.644347) was selected to separate permissive microseepage 

from favorable microseepage areas.  To validate the combined model result, the map was 

reclassified into binary form. Everything below (0.440968) was assigned zero indicating non-

microseepage areas and everything above that point was assigned one indicating potential 

microseepage areas.  
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Figure 3 - Cumulative area-posterior probability (CAPP) curve for KW based combined model showing class breaks 

 Mixture Tuned Matching Filtering (MTMF) 

MTMF algorithm was used to generate map of the distribution and abundance of image end-

member minerals. In order to extract the image endmembers that will be used for classification, 

minimum noise fraction (MNF), pixel purity index (PPI) and n-dimensional visualization were 

performed on the multispectral image to decompose the mixed pixels into spectra of known 

mineral. Figure 4 shows the workflow that summaries the end-to-end tasks performed to 

complete the classification.  
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Figure 4 - End-to-end processes performed to complete MTMF classification 

 

The first step was to perform MNF transformation. The MNF is used segregate and equalize 

the noise in the input image. It additionally reduces the computational requirements for 

subsequent processing. This is a mandatory step for MTMF classification because it requires 

an MNF transform input file. The input spectra need to be in MNF space, too. Examination of 

the eigenvalues and eigenimages (Figure 5) shows that the resulted MNF bands eigenvalues 

were all above the defined threshold (>1.25). Therefore, the seven MNF bands were used for 

the subsequent processing.  

Next, the Pixel Purity Index (PPI) technique was applied on the 7 MNF images to identify the 

most spectrally pure pixels (extreme). 11,045,424 pixels were operated. PPI threshold value 

was set to 2.50, the unit of this threshold value is the noise standard deviation. The MNF 

transformed image is already in noise standard deviation. This means that the tolerance factor 

was set to 2.50 times the noise of the data which corresponds to 2.5 times the pixels value. A 

PPI image was created in which the digital number of each pixel corresponds to the number of 

the times that pixel was recorded as extreme. A region of interest was created from the PPI 

Landsat OLI Image

MNF

(Spectral Data Reductions)

PPI

(Spatial Data Reductions)

N-D Visualizer 

(Endmember Extractions)

USGS  Library Endmember Identification

Preform Classification

MTMF
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image by applying a threshold value to select only pixels that were flagged 10 times or more 

as extreme or pure.  

 

 

Figure 5 - Landsat 8/OLI Eigenvalues Plots (MNF) 

 

To separate those identified pure pixels into classes corresponding to the spectral endmembers 

of the image, the PPI ROI pixels were used as input to the n-Dimensional visualizer. The n-D 

visualizer is like 2d scatter plot but it can plot the image data in more than two dimensions (i.e., 

in all available dimensions). The scatter plot will show pixels that were plotted against MNF 

bands but only the purest pixels determined from the PPI (i.e., those in the ROI).   Four to five 

bands were chosen each time and then their axes got rotated to examine the shape of the formed 

data cloud. After several rotations with different MNF bands, the pixels that formed corners in 

the data cloud and remained together in all projections got selected. Mean spectra were then 

calculated and exported into classes in both reflectance and MNF space shown in Figure 6 and 

Figure 7. 
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 Figure 6- Result of n-D Visualizer - Spectral signatures show the mean value of reflectance data for each class. 

 

Figure 7 - Result of n-D Visualizer - Spectral signatures show the mean value of MNF spectra for each class. 

Spectral analysis was performed on nDV visualizer exported classes in a process to match 

image spectra to USGS library spectra in order to identify the material that comprised the image 

endmembers. The USGS spectral library was downloaded and resampled to Landsat 8 image 

resolution and used for comparison purpose. Each image endmember spectral shape was 

compared to the spectral shape of known materials in the spectral library. The best match was 

selected for each image endmember. Figure 8 shows an example of image endmember and 

USGS spectral library spectral comparison. 
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Figure 8 – Examples of image endmember and USGS spectral library spectral comparison  

 

Identified minerals groups were used for the subsequent classification. MTMF was applied to 

the MNF transformed image. MTMF requires also the endmembers to be in the same MNF 

space. For this reason, the MNF spectra were used instead of reflectance spectra as the input 

endmembers. MTMF outputs two sets of grey scale images that consist of MF scores image 

and infeasibility scores image for each endmember. Brighter pixels in the image represent 

higher mineral abundance. MF score values indicate the relative degree of match to the 

reference spectrum and range from 0 to1, where 1 is a perfect match. The infeasibility score 

images measures the mixing between the composite background and the target. High values 

are likely to be MF false positives. 

In order to determine the purest pixels that have close matching to the target mineral spectra, a 

two dimensional scatter plot was used to identify the pixels with low infeasibilities and high 

MF scores. The best match to the target spectra can be obtained when the MF score is high 
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(near 1) and the infeasibility score is low (near 0). Figure 9 shows an example of the 2d scatter 

plot used to identify the pixels with low infeasibilities and high MF scores. The resulted 

abundance pixels were combined as color-coded thematic image maps to show the distribution 

of minerals. 

 

Figure 9 - MF Score vs. Infeasibility plot used to determine purest pixels matching target mineral spectra. 

5.3 Data-driven model 

 Support Vector Machine (SVM)  

A data driven approach was used to explore the possibility of mapping potential area of 

microseepage. The data driven model is not built based on expert opinions such as knowledge 

based models instead its parameters are estimated from measured data. Since it is purely 

estimated from data, the data driven approach might help redefine or adjust the previously held 

conceptual model for hydrocarbon microseepage. 

Because the available dataset of microseepage fluxes is rather poor, the known oil, gas and dry 

hole wells in Fort Peck reservation were used as training points for the model. Assumption was 

that areas with surface microseepage are linked to subsurface hydrocarbons accumulations. In 

other words, positive hydrocarbon microseepage fluxes from surface occur over the areas that 

host natural gas and oil reservoirs indicated by oil wells.  

Oil and gas data in the Fort Peck reservation was downloaded from Montana Board of Oil and 

Gas Conservation (MBOGC) web site (MBOGC, 2019). To prepare the data for classifications, 

wells dataset were further categorized into two classes: oil and dry hole, where the oil wells 

indicate potential gas fluxes and dry hole wells indicate no fluxes. These were used as training 

and validation data for the classification. PCA was performed on the Landsat OLI image. The 
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classification occurs on the PCA image and the training data guides the classification to identify 

areas on the image that belong to certain categories. In this case either oil or dry hole. Figure 

10 shows a complete workflow that summaries end-to-end tasks performed to complete the 

classification.  

 

 

Figure 10 - End-to-end processes performed to complete the data-driven classification using SVM. 

As an initial step, pixels from the attribute image that fall within the training data boundaries 

were extracted and assigned an integer class value based on the classes that were defined in the 

training dataset as follows. 

 

Class Name Value 

Dry hole 1 

Oil 2 

 

The next step was to normalize the data (i.e., the examples obtained from the first step). The 

purpose of this step is to scale the data into a consistent range of values prior to classification. 

Normalization can help in speeding up the learning phase. Additionally, it will help in avoiding 

any numerical problems such as precision loss from arithmetic overflows. Furthermore, it 

prevents attributes with a large original scale from biasing or dominating the solution. For data 

normalization, a linear normalization (linear scaling by unit variance and offset by mean value) 

was performed using below formula: 

Extract Examples From 
Raster (Attribute Image)

Data Normalization

Shuffle and Split the 
Examples

Train the Classifier 
(SVM)

Cross-Validation

Preform Classification
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DataOut = Gain * INPUT_EXAMPLES + Offset 

Where  

Gainₓ = 1/ (Maxₓ-Minₓ) one for each attribute in INPUT_EXAMPLES where Maxₓ is the 

maximum example value and Minₓ is the minimum example value for the attribute x. 

Offset = - Meanₓ one for each attribute in INPUT_EXAMPLES where Meanₓ is the mean of all 

example values for attribute x. 

Because we need to train the classifier on one set of examples and evaluate the classifier with 

another set, the next step in the classification process was to shuffle the examples to create a 

random distribution of data and then split the data. The data were split into two-element arrays 

where the first array element contains the examples that were used to train the classifier. The 

second array element (the unknown dataset to the classifier) contains the examples used to 

evaluate the classifier. This is a common strategy in machine learning to obtain the prediction 

accuracy from an independent data set (the unknown). The split fraction was set to 0.8 which 

means that 80 percent of the original examples will be used for training and the other 20 percent 

will be used for evaluation. 

Next, SVM classifier was defined and trained.  This step is only to train the classifier. The 

examples and classes’ values are passed to the trainer that iteratively trains the classifier in 

order to minimize its errors. The trainer iterates to adjust the classifier internal parameters and 

it decreases or falls until the error (also called loss) meets a specified threshold below which 

iterations can stop. If the specified threshold was not met, it will work until it reaches a 

specified maximum number of iterations. The threshold (also called convergence criterion) 

value was set to 0.001 below which the iteration will stop. The maximum number of iteration 

value was set to 100.  

The calculated loss is a unit less number that indicates how closely the classifier fits the training 

data. A value of zero represents a perfect fit and when the value is further from zero, it is 

considered less accurate fit.  

By examining different configurations, the SVM parameters that were found to produce the 

highest accuracy are: 

Kernel Type: Radial Basis Function (RPF) 

RBF kernel has two parameters: gamma which can be thought of as the spread of the kernel 

and C which is the penalty for misclassifying a data point, they were set as: 

Gamma: 0.1 C: 100 

 

To determine the baseline of the classifier performance and to find out what would be the 

success rate of the model, an evaluation step was performed. Using the cross-validation 

technique, a confusion matrix and accuracy metrics between the true class values and the 

predicted class values were calculated. In this step, only the dataset that was designated for 
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evaluation and was not used to train the classifier has been used for the evaluation. Because of 

the random nature resulted from shuffling the examples, the resulting confusion matrix and 

accuracy metrics will vary. Classification was conducted 10 times and the most accurate 

classification was recoded. Table 8 and Table 9 exhibit details of accuracy metrics that reveal 

how well the classifier has performed. 

Table 8 - Confusion Matrix  

P
re

d
ic

te
d

 

Truth 

 Oil Dry Hole Total 

Oil 26 3 29 

Dry Hole 33 96 129 

Total 59 99 158 

 

Table 9 - Accuracy Metrics derived from the confusion matrix 

Overall accuracy  

The sum of correctly classified values divided by the total 

number of values 122/158 

0.772152 

Kappa coefficient 

Represent the agreements between classification and truth 

values. A kappa value of 1 represent perfect agreements, 

while value of zero represent no agreements 

0.457355 

 

 Dry Hole Oil 

Error of commission (false 

positive) 

Fraction of values that were predicted to be 

in a class but belong to another class.  

0.255814 0.103448 

Error of omission (false negative) 

Fractions of values that belong to the class 

but were  predicted in different class 

(misclassified)   

0.0303030 0.559322 

Producer accuracy (Recall) 

A probability that a value in a given class 

was classified correctly  

0.969697 0.440678 

User accuracy (Precision) 

Probability that a value predicted in a 

certain class really is that class 

0.744186 0.896552 

F1 score 

Harmonic mean of user accuracy and 

producer accuracy 

0.842105 0.590909 



44 
  

 

The final step was to run the classification, prior to that, the source raster was normalized using 

the gains and offsets that were computed earlier for the examples. Then classification was 

performed on the normalized raster using the trained classifier. 
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6 Results 

6.1 Knowledge-based models 

Below results demonstrate the performance of applying knowledge-based methods in 

discriminating hydrocarbon gases related surface anomalies.  

 Principle Component Analysis (PCA)   

6.1.1.1 PC to indicate the presence of ferric and ferrous iron minerals and bleaching of red 

beds. 

Table 10 describes the principle component transformation on OLI bands 2, 4, 5 and 6. The 

rules for ferric iron oxide mapping can be defined by the magnitude of eigenvectors loading 

for band 2 and band 4 as moderate or strong loading with opposite sign in either PC3 or PC4.  

By looking for the moderate or large eigenvector loading for band 2 and band 4 where these 

loading are also opposite in sign, we can predict that ferric iron can be discriminated by bright 

pixels in PC4, moderate loading of band 4 (0.4248) and high loading of band 2 (-0.9024) but 

with opposite sign corresponding to absorption in band 2 and reflectance in band 4 for ferric 

iron oxide. Therefore, iron oxide will be discriminated by bright pixels in PC4.  

However, in PC4 band 6 has small positive loading and band 5 has small negative loading. 

This implies that ferrous iron will be mapped by bright pixels too. This in turn might create 

random noise or enhance the false anomalies. Ferric iron oxides are shown in green colour in 

Figure 11. 

 

Table 10 -Landsat 8 PC-2456 for Ferric and Ferrous Iron Mapping 

Eigenvectors Band 2 Band 4 Band 5 Band 6 

PC 1 0.1833 0.3652 0.5072 0.7587 

PC 2 0.1277 0.1101 -0.8561 0.4884 

PC 3 -0.3683 -0.8209 0.0837 0.4282 

PC 4 -0.9024 0.42489 -0.0523 0.0484 

 

Band ratio band6/band5 can highlights ferrous oxide bearing minerals. Looking for moderate 

or large eigenvector loading for band 5 and band 6 where these loading are also opposite in 

sign, we can predict that ferrous iron can be discriminated by bright pixels in PC2 (Table 10), 

high loading of band 5 (-0.8561) and moderate loading of band 6 (0.4884) with opposite in 

sign. The negative loading of band 5 in this PC implies that vegetation, if present, in the area 

will be mapped by dark pixels.  

6.1.1.2 PC to indicate the presence of clay and carbonate minerals.  

PCA for clays and carbonates was examined by the eigenvector loading for band 6 and band 7 

to determine which PC image will enhance the presence of clay and carbonates.   
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Table 11 describes the principle component transformation on OLI bands 2, 5, 6 and 7. The 

rules for clay and carbonate mapping can be defined by the magnitude of eigenvectors loading 

for band 6 and band 7 as moderate or strong loading with opposite sign in either PC3 or PC4. 

In this PC image, the visible band 4 was omitted deliberately to avoid ferric iron oxide mapping. 

Table 11 -PC-2567 for Clays and Carbonates Mapping 

Eigenvectors Band 2 Band 5 Band 6 Band 7 

PC 1 -0.1683 -0.3940 -0.6861 -0.5878 

PC 2 -0.0643 0.8783 -0.0903 -0.4649 

PC 3 0.1531 0.2654 -0.7217 0.6206 

PC 4 0.9716 -0.0519 -0.0111 -0.2304 

 

Looking for moderate or large eigenvector loading for band 6 and band 7 where these loading 

are also opposite in sign, we can predict that clay and carbonate minerals can be discriminated 

by dark pixels in PC3, high loading of band 6 (-0.7217) and moderate loading of band 7 

(0.6206) with opposite signs. Clays also show reflectance in band 5 and 2. Therefore, in order 

to get accurate mapping of clays, band 5 and band 2 should follow the sign of band 6. However, 

that is not the case with the current analysis for PC3-2567, which means it might map other 

materials with clays and carbonate. For instance and since band 5 was used in this PC, then 

loading of band 5 and band 6 can be used to map ferrous iron. Band 6 and band 5 follow the 

sign of band 7 which indicate that PC3 will map both ferrous iron and clays minerals in dark 

pixels. Figure 11 shows PC3-2567 mapped pixels above the threshold value (mean + 1 standard 

deviation). 

Table 12 describes the principle component transformation on OLI bands 2, 4, 6 and 7. Looking 

for moderate or large eigenvector loading for band 6 and band 7 where these loading are also 

opposite in sign, we can predict that clay and carbonate minerals can be discriminated by dark 

pixels in PC2 or PC4. PC2 has moderate loading of band 6 (-0.6183) and band 7 (0.7018) with 

opposite sign. PC4 has small loading of band 6 (-0.0270) and band 7 (0.1105) with opposite 

sign. However, the moderate to high loading of band 2 and band 4 in PC4 with opposite sign 

would help in suppressing the ferric iron from the result. Therefore, PC4 was selected to map 

clay and carbonate minerals. PC4 is shown in Figure 11 for pixels above the threshold value 

(mean + 1 standard deviation). 

Table 12 - PC-2467 for Clays and Carbonates Mapping 

Eigenvectors Band 2 Band 4 Band 6 Band 7 

PC 1 -0.1765 -0.3278 -0.6923 -0.6180 

PC 2 0.1319 0.0754 -0.6959 0.7017 

PC 3 0.2938 0.8745 -0.1886 -0.3364 

PC 4 -0.9300 0.3492 -0.0270 0.1105 
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Table 13 describes the principle component transformation on OLI bands 3, 4, 6 and 7. This 

PC also used to map clays and carbonates.  

Table 13 – PC3467 for Clays and Carbonates Mapping 

Eigenvectors Band 3 Band 4 Band 6 Band 7 

PC 1 0.2386 0.3268 0.6822 0.6088 

PC 2 0.2310 0.2467 -0.7295 0.5945 

PC 3 -0.4739 -0.7070 0.0373 0.5235 

PC 4 0.8154 -0.5764 0.0287 -0.0423 

 

Looking for moderate or large eigenvector loading for band 6 and band 7 where these loading 

are also opposite in sign, we can predict that clay and carbonate minerals can be discriminated 

by dark pixels in PC2, moderate loading of band 6 (-0.7295) and high loading of band 7 

(0.5945) with opposite signs.  Notice that PC4 has a loading for band 6 and band 7 with 

opposite signs which also can be used for clay and carbonates mapping however it has small 

magnitude. The opposite loading of band 3 and band 4 can help in mapping of bleached 

material. However, the result of PC4 shows the manifestation of vegetation due to strong 

reflections of band 3 and absorption of band 4. Since PC2-3467 yield similar result like PC3-

2567, instead PC4-3467 will be used here to show bleached materials. Figure 11 shows the 

result of the analysis on PC4-3467 with threshold value greater that mean + 1 standard 

deviation. The PC was overlaid with band ratio b5/b4 to discriminate vegetation.  
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Figure 11- PCA crosta technique results showing the distributions of wells and minerals group 
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 Band Ratio 

 Ratios to indicate the presence of ferric, ferrous iron minerals and bleached red 

beds 

Bands 4 and 5 were used to differentiate areas of ferric iron oxides from areas of vegetation. 

Band ratio of (band 4/band 2) – (band 5/band 4) was used to map ferric iron oxide. 

Band ratio (band 3/band 4) – (band 5/band 4) was used to indicate the presence of ferrous iron 

minerals and bleached red beds subtracting the effect of vegetation interference. High value of 

this ratio indicate ferric iron poor rocks and low value indicates ferric iron rich rocks. Ferric 

iron poor rocks were the indirect indicator for the bleached material. 

Because ferrous iron can produce a broad absorption on red and NIR relative to green and 

SWIR, the band ratio OLI (3+6)/(4+5) adopted from Rockwell (2013) was used to highlight 

the area of ferrous iron. However, this index can highlight areas that contain coarse-grained 

ferric iron.     

 Ratios to indicate the presence of clays and carbonates  

Band ratio band 6/ band 7 was used to map clay minerals in Landsat 8. The result of applying 

this ratio shows clearly clays spectra are contaminated with vegetation spectra. Therefore, on 

Landsat-8/OLI, the band ratio 5/4 was subtracted from band ratio 6/7 to generate the clay index. 

 TIR Ratios to indicate the presence of carbonates 

The band ratio b10/b11 was used to map carbonates. Areas with high carbonate content 

expected to show high value in this band ratio (Ninomiya, 2002). 

Figure 12 illustrate the result from band ratio technique showing different minerals groups 

generated using band algebra with wells distributions. 
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Figure 12- Band ratio technique results showing different minerals group generated using band algebra. 
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6.2 Weights of evidence 

From literature review, the conceptual model for recognizing locations of microseepage was 

identified. A list of predictor maps were developed based on this model. PCA and band ratio 

assembled to produce evidential themes. Weights of evidence was performed to quantify the 

spatial associations between hydrocarbon microseepage and mineral anomalies. Statistical 

values obtained from weight of evidence analysis are shown in Table 14 and Table 15 for PCA 

and in Table 18 and Table 19 for band ratio. These statistics were used to select and adjust the 

most appropriate groupings of the evidential themes and provide measure of the model 

confidence. 

 Weights of evidence for PCA  

As can be seen by the contrast values in Table 14, there is a strong spatial correlation between 

oil wells and clays carbons, bleached, bleached-ferric and bleached-clays carbons minerals. 

Clay’s carbons and bleached-clays carbons show positive W+ and C, but as it can be seen the 

confidence is lower than the defined threshold (0.842) for Studentized contrast. Mineral classes 

4, 11 and 27 show positive contrast as well. However positive contrast here was the result of 

one oil well in a small area. One point should not be considered sufficient for the spatial 

correlation. In contrast, clays carbons, bleached and bleached-ferric were chosen as predictor 

for oil basin. These were extracted and combined into a binary evidence layer and statistics 

were re-calculated and shown in Table 16. Class 2 refers to the selected minerals that correlate 

with oil wells; everything else was grouped into class 1. 

Table 15 measures the spatial correlation between dry hole wells and the different minerals. 

Dry hole wells, and as explained by C value, have strong spatial correlation with the classes 1, 

2, 3, 9 and 18 representing respectively background, ferric, ferrous, bleached and clays ferrous 

- ferric minerals (See Appendix C).  These were extracted, except bleached, and combined into 

a binary evidence layer. Statistic shows that bleached areas correlate with both oil and dry hole 

wells. However, as per the defined conceptual model, bleached is correlated with oil therefore 

it was discarded for dry hole wells. Class 2 was assigned to the minerals that correlate with dry 

hole wells and everything else was grouped into class 1. Statistics were re-calculated and shown 

in Table 17. 

  



52 
  

Table 14 - Weights and statistics for PCA minerals evidential theme with oil wells 

CLASS AREA_SQ_KM NO_POINTS W+ S_W+ W- S_W- CONTRAST S_CONTRAST STUD_CNT WEIGHT 

1 2982.79 126 0.0484 0.0891 -0.0278 0.0688 0.0762 0.1126 0.6765 -0.0439 

2 1119.05 37 -0.1966 0.1644 0.0272 0.0577 -0.2238 0.1742 -1.2844 -0.1966 

3 308.09 9 -0.3205 0.3333 0.0104 0.0552 -0.3309 0.3379 -0.9793 -0.3205 

4 20.64 1 0.1855 1.0000 -0.0005 0.0546 0.1860 1.0015 0.1858 -0.0439 

5 737.18 34 0.1362 0.1715 -0.0142 0.0574 0.1504 0.1809 0.8316 -0.0439 

6 6.99 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

7 172.93 2 -1.2471 0.7071 0.0149 0.0546 -1.2620 0.7092 -1.7794 -1.2471 

8 0.82 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

9 648.17 67 0.9433 0.1222 -0.1411 0.0609 1.0844 0.1365 7.9446 0.9433 

10 25.65 9 2.1657 0.3334 -0.0240 0.0552 2.1897 0.3379 6.4798 2.1657 

11 1.89 1 2.5775 1.0002 -0.0027 0.0546 2.5803 1.0017 2.5758 2.5775 

12 0.09 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

13 467.00 20 0.0621 0.2236 -0.0038 0.0562 0.0659 0.2306 0.2858 -0.0439 

14 2.29 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

15 30.70 1 -0.2117 1.0000 0.0007 0.0546 -0.2124 1.0015 -0.2121 -0.0439 

16 0.10 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

17 568.04 12 -0.6446 0.2887 0.0340 0.0555 -0.6786 0.2940 -2.3085 -0.6446 

18 377.28 3 -1.6217 0.5774 0.0372 0.0547 -1.6589 0.5799 -2.8604 -1.6217 

19 313.80 9 -0.3388 0.3333 0.0111 0.0552 -0.3500 0.3379 -1.0358 -0.3388 

20 48.02 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

21 244.79 1 -2.2877 1.0000 0.0267 0.0546 -2.3144 1.0015 -2.3110 -2.2877 

22 2.44 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

23 217.11 3 -1.0691 0.5774 0.0173 0.0547 -1.0865 0.5799 -1.8734 -1.0691 

24 2.64 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

25 18.09 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

26 0.83 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

27 1.33 1 2.9294 1.0003 -0.0028 0.0546 2.9322 1.0018 2.9268 2.9294 

28 0.07 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

29 41.45 1 -0.5117 1.0000 0.0020 0.0546 -0.5137 1.0015 -0.5129 -0.0439 

30 0.11 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

31 12.61 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 

32 0.08 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0439 
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Table 15 -Weights and statistics for PCA minerals evidential theme with dry holes wells 

CLASS AREA_SQ_KM NO_POINTS W+ S_W+ W- S_W- CONTRAST S_CONTRAST STUD_CNT WEIGHT 

1 2982.79 178 0.1025 0.0750 -0.0616 0.0605 0.1641 0.0963 1.7029 0.1025 

2 1119.05 79 0.2705 0.1125 -0.0491 0.0518 0.3196 0.1239 2.5802 0.2705 

3 308.09 25 0.4098 0.2000 -0.0195 0.0485 0.4294 0.2058 2.0864 0.4098 

4 20.64 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

5 737.18 26 -0.4234 0.1961 0.0328 0.0485 -0.4562 0.2020 -2.2583 -0.4234 

6 6.99 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

7 172.93 5 -0.6222 0.4472 0.0097 0.0474 -0.6319 0.4497 -1.4050 -0.6222 

8 0.82 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

9 648.17 46 0.2758 0.1474 -0.0270 0.0497 0.3028 0.1556 1.9462 0.2758 

10 25.65 1 -0.3232 1.0000 0.0008 0.0471 -0.3241 1.0011 -0.3237 0.0102 

11 1.89 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

12 0.09 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

13 467.00 8 -1.1456 0.3536 0.0395 0.0475 -1.1851 0.3567 -3.3221 -1.1456 

14 2.29 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

15 30.70 1 -0.5031 1.0000 0.0015 0.0471 -0.5045 1.0011 -0.5040 0.0102 

16 0.10 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

17 568.04 34 0.1055 0.1715 -0.0081 0.0490 0.1136 0.1784 0.6370 0.0102 

18 377.28 31 0.4223 0.1796 -0.0251 0.0488 0.4474 0.1861 2.4040 0.4223 

19 313.80 10 -0.5249 0.3162 0.0158 0.0476 -0.5406 0.3198 -1.6906 -0.5249 

20 48.02 2 -0.2573 0.7071 0.0013 0.0472 -0.2586 0.7087 -0.3649 0.0102 

21 244.79 1 -2.5791 1.0000 0.0275 0.0471 -2.6066 1.0011 -2.6037 -2.5791 

22 2.44 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

23 217.11 3 -1.3605 0.5774 0.0196 0.0472 -1.3801 0.5793 -2.3825 -1.3605 

24 2.64 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

25 18.09 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

26 0.83 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

27 1.33 1 2.6380 1.0003 -0.0021 0.0471 2.6400 1.0014 2.6362 2.6380 

28 0.07 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

29 41.45 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

30 0.11 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

31 12.61 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

32 0.08 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0102 

 

Table 16 - Weights and statistics for minerals associated with oil wells from PCA WofE analysis.  

CLASS AREA_SQ_KM NO_POINTS W+ S_W+ W- S_W- CONTRAST S_CONTRAST STUD_CNT WEIGHT 

1 6956.34 
230 -0.1975 

0.0750 
0.6334 

0.0605 
-0.8309 0.1170 -7.1001 -0.1975 

2 1409.97 
107 0.6334 

0.1125 
-0.1975 

0.0518 
0.8309 0.1170 7.1001 0.6334 
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Table 17 - Weights and statistics for minerals associated with dry hole wells from PCA WofE analysis. 

CLASS AREA_SQ_KM NO_POINTS W+ S_W+ W- S_W- CONTRAST S_CONTRAST STUD_CNT WEIGHT 

1 3582.98 
141 -0.3147 0.0842 0.1842 0.0568 -0.4989 0.1016 -4.9113 -0.3147 

2 4783.33 
310 0.1842 0.0568 -0.3147 0.0842 0.4989 0.1016 4.9113 0.1842 

 

 Weight of evidence for band ratio 

Weights were calculated to test band ratio spatial association with oil wells. The resulted 

statistical measures are shown in Table 18.The results show that there are few classes of 

minerals that positively correlate with oil wells. Bleached areas (class 7) show positive W+ and 

C, the Studentized contrast are markedly greater than the defined threshold (0.842) indicating 

that the spatial association are more likely to be real. Mineral classes 8 and 10 show positive 

contrast as well. However, positive contrast here was the result of few oil wells in a small area. 

These were extracted and combined into a binary evidence layer and statistics were re-

calculated and shown in Table 20. Class 2 refers to the selected minerals that correlate with oil 

wells; everything else was grouped into class 1 including classes with positive contrast with 

one or two points which considered uncertainties due to the data.  

Table 19 measures the spatial correlation between dry holes and the different minerals 

anomalies resulted from band ratio analysis. Dry hole wells, as explained by C value, have 

strong spatial correlation with classes 2, 3, 7 and 8. The corresponding Studentized contrast are 

greater than the specified threshold of 0.842 (approximately 80%) indicating the contrasts are 

more certain for those minerals. Similar to PCA analysis statistics, the band ratio analysis also 

shows that bleached areas correlate with both oil and dry hole wells. However, as per the 

defined conceptual model, bleached is correlated with oil therefore it was discarded for dry 

hole wells. Correlated minerals were extracted, except bleached, and combined into a binary 

evidence layer. Class 2 was assigned to the minerals that correlate with dry holes and 

everything else was grouped into class 1 including classes with positive contrast with one or 

two points. Statistics were re-calculated and shown in Table 21. 
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Table 18 -Weights and statistics for band ratio minerals evidential theme with oil wells 

CLASS AREA_SQ_KM NO_POINTS W+ S_W+ W- S_W- CONTRAST S_CONTRAST STUD_CNT WEIGHT 

0 5835.99 234 -0.0035 0.0654 0.0080 0.0985 -0.0115 0.1182 -0.0977 0.1677 

1 747.26 16 -0.6309 0.2500 0.0448 0.0558 -0.6757 0.2562 -2.6378 -0.6309 

2 138.13 3 -0.6166 0.5774 0.0077 0.0547 -0.6243 0.5799 -1.0765 -0.6166 

3 38.60 1 -0.4403 1.0000 0.0016 0.0546 -0.4419 1.0015 -0.4412 0.1677 

4 56.57 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 

5 79.97 3 -0.0701 0.5774 0.0007 0.0547 -0.0707 0.5799 -0.1220 0.1677 

6 13.18 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 

7 169.70 46 1.9078 0.1475 -0.1263 0.0586 2.0341 0.1587 12.8183 1.9078 

8 28.28 3 0.9696 0.5774 -0.0056 0.0547 0.9751 0.5800 1.6813 0.9696 

9 9.14 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 

10 2.59 5 3.8720 0.4476 -0.0146 0.0549 3.8867 0.4510 8.6187 3.8720 

11 1.78 2 3.3319 0.7075 -0.0057 0.0546 3.3376 0.7096 4.7037 3.3319 

12 971.72 23 -0.5306 0.2085 0.0526 0.0564 -0.5833 0.2160 -2.7000 -0.5306 

13 188.43 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 

14 63.48 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 

15 3.28 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 

16 4.17 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 

17 18.31 1 0.3053 1.0000 -0.0008 0.0546 0.3061 1.0015 0.3056 0.1677 

18 3.54 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 

19 0.62 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 
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Table 19 - Weights and statistics for band ratio minerals evidential theme with dry holes wells 

CLASS AREA_SQ_KM NO_POINTS W+ S_W+ W- S_W- CONTRAST S_CONTRAST STUD_CNT WEIGHT 

0 5835.99 319 0.0150 0.0560 -0.0353 0.0870 0.0503 0.1035 0.4856 0.0257 

1 747.26 37 -0.0839 0.1644 0.0079 0.0491 -0.0918 0.1716 -0.5348 0.0257 

2 138.13 15 0.7015 0.2582 -0.0172 0.0479 0.7187 0.2626 2.7366 0.7015 

3 38.60 5 0.8779 0.4472 -0.0065 0.0474 0.8844 0.4497 1.9665 0.8779 

4 56.57 3 -0.0153 0.5774 0.0001 0.0472 -0.0154 0.5793 -0.0266 0.0257 

5 79.97 3 -0.3615 0.5774 0.0029 0.0472 -0.3644 0.5793 -0.6291 0.0257 

6 13.18 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0257 

7 169.70 19 0.7320 0.2294 -0.0226 0.0481 0.7546 0.2344 3.2190 0.7320 

8 28.28 6 1.3714 0.4083 -0.0100 0.0474 1.3814 0.4110 3.3608 1.3714 

9 9.14 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0257 

10 2.59 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0257 

11 1.78 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0257 

12 971.72 33 -0.4610 0.1741 0.0473 0.0489 -0.5083 0.1808 -2.8113 -0.4610 

13 188.43 5 -0.7077 0.4472 0.0116 0.0474 -0.7193 0.4497 -1.5995 -0.7077 

14 63.48 3 -0.1306 0.5774 0.0009 0.0472 -0.1315 0.5793 -0.2270 0.0257 

15 3.28 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0257 

16 4.17 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0257 

17 18.31 1 0.0139 1.0000 0.0000 0.0471 0.0139 1.0011 0.0139 0.0257 

18 3.54 2 2.3509 0.7073 -0.0040 0.0472 2.3549 0.7089 3.3221 2.3509 

19 0.62 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0257 

 

Table 20 -Weights and statistics for minerals associated with oil wells from band ratio WofE analysis. 

CLASS AREA_SQ_KM NO_POINTS W+ S_W+ W- S_W- CONTRAST S_CONTRAST STUD_CNT WEIGHT 

1 8174.76 283 -0.1504 0.0594 1.9010 0.1361 -2.0514 0.1485 -13.8127 -0.1504 

2 200.57 54 1.9010 0.1361 -0.1504 0.0594 2.0514 0.1485 13.8127 1.9010 

 

Table 21 - Weights and statistics for minerals associated with dry hole wells from band ratio WofE analysis. 

CLASS AREA_SQ_KM NO_POINTS W+ S_W+ W- S_W- CONTRAST S_CONTRAST STUD_CNT WEIGHT 

1 8170.33 425 -0.0346 0.0485 0.8567 0.1961 -0.8913 0.2020 -4.4116 -0.0346 

2 205.01 26 0.8567 0.1961 -0.0346 0.0485 0.8913 0.2020 4.4116 0.8567 

 

Because the number of dry hole wells that fall into the area covered by the theme were 

relatively small compared to the total dry holes wells (26 out of 451), another model was tested. 

The new model added the background class to the classes used previously for dry holes theme. 

Statistics were re-calculated and shown in Table 22. 
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Table 22 - Weights and statistics for minerals associated with dry hole wells from BR WofE analysis 2nd model.  

CLASS AREA_SQ_KM NO_POINTS W+ S_W+ W- S_W- CONTRAST S_CONTRAST STUD_CNT WEIGHT 

1 2334.34 106 -0.1705 0.0971 0.0588 0.0538 -0.2293 0.1111 -2.0645 -0.1705 

2 6041.00 345 0.0588 0.0538 -0.1705 0.0971 0.2293 0.1111 2.0645 0.0588 

 

The results were combined to produce relative favorability ranking map. The study area was 

ranked on a relative scale representing high to low potential microseepage area: favorable, 

permissive and not permissive. Results are shown in Figure 14 and Figure 15. 
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Figure 13 - Relative favourability ranking map of microseepage derived from WofE analysis on PCA images 
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Figure 14 - Relative favourability ranking map of microseepage derived from WofE analysis on band ratio images 

The reclassified evidence maps resulted from the combined knowledge based model for PCA 

and band ratio models is shown in Figure 15.  
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Figure 15 - Relative favourability ranking map of microseepage for the combined evidence layers of PCA and BR.  

 

6.3 Mixture Tuned Matched Filtering (MTMF) 

Figure 16 show the results of MTMF classification for ferrous iron, clays and ferric iron shown 

respectively in RGB for MTMF bands 18, 15 and 19. These bands have been selected because 

they were better delineating the chosen minerals and have less noise or vegetation interference. 
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Figure 16 -MTMF image in RGB colour with wells distributions - ferrous iron (band 19) - clays area (band 15) –
ferric iron area (band 18) 
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Figure 17 - MTMF result of band 22 delineate clays in bright pixels and ferric iron in dark pixels  

6.4 Data-driven model 

The results that were obtained from SVM classification are shown in Figure 18 and Figure 19. 
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Figure 18 - Results from SVM classification with wells distributions over Fort Peck Reservation 
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Figure 19 - A close look of SVM classification results with wells distribution over Fort Peck Reservation 
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6.5 Models evaluation 

The models classification accuracy performance were evaluated using area under the curve 

(AUC) of a receiver operating characteristic (ROC) plot. ROC curve was constructed twice for 

each model, one time with oil wells and one time with dry hole wells. A good model should 

have high value (AUC > 0.5) with oil wells and low value (AUC < 0.5) with dry hole wells. 

 

 

Figure 20 - ROC curve shows the performance of PCA model for hydrocarbon microseepage. On the top, ROC 
curve testing the association between oil wells and PCA evidential theme. Below ROC curve testing the 

association between dry hole wells and PCA evidential theme 
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Figure 21 - ROC curve shows the performance of band ratio model for hydrocarbon microseepage. On the top, 
ROC curve testing the association between oil wells and band ratio evidential theme. Below ROC curve testing 

the association between dry hole wells and band ratio evidential theme 

 

 

AUC =0.795

Microseepage Permissive BR (Oil)
Random guess

ROC Curve

False Positive Rate

10.950.90.850.80.750.70.650.60.550.50.450.40.350.30.250.20.150.10.050

T
ru

e
 P

o
s
it
iv

e
 R

a
te

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

AUC =0.594

Microseepage Permissive BR (Dryhole)
Random guess

ROC Curve

False Positive Rate

10.950.90.850.80.750.70.650.60.550.50.450.40.350.30.250.20.150.10.050

T
ru

e
 P

o
s
it
iv

e
 R

a
te

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

AUC =0.830

Knowledge Based (Oil)
Random guess

ROC Curve

False Positive Rate

10.950.90.850.80.750.70.650.60.550.50.450.40.350.30.250.20.150.10.050

T
ru

e
 P

o
s
it
iv

e
 R

a
te

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0



67 
  

 

Figure 22 - ROC curve shows the performance of the combined knowledge based model for hydrocarbon 
microseepage. On the top, ROC curve testing the association between oil wells and knowledge based evidential 
theme. Below ROC curve testing the association between dry hole wells and knowledge based evidential theme 
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Figure 23 - ROC curve shows the performance of the SVM model for hydrocarbon microseepage. On the top, 
ROC curve testing the association between oil wells and SVM evidential theme. Below ROC curve testing the 

association between dry hole wells and SVM evidential theme 
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7 Discussion  

Satellite remote sensing methods were used to investigation areas affected by natural 

hydrocarbon microseepage using knowledge and data driven based approaches. Knowledge 

based approaches constructed based on the theoretical model established from literature 

targeting specific minerals and surface manifestations related to hydrocarbon microseepage. A 

series of multiple image processing techniques were developed based on the spectral 

characteristics of the minerals. These were derived from two main methods PCA with crosta 

technique and band ratio technique. 

7.1 Knowledge based models 

The PCA and band ratio minerals evidential themes were tested with weight of evidence to 

quantify their spatial association with hydrocarbon accumulations. Presence and absence was 

determined based on the correlations with oil and dry hole wells.  Statistics obtained from 

weight of evidence analysis (Table 14, Table 15 for PCA) and (Table 18 and Table 19 for band 

ratio) show both models agrees that oil wells correlated with bleached, carbonate and clays 

areas while dry hole wells are more correlated with ferric iron areas. This is to some extent 

agrees with the established theoretical detection model, the areas affected by hydrocarbon 

microseepage are lacking ferric iron and have proximity to bleached areas. However, bleached 

areas also shows significant correlation with dry hole wells. In order to follow the conceptual 

models, the bleached areas evidential theme was included in the model for microseepage and 

arbitrary excluded from non-microseepage model for both PCA and band ratio. 

The Area under the curve (AUC) was used to evaluate PCA and band ratio models shown in 

Figure 14 and Figure 15. PCA resulted in AUC mean value of 0.749 using ROIs of oil wells 

and AUC mean value of 0.472 using ROIs of dry hole wells (Figure 20). On the other hand, 

band ratio model resulted in AUC mean value of 0.795 using ROIs of oil wells and AUC mean 

value of 0.594 using ROIs of dry hole wells (Figure 21). For the microseepage area, a good 

model should have high AUC using ROIs of oil wells and low AUC value below 0.5 with dry 

hole wells ROIs. The predicted power of both model are fair, both have mean value around 0.7 

with oil wells and around/below 0.5 for dry hole. 

Both PCA and band ratio models were combined into one model so-called knowledge based 

model (Figure 15). This model has an improved classification performance. It has resulted in 

AUC mean value of 0.830 using ROIs of oil wells and AUC mean value of 0.519 using ROIs 

of dry hole wells (Figure 22). 

7.2 Data-driven model 

The model created using data driven approach (Figure 18) was purely estimated from the 

multispectral image data based on occurrence and abundance of oil and dry hole wells and 

without any prior knowledge of the area minerals assemblages or other surface manifestations. 

The model yields best results. The AUC mean value is 0.884 using ROIs of oil wells and AUC 

mean value of 0.544 using ROIs of dry hole wells (Figure 23). 
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The main challenge with data driven approach and SVM classification in particular is 

parameter turning (also called hyper-parameters) which are internal coefficients or weights that 

allow the analyst/scientist to tailor the behaviour of the algorithm to a specific dataset. It was 

challenging to know what values to use for the hyper-parameters on the given dataset. Multiple 

values and different combination were tested for kernel types, gamma and penalty parameter 

in SVM. The highest attained classification performance on the test dataset was 77% of 

accuracy (Table 9). The strategies on selecting the parameters values were more of random 

search, tuning by means of such technique was time consuming since with every new 

parameters combination the classification has to restart. The more hyper-parameters need to be 

tuned and the larger the search space, the slower the tuning process. The performance achieved 

with SVM classification was the highest when compared to the other methods. However, 

performance is highly dependent on the selected parameters. This implies that performance 

could be enhanced further. Hyper-parameters tuning by means of systematic techniques can 

bring down the time spent to develop the optimal set of parameters and bring better 

classification performance.  

7.3 Surface manifestations of hydrocarbon microseepage 

In terms of visual interpretations, the knowledge based methods (Figure 11 and Figure 12) have 

good agreements of the location of ferric iron and clays minerals. In fact, there is a consistency 

between all models in regards to the areas of clays. The mapped clays areas in both PCA and 

band ratio models are identical with the areas that were mapped in MTMF classification as rich 

clays areas which was revealed as kaolinite mineral based on the spectral shape of the image 

endmembers (Figure 17). The same extent area was mapped with SVM classification as area 

with potential gas fluxes (Figure 19).  

Ferric iron rich areas correlated with dry hole locations. Dry hole wells were found to cluster 

inside and around ferric iron rich area. Clay mineral alteration, particularly kaolinite mixed 

layer at the edge of rich ferric iron area, was the strongest evidence of hydrocarbon 

microseepage. Results in MTMF classification (Figure 17) indicate that pyrophyllite clay type 

is abundant in non-oil regions and correlate more with areas with dry hole wells. 

Ferrous iron rich areas in Figure 11, Figure 28 and Figure 17 were confusing, and no clear 

pattern could be identified either for oil or dry hole wells. Statistically, weight of evidence 

calculations (Table 15) on PCA evidential theme shows relatively few dry hole wells have 

positive spatial associations with ferrous iron rich areas. The conceptual model obtained from 

literature for the recognition of the locations of microseepage suggest that that microseepage-

induced sediments will have higher ferrous content and lesser ferric iron content. Therefore 

ferrous iron was tested as an indicator of microseepage alterations. 

However, in wide body of literature the mineralogical and geochemical properties of the 

sediments affected by hydrocarbon microseepage have defined explanations with numerous 

and sometimes conflicting hypotheses. For instance, the reducing environments and bleaching 

of red beds have been widely used as indicators of hydrocarbon microseepage induced 

alterations. Both conceptually explain the same geochemical process, however in literature the 

terms sometimes used improperly which in turn creates some confusion. The terms that 
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normally appear are: abundance of ferrous iron, reduction of ferric iron or red bed bleaching.   

Reduction of ferric iron to ferrous iron as result of microseepage will cause red bed bleaching 

in rocks and sediments.  The affected zone becomes deficient of ferric iron minerals but not 

necessarily become enriched of ferrous iron mineral.  This is because the developed ferrous 

iron minerals may precipitate or mobilize to other places by groundwater (Garain et al., 2020). 

This brings to attention that magnetic anomalies which measures the ability of soil minerals to 

be magnetized because of the abundance of ferrous iron might not have any merit toward 

hydrocarbons potential area. Results of previous studies (Monson, 2000, 2001, 2003) 

conducted in Fort Peck Reservations show that interpretation of high magnetic susceptibility 

prove poor gas fluxes. On the other hand, (Wang, 2016) found that ferrous index was not a 

good indicator for mapping hydrocarbon alteration. Indeed, the result here concluded the same 

findings. Thus, microseepage alteration should be referred to as reduction of ferric iron and 

bleaching of red beds but not as ferrous iron abundance. 

The results of band ratio and Crosta technique show that the red bed bleaching occurs within 

areas with no ferric iron and found to be correlated with oil wells. However, pixels containing 

vegetation can show anomalous value which means that the result might not show the true 

characteristic of the bleached red beds. Results from weight of evidence calculations (Table 

14, Table 15, Table 18, Table 19 demonstrate that bleached areas have significant association 

with oil wells but also correlate with dry holes wells as well in both model PCA and band ratio. 

This indicated that bleached areas might not always be hydrocarbon related, but could also be 

associated with the presence of waterlogging, cropping of annual vegetation, leaching of 

nutrients or as a result of weathering processes. In the study, bleached area was arbitrarily 

excluded from non microseepage potential area (i.e., areas associated with dry hole wells) to 

match the conceptual model which might have affected the result. Therefore, the model 

developed could be biased in both PCA and band ratio.    

7.4 Current models and challenges 

Despite the pre-processing steps that were preformed to atmospherically correct the image and 

masking out the clouds and water bodies, random noise signals were contained in knowledge-

based approaches. The influence of random noise was obvious when using Crosta technique. 

The extent of minerals has larger distribution in Crosta compared to other techniques. The 

concept behind Crosta technique is to reduce the number of input bands for PCA, normally to 

four bands in multispectral image, to facilitate the manifestation of certain minerals. However, 

the interpretation of eigenvector matrix, carried based on the diagnostic reflectance and 

absorption of two bands only while the other two bands get usually ignored in the analysis. For 

example, when using the bands (2, 5, 6, and 7) to map clays, the mapped area will be defined 

by the sign and magnitude of eigenvectors and loading for band 6 and band 7. This was the 

case in almost all the reviewed literatures. Though clays also have reflectance in band 5 and 2, 

these two bands should follow the sign of band 6 in order to get accurate mapping of clays. 

Otherwise, noise is enhanced from these two bands and creates interference-induced false 

anomalies. This is a key part and major deficiency of Crosta technique that appears to be 

ignored by many researchers. Limitation could also arise from uncorrelated noise in principle 

component (PC) images. The diagnostic reflectance and absorption of minerals usually 
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contained in the noisiest PCs, the third or fourth PC, which in turn creates random noise and 

enhances the false anomalies. 

Band ratio technique can overcome the deficiency in Crosta technique by allowing independent 

control over band selection to enhance the spectral contrast of specific absorption features 

between multiple bands. Nevertheless, different bands ratio combination may result in error 

values of duplicate pixel mapping. Inconsistency arise from mapping one pixel as two different 

minerals. Band ratio despite its flexibility in band selection, has a major drawback in that it 

cannot account for endmember variability. Therefore it cannot handle overlapping and mixing 

absorption features. Boolean algebra was modelled to combine different mineral indices to 

generate uniform map of minerals. 

MTMF classification was used to identify individual minerals however results were restrictive. 

The extent of the mapped minerals was the least among other used knowledge based 

techniques. Classification result of MTMF (Figure 17) was consistent with the other methods. 

The MTMF needs complex hand crafted spectral feature, the pure image endmembers were 

obtained after long processing using the MNF transformation, pixel purity index and n-D 

visualization procedures. 

To eliminate some of the interference of random noise and to extract the altered minerals, a 

threshold value was applied in all the images produced with knowledge based approach. The 

question that arises is what a good threshold values is. There is no theoretical base in 

determining the optimal threshold value. In this study value greater than µ + σ was used to 

extract the distribution of minerals, where µ represent mean and σ represent standard deviation. 

In normal distribution, about 68 % of data lies within µ ± σ, above that were considered 

anomalous. Threshold was chosen through a trial and error approach by testing that the chosen 

threshold is able to minimize the scattered results and can highlight contiguous pixels. 

Therefore, the selected threshold for separating the concentration mineral anomalies from 

background might be subjective and not the optimal threshold. Benefits and costs for setting 

the threshold should be taken into consideration. 

Class imbalance is when the classes are not represented equally. It can provide poor predictive 

performance and misleading classification accuracy. Standard classification algorithms have a 

bias towards majority class. Therefore there is a high probability of misclassification of the 

minority class. In this study, the distribution of classes was slightly biased towards dry holes 

wells. The number of classes used for dry holes is 451 whereas number of classes for oil wells 

is 340. This technically imbalanced dataset therefore results might have little skewed. 

However, slight class imbalance is often not a concern and can be treated as a normal 

distribution.   

Balanced class distribution could be generated by down sampling the majority class, however 

this was not considered here in this study due to the following facts. First, oil wells or area of 

microseepage are naturally smaller than the area of no microseepage or dry holes wells. In 

contrast the imbalanced classes here might have represented actual imbalance population. 

Thus, the data was reflecting the correct ratio of distribution. Second, randomly eliminating 

majority class might potentially discard useful information and in contrast lead to information 
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loss. Finally, the random chosen sample could be a biased sample which might not represent 

the accurate population, thereby resulting in inaccurate classification results. 

The results from the methods used were spatially consistent throughout the study area. The 

methodologies used are suitable for the detection and visualization of overall spatial 

distribution of minerals surface anomalies. The knowledge based methods are sensitive to the 

data type and the pre-processing techniques because they rely on the spectral characteristics. 

Therefore, it is more vulnerable to the noise. For the same reason, this type of method is feasible 

to regional scale mineral mapping. Obtaining an accurate atmospheric correction is a critical 

prerequisite for the knowledge based methods. The data driven methods are more of scene 

dependent because they relies directly on the reference data. Therefore, it is more difficult to 

apply on the large scale mineral mapping. It demand more computing power and accuracy is 

impacted by the availability of the training data and the chosen parameters. Despite that 

challenge, the data driven methods are more robust and less sensitive to noise and yield the 

best results. Relationship between microseepage and the induced mineralogical assemblage has 

been wide controversial among wide literature which gives less credibility to the knowledge 

based approaches. The application of Landsat 8 in non-arid environment is capable of 

delineating the surface of different minerals groups. Nonetheless, it is limited in targeting 

specific mineral. 
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8 Conclusion     

Knowledge based and data driven methods to Landsat 8 image characterization were developed 

and tested for delineating hydrocarbon microseepage surface manifestations. The results were 

satisfactory enough and comparable to each other indicating results were statistically 

significant. The data driven approach using SVM outperforms other methods. It has the highest 

AUC of 0.884, followed by the knowledge based approaches, weight of evidence (WofE) with 

combined knowledge-based (AUC of 0.830), WofE with band ratio (AUC of 0.795) and WofE 

with PCA (AUC of 0749).   

Comparing knowledge-driven based methods, the random noise signals were contained in 

knowledge-based approaches. The influence of random noise was obvious when using PCA 

with Crosta technique. The extent of minerals has larger distribution in PCA with Crosta 

technique when compared to band ratio technique.  Band ratio technique can overcome the 

deficiency in Crosta technique by allowing independent control over band selection to enhance 

the spectral contrast. Nevertheless, band ratio despite its flexibility in band selection, has a 

major drawback in that it cannot account for endmember variability. Therefore it cannot handle 

overlapping and mixing absorption features. Statistically, the predicted power of both PCA and 

BR models were fair, both had mean value around 0.7 for microseepage potential area and 

around/below 0.5 for no potential microseepage area. 

The data-driven model yields best results, the gain in performance from using data-driven 

approach as compared to knowledge-based was relatively small. However, the long processing 

steps and time in the knowledge-based approaches gives merits to the data driven approach. 

The mapped clays and bleached areas in knowledge-driven models were identical with the 

areas that were mapped with data-driven approach as area with potential gas fluxes.  

Mixture Tuned Matching Filtering (MTMF) was effective in decomposing the mixed pixels 

into a collection of pure pixels (endmembers) and determining their corresponding proportions 

(abundances). However, it has required complex hand crafted spectral feature that required to 

be manually labelled by the analyst. The pure image endmembers were obtained after long 

processing steps using various algorithms such as MNF transformation, pixel purity index and 

n-D visualization procedures. 

Landsat 8 the Operational Land Imager (OLI) was used as data source of imagery for the study. 

However, it has some limitation in mineral exploration because of its spatial and spectral 

resolution. Based on the result obtained from the developed models, there are four fundamental 

issues to consider: 

1) Different data have their own advantage and challenges. High resolution and 

hyperspectral data can provide opportunity to maximize the accuracy of mineral mapping. 

Attention needs to be paid to the trade-off between obtaining high mineral mapping precision 

and the increase of the dimensionality and non-linearity in the data inhered from using 

hyperspectral data.  

2) Deficiencies in the methods also may arise from the random noise signals contained in 

the remote sensing data such as water, cloud, shadow and vegetation. Proper calibration and 
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pre-processing of data is important to minimize any interference noise to make sure the data 

yield the true diagnostic spectral shape. Atmospheric correction, noise reduction, masking out 

water bodies and clouds can help in eliminating some of false anomalies. 

3) Hydrocarbon microseepage is a complex problem. The uses of remote sensing images 

to investigate hydrocarbon microseepage related surface manifestation typically require careful 

knowledge of several different disciplines including geology and geochemistry. Considerable 

research and review is needed before we can understand the many factors affecting the 

formation of the surface anomalies and then make sense of the theoretical bases in regards to 

the distinction of geochemical behaviour, false anomalies characteristics and real anomaly 

manifestation in remote sensing images. Contradictory or conflicting background knowledge 

of hydrocarbon microseepage can pose a risk of producing inaccurate results. It is necessary to 

pay more cognitive attention and efforts to the different claims. The data-driven methods 

present an alternative approach as it can drive information from the data itself using statistical 

methods. Advancement of such methods nowadays such as machine learning and deep learning 

can function as help to redefine or adjust the previously held conceptual models. Yet, this 

approach strives for sufficient training or measured data. Availability of these data is an 

absolute necessity for having optimal classification results.  

4) Disciplines such as geoscience and environmental science are based primarily on data that 

are often collaboratively generated and analysed. Hence, open data policies and practices 

expected to accelerate scientific research and increase its quality and quantity. The more data 

that are openly accessible the more success data driven science can generate.        
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10 Appendices 

10.1 Appendix 1: Software’s 

Table 23 - Software used in this study 

SOFTWARE PURPOSE 

ArcMap 10.6.1  Overlay Analysis 

Boolean logic 

Thematic map generation 

ENVI 5.5 Pre-processing of Landsat image 

PCA 

Band Ratio 

MNF 

PPI 

N-D Visualizer 

MTMF 

Spectral analysis of samples  

Interactive Data Language (IDL) 8.7 SVM 

ArcSDM 5 Weights of evidence 

Calculate ROC curves and AUC values 
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10.2 Appendix 2: Additional maps 

 

Figure 24 –Ferric iron and ferrous iron from PC2-2456 with wells distribution in Fort Peck Reservation. 
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Figure 25 - Clays and ferrous iron mapped using PC3-2567 with wells distribution in Fort Peck Reservation  
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Figure 26- clays and carbonate minerals mapped using PC4-2467 with wells distribution in Fort Peck Reservation  
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Figure 27- Bleached materials mapped using PC4-3467 with wells distribution in Fort Peck Reservation  
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Figure 28-Result from BR technique showing different minerals groups generated using band algebra 
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Figure 29 - MTMF result of band 22 delineate clays in bright pixels and ferric iron in dark pixels  
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10.3 Appendix 3: Weight of evidence calculation classification scheme 

 

Table 24 - Classification scheme for evidential theme used for WofE analysis obtained from reclassifying PCA. 

Class Description 

1 Background 

2 Ferric 

3 Ferrous 

4 Ferric - Ferrous 

5 Clays and Carbons 

6 Clays and Carbons - Ferric 

7 Clays and Carbons - Ferrous 

8 Clays and Carbons - Ferric - Ferrous 

9 Bleached 

10 Bleached - Ferric 

11 Bleached - Ferrous 

12 Bleached - Ferric - Ferrous 

13 Bleached - Clays and Carbons 

14 Bleached - Clays and Carbons - Ferric 

15 Bleached - Clays and Carbons - Ferrous 

16 Bleached - Clays and Carbons - Ferric - Ferrous 

17 Clays and Ferrous 

18 Clays and Ferrous - Ferric 

19 Clays and Ferrous - Ferrous 

20 Clays and Ferrous - Ferric - Ferrous 

21 Clays and Ferrous - Clays and Carbons 

22 Clays and Ferrous - Clays and Carbons - Ferric 

23 Clays and Ferrous - Clays and Carbons - Ferrous 

24 Clays and Ferrous - Clays and Carbons - Ferric - Ferrous 

25 Clays and Ferrous - Bleached 

26 Clays and Ferrous - Bleached - Ferric 

27 Clays and Ferrous - Bleached - Ferrous 

28 Clays and Ferrous - Bleached - Ferric - Ferrous 

29 Clays and Ferrous - Bleached - Clays and Carbons 

30 Clays and Ferrous - Bleached - Clays and Carbons - Ferric 

31 Clays and Ferrous - Bleached - Clays and Carbons - Ferrous 

32 All 
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Table 25 - Classification scheme for evidential theme used for WofE analysis obtained from reclassifying BR. 

Class Description 

0 Background 

1 Carbonates 

2 Ferric Iron 

3 Ferric and Carbonates 

4 Clays 

5 Ferric and Clays 

6 Clays and Carbonates 

7 Bleached 

8 Bleached and Carbonates 

9 Bleached and Clays 

10 Bleached and Ferric 

11 Bleached and Ferric and Clays 

12 Ferrous 

13 Ferrous and Ferric 

14 Ferrous and Carbonates 

15 Ferrous and Clays 

16 Ferrous and Ferric and Clays 

17 Ferrous and Bleached 

18 Ferrous and Ferric and Bleached 

19 Ferrous and Clays and Bleached 
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