
MASTER’S THESIS 2020

Performance Optimizations for
Foveated Real-Time Raytracing
Kalle Andersson, Tom Hansson

ISSN 1650-2884
LU-CS-EX: 2020-64

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-64

Performance Optimizations for Foveated
Real-Time Raytracing

Prestandaoptimeringar för fovea-styrd
strålspårning i realtid

Kalle Andersson, Tom Hansson

Performance Optimizations for Foveated
Real-Time Raytracing

Kalle Andersson
dat15kan@student.lu.se

Tom Hansson
dat13tha@student.lu.se

November 16, 2020

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Michael Doggett, michael.doggett@cs.lth.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:dat15kan@student.lu.se
mailto:dat13tha@student.lu.se
mailto:michael.doggett@cs.lth.se
mailto:flavius.gruian@cs.lth.se

Abstract

Advancements in ray tracing hardware and techniques make ray tracing a feasi-
ble option when rendering real-time computer graphics. However, ray tracing is
still a computationally demanding task, which is why methods that reduce the
computational load is important. Foveation is a technique that reduces the num-
ber of computations by lowering the image quality in the periphery of a user’s
vision, where the perceived level of detail is lower.

This thesis tests di�erent performance optimizations for foveated render-
ing while maintaining su�cient image quality. We have developed a foveated
renderer using log-polar transformation. By using di�erent optimizations, a
speedup by a factor of two is reached.

One of the major optimizations we tested is frustum tracing but we realized
after developing di�erent prototypes that it was not a feasible method to achieve
performance gain in our implementation.

Keywords: ray tracing, foveation, log-polar, temporal anti-aliasing, frustum tracing

2

Acknowledgements

We would like to thank our supervisor Michael Doggett for supporting us and helping us
come up with ideas and solutions to di�erent problems. We also want to thank him for
lending us graphics cards with ray tracing capabilities. We want to thank Pierre Moreau for
setting up and testing the frustum tracer on an RTX graphics card. We also want to thank
our parents for supporting us.

3

4

Contents

1 Introduction 7
1.1 Project Definition . 7
1.2 Research Questions . 8
1.3 Ethical Issues . 8
1.4 Contributions . 8
1.5 Division of Work and Writing . 8
1.6 Outline . 8

2 Background and Theory 11
2.1 Ray Tracing with DirectX . 11
2.2 Foveation . 12
2.3 Temporal Anti-Aliasing . 13
2.4 Error Metrics . 14
2.5 Frustum tracing . 14

2.5.1 Acceleration structure . 15
2.6 Related work . 16

3 Approach 17
3.1 Basic Ray Tracer . 18
3.2 Ground Truth Ray Tracer . 18
3.3 Foveated Ray Tracer . 18

3.3.1 Log-polar Foveation . 18
3.3.2 Kernel Foveation . 19
3.3.3 Composite Foveation . 20
3.3.4 Log-Polar Aspect Ratio . 21
3.3.5 Log-Polar Transform Formulas . 23

3.4 TAA . 24
3.4.1 Depth Based Rejection . 25
3.4.2 Neighborhood Clamping . 25

3.5 Gaussian Filter . 26

5

CONTENTS

3.6 Error Metrics . 26
3.7 Frustum Tracing . 27

3.7.1 Resizing the AABB . 27
3.7.2 Ray-Box Intersection . 28

3.8 Acceleration Structure . 28

4 Implementation 31
4.1 Rendering Loop . 31
4.2 Foveation Rendering Loop . 32

4.2.1 TAA . 32
4.2.2 Composite Foveation . 33

4.3 Error Metrics . 33
4.3.1 MSE Shader . 33
4.3.2 SSIM Shader . 34
4.3.3 Ranges . 34

4.4 Modeling the Acceleration Structure . 34
4.5 Frustum Tracing . 38

4.5.1 TLAS Tracer . 39
4.5.2 BTLAS Tracer . 40
4.5.3 BBLAS Tracer . 41

5 Results and Discussion 43
5.1 Input Parameters . 43

5.1.1 The Tuning Process . 43
5.1.2 Modes . 44

5.2 Matching Radial and Angular Resolution 45
5.2.1 Tuning . 46

5.3 Running Our Foveated Ray Tracer . 47
5.3.1 Performance . 47
5.3.2 Ghosting and Flickering . 49
5.3.3 Error Heatmap . 50
5.3.4 Error Ranges . 51
5.3.5 Trade-o� Between Image Quality and Performance 56

5.4 Running Our Frustum Tracer . 58

6 Conclusion 61
6.1 Threats to Validity . 63
6.2 Future Work . 63

6.2.1 Head-Mounted Display . 63
6.2.2 User Study . 63
6.2.3 Animated Scenes . 64

References 65

6

Chapter 1

Introduction

Ray tracing is a rendering method well suited for realistic-looking imagery. However, ray
tracing in real-time applications has been avoided due to the number of computations that
are required. Over the years, as hardware has become more powerful, there has been a push
for using ray tracing in real-time computer graphics. One example is Nvidia releasing the
RTX graphics cards with built-in support for ray tracing.

Even though new support for ray tracing is released, the computational load is still large.
Because of this, techniques that reduce the number of computations are useful for improving
performance. Foveation is one such method, and we investigate foveation with di�erent
optimizations.

1.1 Project Definition
Foveation is a method that can reduce the number of computations required during ray trac-
ing. We explore how di�erent optimizations can be used to improve the performance of
foveated ray tracing. The first optimization is frustum tracing with the purpose of acceler-
ating the ray collision search [19]. The second optimization is a bu�er containing the pixels
close to the point of gaze to prevent oversampling. The third and last major optimization is
using the kernel function introduced by Meng et al. [21].

While increasing the performance using optimizations, we also want to preserve accept-
able image quality. Our foveated ray tracer uses TAA (Temporal Anti-Aliasing) and ray
launch o�sets to combat aliasing and improve image quality. We evaluate visual quality us-
ing three di�erent error evaluation metrics: RMSE (root-mean-square error), PSNR (peak
signal-to-noise ratio), and SSIM (structural similarity index measure). We also include our
subjective opinions when evaluating image quality.

To summarize : This project’s purpose is to explore performance optimizations for foveated
ray tracing while maintaining acceptable image quality.

7

1. Introduction

1.2 Research Questions
Taking into consideration both the performance as well as image quality the following re-
search questions were developed.

• How much can the performance of ray tracing be improved by using log-polar foveation?

• How much can the performance of foveated ray tracing be improved by using foveation
with optimizations?

• How large is the di�erence in image quality between foveated ray tracing and a ground
truth image?

1.3 Ethical Issues
We have no specific ethical issues to mention in relation to this thesis.

1.4 Contributions
Our contributions include : developing and evaluating a frustum tracer in DXR (DirectX
Raytracing) [6], how we implement composite foveation by combining the log-polar foveation
with a separately rendered image at the point of gaze, the error evaluation method evaluating
the foveated images in ranges, and the results of comparing and evaluating di�erent foveation
optimization settings against each other.

1.5 Division of Work and Writing
Kalle Andersson has been in charge of developing the foveated renderer, the TAA algorithm,
and the image error evaluation system. Tom Hansson has been in charge of developing the
frustum tracer, modeling the acceleration structure, and developing the composite foveated
renderer. We have also had discussions about the di�erent parts and helped each other when
needed. Some parts such as the basic and ground truth ray tracers were developed entirely
together.

The writing has been done mostly together, especially chapters 1, 5, and 6. In chapters 2,
3, and 4, the parts we were in charge of developing were generally also the sections we wrote
about.

1.6 Outline
The report is divided into the following chapters: Introduction, Background and Theory,
Approach, Implementation, Results, and Conclusion. A short description of each chapter is
provided here. In chapter 1 (Introduction), we present the purpose of our project as well as
limitations and contributions. In chapter 2 (Background and Theory), we introduce concepts

8

1.6 Outline

linked to the project and also discuss previous work in the area. In chapter 3 (Approach), we
provide a detailed description of what we have done in the project. Chapter 4 (Implemen-
tation) contains information about how our program was implemented. Chapter 5 (Results
and Discussion) consists of the di�erent data obtained in tests when running the application,
as well as analysis and discussion of the results. In chapter 6 (Conclusion), we summarize the
project and answer the research questions presented in section 1.2.

9

1. Introduction

10

Chapter 2

Background and Theory

In this chapter, relevant background and theory are presented. The theory covers the base
subjects that are closely linked with the project. A basic understanding of the concepts pre-
sented in this chapter is useful when reading this report. We start by discussing ray tracing
and how it works in DirectX (section 2.1), which is important since we use terms introduced
in that section later in the report. The following section 2.2 describes what foveation is and
gives an introduction to how it works. Foveation is the main concept of this report. The next
section 2.3 explains temporal anti-aliasing which is a method used in our project to reduce
aliasing. Section 2.4 describes the di�erent error metrics we use to evaluate the image quality.
Section 2.5 explains the concept of frustum tracing as well as the data structures it uses. The
last section of this chapter (section 2.6) covers previous works and how they relate to this
thesis.

2.1 Ray Tracing with DirectX
Ray tracing is a rendering method that works by simulating firing a ray in 3D space and
calculating what geometry it intersects. In our project, we use DirectX [6] with an extension
for ray tracing, called DXR. In this section, we cover some aspects of DirectX and DXR that
we mention later in the report.

DirectX makes use of shaders, which are pieces of code that run on the GPU (Graphics
Processing Unit). There are several di�erent types of shaders used in our implementation
and we describe two of them in this section. The first shader type is called ray generation
shader and is part of DXR. Ray generation shaders are used to set up the origin and direction
of the rays. They also begin the ray tracing process, which results in a color output. The color
output obtained from the ray tracing process can be displayed on the screen to present a
view of the scene. The second shader type is called compute shader and is part of DirectX. A
compute shader is a general-purpose shader used for various computation tasks on the GPU.

11

2. Background and Theory

2.2 Foveation
Foveation is a rendering method used to increase performance at the cost of lowering image
quality. The idea is to use eye-tracking to maintain image quality around the point of gaze and
only reduce the image quality in the periphery. This technique is well suited for the case of
using an HMD (Head Mounted Display) equipped with an eye tracker. This is because a large
proportion of the screen is viewed in the user’s periphery and can be reduced to low quality.
Another advantage of using an HMD is that it guarantees that only one user is viewing the
screen at a time. Having multiple users would create a conflict because their points of gaze
could be at di�erent locations of the screen at the same time. However, we evaluate the image
quality on computer screens in this project. This is because we did not have access to HMDs.

The reduction of quality in the periphery should, in a best-case scenario, be done in a way
that does not a�ect the user’s perceived quality of the image. There are other reports that
discuss the optimal ways of doing this, such as Patney et al. [2].

There are multiple di�erent ways to create a foveated image. In this project we use log-
polar transforms [21] to transform coordinates between screen space and log-polar space.
In screen space, a pixel position is defined by a horizontal distance (usually denoted as x)
and a vertical distance (usually denoted as y). In log-polar space, the position of a pixel is
instead defined by the logarithmic distance from the origin (usually denoted as u) and an
angle (usually denoted as v). The log-polar coordinate system has a radial and an angular
axis.

Figure 2.1: The left image is ray traced using one ray per pixel. The
right image shows the same view in log-polar space.

The log-polar space transformed image (the right image in figure 2.1) is stored in a bu�er.
The size of the bu�er is usually smaller than the screen space image, which is not the case in
figure 2.1. The bu�er size is independent of the size of the screen space image. Decreasing
the size of the bu�er lowers the quality of the foveated image, but increases performance.

Figure 2.2 shows two images of the same view. The left image is in screen space and the
right image is in log-polar space. Color-coded highlights of certain areas have been added to
both images. Areas with the same color in the two images correspond to the same parts of the
scene view. The purpose of the highlights is to give a better understanding of how the two
spaces correspond. In the screen space image, the red area corresponds to an area around the
point of gaze which is in the middle of the screen. The same part of the view is colored red
in the log-polar image, which shows that the region around the point of gaze corresponds to
the left side of the log-polar image. The green area shows that the right side of the log-polar

12

2.3 Temporal Anti-Aliasing

Figure 2.2: The colored parts of the images correspond to the same
area of the scene in screen space (left image), and log-polar space
(right image).

image corresponds to the edges of the image in screen space. The blue and purple lines have
a constant thickness in the screen space image, but appear tapered in the log-polar image.
Their varying thickness shows that parts of the scene that are near the point of gaze take up
a larger area in the log-polar image. Hence, when transforming back to screen space from
log-polar space the log-polar transform ensures that a region around the point of gaze has a
higher sample count, and by extension quality, than the edges as illustrated by figure 2.3.

Figure 2.3: An example foveated image of the view in figure 2.1.

2.3 Temporal Anti-Aliasing
Temporal anti-aliasing, or TAA, is an anti-aliasing method that we use in our project to
combat visual artifacts such as flickering. TAA uses data from previous frames to improve
the current frame’s image quality. This can be achieved by having a history bu�er containing

13

2. Background and Theory

the previous output image. The data in the previous image is weighted together with the
data from the current frame to produce the final image. TAA allows pixels to get more color
samples over time, which improves the quality. It also prevents sudden changes in the image,
which mitigates flickering.

When moving and/or rotating the camera, pixels in subsequent frames will not contain
data corresponding to the same position in world space. This means that the color data
of a pixel in the history bu�er image will not correspond to the same pixel position in the
current frame. This is solved by using re-projection, which projects the position of the current
pixel into the previous frame to find the correct corresponding data. There are also cases
when new geometry, previously hidden behind other geometry, is revealed by the moving
camera. In these cases, the history will contain the wrong data which causes a phenomenon
known as ghosting. Ghosting is when previous frame data lingers in cases where it should not.
To solve this issue the history needs to be restricted. There are multiple ways of restricting
history such as using a depth bu�er [10]. If the current world space depth is di�erent from
the stored previous depth, previously occluded geometry is hit which causes the history to
be rejected. Neighborhood clamping [4] is another method used to restrict the history by
clamping it to the neighboring pixels in the current frame.

2.4 Error Metrics
We use three di�erent error metrics to evaluate image quality : RMSE, PSNR, and SSIM. We
decided to use more than one metric to gain a more robust result. By using multiple metrics,
one metric could showcase results that other metrics might have missed. We decided to use
the three aforementioned metrics since they are widely known and used metrics in computer
graphics.

RMSE measures the root of the sum of all squared di�erences in color space for each
pixel. PSNR is used to measure the noise of the image in decibel. The SSIM comparison
function is composited of three di�erent functions each comparing di�erent aspects of the
image quality. The three composite functions are luminance, contrast, and structure. SSIM
generates an index quantifying the similarity of the two compared images.

2.5 Frustum tracing
We use a technique called frustum tracing in an attempt to speed up rendering. Frustum
tracing is a technique that decreases the rendering time by culling parts of the scene. This
is done by dividing the screen into tiles and calculating what parts of the scene intersect a
frustum behind each tile. A tile and the corresponding frustum are visualized in figure 2.4.
Any geometry that does not intersect the frustum is culled from the scene when rendering
the corresponding tile. In terms of ray tracing, culling parts of the scene reduces the search
space during intersection testing. Intersection testing is a step of ray tracing that consists of
calculating what part of the scene a ray intersects.

14

2.5 Frustum tracing

Camera

Tile

Screen

Figure 2.4: A frustum in 3D space behind a tile on the screen.

2.5.1 Acceleration structure
Performing frustum tracing involves modifying the scene data, or its usage, in some way to
achieve the culling. In DXR scene data is stored using a format called acceleration structure.

An acceleration structure is divided into two parts, a bottom-level and a top-level. A
BLAS (bottom-level acceleration structure) contains primitives, which are simple shapes such
as triangles or spheres. Often, a BLAS makes up a single 3D model such as a character or a
building, but it is possible for the programmer to merge or split 3D models into one or several
BLAS respectively. A TLAS (top-level acceleration structure) contains instances. An instance
is a BLAS placed somewhere in the scene. A TLAS makes up a scene.

Bounding Volume Hierarchy
The acceleration structure utilizes a BVH (bounding volume hierarchy) [3] to achieve fast in-
tersection testing. The BVH is the part of interest of the acceleration structure for perform-
ing frustum tracing. A BVH is a tree-shaped data structure containing geometric objects.
Our frustum tracer uses the BVH of an acceleration structure to perform culling.

The geometric objects are leaves in the tree structure and are grouped together in nodes.
A bounding volume is fit to each node so that it completely encloses the objects within.
These nodes are further grouped together in larger nodes, whose bounding volume covers
those of its child nodes. This structure is repeated until the root node is reached, forming
the tree structure. Using a BVH, the intersection testing is carried out by calculating if a
ray intersects a node’s bounding volume. If it does not intersect, no further tests have to be
carried out further down that path of the tree. If it does intersect, however, the process is
repeated for each of the node’s children. This is repeated until the leaves are reached, at which

15

2. Background and Theory

point ray-triangle intersection tests is performed for the remaining triangles.

2.6 Related work
In the article Kernel Foveated Rendering, by Meng et al. [21], an expansion of the normal log-
polar transform is suggested. They propose adding a kernel function to control how many
rays are close to the point of gaze compared to the periphery. Hence, being able to increase
the detail in the periphery without losing a significant amount of detail near the point of
gaze. Our foveated renderer is based on the kernel foveated renderer proposed by Meng et
al.

In the article Towards Foveated Rendering for Gaze-Tracked Virtual Reality, by Patney et al.
[2], they use contrast enhancement to improve the perceived quality in the periphery. They
also try to mimic the quality fallo� towards the periphery to the same fallo� as the human
eye. While our foveated renderer is not based on that work, their report served as a second
source of information and ideas about the concept of foveation.

In the article Foveated 3D Graphics, by Guenter et al. [5], the rendering is done in three
di�erent qualities that are layered together. The highest quality layer is only rendered close
to the point of gaze. We took inspiration from this work to develop a composite foveated
renderer that combines a high-quality layer and a log-polar layer.

In the article Hierarchical Visibility for Virtual Reality, by Hunt et al. [19], a raycaster is
implemented from the ground up. Their raycaster uses frustum tracing to accelerate the
object collision search for rays. This article served as a base when implementing our frustum
tracer with DXR.

Karis [4] suggests several di�erent approaches for improving TAA. The Halton sequence
is suggested as a method to ensure that samples are well distributed. Neighborhood clamp-
ing is suggested as a history restriction method to eliminate ghosting. We use the Halton
sequence with a configuration based on Karis’ recommendations. We also tried using neigh-
borhood clamping as an alternative to depth-based rejection.

In the article A Survey of Temporal Antialiasing Techniques, by Yang et al. [10], di�erent TAA
methods are presented and described. Our TAA is optimized using ideas and inspiration
from this article.

16

Chapter 3

Approach

In this chapter, a detailed description of the project approach is provided. We start by de-
scribing three di�erent ray tracers we have implemented : the basic ray tracer, the ground
truth ray tracer, and the foveated ray tracer. The ray tracers described in this thesis do not
trace any secondary rays. The ray tracers’ functionality is therefore more akin to a raycaster.
However, we will refer to them as ray tracers in this thesis.

The basic ray tracer, section 3.1, is used as a baseline to compare the foveated ray tracer’s
performance against. The ground truth ray tracer (section 3.2) implementation is based on
the basic ray tracer but uses super-sampling to create a high-quality image. As the name
suggests, it is used as the ground truth for evaluating the image quality of the foveated ray
tracer.

The foveated ray tracer, section 3.3, renders a foveated image by utilizing log-polar trans-
forms. We modify the foveated ray tracer using di�erent optimizations described in separate
sections. There are two main optimizations we use that change the log-polar transform : kernel
foveation and composite foveation. They are described in sections 3.3.2 and 3.3.3 respectively.

In section 3.4 we describe how our TAA algorithm works and also how we restrict the
history by using a depth bu�er. Section 3.5 describes a Gaussian filter that we apply to re-
duce visual artifacts. In section 3.6 we describe our process for calculating errors of foveated
imagery.

The last two sections, 3.7 and 3.8, are not connected to foveation. They are instead con-
nected to the third optimization we test, frustum tracing. The frustum tracer was imple-
mented separately and was supposed to be integrated with the foveated ray tracer when it
was finished. However, the frustum tracer achieved poor performance which is why we never
integrated it with the foveated ray tracer.

17

3. Approach

3.1 Basic Ray Tracer
The first step of the project was to implement a basic ray tracer. This ray tracer was developed
to serve as a base upon which all other ray tracers and functionality could be built. The basic
ray tracer traces one ray in the middle of each pixel of the image. This basic ray tracer is used
as a baseline for all performance comparisons in this thesis. The basic ray tracer is based on
the example implementation provided by NVIDIA in the tutorial written by Lefrançois and
Gautron [11].

3.2 Ground Truth Ray Tracer
The main purpose of the ground truth ray tracer is to create a baseline image for comparison
of image quality. The ground truth ray tracer is a version of the basic ray tracer that uses
super-sampling to create high-quality images. Super-sampling is achieved by tracing multiple
rays in each pixel. We decided to super-sample with 16 rays per pixel, because increasing the
number of rays further did not provide any significant di�erence in the resulting image in
our tests. The rays in each pixel are o�set from the center using the first 16 points of the 2,3
Halton sequence, as proposed by Karis [4]. The Halton sequence ensures that the samples are
well distributed and not clumped together [12].

3.3 Foveated Ray Tracer
The foveated ray tracer is the main ray tracer of this project. It is this tracer we want to
optimize and evaluate.

The foveated ray tracer is implemented in three steps. In the first step, we add the basic
functionality of log-polar foveation, described in section 3.3.1. The second step adds the first
optimization, kernel foveation (proposed by Meng et al. [21]), described in section 3.3.2. In
the third step, we add the second optimization, that we call composite foveation, described in
section 3.3.3. There is also a section 3.3.4 which covers the concept of changing the log-polar
aspect ratio. Section 3.3.5 describes the log-polar transform formulas we use after integrating
the optimizations.

We are not using eye-tracking to track the point of gaze in our application. Instead, we
have implemented a movable point, called the focal point, that simulates where the point of
gaze currently is. The reason for doing this is that we did not have access to eye-tracking
equipment.

3.3.1 Log-polar Foveation
As stated in section 3.1, our basic ray tracer shoots one ray per pixel. We wanted to reduce
the number of rays traced which in turn also reduces the number of shaded pixels. When
performing foveated ray tracing, we transform the pixels’ coordinates in the log-polar bu�er
from log-polar space into screen space Cartesian coordinates. The screen space coordinates
obtained from the transform is where we shoot the rays. Hence, we shoot a number of rays
that are proportional to the size of the log-polar bu�er.

18

3.3 Foveated Ray Tracer

When the rays are traced, the color values obtained from the closest hit are stored in the
log-polar bu�er. However, some rays’ screen space coordinates appear outside the screen after
the transform, and we can detect these rays before the ray tracing process begins. We never
trace these rays, because their data is not used when creating the screen space image. They
are represented with black color in the log-polar bu�er, this black area can be seen towards
the right in the log-polar space image in figure 2.1.

After the rays are traced, a second pass of the data is needed to transform the data back
from log-polar space to screen space. The second pass transforms all pixels in screen space to
log-polar coordinates, which are used to access color data from the log-polar bu�er.

We use the log-polar transform equations provided by Meng et al. [21] to calculate the
rays’ launch origin and direction, and to create the screen space image. The log-polar trans-
form distributes the rays in a way that prioritizes a higher sampling rate near the point of
gaze.

The log-polar foveation has one input parameter, σ, which controls the size of the log-
polar bu�er using equations (3.1).

w =
W
σ

h =
H
σ

(3.1)

Where (W, H) represents the width and height of the application window, measured in
pixels, and (w, h) represents the width and height of the log-polar bu�er, also measured
in pixels. A higher value of σ decreases the size of the log-polar bu�er, which increases
performance but lowers image quality.

A behavior of the log-polar transform is that a small area in Cartesian coordinates near
origo maps to a larger area in log-polar space. In our case, this means that a pixel near the
focal point can map to an area of the log-polar bu�er several pixels in size. This problem is
known as oversampling. The severity of the oversampling can be reduced by increasing σ.
However,σ a�ects the quality of the entire image, which is a problem in the periphery where
the sampling rate is already low.

3.3.2 Kernel Foveation
Because of the oversampling that occurs with the log-polar foveation, reducing the number
of rays near the focal point would increase our performance without reducing image quality.
Kernel foveation is an idea, proposed by Meng et al. [21], that shifts ray positions on the
screen from the focal point toward the periphery. This is achieved by augmenting the log-
polar transforms using a kernel function. The kernel function is the first optimization we
introduce to our foveated ray tracer.

The definition of the kernel function K that we use is provided in equation 3.2.

K(x) = xα (3.2)

This is the same kernel function that Meng et al. [21] used. The kernel function adds a
second parameter to the foveated ray tracer, α. A higher α increases the e�ect of the kernel
function, which means rays are shifted further towards the periphery.

19

3. Approach

3.3.3 Composite Foveation
The second optimization, composite foveation, is our own approach in attempting to solve
the problem with oversampling of the log-polar foveation.

Guenter et al. [5], use an approach to foveation that di�ers from log-polar foveation. They
render three layers of varying resolution, each containing a di�erent region of the screen, and
combine them into a foveated image. This inspired us to separately render the oversampled
region, near the focal point, by removing it from the foveated image. In screen space, the
removed region is circular and centered at the focal point, which is illustrated in figure 3.1.
In log-polar space, the region corresponds to a rectangular area at the left side of the log-
polar bu�er. We remove the area by modifying the log-polar transforms in a way that shifts
the area out from the log-polar bu�er.

Figure 3.1: The oversampled region has been removed from this
foveated image.

The removed region is rendered using one ray per pixel and stored in a bu�er called the
gaze bu�er, illustrated by figure 3.2. We are going to refer to the resulting circular image,
contained in the gaze bu�er, as the gaze image.

Composite foveation introduces a third input parameter, aG, to the foveated ray tracer.
The parameter aG is called gaze angle and is used to calculate the radius of the gaze image
(rG), as demonstrated in equation (3.3).

rG = d · tan(aG) (3.3)

Where d is the distance between the user and the screen. The gaze image radius is used
to calculate a radial coordinate, uG, that maps to the edge of the gaze image. uG depends on

20

3.3 Foveated Ray Tracer

Figure 3.2: A view of the gaze bu�er.

rG according to equation (3.4).

uG =
w ·G
1 −G

G =
(
log(rG + 1)

L

)α (3.4)

Where L is the logarithm of the screen diagonal. L is described further in section 3.3.5.
Any pixel in the log-polar bu�er with a u-coordinate smaller than uG is covered by the gaze
image. We modify the log-polar transforms to remove these pixels from the log-polar bu�er.
This is done by adding uG to both the u-coordinate and the log-polar bu�er width, as shown
in equation (3.5). Adding uG to the width results in a horizontal stretching of the image in the
log-polar bu�er, which causes the right side of the image to be stretched out from the bu�er.
Then, adding uG to the u-coordinate shifts the image in the log-polar bu�er to the left, so
that the left side is shifted out from the log-polar bu�er, and the right side, which previously
got stretched out from the bu�er, gets shifted back in. The result is that all u-coordinates
less than uG are removed from the bu�er.

uC = u + uG

wC = w + uG
(3.5)

The variables uC and wC appear in our log-polar transform equations in chapter 3.3.5.

3.3.4 Log-Polar Aspect Ratio
We have a view that shows at which position each ray in the current frame was shot. This
view was used during development to make sure that the ray distribution pattern behaved
correctly. When examining this view we noticed that the distance between rays was di�er-
ent along the radial and angular axes. We suspected that distributing the rays evenly along
both the radial and angular axes could improve the image quality. After testing this idea
we confirmed visually that the perceived quality did improve and that the flickering in the
periphery was reduced.

The ray density along the radial and angular axes is proportional to the width and height
of the log-polar bu�er respectively. If the shape of the log-polar bu�er is changed, but its
area is kept constant, ray density is shifted between the two axes. For example, by increasing
the height of the log-polar bu�er and decreasing the width, we get more samples along the

21

3. Approach

angular axis and fewer samples along the radial axis. The ratio between width and height is
called aspect ratio.

We added a parameter controlling the aspect ratio of the log-polar bu�er called (lp_aspect)
and explored how it can be altered to improve the ray distribution. We can see in the left
image of figure 3.3 that the rays are more tightly packed along the radial axis than the angu-
lar axis. By decreasing lp_aspect we obtain the evenly distributed ray pattern in the right
image of figure 3.3. The shape of the log-polar bu�ers corresponding to figure 3.3 can be seen
in figure 3.4. After introducing lp_aspect the definition of the width and height of the
log-polar bu�er (w, h) was redefined from equation (3.1) as follows in equation (3.6).

h = round


√(

W ·H
lp_aspect

)
σ


w = round(h · lp_aspect)

(3.6)

Where (W, H) are defined as the width and height of the application window.

Figure 3.3: The white dots show where the rays were shot in the
scene, one ray in the middle of each dot. σ = 30 (low amount
of rays). In the left image lp_aspect = 3 and in the right image
lp_aspect = 1.2.

Figure 3.4: The shape of the log-polar bu�ers corresponding to the
two lp_aspect settings in figure 3.3.

22

3.3 Foveated Ray Tracer

3.3.5 Log-Polar Transform Formulas
As previously mentioned, the log-polar transform formulas that we use are based on those
provided by Meng et al. [21], including the addition of a kernel function. We provide the
log-polar transform equations in this section, explain the variables, and highlight our modi-
fications.

Equations (3.7) convert log-polar coordinates to Cartesian coordinates.

x = exp
(
L · K−1

(
uC

wC

))
· cos

(
2π
h
· v

)
+ x̊

y = exp
(
L · K−1

(
uC

wC

))
· sin

(
2π
h
· v

)
+ ẙ

(3.7)

Equations (3.8) convert Cartesian coordinates to log-polar coordinates.

u = K
(
log||x′, y′||2

L

)
· wC − uG

v =
(
arctan

(
y′

x′

)
+ 1

[
y′ < 0

]
· 2π

)
·

h
2π

1
[
y′ < 0

]
=

1, y′ < 0
0, y′ ≥ 0

(3.8)

In equations (3.7) and (3.8), (u, v) are log-polar coordinates, (x, y) are Cartesian coordi-
nates, and (x′, y′) is the distance to the focal point, as defined in equation (3.9).

x′ = x − x̊
y′ = y − ẙ

(3.9)

Where (x̊, ẙ) are the coordinates of the focal point. Continuing with equations (3.7) and
(3.8), K is the kernel function from equation (3.2), (w, h) are the dimensions of the log-polar
bu�er. However, w is not present in the equations because of one of our modifications : All
instances of u and w have been replaced with uC and wC from equation (3.5) respectively. In
the first equation of (3.8), uC has been substituted for u + uG in the left-hand side since we
want to solve for u.

The variable L controls the maximum distance, from the focal point, that can fit into the
log-polar bu�er. L appears in the transform equations by Meng et al. [21] as the logarithm of
the maximum distance from the focal point to one of the four corners of the screen. Using
their definition, the value of L changes as the focal point moves across the screen. We noticed
that the resolution of the log-polar foveation is a�ected by the value of L. We found this
undesirable when using composite foveation since L then a�ects the resolution of everything
but the gaze image. We want a smooth transition in resolution at the edge of the gaze image.
Therefore, we change the definition of L to depend on the screen diagonal, as seen in equation
(3.10), instead of the distance between the focal point and screen corners.

L = log
√

W ·W + H · H (3.10)

A side e�ect of our redefinition of L is that the entire width of the log-polar bu�er is
not used unless the focal point is in a corner of the screen. We adjust for this by making the
log-polar bu�er wider, and not tracing any rays for the unused area.

23

3. Approach

Besides our change to L and the ones introduced by the composite foveation (uC and wC),
we reiterate that we also changed the definition of the log-polar bu�er’s dimensions, (w, h),
by introducing log-polar aspect ratio in section 3.3.4. This change also a�ects wC , since it is
dependent on w.

3.4 TAA
The TAA algorithm is applied during the second pass of the data, mentioned in section 3.3.1,
after transforming from log-polar space to screen space. The TAA algorithm, as stated in
section 2.3, uses data from previous frames to enhance the current frame. However, if the
camera is stationary no new data will enter the image. This is because we use static scenes
(without animations) when running our ray tracers. The result of this is that the history
will converge towards the current frame and the image will become jagged in the periphery.
To combat this jagged pattern we use a sampling pattern to o�set the rays. By sampling
subsequent frames at di�erent o�sets within the same pixel, more data will enter the history
bu�er. We are using the first sixteen samples of the 2,3 Halton sequence, recommended
by Karis [4], to create our pattern. This improved the detail in the periphery considerably,
see figure 3.5. However, the o�sets are applied before the log-polar transform which means
that the o�sets are larger further from the focal point in screen space. The large o�sets in
the periphery create flickering, which is mitigated by the TAA but not removed completely.
Another problem introduced by the pattern was a slight twist of the foveated image. When
researching the cause of the twist we found that the average o�set, along the x and y axes,
of the 16 Halton points we used was close to 0.5 but not exactly. We calculate two scaling
values scale_x and scale_y using the formula 3.11.

scale_x =
0.5

offset_average_x

scale_y =
0.5

offset_average_y

(3.11)

Multiplying all Halton points with the scales causes the average of the o�sets to be exactly
0.5. This solved the twist problem.

Figure 3.5: In the left image, there is no variation of the rays. The
right image uses the Halton sampling pattern. Both images show the
same section of the periphery from one specific view.

24

3.4 TAA

3.4.1 Depth Based Rejection
To restrict the TAA history during re-projection, we are using depth-based history rejection.
When the camera is stationary, the rejection causes a problem when used together with the
o�set rays described in the previous section. The problem is that the rays can hit di�erent
geometry with di�erent depths while still corresponding to the same pixel in the log-polar
image. When geometry with di�erent depth is found, the history is rejected, which causes
unnecessary flickering. Our solution is to not reject any history when the camera is stationary.
This works because there is no occluded geometry that becomes visible in subsequent frames
when the camera is stationary (and the scene is static). The only other time history can be
rejected is when the pattern o�set causes the rejection, which we wanted to prevent.

Age
When the depth test fails and history is rejected, subsequent frames have less reliable data
in the history bu�er. This is because the bu�er has not had enough time to accumulate new
frame data. This is why we implemented an age factor as recommended by Yang et al. [10].
When the history is rejected the age is reset to 1. The age is then incremented by 1 during each
subsequent frame until a new reset occurs. The output color is calculated using the formula
(3.12).

output = history · (1 − 1/age) + current · (1/age) (3.12)

As the age increases the history becomes more reliable which means that less of the current
frame data is used. As recommended by Yang et al. [10] we have a limit for how large the
age variable can be. Without a limit, the pixels on the screen will converge and consist of
only history and no new data. We are limiting the age to a maximum of 20. This means that
the maximum value of the history is 95%. We have a high limit to make as much use of the
history as possible. When raising the limit above 20, the high reliance on the history causes
ghosting to become noticeable.

Flickering
When the camera is moving, flickering caused by the history rejection becomes visible. The
flickering is mostly a problem further away from the focal point where the quality of the
image is worse. We had an idea that ghosting might be less noticeable than flickering in the
periphery. This is why we disable history rejection when the distance to the focal point is
larger than a selected fraction of the application window diagonal. This reduces the flickering
in the periphery at the cost of introducing ghosting. Instead of using the rejection, we update
the age variable to 1 which causes the ghosting to converge away faster. After testing di�erent
values of the fraction, and evaluating the image visually, we arrived at setting it to 1/3. The
ghosting introduced is notable, which is why we did not want to apply this method close to
the focal point, only far away in the periphery.

3.4.2 Neighborhood Clamping
Neighborhood clamping is a history rejection method recommended by Karis [4] which we
tried using as an alternative to the depth-based rejection. We tried using neighborhood

25

3. Approach

clamping both in the final image and in the log-polar space bu�er. The neighborhood clamp-
ing removes all ghosting but does not mitigate the flickering well in either case. It works
better when used on the log-polar space bu�er since the neighboring pixels are smaller com-
pared to the squares in the periphery of the foveated image. However, even though it works
better, the flickering is still prevalent compared to when using depth-based rejection. This
is why we decided to use depth-based rejection over neighborhood clamping.

3.5 Gaussian Filter
We use a Gaussian filter which is applied during the second pass, mentioned in section 3.3.1.
Meng et al. [21] use a Gaussian filter that is applied on the right half of the log-polar bu�er
(towards the edges of the screen space image). The purpose of that filter is to reduce noise
and flickering in the periphery. We also use our Gaussian filter for the same purpose, but
we apply it in a di�erent way by interpolating between the 3x3 identity matrix and a 3x3
Gaussian kernel (3.13).

Identity kernel =

0 0 0
0 1 0
0 0 0

 , Gaussian kernel =
1
16

1 2 1
2 4 2
1 2 1

 (3.13)

The Gaussian filter is not applied near the focal point because we want to preserve sharp
details there. Hence, we start the linear interpolation when the distance from the focal point
is larger than 1/6 of the application window diagonal. We arrived at this value by testing
di�erent values and evaluating the image visually. The interpolation creates a smooth transi-
tion between the area close to the focal point, where no Gaussian filter is applied, and higher
intensity further away from the focal point.

3.6 Error Metrics
In addition to visual evaluation, the error metrics (RMSE, PSNR, and SSIM) described in the
previous chapter are used to compare images obtained from the foveated ray tracer to images
produced by the ground truth ray tracer. There is an inherent problem when comparing the
foveated image to the ground truth image directly. The problem is that the foveated image
has higher quality at the point of gaze and lower quality in the periphery. Comparing the
images this way, the error calculation would not be able to yield results reflecting how the
quality changes at di�erent parts of the image. Instead of calculating errors by comparing
the images as a whole, we decided to calculate the errors in rings, at di�erent viewing angles,
around the point of gaze. The size of the circular area to be compared by the error metrics
is selected by specifying a fraction of a variable called max_view_angle. The circular area
is then split into a selected number of rings. The ring sizes are decided by splitting the
viewing angle, within the circular area, in equal parts, and calculating the rings’ inner and
outer radius. A view of the rings is demonstrated in figure 3.6. Calculating errors in this way
should yield results suited to evaluate a foveated image. We will be referring to this error
calculation method as error ranges in the report.

26

3.7 Frustum Tracing

Another idea on how to evaluate the errors could be to evaluate them directly in the log-
polar bu�er. However, we apply image quality preserving methods after the transformation
from log-polar space to screen space. TAA and the Gaussian filter are both applied after the
transformation and hence the log-polar image would not give an actual representation of the
final quality.

Figure 3.6: A view of 20 ranges covering the application window.
The focal point is set in the center of the application window.

3.7 Frustum Tracing
Our approach to frustum tracing consists of two steps. In the first step, we make use of the
fact that all bounding volumes in the acceleration structure’s BVH are AABBs (axis aligned
bounding boxes) to convert the problem at hand from frustum-box intersection to ray-box
intersection. The second step is to perform the ray-box intersection test. The reason for this
approach is to let us make use of an e�cient ray-box intersection algorithm.

3.7.1 Resizing the AABB
The idea behind converting frustum-box intersection to ray-box intersection is to add the
width and height of the frustum to the AABB, and then calculate whether or not the AABB
intersects a ray along the center of the frustum. The width and height of the frustum vary
with the distance from the camera. Rotating the camera, and thereby the frustum, changes
the alignment between the frustum’s width and height, and the AABB’s sides.

We let a frustum be defined by the origin OF and direction DF of its frustum ray, which
is a ray that originates from the camera and traverses through the center of the frustum’s
tile. Further, we specify the frustum’s rotation around DF by using the orientation of the

27

3. Approach

tile. These tiles’ axes are aligned with those of the screen, which is specified by the camera’s
orientation. The camera’s orientation is specified by three orthogonal vectors : R, U , and V .
The right vector R and the up vector U points along the x-axis and y-axis of the screen (and
tiles) respectively. The view vector V points toward the camera’s view direction, straight into
the screen. Finally, a width factor wF and height factor hF are specified. The cross-sectional
width wC , and height hC , of a frustum and a plane normal to V , at a distance d from the
camera, is calculated according to (3.14).

wC = d ∗ wF

hC = d ∗ hF
(3.14)

Next, we want to calculate the bias to add to an AABB. The point on an AABB furthest
from the camera is projected onto V to obtain the value of d. To account for frustum orien-
tation, the width and height are scaled based on the orientation of the vectors R and U , and
then summed to determine the bias along each axis, as shown in equation (3.15), where xB,
yB and zB specify the bias along the x, y, and z axes respectively.

xB = |wC · R.x| + |hC · U.x|
yB = |wC · R.y| + |hC · U.y|
zB = |wC · R.z| + |hC · U.z|

(3.15)

With the bias values added to the AABB size. Ray-box intersection with the frustum ray
approximates frustum-box intersection for the unmodified AABB.

3.7.2 Ray-Box Intersection
While the intersection testing can be specified with an intersection shader in DXR, it only
allows for specifying how the intersection between the ray and a primitive works, not how it
intersects the bounding boxes of the acceleration structure. For this reason, we use a ray-box
intersection software implementation for the second step of frustum tracing. In the article
An E�cient and Robust Ray–Box Intersection Algorithm by Williams et al. [20] one such imple-
mentation is provided. We modify that code to add the bias to the box size. We provide
pseudocode of the algorithm in listing 3.1, where float3 specifies a vector with three com-
ponents, low and high are the bottom-left and top-right corners of the AABB respectively,
bias is the bias as calculated according to equation (3.15), O is the frustum ray origin OF ,
and D is the frustum ray direction DF . The function returns true if the frustum ray intersects
the AABB specified by low and high, and with bias added to its size.

3.8 Acceleration Structure
To achieve frustum tracing we need to either modify the acceleration structure data or modify
the way that we use the acceleration structure. We start by ruling out the second of these
two alternatives because the only way to use an acceleration structure is by providing it to
a traceRay call in a shader, thus we cannot modify the usage. There is a problem with the
first alternative as well: The acceleration structure data format is undocumented [7]. Since
we need to modify the data, we first create our own model of the format. This is done by

28

3.8 Acceleration Structure

1 float3 iD = 1.0 / D; // computed once per frame
2

3 bool ray_box_intersection (float3 low , float3 high , float3 bias) {
4 float t1 = (low.x - bias.x - O.x) * iD.x;
5 float t2 = (high.x + bias.x - O.x) * iD.x;
6 float t3 = (low.y - bias.y - O.y) * iD.y;
7 float t4 = (high.y + bias.y - O.y) * iD.y;
8 float t5 = (low.z - bias.z - O.z) * iD.z;
9 float t6 = (high.z + bias.z - O.z) * iD.z;

10 float tmin = max(max(min(t1 , t2), min(t3 , t4)), min(t5 , t6));
11 float tmax = min(min(max(t1 , t2), max(t3 , t4)), max(t5 , t6));
12 return tmax >= 0 && tmin <= tmax;
13 }

Listing 3.1: Ray-box intersection testing.

inspecting the acceleration structure data from di�erent scenes. We compare the data, form
hypotheses, and witness the e�ect of editing segments of the data in attempts to confirm or
deny our hypotheses.

29

3. Approach

30

Chapter 4

Implementation

In this chapter, we provide details about our implementation. We explain what our rendering
loop looks like in section 4.1. In section 4.2 we describe the implementation of the foveated
ray tracer and how it a�ects the rendering loop. Section 4.3 details the implementation of the
three error metrics we use. The last two sections are related to frustum tracing. In section 4.4
we describe our model of the acceleration structure that we use to implement our frustum
tracer. In section 4.5 we cover our frustum tracer implementation.

Our code is written in the programming language C++. We use the API (Application
Programming Interface) Direct3D 12, which is a part of DirectX [6]. The shader code is
written in the programming language HLSL. Assimp (Open Asset Import Library) [14] is
used to load 3D models into the application.

4.1 Rendering Loop
When we are rendering using the basic ray tracer or the ground truth ray tracer, rays are
dispatched using a ray generation shader called RayGen. RayGen uses two input constant
bu�ers to decide where the rays should be dispatched. The first bu�er contains input pa-
rameters concerning the current rendering mode and the size of the application window.
The second bu�er contains transformation matrices corresponding to the current view. The
parameters in these bu�ers decide where the rays in the current frame should be generated.
The parameter containing information about the current rendering mode is used to decide
if RayGen should behave as the basic ray tracer or the ground truth ray tracer.

After tracing the rays, the obtained data is stored in an output UAV (unordered access
view) [18]. This UAV contains the output image that is displayed on the screen after the
execution of RayGen is finished. A basic view of the dataflow when rendering using the
basic ray tracer or the ground truth ray tracer can be seen in figure 4.1.

31

4. Implementation

Input
RayGen

Output Image

Figure 4.1: The dataflow when rendering using Raygen. The output
image is either the ground truth image or the basic ray tracer’s output
image, depending on which of them is in use.

4.2 Foveation Rendering Loop

When we use the foveated ray tracer, RayGen is replaced by another ray generation shader
called LPRayGen. LPRayGen has access to the same input constant bu�ers as RayGen but
additionally has access to the four input parameters (σ, α, aG, and lp_aspect), presented in
section 3.3, controlling the log-polar transform. LPRayGen applies the log-polar transform
to decide where the rays are generated. After tracing the rays, the obtained data is stored
in a UAV. This UAV is the log-polar bu�er containing the log-polar space image described
in section 2.2. Additionally, when TAA is active, another UAV containing the depth in log-
polar space is needed. After storing the data in the aforementioned UAVs the execution of
LPRayGen is finished.

As mentioned in section 3.3.1, a second pass is needed to transform the data obtained from
LPRayGen back from log-polar space. The second pass is executed by a compute shader called
Pass2. Before Pass2 is invoked, the log-polar bu�er’s data format is changed from UAV to
SRV (shader resource view) [18]. This is done since we want to use a linear sampler to sample
the color from the log-polar bu�er which is not possible in the UAV format. Pass2 uses the
log-polar transform, controlled by the same input parameters as LPRayGen, to transform the
screen space coordinates to log-polar space and sample color from the log-polar bu�er. The
obtained color is stored in an output UAV which, after the execution of Pass2 is finished,
is displayed on the screen. A basic view of the dataflow when rendering using the foveated
ray tracer can be seen in figure 4.2.

4.2.1 TAA

The second pass also optionally applies TAA and the Gaussian filter (section 3.5) on the data.
When TAA is enabled, Pass2 uses additional output and input resources. The additional re-
sources are an input SRV containing the accumulated TAA history from the previous frames
and an output UAV where the current frame’s data is stored to be used as history in the fol-
lowing frames. We also use a UAV containing the previous frame’s depth as well as a UAV
where we store the current frame’s depth. The depth UAVs are used during the re-projection
and depth-based rejection stages of the TAA. After the execution of Pass2 is finished, the
resulting image is stored in the output UAV which is displayed on the screen. The SRV and
UAV containing the previous and current history swap place. This is done so the current
history becomes the input previous history to the following frame. The same swap happens
with the UAVs containing the previous and current depth.

32

4.3 Error Metrics

4.2.2 Composite Foveation
When composite foveation is used, the shader CompositeRayGen is invoked at the same time
as LPRayGen. The shader CompositeRayGen traces the rays corresponding to the relevant
circular area in the gaze bu�er, figure 3.2. The data obtained when tracing the rays is stored
in a UAV, the gaze bu�er. The depth is also stored in a UAV. These two UAVs are used as
additional input to the shader Pass2 (in addition to the output from LpRayGen). When
Pass2 transforms the data in the log-polar bu�er back from log-polar space it also uses the
gaze bu�er to create the final image, which is then stored in the second pass’ output UAV. The
dataflow when rendering using the foveated ray tracer with composite foveation is showcased
in figure 4.2.

Input
CompositeRayGen

Gaze Bu�er

Input
LpRayGen

Lp-Bu�er
Pass2

Foveated Image

Figure 4.2: A basic view of the dataflow between shaders when ren-
dering using the foveated ray tracer. The CompositeRayGen shader
is dashed because its execution is optional depending on if compos-
ite foveation is used or not.

4.3 Error Metrics
The calculations of the three error metrics we use are implemented in two di�erent compute
shaders, called MSE and SSIM. When calculating errors, both the ground truth ray generation
shader (RayGen) and the foveation shaders (LPRayGen and CompositeRayGen) are invoked.
This is because we need access to both the foveated image and the ground truth image for the
current frame when we do the error calculations. After the foveated image and the ground
truth image are obtained, depending on the selected error type, one of the compute shaders
MSE or SSIM are invoked to compare the ground truth image to the foveated image. The
dataflow when calculating errors is illustrated in figure 4.3.

4.3.1 MSE Shader
The MSE shader calculates the mean square error in color space. The compute shader is
dispatched with threads that each calculate the total error in 10x10 pixel areas. This is done
to reduce the computation time in comparison to dispatching one thread for each pixel. The
width and height values of the 10x10 area are selected to be ten since the width and height
of computer screens usually are divisible by ten. The sum of errors obtained in each 10x10
area is stored in a bu�er. The data in the bu�er is used in the C++ code to calculate either the
RMSE or PSNR. The individual error of each pixel is also stored to be viewed as a heatmap.
The heatmap is displayed to evaluate and validate the distribution of the errors visually.

33

4. Implementation

Input
CompositeRayGen

Gaze Bu�er

Input
LpRayGen

Lp-Bu�er

Input
RayGen

Ground Truth Image

Pass2

Foveated Image

MSE or SSIM
Error

Figure 4.3: A basic view of the dataflow between shaders when cal-
culating errors of a foveated image compared to the ground truth
image.

4.3.2 SSIM Shader
Our SSIM shader calculates the SSIM index of all pixels using a neighborhood of size 11x11
[16]. SSIM uses luma instead of color to calculate errors. We convert the images from RGB
color space to luma using the following weights [15] in equation 4.1.

Luma = 0.2126 · R + 0.7152 ·G + B · 0.0722 (4.1)

The calculated indices are stored in a bu�er. The average of all the indices is then calculated
in the C++ code.

4.3.3 Ranges
When ranges are used, the selected error calculation shader is initiated with a number of
dispatch calls equal to the number of ranges. On each dispatch call, the errors within the
current range are calculated and then averaged. Figure 4.4 illustrates splitting the screen into
20 ranges. We split the screen into 20 ranges since we want enough ranges to be able to
showcase the error at di�ering distances from the focal point while maintaining a sizeable
amount of pixel samples in each range. The variable max_range controls the size of the area
to be split into ranges.

4.4 Modeling the Acceleration Structure
All information about the acceleration structure presented in this section was obtained by
inspecting the data of acceleration structures built on an Nvidia Titan V. The data has also
been inspected on an Nvidia Titan X to check for similarities and di�erences.

Our frustum tracer implementation relies on our findings of the acceleration structure.
The frustum tracer was tested using the aforementioned GPUs as well as an Nvidia RTX 2080
Ti, with no behavioral di�erences detected. All statements about the acceleration structure
data format are based on our own conclusions. Our descriptions of some data sections are

34

4.4 Modeling the Acceleration Structure

Figure 4.4: A view of the error heatmap using 20 ranges with
max_range specified as 0.682 (the focal point is set in the center
of the application window).

incomplete and we skip other sections entirely. Our goal was not to gain a complete under-
standing of the data format but instead gain the information necessary to implement the
frustum tracer. Once a data section, or part of a section, was deemed unnecessary for our
progress toward frustum tracing, our attention was directed elsewhere. Everything we spec-
ify about the data format is obtained by investigating TLAS, but we would like to note that
BLAS data does appear similar to TLAS.

The data types encountered in the acceleration structure are identical to the C++ types
float, UINT8 (8-bit unsigned integer), and UINT32 (32-bit unsigned integer). When we are
unsure if we encounter a UINT32 or a UINT64 (64-bit unsigned integer) value, we treat it
as a UINT32 value. The reason we settle with UINT32 in all cases is that it works well in our
tests. Problems occur if the higher four bytes of a UINT64 are used while the data is being
treated as a UINT32, but even in cases where we tested acceleration structures containing
over a million instances, no issues were detected. The data uses little-endian ordering [8].

After building a TLAS using DXR functions, it is located in a part of GPU memory
called the default heap. This memory is not accessible by the CPU. We copy the acceleration
structure to the readback heap for CPU access. The procedure for copying occurs twice. First,
four specific bytes describing the acceleration structure size are copied. The size value is then
used to copy the entire acceleration structure.

The first section of the acceleration structure data is a header. A description of the con-
tent in the header section can be found in table 4.1.

The Instance section contains a set of sequential entries. The instance entries are 0x80
bytes in size and the number of entries is equal to the number of instances specified in the
header section. The transform matrix data for an instance is located in their entry.

The BVH section consists of a series of BVH entries or nodes. The first node appears at
the beginning of the section. This is the root of the BVH and has an index of 0. The size of

35

4. Implementation

O�set Type Description
10 UINT32 Acceleration structure size in bytes
24 UINT32 Number of instances
28 UINT32 BVH section o�set in bytes
30 UINT32 Instance section o�set in bytes

Table 4.1: Description of fields in the acceleration structure header
section. The o�sets are provided as hexadecimal numbers.

O�set Type Description
00 float node lower x coordinate
04 float node lower y coordinate
08 float node lower z coordinate
0C UINT8 node width
0D UINT8 node height
0E UINT8 node depth
0F UINT8 node branch mask
10 UINT32 node branch index
18 8xUINT8 8x child branch value
20 8xUINT8 8x child AABB lower x coordinate
28 8xUINT8 8x child AABB lower y coordinate
30 8xUINT8 8x child AABB lower z coordinate
38 8xUINT8 8x child AABB upper x coordinate
40 8xUINT8 8x child AABB upper y coordinate
48 8xUINT8 8x child AABB upper z coordinate

Table 4.2: Description of fields of an entry in the BVH section. The
o�sets are provided as hexadecimal numbers.

Figure 4.5: A BVH node.

one node is 0x50 bytes and the section consists of an array of nodes. The data of a node is
described in table 4.2, and an example node can be seen in figure 4.5. The node’s lower x, y,
and z coordinates make up its bottom-left corner. The top-right corner of the node can be
computed using the bottom-left corner, as well as the width, height, and depth, using formula

36

4.4 Modeling the Acceleration Structure

(4.2). The bottom-left corner and top-right corner make up the node box. The node box is
an axis-aligned box, but we do not use it as a bounding box. The node’s AABB is defined in
its parent entry in relation to the parent’s node box. In other words, a node box is used to
define the AABBs of its children.

top_right = bottom_le f t +
(
2width−77, 2height−77, 2depth−77

)
(4.2)

All field descriptions starting with "8x" are eight sequential UINT8 values, one for each of
the node’s eight potential children. Since there are up to eight children per node the BVH tree
structure is an octree [13]. The children’s lower x, y, and z coordinates make up the bottom-
left relative corner called CL, and their upper x, y, and z coordinates make up their top-right
relative corner called CH . CL and CH specify coordinates within the node box. The children’s
bounding volume coordinates are calculated using CL, CH , and the node box coordinates in
equation (4.3). The ◦ sign is the Hadamard product [9].

bottom_le f tAABB = bottom_le f t +
CL ◦ (top_right − bottom_le f t)

256

top_rightAABB = bottom_le f t +
CH ◦ (top_right − bottom_le f t)

256

(4.3)

Each child has a branch value of which the lower 3 bytes specify the child’s branch number
and the upper 5 bytes specify the child’s branch type. A branch type of 0x00 means there is
no child, 0x20 means that the child is a leaf and 0x38 means that the child is a node. The
node branch mask is used to compute 8 values called branch o�set according to code listing
4.1. The node branch index, together with the branch o�set, specify a child’s entry index.
The entry indices of children with branch type node are obtained by entry_index[i] =
branch_index + branch_offset[branch_number].

1 UINT8 i = 0;
2 while (i < 8 && (branch_mask & (1 << i)) == 0) {
3 branch_offset [i] = 0;
4 ++i;
5 }
6 if (i < 8) {
7 branch_offset [i] = 0;
8 ++i;
9 }

10 while (i < 8) {
11 branch_offset [i] = branch_offset [i - 1]
12 + !!(branch_mask & (1 << i));
13 ++i;
14 }

Listing 4.1: This code uses the branch mask to compute the eight
branch o�set values.

Using the obtained information about the acceleration structure the BVH can be tra-
versed. A simple AABB highlighter was implemented in order to evaluate the correctness of
the AABB coordinate computations. An image of the highlighter can be seen in figure 4.6,
which indicates correctness because the AABBs fit closely around the bunnies.

37

4. Implementation

Figure 4.6: Highlighting of bounding boxes. The large faint box is
the node box, the smaller colored boxes are the node’s eight chil-
dren’s AABB.

4.5 Frustum Tracing

At the beginning of the program, an acceleration structure containing the scene is built,
which we will refer to as the original TLAS. The frustum tracer creates modified versions of
this acceleration structure to be used when ray tracing. The ray generation shader has access
to the original TLAS as well as an array of acceleration structures modified by the frustum
tracer, one per tile. The ray generation shader uses screen coordinates to determine which
tile the current ray belongs to and uses the corresponding acceleration structure when tracing
the ray.

When developing the frustum tracer we took inspiration from Hunt et al. [19]. They
calculate an entry point of the BVH for each frustum. The BVH traversal for rays traced
within a frustum start from its entry point instead of the root node. DXR limits us from
modifying where the BVH traversal begins. Instead, we create copies of the acceleration
structure and modify each copy.

We create three di�erent versions of frustum tracing. The main version is called TLAS
tracer and is described in section 4.5.1. The second version is called BTLAS tracer. It is used
as a baseline in performance comparisons with the TLAS tracer and it is described in section
4.5.2. Both the TLAS tracer and BTLAS tracer culls whole instances from a TLAS. The last
version is called BBLAS tracer. It modifies a BLAS to cull individual triangles and is covered
in section 4.5.3.

38

4.5 Frustum Tracing

4.5.1 TLAS Tracer
The TLAS tracer uses a copy of the original TLAS for each tile. The BVH of each copy
is traversed and frustum-box intersection testing approximated according to our approach
described in section 3.7. Every time an intersection test fails the branch type for the corre-
sponding child is set to zero, and the child node is not traversed further.

The TLAS tracer was made to be used as a real-time frustum tracer. This means being
executed every frame in a real-time application, which requires an execution time below 16.7
ms to reach 60 fps. However, as our results in section 5.4 show, the TLAS tracer fails to
improve rendering time (which does not include the time spent culling). Because of this,
we do not optimize the culling for speed, which could be achieved by parallelizing it per
tile. This causes the TLAS tracer to become a bottleneck if the number of tiles enters the
hundreds.

After implementing the BVH traversal and pruning, we added three optimizations to fur-
ther reduce the size of the BVH: Trimming, entry point, and bridging. These optimizations
can be toggled on and o�.

Trimming
Trimming consists of removing nodes that are left without children after pruning and it oc-
curs during the BVH traversal. A node box always fully contains the AABBs of its children.
But the union of the children’s AABBs almost never entirely fill their parent’s AABB, illus-
trated in figure 4.6 by the empty space in the node box. This means that the TLAS tracer can
traverse down a branch, and encounter a situation where a node is visited, but none of the
children’s bounding boxes intersect the frustum. The frustum tracer will then remove each
of the entry’s children. Having a node with no children serves no purpose, and the node can
be removed from its parent to further reduce the size of the BVH as illustrated in figure 4.7.

Figure 4.7: Visualization of a BVH before and after trimming. The
gray circles are nodes and the green circles are leaves. In this case,
the frustum intersected the node in the second row, but neither of
its children’s AABB. The node is therefore useless and removed.

Entry Point
Similar to Hunt et al. [19], we calculate an entry point. This occurs after the BVH traversal
is completed. We achieve the entry point optimization by replacing the root node with its
child node in cases where the root node only has one child remaining. This is repeated until
the root node has multiple children. The process of setting an entry point is visualized in
figure 4.8.

39

4. Implementation

Figure 4.8: Visualization of a BVH before and after setting an entry
point. The gray circles are nodes, a blue circle represents the root
node and the green circles are leaves. In this case, the frustum only
intersected one of the root node’s children’s AABB. That child is
assigned to be the new root node.

Bridging
Our last optimization is called bridging. It is performed after the entry point has been set
by traversing the BVH an additional time. Any nodes in the BVH that have only one child
remaining is removed by bridging. The child of the removed node replaces the removed node,
as demonstrated in figure 4.9. The child’s AABB coordinates are recalculated to be relative
to its new parent.

Figure 4.9: Visualization of a BVH before and after bridging. The
gray circles are nodes and the green circles are leaves. In this case,
the frustum intersects the node on the second row, but only one of
its children’s AABB. That child can therefore replace the node.

4.5.2 BTLAS Tracer
We implement another version of the frustum tracer to function as a baseline for calculat-
ing the performance gain in the near-optimal case for the TLAS tracer. The BTLAS tracer
(Building TLAS tracer), unlike the TLAS tracer, does not access the acceleration structure
data. Instead, it considers every model in the scene when performing culling. All models
that are intersecting the frustum are collected and used to build a new TLAS using DXR
functions. The resulting TLAS should be more optimized than the one edited by the TLAS
tracer. The reason for this is that the number of branches from a node is typically reduced
by our TLAS tracer, making the BVH tree taller than necessary, which increases the length
of traversal from the root node to leaves.

This version requires a few seconds to perform culling and is not meant for real-time use.
We only use it to show an upper limit of performance gain for the TLAS tracer.

40

4.5 Frustum Tracing

4.5.3 BBLAS Tracer
We implement a third version of the frustum tracer. The BBLAS tracer (Building BLAS
tracer) works by restructuring the BLAS. The idea is to have one BLAS for each frustum that
contains all triangles within the current frustum. Like the BTLAS tracer, the BBLAS tracer
does not access the acceleration structure data.

The reason for creating the BBLAS tracer is to investigate if there is any potential for
performance gain by culling individual triangles instead of whole instances, like the TLAS
and BTLAS tracers both do.

The time required to perform culling with the BBLAS tracer ranges from several seconds
to hours, depending on the number of tiles and size of the scene, to execute and is not meant
for real-time use.

Combined model
Before the BBLAS tracer is executed, all models in the scene are combined into one model.
This is done once at the start of our application. The BBLAS tracer then culls this combined
model. Apart from convenience for the BBLAS tracer algorithm, which considers every tri-
angle in the scene when culling, the combined model serves one more purpose: We create a
combined BLAS that contains the combined model, which is used in testing to investigate
the e�ect of combining all BLAS data into one BLAS. Both the combined BLAS and the tile
specific BLAS provided by the BBLAS tracer use a TLAS with a single instance.

Culling the combined model
The BBLAS tracer creates a new BLAS for each tile, consisting of all the triangles in the
combined model that overlap their tile. The process of creating one of these BLAS starts by
projecting each vertex of the combined model onto the screen and then recording whether
they are in the tile or not. Then the BLAS is built using all triangles from the combined
model that has at least one vertex in the tile. A small bias is added when determining if a
vertex is considered to be in tiles to make the culling more lenient. This is to avoid culling
triangles that intersect a tile without having any vertex inside it. Finally, one TLAS is built
for each BLAS, containing only one instance of their corresponding BLAS.

41

4. Implementation

42

Chapter 5

Results and Discussion

In this chapter, the results obtained by running our ray tracing implementations are pre-
sented. We evaluate the foveated ray tracer in di�erent modes, where each mode specifies
di�erent values of the input parameters. We also explain the tuning process of the param-
eters. The ray tracers are evaluated on di�erent GPUs and in di�erent scenes. We present
the rendering times and image quality errors obtained for the di�erent modes. The results
of running the frustum tracer are also presented.

5.1 Input Parameters
As described in chapter 3, there are four di�erent input parameters in our application that
a�ect foveation in di�erent ways. σ changes the size of the log-polar bu�er as described in
section 3.3.1. α tunes the sampling to be distributed more towards the periphery (section
3.3.2). aG changes the size of the composite foveation gaze bu�er (section 3.3.3). lp_aspect
changes the aspect ratio of the log-polar bu�er (section 3.3.4). To narrow down the number
of settings possible we have created four di�erent modes in addition to ray tracing with one
ray per pixel. Each mode serves to evaluate di�erent aspects of the application. The values of
the parameters were selected by tuning them for each mode and evaluating the result.

5.1.1 The Tuning Process
The parameters were tuned during run-time and evaluated visually until satisfactory quality
was achieved. In this case, satisfactory quality entails keeping the bu�ers, and by extension
the number of samples, as small as possible while the image quality reduction in the periphery
remains imperceptible. We wanted to tune α, aG, and lp_aspect in a way that made the
radial and angular resolution match. As described in section 3.3.4 we observed less flickering
and also improved perceived image quality when the rays were evenly distributed along the
radial and angular axes. The function mid_range_res, described in section 5.2, was used to

43

5. Results and Discussion

calculate these resolutions. By matching the angular and radial resolution we ensure that the
rays are well distributed along both the radial and angular axes.

The resolution plots by mid_range_res could possibly have been used to match the reso-
lution of our presets as closely as possible to the perceived detail of human vision. In Patney
et al. [2], they show that the level of detail that can be resolved by human vision di�ers from
what can be detected. This means that we can not match the resolution in regards to both of
these aspects without the use of contrast preservation methods, which Patney et al. use. That
is beyond the scope of this thesis.

When evaluating the quality we viewed the screen from a specific distance calculated
using formula (5.1).

distance_ f rom_screen =
screen_diagonal_length
tan (max_view_angle)

(5.1)

During the evaluation process, we swapped between the ground truth and a selected foveation
mode and checked if we could see any di�erence between them. There was a delay (showing
nothing on the screen) between the two versions of the image. This delay is present to prevent
us from noticing the sudden change caused by swapping directly between the two modes.
Both Meng et al. [21] and Patney et al. [2] use a similar approach when evaluating image
quality in their user studies. All tests were done with the focal point at the center of the
screen and the application window set to the same size as the screen. The quality of the tuned
modes was then compared to each other using the error metrics (section 5.3.4), to confirm
that all modes had a similar image quality.

5.1.2 Modes

Mode σ α aG lp_aspect
Fov 0.75 1.0 0 1.2

K Fov 1.0 3.0 0 0.70
C Fov 1.4 1.0 0.20 0.33

C K Fov 1.3 2.0 0.15 0.35

Table 5.1: The values chosen for σ, α, aG and lp_aspect for each
mode.

The four selected modes and their corresponding input parameter settings are collected in
the table 5.1. The modes will be abbreviated, as in table 5.1, when used in some tables to save
space. Fov stands for foveation, K stands for kernel and C stands for composite.

For clarification purposes :

• σ controls the size of the log-polar bu�er. A larger σ yields a smaller log-polar bu�er,
which reduces the number of rays traced.

• α controls the e�ect of the kernel foveation. A larger α leads to rays being shifted away
from the focal point more significantly, while α = 1 disables the kernel foveation.

• aG controls the size of the gaze bu�er. A larger aG leads to a larger gaze bu�er, while
aG = 0 sets the size to zero and thus disables the composite foveation.

44

5.2 Matching Radial and Angular Resolution

• lp_aspect is the aspect ratio of the log-polar bu�er. A higher lp_aspect increases
the width and reduces the height of the log-polar bu�er.

The modes were selected to showcase how the optimizations, kernel foveation, and com-
posite foveation, used separately and together, compare to each other as well as foveation
without optimizations.

5.2 Matching Radial and Angular Resolu-
tion

The method mid_range_res is used to calculate the radial and angular resolution at set
distances from the focal point. These set distances are located in the middle of the ranges used
by the error calculations, hence, the name mid_range_res. By calculating these resolutions
at increasing distances from the focal point we can create graphs, 5.1, illustrating how the
angular and radial resolution changes depending on the distance to the focal point. The
resolution along each axis is obtained by calculating how many pixels two adjacent rays span.
More rays along one of the axes equal better resolution on that axis.

0 20 40 60

0.2

0.4

0.6

0.8

1

Viewing angle (degrees)

mi
d_

ra
ng

e_
re

s

radial
angular

0 20 40 60
0

0.5

1

1.5

Viewing angle (degrees)

mi
d_

ra
ng

e_
re

s

radial
angular

Figure 5.1: Graphs produced by the method mid_range_res. The
left graph illustrates an example case where the angular and ra-
dial resolution is similar and decreasing further away from the focal
point. The right graph illustrates an example case where the angular
and radial resolution is poorly matched.

When using composite foveation the resolution inside the gaze bu�er will always be
treated as 1 by the mid_range_res method. This is because one ray is shot in each pixel
inside the gaze bu�er which makes the resolution 1 (ray per pixel). This is a special case since
the resolution is neither angular nor radial but instead aligned along the x and y axes of the
screen.

In both graphs in figure 5.1 and we can see that the gaze bu�er is in use since the resolution
starts at a stable 1 in both cases. In the right graph, we can see that the radial and angular
resolution does not match and also that oversampling occurs when transitioning from the
gaze bu�er to the log-polar bu�er. Using the graphs produced by mid_range_res we tune
the parametersα, aG and lp_aspect to reduce the oversampling and closely match the radial
and angular resolution as seen in the left graph of figure 5.1.

45

5. Results and Discussion

5.2.1 Tuning
After tuning the input parameters according to the radial and angular resolutions the fol-
lowing four graphs (figure 5.2) were obtained for the di�erent modes.

0 20 40 60
0

5

10

15

Viewing angle (degrees)

mi
d_

ra
ng

e_
re

s

Foveation

radial
angular

0 20 40 60

0.2

0.4

0.6

0.8

1

Viewing angle (degrees)

mi
d_

ra
ng

e_
re

s

Composite Foveation

radial
angular

0 20 40 60
0

5

10

15

Viewing angle (degrees)

mi
d_

ra
ng

e_
re

s

Kernel Foveation

radial
angular

0 20 40 60

0.5

1

Viewing angle (degrees)

mi
d_

ra
ng

e_
re

s

Composite Kernel Foveation

radial
angular

Figure 5.2: Four graphs obtained by running mid_range_res on
the four modes.

In the two top graphs, we can see that the radial and angular resolution are almost iden-
tical. This is possible by using lp_aspect to change the aspect ratio of the log-polar bu�er
which also changes the ratio between angular and radial resolution. We can also see in the
top right graph that the resolution of the log-polar transform is closely matched to 1 when
transitioning from the gaze bu�er. The modes in the bottom two graphs both use the kernel
function. The kernel function pushes samples from the focal point towards the periphery
which changes the slope of the radial resolution. This change makes it impossible to com-
pletely match the angular and radial resolution using lp_aspect. This is why the bottom
two graphs are tuned in a way that makes the resolutions di�er close to the focal point (where
the number of samples is high) and are matched towards the periphery (where the number
of samples is lower). We prioritize matching the resolution (syncing the graphs) in the pe-
riphery because we noticed, during visual evaluation, that the visual quality in the periphery
was the limiting factor for how much we could reduce the number of rays.

46

5.3 Running Our Foveated Ray Tracer

5.3 Running Our Foveated Ray Tracer
In this section, we present the results obtained when running and evaluating our foveated
ray tracer. We tested our foveated ray tracer on two di�erent GPUs, NVIDIA TITAN X and
NVIDIA TITAN V. The reason for using these two GPUs is that they were the ones we had
access to with support for DXR. We use them both since we wanted to see if there were any
interesting di�erences in performance when using two high-end GPUs that were released
with over a year between them (Titan V is newer and more powerful). The di�erent tests of
the foveated ray tracer modes use two di�erent scenes shown in figure 5.3. The scenes are
Bistro (interior) [1], and Sponza. Bistro consists of 1,046,609 triangles and Sponza consists
of 262,267 triangles. We use Bistro and Sponza when evaluating the rendering time of the
foveated ray tracer. We also use Bistro when computing errors.

Figure 5.3: The left image is the scene Bistro and the right image is
Sponza. Both images are rendered using the ground truth ray tracer.

5.3.1 Performance
The rendering times obtained from running the basic ray tracer, introduced in section 3.1,
and the four foveation modes can be seen in table 5.2. The modes are tested both with and
without TAA enabled.

The number of rays dispatched and traced in each mode can be seen in table 5.3. TAA
is excluded from the table since it does not change the number of rays. The number of rays
dispatched is displayed in percentage compared to the number of rays the basic ray tracer
dispatches (1 ray per pixel). The column "Rays Traced" contains the percentage of rays that are
traced compared to the basic ray tracer. The basic ray tracer traces all rays it dispatches. One
case where a ray is dispatched but not traced, when using the foveated modes, happens when
it is outside the screen/application window after transforming from log-polar coordinates.
This phenomenon is discussed in section 3.3.1 and is demonstrated by the black color at the
right side of the log-polar bu�er in figure 2.1. The other case happens when the coordinates
for a ray is outside the gaze image circle in the gaze bu�er, demonstrated by the black color
towards the corners in figure 3.2.

Discussion of Performance Data
Using the data from both tables 5.2 and 5.3 we can see that more rays dispatched/traced corre-
sponds directly to longer rendering time. We can also conclude that the TAA algorithm only

47

5. Results and Discussion

Titan V Titan X Titan V Titan X
Preset Rendering Rendering Rendering Rendering

Time in Time in Time in Time in
Sponza (ms) Sponza (ms) Bistro (ms) Bistro (ms)

Basic Ray Tracer 6.52 14.28 8.73 20.43
Fov 10.58 22.42 11.33 24.83

K Fov 5.62 11.70 6.49 14.49
C Fov 3.98 7.72 4.61 10.09

Fov TAA 11.07 22.75 11.78 25.23
K Fov TAA 5.91 11.97 6.79 14.79
C Fov TAA 4.21 7.87 4.87 10.20

C K Fov TAA 4.21 8.09 4.90 10.23

Table 5.2: The average rendering time of a single frame on each GPU
for the scenes Bistro and Sponza.

Preset Rays Dispatched (%) Rays Traced (%)
Basic Ray Tracer 100 100

Foveation 162 154
Kernel Foveation 75.4 65.7

Composite Foveation 48.3 37.5
Composite Kernel Foveation 47.6 37.7

Table 5.3: A table containing the number of rays dispatched and
traced in each mode. The percentages of rays dispatched and traced
are given in comparison to the basic ray tracer, which both dis-
patches and traces 1 ray in each pixel.

introduces a small overhead calculation time when compared to the total rendering time. The
rendering times for Sponza are faster than Bistro since Bistro is a more complex scene. Titan
V is faster than Titan X in all of our tests, which is expected. The speedup is also similar. An
interesting result obtained from the tables is that the foveated mode both dispatches/traces
more rays and is slower than the basic ray tracer. This is because when tuning the foveated
ray tracer we had to lower σ until the quality in the periphery was acceptable. When the pe-
riphery achieved su�cient quality the pixels towards the focal point are oversampled. This
issue is mitigated by both the Kernel function and the composite foveation which is why they
achieve better results.

The fastest mode is composite foveation which also traces the least amount of rays. The
kernel foveation also achieves better results than the normal foveation. The number of rays
traced has a more significant e�ect on the rendering time compared to the number of rays
dispatched since the shading process is computation heavy. This is illustrated further by the
composite kernel foveation which dispatches the least amount of rays but traces more rays
than the composite foveation. Composite foveation and composite kernel foveation trace
a similar number of rays and have similar rendering time. Hence, it is di�cult to say for
certain if one mode is strictly better than the other, especially since small changes in the
input parameters could change the result. It should also be noted that the kernel function

48

5.3 Running Our Foveated Ray Tracer

and the gaze bu�er strives to solve the same problem, which is why, when combined, there is
no significant increase in performance when compared to only using the gaze bu�er.

The resulting image when running the program in composite foveation mode, with a
stationary view and TAA enabled, can be seen in figure 5.4. The other modes aim for similar
quality as illustrated by the graphs in section 5.3.4.

Figure 5.4: Composite foveation with a stationary camera and TAA
enabled. The other foveation modes have similar quality. The focal
point is at the center of the image and there is lower quality towards
the edges.

5.3.2 Ghosting and Flickering

Figure 5.5: Figure illustrating the ghosting, contained in the red rect-
angles. The camera is moving towards the right.

When evaluating the program we noticed that some ghosting was persisting through the
depth check when the camera is in motion. This ghosting is demonstrated in figure 5.5. This

49

5. Results and Discussion

ghosting is minimal and less prevalent towards the focal point but it still a�ects the results.
This is the main reason why we decided to evaluate the application in two di�erent scenarios
with TAA active (stationary camera and moving camera), explained further in section 5.3.4.
We have concluded that the ghosting is caused by the depth rejection being too lenient in
some cases. However, in other cases, it is also too strict. Further away from the focal point,
where the rays are more sparse, flickering appears when the rejection is more strict. This
means that there is a trade-o� between flickering and ghosting. Since flickering is a problem
further from the focal point we decided to allow more ghosting in the periphery to reduce
the flickering there.

Video
This video showcases the flickering on the geometry where it is most prevalent in the Bistro
scene. The flickering is notable on the edges of the rolling table in the right part of the image.
https://youtu.be/NSQar3p961g

5.3.3 Error Heatmap
The figure 5.6 illustrates the error obtained when running the composite kernel foveation
mode. Darker color indicates a higher error.

Figure 5.6: Error heatmap created using C K Fov TAA settings (with
the focal point in the center of the application window).

Two important observations can be made from viewing this heatmap. The error is more
prevalent further from the focal point than close. This is expected because there are fewer
samples. The other observation is that the error only appears towards the edges of di�erent
objects in the scene. This is also an expected result since the error calculations operate on
color and luma. The color and luma change drastically between di�erent objects in the image
which causes the errors to be prevalent in those areas.

50

https://youtu.be/NSQar3p961g

5.3 Running Our Foveated Ray Tracer

5.3.4 Error Ranges
All graphs presented in this section are obtained by testing the selected foveation modes’
output images against images produced by the ground truth ray tracer (described in section
3.2). As mentioned in section 5.3.2, we limit the tests with TAA active to two di�erent
scenarios. The first scenario is when the camera is stationary and the second is when the
camera is moving. The errors vary depending on where the camera is looking, which is why,
to achieve consistent results, we decided to use a set path for the moving camera tests. This
way, the di�erent modes compare the same views in all tests when the camera is in motion.
We also noticed that there were small discrepancies in the results between di�erent runs
with the same settings. To avoid this we ensure that all tests start on the same index of the
Halton sequence that o�sets the rays. After this change, the tests produced consistent results
on subsequent runs. The errors are calculated every 60th frame to allow the camera to move
along the path to a view with di�ering scenery, to provide more variation to the measured
images.

The scene Bistro is used for our error tests since it is the most detailed scene. When
running the error tests we set max_range to 0.682 (a value selected so the error calculations
cover the screen) and split that area into 20 ranges as shown in figure 4.4. The final error
in each range is the average of the errors obtained in all evaluated frames. In addition to
calculating errors using SSIM, PSNR, and RMSE, we also calculate the standard deviation
(SD) of the errors in each range. The focal point is always in the middle of the screen during
the tests. When visually evaluating the application we noticed that the blur caused by the
Gaussian filter, presented in section 3.5, introduced tunnel vision. This is why we decided
against using the Gaussian filter in the error tests in this section.

Without TAA
The results of running the foveation, kernel foveation, composite foveation, and basic ray
tracer with no TAA are shown in the graphs in figure 5.7. The camera is moving along the
set path, but when TAA is turned o� there is no distinction in image quality between using
a moving and a stationary camera. This is because the previous frames have no e�ect on the
current frame. Hence, the results in this section are comparable to those in both section 5.3.4
and 5.3.4, which use TAA with stationary and moving camera respectively. The errors of 20
di�erent views along the path were averaged when producing the graphs. An SSIM index
close to 1, a high PSNR value, and a low RMSE value all indicate that the images compared
are similar.

The basic ray tracer shoots one ray per pixel and should in an ideal case produce errors
that are consistent over all ranges. We can see that the SSIM error is relatively consistent
but RMSE and PSNR demonstrate a more fluctuating result close to the focal point. The
inconsistencies in these results are caused by the di�erences in the views where the error
measurements were taken. The ranges close to the focal point and towards the corners are
also more inconsistent since they contain fewer pixels, as illustrated by figure 4.4. We can
also see that the errors of the modes are similar with the exception of composite foveation
close to the focal point. However, the composite foveation errors follow the basic ray tracer
close to the focal point which means that the sudden changes in quality are caused by the
specific views chosen. The shape of the standard deviation graph is similar to that of RMSE.

51

5. Results and Discussion

This means that the deviation of our errors is closely correlated with the size of the errors.
The same observation holds true for the tests with TAA activated in the following sections.

0 10 20 30 40

0.94

0.96

0.98

Viewing angle (degrees)

SS
IM

0 10 20 30 40

35

40

Viewing angle (degrees)
PS

N
R

(d
B)

0 10 20 30 40

3

4

5

6

Viewing angle (degrees)

R
M

SE

0 10 20 30 40

3

4

5

6

Viewing angle (degrees)

SD

Foveation
Composite Foveation

Kernel Foveation
Composite Kernel Foveation

Basic Ray Tracer

Figure 5.7: Errors obtained with TAA turned o�. The errors are
obtained as an average of 20 di�erent camera views.

52

5.3 Running Our Foveated Ray Tracer

TAA and Stationary Camera
In the graphs 5.9 the errors of one selected view are presented with TAA turned on. We
can see that the errors towards the periphery are not steadily increasing. Between 30 and 40
degrees, we see that the errors decrease instead of increase. By investigating the RMSE and
PSNR of the basic ray tracer we can see that it changes in the same way but less pronounced.
This means that the change in error is caused by the specific view we selected for the test.
Hence, the view we used has less detail at about 30-40 degrees. In the graph 5.8, we ran the
composite foveation mode in two di�erent views. View 1 is the same view we used in our
tests and the graph shows that view 2 does not have the same distribution of errors at around
30-40 degrees. This further supports the claim that the discrepancy in error at around 30-40
degrees is caused by the specific view we chose.

0 10 20 30 40
0.92

0.94

0.96

0.98

1

Viewing angle (degrees)

SS
IM

View 1
View 2

Figure 5.8: The SSIM values obtained when running composite
foveation in two di�erent views. View 1 is the same view we use
during the stationary camera tests and view 2 is a di�erent arbitrar-
ily chosen view.

We observe that the composite modes perform better than the foveation and kernel
foveation modes close to the focal point with TAA turned on. We can see that both the
foveation and the kernel foveation modes’ quality drop close to the focal point even though
they have more samples in this region. The same behavior is observed in the graphs 5.7, where
TAA is turned o�. This is an e�ect caused by the oversampling. The oversampling causes a
pixel close to the focal point in the log-polar bu�er to map to a smaller area in the final im-
age as the number of samples increases. Because of this, the linear sampler that extracts color
from the log-polar bu�er will linearly sample from pixels whose neighboring pixels contain
essentially the same data. Hence, the linear sampler works more akin to a point sampler
when the oversampling is present. When using TAA, the same phenomenon happens with
the Halton pattern. Since a pixel close to the focal point in the log-polar bu�er maps to a
smaller area in the final image, the o�set caused by the Halton pattern will also be small.
When reading from a pixel in the log-polar bu�er it will contain essentially the same data re-
gardless of the pattern. For the composite modes, the pixels in the gaze bu�er map 1:1 to the
final image. Hence, when the Halton pattern is used, the o�sets provide more information
when compared to the foveation and kernel foveation modes.

53

5. Results and Discussion

0 10 20 30 40
0.92

0.94

0.96

0.98

1

Viewing angle (degrees)

SS
IM

0 10 20 30 40
30

40

50

Viewing angle (degrees)
PS

N
R

(d
B)

0 10 20 30 40
0

2

4

6

8

Viewing angle (degrees)

R
M

SE

0 10 20 30 40
0

2

4

6

Viewing angle (degrees)

SD

Foveation
Composite Foveation

Kernel Foveation
Composite Kernel Foveation

Basic Ray Tracer

Figure 5.9: Errors obtained when using a stationary camera and TAA
in one selected view.

54

5.3 Running Our Foveated Ray Tracer

0 10 20 30 40

0.92

0.94

0.96

Viewing angle (degrees)

SS
IM

0 10 20 30 40

32

34

36

38

Viewing angle (degrees)

PS
N

R
(d

B)

0 10 20 30 40
4

6

8

Viewing angle (degrees)

R
M

SE

0 10 20 30 40

4

5

6

7

Viewing angle (degrees)

SD

Foveation
Composite Foveation

Kernel Foveation
Composite Kernel Foveation

Basic Ray Tracer

Figure 5.10: Errors obtained when using a moving camera and TAA.
The camera is moving along a set path. The errors are obtained as
an average of 20 di�erent frames along the path.

55

5. Results and Discussion

TAA and Moving Camera
In the graphs 5.10 we see that the errors generally are higher when moving than in the graphs
5.9 with a stationary camera. This happens because of the history rejection when previously
occluded geometry becomes visible which causes the image to contain less information when
moving. Another cause is turning o� the Halton pattern when moving (to reduce flickering)
and only relying on the information that enters the history naturally when moving around.
The last cause is the minor ghosting that appears when the wrong color is sustained through
the depth rejection as explained in section 5.3.2.

The modes are showing similar error readings across the ranges which means that the
tuning of the modes was successful. The errors are also higher towards the periphery as
expected. The only discrepancy being the drop in quality at around 5 degrees from the focal
point. This is caused by the specific views we average in the scene as demonstrated by the
basic ray tracer which has a similar shape close to the focal point.

It is interesting that the error of the basic ray tracer has an increasing value towards the
periphery. We suspect that this is caused by new geometry entering the view at the edges
of the screen, which happens when the camera moves or rotates. Since there is no history
present for this geometry, the quality is lower.

5.3.5 Trade-off Between Image Quality and Perfor-
mance

In this section we calculate rendering speed and errors for one selected mode, using three
di�erent σ values. We use the composite foveation mode because we found it to be the best
performing mode based on our results in section 5.3.1. The composite foveation mode used
σ = 1.4 in the tests presented in sections 5.3.1 and 5.3.4. In the following tests we setσ = 1.7
and σ = 2.0 in addition to the previously tested σ = 1.4. We arrived at σ = 1.7 by testing
what the smallest noticeable di�erence toσ was for us, and thenσ = 2.0 by adding the same
step size again. Running the same mode with a higher σ increases the rendering speed and
reduces the image quality. Table 5.4 contains the performance data and the graphs 5.11 show
the errors.

Titan V Titan X
Preset Rendering Rendering Rays Dispatched Rays Traced

Time (ms) Time (ms) (%) (%)
σ = 1.4 4.87 10.20 48.3 37.3
σ = 1.7 3.78 7.98 34.2 27.1
σ = 2.0 3.12 6.29 24.9 20.1

Table 5.4: The average rendering time in the scene Bistro of a single
frame in the composite foveation mode with di�ering σ values.

The perceived loss in quality depends on whether the camera is stationary or moving.
While the camera is stationary, the visual e�ect of increasing σ is that it induces a feeling
of tunnel vision due to loss of contrast in the periphery. While the camera is moving, the
already pronounced flickering artifacts become worse as σ increases. It is di�cult to decide
on an acceptable level of quality because of this flickering.

56

5.3 Running Our Foveated Ray Tracer

0 10 20 30 40
0.88

0.9

0.92

0.94

0.96

Viewing angle (degrees)

SS
IM

0 10 20 30 40
30

32

34

36

38

Viewing angle (degrees)

PS
N

R
(d

B)

0 10 20 30 40
4

6

8

Viewing angle (degrees)

R
M

SE

0 10 20 30 40

4

6

8

Viewing angle (degrees)

SD

σ = 1.4
σ = 1.7
σ = 2.0

Figure 5.11: Graphs showcasing the errors of composite foveation
with di�eringσ values. The errors are calculated in the scene Bistro
with TAA activated and the camera moving along a set path.

57

5. Results and Discussion

Since it is di�cult to decide exactly what su�cient quality entails, we decided to run
these tests with varying σ to showcase how the rendering time changes when we allow lower
quality. As stated before, we decided on su�cient quality based on our subjective opinion.
If we had enough time and resources, a better way to decide what su�cient quality entails
would be to match the image quality to the perceived level of detail of human vision. This
can for example be done by using a perceptual target image, as Patney et al. [2] did. However,
there would still be an issue with temporal aliasing because of the flickering. A su�ciently
temporally stable image could be decided by carrying out a user study.

5.4 Running Our Frustum Tracer
In this section, we present the results obtained when testing our frustum tracer versions. We
tested our frustum tracer on three di�erent GPUs. Two of them are NVIDIA TITAN X and
NVIDIA TITAN V, which are the same ones that we used when testing our foveated renderer
in section 5.3. The third GPU is a GEFORCE RTX 2080 Ti. We included the RTX card in
these tests because it has hardware support for ray tracing, which a�ects the performance of
intersection testing. This is interesting because frustum tracing alters the intersection testing
by culling the scene.

During the development of the frustum tracer, we noticed that it did not improve the
performance. This caused us to set up test conditions that are favorable for frustum tracing
to see if there is any scenario in which it can be used for performance gain. We create test
scenes that consist of a large number of instances of the same 3D model. The model we use
is the Stanford bunny [17], which consists of 65,630 triangles. The Stanford bunny can be
seen in figure 5.12. The reason for having many instances is so that intersection testing takes

Figure 5.12: The bunny model we use.

up a relatively large proportion of the time spent rendering a frame. This makes it so that
any improvement of performance for intersection testing is more noticeable. The reason
for using the same 3D model for all instances is to increase cache e�ciency. We arrange
the instances in a square formation and view it from the side during testing. The reason
for this layout is that it appears flat in this view, and because of this, rays intersect a small
amount of geometry, which lets the frustum tracer cull larger sections of the BVH. Due to
varying demands of memory between the BBLAS tracer and the other versions, we create
two di�erent test scenes. The first test scene is made for testing the TLAS tracer and BTLAS
tracer and it consists of 16384 instances. The second test scene is made for testing the BBLAS
tracer and contains 144 instances. We arrived at these numbers by increasing the number of

58

5.4 Running Our Frustum Tracer

instances in each scene close to the point where the memory usage became an issue for their
intended frustum tracing versions.

We measure the average time required to render a frame for each version of frustum
tracing. We also compute the total memory usage of the acceleration structures used by each
version. For comparison, we include rendering using an unmodified acceleration structure
(normal AS). The poor performance of the frustum tracer caused us to never optimize the
time spent culling, which could have been done by parallelizing the algorithm. The measured
times therefore only consider the time spent rendering a frame. The time spent modifying
the acceleration structures to perform culling is not included. This is also done to highlight
any potential performance gain for intersection testing.

Preset TLAS size BLAS size Titan V Titan X RTX 2080 Ti
(MB) (MB) (ms) (ms) (ms)

Normal AS 2.5 6.0 14.48 15.83 2.7
TLAS Tracer 2400 6.0 14.55 15.96 2.8

Optimized TLAS Tracer 2400 6.0 14.63 15.72 2.8
BTLAS Tracer 12.7 6.0 14.34 15.43 2.5

Table 5.5: Test data of TLAS frustum tracing. The optimized TLAS
tracer includes the three optimizations trimming, entry point, and
bridging.

As seen in table 5.5, the TLAS tracer fails to yield faster rendering than the basic ray
tracer. The BTLAS tracer shows that some gain is possible. However, it is not of su�cient
significance since the time spent performing culling is omitted. The memory usage of the
BLAS is the same for all three tests because it is never modified. As mentioned in section
2.5, the screen is divided into tiles. Having many, small tiles is desirable because it allows for
more instances to be culled. Here we used 960 tiles. The reason we did not use more tiles is
because of memory constraints. The TLAS tracer uses one copy of the original TLAS for each
tile. The copies are edited, but their size remains unchanged. This results in a total memory
usage increase of a factor of 960 for the TLAS tracer in our tests. The BTLAS Tracer also
uses 960 TLAS, but each is smaller than the original TLAS since they are created with only
essential data. In our tests, the BTLAS uses five times as much memory for TLAS than the
normal AS. The results show that our optimizations for the TLAS tracer have little e�ect.
We did expect the rendering time of the optimized TLAS tracer to be somewhere between
the unoptimized TLAS tracer and the BTLAS tracer, but that is not the case for the tests
using Titan V, which performed worse with the optimizations enabled.

Preset TLAS size BLAS size Titan V Titan X RTX 2080 Ti
(KB) (MB) (ms) (ms) (ms)

Normal AS 24 6.0 14.39 14.06 1.9
Combined BLAS 1.3 867 22.30 15.46 17

BBLAS Tracer 19 868 22.14 15.36 16

Table 5.6: Test data of BLAS frustum tracing.

Combining the entire scene into a single BLAS (Combined BLAS) decreases our render-
ing speed compared to the normal AS, as seen in the last three columns of table 5.6. Using

59

5. Results and Discussion

the per-tile acceleration structures, provided by the BBLAS tracing algorithm, yielded faster
rendering than the combined BLAS. Still, it is slower than the normal AS rendering time.
The TLAS size is reduced by combining the BLAS. This is because a new TLAS containing
a single instance is used. The BLAS size of the combined BLAS and the BBLAS tracer are
similar. They both contain all the bunnies. In the combined BLAS, the data is in a single
BLAS, while the BBLAS tracer splits the data over several BLAS, one for each tile. In these
tests, we used only 15 tiles due to the culling algorithm being slow.

60

Chapter 6

Conclusion

We have developed a foveated ray tracer, which uses di�erent optimizations to improve per-
formance and image quality. We use kernel foveation, composite foveation, and log-polar
aspect ratio to improve and control the ray distribution pattern of the log-polar transform.
We use TAA to reduce aliasing such as flickering. We also wanted to improve the performance
of our foveated ray tracer by using frustum tracing. For this purpose, we implemented and
evaluated a frustum tracer separately with the intention of combining it with the foveated
ray tracer. However, because our frustum tracer alone did not achieve performance gain, we
did not combine it with the foveated ray tracer.

We created a number of foveated ray tracing modes that use di�erent combinations of
the optimizations. We tuned the image quality of the modes to a similar level by evaluating
them visually and by using error metrics. The performance of each mode is presented and we
achieved the best results using composite foveation. Although, composite kernel foveation
also achieved similar results.

We will now discuss the results of our testing in correlation with the research questions
presented in section 1.2.

How much can the performance of ray tracing be improved by using log-polar foveation?
Our log-polar transform-based foveation without optimizations su�ers from oversampling
near the focal point and low sampling rate in the periphery. This causes our foveation to
perform worse than the basic ray tracer, which shoots one ray per pixel, when maintaining
su�cient quality in the periphery. It is possible to tune the foveated ray tracer in a way that
improves performance, compared to the basic ray tracer, while maintaining su�cient quality
near the focal point. However, the limiting factor while reducing the number of samples is
the periphery. The image quality preservation methods that we use (TAA) do not sustain
the quality in the periphery enough when the sample count decreases. To ensure su�cient
quality in the periphery we increase the size of the log-polar bu�er to increase the number
of samples in the periphery. The number of rays traced then becomes 154% compared to the
basic ray tracer.

One reason for the poor performance could be that we evaluate our application on com-

61

6. Conclusion

puter screens. We suspect that by evaluating the program on an HMD, where the field of
view is larger, the ray count could be lowered. When the field of view is large, the outer edges
of the screen is further out towards the periphery of the user’s vision, which means that the
reduction of quality is less noticeable.

How much can the performance of ray tracing be improved by using foveation with opti-
mizations? Using optimizations such as the kernel function and gaze bu�er the oversampling
can be reduced while also increasing the sampling rate in the periphery. This allows us to re-
duce the size of the log-polar bu�er and the number of rays traced while maintaining the
same image quality. Our experiments show an increase in speed by a factor of two compared
to the basic ray tracer, using optimized foveated rendering. We achieved our best results us-
ing composite foveated rendering, and the hybrid composite kernel foveated rendering, both
of which create stationary imagery that to us is indistinguishable from the basic ray tracer
while tracing less than 38% of the rays.

A major part of our project has been to investigate the potential of using frustum tracing
with DXR for foveated rendering. An issue with using this technique in DXR is the require-
ment of multiple acceleration structures. This increases the amount of memory used by a
large factor depending on the number of tiles used. Our tests point to frustum tracing being
of no use with DXR. While testing in favorable conditions, and not measuring the time spent
performing the frustum tracing algorithm, the rendering times did not improve. We suspect
several reasons for the poor rendering time results. One reason could be that often access-
ing di�erent acceleration structures reduces cache e�ciency. It might be that intersection
testing only takes up a small portion of the rendering time, which would limit the potential
gains from performing this step faster. Another reason could be optimizations performed
by DXR or graphics drivers. Such optimizations might be unknown to us and could conflict
with our assumptions. The TLAS tracer failed to yield faster rendering times than ray tracing
using the unmodified acceleration structure. While the BTLAS tracer did provide 1-3% faster
rendering, it is not feasible to use it in a real-time application. The BBLAS tracer su�ered
performance-wise from using the combined BLAS.

How large is the di�erence in image quality between foveated ray tracing and a ground
truth image? We have measured image quality using three di�erent error metrics: RMSE,
PSNR, and SSIM. In this section, we focus on the SSIM metric since all three metrics show
similar trends in the graphs in section 5.3.4.

When the TAA is turned o�, our foveation modes, that use the gaze bu�er (composite
foveation and composite kernel foveation), achieve an SSIM index of around 0.97 close to
the focal point. The modes that do not use the gaze bu�er (foveation and kernel foveation)
have higher quality ranging from an SSIM index of 0.97 to 0.99. The quality in the periphery
is similar for all modes and becomes lower towards an SSIM index of about 0.93. However,
since TAA is not active, severe flickering is observed when the camera is in motion.

When the camera is stationary with TAA active, the modes using the gaze bu�er achieve
an SSIM index close to 1 near the focal point. This value shows that the image quality is almost
identical to that of the ground truth image. The modes that do not use the composite bu�er
have lower quality towards the focal point, with an SSIM index of 0.97-0.99. However, this
loss of quality is not observable to us during visual evaluation. The quality in the periphery
becomes lower towards an SSIM index of about 0.93-0.94. There are no notable flaws in
perceived image quality in this case (stationary camera with TAA active).

When the camera is in motion and TAA is active, the quality of all modes is similar, but

62

6.1 Threats to Validity

generally lower than in the case of using a stationary camera. Close to the focal point, we
observe an SSIM index of about 0.96. Towards the periphery, we observe an SSIM index of
about 0.92. These values show that, when the camera is in motion, the quality is generally
lower when TAA is on compared to o�. However, as previously stated, the flickering is severe
when TAA is turned o�. This means that even though the quality is better according to the
error metrics when TAA is turned o�, the flickering seen during visual evaluation shows that
TAA has to be active. This conclusion also highlights that flickering is not well represented
by the error metrics we use.

6.1 Threats to Validity
In this section, we discuss di�erent threats to the validity of our research and results.

The first threat is connected to the fact that we have not conducted a user study and
instead based the visual evaluations on our own perceptions of the images. If we had more
people evaluate the images, the claims about su�cient quality would be more robust.

Another threat is artifacts such as flickering and ghosting and also that the error metrics
do not reflect the flickering well in the image quality graphs.

The tuning of the input parameters of the foveated ray tracer could be another threat
to the validity of our results. There could be more optimal values for each parameter which
could be showcased by a potential user study.

Our implementation of frustum tracing relies on assumptions. We do not know exactly
how an acceleration structure is used when ray tracing is performed on the GPU.

6.2 Future Work
In this section, we present ideas for how our evaluation methods and application could be
improved in the future.

6.2.1 Head-Mounted Display
As stated in section 2.2 foveation’s main use case is speeding up rendering on HMDs. We
evaluated the application on computer screens and it would be interesting to implement the
program on an HMD and evaluate it in the correct environment.

6.2.2 User Study
The error metrics work well to demonstrate that di�erent foveation modes have similar qual-
ity. However, they can show inconsistent results in combination with the error ranges calcu-
lation used in our project. These inconsistencies are caused by the scene and views chosen for
the tests. It is also a problem to quantify the quality and deduce what qualifies as su�cient
quality using the errors alone. The metrics neither reflect flickering well in the graphs. This is
why conducting a user study, where di�erent users test and evaluate the image quality, would
be a good idea in the future. This would be useful to better motivate an optimal choice of
input parameter values.

63

6. Conclusion

6.2.3 Animated Scenes
Our TAA implementation assumes that the scenes used are static. Adding support for an-
imated scenes could widen the scope of the project and would require support for motion
vectors in the TAA algorithm.

64

References

[1] Amazon Lumberyard Bistro. https://developer.nvidia.com/orca/
amazon-lumberyard-bistro. [Online; accessed September-2020-22].

[2] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir
Benty David Luebke and Aaron Lefohn. 2016. Towards Foveated Rendering for
Gaze-Tracked Virtual Reality. ACM Trans. Graph. 35, 6, Article 179 (Novem-
ber 2016), 12 pages. https://research.nvidia.com/publication/2016-12_
Towards-Foveated-Rendering.

[3] Bounding Volume Hierarchy. https://en.wikipedia.org/wiki/Bounding_
volume_hierarchy. [Online; accessed September-2020-22].

[4] Brian Karis. 2014. High quality temporal supersampling. Advances in Real-Time Ren-
dering in Games, SIGGRAPH Courses 1 (2014).

[5] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan and John Snyder. 2012.
Foveated 3D Graphics. ACM Trans. Graph. 31, 6, Article 164 (November 2012), 10 pages.
https://dl.acm.org/doi/10.1145/2366145.2366183.

[6] DirectX documentation. https://docs.microsoft.com/en-us/windows/
win32/directx. [Online; accessed September-2020-22].

[7] DirectX Raytracing (DXR) Functional Spec. https://microsoft.github.io/
DirectX-Specs/d3d/Raytracing. [Online; accessed September-2020-22].

[8] Endianness. https://en.wikipedia.org/wiki/Endianness. [Online; accessed
September-2020-22].

[9] Hadamard product. https://en.wikipedia.org/wiki/Hadamard_product_
(matrices). [Online; accessed November-2020-5].

[10] Lei Yang, Shiqiu Liu and Marco Salvi. 2020. A Survey of Temporal Antialiasing Tech-
niques. Computer Graphics Forum 2020 The Eurographics Association and John Wiley

65

https://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://research.nvidia.com/publication/2016-12_Towards-Foveated-Rendering
https://research.nvidia.com/publication/2016-12_Towards-Foveated-Rendering
https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
https://dl.acm.org/doi/10.1145/2366145.2366183
https://docs.microsoft.com/en-us/windows/win32/directx
https://docs.microsoft.com/en-us/windows/win32/directx
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

REFERENCES

Sons Ltd. 39, 2, (July 2020), 15 pages. https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.14018.

[11] Martin-Karl Lefrançois and Pascal Gautron. DX12 Raytracing tutorial. NVIDIA.
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/
shader-resource-view--srv-, [Online; accessed September-2020-22].

[12] Matt Pharr, Wenzel Jakob and Greg Humphreys. 2018. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann 2017 (2018), ISBN
9780128007099. http://www.pbr-book.org/.

[13] Octree. https://en.wikipedia.org/wiki/Octree. [Online; accessed September-
2020-22].

[14] Open Asset Import Library. https://www.assimp.org/. [Online; accessed
September-2020-22].

[15] Relative Luminance. https://en.wikipedia.org/wiki/Relative_luminance.
[Online; accessed September-2020-22].

[16] Structural similarity. https://en.wikipedia.org/wiki/Structural_
similarity. [Online; accessed October-2020-19].

[17] The Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/
3Dscanrep/. [Online; accessed September-2020-22].

[18] UAV and SRV documentation. https://docs.microsoft.com/en-us/windows/
uwp/graphics-concepts/shader-resource-view--srv-. [Online; accessed
September-2020-22].

[19] Warren Hunt, Michael Mara, and Alex Nankervis. 2018. Hierarchical Visibility for Vir-
tual Reality. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 8 (May 2018), 18 pages.
https://doi.org/10.1145/3203191.

[20] Amy Williams, Steve Barrus, R. Keith, and Morley Peter Shirley. An e�cient and robust
ray-box intersection algorithm. Journal of Graphics Tools, 10:54, 2003.

[21] Xiaoxu Meng, Ruofei Du, Matthias Zwicker and Amitabh Varshney. 2018. Kernel
Foveated Rendering. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 5
(May 2018), 20 pages. https://xiaoxumeng1993.wixsite.com/xiaoxumeng/
kernel-foveated-rendering.

66

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14018
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14018
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/shader-resource-view--srv-
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/shader-resource-view--srv-
http://www.pbr-book.org/
https://en.wikipedia.org/wiki/Octree
https://www.assimp.org/
https://en.wikipedia.org/wiki/Relative_luminance
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/shader-resource-view--srv-
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/shader-resource-view--srv-
https://doi.org/10.1145/3203191
https://xiaoxumeng1993.wixsite.com/xiaoxumeng/kernel-foveated-rendering
https://xiaoxumeng1993.wixsite.com/xiaoxumeng/kernel-foveated-rendering

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-10-9

EXAMENSARBETE Performance Optimizations for Foveated Real-Time Raytracing
STUDENTER Kalle Andersson, Tom Hansson
HANDLEDARE Michael Doggett (LTH)
EXAMINATOR Flavius Gruian (LTH)

Förbättrad prestanda för foveation

POPULÄRVETENSKAPLIG SAMMANFATTNING Kalle Andersson, Tom Hansson

Metoder som minskar mängden beräkningar för att generera bilder på datorskärmar är
användbara för att öka prestanda. Foveation är en sådan metod och fungerar genom
att reducera bildkvaliteten i användarens periferiseende. Detta arbetet undersöker
olika metoder för att göra foveation snabbare.

Att generera bilder av 3D scener som visas på da-
torskärmar kan kräva många beräkningar. Ett
sätt att minska antalet beräkningar är att gener-
era bilder i lägre upplösning. Foveation är en
metod som används för att minska upplösnin-
gen utan att en användare märker någon skillnad
på bildkvaliteten. Detta görs genom att enbart
minska upplösningen i användarens periferiseende,
där ögonen uppfattar detaljer sämre.

För att kunna reducera upplösningen enbart i
användarens periferiseende måste blicken spåras.
Därmed är denna metod bäst lämpad för virtuell
verklighet, vid användning av en huvudmonterad
skärm försedd med blickspårare. Vi använder
dock vanliga datorskärmar istället för huvudmon-
terade skärmar när vi evaluerar våra bilder.

I vårt examensarbete undersöker vi olika
metoder som förbättrar prestandan för foveation
samt deras påverkan på bildkvaliteten. Vi imple-
menterar olika optimeringar som förändrar algo-
ritmen som kontrollerar hur vi uppnår foveation.
Vi testar olika modifieringar av algoritmen mot
varandra och jämför deras prestanda och bild-
kvalitet. Vi implementerar även en optimering
som försöker öka prestandan genom att dela upp
scenen i mindre delar och generera varje del av
bilden för sig med färre beräkningar. Vi evaluerar
bildkvaliteten visuellt men även genom att räkna
ut olika felvärden i foveation bilden jämfört med
en annan bild som är genererad i hög kvalitet utan
foveation.

Våra resultat visar att optimeringen som delar
upp scenen i mindre delar inte kan användas för
att öka prestandan för foveation i de användnings-
områden vi testade. De andra optimeringarna som
förändrar foveation-algoritmen ger dock bättre re-
sultat. Vi lyckas öka prestandan och generera
bilder på hälften så lång tid jämfört med vår ut-
gångspunkt, samtidigt som bildkvaliteten hålls på
en hög nivå. Vår implementation har dock vissa
problem med flimmer i periferiseendet när vyn är
i rörelse.

	Introduction
	Project Definition
	Research Questions
	Ethical Issues
	Contributions
	Division of Work and Writing
	Outline

	Background and Theory
	Ray Tracing with DirectX
	Foveation
	Temporal Anti-Aliasing
	Error Metrics
	Frustum tracing
	Acceleration structure

	Related work

	Approach
	Basic Ray Tracer
	Ground Truth Ray Tracer
	Foveated Ray Tracer
	Log-polar Foveation
	Kernel Foveation
	Composite Foveation
	Log-Polar Aspect Ratio
	Log-Polar Transform Formulas

	TAA
	Depth Based Rejection
	Neighborhood Clamping

	Gaussian Filter
	Error Metrics
	Frustum Tracing
	Resizing the AABB
	Ray-Box Intersection

	Acceleration Structure

	Implementation
	Rendering Loop
	Foveation Rendering Loop
	TAA
	Composite Foveation

	Error Metrics
	MSE Shader
	SSIM Shader
	Ranges

	Modeling the Acceleration Structure
	Frustum Tracing
	TLAS Tracer
	BTLAS Tracer
	BBLAS Tracer

	Results and Discussion
	Input Parameters
	The Tuning Process
	Modes

	Matching Radial and Angular Resolution
	Tuning

	Running Our Foveated Ray Tracer
	Performance
	Ghosting and Flickering
	Error Heatmap
	Error Ranges
	Trade-off Between Image Quality and Performance

	Running Our Frustum Tracer

	Conclusion
	Threats to Validity
	Future Work
	Head-Mounted Display
	User Study
	Animated Scenes

	References
	Tom sida

