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Abstract 
Emerging technologies have the potential to bring numerous new opportunities 

and solutions to the existing challenges, including addressing sustainable development 

goals (SDGs). Particular hopes are given to areas of the life that require our urgent 

action, these include but are not limited to medicine and food security. Scientists 

investigate how these technological advances can be applied for the benefit of humanity 

by making more robust crops, eliminating diseases, or trying to extend our longevity. 

One technology that attracted and kept on attracting attention is the so-called “gene 

drives.” Genes in sexually reproducing organisms have, on average, a 50% chance of 

being inherited by the offspring. There are, however, genes that have a higher chance 

of being inherited. In a long-term, such dominant genes can affect the entire population 

by adding, replacing, suppressing, or editing genetic traits. Being able to eradicate 

invasive local species, alter mosquito genomes to eliminate Zika, dengue fever, and 

malaria or produce more environmentally robust to plant species is something to aim 

for. 

The study uses computational modelling techniques in which gene drive 

inheritance model are combined with distribution models of mosquito species to 

develop unified modelling approach to evaluate the factors related to gene drive altered 

species and their capability to eradicate population of wild species. The study shows 

how gene drive altered mosquitoes can influence wild mosquito populations to prevent 

them from vectoring malaria and other vector-borne diseases. 

The study focuses on malaria spread that is associated with one specific species 

- Anopheles mosquitoes. The study area is Kenya due to a number of reported cases of 

malaria. The proliferation of malaria mosquitoes was selected due to a number of spatial 

distribution models that have been developed over the years, as well as the availability 

of existing remote sensing data. 

 

Keywords: Geography, Geographical Information Systems, GIS, Physical Geography, 

Mosquito Distribution, Malaria Modelling, Gene Drives 
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1. Introduction 
Gene drives are newly derived genetic engineering tool that can force a genetic 

trait throughout a population by using a variety of chemical and biological pathways, 

defying the usual rules of inheritance. Traditionally, genetic traits have a 50-50 chance 

of being passed along to the next generation.1 A gene drive can push the gene 

inheritance rate to nearly 100 percent, making a gene dominant and continuing this trait 

in all future generations.2,3 drives use is explicitly limited to sexually reproducing 

organisms. Hence, gene drives cannot be applied to re-engineer populations of bacteria 

or viruses.4,5 Gene While being limited to sexually reproducing organisms, gene drives 

hold enormous potential to revolutionize disease control, species conservation, 

agriculture, and other fields.6,7 Scientists expect to use gene drives to eradicate invasive 

species,8-10 re-engineer mosquitoes to remove their ability in spreading Zika, malaria or 

dengue fever.11-13 Some studies indicate that gene drives can be used as evolution-

warping technology applied to invasive species to control their spread and to conserve 

biodiversity.14,15 

Gene drives bring new opportunities to the old issues. However, technology 

brings also numerous doubts, concerns, and challenges. Gene drives raise severe ethical 

and practical concerns. Critics and environmentalists are skeptical of this technology, 

claiming that it may cause long-lasting or even irreversible harm to the environment, 

biodiversity, and human health. The views of critics and environmental groups are often 

shared by the scientists and developers of gene drive technology.16-19 On the other hand, 

the supporters of the gene drive technology are very optimistic about the opportunities 

that this technology brings. Among some potential applications, they mention 

eradicating vector-borne malaria by making mosquitoes incapable of transmitting 

malaria virus, making coral reefs more robust to environmental conditions, including 

ocean acidification, bleaching, and rising water temperatures or eradicating invasive 

species and, hence preserving native biodiversity. Further, the supporters of the 

technology claim that human mistakes in gene drives have to undergo the strict 

evolutionary revision process and that evolution and time will eventually fix all wrong 

human decisions, especially if the gene drive is harmful to the organism, the organism 

will try to survive by breaking the parasitic gene drive.4,20 A study by Messer et al. 

suggests that the gene drive resistance will evolve almost inevitably in standard gene 

drive systems.21 While resistance can be foreseen as an important natural safety switch. 

This may, however, mean that the introduction of the gene drive was pointless in the 

first place. 

Altering entire populations and being able to eradicate species, such as pests, 

raises ethical and regulatory issues that governmental, scientific, and environmental 

organizations are currently beginning to investigate.4,5 Ecosystems are complex and 

highly unpredictable formations with multiple variables to consider.4,7,11 Changing or 

removing one of these variables may bring lethal results.6,8 For example, removing one 

species from the ecosystem may disrupt the entire food chain, leading to ecosystem 

collapse. Some gene drive applications explore the suppression or removal of certain 

species from their respective ecosystems.14 

A number of studies have shown that the altered organisms tend to develop 

evolutionary resistance that can effectively shut down the unwanted gene 

drive.20,21 These studies have been performed on smaller populations restrained to the 

boundary conditions of the lab environment.4 It remains unknown whether similar 

behavior would be seen in large wild and uncontrolled groups, where numerous 

environmental factors must be taken into consideration.20,21 Because of this gene drives 
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may not be working in the long-term as planned.4,14,16 However, the development of the 

evolutionary resistance will most likely take generations allowing enough time to have 

desired effects.15,17,18 Most of the studies showing the development of the evolutionary 

residence have been performed on organisms that are altered with genes that pose harm 

to the host.21 There is no reason why evolutionary resistance would act in cases in which 

the introduced alterations are of benefit to the host. Many of the technological factors 

are yet to be understood. 

Due to the immaturity of the technology, gene drives are currently tested on a 

laboratory scale with small controlled populations.4,5 None of the gene drive altered 

organisms have been released into the wild as of yet. Testing gene drives in large native 

and mobile populations is both unethical and nearly impossible to reverse.1,2,14 

However, scientists are already developing ways to address ethical concerns and 

overcome some of these reversibility limitations by incorporating certain “safety 

switches” to make the gene drive organisms more controllable.15,22 Several scientists 

have suggested that there is a possibility of introducing a second gene drive to shut 

down the previous one.22,23 The strategy is, however, strictly hypothetical. 

Observing the development of genetic traits over generations is a challenging 

task, even in organisms with a very short lifespan.11,12,14 This forced researchers to find 

quicker tools to test their hypotheses. Many complex computer models have been built 

to approximate how wild populations behave with the introduction of gene 

drives.11,23,24 These computer-based simulations allow evaluating population 

development over many generations in a matter of minutes. However, they have been 

developed using limited evidence collected from controlled laboratory populations, and 

as such, results of such simulations may not be reliable when extrapolated to larger wild 

populations.1,3,11,23,24 The reliability of those extrapolations is yet to be determined.11,24 

Nevertheless, due to limited evidence and scientific data currently, these simulations 

are the only feasible evaluation tool. Validation of those models on wild populations 

would be a breach of ethical codes and many international protocols, as such, no one 

dares to perform such studies.4,5 

The origin of the gene drive idea can be traced back to 2003.6 Professor Austin 

Burt of Imperial College London was the first to propose harnessing some of these 

dominant entities for a range of applications. Burt has described inserting a selfish 

element into the specific gene to influence the feature inheritance that would be passed 

onto the offspring. This selfish element would drive itself throughout generations 

altering the entire population. The study showed that in the 1950s, such a selfish 

element, called P-element, of unknown origin, altered the DNA of Drosophila 

melanogaster fruit flies in the 1950s, and less than five decades later the P-element 

managed to spread itself worldwide without human intervention obeying natural 

borders such as oceans.25 Today, the P-element can be found in Drosophila 

melanogaster fruit flies throughout the globe. Proving the theory was challenging as 

genetic engineering tools back then were not as advanced as they are today. It took 

years, but finally, in 2011, Burt et al. announced in Nature26 that they had created a 

homing endonuclease that could find and cut a gene in mosquitoes. 

Only the development of the so-called CRISPR/Cas9 allowed to harness the real 

power of the technology. CRISPR stands for “Clustered Regularly Interspaced Short 

Palindromic Repeats” and refers to sequences of viral DNA that bacteria have 

incorporated into their genomes. CRISPR, together with the enzyme referred to as Cas9, 

helped bacteria to develop defense approaches against viruses.1,5,21 In 2012, a group of 

researchers announced that they have managed to modify the bacterial CRISPR/Cas9 

defense system mechanism and use the mechanism of bacterial-origin as a gene-editing 
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technology. CRISPR/Cas9 brings a lot of flexibility, allowing scientists to literally cut 

and paste nearly any genetic information into any organism.5,27 CRISPR gene editing 

has been widely used since. The ease of CRISPR application enables it to be used not 

only by professional researchers but also by students and citizen scientists, which 

resulted in further ethical and regulatory issues. 

Together with growing interest and intensified research in CRISPR and gene 

drives, the very same researchers that developed the technology, are urging the 

governments to regulate this emerging field. In 2014, a group of scientists published a 

scientific paper titled “Regulating gene drives”17, and a year later, even larger groups 

of the foremost pioneers in gene drives joined together to publish another scientific 

paper on “Safeguarding gene drive experiments in the laboratory.”4 Researchers are 

trying to warn that the accidental release of gene drive altered organisms may be deadly 

for the wild populations. Such accidental breaches could also be harmful to potential 

plans of using gene drives for malaria eradication and pest control.28-30 The proposed 

guidelines aim to help researchers safeguard their experiments and apply precautionary 

principles in all their scientific endeavors. Many are worried that the lack of laboratory 

experience and bioethical knowledge of such individuals may accidentally or 

intentionally breach and gene drive release to the ecosystems. 

The study aimed to apply the existing evidence, data collected from limited and 

controlled laboratory populations of gene drive altered species, as well as developed 

gene drive inheritance models together with a similar data collected over the years for 

vector-borne malaria spread and use remote sensing and spatial modelling to expand on 

existing knowledge and to combine the two models: mosquito distribution model and 

gene drive inheritance to establish how usable gene drives can be used for controlling 

or eradicating mosquito-borne malaria in Kenya. The study also examined how the 

distribution of gene drive altered mosquitoes, which are made incapable of vectoring 

malaria, will spread geographically within the selected study area and how this 

geospatial distribution of gene drive altered versus wild mosquito population will shape 

over a number of generations. These methodologies and techniques learned during the 

iGEON courses will be combined with other available techniques to make a complete 

model of gene drive mosquitoes distribution with the aim of eradicating malaria. 

 

1.1 Research Problem Statement 
Gene drives are solutions that are effective only when released among wild 

populations. However, current genetic engineering regulations are designed to keep 

genetically engineered organisms away from wild populations. It is unclear whether 

gene drives will ever gain enough approval from the governments, environmentalists, 

and the community to leave the lab. The government support for gene drives will not 

be easy unless current regulations will change. Since gene drive-modified organisms, 

just like any type of fauna and flora, do not respect international boundaries and treaties, 

a country that released gene drive organisms could be accused of violating the United 

Nations Biological Weapons Convention if gene drive-altered organisms affect native 

species in the neighbouring country. 

Moreover, in such cases, another international treaty would be violated. The 

Cartagena Protocol on Biosafety governs the cross-border movement of genetically 

modified organisms. The release of gene drives would most likely violate the treaty 

causing at least intergovernmental conflict, if not an environmental catastrophe.  

The study applies computational models, including geographic information 

systems, remote sensing, and distribution modelling, to evaluate the spread of gene-
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drive modified mosquitoes and their effects on the wild population to eradicate malaria 

in Kenya. The models rely on limited information collected in the laboratory setting, in 

which gene drive altered organisms have been exposed to the wild population, and their 

effects and spread have been evaluated over several generations. These models have 

then been extrapolated onto larger, wild populations. The results of experiments 

performed on limited and controlled laboratory populations, may not be directly 

transferable to larger, wild populations. However, these results give a good indication 

and are currently the most reliable source of information. Releasing gene drives into 

the wild, would breach a number of protocols and could potentially pose harm to the 

environment, biodiversity, and human health, as such further understanding of the gene 

drive technology have to be established based on controlled laboratory experiments 

before gene drives altered organisms are released into the wild populations. The lack of 

validation data for models developed in the study has been identified as the main 

limiting factor. 

Spatial distribution models for mosquito-borne malaria virus spread and gene 

drive inheritance showing how gene drives can spread within the wild populations have 

been separately researched and developed over the last decade. However, there is an 

obvious need for detailed models where the spatial distribution of mosquito-borne 

malaria virus spread and gene drive inheritance are simulated collectively to illustrate 

and visualize how gene drive altered mosquitoes that are incapable of vectoring malaria 

can spread over the study area and help to limit, control, or completely eradicate 

malaria. While these two models have been independently developed and applied, 

combining them closes a significant knowledge gap and allows to more precisely 

evaluate the applicability of gene drive technology for eradicating malaria. Previous 

gene drive models were limited and restricted. The main limitation of those models was 

the lack of geographic dimension. Gene drive models developed to date assumed that 

all organisms were limited to one spot, as such geographic location or species 

distribution was never considered before in those studies, making the models 

incomplete and inaccurate. 

The current research adds a geographic dimension to the previous studies and 

allows the evaluation of geographic location to see how it affects and influences the 

spread of gene drives. As such, these two models combined allow for a more realistic 

scenario in which the geographic location of the species is one of the variables. Previous 

gene drive models allowed for the establishment of parameters such as a chance of 

inheriting gene drive, number of gene drive organisms introduced into the wild 

population, or number of generations influence the spread of gene drives. The current 

study expands on previous capabilities and, in addition to the above, adds geographic 

dimension, which allows establishing how the geographic location of existing wild 

species and geographic location of where gene drive altered species are introduced 

influences the spread of gene drives. This will allow establishing future most effective 

strategies for gene drive introduction and will allow determining whether it is best to 

introduce all initial, drive mosquitoes in one geographic location, or it is best to 

introduce it in different locations, as well as find the best practices for selecting the 

location. 

The new model can have significant scientific and societal implications, as it 

will allow to simulate complex scenarios and find the best potential practices to fight 

one of the world’s grand challenges, which is malaria disease. Similar models can be 

developed for other vector-borne diseases such as Chikungunya, dengue fever, 

lymphatic filariasis, Rift Valley fever, yellow fever, Zika, West Nile fever, Lyme 
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disease, and many more. Vector-borne diseases account for more than 17% of all 

infectious diseases, causing more than 700,000 deaths annually. 

Furthermore, the study results are presented in a few different forms and are 

consulted with the public to evaluate socio-journalistic factors to communicate the 

findings as a widely accessible and understandable policy brief. 
 

1.2 Research Questions and Objectives 
The study aims to use the existing gene drive framework to model the 

distribution for mosquito-spread and apply the developed model to the selected study 

area to evaluate the spread of gene drive mosquitoes and the replacement rate of wild 

mosquito populations gene drive altered organisms. 

The overall objective of this study is to establish how gene drive altered 

mosquitoes will distribute over study area within a given time limit, counted in days, 

and further whether this distribution over given generation will be suitable to eradicate 

malaria within the selected study area. This will allow testing how gene drives behave 

based on initial gene drive inheritance frequency, and a number of gene drive organisms 

as a percentage of the wild population at the release location (Malindi, Kenya). These 

simulations will close a significant knowledge gap as these kinds of experiments has 

never been performed in a real environment or even using computational simulations. 

For this main study question has been developed: Considering the outputs of 

developed distribution model for gene drive mosquitoes, can gene drives eradicate 

malaria? 

The hypothesis for the main study question was that based on initial parameters 

such as the location of release, number of released gene drive mosquitoes, landscape, 

gene drive frequency, etc. gene drives can be either effective or less effective.  

A series of four supporting objectives have been derived to facilitate the overall 

objective, and corresponding four support questions, these are:  

• To establish how an initial number of gene drive altered mosquitoes affects the rate 

of distribution within the wild population, 

Based on different initial numbers of gene drive mosquitoes introduced to wild 

population, how many days will be required to eradicate malaria? 

 The hypothesis for the supporting question is that the larger number of 

gene drive mosquitoes relative to the number of mosquitoes in the wild population, the 

faster the gene drive organisms can replace wild mosquitoes. Hypothesis for this 

supporting question can be written as: 

H0: There is a no relationship between a number of gene drive mosquitoes to a number 

of mosquitoes in the wild population and the number of days to replace the entire wild 

population. 

HA: There is a relationship between a number of gene drive mosquitoes to a number of 

mosquitoes in the wild population and the number of days to replace the entire wild 

population. 

 

• To evaluate the role of gene drive inheritance frequency in the distribution of gene 

drive-modified mosquitoes within the wild population, 

How different inheritance frequencies for gene drive mosquitoes introduced to wild 

population affect the number of populations required to eradicate malaria? 
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The hypothesis for the supporting question is that higher inheritance frequencies 

for gene drives will lead to a reduction in the number of days required to replace wild 

mosquitoes and vice versa. Lower inheritance frequencies will increase the number of 

days required for gene drive mosquitoes to replace wild mosquitoes. The hypothesis 

can be expressed as: 

H0: There is a no relationship between inheritance frequencies and a number of days 

to replace the entire wild population. 

HA: There is a relationship between inheritance frequencies and a number of days to 

replace the entire wild population. 

 

• To compare how different initial factors influence the distribution of the gene drive-

modified mosquitoes, 

What is the coverage of the gene drive mosquitoes, and do they spread within the 

entire study area? 

The hypothesis for the third supporting question is that with the current semi-

spatial model which does not include landscape, weather, or other limitations, 

mosquitoes should spread within the entire study area given sufficient time. Sufficient 

time, in this case, is considered to be five years. The hypothesis can be written as: 

H0: Gene drive mosquitoes require five years or less to spread and be present 

throughout the entire study area. 

HA: Gene drive mosquitoes require over five years to spread and be present throughout 

the entire study area. 

• To understand whether gene drive technology will be an effective solution for 

eradicating malaria in Kenya within the next decade, based on the life cycle of 

mosquitoes and different initial factors.  

Are gene drives effective tool to completely eradicate mosquito-borne malaria in 

Kenya the next 10 years? 

The hypothesis for the final supporting question is gene drive altered 

mosquitoes can replace the entire wild mosquito population within only 10 years, and 

by doing so eradicate malaria, given no resistance to gene drives is developed. 

Considering purely replacement of wild population within a decade, the hypothesis can 

be written as: 

H0: Genetically altered organisms can replace the entire wild population within a 

decade. 

HA: Genetically altered organisms cannot replace the entire wild population within a 

decade. 
 

Previous attempts to address the above or similar research problem focused 

mostly on genetic aspects of the problem. While the inheritance ratios are well 

understood in terms of genetics and based on that predicting how many generations 

(iterations) will be needed to replace the wild population is relatively straightforward. 

However, a current scenario which aims to emulate real-world problem adds a 

significant degree of complexity to it. The current simulation does not consider the 

mosquito population as a whole but separates the population into smaller sub-

populations with various size representing cities in Kenya. Further, the geographical 

factor between each of the nodes/cities influences the rate of inheritance. 
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A philosophical approach to the problem and research methods designed to 

provide answers all research questions are described in the following chapter. 
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2. Background Information 
There are numerous factors to consider which influence malaria spread. Most 

importantly, the presence of female Anopheles mosquitoes is required for malaria 

transmission, as only female Anopheles mosquitoes are capable of vectoring malaria.31 

A person bitten by female Anopheles mosquito infected with malaria virus has a chance 

of being infected by the virus. The parasite passes from the mosquito into a new host’s 

bloodstream, infecting the bitten host with malaria. Female mosquitoes can also 

contract the parasite from an infected human host and then infect a new host.32 

However, there are also other factors, including physical and climatic, as well as human 

behaviour and genetic factors.33 This chapter describes factors that influence malaria 

spread, as well as factors that influence gene drive inheritance. 

 

2.1 Physical and Climatic Factors Influencing Malaria Spread 
Factors that influence the spread of the malaria virus can be divided into three 

categories: physical factors, human factors, and genetic factors. Physical factors that 

have been identified as ideal and supporting of the pattern and level of malaria 

transmission include temperature generally ranging from 15 to 40 °C.34,35 Although, the 

minimum temperature for mosquito development is between 8 to 10 °C.36,37 The 

optimum temperature has been identified to range from 25 to about 27 °C,38,39 whereas 

the maximum temperature is around 40 °C.35 The ranges of minimum and maximum 

temperature greatly affect the development of the mosquito, which determines malaria 

transmission. Studies showed that higher temperatures allow for quicker mosquito larva 

development.36,39 Higher temperatures also have been linked to the increase in feeding 

habits and the number of eggs laid by mosquitoes.40,41 Altogether effectively increasing 

the number of mosquitoes in a given area. 

Different studies also link the temperature with the life cycle of the malaria 

parasite.35,39,42,43 The average time required for the malaria parasite to complete its 

development in the gut of female mosquito is about ten days.42 Depending on the 

temperature, the development time can be shorter or longer.43 The number of days 

necessary to complete the development for a given Plasmodium species increases with 

the temperature decrease.43 Malaria parasites Plasmodium vivax and Plasmodium 

falciparum has the shortest development cycles, making them more common than 

Plasmodium ovale, or Plasmodium malariae.44-46 The time required for the malaria 

parasite to complete its development in the mosquito, decreases to less than 10 days for 

temperatures ranging from 21 to 27 °C, whereas 27 °C is considered to be the optimal 

development temperature.42,47 Similarly to the mosquito host, the maximum 

temperature for the malaria parasite development is 40 °C.38 The minimum 

temperatures for the parasite development are ranging from 14 to 19 °C.42,47 However, 

in temperatures below 18 °C, the development of Plasmodium falciparum is limited. 

Plasmodium vivax species are more robust and can survive lower temperatures than P. 

falciparum.39 Studies have shown cases of malaria transmission in areas colder than 18 

°C. However, these cases include transmission by the Anopheles mosquitoes inside of 

households or other buildings, where the temperature tends to be warmer than the 

outside temperature.48,49 

In certain countries where elevation changes significantly, the altitude has been 

indirectly linked to malaria transmission.50,51 The altitude influences the distribution 

and transmission of malaria through its effect on temperature patterns.50 With an 

increase in altitude, the temperature decreases, making lowlands warmer and highlands 

colder. For instance, in Kenya, the altitude varies from in Indian Ocean coast at the sea 
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level to over 5,000 meters above the sea level. As such, the malaria distribution and 

transmission patterns vary depending on the altitude and further depending on the 

seasonal temperature patterns. As such, Kenyan highlands, with altitudes between 

1,800 to 2,400 meters, are exposed to malaria transmission only for a short period of 

time during the summer when the temperature is high.52,53 The reason for this is that it 

is normally too cold for mosquitoes to develop in large numbers, or for the malaria 

parasite to develop inside the mosquito vector.39,47 Similar pattern can be likened to 

geographical latitude. Areas closer to the equator are associated with higher and more 

uniform temperature patterns throughout the year.54,55 Temperatures tend to decrease 

and be more prone to annual variations as individuals move away, both north and south, 

from the equator. As such, the warm and relatively constant temperature near the 

equator is favourable for both mosquito and malaria parasite development.38,43 

Anopheles mosquitoes breed in the water environment, as such high and often 

rainfalls have been identified as a direct factor supporting mosquito growth, making the 

tropics ideal environment for malaria.56,57 The right amount of water is essential for 

mosquitoes to breed. In some equatorial countries, water bodies to support Anopheles 

mosquito breeding appear mainly after the rain, and therefore the highest number of 

malaria cases occur during the rainy season.56 Continuous as well as on-and-off rain 

patterns tend to flush away mosquito breeding habitats.57,58 The flushing has more 

impactful in the highlands and hilly areas, making again highland landscape 

disadvantageous for mosquito development and malaria parasite transmission.59,60 Not 

all types of water are suitable for mosquito development. Importantly, Anopheles 

mosquitoes that vector malaria parasites prefer to breed in freshwater or muddy water, 

but do not breed in polluted or foul-smelling water.57 

Malaria vectoring mosquitoes breed mainly in stagnant water bodies, cases in 

which mosquitoes breed in slowly moving water has also been seen, but rapidly flowing 

water is a preventive factor for mosquito development.56 Areas with low rainfall and 

drought but covered with vegetation throughout the year and flowing water bodies, such 

as rivers or streams, can favour mosquito development and malaria transmission.61,62 

This is because the interrupted flow of the water in the stream by delayed rainfall or 

drought, supports the formation of the local pools along the steam. These temporary 

pools enable favourable conditions for mosquito breeding.62 

The relative humidity level is defined as the amount of moisture in the air and 

expressed as a percentage. High relative humidity levels, ideally of 60% and above, 

together with stagnant water, i.e. lake, pond, etc., provides ideal conditions for larval 

Anopheles mosquito development.38 Relative humidity is directly linked to the activity 

and survival rates of mosquitoes, and mosquitoes need to live at least 8 to 10 days 

(depending on physical conditions), to be able to vector malaria.38 Certain studies have 

shown that relative humidity below 60% is shortening mosquito lifespan, effectively 

preventing it from being able to become malaria vector.36 In drier areas, rainfall can 

indirectly affect malaria vectoring through its effect on relative humidity.36,63 

Vegetation cover has been shown to increase the relative humidity of the surrounding 

area, and rainfall effectively allows for vegetation to grow. 

 

2.2 Climate Change and Land Use 
As explained above, physical factors - predominantly temperature and rainfall -

have a direct effect on the malaria vector and malaria parasite. A number of recent 

studies have shown a correlation of climate change, and increasing temperature tends 

to rise of malaria in certain parts of the world.47,63 A research published in The Quarterly 
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Review of Biology reports that increasing temperature may not be the sole contributor 

to the increase in malaria cases, but other factors such as climate change-forced 

migration and land-use change are likely contributors too.64 The research aim of this 

published study was to answer conflicting theories that try to explain why malaria has 

been spreading into high altitude areas of Indonesia, Afghanistan, East Africa, and 

elsewhere. As described before, high altitude due to different physical conditions was 

a preventing factor for malaria spread.51 

Researchers considered many climate change-related factors that could enable 

malaria to spread. As shown in the paper,65 climate change-forced human migration 

from lowlands into highland areas might be introducing the malaria parasite. In which 

case, humans are malaria vectors. Climate-lead changes in land use and farming 

practices also are enabling factors for mosquito development. Previously, mainly wild 

highland areas are effectively being converted into farming intensive areas where 

irrigation systems are being developed, allowing the mosquitoes to breed. Another 

study has correlated the increase in maize farming in Ethiopia to increase in local 

malaria cases. The maize pollen diet was an enabling factor for the growth of immature 

and aquatic stages of mosquito larva.66 

 

2.3 Human, and Non-Climatic Factors Influencing Malaria Spread 
Human factors often called behavioural factors, which include factors related to 

human activity and human behavioural habits that enable the spread of malaria. These 

factors are often dictated by socio-economic settings and include all sorts of dwelling 

developments that create additional shade for mosquitoes.67-69 Poor sanitation in 

underdeveloped areas, i.e., shanty towns and slums, as well as progressing urbanisation 

are also contributing factors.70,71 Urbanisation results in the development of large and 

congested settlement areas and as a result, an easy target for bloodthirsty mosquitoes.70 

Some other studies have concluded that rapid unplanned urban development can create 

new breeding habitats for malaria vectors.72,73 However, certain studies are contrary to 

these claims, finding that the incidence of malaria is generally lower in urban areas 

compared to rural areas, and there are a number of factors for this. For example, 

mosquito breeding sites are limited in urban areas due to the space being covered by 

houses.67,74 Further, certain malaria vectors prefer clean water, whereas most of the 

water collections in urban areas are polluted and unfavourable for mosquito breeding 

habitats.62 Urban areas have more and better access to healthcare and malaria 

prevention strategies compared to rural areas.75,76 

Human population movements are a significant contributing factor to malaria 

transmission.67,77 Within the African continent, the majority of movements involve 

people relocating from less developed highlands to malaria-endemic lowlands. These 

relocations include both permanent and temporary movements, i.e., seasonal labourers. 

These labourers are often working in the agricultural industry, for example, harvesting 

or planting crops during mosquito peak season.78,79 Poor living conditions and 

sanitation, often in temporary housing, and limited healthcare only worsen malaria 

problems.70 

Migrants from malaria-free highlands, whether permanent or temporary, lack 

immunity against the malaria parasite and often do not have appropriate knowledge 

about malaria transmission process or steps can be taken to reduce the risk.79 Further 

explanation about genetic immunity to malaria is described later in this chapter under 

genetic factors influencing malaria. Temporary migration from, often densely 

populated, highlands to fertile lowlands introduces malaria problem in the highland 
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areas from which migrants came and to which they return at the end of the season. 

Temporary migrant labourers often bring back malaria parasites to malaria-free 

highlands,80,81 and although climatic conditions in the highlands make it more difficult 

for both malaria parasite and mosquitoes to develop, it can still be possible,36 potentially 

resulting in sporadic and local epidemics that can affect a large percentage of the non-

immune highland population.60 

Migration of large population displacements caused by war, civil unrest, or 

natural causes such as flooding, drought, famine, etc. from areas with malaria can 

introduce or reintroduce malaria disease into malaria-free areas, and vice versa, 

population displacements from malaria-free into malaria-endemic areas.82 Malnutrition, 

which is often a common issue, during such displacements only worsens malaria 

problem.83,84 Global air travel contributes to the spread of malaria through so-called 

“airport malaria,” a term coined by researchers to explain the more recent spread of 

malaria to areas such as the US and Europe.85,86 

Human-made areas of stagnant water, i.e., irrigation ditches and channels, dams, 

ponds or burrow pits, provide additional breeding grounds for mosquitoes increasing 

the incidence of malaria in villages or urban areas that are located near water 

collections.87 Previous studies resulted in contrary outcomes. Raising domestic animals 

in close approximation to households can provide an alternative source of blood for 

Anopheles mosquitoes, and as such decrease, the human risk.88,89 On the contrary, this 

alternate source of blood can also enable increased breeding of Anopheles mosquitoes 

and thus increase the human exposure.90 Agricultural work, especially in irrigated fields 

or agricultural areas with high water concentration, creating additional breeding sites 

for malaria mosquitoes and forcing increased exposure that may lead to increased 

malaria transmission.91 For example, the use of irrigation and flooding of agricultural 

land for rice cultivation has long been linked to an increase in the vector number 

corresponding to increase malaria cases.92 

Lack of appropriate protection, i.e., bed nets, mosquito replant, being a result of 

economic or knowledge reasons, is often listed as a direct cause of malaria infection.93,94 

Whereas the lack of appropriate knowledge to recognize and treat malaria promptly and 

appropriately often results in further spread.95 Cultural beliefs and deeply rooted 

traditional knowledge about malaria prevention methods, as well as the use of natural 

medicine, often result in ineffective treatment of malaria.96 

Human behaviour factors in malaria-endemic countries also determine the 

success rate of malaria prevention. Whereas some richer countries located in the area 

with preferential physical conditions for malaria vectoring have been able to decrease 

or eradicate malaria and other vector-borne diseases through various strategies, 

including water and sanitation conditions, as well as developing effective 

communication and education programs among others. The poorer malaria-endemic 

countries often lack appropriate financial resources.97,98 The lack of financial resources 

often results in health workers being overworked and underpaid. The lack of drugs, 

appropriate equipment and training, and supervision is also a limiting factor.98,99 

Moreover, developing countries suffer from regulatory shortfall and corruption, both 

being enablers of creation of black markets for fake and ineffective malaria 

medicines.100-102 

 

2.4 Mosquito and Parasite Factors Influencing Malaria 
Other factors that influence malaria transmission, but which are not related to 

the climate, are often called non-climatic factors and can include a number of 
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parameters such as the type of vector, the type of parasite, drug resistance in parasite or 

insecticide resistance in mosquitoes, all influence the incidence and severity of 

malaria.103 As a matter of fact, the environmental development and urbanisation, as well 

as population movement and migration, described above, also fall within non-climatic 

factors. However, since they are closely related to human behaviour and habits, they 

have been described as a separate group. The level of immunity to malaria in the human 

hosts is also considered a non-climatic factor. However, for the purpose of the study 

malaria resistance was categorized as a genetic factor and is described in the next sub-

section. This sub-section focuses on mosquito and parasite factors that influence 

malaria spread. 

As it was already briefly explained in the introduction chapter, not all 

mosquitoes are capable of vectoring malaria. Only females of Anopheles mosquitoes 

can carry the malaria parasite.103 

Various species of Anopheles mosquitoes differ in their ability to vectoring 

malaria. This ability of a mosquito to be able to vector malaria parasite depends on 

many factors, including the biology and behavioural patterns of the mosquitoes.103,104 

Mosquitoes in the Anopheles gambiae group are known to be the most efficient malaria 

vectors in the world, and the reason for this is that it feeds predominantly on humans. 

This group of mosquitoes is found only in Africa, and there is a much higher incidence 

of malaria in Africa compared to the rest of the world and is associated to the efficiency 

of this mosquito group in vectoring malaria parasites.38,103 

There are about 3,500 species of mosquitoes in the world, classification of major 

mosquito groups is shown in Figure 1. However, there are only about 460 Anopheles 

mosquitoes, of which only about 100 can transmit human malaria, only 30 to 40 

commonly transmit parasites of the genus Plasmodium, which causes malaria in human 

endemic areas.105-107 Other species of mosquitoes are responsible for vectoring other 

diseases, viruses, and parasites. For example, yellow fever, dengue fever, and 

Chikungunya are vectored mostly by Aedes aegypti mosquitoes.105,108,109 
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Figure 1 Mosquito classification. Reproduced from Harbach.110 

 

Female mosquitoes need either human or animal blood to reproduce and 

develop their eggs.103,111 Some mosquitoes prefer human blood over animal blood, and 

these, for obvious reasons, are more efficient malaria vectors.111 Mosquito groups that 

feed exclusively on animals are not malaria vectors, whereas those that feed equality 

on humans and animals are considered weaker malaria vectors.112 As such, mosquito 

type and their feeding behaviour is one of the main factors for malaria vectoring. 

Mosquito breeding habits are also important factors. Some mosquitoes have 

adapted to breed in a wide range of water environments, including small sun-exposed 

pools, whereas others prefer larger stagnant, and shaded water bodies.113 The 

mosquitoes that are able to breed in various environments are better malaria vectors 

than the mosquitoes that are more selective in their breeding habitats.114,115 A. gambiae 

group is well adapted to breed in multiple settings and as such becomes even better 

malaria vectors, making A. gambiae mosquitoes responsible for much of malaria 

vectoring in African continent. A. arabiensis group, which is the primary malaria vector 

in Ethiopia, can breed in a variety of water environments and prefers breeding habitats 

closer to human settlements.56,57 However, A. arabiensis’ primary preferences are water 

collections created immediately after the rain.116 

The type of malaria parasite (Figure 2) is another critical factor influencing the 

spread and its efficiency. There are four types of malaria parasite that can infect people. 

These parasites are single-cell protozoa that are invisible for a bare eye and can be seen 

only under a microscope.117,118 These four different Plasmodium species have already 

been introduced before in relation to their temperature habits. However, Plasmodium 

species also differ in their efficiency.119  
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Figure 2 Image of the malaria parasite drawn based on microscopic images. Reproduced from 

Nanoti et al.120 

 

Plasmodium falciparum malaria parasite is considered to be the most invasive 

and efficient type among the four parasites that can infect people.121,122 Plasmodium 

falciparum has the shortest development cycles, making them more common than other 

Plasmodium types.122,123 Plasmodium falciparum is more common in Africa compared 

to other parts of the world and is one of the reasons for more malaria-related deaths in 

Africa than elsewhere.124,125 

 

2.4.1 Insecticide resistance in vectors 

Some chemicals are used to kill mosquitoes and other insects to prevent from 

vectoring diseases, including malaria.126 However, repeated application of insecticides 

can lead to the development of insecticide resistance in mosquitoes, meaning that these 

mosquitoes have complete or partial immunity to these insecticides.127,128 The 

developed resistance will allow a large number of mosquitoes to survive, at the same 

time increasing the number of malaria cases. 

 

2.4.2 Drug resistance in malaria parasites 

Similarly, to insecticide resistance in the aforementioned vectors, malaria 

parasites can develop drug resistance.129 The anti-malaria drugs are designed to kill the 

malaria parasite inside the human host body. However, after repeated use of anti-

malaria medicine, malaria parasite can develop complete or partial resistance to that 

particular drug or similar medicines.130 The developed drug resistance, makes anti-

malaria treatment ineffective, preventing patients from being treated unless new drugs 

are developed.130,131 This poses a more significant threat since the procedure is 

ineffective the malaria parasite can be contracted by mosquitoes and transmitted into a 

new host who then develops drug-resistant malaria. This can result in a spread of drug-
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resistant malaria, resulting in more host deaths due to lack of effective 

treatment.132,133,134 
 

2.5 Genetic Factors Influencing Malaria Spread 
Genetic factors can also influence malaria spread.135 These factors are present 

from birth and often inherited from one of the parents, effectively protecting against 

certain malaria types.136,137 It is commonly agreed that two genetic traits associated with 

human red blood cells have specific epidemiologic importance against malaria.138 

Potential human hosts who have a sickle cell disease, which is a group of 

disorders that affects hemoglobin, and are relatively protected against Plasmodium 

falciparum malaria, making their disorder a biological advantage.138 People with sickle 

cell disease have atypical hemoglobin molecules called hemoglobin S, which can 

distort red blood cells into a sickle, or crescent shape. Sickle cell disease is more 

frequent in Africa and in-person of African ancestry compared to other ethnic groups, 

which over centuries lead to certain protection against Plasmodium falciparum malaria 

in the African continent.139 Generally, different blood cell and hemoglobin-related 

disorders such as G6PD deficiency, hemoglobin C, and thalassemia, are more common 

in malaria-endemic areas and are believed to provide certain protection or immunity to 

malaria.140,141  

Persons who lack antigens of the Duffy glycoprotein, a receptor for chemicals 

that are secreted by blood cells during inflammation, which also happens to be a 

receptor for Plasmodium vivax, are relatively resistant to invasion by P. vivax.142,143 The 

majority of Africans have developed evolutionary lack of Duffy antigens, making P. 

vivax rare in Africa, specifically West Africa and south of the Sahara Desert.144 The 

role of P. vivax in those areas was taken over by P. ovale which is capable of infecting 

people lacking Duffy antigens.145 

To a lesser extent, some other genetic factors associated with red blood cells 

can influence partial malaria immunity. Various genetic factors, including the human 

leukocyte antigen complex, which is responsible for the regulation of the immune 

system in humans, can influence the risk of developing severe malaria.146 

Interestingly, individuals can develop partial malaria immunity. So-called 

acquired immunity is commonly known and broadly accepted theory, in which a human 

target of repeated malaria attacks develops a partial protective immunity.139 A person 

who develops partial immunity often can be infected by the malaria parasite but may 

not develop severe disease and often lacks any malaria symptoms.139 In regions where 

P. falciparum infections are high and common, newborn babies are protected for the 

first few months of their life most likely due to antibodies transferred from the mother. 

However, the number of antibodies decreases with time, making these children 

vulnerable to malaria. If the children survive multiple infections, they will develop 

acquired malaria immunity.147,148 In high malaria transmission areas, such as parts of 

Africa, newborns and young children are major risk group. In regions with lower 

malaria transmission rates, including Latin America and the Caribbean as well as Asia, 

malaria infections happens less frequently, and as such, a smaller number of the 

population have acquired malaria immunity.107,149 Making these areas are more prone 

to epidemics. 

 

2.5.1 Interruption of control and prevention measures 

Malaria is both preventable and curable disease.148 However, combating malaria 

requires the long-term and sustained implementation of prevention and control 
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measures to reduce or eliminate the problem from a given area.104,122 Studies have 

shown that a result of successful long-term measures to reduce or eliminate malaria, a 

local population can slowly lose their immunity to malaria parasite in a given area 

where the measures have been successfully applied.147 Repeated malaria infections are 

necessary to develop partial or complete immunity to malaria.139 The immunity fades 

away or can be lost entirely, where a person is not exposed to malaria anymore, for 

example, is continuously protected from malaria infection for several years or moves 

out of a malaria-endemic area.150 As such, continuous malaria prevention and control 

measures must be in place until malaria is eliminated.95 Otherwise, the disease can surge 

back, affecting more severely and affecting larger population groups, due to lost malaria 

immunity. 

 

2.6 Factors and Limitations Influencing Gene Drives 

2.6.1 Limitations of gene drive technology 

The normal inheritance and gene drive inheritance mechanisms are shown in 

Figure 3. In normal inheritance mechanisms, genes have a 50-50 percent chance (or 

close to that) of being inherited, resulting in genetic diversity. In gene drive inheritance, 

specific genes have a higher chance (often close to 100 percent) of being inherited. 

Hence, after several generations, gene drives are present in the majority of the 

population, given that gene drive resistance does not occur in the process. 

 

Figure 3 Comparison of ordinary inheritance and gene drive inheritance mechanisms. Letters 

A and B correspond to different types of inherited genes. 

 

The main flaw in gene drive applicability is the need for altered species to 

reproduce sexually. This is because gene drives propagate by replacing other alleles 

that contain a cutting site and the corresponding homologies.1,18 Asexually reproducing 

populations will not be affected by gene drives. The time required to spread the gene 

drive-altered trait to most individuals in particular population depends on the lifespan 

of the species, mating frequency, number of drive-carrying individuals that are released 

to the wild population, size of the native population, the efficiency of the drive, gene 

flow dynamics and more.4,24,28 Generally, gene drives require many generations to 

spread through populations.24 As such, gene drives will work faster in fast-reproducing 

species and will even faster if these altered species are released in large numbers.1 
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Previous computational studies have shown that introducing only a small 

percentage of gene drive organisms into a population of wild organisms would take 

several generations for gene drives to replace most of the wild population.23,151,152 

Some types of genetic alterations will most likely need to be continuously 

reintroduced, as it is believed that traits that are harmful to the host will be effectively 

eliminated or broken by genetic mechanisms of the host.19 As such, newly introduced 

gene drives would have to override the eliminated or broken version with new 

functional copies. Periodic introduction of new gene drives would support the 

efficiency of the entire process leading to desired results.153  

Certain issues related to the application of gene drives have also been identified 

by experts. For example, mutations could occur mid-drive processes, which could 

potentially allow unwanted traits to be inherited by the offspring, effectively spreading 

into the entire population or its part.151 Cross-breeding or gene flow can potentially 

allow a gene drive to move beyond its target population.153,154 Whereas, inbreeding 

within the population could be a way to avoid the spread of gene drives.152 Potential 

ecological impacts of gene drives are difficult to identify. Even when the direct impact 

of traits on a target species is well understood, the gene drives can have side effects on 

the ecosystem including other species.155 

There are several factors that can affect the efficacy of CRISPR-based gene 

drives. Gene drive that remains stable over time will spread to more individuals, where 

gene drive that accumulates mutations can evolve resistance in the host to the drive 

mechanism. The fitness cost of a gene drive is also one of the factors that influences 

drive’s spread within the population.151 

 

2.6.2 Gene drive resistance 

Since gene drives can never more than double in frequency with each 

generation, a gene drive introduced in a single individual typically requires dozens of 

generations to affect a substantial fraction of a population. A recent study by de Jong 

(2017) has shown that gene drives do not always increase in frequency.3 When gene 

drives have a significant adverse effect on the fitness of the population, the spread of 

that gene drive depends on a threshold, or the gene drive may not spread at all. The 

spread of harmful gene drives can further be limited by developed resistance to the 

particular gene drive.3 

While many things related to gene drives are still poorly understood, and 

performing a risk assessment can pose a risk itself, researchers are certain that wild 

populations will develop resistance to the modifications.1,21 Multiple efforts have been 

initiated to identify and understand the mechanisms of the resistance and its 

development so that the problem can be addressed. In late 2015, researchers reported a 

CRISPR gene drive that caused an infertility mutation in female mosquitoes to be 

passed on to all their offspring.27 Further laboratory experiments showed that the 

infertility mutation increased in frequency over several generations, but resistance to 

the gene drive was developed simultaneously, effectively preventing some mosquitoes 

from inheriting the modified gene.  

Two other studies described in Nature have identified the CRISPR system being 

a source of resistance itself.156 CRISPR mechanism uses an enzyme to cut a specific 

DNA sequence and insert a new genetic code in its place. However, rarely, cells sew 

the incision back together after adding or deleting random DNA letters. This rare 

occurrence can result in a situation in which the sequence is no longer recognized by 

the CRISPR gene-drive system, preventing the spread of the modified code. Natural 
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genetic variation can be another route to gene drive resistance. CRISPR-based gene 

drives mechanism works by recognizing short genetic sequences. However, variations 

or differences at these sites would effectively make the host immune to gene drive 

alteration. Research performed on 765 wild Anopheles mosquitoes across Africa 

analysed their genomes, finding extreme genetic diversity within the population. This 

would limit, or to some extent, prevent successful application of gene drives.157 

In another study,21 researchers from the University of Kansas and Cornell 

University have used computational models of gene drive inheritance and incorporated 

potential resistance mechanisms as well as random genetic drift in the model. The 

comprehensive framework for CRISPR-based gene drive modelling of population 

genetic showed that resistance to standard CRISPR-based gene drives should evolve 

almost inevitably in the majority of natural populations. The key factor influencing the 

probability of resistance evolution was found to be the overall rate at which resistance 

alleles arise at the population level by mutation. The study also concluded that factors 

such as the conversion efficiency of the gene drive, gene drive fitness cost, and 

introduction frequency of the gene drive have a minor impact on the gene drive 

resistance development. Figure A2 in Appendix A shows the conceptual diagram with 

gene drives introduced to the system. 
 

2.7 Ontologies 
The current study relies on the interplay of three distinctly different fields, 

namely spatial modelling or geographic information systems, synthetic biology and 

gene drives, and malaria study. All three of these fields have very little in common, and 

only in the last few years, researchers have been trying to employ spatial modelling to 

answer synthetic biology-related questions. As such, all three of the fields have very 

different origins and draw from very different ontologies. Spatial modelling originated 

from a border field of geography, whereas synthetic biology and gene drives are loosely 

related to genetics and biology fields. Because of the distinct differences, but also the 

maturity of both ontologies independently, developing a new ontology that could 

capture and categorize concepts and the properties of the new interdisciplinary field of 

spatial modelling of genetic behaviour would most likely not contribute much. Instead 

of developing new concepts and ontologies, the current work attempts to use existing 

and well-established concepts and nomenclature used by both respective fields. 

In terms of spatial modelling, existing ontologies are well-established and 

regulated, although the ontologies and vocabulary may differ between different 

standardization attempts. The most recognized and broadly used ontology and 

geospatial vocabulary is the one done by the International Organization for 

Standardization (ISO). Published in 2003,158 the ISO 19107:2003 standard titled 

‘Geographic information - Spatial schema’ is the most comprehensive document which 

describes geographic information and geospatial ontologies. The document specifies 

concepts for describing the spatial properties and characteristics of geographic features. 

It defines a set of spatial operations of geographic information for spatial objects and 

established over all ontologies in the field. 

Another broadly recognized attempt to develop vocabulary and ontology for 

geospatial concepts, especially for web and internet use, was an attempt by the World 

Wide Web Consortium (W3C). W3C is an international community of member 

organizations, full-time staff to develop web-based standards. W3C Geospatial 

Ontologies published a report159 developed by the W3C Geospatial Incubator Group 

(GeoXG) in which the group provided an overview and description of geospatial 
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ontologies to describe geospatial concepts and properties for use on the Worldwide 

Web. The report also emphasizes the for extending existing geospatial vocabulary, 

explains the specific geospatial ontologies and the need for their extensions, and 

identifies existing work from which definitions can be used to develop geospatial 

ontologies. It is also mentioned in the report that the W3C work might disagree with 

the previous work done by ISO. 

There might be other ontologies and vocabularies related to 

geospatial modelling and analysis.160 However, the work aims to apply the broadly 

accepted ontologies. For more information, please refer to the above-mentioned ISO 

document. 

Ontologies and vocabularies in the fields of biology and genetics are also well-

established and very consistent. While certain concepts and definitions from those 

border ontologies have been transferred and adapted by the synthetic biology and gene 

drive community, many new concepts, definitions, and vocabularies had to be 

developed to accommodate specific differences and extensions that these new and 

immature fields bring. As such, ontologies in synthetic biology and gene drives tend to 

be inconsistent and often somehow fuzzy. The literature review done for the current 

study has revealed numerous inconsistencies but also concept and nomenclature 

evolutions over the years. For example, what is known today as gene drives a decade 

or so ago was broadly referred to as ‘selfish genes,’6 and ‘genetic safety switches’ 

are replaceable with ‘daisy gene drives.’23,154 A myriad of other ontological 

inconsistencies exists in this emerging field. 

Because of the relative immaturity of the field, ontologies are either currently 

developed or initially development has been done, but further work is required to extend 

and unify these ontologies. One work that deserves a special mention because of its 

pioneering nature, but also extend to which it covers synthetic biology concepts is so-

called Systems Biology Ontology (SBO). SBO is a set of controlled, relational 

vocabularies of definitions and terms commonly used in the field of systems biology, 

and in particular, in computational modelling of synthetic biology system. SBO 

ontology is curated by the European Molecular Biology Laboratory-European 

Bioinformatics Institute (EMBL-EBI) in the UK as part of the BioModels.net effort.161 

Other more basic attempts to develop synthetic biology ontologies exist162 (i.e., 

Synthetic biology ontology by the team at Imperial College London or the Synthetic 

Biology Open Language), ISO is yet to develop its standardized document. The 

vocabulary and concepts related to synthetic biology and gene drives used in the study 

have followed SBO ontology and other vocabularies generally accepted in the field and 

broadly used in the scientific literature. 

 

2.7.1 Justification of the work on ontology 

Combining several different scientific disciplines comes with discrepancies and 

differences in their respective ontologies. For example, MGDrivE package uses the 

word ‘landscape’ to describe the study area. The same artefact in spatial modelling 

would likely be given the name of ‘environment’ or ‘geospatial environment.’ 

MGDrivE package was developed by biologists and programmers familiar with gene 

drive technology. This is why vocabulary related to biology and gene drives is generally 

correct in the MGDrivE package but not necessarily correct or aligned with ontologies 

broadly accepted in spatial modelling. This example makes it clear that researchers 

performing multidisciplinary research are better off borrowing ontologies, 

vocabularies, and definitions from existing fields, rather than creating their own. 



21 

The problem of ontologies is not purely a multi- or interdisciplinary one. 

Ontologies are organic and evolving datasets where definitions, nomenclature, and 

vocabularies can evolve, generally as the field matures. This phenomenon is often seen 

in new fields, where vocabularies and ontologies of immature fields evolve to describe 

better specific elements. One example of such evolution was clearly shown in the thesis, 

where back in 2003 when gene drives were discovered or more broadly studied and 

were initially called ‘selfish genes,’ but as the field matured the nomenclature had been 

adapted to what individuals know today as ‘gene drives’ or ‘gene drive technology.’ 

The reason for this ontological shift is, most likely, a trivial one, while the term ‘selfish 

genes’ is very descriptive, genes lack personality, and as such, they cannot be selfish. 

Gene drives without any doubt sound more scientific and professional. Another 

example from the thesis is ‘gene drive safety switch’ and ‘daisy gene drives’ which are 

used interchangeably. 

The ontological aim of the thesis was to stick to existing ontologies and borrow 

from them to develop this multidisciplinary research. Because this thesis relies on the 

MGDrivE package ‘landscape’ nomenclature was copied from the original research, 

however, the author acknowledges that this nomenclature is wrong. Other than using 

‘landscape’ same as ‘geospatial environment’ the author did not develop or borrowed 

other ontologies that are considered to be outside of generally accepted standards. 

Building clear ontologies is of importance as it helps experts in 

multidisciplinary research teams to better communicate with each other. In this current 

research having clear ontologies allows to interface software developers (i.e., 

MGDriveE) with domain experts. 
 

2.7.2 Attempt to quantify the extent of ontologies used in this study 

To compare ontologies, vocabularies, and their similarities, three groups of 

scientific papers on synthetic biology, spatial modelling, and malaria spread. The online 

word cloud generator (www.wordclouds.com) was used to import thematic papers and 

count repeating words. The non-specialist words have then been removed, and 

ontologies of these three scientific fields compared. Once words and their frequency 

have been derived from the papers, the words with frequencies lower than three have 

been removed. Other non-specialist vocabulary, numbers, and surnames have also been 

removed from the vocabularies. Because of space limitation, Table 1, Table 2, and Table 

3 display only the most frequent words from derived vocabulary. 
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Table 1 Vocabulary list and word-frequency derived from synthetic biology and gene drive papers. 

Genetic engineering to 

eradicate invasive mice 

on islands: modelling 

the efficiency and 

ecological impacts 

(Gregory Backus and 

Kevin Gross, 2016)14 

Gene drives thwarted 

by the emergence of 

resistant organisms 

(Ewen 

Callaway,2017)156 

Gene drives do not 

always increase in 

frequency: from genetic 

models to risk 

assessment (Tom J. de 

Jong, 2017)3 

Safeguarding gene drive 

experiments in the 

laboratory (Omar S. 

Akbari et al., 2015)4 

Safeguarding CRISPR-

Cas9 gene drives in 

yeast (James E DiCarlo, 

2015)5 

Site-specific selfish 

genes as tools for the 

control and genetic 

engineering of natural 

populations (Austin 

Burt, 2003)6 

Synthetic biology: 

discovering new worlds 

and new words. (Víctor 

de Lorenzo and Antoine 

Danchin, 2008)162 

155 mice 21 Gene 79 model 33 gene 150 gene 103 gene 51 biology 

112 population 17 Drive 51 allele 32 drive 144 drive 66 population 45 biological 

87 Rate 9 Genetic 50 fitness 10 Cas9 62 wild-type 37 target 43 synthetic 

81 release 9 Mosquito 41 population 10 genetics 34 Cas9 27 species 31 engineering 

78 eradication 8 Resistance 38 gene 10 laboratory 33 haploid 26 fitness 21 cell 

50 construct 5 Wild 25 drive 10 medicine 26 element 26 sequence 19 system 

31 gene 4 Modified 25 homing 10 populations 25 confinement 22 control 17 life 

28 Density 4 Mutation 21 frequency 9 confinement 23 plasmid 22 resistant 16 gene 

28 model 4 Population 21 model 8 biology 22 diploid 20 engineered 13 circuit 

27 ecological 3 Code 20 embryo 7 risk 22 experiment 19 frequency 11 science 

25 Species 3 CRISPR 19 genetic 7 sgRNA 21 wild 16 genetic 10 bacteria 

24 Genetic 3 gene-drive 16 fixation 7 spread 20 cell 16 selfish 10 component 

23 engineered 3 Inheriting 16 heterozygote 6 molecular 20 target 15 generations 10 DNA 

23 Invasion 3 Offspring 15 spread 6 science 18 population 14 endonuclease 10 machine 

23 wild-type 3 Organism 14 rate 6 strategy 17 genome 14 spread 10 protein 

21 Eradicate 3 Spread 13 gametes 6 stringent 17 molecular 13 construct 9 genetic 

20 impact   12 CRISPR-Cas9 5 drosophila 17 synthetic 13 DNA 9 regulatory 

19 rate   11 life 5 experiment 16 CRISPR-Cas9 13 drive 8 molecular 

18 Dynamics   10 species 5 release 16 organism 12 allele 7 artificial 

14 control   10 threshold 5 wild 15 colony 11 host 7 molecular 

14 Musculus   9 offspring 3 biosafety 15 homing 10 chromosome 7 ribosome 

12 spread   9 wild-type 3 cell 15 locus 10 element 7 RNA 

11 capacity   8 cell 3 DNA 14 mating 10 homing 6 construct 

10 drive   8 homozygous 3 encoding 14 strain 10 mutation 6 evolution 

10 fitness   8 meiosis 3 genome 11 DNA 10 recessive 6 metabolic 

10 offspring   8 organism 3 health 11 gRNA 9 natural 5 mRNA 

10 population   8 recessive 3 organism 11 inheritance 9 release 5 network 

9 ecosystem   8 target 3 probability 11 RNA 8 promoter 5 paleome 

9 non-target   7 dominance 3 RNA-guided 10 sequence 8 protein 5 polymerase 

2
2
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Table 2 Vocabulary list and phrase-frequency derived from malaria spread studies. 

Acquired immunity to 

Malaria (Denise L. Doolan 

et al., 2009)139 

Antimalarial drug resistance 

(Nicholas J. White, 2004)129 

Assessing the risk factors 

associated with Malaria in 

the highlands of Ethiopia: 

What do we need to know? 

(Élodie Anne Vajda and 

Cameron Ewart Webb, 

2017)81 

The demographics of human 

and malaria movement and 

migration patterns in East 

Africa (Deepa K Pindolia et 

al., 2013)79 

Effect of climate on malarial 

vector distribution in 

Monsoon Asia (Shunji Ohta 

and Takumi Kaga, 2012)35 

Genetic factors in malaria (L. 

Luzzatto, 1974)135 

308 malaria 152 resistance 229 malaria 135 malaria 73 malaria 40 malaria 

227 immunity 94 malaria 89 transmission 75 movement 40 model 29 parasite 

185 falciparum 79 parasite 29 population 47 travel 34 distribution 23 genetic 

178 plasmodium 77 drug 29 malaria 41 migrant 34 climate 23 cell 

90 exposure 73 antimalarial 28 climate 35 migration 33 anopheles 21 gene 

85 infection 46 falciparum 26 vector 34 transmission 30 data 19 resistance 

80 protection 46 parasite 22 health 33 demographic 24 vector 18 plasmodium 

78 disease 44 infection 21 vector 30 network 22 mosquito 18 host 

70 parasite 37 treatment 19 resistance 28 movement 20 health 17 gene 

69 clinical 28 infection 19 outbreak 28 pattern 20 water 14 infection 

68 sporozoite 24 resistant 19 mosquito 26 flow 19 species 14 blood 

61 parasite 24 spread 18 falciparum 25 connectivity 17 generation 13 falciparum 

60 parasitemia 23 probability 17 malar 23 stratified 13 population 11 susceptibility 

55 immune 20 combination 17 vivax 23 malaria 13 condition 11 erythrocyte 

52 transmission 20 novo 16 anopheles 23 net 12 incidence 9 mechanism 

50 strain 19 transmission 16 infect 22 gender 11 observe 8 parasitaemia 

49 infection 19 mefloquine 14 plasmodium 20 source 11 factor 8 parasitology 

45 infect 19 plasmodium 13 distribution 20 group 10 temperature 8 genotype 

44 heterologous 18 mutation 11 arabiensis 17 endemicity 10 vector 8 vitro 

43 antigenic 17 chloroquine 11 dynamics 17 control 9 temporal 7 tropical 

41 protective 16 elimination 11 species 16 population 9 spatial 7 medicine 

39 vivax 16 gene 10 intervention 15 infection 9 period 7 factor 

36 homologous 15 concentration 10 incidence 15 sink 8 variation 7 cycle 

36 parasitol 14 antimalarial 9 chloroquine 13 elimination 8 habitat 7 data 

36 knowlesi 13 multiplication 9 elimination 13 falciparum 8 risk 7 DNA 

34 strain 12 artemisinin 9 epidemic 13 map 7 parasite 6 G6PD-deficient 

33 vaccine 12 symptomatic 9 disease 11 plasmodium 6 variation 6 population 

32 immunization 11 clinical 8 entomological 11 dataset 6 simulate 6 hypothesis 

32 host 11 patient 7 surveillance 10 parasite 6 emergence 6 frequency 

2
3
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Table 3 Vocabulary list and word-frequency derived from spatial modelling studies. 

Deforestation and 

malaria on the Amazon 

frontier (Fábio S. M. 

Barros and Nildimar A. 

Honório, 2015)61 

Gene drive through a 

landscape (Andrea 

Beaghton et al., 2016)24 

Impact of climate 

change on global 

malaria distribution 

(Cyril Caminade et al., 

2014)66 

The links between 

agriculture, Anopheles 

mosquitoes, and malaria 

risk in children younger 

than 5 years in the 

Democratic … (Mark M 

Janko et al., 2018)91 

Diversity in breeding 

sites and distribution of 

Anopheles mosquitoes 

in selected urban areas 

of southern Ghana 

(Precious A. Dzorgbe 

Mattah et al., 2017)57 

Spatial change in the 

risks of Plasmodium 

vivax and Plasmodium 

falciparum malaria in 

China, 2005-2014 

(Samuel Hundessa, 

2016)55 

Effects of habitat 

fragmentation on birds 

and mammals in 

landscapes with 

different proportions of 

suitable habitat (Henrik 

Andrén, 1994)163 

183 forest 140 population 88 climate 42 agriculture 130 habitat 33 change 213 habitat 

178 malaria 134 wave 65 model 36 probability 70 site 28 latitude 133 landscape 

92 water 99 model 55 transmission 25 Data 54 urban 28 country 89 patch 

85 deforestation 94 speed 40 change 21 Mosquito 39 permanent 27 longitude 86 size 

69 area 64 state 38 population 21 Land 33 sample 23 study 83 species 

60 collection 63 equilibrium 28 distribution 20 Study 33 habitat 22 period 60 fragmentation 

52 transitional 55 density 27 global 19 population 32 city 18 area 54 forest 

47 transmission 40 rate 20 impact 19 Site 32 area 13 incidence 53 isolation 

46 distance 38 asymptotic 19 scenario 19 Cover 27 study 13 parasitol 45 random 

46 stream 38 spread 19 region 17 relationship 25 metropolitan 12 climate 43 population 

42 fringe 37 release 19 change 17 Estimate 25 farm 12 control 38 proportion 

40 hotspot 32 dispersion 17 data 16 transmission 23 temporary 11 transmission 35 suitable 

37 site 28 spatial 16 endemic 15 temperature 21 density 11 temperature 35 area 

35 area 28 system 15 observe 15 increased 20 mean 11 model 34 original 

33 pond 26 density-dependent 15 northern 14 Indoor 19 distribution 11 rate 34 density 

30 cluster 26 travel 13 estimate 14 Effect 19 point 10 province 34 effect 

29 study 26 case 13 epidemic 13 surveillance 18 species 10 analyse 32 hypothesis 

27 location 24 landscape 13 factor 13 associated 16 observe 9 case 30 sample 

26 sample 24 stable 12 endemicity 13 Model 13 construction 8 affected 23 relationship 

25 proximity 23 relation 12 control 11 Survey 13 place 8 country 20 diversity 

24 risk 23 solution 12 health 10 Rural 12 variation 8 trend 19 community 

23 habitat 23 immobile 10 temperature 9 abundance 12 natural 8 data 17 dynamics 

23 settler 23 species 10 simulate 9 expansion 12 count 7 situation 17 pattern 

23 cluster 21 parameter 10 suitable 9 Variable 12 data 7 expansion 16 scale 

22 frontier 21 life 10 impact 8 entomological 11 transmission 7 spatial 14 range 

21 model 19 diffusivity 9 socioeconomic 8 environmental 11 proportion 6 regression 13 metapopulation 

21 data 19 unstable 9 uncertainty 8 Analyse 10 population 6 indicate 13 biogeography 

19 land 18 extinction 9 condition 8 Factor 8 combination 6 mainland 13 individuals 

18 analyse 17 factor 8 projection 8 Spatial 7 environmental 6 system 13 population 

2
4
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3. Prior State-of-the-Art 
Computational modelling and simulation of both spatial mosquitos spread to 

evaluate malaria risk and gene drive modelling to estimate the population replacement 

or suppression have become fast, cost-effective, and often reliable methodology to 

determine how different system parameters affect the outcomes. Performing similar 

field studies would in most cases be expensive, very time consuming, and often 

ethically wrong. It could also pose severe threats to biodiversity and human health. As 

such, multiple models have been developed to evaluate these systems. 

 

3.1 Spatial Modelling of Malaria Spread 
Mathematical models of mosquito-borne pathogen transmission originated in 

the early twentieth century.164 The primary role of these models was to establish the 

most effective ways to combat or mitigate malaria. Since 1970, growing demand in 

reducing vector-borne disease has put a lot of emphasis on mathematical modelling and 

simulation of different case scenarios to guide the control measure and often policy 

developments. In a study published in 2013 by Reiner et al., the authors assess how 

theory and mathematical tools have changed to address evolving public health 

challenges related to malaria.164 The authors compiled a list of 325 publications from 

1970 through 2010 including mathematical models of mosquito-borne pathogen spread 

and subsequently developed a 79 item-long questionnaire to classify each of 388 

identified mathematical models in accordance with their purpose. The study concluded 

that although geographical, epidemiological, and ecological scope, extent, and 

complexity have changed significantly over the past 40 years, the majority of the 

models resemble the original, over a century old, Ross-Macdonald approach.165,166 

Ronald Ross and George Macdonald are credited with developing a first mathematical 

model of mosquito-borne pathogen transmission. Moreover, authors of the study argue 

that the modern theory would benefit from an expansion of the concepts such as 

variation of individual host attributes and their consequences for heterogeneous 

mosquito biting, spatial heterogeneity and temporal variation in the transmission 

process, as well as poorly mixed mosquito-host encounters. Reiner et al., acknowledge 

that these concepts have been at times successfully addressed, they are not widely used 

or appreciated. Reiner and co-authors believe that emphasizing more on these efforts 

would lead to more accurate, robust, and useful tools for addressing global health 

challenges posed by vector-borne diseases. The comprehensive study provides a 

complete list and further arguments for or against identified modelling frameworks. 

 

3.2 Modelling of Gene Drive Inheritance 
Gene drive models focus predominantly on three major scenarios: replacement 

of the wild population with gene drive-engineered organisms, suppression of the wild 

population by introduction of gene drive organisms or reversibility of gene drive effects 

to the wild population.151,154,167,168 

MGDrivE framework is described in more detail in later chapters. Some other 

common approaches to modelling gene drives include a well-mixed finite population 

model, where gene drives are modelled in finite populations, often by introducing a 

Moran-type model with sexual reproduction. The finite population of diploid 

individuals is created and simulated, generally focusing on three allelic classes wild 

(W), gene drive element (H) and drive-resistant (R), and possible genotypes of WW, 

WD, WR, DD, DR, and RR. Each genotype has assigned a reproductive rate, and the 
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simulation process occurs in discrete time-steps.151 This modelling framework is 

commonly applied thanks to its simplicity and computational flexibility. 

Another often applied modelling scheme for gene drive systems is the so-called 

finite population model with population structure, which allows examining the effects 

of population structure on drive containment. The framework is an extension of the 

well-mixed, which additionally considers the well-mixed subpopulations of 

individuals. Just like the well-mixed finite population model, finite population 

modelling is performed in discrete time steps. In each iteration, individuals are either 

migrated between subpopulations or subpopulation is chosen to proceed through mating 

and replacement procedure.151,167 

Among multiple other modelling frameworks, one that deserves mention is 

Medusa.169 Medusa model relies on a stochastic discrete-time framework, which, due 

to its complexity, allows simulating complex scenarios while maintaining a high degree 

of flexibility of the framework. Medusa was developed by the Marshall team at the 

University of California, Berkeley, the same team that developed MGDrivE. 

Further comparison of existing models for the spatial distribution of gene drive 

organisms is presented in Table 4. 

 

Table 4 Comparison of spatially-explicit gene drive models. Reproduced from Reproduced 

from bioRxiv.168 

 
Inheritance 

Patterns 

Life History 

Ecology 

Spatial and 

landscape 

details 

Software 

MGDrivE 

Very flexible, can 

be user-specified 

 

Egg-larva-pupa-

adult, density-

dependence at 

larval stage, not 

responsive to 

environmental 

variables at present 

Metapopulations 

distributed in space, 

connected by 

migration 

 

R package, open 

source 

EMOD 

Homing-based 

gene drive could be 

extended with 

effort 

Egg-larva-pupa-

adult, density-

dependence at 

larval stage, 

responsive 

to environmental 

variables 

Populations arranged 

on a grid, each 

representing 1 km2, 

connected by 

migration 

Java Script Open 

Notation (JSON) 

feeds into 

executable file, 

open source 

Skeeter 

Buster 

Homing-based 

gene drive, release 

of insects carrying 

a conditional lethal, 

etc., cannot be 

user-specified 

Egg-larva-pupa-

adult, density-

dependence at 

larval stage, 

responsive to 

environmental 

variables 

Households and 

containers modelled 

explicitly, connected 

by migration 

Executable file, 

not open source 

SLiM 
Very flexible, can 

be user-specified 

Discrete 

generations, 

no life history at 

present 

Can model either 

connected 

metapopulations or 

cells on a grid 

Scripting 

environment 

with graphical 

user interface, 

open source 
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4. Research Methods 
Since the current research relies strictly on existing model adaptation and 

simulation, four-step system development has been applied. The four steps include 

system specification methods, system design methods, system implementation 

methods, and system evaluation methods. A simplified study flowchart is shown in 

Figure 4. Map of the study area is presented in Figure 5. 

 

Figure 4 Simplified study development flowchart. 
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Figure 5 Map of the study area – Kenya. 

 

The thesis and corresponding simulations rely on the assumption that the gene 

drive-modified mosquitos will have no significant competitive advantage or 

disadvantage over their malaria-carrying kin. This assumption has been made for two 

reasons, first at the current stage, gene drive studies have shown no significant 

competitive advantage or disadvantage, and second, the assumption is necessary to 

simplify the analysis.20,22,33 The assumption is not going to be testable with data until 

some of these gene drive-modified organisms live and die in the environment. The 

researcher cannot know, a priori, whether the modification will produce a more or less 

hardy mosquito in the Kenyan milieu, even if the intent is to create one where the 

modification has no significant effect in this regard. Likewise, the researcher cannot 
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know whether or not deleting the symbiotic relationship (between the parasite and host) 

is going to be somehow subtly deleterious to the host in that environment. Presumably, 

any small effect of the sort, for either reason or in either direction, could have a 

significant impact on the results. Attempt to model such an advantage or disadvantage 

could be the focus of a separate study. 

 

4.1 MGDrivE Model Description 
The MGDrivE (Mosquito Gene Drive Explorer) gene drive inheritance 

simulation framework was used to simulate genetic inheritance within the mosquito 

population. The framework was developed by John Marshall's laboratory at the 

University of California, Berkeley.168 The MGDrivE framework is different from other 

gene drive modelling frameworks because of its ability to simulate a wide array of user-

specified inheritance-modifying systems at the population level within a single, 

computationally efficient framework that also incorporates mosquito life history and 

landscape ecology. MGDrivE framework was used to build a simulation model as 

described in the original publication.168 

 

4.2 Working Principle of the Model 
The overarching working principle of the MGDrivE model is to consider the 

inheritance matrix of genotypes as a three-dimensional structure, in which each single 

intersection point in the matrix determines the probability of an offspring genotype (z-

axis) provided a certain combination of male-to-female genotypes (x-axis and y-axis 

respectively). The arrangement enables using tensors for the calculations, at the same 

time offering a number of advantages, including model scalability, excellent 

computation speed, and model transparency. 

Second, the further novelty of the framework relies on consideration of the 

spatial layout as a network of interconnecting breeding habitats, where each habitat is 

considered as a network node. By doing so, the landscapes and topographic maps are 

transformed into distance matrices and subsequently transformed into transition 

probability matrices. Consequently, the novel framework enables modelling of arbitrary 

topologies, where mosquito populations, their mating, and migration can be simulated 

in realistic geographical settings. The entire model will rely on R working environment 

and associated toolboxes. 

The MGDrivE framework consists of three modules, namely inheritance 

module, life history module, and landscape module. The genetic inheritance module is 

a fundamental module of the MGDrivE framework. In MGDrivE, genetic inheritance 

is expressed by a three-dimensional tensor called “inheritance cube." In the inheritance 

cube, the first and second dimensions refer to the maternal and paternal genotypes, 

respectively, whereas the third dimension corresponds to the offspring genotype. The 

inheritance cube variables correspond to the proportion of offspring with the 

combination of all possible parental genotypes. This combination matrix excludes 

offspring fitness and viability, and all the values in the matrix should sum up to one. 

The mosquito life history module is based on previous studies by Hancock and 

Godfray adapted by Deredec et al.170,171 In this model, the mosquito life cycle is divided 

into four distinct stages: egg, larva, pupa, and adult. Besides, adult mosquitoes can be 

either male or female: the life history module is presented in more detail in Figure 6. 

Further information about the module can be found in the original study.168 
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Figure 6 Schematics of mosquito life history module from MGDrivE framework showing 

aquatic states, including eggs, larvae, and pupae as well as adult mosquito stage for males and 

females. Parameters associated with each of the model adaptation stage are shown in the 

figure. Figure was reproduced from bioRxiv.168 For more information about the module refer 

to the original study.168 

Finally, the landscape module is responsible for the distribution of mosquito 

metapopulations in selected space, and for calculating the movement through the 

resulting network determined by calculating the mosquito dispersal kernels. The 

framework assumes that the metapopulations of mosquitoes are mixing randomly, 

based on the lumped age-class model equations. The MGDrivE simulation workflow is 

shown below. 

  

Figure 7 The MGDrivE simulation workflow. Reproduced from Sánchez et al.168 
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4.3 Semi-spatial Nature of the MGDrivE Environment 
While the study often refers to the distribution as a spacial distribution, the 

MGDrivE package is not entirely spatial. Because of computational power limitations 

and time required to compute large populations of mosquitoes over extensive time 

intervals, often counted in years, the authors of the package have introduced certain 

assumptions and limitations, making MGDrivE semi-spatial environment. While this is 

not desired, modelling and simulation of large populations of mosquitoes would 

otherwise be impossible. 

Instead of modelling each mosquito as an independent node with its geographic 

coordinates, MGDrivE models larger groups of mosquitoes and treats these groups as 

separate nodes with the assigned number of mosquitoes in it. Using the metapopulation 

concept where the entire population is divided into smaller sets or subpopulations, each 

consisting of a certain number of mosquitoes is a significant simplification, which 

allows performing simulations involving a large number of mosquitoes. Each node in 

MGDrivE interacts with other nodes, creating an interconnected network. Creating the 

same network having millions of nodes would otherwise be impossible or at least very 

difficult. 

As such, the nature of the MGDrivE package is not truly spatial, but because it 

contains significant aspects of a spatial system with certain limitations, MGDrivE can 

be considered a semi-spatial environment. With the increase in computing capabilities, 

the MGDrivE package can easily be extended to a fully spatial environment. 

 

4.4 Methodology and Steps to Answer Research Questions 
The MGDrivE is a model designed to be a reliable testbed for various gene drive 

scenarios for mosquito-borne disease control. The model has been developed to 

accommodate the use of different mosquito-specific gene drive systems within a 

population dynamics framework to allow simulation migration of individuals between 

nodes in the selected study landscape. 

In the study, major cities in Kenya have been modelled as nodes with different 

population sizes on the nodes of the studied network (Figure 8). The geographic data, 

including latitude and longitude, as well as a population of 36 largest cities in Kenya, 

have been obtained from the World Cities Database, released for free under an MIT 

license. City data in this dataset comes from the National Geospatial-Intelligence 

Agency, whereas the population data comes from Natural Earth Data. 
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Figure 8 Kenya map with administrative borders and 36 cities used in the study (top). Cities 

used in the study together with a network of connections between cities/nodes (bottom). The 

size of the node is scaled based on the existing human population, which is modelled one-to-

one with initial mosquito population. The size of the node corresponds to the cubic root of the 

total human population. The release site (Malindi) is indicated by the blue arrow. 

 

The simulated scenarios assume that the study area is a closed system, meaning 

that no mosquitoes can cross the Kenya border. This assumption is far from real-life 
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scenarios where mosquitoes do not recognize national borders or international protocols 

and freely travel between the countries. However, simulating such a scenario is 

computationally not feasible because of the scale of such a study and the availability of 

computational power.  

Latitude and longitude data have been used to create an Excel file with input 

patches, and to calculate the distance matrix in Excel as another input file. The 

population data were used to emulate the initial mosquito population at those nodes, 

and the mosquito population at each location was scaled proportionally to the number 

of humans present in this location. 

Simulation time has been set to 3,650 days, which corresponds to 10 years. 

However, in some cases the simulation time was extended to a number of days 

necessary to replace the entire wild mosquito population. Each scenario was repeated 

only once because having 36 patches and 3,650 days already takes about one hour per 

scenario to compute and create output data. Mosquito lifespan probability parameter 

has been set up to 0.9 for most of the scenario, whereas other mosquito biology-related 

parameters, such as duration of egg stage (tEgg), duration of larval stage (tLarva), 

duration of pupa stage (tPupa), daily population growth rate (popGrowth) and daily 

mortality risk of adult stage (muAd) were 1 day, 13 days, 1 day, 1.096 days-1 and 0.123 

days-1 respectively. Egg production per female (betaK) was 32 days-1. These parameters 

have been taken from Table 5, reproduced from the original MGDrivE publication.168 

 

Table 5 Life history module parameter values for three species of interest (at a temperature of 

25 Celsius). Reproduced from Sánchez et al.168 

Parameter Anopheles 

gambiae 

 Aedes 

aegypti 

Ceratitis 

capitata 

Egg production per female (day-1) 32  20 20 

Duration of egg stage (days) 1  5 2 

Duration of larval stage (days) 13  6 6 

Duration of pupa stage (days) 1  4 10 

Daily population growth rate (day-1) 1.096  1.175 1.031 

Daily mortality risk of adult stage (day-1) 0.123  0.090 0.100 

 

Gene drive setup parameters of male homing rate (eM) and female homing rate 

(eF) were set up to 0.9 and 0.5 respectively unless otherwise specified. While 

parameters for Anopheles gambiae have been used in this current study, parameters for 

two other mosquitoes are shown for comparison only. 

The gene drive-modified mosquito release was performed on day 100 from the 

beginning of the simulation and was performed only once during the simulation cycle. 

The release on day 100 from the beginning of the simulation is reasoned by the fact 

time is initially allowed for simulation to stabilise and also to be able to illustrate how 

release of the gene drive mosquitoes influences the shape of the graph. The release 

proportion of wild to modified mosquitoes was 1% unless otherwise specified. The 

scenarios assume that gene drive-modified mosquitoes have been released at one node 

only, which for the purpose of this exercise is a town of Malindi in south-eastern Kenya. 

 

4.5 Data 
Since most of the work relied on existing models from literature, which was 

developed based on data collected by other authors. The only data that was used in the 

initial input data was taken from literature. Certain model parameters can be selected 
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randomly and tested to evaluate a specific scenario. The data processing and plotting 

were performed in Microsoft Excel.  

Other than the above data that were in the study area, which in this case was the 

map of Kenya, and the database of major cities with their coordinates and population 

in Kenya, the map was obtained from resources available on the Internet, whereas the 

coordinate and population database was obtained from the World Cities Database, 

released for free under an MIT license. The latitude, longitude, and population data 

used to create nodes is available in Table B1 in Appendix B. 
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5. Results 
The series of output plots generated based on different initial parameters 

described in the methods section, allowed to derive answers to research questions. 

Different initial parameters were used to separately answer four supporting questions 

and based on that the answer to the main research question was derived.  

To answer support question “Based on different initial numbers of gene drive 

mosquitoes introduced to wild population how many days will be required to eradicate 

malaria?”, the simulation was rerun several times with the same initial parameters 

except for the number of gene drive mosquitoes released. This parameter was adjusted 

each time according to Table 6, and a number of days required to completely replace 

wild populations with gene drive altered population of mosquitoes incapable of 

vectoring malaria were recorded. Because of the extensive time needed to complete 

each simulation, one set of parameters was simulated only once. It could be of benefit 

to rerun these simulations more time times and calculate the average. 

 

Table 6 Values of the initial number of gene drive mosquitoes parameter to answer the first 

support question “Based on different initial numbers of gene drive mosquitoes introduced to 

wild population, how many days will be required to eradicate malaria?” The initial number of 

gene drive mosquitoes as a percentage of wild mosquito population in Malindi. 

Simulation 

number 

The initial number of gene drive 

mosquitoes (as a percentage of wild 

population in Malindi) 

Number of days required to replace 

wild mosquitoes with gene drive 

mosquitoes 

1 1 4,009 

2 2 3,972 

3 3 3,813 

4 5 3,638 

5 7 3,561 

6 10 3,479 

7 12 3,431 

8 15 3,389 

9 20 3,326 

10 25 3,271 

 

Based on the results, it becomes clear that to achieve complete replacement of 

wild mosquito population, at least 5% of gene drive mosquitoes have to be released 

with their inheritance frequency (eM) of 90%. Any number higher than 5% of the gene 

drive-altered mosquitoes introduced to the wild population at the specific release point, 

in this case Malindi, will slightly reduce the time required for complete replacement. 

The above table is visualized below in the form of a graph. 
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Figure 9 Relationship between the ratio of introduced gene drive organisms and wild 

population to a number of years to entirely replace the wild population. The traits for each of 

the simulations that contributed to this figure are available in Appendix C. 

 

The graph above shows highly non-linear behaviour. It also becomes clear that 

the number of gene drive-altered mosquitoes to the size of the wild population is not 

critical. Changing the parameter from one up to 25% reduces the time required for 

complete replacement from nearly 11 years to only less than nine years. The number of 

days required to replace the wild population for the ratio of 1% behaves out of the 

pattern. The simulation for this point was rerun three times, giving similar results. It is 

unclear why this behaviour occurs. 

The second supporting question (“How different inheritance frequencies for 

gene drive mosquitoes introduced to wild population affect the number of days required 

to eradicate malaria?” was answered in a similar way as the previous question. All 

parameters were fixed except for the male mosquito inheritance ratios, which was 

changed for each rerun. Generally, gene drives are designed to have 100% or close to 

100% inheritance efficiency, as such, the numbers were selected to emulate this. It is 

very unlikely that the gene drive system will have a frequency of 100%. However, this 

value was also explored in the simulations. The male inheritance values used to answer 

the second supporting research question are shown in Table 13. 

The effective numbers of inheritance frequency of gene drive altered 

mosquitoes does not exist. This is mainly because of the immaturity of the field but also 

due to the ethical and legal mechanisms that prevent the release of these organisms into 

the wild. All of the current knowledge of these systems comes from observations of 

limited and closed laboratory populations or computational models developed based on 

the outcomes of these limited experimental data. However, based on the general 

understanding of the genetics, the higher the inheritance frequency is, the faster the 

spatial replacement of the wild populations by gene drive altered ones will be. 
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Table 7 Initial values of the initial inheritance ratio parameter to answer the second research 

support question “How different inheritance frequencies for gene drive mosquitoes introduced 

to wild population affect the number of days required to eradicate malaria?” 

Simulation 

number 

Initial inheritance frequency / 

chance (percent) – male (eM) 

Number of days required to replace wild 

mosquitoes with gene drive mosquitoes 

1 100 2,297 

2 99 2,376 

3 97 2,552 

4 95 2,758 

5 93 3,004 

6 91 3,303 

7 90 3,479 

8 89 3,664 

9 87 4,152 

10 85 4,811 

 

Similarly to the above, Table 7 was converted into a graph to better visualize 

the results and to draw conclusions. 

 

 

 

 
Figure 10 Relationship between gene drive frequency in male mosquitoes to a number of years 

required to entirely replace the wild population. The traits for each of the simulations that 

contributed to this figure are available in Appendix D. 

 

Based on Table 7 and corresponding Figure 10, it becomes clear that the 

inheritance frequency factor has a significant influence on the system. A small 

adjustment in the male inheritance frequency results in a considerable time change 

required to replace the wild population. The inheritance frequency for male mosquitoes 

was changed from 85 to 100% resulting in time extension from slightly over six years 

to more than 13 years. The change of this parameter by 15% resulted in doubling the 

time. The relation is also non-linear. 

The third support question (“What is the coverage of the gene drive mosquitoes 

and do they spread within the entire study area?”) was be answered based on the output 
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maps from two previous exercises. Each node, which corresponds to a specific city in 

Kenya, generated its graphs. While these are not presented in the study, due to extensive 

space required to illustrate all 36 cities for each of the scenarios, the superposition of 

all these nodes resulted in general graphs for Kenya, which shows that spatial 

distribution throughout the study area after 10 years is uniform. These graphs are 

presented in Appendix C and Appendix D.  

Finally, the fourth support question (“Are gene drives effective tool to 

completely eradicate mosquito-borne malaria in Kenya the next 10 years?”) is a result 

of the previous exercises. In this case, all studied nodes/cities in Kenya were considered 

collectively. Depending on the value of the parameters replacing the wild mosquito 

population, it can be either doable or not. Generally, a high number of mosquitoes and 

high inheritance frequencies enable the reduction of the replacement time. However, 

the graphs also show the emergence of a significant number of genes drive resistant 

mosquitoes. These mosquitoes developed resistance to the gene drive system, and as 

such are not affected. However, their vectoring capabilities are still present. Based on 

this, complete eradication of malaria in Kenya within a decade using gene drive solution 

solely is not feasible. Gene drives could be used together with other, more traditional 

malaria prevention techniques.  

Based on the conclusions from the above support questions, it becomes clear 

that gene drives are not capable of eradicating malaria, due to evolved gene drive 

resistance that occurs during the population replacement. These might be ways to 

reduce the effect of the gene drive resistance. This, however, would require further 

studies. As such, gene drive technology brings a grand promise for reducing the burden 

of malaria. 

 

5.1 Fulfillment of Assumed Expectations 
The last part of the discussion chapter reverts to the assumed expectations and 

checks whether they are fulfilled. Starting from the supporting question hypotheses, 

hypothesis for supporting question: Based on different initial numbers of gene drive 

mosquitoes introduced to the wild population, how many days will be required to 

eradicate malaria? stated that the larger the number of gene drive mosquitoes relative 

to number of mosquitoes in wild population, the faster gene drive organisms could 

replace wild mosquitoes. This relationship is already shown in Figure 9 and Table 6, 

but Spearman’s rank coefficient test172 will be used to further prove it. The expectation 

for the supporting question is that the larger number of gene drive mosquitoes relative 

to the number of mosquitoes in the wild population, the faster the gene drive organisms 

can replace wild mosquitoes. Hypothesis for this supporting question can be written as: 

H0: There is a no relationship between a number of gene drive mosquitoes to a number 

of mosquitoes in the wild population and the number of days to replace the entire wild 

population. 

HA: There is a relationship between a number of gene drive mosquitoes to a number of 

mosquitoes in the wild population and the number of days to replace the entire wild 

population. 
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Table 8 Spearman’s rank correlation test for the first supporting question. 

Simulatio

n number 

The initial number of 

gene drive mosquitoes 

(as a percentage of 

wild population) Rank  

Number of days 

required to replace 

wild mosquitoes with 

gene drive mosquitoes Rank 

Difference 

between 

ranks (d) 

1 1 10 4,009 1 9 

2 2 9 3,972 2 7 

3 3 8 3,813 3 5 

4 5 7 3,638 4 3 

5 7 6 3,561 5 1 

6 10 5 3,479 6 -1 

7 12 4 3,431 7 -3 

8 15 3 3,389 8 -5 

9 20 2 3,326 9 -7 

10 25 1 3,271 10 -9 

 

The squared difference between ranks (d2) equals 330 and Spearman’s 

correlation coefficient (Rs) equals -1. This means that a perfect negative correlation 

occurs between two datasets. To test for a significant association and to reject H0, 

√𝑁 − 1(𝑅𝑠) > 𝑧𝛼. The 𝑧𝛼 was taken from Ramsey173 and equals 0.903 for quantiles of 

0.9995. The test for a significant association has failed (-3 < 0.903), so we fail to reject 

H0. 

The expectation for the second supporting question was that the higher 

inheritance frequencies for gene drives would lead to a reduction in the number of days 

required to replace wild mosquitoes. The hypothesis can be expressed as: 

H0: There is a no relationship between inheritance frequencies and a number of days 

to replace the entire wild population. 

HA: There is a relationship between inheritance frequencies and a number of days to 

replace the entire wild population. 

 

Spearman’s rank correlation test will be used to accept or reject H0. 

 

 

 
Table 9 Spearman’s rank correlation test for the second supporting question. 

Simulatio

n number 

Initial inheritance 

frequency / chance 

(percent) – male (eM) Rank 

Number of days 

required to replace 

wild mosquitoes with 

gene drive mosquitoes Rank  

Difference 

between 

ranks (d) 

1 1 1 2,297 10 -9 

2 0.99 2 2,376 9 -7 

3 0.97 3 2,552 8 -5 

4 0.95 4 2,758 7 -3 

5 0.93 5 3,004 6 -1 

6 0.91 6 3,303 5 1 

7 0.9 7 3,479 4 3 

8 0.89 8 3,664 3 5 

9 0.87 9 4,152 2 7 

10 0.85 10 4,811 1 9 

 

The squared difference between ranks (d2) once again equals 330 and 

Spearman’s correlation coefficient (Rs) equals -1. Meaning that a perfect negative 

correlation occurs between two datasets. 
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The third supporting expectation hypothesis stated that in the current semi-

spatial model, where there is no landscape, weather, or other limitations, gene drive 

mosquitoes should be able to spread within the entire study within a time of fewer than 

five years. Answering the question requires looking at mosquito distribution at each of 

the cities in Kenya. The hypothesis can be written as: 

H0: Gene drive mosquitoes require five years or less (<=5) to spread and be present 

throughout the entire study area. 

HA: Gene drive mosquitoes require more than five years (>5) to spread and be present 

throughout the entire study area. 

We fail to reject the null hypothesis and conclude that gene drive altered 

mosquitoes requires more than five years (>5) to be present within the entire study area 

consisting of 36 Kenyan cities considered in this study. However, the hypothesis is 

highly sensitive to initial conditions. For example, very low initial gene drive mosquito 

number introduced into wild population and very low gene drive inheritance frequency 

will result in the spread of gene drive mosquitoes within the entire study area, but this 

will take more than five years. For example, one gene drive mosquito with an 

inheritance frequency of 56% will result in gene drive mosquitoes in each of the cities 

but only after 3,729 days. To statistically check the assumed expectation, simulation 

results have been combined into one dataset (Table 10) and a number of years required 

for gene drive mosquitoes to be present in all Kenyan cities was derived. 

Table 10 Simulation results showing the number of years required for gene drive mosquitoes 

to be present in all Kenyan cities. The initial number of gene drive mosquitoes refers to a 

percentage of gene drive mosquitoes to wild mosquitoes in Malindi. The initial number of gene 

drive mosquitoes has been altered from 1 to 25 percent while keeping the initial inheritance 

number at a constant rate of 0.9. Initial inheritance frequency was then altered from 0.85 to 1 

while keeping the initial percentage of gene drive mosquitoes unchanged (1 percent). Both 

experiments have been merged to create the table below. 

Simulatio

n number 

The initial 

number of gene 

drive mosquitoes 

(as a percentage 

of wild 

population in 

Malindi) 

Initial inheritance 

frequency / chance 

(percent) – male 

(eM) 

Number of years 

required for gene 

drive spread 

throughout the 

study area 

Gene drive spread 

within up to five 

years? 

(TRUE/FALSE) 

1 1 0.9 2.37 TRUE 

2 1 1 1.36 TRUE 

3 1 0.99 1.38 TRUE 

4 1 0.97 1.48 TRUE 

5 1 0.95 1.62 TRUE 

6 1 0.93 1.74 TRUE 

7 1 0.91 1.92 TRUE 

8 1 0.9 2.02 TRUE 

9 1 0.89 2.15 TRUE 

10 1 0.87 2.42 TRUE 

11 1 0.85 2.81 TRUE 

12 2 0.9 2.31 TRUE 

13 3 0.9 2.22 TRUE 

14 5 0.9 2.12 TRUE 

15 7 0.9 2.07 TRUE 

16 10 0.9 2.04 TRUE 

17 12 0.9 2.01 TRUE 

18 15 0.9 1.97 TRUE 

19 20 0.9 1.95 TRUE 

20 25 0.9 1.91 TRUE 
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The sign test174 performed on simulation results reveals the p-value of 1 based 

on the binomial distribution.175 Because the p-value is larger than the alpha level of 

0.05, we fail to reject null hypothesis and cannot accept the alternative hypothesis for 

research. 

The final supporting hypothesis stated that gene drive altered mosquitoes can 

replace the entire wild mosquito population within only 10 years, and by doing so, 

eradicate malaria, given that no resistance to gene drives is developed. Unfortunately, 

in each of the simulations, resistance to gene drive was developed. Considering purely 

replacement of wild population within a decade, the hypothesis can be written as: 

H0: Genetically altered organisms cannot replace the entire wild population within a 

decade. 

HA: Genetically altered organisms can replace the entire wild population within a 

decade. 

 To statistically test this assumed expectation both datasets (Table 6 and Table 

7) have been merged together (Table 11) and a sign test was performed to test the 

hypothesis. The test sign revealed the p-value of 0.979. As the p-value is larger than the 

alpha level of 0.05, we fail to reject the null hypothesis and conclude that genetically 

altered organisms cannot replace the entire wild population within a decade. 

 
Table 11 Simulation results showing the number of years that are required to replace wild 

mosquito population. 

Simulatio

n number 

The initial 

number of gene 

drive mosquitoes 

(as a percentage 

of wild 

population) 

Initial inheritance 

frequency / chance 

(percent) – male 

(eM) 

Number of years 

required to 

replace wild 

mosquitoes 

Wild mosquito 

population 

replaced in a 

decade? 

(TRUE/FALSE) 

1 1 0.9 10.98 FALSE 

2 1 1 6.29 TRUE 

3 1 0.99 6.51 TRUE 

4 1 0.97 6.99 TRUE 

5 1 0.95 7.56 TRUE 

6 1 0.93 8.23 TRUE 

7 1 0.91 9.05 TRUE 

8 1 0.9 9.53 TRUE 

9 1 0.89 10.04 FALSE 

10 1 0.87 11.38 FALSE 

11 1 0.85 13.18 FALSE 

12 2 0.9 10.88 FALSE 

13 3 0.9 10.45 FALSE 

14 5 0.9 9.97 TRUE 

15 7 0.9 9.76 TRUE 

16 10 0.9 9.53 TRUE 

17 12 0.9 9.40 TRUE 

18 15 0.9 9.28 TRUE 

19 20 0.9 9.11 TRUE 

20 25 0.9 8.96 TRUE 

 

Finally, the main hypothesis for the research stated that based on initial 

parameters such as the location of release, number of released gene drive mosquitoes, 

landscape, gene drive frequency, etc. gene drives can be either effective or less 

effective. Because majority of supporting null hypotheses have failed to be rejected, we 
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conclude that parameters tested in this thesis have had an effect on the effectiveness of 

gene drive technology. However, further simulations with different starting parameters 

and conditions may change this outcome. Due to time limitations, not all potential initial 

parameters, and their influences on gene drive mosquito-spread have been tested. For 

example, mosquitoes in all simulations have been released from the same city in Kenya, 

and no landscape consideration was given in the simulations. This hypothesis is fulfilled 

for number of released gene drive mosquitoes and gene drive inheritance frequency. 

The uncertainty analysis for the model has been tested using several different scenarios. 

This analysis is presented in Appendix E.   
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6. Discussion 
Presented results align closely with previously published studies for gene drive 

altered mosquitoes.2,3,7,11,22 It was expected that increase in the relative number of gene 

drive modified mosquitoes into the wild mosquito population. This relation has been 

previously shown in other studies, including laboratory-based tests.2,3,24,26 The 

percentage ratio set to 1% of gene drive altered mosquitoes to the initial wild population 

released at Malindi in Kenya resulted in 4,009 days to replace the entire wild population 

of native mosquitoes with gene drive altered ones, including mosquitoes that developed 

gene drive resistance. However, this initial percentage ratio's increase to 25% decreased 

the time to replace the wild mosquito population to 3,271 days. This decrease is 

insignificant, given how much the percentage number increased. This is because 

considerable time is required for gene drive altered mosquitoes to travel from Malindi 

and spread throughout the study area. Another reason might be the inheritance ratio set 

up in those simulations to be 0.9, meaning that 0.1 of offspring still have a chance of 

not inheriting the gene drive from its parents. The time requirement to phase out wild 

mosquito population oscillating between 10 to 12 years is reasonable for short-lived 

organisms like Anopheles gambiae with an average life span of 15 days, which aligns 

with the previous studies.14,167,168 

The inheritance ratio test outcomes have shown that the higher inheritance 

ratios, the shorter time required for wild mosquito replacement. This relationship is also 

well reasoned and supported by previous studies. The replacement of the wild mosquito 

population in Kenya took 2,297 days, assuming 100% inheritance frequency for gene 

drive and 10% ratio between released gene drive mosquitoes and the native population 

in Malindi. A decrease in inheritance frequency of gene drives increased the time 

required to replace wild mosquitoes in Kenya to 4,811 days. This has also been shown 

in previous studies. 2,3,7,22,167,168 

The above results clearly show that the impact of inheritance frequency on end 

results and time required to replace the wild mosquito population is significantly greater 

than the impact of the number of released gene drive mosquitoes. However, an 

important consideration, in this case, needs to be understood. The number of gene drive 

altered mosquitoes equal to 10% of the wild population in Malindi corresponds to 9,402 

gene drive altered mosquitoes released in Kenya. This, however, corresponds to only 

0.00144% of the entire Kenyan mosquito population of 6,530,363 mosquitoes. 

           Previous studies which explored the release of genetically modified organisms 

relied on a more decentralized approach,6,8,9,11,14 where genetically modified organisms 

have been released from multiple nodes or locations throughout the study area. This 

approach has proven to be more effective in achieving more effective outcomes.6,9,14 

This was also confirmed via MGDrivE simulations (see Appendix E). Other potential 

considerations to make simulation results more aligned with real-world outcomes are 

described in chapter ‘Future Work’.  

 

6.1 Extending the Further Capacity of the MGDrivE Package 
While the MGDrivE package is very intuitive, robust and gives a user a 

significant degree of flexibility, currently the package is not fully spatial. The so-called 

landscape module is quite limited. Currently, a landscape module accommodates the 

distribution of insect metapopulations connected by migration within the study area and 

facilitates the movement through the resulting network determined by dispersal kernels. 

Whereas metapopulation is considered as a population of populations, or a group of 

populations, made up of the same species. 
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Moreover, each subpopulation, or sub-group, is separated from all other sub-

populations. However, the movement of individuals between subpopulations is allowed 

and occurs regularly. In other words, MGDrivE is working with a limited number of 

larger subpopulations rather than individuals. This is mainly due to the computing 

power and associated computing limitations, considering each individual to be a 

separate node within the network, which is capable of moving around and interacting 

with other individuals, as well as of course being able to transmit malaria parasite would 

require significant computing capabilities, especially when mosquito populations can 

easily reach thousands of units in size. 

A significant body of previous work has shown that populations are often 

vulnerable to fragmentation. When a larger uniform population becomes fragmented 

into smaller populations, small and isolated local populations are often too small to 

sustain. However, when these local populations remain connected with each other via 

the ecological network, such metapopulation can often maintain local populations.163,176 

Large local populations within the metapopulation have a low probability of extinction 

and become a driving force for metapopulation sustainability. These large populations 

are called ‘key populations’ because of their persistent role.177 Future work could focus 

on evaluating how environmental barriers prevent or support the formation of 

metapopulations. The simplest way to perform such simulation would be to manually 

break the network between one or more populations and evaluate the impact. The 

exercise would have on population survival. The previous study shows that for large 

vertebrates, the standard number of reproductive units for a key patch is 20.177 The 

future study could establish similar numbers for different mosquito species. 

Independent studies have shown that metapopulation is sustainable if the chance of 

local extinction is less than 5% in 100 years.177-179  

In addition, future work could evaluate the role of dispersal range on 

metapopulation sustainability. Previous studies have shown that less mobile species 

should form habitat patches more densely packed and situated closer together to form 

coherent ecological networks.180 The question that remains open is sustainability versus 

extinction of malaria vectoring mosquitoes. If we let these mosquito populations go 

extinct, malaria disease will be gone too. Gene drive systems can be used to suppress 

mosquito populations. While current simulation was designed to model population 

replacement, several studies looked at suppressing malaria mosquito populations using 

gene drive systems. Future work could also evaluate such scenarios.12,24,169 

To deal with the computing power issue, MGDrivE is designed to cluster 

mosquitoes into subpopulations forming a metapopulation. This limits the number of 

nodes, where nodes often correspond to cities, villages, or other human settlements 

where mosquito populations thrive. The solution, however, limits the capabilities of 

MGDrivE and makes the simulations as well as corresponding results less reliable. 

Another limitation of the solution is that mosquitoes within the metapopulation do not 

have their own geographic coordinates, as such all the mosquitoes in the specific 

metapopulation are in the exact same location, which corresponds to the geographic 

latitude and longitude of the simulated node. 

In the MGDrivE, the metapopulations are populations that are mixing randomly. 

The equations of the lumped age-class model are applied to those populations. In terms 

of size, the resolution of the metapopulations is selected accordingly to the dispersal 

properties of the investigated insect species. 

Addressing the issues described above and making MGDrivE a fully spatial 

package is of significant interest as it would improve the outcome quality. There are a 
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number of steps and modifications to consider. For example, it is believed that with the 

current code, the package could still maintain and support scenarios where limited, 

probably up to 100 individuals are modelled as single network nodes, each of which 

would have its geographic coordinates. In this case, the code modification would be 

minimal and would include only additional code lines to allow the nodes to be mobile 

within the given study area to simulate mosquito mobility. While a population of 100 

or so individuals is not much, it could still provide valuable outcomes for very small 

study areas, such as a village. 

Further modifications to expand MGDrivE capabilities to make the package 

more functional and to emulate more realistic environmental conditions could focus on 

forcing certain limitations to the current algorithm. The MGDrivE computes the 

distance between each of the nodes and performs a number of other calculations to 

compute different parameters for each pair of nodes. The procedure is very time-

consuming from a computational point of view. To prevent this, a simple ‘if’ statement 

could be put in place once the distance between the pair of mosquitoes/nodes is 

calculated and using logical expressions checks whether the distance is larger than the 

distance initially assumed by the user. If the distance is larger, nothing happens, and the 

algorithm moves to the next mosquito pair. However, if the calculated distance is equal 

or smaller to the distance initially agreed upon, the algorithm computes all these other 

parameters. In this case, the distance could be as little as 500 metres to one kilometre. 

It is unlikely that a pair of mosquitoes further away from each other will have any 

interaction (Figure 11). 

 

Figure 11 Software system diagram illustrating potential distance restriction. 

 

Another modification of the existing code towards making it fully spatial would 

be to divide the entire mosquito population into smaller subpopulations based on 

geographic coordinates. Every single mosquito within the subpopulation would then be 

treated as a separate individual with its coordinates and capability to move around. 

Regular calculations, as per the current algorithm would be limited to calculate the 

distance only between pairs of mosquitoes within this subpopulation. This would create 

a separate network of nodes within the subpopulations. However, the subpopulations 

would by itself also be considered as a node of a higher instance and create its own 
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network, allowing for single mosquitoes to travel between. All of this is done to reduce 

the computational burden of the simulation. This case is shown in Figure 12. 

 

 

Figure 12 Software system diagram illustrating potential distance restriction within separate 

subpopulations. 

 

Because interaction between those subpopulations is possible to reduce the 

computational burden further, once every five or so iteration, the distance between each 

one of the mosquitoes could be calculated and based on the result specific decision 

made. For example, it can be revealed that mosquitoes travelled so far within this given 

interval that now they should be considered as part of a different subpopulation, which 

is geographically closer to their original one. In such a case, sub-populational migration 

would occur. This case is presented in Figure 13. 
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Figure 13 Software system diagram illustrating distance calculation between mosquitoes every 

given simulation iteration number. 

 

Another way of reducing the computational burden required to model each of 

the mosquitoes independently and making the simulation spatial would be to limit the 

number of potential interactions of each mosquito to, for example, five. Meaning that 

every single mosquito within its own lifetime can interact with only a certain number 

of other mosquitoes, in this case, the number would be five mosquitoes. Considering a 

very short lifespan of mosquitoes, it is fair to assume that it will interact with only a 

limited number of other mosquitoes. These other mosquitoes would be selected based 

on the calculated distance. While this is a significant limitation of the study, it would 

allow extensively reducing the computing power (and time) required to perform such 

simulation and at the same time enabling the extension of the capabilities of the current 

environment from semi-spatial to spatial (Figure 14).  
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Figure 14 Software system diagram illustrating potential mosquito limitation to interact with 

a given number of other mosquitoes. 

 

Introducing directed networks and clustering these networks with geographical 

and landscape constraints could be another step allowing for the reduction of the 

computational power required to calculate such simulations and contribute to making 

MGDrivE more spatial environment. 

Introducing geographical and landscape constraints, as well as environmental 

factors such as temperature, humidity, rainfall, elevation, etc., would prevent some of 

the mosquitoes from interacting with each other and at the same time forming clustered 

populations which interact only with each other as such the larger network would be 

disrupted decreasing the number of potential interaction combinations between 

mosquitoes. 

One other way of reducing the time required to perform such simulation and the 

same time to reduce computational power required would be to migrate the existing 

code to a low-level programming language. A low-level programming language is a 

programming language that provides little or no abstraction from computer instructions, 

commands or functions to processor instructions or machine code. Generally, this 

allows skipping a layer or number of layers that are required to translate the given 

commands to those understood by the processor, the same time significantly reducing 

the time necessary to perform such instructions. 

There are also other ways of modelling large populations of mobile mosquitoes 

as independent nodes. However, this would require significant computing power. 

Supercomputers could quickly deal with large populations. Unfortunately, 

supercomputers are not easily accessible, and their computing time is either very 
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expensive or limited and often by application only. At the current stage modelling a 

network of 36 nodes with over 6.5 million mosquitoes over a period of ten years (3,650 

iterations) took over 90 minutes using an average computer. Performing the same 

simulations using supercomputer would reduce this time to single minutes, maybe even 

seconds. 

In addition, as the mosquito movement within the study area is modelled with 

complex migration networks, these networks can serve as a valuable source of further 

information regarding modelled systems. It would be of value to further extend the 

capabilities of the package and include a tool that will allow studying the movement of 

mosquitos and spatial gene-flows within the studied area. The new tool could also 

perform network analysis to identify any routines between mosquitoes but also between 

generations. 

Being able to study these networks in more detail would reveal certain 

landscape-related factors influencing genes and diseases transmission. This would 

enable individuals to design more complex research questions. It could, for example, 

be possible to design a scenario with two separate populations and networks. One of 

which would correspond to mosquito populations, whereas the other one would 

simulate the human population. Having in-depth and more detailed information on the 

network and different routines within two populations would allow establishing how 

the movement of humans and mosquitoes influence malaria and gene-drive patterns. 

6.2 Case Study Specific Aspects of Future Work 
Other work could include multiple avenues and a number of smaller sub-studies. 

For example, it would be interesting to evaluate how quickly gene drive altered 

mosquitoes will replace existing, wild populations when introduced from multiple 

nodes/cities. The current arrangement which involves the introduction of engineered 

species at only one node, which is a coastal town in Kenya, is not preferential because 

cities or towns that are further away from the coast and will take longer for modified 

mosquitoes to migrate to the area. It would also be interesting to see how introduction 

into larger cities, such as Mombasa or Nairobi, influences the spatial distribution and 

the time required to replace the wild population. In the current scenario, mosquitoes are 

introduced in a coastal town with a small population, as such, from the beginning the 

spread is limited. Having a release node in a major city could give very different results. 

Further, it would be of interest to introduce more nodes to the existing network 

of 36 cities. Additional nodes would potentially shorten the time required for 

mosquitoes to travel between the cities and as such, would reduce the time required to 

replace wild populations throughout all nodes in the network. However, the 

introduction of further nodes would have a negative effect on the computing time 

needed to perform the simulation. Some of those new nodes could be small rural areas 

and villages. The introduction of additional node parameter, which specifies whether 

the area is urban or rural and assigns specific probability parameter to it would also be 

an interesting experiment. 

It would be interesting to introduce geographic and climatic parameters that 

influence the scenario. Temperature, latitude, altitude, rainfall, humidity, and a number 

of other parameters influence the mosquito and parasite life cycle. Including these 

parameters in the simulation would add a level of complexity to the model but would 

also make it more realistic and more precise. For example, it would allow linking the 

results to a specific time of the year. For example, the temperature in Kenya changes 

significantly throughout the year. Temperature is one of the major factors enabling 

mosquito and parasite development. Having altitude as a contributing factor to the 
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simulation would allow certain areas where climatic conditions are not favourable for 

mosquito development to be excluded from the studies.  

Future environmental and climatic parameters have to be selected so that 

simulation can be performed without putting further burden on computing capabilities. 

Individual climatic and environmental layers might be correlated or compliment with 

each other. For example, altitude and temperature could be reduced to altitude layer 

only, since the temperature can be modelled as a function of latitude, longitude, and 

altitude. A simple equation that would translate geographic parameters to temperature 

could be used instead of a separate temperature layer.  

Another effort to expand modelling capabilities could focus on the introduction 

of natural barriers. For example, it is known that mosquitoes do not thrive at higher 

altitudes due to significantly lower average temperatures at those elevated levels. This 

could create natural barriers where mosquitoes cannot live in or pass through. Other 

types of natural obstacles would be large water bodies and deserts, among others. This 

scenario is presented in form of a schematic in Figure 15. 

 

 

Figure 15 Software system diagram illustrating natural barriers and limitations for mosquito 

travel. 

The environmental barriers not only have an immense effect on single 

metapopulations but also on the population as a whole. Factors such as species 

characteristics, their key lifecycle processes (i.e., larval or egg cycle), amount, shape as 

well as the area and spatial configuration of habitat patches (species connectivity to the 

landscape) all indicate whether an ecological network, like the network created between 

metapopulations in the current simulation, can sustain a persistent population. 

Modelling of environmental barriers could be a primary focus of future work as these 

barriers influence species change of extinction and survival. 

All of the cases presented in the current study focus on population replacement. 

It would be interesting to run a series of similar scenarios where the main goal is 

population suppression to reduce the malaria effect and probability rather than complete 

replacement. It would be further interesting to compare how suppression compares to 
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replacement in terms of time, also because new entrants from natural populations may 

occur naturally at a later stage and then a suppression scenario is more cost-effective. 

The current study assumes that gene drive modified mosquitoes are released 

only once during the entire simulation. It could be interesting to see how continuous, 

for example, once a year release of gene drive mosquitoes in smaller batches affects the 

spatial distribution and the time required for replacement of wild populations. It could 

be interesting to see the effect of different release intervals on the overall effectiveness 

of the strategy. 

Finally, it would be interesting to continue the current two studies with different 

parameters to establish whether they always follow a certain trend. Extending the time 

of the studies would also be an interesting experiment. The data gathered thus far shows 

that once the wild population is entirely replaced by gene drive altered population, the 

number of gene drive mosquitoes slowly decreases while the mosquitoes with gene 

drive resistance lowly but effectively increase. As such, one would think that having 

long enough time the resistance could take over and make mosquitoes immune to gene 

drive, same time allowing further spread of malaria. 
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7. Conclusions 
The undertaken computational study has further confirmed the complexity of 

the studied system, and the role of each of the studied system parameters on the overall 

outcome. The results have shown that it is feasible to alter the wild mosquito population 

using gene drives to introduce specific traits. However, the study has also demonstrated 

that complete eradication of malaria using gene drives is potentially not achievable 

because a number of individuals in the population would develop gene drive resistance, 

which would make the strategy ineffective for a fraction of the population while at the 

same time allowing them to further the vector malaria parasite. 

The number of individuals in the population that would develop gene drive 

resistance is relatively small and is estimated to be 10% on average. Gene drive-altered 

mosquitoes would be an effective tool for reducing the burden of malaria. However, 

complete eradication is not possible based on the results of the computational study. 

Gene drive technology could potentially be combined with traditional preventive 

methods to further lower the probability of malaria contraction. 

The study has also revealed that altering wild population is achievable within 

less than a decade depending on the gene drive system frequency and release strategy, 

namely the number of gene drive mosquitoes released into the wild population. 

Whereas the number of gene drive mosquitoes initially related to interacting with the 

wild population can be relatively small, the frequency of the gene drive system must be 

very high to make the replacement feasible within a decade. Generally, it seems that 

gene drive systems with inheritance frequencies of 90% or above would be sufficient 

enough to achieve the goal within the next ten years., given the resistance to gene drives 

is not developed. If gene drives resistance occurs, gene drives mosquitoes could also 

bring desired effects and reduce the malaria spread, but it wouldn’t eliminate malaria. 

Readers must bear in mind that the results presented here are based on a 

mathematical model, which aims to emulate the real case scenarios. However, a number 

of factors have not been included in the model as such the actual release of gene drive 

modified mosquitoes to the environment may show significantly different outcomes. 
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8. Research Ethics 
The potential ethical issues associated with the study are non-existent. The study 

is based on previously developed models that have been adapted for the study. Neither 

mosquitoes or malaria parasites nor gene drives have been tested in the contained 

laboratory or broader environment as part of the study. The study was designed to avoid 

any potential issues arising from the use of living or living modified organisms as 

defined in the Cartagena Protocol on Biosafety to the Convention on Biological 

Diversity. 

All results presented in the study are purely theoretical and are a result of 

mathematical models and computational simulations of the models in the study. 

Whereas, the models used in the study and developed in other studies are based on 

validated laboratory data for gene drives or real field data for mosquitoes, this 

researcher did not influence how the validation data was collected, and whether all 

biosafety and bioethics rules and regulations were in place. However, the researcher 

believes that the original data collected to develop the models met all bioethics and 

biosafety requirements. 

Further, the data presented in the study and obtained in the simulation process 

may not represent real-life scenarios. However, the researcher put adequate effort to 

emulate, as closely as possible, the scenarios that can happen in the real world. In either 

case, the researcher does not encourage anyone to try to reproduce the presented 

simulations in the real-life scenario using gene drive-modified mosquitoes. Such action 

could result in breaching the Cartagena Protocol on Biosafety to the Convention on 

Biological Diversity as well as other country-specific or international protocols and 

laws. 

The researcher behind this study would like to remind everyone that the 

Precautionary Principle, which states “when an activity raises threats of harm to human 

health or environment, precautionary measures should be taken even if some cause and 

effect relationships are not fully established scientifically,” should always be a priority. 

While the introduction of gene drive altered mosquitoes shows a promise in 

decreasing malaria burden in Kenya, one needs to remember that the release of gene 

drive-altered organisms would be ethically wrong and could pose serious threats to 

Kenyan biodiversity and human health. 
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Appendix A 

 

Figure A1 Developmental stages of malaria parasites (Plasmodium species). Reproduced from 

World Health Organization.134 
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Figure A2 Expanded conceptual diagram of factors related to malaria spread with gene drives 

introduced to the system. Boxes correspond to specific factors responsible for malaria spread. 

Circles group various factors responsible for the traditional prevention and treatment of 

malaria and factors for gene drive-based solution. Lines and dots represent relations between 

different factors. The author created the figure based on a literature review of various factors 

responsible for malaria spread. All presented factors have been described in the main text of 

this document. 
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Appendix B 
Table B1 Database of 36 major cities in Kenya with their latitude, longitude, and 

population.  

City Latitude Longitude Country Administrative division Population 

Nairobi -1.28333 36.81667 Kenya Nairobi City 3,010,000 

Mombasa -4.05466 39.66359 Kenya Mombasa 882,000 

Kisumu -0.10221 34.76171 Kenya Kisumu 395,615 

Nakuru -0.28333 36.06667 Kenya Nakuru 364,727 

Eldoret 0.520356 35.26993 Kenya Uasin Gishu 353,381 

Kitale 1.015725 35.00622 Kenya Trans Nzoia 150,495 

Machakos -1.51667 37.26667 Kenya Machakos 144,925 

Thika -1.05 37.08333 Kenya Kiambu 99,322 

Kericho -0.36774 35.28314 Kenya Kericho 98,852 

Malindi -3.21748 40.1191 Kenya Kilifi 94,016 

Kendu Bay -0.35892 34.64924 Kenya Homa Bay 91,248 

Kilifi -3.63045 39.84992 Kenya Kilifi 80,339 

Sotik -0.68333 35.11871 Kenya Kericho 71,285 

Garissa -0.45355 39.64011 Kenya Garissa 67,861 

Kakamega 0.284219 34.75229 Kenya Kakamega 63,426 

Embu -0.53112 37.45061 Kenya Embu 58,620 

Bungoma 0.563504 34.56055 Kenya Bungoma 55,962 

Nyeri -0.42013 36.94759 Kenya Nyeri 51,084 

Meru 0.046256 37.65587 Kenya Meru 47,226 

Wajir 1.747102 40.05732 Kenya Wajir 45,771 

Naivasha -0.71667 36.43591 Kenya Nakuru 43,983 

Voi -3.39452 38.56304 Kenya Taita/Taveta 36,487 

Nanyuki 0.016667 37.07283 Kenya Laikipia 36,142 

Kisii -0.67394 34.77225 Kenya Kisii 28,547 

Moyale 3.5167 39.05842 Kenya Marsabit 24,837 

Lamu -2.26925 40.89915 Kenya Lamu 24,525 

Maralal 1.09679 36.69799 Kenya Samburu 20,841 

Lodwar 3.119881 35.59642 Kenya Turkana 20,219 

Eldama Ravine 0.051578 35.73078 Kenya Baringo 17,581 

Marsabit 2.328394 37.98986 Kenya Marsabit 16,460 

Namanga -2.54327 36.79053 Kenya Kajiado 13,193 

Mwingi -0.93435 38.06005 Kenya Kitui 11,219 

Witu -2.38886 40.43821 Kenya Lamu 5,380 

Karungu -0.84641 34.15479 Kenya Migori 2,376 

Konza -1.7426 37.12941 Kenya Machakos 2,004 

Tsavo -2.99208 38.46188 Kenya Taita/Taveta 414 
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Appendix C 

  

  

  

  

  
 

Figure C1 Examples of MGDrivE simulations for CRISPR-based homing constructs. 

Simulation parameters were unchanged and are the same as described in the main body of the 

thesis, except for the parameter responsible for the ratio between a number of introduced gene 

drive organisms to the wild population. The ratio is listed on the plot for each of the simulations. 

Red color corresponds to organisms that developed the resistance to gene drive (R), orange is 

a gene drive (homing gene) population (H), and blue corresponds to wild population (W). The 

inheritance frequency (eM) was fixed at 0.9. 
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Appendix D 

  

  

  

  

  
 

Figure D1 Examples of MGDrivE simulations for CRISPR-based homing constructs. 

Simulation parameters were unchanged and are the same as described in the main body of the 

thesis, except for male gene drive frequency parameter (eM) responsible for the frequency of 

gene drive inheritance onto the offspring. The frequency is listed on the plot for each of the 

simulations. Red color corresponds to organisms that developed the resistance to gene drive 

(R), orange is a gene drive (homing gene) population (H), and blue corresponds to wild 

population (W). The initial number of gene drive mosquitoes as a percentage of wild population 

was fixed at 1%. 
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Appendix E 
To further evaluate how input parameters affect mosquitoes' distribution and the 

time required for gene drive mosquitoes to replace the wild population, additional 

modelling experiments have been developed.  

Instead of releasing gene drive mosquitoes in one city only (Malindi), 

mosquitoes have been released in four different cities, including Malindi, Wajr, 

Lodwar, and Karungu. The results have been then compared to gene drive mosquitoes 

results from a single release point (Malindi). The percentage of gene drive altered 

mosquitoes released at Malindi to wold mosquito population was 3%. Because the 

assumption is made that the mosquito population in each of the cities equals the human 

population in those cities, the initial number of gene drive mosquitoes released at 

Malindi was 2,820. For the other case, where gene drive mosquitoes are released from 

four cities, the total number of gene drive mosquitoes released was kept the same. The 

number of gene drive mosquitoes released from those four nodes was 705, giving a total 

of 2,820. The results of this experiment are shown in Figure E1. 

 

 
Figure E1 Examples of MGDrivE simulations for CRISPR-based homing constructs. The 

comparison of gene drive release from one location versus gene drive mosquito release from 

four different locations. The total number of gene drive mosquitoes release in each of the cases 

was 2,820. In the scenario where gene drive mosquitoes are released from four different 

locations, the number of gene drive mosquitoes released at each location was equal (705 

mosquitoes). Red color corresponds to organisms that developed the resistance to gene drive 

(R), orange is a gene drive (homing gene) population (H), and blue corresponds to wild 

population (W). The inheritance frequency (eM) was fixed at 0.9. 

 

The results shown in Figure E1 indicate that it is more efficient to release the 

same number of gene drive altered mosquitoes from multiple locations than from one 

single location. Release of gene drive mosquitoes from multiple locations reduces the 

time required for gene drive mosquitoes to replace the wild mosquito population.  
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Further uncertainty analysis looked at the influence of the release point on 

mosquito numbers. The results of this exercise are shown in Figure E2. In the first 

simulation, 2,820 mosquitoes (3% of Malindi population) have been released at 

Malindi. In two subsequent simulations, the same number of mosquitoes have been 

released in Nairobi and Witu. The reason behind selecting Nairobi is that it is the largest 

and centrally located city in Kenya. While Witu is significantly smaller yet centrally 

located. The initial release of 2,820 gene drive mosquitoes is significant compared to 

Witu’s population of 5,380. 

 

 

 
Figure E2 Uncertainty analysis of MGDrivE simulations for CRISPR-based homing 

constructs. The comparison of gene drive release from different locations and its influence on 

time required to replace wild mosquito populations. The total number of gene drive mosquitoes 

release in each of the simulations was 2,820. Red color corresponds to organisms that 

developed the resistance to gene drive (R), orange is a gene drive (homing gene) population 

(H), and blue corresponds to wild population (W). The inheritance frequency (eM) was fixed at 

0.9. 

Sensitivity analysis presented in Figure E2 indicates that release point 

significantly impacts the time required for gene drive mosquitoes to replace the wild 

mosquito population. Nairobi is large and centrally located. Malindi is of a smaller 

population and located on the coast, further away from other nodes. Witu is a small size 

town that is centrally located. This impact is, however, convoluted. The initial number 

of gene drive mosquitoes released in different cities was the same, while population-

wise, those cities are of significantly different population size. Due to population size 
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and central location release of gene drive modified mosquitoes in Nairobi reduces the 

time required for gene drive mosquitoes to spread within the study area and replace the 

wild population. 

 The final uncertainty analysis relies on the release of gene drive mosquitoes in 

Malindi and a comparison of time required for gene drive mosquitoes to spread to cities 

that are further away, such as Nairobi and Lodwar. This case is presented in Figure E3. 

Please note that the population axis in each of the cities has a different scale. 

 

 

 
Figure E3 Uncertainty analysis of MGDrivE simulations for CRISPR-based homing 

constructs. The comparison of gene drive release from Malindi to compare time required for 

gene drive mosquitoes to reach other cities (Nairobi, Lodwar). Red color corresponds to 

organisms that developed the resistance to gene drive (R), orange is a gene drive (homing gene) 

population (H), and blue corresponds to wild population (W). The inheritance frequency (eM) 

was fixed at 0.9. The percentage ratio of gene drive mosquitoes released at Malindi to wild 

mosquitoes at Malindi was fixed at 3%. 

 

The final uncertainty analysis clearly illustrates that based on the distance 

between simulation nodes (cities), the spread of gene drive mosquitoes is slower in the 

cities further away from the release location. 
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