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Abstract

In a phase of instability during the dynamical evolution of some multiple exoplanetary
systems, exchange of angular momentum and/or energy through gravitational interactions
between planets will lead to alterations of their orbital properties. In some cases, planetary
orbits end up crossing, which leads to close encounters between two planets. In turn, they
undergo a planet–planet scattering event, where a large exchange of angular momentum
and energy leads to a significant change in trajectories and thereby their orbits. The
distribution of eccentricity for observed giant planets provides strong evidence for past
planet–planet scattering events in many exoplanetary systems. One particular outcome
of such an event is when one of the planets ends up on a highly eccentric orbit, which
leads to a planet–star collision, also referred to as planet consumption. When a planet is
consumed, it can transfer physical quantities such as angular momentum, energy and heavy
elements to the host star, altering its properties. Due to the transfer of said quantities, a
planet consumption event can have observational consequences for the host star that are
detectable by astronomical instruments.

In this thesis, I first employ a semi-analytical two-body model to constrain which type
of orbital configuration in a planetary system with a single star will facilitate planet con-
sumption. I then use the constrained parameter space to formulate a fiducial planetary
configuration. The dynamical evolution of said system is then modelled using 100 numer-
ical N -body integrations, which allows me to further determine for which type of systems
that planet consumption by planet–planet scattering is possible. Moreover, I tie the results
of the semi-analytical and numerical analysis to a literature study in order to constrain
which type of observational consequence will dominate for consumption of planets on highly
eccentric orbits.

From the two-body analysis, I conclude that planet consumption is more probable for
scattering events where: the planetary mass ratio is extreme, where the inner planet is
less massive than the outer; the planets are orbiting a host star with low density; at least
one of the orbits is highly eccentric, preferably that of the least massive planet; the event
occurs at small separations from the host star. Based on these results, I also formulate
the fiducial planetary system, which is a Solar System analogue with two Earth-mass plan-
ets inside of 1 AU and three initially unstable Jupiter-mass planets beyond 5 AU. From
the numerical N -body integrations I find that hierarchical systems with low-mass planets
and at least two unstable giant planets will consistently induce consumption of planets
of 30 Earth masses and less. When the system has three giant planets, around 10% of
the integrations lead to the consumption of a giant planet. Such an event can produce
an observational consequence where a single giant planet ends up on a very distant orbit
with arbitrary eccentricity. The integration results also show that there are three extreme
pathways to planet consumption: diffusive planet consumption, where the eccentricity of a
planet increases diffusively over a large number of scattering events; strong planet consump-
tion, where the eccentricity is boosted up quickly over a small number of scatterings and
Lidov–Kozai planet consumption, where the eccentricity increases through the Lidov–Kozai



mechanism which excludes planet–planet scattering.

In the literature study I determine that the dominant observational consequence highly
depends on stellar properties such as age, metallicity, mass and radius, as well as planetary
mass, radius and composition. Moreover, the minimum separation between the planet and
the host star during an orbit determines the strength of detectable signatures. A majority
of the observational consequences are difficult to directly tie to planet consumptions, mean-
ing that detections of such events are good targets for future multi-waveband astronomy
missions. From the results of the numerical integrations performed, I estimate that the
dominant observational consequence from planet consumption in the Milky Way is metal-
licity enhancement by consumption of super-Earths. Outside the Galaxy, the dominant
observational consequence is planet merger transients caused by the consumption of a giant
planet, which induces an increase of stellar luminosity in the optical/infrared wavebands
followed by a radio afterglow that lasts for a few thousand years.
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Popular science summary

Astronomers make for excellent investigators and the Milky Way provides an exciting crime
scene full of clues and evidence of remarkable events in the past. Stars have collided with
one another. Stars have been swallowed by black holes. Stars have exploded in supernovae,
leaving black holes or neutron stars behind. Our galaxy has had a violent past, to say the
least. But how do we know? Well, compared to detectives investigating criminal cases
back on Earth, astronomers have a significant advantage. They can look back in time.
The light shining down on us from countless of stars on the night sky during an evening
stroll holds many secrets. Not only can the light tell us about stellar ages, masses, sizes and
compositions, it can also provide us with clues about destructive events that have occurred
in their past. For exoplanetary scientists, there is one mysterious case in particular that
needs solving: Where have all the planets gone?

Observations of exoplanetary systems indicate that the Solar System is special. The large
number of single planet systems and the lack of planets on short-period orbits near the Sun
or highly elliptical orbits are all observational signatures that thicken the plot. Moreover,
according to planet formation theory, planets are likely to be born on circular orbits in
systems with more than one planet. In turn, there must be some mechanism that eliminates
planets from the systems between their birth and the time of observation, while putting
remaining planets on short-period and/or elliptical orbits. The clue that blows the case
wide open is the fact that observed planetary systems with multiple planets have large
average separations, meaning that there is a lack of systems where the planets are tightly
packed together. Computer simulations of the evolution of planetary systems where the
planets have small initial separations show that they are highly unstable. This instability
often resolves in a violent celestial dance where the planets gravitationally interact and
alter each other’s orbits. This is called planet–planet scattering.

One particular outcome of this chaotic dance is that a planet can end up colliding with its
host star in an event referred to as planet consumption. Depending on when and where the
planet hits the host star and its impact velocity, it can alter different properties of the host
star. A faster rotational velocity around its axis than predicted by theoretical models, a
notable increase in metals within a star’s atmosphere or a brief increase in its brightness
are all smoking guns that point towards a past planet consumption event.

In this thesis, I have used an analytical model and computer simulations to investigate
which type of planetary system architectures that consistently produce planet consumption
events by planet–planet scattering and what kind of planet is more likely to end up being
eaten. I have then performed a literature study of observational consequences induced
by planet–star collisions to couple my simulation results to detectable signatures in the
properties of a host star. I found that planets with thirty times the mass of the Earth
and less consistently get eaten when they are in the same system as at least two giant
planets of a third of Jupiter’s mass or more. The low-mass planets are likely to create
signatures in the light from the culprit star showing an increase in Lithium and heavy



metals. A giant planet can also get eaten in 10% of the systems if they are born with at
least three giants. This can produce a large variety of observational signatures that can be
seen millions of light-years away in neighbouring galaxies such as Andromeda. I found a
previously unexplored observational consequence where the consumption of a giant planet
can lead to the existence of systems where a single giant planet orbits the host star at
large distances. The existence of such systems is poorly explained by planetary formation
theory.

While the signatures caused by planet consumption generally are weak, the next genera-
tion of astronomical instruments such as the Square Kilometre Array and the Vera Rubin
Observatory will most probably be able to consistently detect such events. In turn, ex-
oplanetary scientists will develop their understanding of the early evolution of planetary
systems and obtain a major piece of evidence regarding the mysterious uniqueness of the
Solar System.
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Chapter 1

Introduction

Ever since the first confirmed discovery of an exoplanet orbiting a Main Sequence (MS)
star in 1995, when Mayor & Queloz detected 51 Pegasi, the field of planetary science
and exoplanet observations has seen a monumental surge in activity and interest. At the
time of writing, only 25 years later, there are 4277 confirmed exoplanets in the NASA
exoplanetary archive (Akeson et al., 2013). From observations of planetary systems with
NASA’s Kepler Space Telescope mission (‘Kepler’, Borucki et al., 2010) and theoretical
models of planet formation (Johansen & Lambrechts, 2017), it is clear that the architecture
of the planets in the Solar System is by no means typical. A significant fraction of the
observed exoplanetary systems host Jupiter-mass planets that orbit their star at small
separations . 0.2 AU. These planets are referred to as hot Jupiters1. The existence of
hot Jupiters cannot be explained by planet formation theory alone and thereby hints at
a history of rich dynamical evolution between multiple planets in the planetary systems
hosting the hot Jupiters (Naoz, 2016). During a phase of instability, the intrinsic planet
population within these systems exchange angular momentum and/or energy, which can
significantly alter the properties of their orbits around the host star (Davies et al., 2014).
In some cases, the exchange of angular momentum and/or energy leads to the crossing of
two orbits and close encounters between planets where they gravitationally perturb the
orbits of one another. The subsequent exchange of angular momentum and energy during
such encounters that leads to alterations of their trajectories is known as a planet–planet
scattering. Planet–planet scattering events have three distinct outcomes that lead to the
disruption of an orbit, which are believed to be more frequent than the creation of hot
Jupiters (Ford & Rasio, 2008):

1. ejection: A planet gets completely unbound from the planetary system.

2. planet–planet merger: The two planets merge, leaving a single more massive
planet behind.

1Terms in italics throughout the thesis are explained in the glossary on page 155.
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INTRODUCTION

3. planet consumption: A planet on a highly elliptical orbit collides with its host
star and gets consumed.

Planet–planet scattering has been studied extensively since the increase in popularity of
planetary science from 1995 and the fractional rate of these three outcomes have been
constrained using numerical integration (see Davies et al., 2014, and references therein).
In turn, planet consumption has been widely regarded as an uncommon occurrence in
planetary systems. However, in a recent paper, Carrera, Raymond, & Davies (2019) argued
that many previous studies on planet–planet scattering have preemptively removed planets
on highly elliptical orbits from their integrations, leading to an underestimation of the
number of planet consumptions in their studies. In turn, said outcome may be more
common than previously believed.

A key feature of planet consumption events is that the disrupted planet will transfer phys-
ical quantities to the host star, altering its properties. Depending on the intrinsic physical
properties of the two bodies, as well as the nature of their close encounter, there will be a
dominant exchange of either angular momentum, energy or heavy elements. Each type of
dominant exchange leads to a different observational consequence for the host star that can
be detectable with the use of astronomical instruments. For example, exchange of angular
momentum can lead to spin-up of the host star’s rotation (Qureshi, Naoz, & Shkolnik,
2018). While a majority of studies investigating the effect of planet–star collisions have
investigated observational consequences for planets on orbits near their host star that de-
cay over time (e.g. Laughlin & Adams, 1997; Sandquist et al., 1998, 2002; Li et al., 2008;
Metzger et al., 2012), more recent studies show that planets on highly elliptical orbits col-
liding with their host star will induce different observational signatures (Yamazaki et al.,
2017; Church et al., 2020; Stephan et al., 2020).

In this thesis, I have carried out semi-analytical and numerical studies of planet–planet
scattering in single star planetary systems to develop a better understanding of how often
and for which type of configurations planet–planet scattering leads to planet consumption.
Further, I have performed a literature study followed up with toy–model calculations to
constrain which type of observational consequence is most detectable for planet consump-
tion of planets on highly elliptical orbits.

The thesis is structured as follows:

• Chapter 2: I lay out the fundamentals of planetary orbits and properties used to
quantify their position relative to their host star.

• Chapter 3: I present the current picture of planetary multiplicity, mass distribution,
orbital properties, as well as host star properties of exoplanetary systems according
to observations and planet formation theory.

• Chapter 4: I explain how long-term dynamical interactions between planets lead to
instabilities in their planetary systems, ultimately producing planet–planet scattering
events.

8



INTRODUCTION

• Chapter 5: I investigate planet–planet scattering using a toy–model two-dimensional
and isolated two-body model, where the orbits of two planets are crossing. In sec-
tion 5.1, I derive the analytical solutions for the problem. In section 5.4, I use the
model to constrain the parameter space for planetary and stellar properties that will
enhance the probability of having planet consumption events.

• Chapter 6: I numerically integrate the three-dimensional dynamical evolution of
potentially planet-consuming systems to better constrain how often planet–planet
scattering leads to ejection, merger and planet consumption. I go through the details
of the numerical setup in section 6.1, present the fiducial choice of orbital configu-
ration of planets in section 6.2 and the resulting planetary systems are discussed in
section 6.3.

• Chapter 7: I perform a literature study of planet consumption events and introduce
the various observational consequences that they can induce. By performing toy–
model calculations of the effects planet consumption has on the host star, I further
tie the results of my numerical integrations to observational consequences.

• Chapter 8: I discuss the results of my investigation of planet consumption by
planet–planet scattering with respect to shortcomings of the theoretical models used,
planet formation theory and detectability of observational consequences. Finally, I
present possible future improvements that can be made to expand the study.

• Chapter 9: I briefly summarise the work done in the thesis and present the major
conclusions drawn from my results.

The major conclusions from chapters 5 through 8 are found in sections 5.5, 6.7, 7.8 and
8.3.5, respectively. Furthermore, a list of symbols that are commonly used throughout
the thesis are found on page 151. For all symbols, the subscript p (?) indicates that the
quantity is a property of a planet (host star). For a list of acronyms and the glossary
explaining words and terms in italics, see pages 154 and 155, respectively.
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Chapter 2

Properties of planetary orbits

In order to properly discuss the behaviour of planets as they undergo dynamical evolution
in planetary systems, it is necessary to lay out the basics of their orbits. I use this chapter
to present the key features of a planetary orbit according to Kepler’s laws of planetary
motion.

2.1 Planetary orbits are elliptical

According to Kepler’s first law, a planetary orbit is an ellipse with a star at one of its foci.
The semi-major axis of the ellipse is denoted by a and the distance from the centre of the
ellipse, C, to the focus where the star is positioned is c. These planetary orbit components
are shown in figure 2.1. The eccentricity of an orbit is defined as

e =
c

a
(2.1)

and is a measure of its ellipticity, i.e. how flattened the ellipse is. Increasing the eccen-
tricity of an orbit in turn increases its ellipticity. There are three limiting cases that we
consider

1. e = 0: The orbit is circular.

2. e = 1: The orbit becomes parabolic and unbound from the system.

3. e > 1: The orbit becomes hyperbolic and unbound from the system.

The effect of altering the eccentricity of an orbit is illustrated in figure 2.2.

Since an ellipse is a conic section, I can use polar coordinates to express the distance
between any point on the ellipse and the star as

rp =
`

1 + e cos(θ)
, (2.2)
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2.1. ECCENTRIC ORBITS PROPERTIES OF PLANETARY ORBITS
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θ

M?

Mp

C
rapa

Figure 2.1: A schematic showing the geometry of a Keplerian orbit with an eccentricity
of e = 0.8, as seen face-on. The different components are indicated by their respective
variable names at the midway point of their length.

where θ is the angular coordinate to this point measured from the semi-major axis, pointing
away from C, and ` is the semi-latus rectum. The semi-latus rectum is defined as half the
distance of a line passing through one of the foci of the ellipsis orthogonal to the semi-
major axis. Furthermore, I show the periastron and apastron distances in figure 2.1, rperi

and rapa, which are the closest and the farthest separations between the host star and the
planet on its orbit, respectively. From the geometry of the orbit it is straightforward to
find that

rperi + rapa = 2a. (2.3)

Next, I can use equation (2.2) to express these two distances as

rperi =
`

1 + e
, and rapa =

`

1− e, (2.4)

where I have used the fact that the periastron has a true anomaly of θ = 0 and the apastron
has a true anomaly of θ = π. Combining these two expressions with equation (2.3) and
solving for a, I find that for an ellipsis the semi-latus rectum can be written as

` = a(1− e2). (2.5)
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Figure 2.2: Illustration of the effect of varying the eccentricity of a planetary orbit with
a static semi-major axis a. In blue is a circular orbit with e = 0, in red an eccentric orbit
with e = 0.8 and in green a highly eccentric orbit with e . 1. The grey plus sign indicates
the position of the host star.

Now combining (2.5) with (2.2), I can obtain the more useful expression for r that is valid
for elliptical orbits

rp =
a(1− e2)

1 + e cos(θ)
. (2.6)

2.2 Orbital elements

In the instance of a planetary system containing more than one planet, it is useful to
identify them and compare their relative positions using a reference system that is based
on more than their eccentricity and semi-major axes. While it is possible to use a Cartesian
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i Reference direction

ω

θ
Ω

Planet

Reference plane

Planetary orbit

J

Figure 2.3: A Keplerian orbit, shown in a frame defined by the plane of reference and a
reference direction. The diagram displays four of the six orbital elements of a Keplerian
orbit: the inclination i; the argument of the periastron ω; the longitude of the ascending
node and the true anomaly θ. The angular momentum vector J , which is orthogonal to
the plane of rotation, is also shown.

coordinate system, it is common practice to use the so-called Keplerian elements. In total,
a Keplerian orbit can be uniquely identified using six elements which are defined relative to
a reference direction and a reference plane. I have already introduced the semi-major axis,
a, and eccentricity, e, which provide a measure of the shape of the ellipsis. The remaining
four orbital elements displayed in figure 2.3, which determine the orientation of the orbit
relative to the reference system, are defined as follows:

• Orbital inclination i: The vertical tilt between the orbital plane and the reference
plane measured at the intersection of the two planes, which is referred to as the
ascending node.

• Longitude of the ascending node Ω: The angle between the reference direction
and the ascending node in the reference plane.

• Argument of the periastron ω: Measure of the angle between the ascending node
of the orbit and its periastron.

• True anomaly θ: The angle between the periastron and the current position of the
orbiting body.

13



2.3. ORBITAL MOTION PROPERTIES OF PLANETARY ORBITS

Figure 2.3 also displays the angular momentum vector J , which is orthogonal to the orbital
plane and is given by

J = rp ×Mvp, (2.7)

where M is the mass of the object and vp is the velocity vector. An important property
of the angular momentum vector is that it is effectively constant for a given orbit and
only changes due to external forces, such as gravitational interaction with other bodies in
a planetary system. Moreover, it is highly related to the eccentricity of a planet since a
circular orbit will have maximal angular momentum for a given semi-major axis. If the
planet loses angular momentum to another body in the system, its orbit will become more
eccentric. Hence, the fact that it is a conserved quantity during planet–planet and planet–
star interactions is key for understanding planetary dynamics, which is discussed in detail
in chapter 4. Another useful quantity is the specific angular momentum vector, h, which
simply is given by

h = rp × vp. (2.8)

The mutual inclination, im, for two orbits, which represents the angle between the two
angular momentum vectors can be computed using the law of cosines (Muterspaugh et al.,
2006):

cos(im) = cos(i1) cos(i2) + sin(i1) sin(i2) cos(Ω1 − Ω2). (2.9)

The mutual inclination value can be interpreted using the following reference values:

• im = 0◦: The angular momentum vectors are parallel.

• im = 90◦: The angular momentum vectors are perpendicular.

• 90◦ < im < 180◦: One orbit is retrograde with respect to the other.

• im = 180◦: The angular momentum vectors are anti-parallel.

Note that all orbital elements will be static for a single planet except for θ, which will
change as the planet travels along its orbit. The remaining five elements can only be
altered by external perturbations from other forces, such as gravitational interaction with
another planet or a passing star.

2.3 Motion of a planet on an elliptical orbit

I now consider a two-body system of the kind displayed in figure 2.1, where a solitary
planet orbits a star positioned at the origin of the coordinate system. The position of the
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2.3. ORBITAL MOTION PROPERTIES OF PLANETARY ORBITS

planet is given by the vector rp and it has a velocity of vp. As indicated in figure 2.4,
the velocity vector can be divided into two components, the radial velocity vr and the
tangential velocity vθ, which means that the velocity can be written as

vp = vrr̂ + vθθ̂ (2.10)

= ṙpr̂ + rpθ̇θ̂ (2.11)

where e.g. θ̇ is the time-derivative of θ1. Let the angle in between vp and vr be denoted α.
Using the definition of the cross product, I can write the magnitude of the specific angular
momentum vector from equation (2.8), h = |h|, as

h = |rp × vp| = rpvp sin(α), (2.12)

where v = |v|. From the geometry in figure 2.4 I then work out that

sin(α) =
vθ
vp

⇐⇒ vp sin(α) = vθ. (2.13)

In combination with equation (2.12), I end up with the useful relation

h = rpvθ = r2
pθ̇. (2.14)

Since my system is isolated, the only force acting on each body is the gravitational force
exerted by the companion body. An expression for the relative motion of such a system
that can be derived from Newton’s laws (De Pater & Lissauer, 2015) is given by

F g = µr
d2rp

dt2
= −GµrMtot

r2
p

r̂, (2.15)

where µr is the reduced mass of the system

µr =
MpM?

Mp +M?

(2.16)

and Mtot = Mp +M? is the total mass of the system. Moreover, I consider the centripetal
force required to keep an object of mass µr in a circular orbit of radius r around an object
of mass M?

F c =
µrv

2
θ

r
r̂ = rθ̇2r̂. (2.17)

1Note that ṙp is the radial velocity component and not |ṙp|
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Figure 2.4: Simple schematic of the two-body problem in figure 2.1, where I consider
the components of the velocity vector that indicate the motion of the planet due to its
gravitational interaction with the host star.

Using that F g − Fc = 0 for this circular orbit, I obtain that

vc =

√
GMtot

r
. (2.18)

However, it would be much more useful to rewrite this velocity in terms of the orbital
elements for an elliptical orbit. Furthermore, I need to find an expression for θ̇. In order
to achieve this, I recognise that the acceleration in the radial direction for a body on an
orbit more generally can be described as the sum of two terms, the time derivative of the
radial velocity and the centripetal acceleration. Setting the sum of these two components
equal to the gravitational acceleration, I obtain the radial equation of motion

r̈p − rpθ̇
2 = −GMtot

r2
p

. (2.19)
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2.3. ORBITAL MOTION PROPERTIES OF PLANETARY ORBITS

The standard solution for this differential equation is found in Szebehely (1989)

rp =
h2/GMtot

1 + (Ah2/GMtot) cos(θ)
, (2.20)

where A is a constant of integration. This is another form of the expression for the distance
between the focus and a point on a conic section, in my case an ellipse, which is given in
equation (2.2). Comparing the two relations, I find that

` =
h2

GMtot

. (2.21)

Now I have two independent expressions that contains the magnitude of the specific angular
momentum, h, in equations (2.14) and (2.21). Equating them, I arrive at another useful
expression

r2
pθ̇ =

√
GMtot`. (2.22)

I am now fully equipped to express the components of the orbital velocity v in terms of
orbital elements. Using the chain rule and employing equations (2.2) and (2.22), I find
that

ṙp =
drp

dθ
θ̇ =

`e sin(θ)

(1 + e cos(θ))2

(
(1 + e cos(θ))

`

)2√
GMtot` (2.23)

= e sin(θ)

√
GMtot

`
(2.24)

Finally, using that ` = a(1− e2) from equation (2.5) I obtain an expression for the radial
velocity

vr =

(
GMtot

a(1− e2)

)1/2

e sin(θ). (2.25)

The tangential velocity component is found by dividing equation (2.22) by rp and again
inserting equation (2.5), which yields

vθ =

(
GMtot

a(1− e2)

)1/2

(1 + e cos(θ)). (2.26)

These expressions can easily be verified by considering the case of a circular orbit with
e = 0, as this yields vθ = vc and vr = 0.
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2.4. ORBITAL ENERGY PROPERTIES OF PLANETARY ORBITS

2.4 Orbital energy

Another important quantity of an elliptical orbit is orbital binding energy. Given a set
configuration with a host star of mass M? and a planet of mass Mp, the orbital energy
solely depends on the semi-major axis of the orbit. Hence, the orbital binding energy is
useful when quantifying how bound a planet is to the system.

The total energy of the bound system in the rest frame of the host star is the sum of the
kinetic energy and potential energy of the body, which can also be written in terms of the
semi-major axis

E =
1

2
µrv

2
p −

GMtotµr
rp

= −GMtotµr
2a

. (2.27)

From this equation, it is clear that the planet is bound when its potential energy is larger
than its kinetic energy. Moreover, the energy goes to zero as a→∞. Therefore, a planet
that has an energy of E < 0 is considered bound to the system, while a planet with an
energy of E ≥ 0 can be considered unbound and ejected from the system.
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Chapter 3

Observed exoplanetary systems

In this chapter, I lay out the current understanding of exoplanet occurrence and architec-
ture based on the data of detected exoplanets, which serves as a basis for the potentially
planet-consuming planetary systems I have investigated in this thesis.

Detecting an exoplanet orbiting one or more host stars is no simple feat due to the large
mass differences between star and planet and a lack of intrinsic luminosity of the planet
itself. Instead, one has to opt for indirect methods of detection. 76.1% of the current
4277 confirmed detections in NASA’s exoplanetary archive (Akeson et al., 2013) have been
made with the transit method, where an instrument measures reductions in the light flux
from the host star which occurs when a planet passes the star along the line of sight of
the observer. 19.2% of the detections are from the radial velocity method, which measures
the Doppler shift in spectral lines of the host star induced by variations in the radial
motion due to gravitational interaction with a planet in orbit around it. There exists a
number of additional methods including astrometry, gravitational microlensing and direct
imaging that accounts for the remaining detections. Nevertheless, are not discussed in this
thesis. For an extensive review of exoplanetary detection methods, see Wright & Gaudi
(2013).

Another difficulty for exoplanet detection apart from the requirement of indirect methods is
that the presence of a planet orbiting a host star cannot be confirmed by one method alone.
Hence, to fully confirm the observation of an exoplanet additional follow-up measurements
and validations are needed. The most common practice is to combine the physical prop-
erties found through the radial and transit methods, which complement each other. The
radial velocity exoplanet detection method provides a minimum limit for the mass of the
planet and its orbital distance. The reason why the exact mass cannot be estimated is
because it only provides the minimum mass of the planet Mp sin(i), where i is the incli-
nation of the planet’s orbit. This parameter cannot be inferred from the radial velocity
method alone. Instead, the inclination has to be provided by the transit method, which
also provides the planetary radius. Hence, by combining the two, the density of the planet
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can be found. Knowing the density of the object, it is possible to deduce if the detection
is in fact an exoplanet or a false positive (De Pater & Lissauer, 2015).

The majority of the detected exoplanets have been found by ‘Kepler’ which used the transit
method. Hence, most of the conclusions drawn regarding occurrence and architecture of
exoplanetary systems are largely based on a single mission. Furthermore, it is necessary
to take into account the fact that it is easier to detect more massive planets since they
will yield a larger perturbation on the host star, both in terms of radial velocity and light
flux in case of a transit event. This leads to a lack of data for planets of Earth-mass and
below. In turn, there is a possibility that the current perception of exoplanetary system
occurrence and architecture may suffer from heavy bias. For example, Zink, Christiansen,
& Hansen (2019) found that the detection efficiency of the ‘Kepler’ pipeline drops after
the first detection of an exoplanet, which may introduce a bias towards mis-identifying
multiple systems as single-planet systems. Previous studies have found that there appears
to be a strong indication that ‘Kepler’ system planets have similar properties to other
planets present in the system (e.g. Millholland et al., 2017; Weiss et al., 2018). As a
response, another source of bias was pointed out by Zhu (2020), where the varying transit
signal-to-noise ratio detection thresholds could favour detection of planets of a given size
around a host star of a specific mass. The claims by Zink, Christiansen, & Hansen and Zhu
have triggered an ongoing debate regarding the validity of some of the conclusions drawn
from the ‘Kepler’ sample (Sandford et al., 2019; Weiss & Petigura, 2020; Murchikova &
Tremaine, 2020; Gilbert & Fabrycky, 2020). While taking a stance in this debate is beyond
the scope of this thesis, I proceed by noting the potential biases in the ‘Kepler’ sample
and discuss any possible implications that they could have on the results from this work
in chapter 8. The gap in information due to the lack of detected planets below the mass
of Neptune, MNep, is likely to be filled by next generation exoplanetary surveys such as
NASA’s Transiting Exoplanet Survey Satellite (TESS), which is expected to detect over
∼ 10 000 exoplanets, among which about 1000 will be of terrestrial mass (Ricker et al.,
2015). Another ongoing mission is ESA’s CHaracterising ExOPlanet Satellite (CHEOPS),
which is set to provide first estimates or improvements of planatary radii using the transit
method (Benz et al., 2020).

In order to investigate the properties of observed and confirmed exoplanets, I have opted
to use a parameter-limited sample in which all planets have estimates for their mass and
radius, henceforth referred to as the MR-sample. This yields a data set consisting of 550
planets (NASA Exoplanet Archive, 2020). Since the mass and radius of a planet requires
detection through at least different two detection methods, there will be a bias towards
planets that can be detected with the radial velocity method. Since detection depends on a
sufficiently strong gravitational interaction between planet and host star (Wright & Gaudi,
2013), the sample thereby mainly consists of giant planets, i.e. planets with masses larger
than 0.3 Jupiter masses, MJ. Looking at the distribution of masses and semi-major axes
for the planets in the sample in figure 3.1, there evidently is a surplus of massive planets
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Figure 3.1: The mass as a function of semi-major axis for confirmed exoplanets from the
NASA exoplanet archive, as well as the Solar System planets. Note that this distribution
is strongly biased towards giant planets that are easy to detect.

orbiting their stars on short-period orbits1. The incompleteness is further confirmed by
including the masses and semi-major axes of the Solar System planets, showing a lack of
terrestrial planets, ice giants such as Uranus and Neptune and Jupiter analogues. Data on
the properties of the Solar System planets for this and future plots in this chapter have
been taken from Williams (2019).

The reason why I still opted to use this sample as a reference for the properties of exo-
planetary system will become more evident further on, e.g. in sections 5.1.3 and 5.4.1. To
summarise the reasoning briefly, a planetary system with multiple planets is more likely
to have planet-consuming events if it has planets with extreme mass ratios Mp,1/Mp,2,

1Short-period orbits have small semi-major axes, putting the planets near their host star, while wide
orbits have large semi-major axes.
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which speaks to planet consumption being more common in exoplanetary systems with
e.g. a giant planet and a terrestrial planet or super-Earth, which are planets with masses
M⊕ < Mp < MNep. Hence, the systems of main interest will have at least one giant planet
present. Since the short-period orbits of the giants may be a consequence of dynamical
evolution (Dawson & Johnson, 2018), which I discuss more in detail in section 3.6, it is
not certain that this distribution accurately represents the initial semi-major axes for these
planets after the depletion of the protoplanetary disk that they formed in. What is im-
portant however, is that the systems in which these giants have been observed are in fact
able to produce massive planets. I further discuss the occurrence of giant planets in the
upcoming section. Systems with cold Jupiters, which are giants with a & 1 AU seem to
often host super-Earths as well (Zhu & Wu, 2018; Bryan et al., 2019). Hence, such systems
are likely to host planets with extreme mass ratios. One explanation for this is that mas-
sive enough planets migrating through protoplanetary disks can open up a gap in the disk,
effectively quenching the flow of pebbles inwards towards the host star which can limit the
mass growth of inner planets (Lambrechts, Johansen, & Morbidelli, 2014). Given that I
mainly considered the orbital elements of the planets at the onset of dynamical evolution,
I had no idea of the initial configurations of the systems that are planet-consuming and
if they in the end would produce systems with giants on short-period orbits. Hence, the
systems in the data set of choice still provide key information about the properties of the
relevant planets and the stars that are able to host giants.

3.1 Multiplicity of planets in exoplanetary systems

Modern surveys using the most common methods for detecting planets indicate that the
probability of a random star within the mass range 0.5 M� ≤ M? ≤ 1.2 M� to host at
least one planet is ∼ 1 (Winn & Fabrycky, 2015). However, due to most of the planet
detection techniques being biased towards planets of masses larger than MNep, there is a
lack of information regarding the average number of planets within exoplanetary systems
(Winn & Fabrycky, 2015). Nevertheless, as seen in figure 3.2, a significant fraction of
the systems within the MR-sample host more than one planets. While a majority of the
‘Kepler’ systems found through the transit method appear to host a single planet, biases
inherent in the observational technique (Kipping & Sandford, 2016) and treatment of data
in the pipeline that disfavours multiple detections (Zink, Christiansen, & Hansen, 2019)
indicate that the multiplicity in many systems has been underestimated. This apparent
existence of two populations of planets within observed exoplanets, where one consists
of systems with lower mass multiple planets of low mutual inclination and the other of
systems with a single planet or multiple high mutual inclination planets of varying masses,
is known as the ‘Kepler’ dichotomy (Johansen et al., 2012).

For a sample consisting of the planetary systems of 1537 host stars of spectral classes F,
G and K from the ‘Kepler’ mission, Sandford, Kipping, & Collins (2019) used a statistical
approach to infer that 50% of the systems they investigated most likely has one or more
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Figure 3.2: Plot showing the multiplicity of the observed and confirmed exoplanetary
systems in the parameter-limited MR-sample. There is a clear trend where single planet
systems are dominant, but this effect can be a product of observational bias in the ‘Kepler’
systems (Zink, Christiansen, & Hansen, 2019).

additional undetected planet(s). Hence, a surplus of single planet exoplanetary systems
discovered by ‘Kepler’ probably host multiple planets. Since chaotic dynamical evolution
within a planetary system will lead to the loss of planets, the initial number of planets cre-
ated in a system may be even larger. Moreover, multiple planets and clustering is favoured
over single planet systems given the ‘Kepler’ data (He, Ford, & Ragozzine, 2019).

3.1.1 Giant planet occurrence

When it comes to giant planets, they seem to be more common around stars of high
mass (Johnson et al., 2010) with high metallicity (Sousa et al., 2011). Nevertheless, about
∼ 10 − 15% of Solar-type stars have gas giants with Mp & 50 − 100 M⊕ and despite the
large proportion of short-period orbits in the MR-sample, a majority of discovered giant
planets orbit at distances ap & 1 AU (Cumming et al., 2008; Mayor et al., 2011; Fernandes
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et al., 2019). Additionally, ∼ 25 − 30% of exoplanetary systems that contain a gas giant
will host additional giant planet companions (Wright et al., 2009; Wittenmyer et al., 2020).
Among these systems, a surplus of the host stars have super-Solar metallicities (Buchhave
et al., 2018). Furthermore, the cold Jupiters orbiting these high metallicity stars have a
broader distribution of eccentricities (Winn & Fabrycky, 2015). Hence, chaotic dynamical
evolution could be more common in super-Solar metallicity stars. As for the initial orbital
configuration of giant planets, there is still much to be learned from the limited understand-
ing regarding the formation history of distant giant planets since they undergo substantial
migration through the protoplanetary disk (Johansen & Lambrechts, 2017). Nevertheless,
massive protoplanetary disks with a high flux of pebbles can consistently produce multiple
cold Jupiters, which is also consistent with the production of lower mass planets interior
to their orbits due to pebble flux quenching (Lambrechts et al., 2019; Bitsch et al., 2019;
Wimarsson et al., 2020).

3.2 Orbital elements of observed planetary systems

indicate scattering events

Exoplanets observed through the radial velocity method show a rich distribution of eccen-
tricities. Merely looking at the distribution of eccentricities and semi-major axes for the
planets in the MR-sample in figure 3.3, a large fraction of the population has orbital eccen-
tricities larger than zero and a few planets with ap > 0.2 AU have extreme eccentricities
between 0.8 and 0.9. There is an indication that the eccentricity increases with orbital
distance from the host star as well, which can be attributed to tidal circularisation, where
a planet on an eccentric and/or wide orbit loses angular momentum and energy through
tidal interactions with the host star, putting it on a more circular and shorter period orbit
(Winn & Fabrycky, 2015). This effect becomes relevant for orbits with ap < 0.2 AU, which
explains the lack of highly eccentric orbits with small semi-major axes. Since planets form
in protoplanetary disks that effectively dampen eccentricities (Nelson et al., 2000), keeping
the orbit circular, some mechanism is needed that can explain the large eccentricities of
some planets that reach values up to 0.8 and 0.9 after depletion of the protoplanetary
disk.

An important feature of the distribution of eccentricity is that it seems to be heavily coupled
to the multiplicity of the planets in the system both according to analysis of observational
(Wright et al., 2009) and synthetic (He et al., 2020) data. Planets within planetary systems
with multiple planets have lower eccentricities and mutual inclinations (Tremaine & Dong,
2012; Johansen et al., 2012) while planets within systems where only one planet has been
confirmed are more often highly eccentric and inclined to the rotational plane of the host
star. Given that a large fraction of the single planet systems are likely to host additional
planets and that the rich eccentricity distribution can be modelled well through planet–
planet interactions within multiple planetary systems (Davies et al., 2014), it seems that
the distributions of orbital elements of planets are highly dependent on the dynamical
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Figure 3.3: The eccentricity as a function of semi-major axis for confirmed exoplanets
from the NASA exoplanet archive, as well as the Solar System planets. Note the difference
in limits on the x-axis from figure 3.1, which is due to the lack of information of the
eccentricity for wide orbit giant planets.

history of their system. Hence, one of the possible explanations for the ‘Kepler’ dichotomy
is that the singles on eccentric and inclined orbits originally were formed in a multiple
planetary system with several gas giants that dynamically evolved in a manner that led to
excitation or disruption of orbits, making the observed planets appear as single in transit
surveys (Pu & Wu, 2015; Mustill, Davies, & Johansen, 2017). Another hypothesis is that
the dichotomy is created in the early stages of planet formation, where the formation of
an outer giant planet suppresses the growth of detectable planets above terrestrial masses
within its semi-major axis, creating inherent single planet systems (Johansen et al., 2012).
This creates the hierarchical distribution of mass among the planets that we observe in the
Solar System, where the low-mass rocky planets are situated closer to the star than the
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giant planets. Recently, Bitsch, Trifonov, & Izidoro (2020) found that inefficient dampening
of orbital eccentricities during the planet formation phase allows for early close encounters
between planets, effectively reproducing the observed eccentricity distribution of massive
giant planets. Their simulation results also indicate that highly eccentric massive giant
planets above 5 MJ are less likely to host super-Earths interior to their orbits, while less
massive giant planets on nearly circular orbits are more likely to harbour super-Earths.
Furthermore, He et al. (2020) found that the ‘Kepler’ dichotomy in fact might be explained
by a single population with a broad distribution of mutual inclinations. In agreement with
Bitsch, Trifonov, & Izidoro, they concluded that planetary systems with more planets after
the depletion of the protoplanetary disk will have lower median eccentricities and mutual
inclinations.

In this thesis, I am interested in systems that are hierarchical in mass, undergoing rich
dynamical evolution and thereby adopt the view that my systems of interest are created
around FGK stars with multiple giant planets exterior to one or more terrestrial planets.
Furthermore, I assume that the initial orbits are circular and of low mutual inclinations
that proceed to evolve chaotically, leading to the loss of one or more planets.

3.3 Orbital spacing in multiple planetary systems

As I explain in more detail in chapter 4, the timescale for unstable dynamical evolution
of a planetary system is highly dependent on the separation between planets (Cham-
bers, Wetherill, & Boss, 1996). Studies of ‘Kepler’ systems with multiple planets indicate
that planets have uniform spacing ratios in terms of their semi-major axes. Furthermore,
this spacing is large enough for the planetary system to be considered dynamically stable
(Weiss et al., 2018; Weiss & Petigura, 2020; Gilbert & Fabrycky, 2020; He et al., 2020).
Nevertheless, this is one of the observational patterns for the ‘Kepler’ systems that are a
source of controversy due to potential detection biases (Zhu, 2020; Murchikova & Tremaine,
2020).

As previously stated, I proceed by simply assuming that this is a real effect and will address
the potential errors this could produce in my results at a later stage. The key consequence
of this behaviour of exoplanets for the work in this thesis is that observation of multiple
planetary systems with small separations between their planets is highly unlikely. This is
due to the fact that planets with small separations evolve on very short timescales as their
dynamical interactions lead to changes in orbital elements that grow with time. They are
thus classified as dynamically unstable, as I discuss further in section 4.1.5. Since apparent
single planet systems have on average more eccentric orbits that are more inclined with
the respect to the rotational plane of their host star, there is an additional indication that
these systems had a larger intrinsic number of planets that were closely spaced and thus
evolved by exciting or disrupting several orbits. Due to the fact that this evolution occurs
on a short timescale as compared to the lifetime of the planetary system (Davies et al.,
2014), it is highly unlikely that any closely packed systems would be observed before they
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have completed their dynamical evolution.

3.4 Exoplanet properties

To create a synthetic configuration of planets with given properties, I wanted to consistently
be able to couple the mass of the planets to a given radius and density. This was easiest
done by using an empirically and statistically derived Mass-Radius relation (MR-relation).
Given the current lack of data for terrestrial planets and limited data for super-Earths
and mini-Neptunes, as well as the diverse range of bulk compositions for planets below
30 M⊕ (Jontof-Hutter, 2019), it is challenging to develop a strong empirical relation for
low-mass exoplanets. In this thesis, I have employed a semi-empirical formula from Zeng,
Sasselov, & Jacobsen (2016). They made use of the fact that the most well-studied rocky
planet in the Universe is the Earth, whose composition has been carefully modelled from
seismic measurements, which resulted in the Preliminary Reference Earth Model (PREM:
Dziewonski & Anderson, 1981). By extrapolating the PREM equations of state for the
interior of the Earth, Zeng, Sasselov, & Jacobsen produced an MR-relation dependent on
the Core Mass Fraction (CMF) of rocky exoplanets given by

(
Rp

R⊕

)
= (1.07− 0.21× CMF)

(
Mp

M⊕

)1/3.7

. (3.1)

As for the CMF value, it can be directly computed from equation (3.1) for a planet with
known Mp and Rp. For example, the Earth has a CMF of 0.33 according to the formula.
To facilitate the modelling of exoplanets in this study, I have simply assumed that all
planets below a limiting mass for rocky planets have a CMF equal to that of Earth.

To model the planets that are not rocky, I have made use of the log-quadratic empirical
MR-relation for planets in the mass range 30 M⊕ ≤ Mp ≤ 3000 M⊕ from Tremaine &
Dong (2012)

log

(
Rp

RJ

)
= 0.087 + 0.141 log

(
Mp

MJ

)
− 0.171

(
Mp

MJ

)2

. (3.2)

I have plotted the resulting joint MR-relation in figure 3.4 along with the masses and
radii for the population in the MR-sample, as well as the Solar System planets. I have
chosen the transition mass of Mp = 2.62 M⊕, which is the mass value where these two
relations intersect. While the joint MR-relation provides a good fit for the terrestrial
planets below the intersection and for gaseous planets above this limiting mass, there is
a lack of information regarding the apparent bimodal population of planets in the range
2.62 M⊕ < Mp . 20 M⊕, showing the aforementioned compositional diversity of low-mass
exoplanets.
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Figure 3.4: The mass as a function of radius for confirmed exoplanets from the NASA
exoplanet archive, as well as the Solar System. I have also plotted the joint mass-radius
relation I used in the project.

Hence, the use of this joint MR-relation introduces a strong assumption that all planets
below 2.62 M⊕ are rocky, while all planets above said mass are gaseous, which is not the case
(Jontof-Hutter, 2019). I note that this issue could be avoided by using the bimodal low-
mass exoplanet MR-relation from Otegi, Bouchy, & Helled (2020), which became available
late during the thesis work or the more complex joint MR-relations from Bashi et al. (2017)
or Neil & Rogers (2020). Nevertheless, I chose to commit to my simplistic joint relation
since it still provides a reasonable fit for the MR-sample. Any implications for the results
are addressed in chapter 8.

3.4.1 Metal content of exoplanets

While giant planets are over∼ 100 times more massive than rocky exoplanets, the difference
in planetary metallicity of these two planet types is not as significant. The low density
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of giant planets, as inferred from the MR-relation from figure 3.4, hints at a significant
compositional difference. Planet formation theory indicates that the most massive planets
form by accreting a heavy gaseous envelope onto a rocky core that typically has a mass of
at least ∼ 10 M⊕ (Johansen & Lambrechts, 2017). By using the measured masses and radii
of several giant exoplanets from transit and radial velocity observations and employing a
thermal and structural evolution model, Thorngren et al. (2016) obtained an estimate of
the heavy metal content of 47 giant planets at ap & 0.1 AU. Many of these specimens
display a high metallicity, indicating that many of the giants have cores more massive
than 10 M⊕. Ginzburg & Chiang (2020) further showed that this result is consistent with
collisions and mergers of multiple cores before the onset of runaway gas accretion during the
early planet formation stage. Moreover, results from Wimarsson, Liu, & Ogihara (2020)
indicate that mergers of multiple cores migrating through the protoplanetary disk speed up
the formation timescale of giant planets. Thorngren et al. (2016) also used their model to
infer that Jupiter has a core mass of around 37 M⊕, meaning that the core of Jupiter also
could have formed through the collision of multiple protoplanets during the early evolution
of the Solar System. Given that the Jupiter-mass planets from the MR-relation in equation
(3.2) are less dense than Jupiter, I assumed a more conservative heavy metal content of
20 M⊕ for giant planets considered in this thesis. Furthermore, I considered completely
rocky planets, i.e. beneath 2.62 M⊕, to have a metallicity of Zp = 1. As for the more
massive cases of 3 M⊕, 10 M⊕ and 30 M⊕ which are assumed to have gaseous envelopes, I
opted for a core mass of 2.5 M⊕. This was motivated by the core mass threshold for gas
accretion in in-situ formation models for low-mass planets (Jontof-Hutter, 2019).

3.5 Properties of host stars

Given that the goal of this thesis is to couple the results from the dynamical modelling of
chaotic planetary systems to the effect of planets being consumed by their host stars, it is
also important to understand which type of stars will host giant planets. Hence, I used the
properties of the host stars from the MR-sample. The NASA Exoplanet Archive assigns
masses to the host stars using their Tycho catalogue B-V or V-K colours (Høg et al., 2000)
in combination with the empirical mass-colour relationships from Gray (1992) and Henry
& McCarthy (1993). It is noteworthy that these relationships assume Solar metallicities,
so the masses for stars with higher or lower metallicities will be systematically shifted from
their true values. As for the estimated stellar radii, the NASA Exoplanet Archive has
computed them using the measured effective temperatures and luminosities of the stars in
the expression

R2
? =

L?
4πσSBT 4

eff

, (3.3)

where σSB is the Stefan-Boltzmann constant. I only selected stars with relative fractional
errors in the mass or radius that are less than 0.1.
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The mass-radius relationship I employed to compute radii for synthetic stars in this work
is valid for Zero Age Main Sequence (ZAMS) stars and is an empirically derived formula
from Tout et al. (1996) that holds for metallicities Z? = 0.0001 to 0.03. The radius is given
by

R? =
κ0M

2.5
? + κ1M

6.5
? + κ2M

11
? + κ3M

19
? + κ4M

19.5
?

κ5 + κ6M2
? + κ7M8.5

? +M18.5
? + κ8M19.5

?

. (3.4)

The values of the coefficients κk are dependent on the metallicity of the star and can be
computed using the following relations

κk = c0 + c1 log10

(
Z?
Z�

)
+ c2 log10

(
Z?
Z�

)2

+ c3 log10

(
Z?
Z�

)3

+ c4 log10

(
Z?
Z�

)4

, (3.5)

where the values of the constants ck can be found in table 2 of Tout et al. (1996).

The resulting MR-relation for host stars has been plotted together with the measured
masses and estimated radii in figure 3.5. The colours of the data points indicates the
host star metallicity. From the plot, there is an apparent discrepancy in the empirical
ZAMS MR-relation and the measured MR data points, especially for the higher mass
stars. This is due to the fact that many of the observed stars have already left the main
sequence. Moreover, since the time spent on the main sequence is proportional to the
mass of the star (Prialnik, 2000), the discrepancy will be more pronounced for higher mass
stars. Nevertheless, the ZAMS approximation is still appropriate due to the fact that the
timescale for the evolution ∼ 10 Myr of the dynamically unstable planetary system is less
than the time it takes for a star to leave the MS (Davies et al., 2014). Hence, I expected
the unstable systems of interest in this thesis to finish dynamically evolving before entering
their post-MS phases.

Due to the aforementioned study of Sousa et al. (2011) indicating that giant planets are
more likely to orbit stars of higher metallicity, I expect the MR-sample to mainly contain
super-Solar metallicity stars. Figure 3.6, depicting the measured metallicity of the host
star as a function of its estimated mass, shows that this is indeed the case.

3.6 Hot Jupiters and their origin

From the distribution of masses and semi-major axes for the MR-sample, it is clear that
many of the observed giant exoplanets in the mass range 0.25 MJ ≤Mp sin(i) ≤ 20 MJ are
on short-period orbits. This phenomenon has given rise to the term ‘hot Jupiter’, which
refers to massive giants with an orbital period of 10 days or shorter (ap . 0.1 AU). While
they are highly abundant in the MR-sample, only ∼ 1% of Solar-type stars host a hot
Jupiter (Johnson et al., 2010). Nevertheless, their existence poses a significant challenge
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Figure 3.5: The stellar mass-radius relation from Tout et al. (1996) that I employed in
the project plotted together with the masses and radii of the observed host stars for the
exoplanets in figure 3.4. The colour gradient indicates the stellar metallicities.

for modelling the dynamical evolution of planetary systems. There are three main theories
that could explain how hot Jupiters come to be (Dawson & Johnson, 2018)

1. In-situ formation: Hot Jupiters form at their present short-period orbits.

2. Gas disk migration: Some gas giants migrate through the protoplanetary disk due
to the force exerted on them by torques from the gaseous disk component and end
up at low semi-major axis orbits.

3. Tidal circularisation: Cold Jupiters on highly eccentric orbits tidally interact with
the host star which circularises the orbit at a lower semi-major axis.

The current understanding of giant planet formation is that planetary embryos are formed
far out in the protoplanetary disk when a planetesimal increases in mass through pebble
accretion and/or collision, while it continuously migrates through the disk. If the embryo
forms at too small a distance from the host star, it will not to reach its pebble isolation
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Figure 3.6: The stellar mass, as well as stellar metallicity for the host stars of the
exoplanets in the mass-radius relation of figure 3.4.

mass at an early stage. Again, reaching pebble isolation mass will prevent pebbles from
reaching the parts of the system interior to the orbit and triggers slow migration (Bitsch
et al., 2015; Johansen & Lambrechts, 2017). Therefore, if it does not reach its isolation
mass, the embryo will not be able to grow to its observed mass before reaching its final
semi-major axis of ap < 0.1 AU. Hence, in situ formation is highly unlikely. Nevertheless,
neither gas disk migration nor tidal circularisation can solely account for the population
of giant planets, meaning that the full formation history of hot Jupiters is most probably
given by a combination of the two (Dawson & Johnson, 2018).

As argued in the previous sections, the picture of intrinsic planetary systems I have adopted
in this thesis is based on the assumption that my systems of interest initially consist of
several cold Jupiters outside the orbits of one or more terrestrial planets. As discussed in
the next chapter, such a configuration is likely to produce giants on highly eccentric orbits
that could be tidally circularised and thus create a hot Jupiter.
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Chapter 4

Dynamical evolution of multiple
planetary systems

The apparent differences between the configurations of observed exoplanets and the planets
in our very own Solar System hint at an underlying process that can significantly alter the
architecture of planetary systems. Long-term gravitational interactions between planets
in planetary systems after the conclusion of the planet formation stage have been made
subject to a variety of studies in the past two decades and provide a plausible pathway to
the diverse distribution of observed orbital eccentricities (e.g. Chatterjee et al., 2008; Ford
& Rasio, 2008; Jurić & Tremaine, 2008; Raymond et al., 2010, 2011). In this chapter, I
go through the fundamental mechanisms of planet–planet interactions and how they lead
to the dynamical evolution of planetary systems that ultimately ends in excitation and/or
disruption of planetary orbits.

4.1 The stability of planetary systems

Due to gravitational interactions between planets and matter in protoplanetary disks, orbits
in multiple planetary systems are likely to initially be coplanar and nearly circular after
the planetary formation stage has concluded and the disk has been depleted of material
(Nelson et al., 2000). Hence, the driving process behind the observed excited orbits of
exoplanets must have occurred sometime in between the culmination of the protoplanetary
disk phase and today. Gravitational interactions between planets lead to the exchange of
angular momentum and/or energy that can significantly alter orbital elements. The energy
is inversely proportional to the semi-major axis while the angular momentum is directly
proportional to the tangential velocity of the orbit. Hence, the angular momentum of an
orbit is related to the eccentricity of an orbit. A completely circular orbit will have a
maximal angular momentum for a given semi-major axis, while a highly eccentric orbit
with e . 1 will have little to no angular momentum. Therefore, the removal of angular
momentum from a planet will increase its eccentricity allowing it to move further outwards
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or inwards in the system, given that the minimum and maximum distances from the host
star is given by rmin = a(1− e) and rmax = a(1 + e), respectively. Henceforth, I will refer
to decreasing values of rmin as radial incursions and increasing values of rmax as radial
excursions. When it comes to the exchange of energy between planets, gaining energy
makes the planet less bound to the system, which follows from equation (2.27) where
E → 0 when a→∞.

An important property of the total angular momentum and energy in a planetary system
in the rest frame of the host star is that it will be conserved among the bodies in the
system, assuming that they do not undergo interactions with an external celestial object
or dissipate energy in tides or collisions. Hence, any exchanges of angular momentum and
energy will be restricted to occur between the planets unless they end up on very short-
period or highly eccentric orbits that allow for strong gravitational interaction with the
host star. Given the nature of gravitational forces, the strength of the interaction between
two bodies is highly dependent on their separation. In turn, the strongest of gravitational
interactions, and thereby exchanges of angular momentum and energy, occur when two
planetary orbits are crossing. The separation between two planets in a planetary system
is usually measured in terms of mutual Hill radii given by

RHill,m =

(
Mk +Mk+1

3M?

)1/3
ak + ak+1

2
, (4.1)

where Mk and ak are the planetary mass and semi-major axis of its orbit, respectively.
Two planets within one Hill radius of each other can undergo gravitational encounters that
are strong enough to significantly alter the trajectory of one or both of the planets. When
two planets are within such a distance of each other, it is known as a close encounter. As
for the gravitational encounter that leads to a change in trajectories, I again refer to such
an event as a planet–planet scattering.

The separation between two planets is thus a good measure of the stability of their system.
If the orbits of two planets will never cross, they are referred to as Hill stable. Gladman
(1993) showed analytically that a two-planet system with initially circular and coplanar
orbits is Hill stable if

∆ =
(a2 − a1)

RHill,m

& 2
√

3. (4.2)

For systems with three or more planets there exists no such analytical criterion, but Hill
stability is still commonly used as a reference for the stability of two adjacent planets.
The timescale for stability is also highly related to the separation between the planets,
as well as the mass ratio between the planet and the host star q? ≡ Mp/M?. Chambers,
Wetherill, & Boss (1996) found through numerical experiments that the time before the
first close encounter, tCE, in a system of three equal-mass planets is well approximated by
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log(tCE) = b∆ + c, where b and c are constants. Moreover, their investigation showed that
such systems will almost always be unstable if the planets are separated such that ∆ < 10.
For ‘Kepler’ systems, the spacing between planets has a lower limit of ∆ ∼ 10 (Weiss et al.,
2018).

4.1.1 Secular theory

For stable systems, there is also a continuous exchange of angular momentum and/or en-
ergy, but the magnitude of these exchanges are not large enough to induce a large change
in orbital elements that could trigger further instability. By averaging the small changes
in orbital elements due to gravitational interactions for a fixed Keplerian orbit over a long
period of time, Lagrange and Laplace formulated the secular theory (Davies et al., 2014).
This functions as a first order approximation for the evolution of orbits in multiple plan-
etary systems, where the semi-major axes remain constant while the orbital eccentricities
and inclinations oscillate with periods of ∼ 105 yr. Since there are no long-term trends
for this theory, the secular approximation easily breaks down when the interplanetary
separations are smaller, allowing for an oscillation amplitude that grows over time.

4.1.2 Mean motion resonance

Another instance where the secular approximation breaks down is in the presence of Mean-
Motion Resonance (MMR) (Davies et al., 2014). Said effect occurs when the orbital periods
of two planets in a given system are a simple integer ratio of each other. For example,
in a 2:1 MMR, the planet with the shorter period will complete two revolutions when
the longer period planet has completed one revolution. The dynamical behaviour of a
planetary system can change completely under the influence of MMRs, as they can become
destabilised due to eccentricity and inclination oscillations increasing in amplitude over
time. They can also become stabilised due to two planets on crossing orbits getting locked
in an MMR where they will never undergo a close approach. Nevertheless, I did not
include a discussion of MMRs in the analysis of dynamical evolution in this thesis due to
time-restriction.

4.1.3 Angular momentum deficit

A more useful tool for quantification of instability within a planetary system with N ≥ 3
bodies is the Angular Momentum Deficit (AMD) (Laskar, 1997, 2000), which is given
by

AMD =
∑
k

Λk

(
1− cos(ik)

√
1− e2

k

)
, (4.3)
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where

Λk =
MkM?

Mk +M?

√
G(Mk +M?)ak (4.4)

is a constant for a planet k with mass Mk and an orbit with semi-major axis ak, eccentricity
ek and inclination ik around a host star with mass M?. The AMD gives insight in the total
eccentricities and inclinations of the planetary orbits within a given system. As the name
suggests, the AMD of a given planet provides a measure of its lack of angular momentum
relative a reference plane in the planetary system. Therefore, being highly inclined to that
plane can still yield a significant AMD for a completely circular orbit. Moreover, the AMD
is a conserved quantity in the absence of MMRs and scattering, meaning that the total
AMD available in a system can be interpreted as a dynamical temperature that will limit
the possible outcomes for a system. Naturally, it can also be used to formulate a criterion
for stability (Laskar & Petit, 2017). If the AMD is low enough in a system, there cannot be
a rearrangement of AMD between the planets that yields orbit crossing and planet–planet
scattering and the system can as a result be considered to be long-term stable.

4.1.4 Long-term stable planetary systems

A planetary system can be considered to be long-term stable if it has an instability timescale
such that tCE ∼ τ , where τ is the lifetime of the system. In such a scenario, the Lagrange-
Laplace secular approximation will hold. Nevertheless, it is difficult to assess whether or
not a system will in fact remain stable for the entirety of its lifetime. For example, the
Solar System is stable according to secular theory. However, for a full numerical integration
of the dynamical evolution, there are cases where AMD can be transferred from the outer
giant planets to the terrestrial subsystem, ultimately leading to large radial excursions
and the crossing of orbits. I refer to long-distance exchange of AMD between planets as
action at a distance. It is not possible to infer the exact evolution of a system using a
numerical integration, but there still exists a small possibility that the Solar System could
become unstable within a few Gyr (for a review see Davies et al., 2014, and references
therein).

4.1.5 Evolution of Hill unstable planetary systems

In Hill unstable planetary systems, the small interplanetary separation allows for exchanges
of angular momentum that grow in magnitude over time. Hence, the orbit of one planet
will gradually become more eccentric, allowing for larger radial incursions and excursions in
the system. In turn, the planet will have closer approaches with other bodies in the system,
increasing the exchange of angular momentum and/or energy. Ultimately, the orbit will be
eccentric enough to cause orbit crossing where planets can undergo close encounters. The
number of orbits needed to trigger the first close encounter again depends strongly on the
initial separation between the planets. For example, changing the separation between three
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planets of q? = 3× 10−5 from ∆ = 4 to ∆ = 5 will increase the number of periods to reach
the first close encounter from ∼ 103 to ∼ 106 (Chambers, Wetherill, & Boss, 1996).

There are several possible origins for instability within a planetary system. The system can
have an intrinsic instability after the depletion of the protoplanetary disk. However, even
if the planets within a planetary system have large initial separations, there are external
sources that can perturb their orbits, triggering instability. For example, such sources can
be a passing star within a high number density stellar environment (Malmberg, Davies,
& Heggie, 2011), passing through a molecular gas cloud (Kokaia & Davies, 2019) and
scattering within minor body belts (e.g. Morbidelli et al., 2005; Tsiganis et al., 2005).
Furthermore, the departure of a host star from the main sequence leads to mass loss
from the stellar envelope that can destabilise a multiple planetary system (e.g. Debes &
Sigurdsson, 2002; Veras et al., 2013; Voyatzis et al., 2013).

4.2 The Lidov–Kozai mechanism

An important dynamical mechanism is Lidov–Kozai oscillation which is an alternative way
of putting planets on high-eccentricity orbits that does not require close encounters between
planets. While the finding of this phenomenon is usually attributed to Lidov and Kozai,
who discovered it separately in 1962, it was originally introduced by von Zeipel in 1910 (Ito
& Ohtsuka, 2019). Nevertheless, I have opted to refer to the mechanism as Lidov–Kozai in
this work. This mechanism involves a planet with a companion on a highly inclined orbit,
either in the form of a star in a binary stellar system or another planet in a single star
multiple planetary system. Since the scope of this work does not cover analysis of scattering
in binary star systems, I only consider the Lidov–Kozai effect in the latter type of system.
The highly inclined companion gravitationally perturbs the planetary orbit which induces
large periodic changes in the orbital eccentricity and inclination due to exchange of angular
momentum on a secular timescale. As a result, the Lidov–Kozai oscillations can put the
perturbed planet onto a highly eccentric orbit, which in turn can induce orbit crossing and
planet–planet scattering. Further, this mechanism provides another way of forming hot
Jupiters as it can lead to tidal circularisation (Dawson & Johnson, 2018).

In a simple approximate solution, where I consider a test particle with negligible mass
compared to a distant perturbing planet on orbits with a mutual inclination and low
initial eccentricities that allow for Lidov–Kozai oscillations, the angular momentum will be
constant

J =
√

(1− e2) cos im = const. (4.5)

This relation shows that eccentricity can be exchanged for inclination as a conserved prop-
erty during transfer of angular momentum between the two bodies. The critical inclination
for Lidov–Kozai to be possible is given by the limit cos(icrit) >

√
3/5, which yields solu-
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tions of icrit ≈ 39.20◦ and icrit ≈ 140.77◦ providing a range within which such angular
momentum exchange is possible (Naoz, 2016).

For non-negligible masses of the perturbed body, the above approximation will break down.
These more complex scenarios are easiest modelled using numerical integration. Such
studies have shown that the Lidov–Kozai mechanism can increase orbital inclinations above
90◦, producing retrograde orbits (see Naoz, 2016, and references therein).

4.3 Outcomes of dynamical instability

After the onset of instability when two planetary orbits are crossing, the two planets
will undergo planet–planet scattering events until the instability is resolved. During each
encounter there will be an exchange of angular momentum and energy, altering the orbits
of the two planets to some extent. The mechanisms that determine the strength of each
scattering events are discussed in chapter 5. There are four main outcomes for a given
planet that will conclude the phase of close encounters (Davies et al., 2014).

Assuming that the primary planet in the scattering survives, the single outcomes for the
secondary planet1 are:

1. Survival through scattering onto a non-crossing orbit.

2. Ejection from the planetary system.

3. Merger with another planet.

4. Collision with the host star.

I now go through each outcome in order.

Survival: While being scattered onto a non-crossing orbit means that the current planet–
planet scattering phase has concluded, it does not guarantee that the planet survives the
dynamical instability of the system. It may still reach a new crossing of orbits with one of
the remaining planets in the system, or undergo changes in its orbit due to the Lidov–Kozai
mechanism.

Ejection: A planet gains a significant amount of energy putting it on an orbit with e ≥ 1
and E ≥ 0, meaning it becomes unbound from the system.

Planet–planet merger: The two planets collide with each other and merge, leaving a
more massive surviving planet behind. Commonly referred to as merger in this work.

Planet consumption: A planet with a large amount of AMD ends up on a highly eccentric
orbit e . 1, putting it at a distance of rmin = a(1− e) ≤ R?. For R? = R�, a planet at 1

1Throughout this analysis of planet–planet scattering events, I refer to the most massive planet as
primary and the least massive planet as secondary.
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Figure 4.1: The Safronov number as a function of the planetary mass and the semi-major
axis of its orbit. The dashed line indicates where in the system the surface and planetary
system escape velocity are equal for various planetary masses.

AU needs an eccentricity of at least ∼ 0.995 to be consumed by the host star. Henceforth,
I will refer to an orbit with rmin ≤ R? as a planet-consuming orbit.

4.3.1 The Safronov number

The outcome of a scattering event is partly governed by the location of the scattering event
in the system and the relative masses and radii of the planets undergoing the encounter.
A quantity that can be used to determine the favoured outcome is the Safronov number.
This constant is a measure of the relative magnitude between the surface and planetary
system escape velocities of the planet in the following formula

Θ2 =

(
Mp

M?

)(
Rp

ap

)−1

. (4.6)

If the Safronov number is larger than unity, the surface escape velocity is larger and the
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scattering is thus more likely to resolve itself in an ejection. If instead the surface escape
velocity is smaller than the system escape velocity, Θ will be less than unity and it will
be more difficult to alter a planetary trajectory, which favours mergers (Ford & Rasio,
2008). Figure 4.1 shows a contour map of the Safronov number for a given combination
of planetary mass, where the planetary radius is given by the MR-relation in section 3.4,
and semi-major axis. For the combinations left of the dashed white line showing Θ = 1,
mergers are favoured while combinations to the left mainly lead to ejections. As can be
interpreted from the map, ejection is highly favoured for massive low density planets while
the high density low-mass planets most often will undergo mergers.
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Chapter 5

Two-body analysis of planet–planet
scattering

In order to gain a better understanding of the underlying physical processes in a scattering
event between two planets in a multiple planetary system and in which scenarios I will get
a planet–host star collision, I have used a simplified scattering scenario to semi-analytically
evaluate the problem. In the system, there is a host star and two planets whose orbits
are crossing. Due to the fact that it is not possible to solve a three-body scattering
event analytically, I chose to isolate the scattering event by neglecting any gravitational
interactions between the host star and the two planets. Hence, I only considered the
exchange of energy and angular momentum that results from the work that the planets
do on each other. Moreover, I further simplified the problem by ignoring any possible
inclination of the orbits and focused on evaluating the two-body problem in two dimensions.
These simplifications would only provide a fair approximation in real case physical scenarios
when considering a coplanar two-planet system, where two planets undergo close encounters
at a large distance from the host star. By equalising the forces exerted on the primary
planet by the host star and the secondary planet using equation (2.15), I find that they
will be equal when

√
Mp/M? = rp/d, where d is the distance between the two planets. For

a Jupiter-mass planet, this expression holds when d ∼ 0.03rp. Hence, for this model to be
valid the planets would need to have separations of Rp,1 +Rp,2 < d� 0.03rp.

Concerning the history of the system, I did not take into account how it has evolved prior
to the scattering process. I have simply assumed that the system has become unstable and
undergone dynamical evolution that has resulted in the current state of the system. In
other words, the model omits any investigations of how a system evolves to a point where
the orbits cross and focuses on the aftermaths of planet–planet scattering events.
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5.1. TWO-BODY MODEL TWO-BODY ANALYSIS

5.1 Semi-analytical model of two-body scattering

Consider a planetary system where two planets of masses Mp,1 and Mp,2 orbit a star of
mass M?. Invoking coplanarity of the two orbits, only working with a flat system, I can
evaluate the problem in two dimensions, which greatly simplifies calculations. Hence, using
a polar coordinate system where the host star is positioned at the origin, I can express the
position of a planet in the system using the coordinate vector rp = (rp, θp) (see figure 2.1).
Using the θ coordinate for each planet, I can express the angle between the two major axes
of the separate orbits as

φ = θ1 − θ2. (5.1)

As derived in section 2.1 in equation (2.6), the distance from the star to a planet on an
elliptical orbit can be expressed as a function of θ

rp =
a(1− e2)

1 + e cos(θ)
.

The mechanism that induces planet–star collision investigated in this work requires close
encounters between two planets. Therefore, I am interested in planetary systems where
the two orbits cross at some point, i.e. when r1(θ1) = r2(θ2). Hence, I want to find the
corresponding coordinates for each planet at this crossing point, given two pre-defined
orbits with orbital parameters (a1, e1) and (a2, e2). In order to find analytical expressions
for the crossing point coordinates, it is useful to relate the two azimuthal coordinates of the
planetary orbits to each other and thereby reduce the number of variables in the problem.
This is easily done by rewriting the azimuthal coordinate θ1 as a function of θ2 and φ
using equation (5.1), which allows me to refer to the crossing point as rp(θ1) = rp(θ1 − φ).
The value of φ, which is a constant, can be defined when setting up the problem. Since I
already have expressions for the distances r1(θ1) and r2(θ1 − φ) from equation (2.6), I can
obtain the following expression

a1(1− e2
1)

1 + e1 cos(θ1)
=

a2(1− e2
2)

1 + e2 cos(θ1 − φ)
. (5.2)

The value of θ1 for which this expression holds, given a set of orbital parameters (a1, e1)
and (a2, e2), corresponds to the azimuthal coordinate at the orbital crossing. I choose
to denote these unique solutions to the analytical problem θcross,1 and θcross,2 = θcross,1 −
φ. Unfortunately, equation (5.2) cannot be solved analytically and requires a numerical
approach. I expand on the method used to obtain the solutions in section 5.2.

With the values of θcross,1 and θcross,2 at hand, I can obtain the initial velocity of the two
planets on their orbits at the crossing point before any of their trajectories have been
altered. This is done by utilising the expressions for the tangential and radial velocities
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of a planet on an elliptical orbit found in equations (2.26) and (2.25), respectively. In the
next section I go into the details of the interactions between the two planets during a close
encounter and how they lead to new velocities, as well as new orbital parameters.

5.1.1 Close encounters

When two planetary orbits cross and the planets are within one RHill,m (see equation (4.1))
of each other, I classify the event as a close encounter. In such a scenario, the planets are
close enough to undergo a planet–planet scattering event and exchange large quantities of
energy and angular momentum. During the isolated encounter, the force exerted on each
of the two bodies is given by

Fpp = G
Mp,1Mp,2

d2
, (5.3)

where d is the separation between the two planets. There are scenarios in which this force
will be strong enough to alter the trajectory and in turn the orbital properties (a, e) for
one or both of the planets. This effect is referred to as deflection. A strong scattering
signifies a strong deflection and a large change in the orbital properties. The strength of
the scattering and its outcome depend on several physical properties of the system

1. The relative velocity between the two planets on their unperturbed orbits at the
point where their orbits cross

v∞ = v1(θcross,1)− v2(θcross,2). (5.4)

2. The mass ratio between the two planets, qp = Mp,2/Mp,1.

3. The distance from the host star, rcross.

4. The mass of the host star, M?.

5. The impact parameter, b, which is the distance between the planets on their unper-
turbed orbits.

Since the properties in 1. to 4. all depend on inherent physical quantities for a given
two-planet system, the impact parameter, b, is arguably the most important property
of a scattering event. It determines the separation between the planets, d, and in turn
the angle between a planet’s velocity prior the scattering, v, and its new velocity after the
scattering1, ṽ. I denote this angle δ. Hence, there exists a wide range of impact parameters
for each two-body problem and each value will result in a given solution for δ. If the impact
parameter is too large, the deflection will be weak and will not lead to a significant change
in velocity. If it is too small, i.e. |b| ≤ Rp,1 + Rp,2, the scattering will result in a head-on
collision between the planets. Furthermore, due to deflection there are scenarios where

1A ∼ symbol above a given quantity will hereafter indicate its new value after a scattering event.
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|b| > Rp,1 +Rp,2 and the scattering leads to a collision as well. The type of deflection that
enhances the chances for planet–planet collision is called gravitational focusing. Another
important property of the impact parameter is that it can be both positive and negative.
The sign determines the localised position of the planets relative to the host star at the
point of orbit crossing. If the impact parameter is positive, the planet with the larger semi-
major axis will be the planet farthest away from the host star and if the impact parameter
is negative, the same planet will be closest to the host star.

Knowing that each value for the impact parameter will yield new velocities ṽ, it is clear
that the scattering will lead to a new set of values for the energy and angular momentum of
each planet. In turn, since the energy and angular momentum of a planet can be directly
related to the semi-major axis and eccentricity of its orbit, each b will yield a new set of
orbital parameters (ã, ẽ). The properties of the new planetary orbit will in turn determine
if the planet will merge with the other planet, get ejected from the system, be consumed
by the host star or if the system will remain intact. In the remainder of this section, I
show how these new orbital parameter values can be derived for planet–planet scattering
within a given two-planet system.

5.1.2 The deflection angle

I now set out to derive an analytical solution for the deflection angle δ, guided by Spitzer
(1987). To this end, I make use of figure 5.1 where I show a scattering event in the rest
frame of the primary planet with mass Mp,1. Here, the impact parameter is small enough
to result in a strong scattering and large enough to not result in a collision between the
planets. The dashed lines represent the asymptotic relative trajectory of the secondary
planet with mass Mp,2. There are two other angles except for δ that must be considered,
as indicated in the diagram: ϕ, which is the angle measured from the point of closest
separation during the encounter and ψ. In order to derive δ using the other two angles
of importance, I have to find an expression for the distance between the planets during
the scattering event. Using the fact that the trajectory of the secondary planet can be
considered a conic section of eccentricity esc with its focus at the position of the primary
planet in the current frame of reference, I can combine equations (2.2) and (2.21), which
yields

d =
h2

G(Mp,1 +Mp,2)

1

1 + esc cos(ϕ)
. (5.5)

Remembering that h is the specific angular momentum of the two-body problem from
equation (2.12), I use the fact that the total angular momentum of the two bodies in this
frame of reference is given by the angular momentum of the secondary planet. Due to the
assumption that the angular momentum is conserved among the planets in this isolated
close encounter, I can compute the specific angular momentum at any point. Assuming
that the impact parameter is known, I directly obtain h for the secondary planet on its
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b ϕ

δ

ψ

d
Mp,1 Mp,2

Figure 5.1: Diagram of the trajectory of the secondary planet (red) in the rest frame of
the first planet (blue) during a scattering event. The impact parameter is indicated by b
and the distance between the planets during the encounter is indicated by the vector r.
The angle δ is the deflection angle, ϕ is the angle from the point of closest separation and
ψ is the angle between the orbits at infinite separation.

unperturbed orbit. The velocity of the secondary planet at that point is simply v∞, which
is the magnitude of v∞ from equation (5.4). The angle between v2 and d at the point
where d = b on the unperturbed orbit is simply α = π/2, meaning that

h = bv∞. (5.6)

Inserting the new expression for h, valid during the scattering, into equation (5.5), I
get

d =
b2v2
∞

G(Mp,1 +Mp,2)

1

1 + esc cos(ϕ)
. (5.7)

Since I can consider this a bound system, the total energy is given by equation (2.27).
Dividing by the reduced mass and multiplying by a factor 2, I get the following expres-
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sion

2ε = v2
p −

2G(Mp,1 +Mp,2)

d
, (5.8)

where ε is the specific energy. The velocity is given by v2
p = v2

d +v2
ϕ, which can be rewritten

as v2 = v2
d + h2/d2 with equation (2.12). Using said expression for the velocity, the above

relation becomes

2ε =

(
dd

dt

)2

+
h2

d2
− G(Mp,1 +Mp,2)

d
. (5.9)

Again making use of the conservation of quantities within this isolated system, I can find ε
by computing it at any point of the scattering event. Hence, the total energy will be equal
to the kinetic energy of the secondary planet at infinite separation, i.e. ε = v2

∞/2. When
it comes to dd/ dt, I can use the chain rule and equation (2.14) to obtain

v2
∞ =

(
dd

dϕ

bv∞
d2

)2

+
b2v2
∞

d2
− G(Mp,1 +Mp,2)

d
. (5.10)

From equation (5.7), I find the derivative to be

dd

dϕ
=

h2

G(Mp,1 +Mp,2)

esc sin(ϕ)

(1 + esc cos(ϕ))2
. (5.11)

The eccentricity of the conic section in figure 5.1 remains an unknown constant at this
point. However, since I already have assumed that the impact parameter is known, I note
that all other constants are known for a scattering event in a given two-planet system.
Hence, I can calculate equation (5.10) at any value of ϕ to find an expression for esc.
Therefore, I choose to evaluate the derivative at ϕ = π/2 and, after substituting h and d
using equations (5.6) and (5.7), I simplify (5.10) to find the expression

e2
sc = 1 +

b2v4
∞

G2(Mp,1 +Mp,2)2
. (5.12)

The importance of the angle ψ becomes clear when using figure 5.1 to determine that it is
related to δ in the following manner

δ = π − 2ψ. (5.13)

Hence, if I know the value of ψ I can easily determine the deflection angle, which I need to
calculate the new velocity vectors post-scattering. From the expression for d in equation
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(5.5), the separation between the planets will go towards infinity when 1 + esc cos(ϕ) =
0, which, according to figure 5.1, must occur at φ = π ± ψ. In turn, I deduce that
esc = 1/ cos(ψ). Employing the relation tan2(ψ) = 1/ cos2(ψ) − 1, I finally arrive at an
expression for ψ from equation (5.12)

tan(ψ) =
bv2
∞

G(Mp,1 +Mp,2)
. (5.14)

Equations (5.13) and (5.14) clarify the importance of the impact parameter since it is the
only varying parameter that determines the deflection angle for a close encounter within a
given two-planet system.

5.1.3 Finding the new velocities

With the deflection angle at hand, one would think that it is straightforward to rotate
the pre-scattering velocities and quickly find the new velocities ṽ1 and ṽ2. However, I
still do not know the magnitudes of the new velocities. Furthermore, the entire idea
behind this two-dimensional analysis is to gain a better understanding of the mechanisms
that govern the outcome of planet–planet scattering and how this process can lead to
planet consumption. Hence, I opt for a workaround that will facilitate both calculation
and the visualisation of how deflection alters the velocities of the planets involved in the
scattering.

The main idea behind this workaround is that the centre-of-mass velocity vcm for the iso-
lated two-body system considered is a conserved quantity that is common to both planets.
This velocity is weighted by the mass of the two planets such that

vcm =
Mp,1v1 +Mp,2v2

Mp,1 +Mp,2

. (5.15)

Figure 5.2 shows the velocity vectors of two planets with crossing orbits prior to the
scattering event in the centre-of-mass frame of reference. From the figure, it becomes clear
that the initial velocities of each planet can be split up into two vector components, vcm

and the planet’s relative velocity to the centre-of-mass, denoted with a subscript b. As a
result, the velocities can be written

v1 = vcm + v1,b (5.16)

v2 = vcm + v2,b. (5.17)

Since the radial and tangential components of the initial velocities can be computed using
equations (2.25) and (2.26), calculating vcm is straightforward. Thus, the velocities v1,b and
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v1,b

v1

v2,b

v
2

vcm

c.o.m

Mp,1

Mp,2

Figure 5.2: The velocity vectors of two planets with crossing orbits undergoing a close
encounter in the centre-of-mass frame of reference. The centre-of-mass velocity is indicated
by vcm and the planet velocities relative to the centre-of-mass is denoted vp,b.

v2,b relative to the centre-of-mass can be directly found from equations (5.16) and (5.17),
respectively. Due to the centre-of-mass velocity vector being conserved throughout the
scattering event, the new velocities seem to only depend on v1,b and v2,b. This is further
illustrated in figure 5.3, where a deflection between a Jupiter-mass and an Earth-mass
planet is shown in the centre-of-mass frame of reference. Note that the centre-of-mass
in reality is much closer to the trajectory of the Jupiter-mass planet due to the small
mass ratio qp ∼ 0.003. Hence, the scaling has been exaggerated in order to facilitate
visualisation. The same follows for the magnitudes of v1,b and ṽ1,b, which, due to the mass
ratio, are merely ∼ 0.003 of the corresponding magnitudes for the Earth-mass planet.

The Jupiter-mass planet is incoming from the left in the figure with an initial distance b
from the Earth-mass planet which is incoming from the right. This distance is indicated
with a dashed, dotted line in figure 5.3. As previously mentioned, the impact parameter can
be negative as well. If I assume that a positive impact parameter in this scenario indicates
that the Jupiter-mass planet is closest to the host star, this scattering would deflect the
Earth-mass planet inwards into the system. A negative impact parameter would instead
put the incoming Jupiter-mass planet on the top horizontal asymptote in this frame of
reference, indicated by a dashed line, while the Earth-mass planet would be incoming on
the bottom horizontal asymptote. Hence, the Earth-mass planet would be closest to the
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host star and the deflection would instead be outwards, away from the system.

Given the small mass ratio, the velocity relative to the centre-of-mass of Jupiter is barely
affected by the interaction with the Earth-mass planet, while the Earth-mass planet will
be strongly gravitationally focused by the Jupiter-mass planet. During the scattering,
the minimum separation between the two planets is dmin, which is also indicated with a
dashed, dotted line in the figure. Since it is clear from the figure that dmin ≤ |b|, a better
definition for the occurrence of a planet–planet collision during a scattering event is when
dmin ≤ Rp,1 +Rp,2. In figure 5.1, d is equal to dmin for the case ϕ = 0◦.

Due to the assumption that energy and angular momentum will be conserved within this
isolated system, the magnitudes of these velocities relative to the centre-of-mass will be
constant throughout the scattering, i.e. |vp,b| = |ṽp,b|. Using this fact, the new velocities
of the two planets must simply be equal to

ṽ1 = vcm + ṽ1,b (5.18)

ṽ2 = vcm + ṽ2,b. (5.19)

Therefore, the only step left in the endeavour to find the new velocities ṽ1 and ṽ2 is to
rotate the initial vectors v1,b and v2,b by the deflection angle δ, which yields ṽ1,b and
ṽ2,b.

5.1.4 New orbital parameters

Knowing the new velocities ṽ, I can now determine the parameters that I set out to find, ã
and ẽ. This comes from the fact that the new energy and angular momentum are directly
related to the new velocities of the planets.

I combine the two equations I have previously used to describe the semi-latus rectum ` of
the orbit, namely (2.5) and (2.21), which yields

ẽ2 = 1− h̃2

GMtotã
. (5.20)

This equation can be simplified by rewriting it in terms of J and E, which are easily
computed with equations (2.12) and (2.27),

ẽ2 = 1 +
2ẼJ̃2

G2µ3
rM

2
tot

≈ 1 +
2ẼJ̃2

G2M3
pM

2
?

. (5.21)

Now I have everything I need in order to determine which outcome the two planets have
suffered after their scattering. The validity of the equations derived in this section can
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v1,b

v2,b

ṽ2,b

ṽ1,b

bdmin

c.o.m×

δ

Figure 5.3: Deflection during a close encounter between a Jupiter-mass (blue) planet
incoming from the left and an Earth-mass (red) planet incoming from the right in the
centre-of-mass frame of reference. The planets are initially separated by the impact pa-
rameter b on their unperturbed orbits with centre-of-mass velocities v1,b and v2,b. Their
closest separation during the encounter is dmin. After the encounter the Earth-mass planet
will have been deflected by the angle δ and has a new velocity ṽ2,b, while the Jupiter-mass
planet velocity is nearly completely unperturbed with ṽ1,b ≈ v1,b. Note that the distance
between the Jupiter-mass planet’s trajectory and the centre-of-mass and the magnitudes
of v1,b and ṽ1,b have been greatly exaggerated.

easily be checked using the assumption that the total energy and angular momentum
within this isolated two-planet system is conserved throughout the scattering, meaning
that E1 + E2 = Ẽ1 + Ẽ2 and J1 + J2 = J̃1 + J̃2.
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a [AU] e q? Rp [R⊕]
Orbit 1 1.0 0.0 9× 10−4 13.44
Orbit 2 1.1 0.9 3× 10−6 1.00

Table 5.1: The physical properties of the primary example system we consider in this
chapter with an Earth-mass and a Jupiter-mass planet orbiting a Solar-mass host star.

5.2 Implementation of the two-body model

In order to systematically be able to carry out simulations of planet–planet scatterings, I
have implemented the equations derived in section 5.1 in a program. The program is called
Scattersim2 and is written in Python3. Scattersim consists of a class called scatter

that is initiated using the following input

1. Initial semi-major axes and eccentricities for two orbits, a1, e1, a2, e2.

2. The masses of the two planets on said orbits, Mp,1, Mp,2.

3. The angle between the major axes of the orbits, φ.

4. The mass of the host star, M?.

From the masses, the planetary radii and the stellar radius are directly computed using the
relations in sections 3.4 and 3.5, respectively. Furthermore, a primary check for any orbit
crossing points can be performed by simply checking if the periastron of the orbit with
the largest semi-major axis is outside the apastron of the other orbit, i.e. if amax (a1,a2)(1−
emax (a1,a2)) < amin (a1,a2)(1 + emin (a1,a2)). If this is the case, the program will try to find the
two points of intersection between the two orbits. I will refer to these as crossing points A
and B. In figure 5.7 I show an example of two orbits crossing where the first orbit (blue)
is circular with a Jupiter-mass planet and the second orbit (red) is highly eccentric with
an Earth-mass planet. The orbital properties, as well as the mass ratio between the host
star and the planet, q? = Mp/M?, and the planetary radii are indicated in table 5.1.

The orbits will cross when rp(θ1) = rp(θ1 − φ). I have chosen to denote the corresponding
angle θcross,1 and θcross,2 = θcross,1 − φ. Since there will be two points of crossing for this
scenario, I also use a subscript to indicate which orbit crossing point I am referring to with
A or B. These two angles are the solutions to equation (5.2) and can only be determined
numerically. In order to achieve a satisfactory accuracy for the solutions, I used an approach
based on linear extrapolation in the function scatter.get isec which is structured as
follows. First, I set up a range of equally spaced values for θ1 with a step size of ∆θ = 0.1◦.
While it is unlikely that the solution will lie exactly on one of the values within said
range, the step size is sufficiently small to catch sign changes in the difference between
the distances to the host star, i.e. ∆r = r1(θ1) − r2(θ1 − φ). This allows the program

2The main functions can be found in scattersim.py in the git repository https://github.com/

Jooehn/Stars-Eating-Planets.git
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Figure 5.4: Example of a case where two orbits are crossing. The eccentric red orbit
belongs to an Earth-mass planet, while the circular blue orbit belongs to a Jupiter-mass
planet. The full properties of the system can be found in table 5.1. I have indicated the
positions of the two different crossings A and B. The planets rotate clockwise in this face-on
perspective.

to determine the two adjacent values θ1,k and θ1,k+1 between which the sign of ∆r will
change. This will occur at two different points in the range of θ values considered. The
exact azimuthal angle for the crossing points can then be computed using the following
linear equations

r1 = g1θ1 + f1 (5.22)

r2 = g2θ1 + f2, (5.23)
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where g and f are the first and zeroth order constants of the polynomial. The first order
constant is easily determined from g = ∆r/∆θ and the zeroth order constant can be
determined by solving for f and computing r for a given θ with equation (2.6). The values
of θcross,1A and θcross,1B are then found by letting r1 = r2 which from the linear equations
above yields

θcross,1 =
f2 − f1

g1 − g2

. (5.24)

While there exist two-planet systems where the orbital configuration is such that the above
algorithm will only have one solution, they would be rare. Hence, I only chose to consider
systems where the orbits cross at exactly two points as crossing.

With the crossing angles at hand, the program will proceed to compute the initial velocities
of the planets on their unperturbed orbits. Knowing these velocities, there is no additional
information needed to analytically compute the new orbital parameters using the equations
derived in section 5.1. This is done in the function scatter.scatter, which takes one or a
set of impact parameters as input. The new set of orbital parameters (ã, ẽ) for each planet
can then be used to infer the outcome for each impact parameter value. The requirements
for each outcome is as follows

• Consumption: A planet is consumed by the host star if the separation at nearest
approach is less than the critical radius for consumption, rperi = ã(1− ẽ) ≤ rcrit. In
this thesis I use rcrit = R?.

• Planet–planet merger: The planets will merge if their separation at nearest ap-
proach is less than their combined physical radii, dmin ≤ Rp,1 +Rp,2.

• Ejection: A planet is ejected if its orbit becomes parabolic or hyperbolic, ẽ ≥ 1.

• Survival: There are less than two crossing angles.

In this thesis I refer to a planet that has suffered either consumption, merger or ejected as
a Consumed, Merged or Ejected (CME)-type planet. Any planet left in the system after
it has finished dynamical evolution is known as a ‘survivor’.

Note that these definitions exclude the presence of tidal forces. The tidal forces between
two planets are typically weak and will make a minor difference for the critical separation
needed to induce mergers. However, such tidal forces can lead to the creation of planet–
planet binary systems within planetary systems (Podsiadlowski et al., 2010; Ochiai et al.,
2014). The tidal forces between the planet and the host star will be significantly stronger
and could trigger tidal disruption of a planet at a separation larger than R?. Therefore,
in a more physically accurate scenario rcrit > R?. Hence, the fraction of new orbital
parameter sets (ã, ẽ) that lead to planet consumption will be underestimated using this
approach. Nevertheless, as previously stated the purpose of the two-body problem analysis
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is to reach qualitative and not quantitative conclusions regarding the nature of planet-
consuming scatterings. In turn, I choose to simply note these discrepancies from a more
physical scenario and proceed without addressing the varying rcrit and dcrit and the possible
creation of planet–planet binaries in my calculations.

The critical separation between the planet and the host star gives rise to a critical eccen-
tricity for which the planet will be consumed. I recognise that the planet will be within
the critical distance for interaction with the host star if a(1 − e) < rcrit. In return, there
must exist a critical eccentricity ecrit for a given semi-major axis where the periastron is
equal to rcrit. Solving the previous inequality for e and equating the right and left hand
sides give us said parameter

ecrit = 1− rcrit

a
. (5.25)

5.2.1 The role of the impact parameter

As previously stated, the impact parameter plays an important role in the scattering event
as it will directly determine the outcome for a close encounter within a given two-planet
system. This is emphasised by the analysis in section 5.1. From figure 5.3 it becomes clear
why the deflection of the Earth-mass planet will be insignificant if the impact parameter
is too large despite the extreme mass ratio and that a collision will occur if the impact
parameter is too small. In order not to oversample the impact parameter range and rely
on an arbitrary process to find a good range, I introduce the parameter bmax which I now
motivate.

First, it is important to understand how different values of the impact parameter will
affect the outcome of the scattering process. The best way to think about this parameter
is to recall the fact that every value corresponds to a given deflection angle. Of course, if
|b| > bmax, the angle will tend to 0◦ and for b → 0, δ → 180◦. This feature of the impact
parameter is visualised in figure 5.5. Here I again consider the case of a scattering of a
Jupiter-mass and an Earth-mass planet orbiting a Solar-mass star and focus on the change
in the Earth-mass planet velocity. The physical properties of the system can be found in
table 5.1 and they were chosen such that it would be potentially planet-consuming. The
solid and dashed vectors represent v2 and v2,b, respectively. The velocity prior to the
scattering is rendered in orange and the velocity after the scattering event is rendered in
purple. The black vector represents the centre-of-mass velocity of the two-planet system.
The most useful property of v2,b is that its magnitude will be constant throughout a
scattering event. This leads to the fact that all possible impact parameter values, and
therefore all deflection angles, create a circle of possible ṽ2,b vectors in (vr, vθ)-space with a
radius of |v2,b|. The size of this circle naturally changes with the mass ratio of the planets,
as well as the properties of the initial orbit. For example, the corresponding velocity of the
circle of the primary Jupiter-mass planet in this scattering event has a radius |ṽ1,b| � |ṽ2,b|.
Since ṽ2 = vcm + ṽ2,b, the size of this circle also indicates the possible changes in the
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magnitude of ṽ2. The grey dashed line in figure 5.5 shows the position of v2,b prior to
the scattering event in order to facilitate the visualisation of the deflection angle. While
the deflection angle is merely ∼ 35◦ in the example, the deflection still leads to a large
change in the magnitude of the velocity. This leads to another noteworthy property of
the scattering process. The maximum velocity does not occur for the largest deflection
angle, but for the case when ṽ2,b||vcm. Similarly, the minimum velocity occurs when the
vectors are antiparallel. Hence, a smaller impact parameter will lead to a larger exchange
of angular momentum and energy and in turn a larger change in the orbital parameters.
However, due to the physical size of the planets, the impact parameters that would lead
to the largest possible change in orbital parameters will instead induce a merger between
the planets.

Further, the circle of v2,b vectors has a green arc for which the planet has been put on a
consuming orbit and from the figure it becomes clear that this is the case for the corre-
sponding impact parameter. Said arc makes out a relatively small portion of the entire
range of new velocities despite the fact that the mass ratio between the involved planets
allows for extreme scattering events with large changes in the orbital parameters. This re-
inforces the idea that oversampling of the impact parameter could be harmful to the results
of this analysis. If I probe too large a range in b, many of the values in the outer range will
yield the same result, i.e a scattering with a deflection angle of 0◦. As a result, the fraction
of impact parameters that yields a consuming orbit for a planet will be underestimated,
especially if drawing random values from said range.

In order to find a satisfactory value of bmax, I first make use of the common definition that
a close encounter occurs if the planets are within a distance of one mutual Hill radius.
Hence, the maximum value of bmax should be RHill,m. However, recall that not only the
mass ratio determines the strength of the scattering, but also the orbital configuration of
the planets and the distance from the host star do. If planets are further out in the system,
the planets will be less bound and the Safronov number in equation (4.6) indicates that
the separation between the planets during the encounter can be larger and still induce a
significant change in orbital parameters. With this in mind, it is clear that the value of bmax

highly depends on the system at hand. Therefore, instead of simply letting bmax = RHill,m

I use a numerical approach to estimate the best value for this parameter.

1. I start off by assuming that bmax = βRHill,m, where β ∈ [β0, 1] and β0 is the initial
estimate of bmax.

2. I carry out N scatterings in the range b ∈ [−bmax, bmax], where N typically is 1000.
The impact parameter values will be equally spaced with a constant step of ∆b such
that bmax = N∆b/2. The motivation for using a uniform distribution of impact
parameters can be found in appendix A.

3. I compute the eccentricity gradient at the edges of the impact parameter range and
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Figure 5.5: Visualisation of the vector circle corresponding to the change in velocities for
an Earth-mass planet being deflected by a Jupiter-mass planet (see table 5.1). The black
vector shows the centre-of-mass velocity. The yellow and yellow-dashed vectors represent
the initial velocity and the velocity with respect to the centre of mass, while the purple
vectors represent the corresponding velocities post-scattering. The green region of the
circle indicates the range of deflection angles that yields a planet-consuming orbit.

require that it must be smaller than some constant γ, i.e.

dẽ

dβ
< γ. (5.26)

4. If the gradient is larger than γ, I adjust my estimate of β and repeat from step 2. If
not, or if β = 1, I let bmax = βRHill,m.

I found that a good initial estimate is β0 = 0.1 and that adjustments of the estimate in steps
of 0.01 was appropriate. Furthermore, a good value of γ proved to be 10−4. The minimum
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Figure 5.6: The minimum separation between the host star and the Earth-mass (red) and
Jupiter-mass (blue) planets in the system described in table 5.1 given by rmin = ã(1 − ẽ)
as a function of b. Said encounters occur at crossing point A. The green region shows the
range of impact parameters where the Earth-mass planet have been consumed, i.e. when
rmin ≤ R?. Note that there are two minima, which indicates that the planet gets put on a
retrograde orbit for 0.10bmax < b < 0.15bmax.

separation between the planets and the host star as a function of b for the reference system
in table 5.1 after scattering at crossing point A in figure 5.4, is shown in figure 5.6. I note
again that there is a limited range for which the impact parameter will put the Earth-mass
planet on a consuming orbit. Moreover, the reason why there are two minima for rmin is
due to the fact that the high eccentricity will lead to a scattering event that becomes so
violent that the Earth-mass planet is put on a retrograde orbit. Note that most of the
values where the planet is put on a retrograde orbit are within the region where d ≤ dcrit,
which leads to a merger.

57



5.3. CROSSING ORBITS TWO-BODY ANALYSIS

5.3 Requirements for orbit crossing

Typically, the crossing of orbits is not a common occurrence in planetary systems. As
mentioned in chapter 4, orbits cross in short-term unstable systems where the initial orbital
configuration leads to a chaotic evolution or in long-term unstable systems where there is a
diffusive exchange of angular momentum that leads to significant radial excursions inwards
or outwards in the system for one or more planets. Hence, the orbits of the planets that
undergo close encounters should be more or less eccentric. This means that there has been
a loss of angular momentum for one or both planets prior to the close encounter, leading to
an increase in the AMD of the system, which is given by equation (4.3). For the purposes
of this chapter, where the inclination is zero, the only difference is that the cos(ik) factor
simply vanishes. Thus, in the flat system scenario there are only two ways of increasing the
AMD of an individual planet, which are by making its orbit more eccentric or by increasing
its semi-major axis (assuming that the orbit is already eccentric).

In order to further illustrate which type of planet configuration with orbit crossing, I
created a number of planetary systems where two planets are orbiting a Solar-mass star.
The planets are again of masses Mp,1 = MJ and Mp,2 = M⊕. The orbits of the planets
were created in a Monte Carlo fashion, where the eccentricities, semi-major axes and φ
angles are drawn from a uniform distribution. The eccentricities were between 0 and 1,
the semi-major axes are between 0.1 and 20 AU and the φ angles are between 0◦ and 360◦.
I then used the functions scatter.cross check and scatter.get isec to check if the
orbits are crossing for the created system. In total, 500 systems of 910 drawn proved to
have crossing orbits. The AMDs of the resulting 500 systems have been plotted in figure
5.7. The colour of the dots indicate the angle φ and the diagonal lines show three cases
where the eccentricities of the orbits have been kept static while the semi-major axes have
been varied between 0.1 and 20 AU. From the figure, it is indeed clear that one or both
of the planets need to have a significant AMD for the orbits to cross. Moreover, the angle
φ does not seem to affect the crossing of orbits as there is a wide distribution of angles.
Geometrically, this makes sense as the angle between the major axes should mainly affect
the distance rcross if both orbits are quite eccentric.

5.4 Which systems are planet-consuming?

The possible outcomes of scattering events in the 500 planetary systems of figure 5.7 does
not necessarily include the consumption of a planet. Direct planet consumption from a
single scatter appears to require high levels of total AMD in the system, as interpreted
from figure 5.6 that again shows for which impact parameters the scattering will lead to
planet consumption at crossing point A for the reference system in table 5.1. The Earth-
planet orbit is already on a very eccentric orbit e2 = 0.9 prior to the scattering event, yet
a minority of the impact parameters considered lead to planet consumption. Given that
the orbital parameters have been drawn from a uniform distribution without any bias, I
expect that only a subset of all 500 systems in figure 5.7 are potentially planet-consuming.
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Figure 5.7: The distribution of the AMD for the Jupiter-type planet 1 and the Earth-type
planet 2. The colour of the dots represents φ, which is the angle between the major axes
of the two planetary orbits. The lines in the plot show the distribution of AMD values for
the case where the two orbits have static eccentricities but the semi-major axes are varied
between 0.1 and 20 AU. Observe that the crossing of orbits occurs if one or both of the
planets have a high AMD.

In fact, I found that 118 out of the 500 crossing orbit systems and the 910 systems in
total are planet-consuming. I have plotted the corresponding AMD distribution for the
two planets in figure 5.8. Compared with all systems that are crossing but not consuming
in figure 5.7 (now in grey), the planet-consuming systems mainly correspond to extreme
cases of AMD combinations, i.e. where one or both planet have large AMDs. They are
however difficult to distinguish from systems with extreme AMDs that are not consuming.
In turn, it does not seem as if it is possible to formulate a criterion for planet consumption
in terms of AMD from this simple analysis. Nevertheless, I still arrive at an important
conclusion from the interpretation of the figure: it suffices that one of the planets has a
large AMD for planet consumption to be possible.
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Figure 5.8: The same plot as in figure 5.7, but now highlighting the subset of systems
that are planet-consuming. The grey data points represent the two-body systems that are
not consuming.

To understand for which type of orbital configurations a system is more likely to be planet-
consuming, I proceeded by investigating the impact of altering the various quantities that
govern the outcomes of scattering events in this section.

5.4.1 Varying planetary mass ratios

The first quantity that I chose to investigate was the mass ratio between the planets in the
system. From the analysis in section 5.1, I recall that there are implications that the mass
ratio largely determines which outcomes are possible for scattering events within a system.
This largely follows from the fact that the magnitudes of the velocities relative to the
centre-of-mass, v1,b and v2,b, regulate how large of a change is possible for the magnitudes
of the velocities v1 and v2. Logically, if the planets are of equal mass i.e. qp = 1, it should
be significantly more difficult to scatter one planet onto a consuming orbit than if one
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Figure 5.9: The combinations of mass fraction, qp, and impact parameter that yield
consuming scatterings. The total mass of the planets is fixed at 301 M⊕ meaning that
the extreme cases correspond to an Earth-mass and a Jupiter-mass planet. The green
non-hatched and hatched region represents the impact parameters that lead to planet
consumption at crossing point A and B, respectively. The shade of green indicates the new
eccentricity post-scattering.

planet is much more massive i.e. qp � 1 or qp � 1.

The impact of the mass ratio for the likelihood of having planet consumption in the system
was found by taking the reference system in table 5.1 and altering the planetary masses,
effectively changing the value of qp. The masses were chosen such that the most extreme
case is an Earth-mass and a Jupiter-mass planet. Since the mass ratio has been defined as
qp = Mp,2/Mp,1, the values will be in the range qp ∈ [0.0033, 300]. For every single system,
bmax was computed and then 104 impact parameters were again chosen by dividing the
range b ∈ [−bmax, bmax] using uniform steps in b. Here, I used a finer initial estimate and
step size for scatter.find bmax of β0 = 0.01 and ∆b = 10−3 to increase the resolution.
The results are shown in figure 5.9. In this plot, the green regions represent the range
of impact parameters that lead to planet consumption. The non-hatched and hatched
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regions represent the impact parameters that are consuming for orbit crossing A and B,
respectively. The shade of green also shows the final eccentricity ẽ of the planet that is
being consumed. It is unsurprising that the eccentricities all are close to unity for this
case, as the critical eccentricity required to be directly consumed for a planet orbiting a
Solar-type star at 1 AU is ∼ 0.995.

There are three important features that I wish to emphasise in this plot. First, there
is a regime below which the mass ratio does not directly affect the likelihood of planet
consumption. At this critical qp value, the secondary planet in the encounter will essentially
be a test particle for the more massive planet. There is a slightly positive slope at the inner
values when qp decreases, which is only an effect of the planetary radius becoming smaller
with decreasing mass, making merger between the planets less likely. The reason why
this test particle regime exists can be found in the angular momentum of the less massive
planet. The larger the mass difference is, the easier it is for the more massive planet to
strip away a large fraction of angular momentum from the less massive planet. As can be
seen in this plot, the primary planet removes practically all the angular momentum of the
secondary planet for masses such that qp . 10−1.

The second feature shows that for the reference system it is not possible for planets with
equal mass to scatter each other into the host star. This also follows from the fact that
the exchange of angular momentum will not be as extreme as for the low mass ratio cases.
Additionally, the impact parameter range that potentially could cause a scattering to lead
to planet consumption is narrowed due to dcrit = Rp,1 + Rp,2 becoming large and mergers
becoming more likely. Hence, the initial eccentricity of the secondary planet must be larger
than 0.9 for a planet to be consumed when qp ∼ 1. This emphasises that the physical radii
of the planets are important to consider in scattering events, as they limit the possible
magnitude of the exchanged angular momentum and energy.

The third feature is that planet consumption is less likely if the planet on the eccentric
orbit is much more massive than the other, i.e. for qp � 1. Recalling once more that the
possible change in orbital parameters is highly dependent on the position of the centre-of-
mass, it is clear that it is not possible for an Earth-mass planet to scatter a Jupiter-mass
planet onto an orbit with ẽ ∼ 1 such that it collides with the host star, no matter how
close the planets get. Hence, the planet that gets consumed in the cases where qp is large
is still the less massive planet. Since the eccentricity of the planet has to be increased from
e2 = 0 to ẽ2 ∼ 1, it is natural that only a few impact parameter values near dcrit will lead
to a scattering that is strong enough.

5.4.2 Varying orbital elements

The next property of the system that I investigated was the orbital elements. Up to this
point, I had found that a significant difference in mass facilitates planet consumption as
an outcome and that there is a need for a large total AMD in the system. To understand
more specifically what initial semi-major axes and eccentricities favour such an outcome,
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Parameter a1 [AU] e1 Mp,1 [M⊕] a2 [AU] e2 Mp,2 [M⊕] M? [M�]
Value 0.3, 1, 3, 8 0 300 0.1 - 10 0.5 - 0.99 1 - 300 0.6 - 2

Table 5.2: The parameters considered for the planetary systems created to investigate
the impact of altering orbital elements and masses.

I employ a more elaborate version of the analysis approach in the previous subsection.
This is due to the fact that the parameter space is much larger for the orbital elements.
Despite the flat system approximation, the semi-major axes and eccentricities of the orbits
comprise four variables. If in addition I vary the masses, there are another two parameters
to consider. Hence, to simplify the computations, I assumed that the properties of the
primary orbit were static. I then varied the initial components of the secondary orbit in
given ranges. The details can be found in table 5.2.

Before I go into the results of the analysis, I briefly discuss the governing principles using the
Safronov number, which is given in equation (4.6) with a corresponding map for different
masses and semi-major axes in figure 4.1. As explained in section 4.3.1, this number is
simply the relative magnitude between the surface and planetary system escape velocities.
Recall that a smaller semi-major axis will increase the likelihood for mergers whereas a
larger semi-major axis will make ejections the more probable outcome. Since this essentially
means that it is easier to deflect a planet that is further away from its host star, the impact
parameter that leads to a specific absolute exchange of angular momentum increases with
distance from the host star. This can also be motivated using the fact that the mutual Hill
radius of a two-planet system increases with their semi-major axes. Intuitively, this would
mean that planet consumption is more favoured for planets that are further out in the
system, but there is an important trade-off that complicates matters. The further a planet
is from its host star, the larger the critical eccentricity for planet consumption becomes.
In order to determine which effect will dominate, it is necessary to evaluate a significant
portion of the parameter space at hand.

The systems were set up by making a parameter grid for a2 and e2 using the ranges
specified in table 5.2. For the semi-major axis, I chose to use 100 different values with
logarithmic spacing and for the eccentricities I used 50 values with uniform steps of ∆e2 =
0.01. Furthermore, I employed 50 different masses for the secondary planet such that
qp ∈ [10−3, 1] with logarithmic spacing. Additionally, I used 4 different semi-major axes for
the circular orbit of the primary Jupiter-mass planet. All-in-all, 106 different systems were
investigated, with 250 000 for each value of a1. For each system, I carried out scatterings
with 1000 different impact parameters within b ∈ [−bmax, bmax], where bmax was estimated
for each system using scatter.find bmax with the fiducial settings. Given that there are
two different crossing points, I obtained a total of 2000 scatterings. After the scattering I
could obtain a fraction of impact parameters that are consuming which I chose to denote
fconsuming = Nconsuming/Nscatter. By summing all of the values of fconsuming for each value of
qp, I obtained the plot in figure 5.10. There are four lines, one for each value of a1 normalised

63



5.4. CONSUMING ORBITS TWO-BODY ANALYSIS

10−2 10−1 100

qp

0.0

0.2

0.4

0.6

0.8

1.0

Σ
f c

on
su

m
in

g
/

m
ax

(Σ
f c

on
su

m
in

g
)

a1 = 0.3 AU

a1 = 1 AU

a1 = 3 AU

a1 = 8 AU

Figure 5.10: The relative fraction of systems that are potentially planet-consuming for the
set of parameters considered, which are given in table 5.2. Each line represents a different
static value of a1 which is the semi-major axis of the circular orbit of a Jupiter-mass planet.

by the maximum value for each qp, in this case given by
∑
fconsuming for a1 = 0.3 AU. Hence,

the plot mainly shows the relative difference between the number of consuming scatterings
in the 250 000 systems for each specific value for a1. From the figure, it is evident that
the distance from the host star is more important than the increased likelihood of mergers
rather than ejections. Looking at the critical eccentricities for the smallest and largest
values of the primary planet’s semi-major axis, I observe that ecrit(a1 = 0.3 AU) = 0.9845
and ecrit(a1 = 8 AU) = 0.9994, which explains the notable relative difference in consuming
scatterings. Despite the angular momentum of the secondary planet being lower for a2 ∼ 8
AU, making it easier for the primary planet to eject, the difference in ecrit will dominate
and make consumption more likely the closer in to the host star that the scattering takes
place.

Another feature of figure 5.10 is the variation of the test particle limit with the distance
from the host star. If the scattering occurs near the host star ∼ 0.3 AU, the test particle
limit is close to qp ∼ 2× 10−3, while the test particle range begins at qp ∼ 10−1 when the
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Figure 5.11: Contour plot of the fraction of consuming impact parameter values in the
range b ∈ [−bmax, bmax] for the parameter space of (a2, e2) given in table 5.2. The masses
of the planets are kept static with Mp,1 = 300 M⊕ and Mp,2 = 1 M⊕ and the same goes
for the circular orbit of the primary planet with a1 = 1 AU.

scattering occurs at a ∼ 8 AU. Said effect is again due to the increase in angular momentum
with an increasing semi-major axis and the varying value of bmax. The Jupiter-mass planet
can get close enough to remove all of the angular momentum of a 30 M⊕ planet at 8 AU,
while a similar ∆J scattering at 0.3 AU only can occur for scatterings where d ≤ dcrit and
the planets merge.

To show the importance of having a large initial eccentricity, I also show fconsuming for the
parameter space (a2, e2) given a primary circular orbit with semi-major axis a1 = 1 AU in
figure 5.11. To improve resolution I have used ∆e2 = 10−3. The plot evidently emphasises
that more planetary systems are planet-consuming when the total AMD is above a given
level and the semi-major axes of the two orbits are similar. Moreover, planet consumption
is favoured when the secondary planet, in this case of Earth-mass, is closer to the host
star than its more massive planetary companion. Another feature is that the fraction
of consuming impact parameter values only reaches levels of ∼ 0.5 despite having initial
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eccentricities up to 0.99. In order to reach fconsuming values ∼ 1 the initial eccentricity at
the time of scattering must be close to the critical eccentricity which is larger than 0.99
in all orbital configurations where the orbits are crossing for this primary orbit. Hence, I
state the following hypothesis regarding two different planet consumption scenarios

1. Strong planet consumption: A few strong scatterings boost up the eccentricity
of a planetary orbit, ultimately putting it on a consuming trajectory.

2. Diffusive planet consumption: A diffusive process where a planet undergoes a
large number of weak scatterings, slowly increasing the eccentricity of its orbit until
it is put on a consuming orbit.

I address this hypothesis further in section 5.6 where I investigate the effect of subsequent
planet–planet scattering.

5.4.3 Varying the stellar mass

The last property of the system that I chose to vary is the stellar mass. This was done in a
similar approach to that in section 5.4.1, but the mass of the secondary planet was kept at
Mp,2 = M⊕. The stellar mass range was chosen to be M? ∈ [0.6 M�, 2 M�], which includes
a majority of the observed planetary hosts as seen in figure 3.5. The stellar mass mainly
influences two physical properties of the scattering events. First, a lower mass will mean
a larger Safronov number and in turn more ejections since the planets will have a smaller
orbital velocity and less angular momentum, making them easier to eject. Hence, for larger
masses mergers will become more likely and the minimum impact parameter value that
is allowed for planet consumption increases. The second effect is directly related to the
critical eccentricity needed for planet consumption, as the stellar radius will vary with
the mass according to figure 3.5, effectively altering rcrit. Similarly to the case of the
varying mass ratios, there is an ambiguity regarding which physical effect will dominate
and facilitate planet consumption.

The results for the four different values of a1 can be found in figure 5.12 which have been
produced in the same manner as figure 5.10. Again, the systems where a1 = 0.3 AU will
have the most planet consumptions. The optimal mass for the host star is M? ∼ 1.3 M�
and coincides with the second derivative global minimum of the ZAMS R?(M?) relation
presented in section 3.5. The relative physical radius per mass of the host star is evidently
the dominating factor for all of these systems and this quantity is indeed maximal at
M? = 1.35 M�. Looking at the value of

∑
fconsuming, it decreases for M? > 1.35 M�

despite the increasing radius of the host star. Hence, the larger binding energy of the
system and increased orbital velocity which leads to an overall decrease in the Safronov
number still play a major role in making planet consumption less common. Given that
R?/M? = 0.98 R�/M� for M? = 1.35 M�, I simply use the Sun as the fiducial star for the
remaining analysis in this thesis.
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Figure 5.12: The relative fraction of systems produced with the parameter ranges given
in table 5.2 that can have planet-consuming events for different stellar masses. The values
have been normalised with respect to

∑
fconsuming for the semi-major axis a1 that yields

most planet-consuming events.

5.5 Planet-consuming systems in 2D

Here I aim to summarise which orbital configurations are most likely to have planet con-
sumptions in a flat system given the analysis in this chapter. The conclusions can then
serve as an estimate for which type of orbital configurations will lead to planet consumption
in a full three-dimensional analysis, which is done in chapter 6.

While the flat system parameter space (a1, e1,Mp,1, a2, e2,Mp,2,M?) is large despite letting
i1 = i2 = 0◦, I managed to restrict it by inferring a few general trends where planet
consumption is facilitated for certain orbital configurations. For reference, the following
conclusions are mainly based on the information in figures 5.5 and 5.8 - 5.12.
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Insights from the two-body analysis

1. The AMD in the two-planet subsystem needs to be above a given
threshold for one or both planets in order for planet consumption
through strong scattering to be possible.

2. While the AMD can be increased by having the scattering event be
more distant from the host star, this increases the value of ecrit =
1 − rcrit/a, making consumption of a planet less likely. Hence, orbits
with high initial eccentricities near the host star are more favourable
than less eccentric orbits with large semi-major axes even if the AMD
of these orbits is equal.

3. An extreme planetary mass ratio increases the strength of planet–
planet scattering and thereby also the likelihood of a planet being con-
sumed in a given system. However, below a limiting mass ratio related
to the distance from the host star, the secondary planet can be consid-
ered a test particle and will always be consumed for impact parameters
dcrit < b ≤ κbmax, where κ is a constant such that 0 < κ ≤ 1. The value
of this constant depends on the orbital configuration (a1, e1, a2, e2,M?).

4. It is preferable that the secondary, less massive planet is on an orbit
within the primary planet orbit. Moreover, planet consumption is
favoured when e1 < e2, where e1 belongs to the most massive planet.

5. Planet consumption is more likely for stars with large values of R?/M?.
For the R?(M?) relation considered, this coincides with the case of
M? = 1.33 M�. This again relates to the formula ecrit = 1 − rcrit/a.
While it is more difficult to obtain large values of e for a more mas-
sive star due to the planets carrying more angular momentum, this is
counteracted by the increasing value of rcrit if R?/M? is large.

5.6 Subsequent planet–planet scattering

Up until this point, my method has been largely focused on investigating planet consump-
tion through strong scattering. This corresponds to the first of two scenarios I formulated
as a hypothesis in 5.4.2 where one of the planets within a system already has a high
enough eccentricity to allow for planet consumption after one scattering event. In order
to expand this analysis to include the second scenario where the two planets undergo a
diffusive exchange of angular momentum and energy over a large number of subsequent
scatterings before planet consumption, I have used a Monte Carlo simulation approach.
In these cases, AMD is generated such that one planet ultimately ends up on a highly
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eccentric planet-consuming orbit.

To perform these simulations, I wrote the function mc scatter as a part of the scattersim
class. The program takes the orbital configuration (a1, e1,Mp,1, a2, e2,Mp,2,M?) as input
and a number Nb, which corresponds to the number of impact parameters to consider. It
will then operate according to the following algorithm:

1. An impact parameter is drawn from the uniform distribution b ∈ [−bmax, bmax].

2. Scattering is carried out at either crossing point A or B of the system at random
using scatter.scatter.

3. If any of the following statements are true regarding the outcome of the scattering,
the current simulation will be terminated.

• The orbits no longer cross.

• One of the planets has collided with the host star.

• One of the planets has been ejected from the system.

• The two planets have collided and merged.

• The system is unresolved after 104 scatterings.

4. If none of the above has occurred, the orbital parameters will be updated such that
a = ã and e = ẽ.

5. Repeat from step 2.

This process is then repeated Nb times for the given system.

The difficulty with this approach is to know which initial configurations to choose. While
drawing eccentricities and semi-major axes at random until a crossing orbit is found as was
done in section 5.3 is a possibility, such a method carries an important caveat. The fact that
the orbital configuration with crossing orbits would be created at random also means that
it could correspond to the configuration at any given time during the dynamical evolution.
Hence, the two planets may already have undergone a series of subsequent scatterings to
end up with the corresponding orbital elements. To remain as close to a real physical
scenario as possible, it makes more sense to follow the subsequent scattering from the first
close encounter after orbit crossing until the system has been resolved. Therefore, I chose
to circumvent this issue by combining the Monte Carlo analysis with the results of the
full three-dimensional numerical integrations in chapter 6. The resolution lies in the fact
that both the initial configuration of the planets prior to orbit crossing and the orbital
configuration of the two planets at the first scattering event are known.

The initial configuration for this study is the fiducial configuration from section 6.2, con-
sisting of two inner Earth-mass (also referred to as X-type) planets and three outer Jupiter-
mass (J-type) planets. I go into detail regarding the motivation behind this configuration
in said section and the simulation setup is presented in section 6.1. For this analysis, it
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Figure 5.13: The eccentricities prior to the final scattering for the cases where one planets
undergoes consumption, merger or ejection. For description of the markers, see text.

suffices to be familiar with their initial orbital semi-major axes, which can be found at the
top of figure 6.1. The plots in this section follow the same colour scheme to pair a given
planet with its outcome from the Monte Carlo simulation. In total, I used the first unique
close encounter for each planet from 100 integrations and evolved them for a maximum of
104 scatterings.

In figure 5.13 I have plotted the eccentricities for the survivor esurvivor and the CME-type
planet eCME prior to the final scattering event. There are three different symbols, each
representing a CME outcome

? Indicates that the planet has been consumed by the host star.

Shows that the two planets considered have merged. The face and edge colours
represents the CME and surviving planets, respectively.

N Indicates that the planet has been ejected.

From the results, the main issue with the flat system model becomes evident. Almost all
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Figure 5.14: The same as in figure 5.13 but the planets are considered to be point-like
particles with no physical radius.

CME outcomes are mergers, with the exception of nine ejections. The rest of the systems
are either unresolved due to the orbits no longer crossing or the number of scatterings
exceeding 104. For a more realistic case where ip > 0, the mergers would be much more
rare as a mutual inclination of only a few degrees will cause the planets to pass each
other without merging despite the scattering having a two-dimensional impact parameter
such that |b| ≤ dmin. Nevertheless, the planets still end up with a rich distribution of
eccentricities, many in which the eccentricities of the planets indicate AMD levels that
are large enough for planet consumption to be possible. Moreover, when looking at the
number of scatterings before a CME outcome, the planets only undergo between one and
ten before merging. Therefore, it is plausible that the flat system approximation causes
the systems to resolve too early and that they could potentially be planet-consuming in
three dimensions.

In order to test this idea, I also performed a set of Monte Carlo simulations for the same
systems while considering the planets as point-like particles, i.e. letting Rp = 0, effectively
removing mergers as a potential outcome. The corresponding eccentricity distribution
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can be found in figure 5.14. While most systems are unresolved, there are a number of
consumption events for this scenario. More specifically, there have been consumptions
of Jupiter-mass planets after scattering against another Jupiter-mass planet between 50
and 1000 times. Simply by observing that the survivor and CME planet have similar
eccentricities shows that this indeed has been a slow scattering process, where AMD is
increased slowly over time. The values of their respective eccentricities prior to the final
scattering do not coincide with the previous picture of planet-consuming scattering in this
chapter. However, the reason why these cases still lead to planet consumption is due to
the point-like particle assumption which allows the planets to have impact parameters
|b| � dcrit even close to zero, which would correspond to an extremely strong scattering
that would not be physically possible in a real case scenario.

The other subset of outcomes correspond to ejections of Earth-mass planets and one
Jupiter-mass planet. In this case, the surviving planets have low eccentricities prior to
the final scattering event, while the CME-type planets have large eccentricities, indicating
that these systems likely could have resolved in a planet consumption as well, given the
AMD distributions for planet-consuming systems in figure 5.8. The number of scatterings
for the ejection of the X-type planets are much lower than for the Jupiter, meaning that
they have different dynamical histories. Unsurprisingly, the mass ratio in their scatter-
ings is qp ∼ 10−3 which again reinforces the theory that an extreme mass ratio facilitates
consumption or ejection through a few strong subsequent scatterings.

I now summarise the findings of this section and come back to this topic in section 6.3
where I discuss said problem in a three-dimensional setting.

Subsequent scatterings with Monte Carlo

1. Due to the flat system approximation, most of the subsequent scat-
terings lead to mergers. This would most likely not be the case in a
three-dimensional scenario.

2. The systems only undergo between one and ten scatterings before
merging, indicating that they resolve too early and might be planet-
consuming in a more physical scenario where ip > 0◦.

3. When treating the planets as point-like particles, the number of scat-
terings before resolution increases significantly. When qp = 1 the con-
sumed planets must scatter more than 50 times but when qp ∼ 10−3

they only need a few scatterings to end up on planet-consuming orbits.
Hence, a mass ratio near unity will favour diffusive consumption while
an extreme mass ratio will favour strong consumption.
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Chapter 6

Modelling the evolution of
planet-consuming planetary
systems

The results obtained from the study using the two-body analysis model lack real physical
meaning for the true behaviour of multiple planet systems if it cannot be backed up with
similar conclusions from a more realistic model. This is due to the fact that there are
many limiting assumptions that make the model inherently unrealistic. However, it is not
possible to find general analytical solutions for a system with three or more bodies. Hence,
in order to truly understand when and how planet-consuming events occur, I have employed
a numerical approach that can dynamically evolve planetary systems in three dimensions
without the need to isolate separate scattering events from the other bodies in the system.
This was achieved using N -body simulations with the software MERCURY (Chambers, 1999).
In this chapter, I thus present the basic ideas of numerical N -body simulations and why
they are the main tool for understanding planetary dynamics. I proceed by introducing
the MERCURY code and the algorithm used to evolve planetary systems dynamically. Given
that I have limited the phase-space of orbital configurations and formulated predictions for
potentially planet-consuming systems using the two-body analysis in chapter 5, I can save a
significant amount of computing time by using the results as a basis for the choice of initial
configurations for the MERCURY runs. Hence, I compare the outcomes of the predictions
from the two-body model and the N -body simulations, ultimately providing further insight
into which types of systems allow for planet consumption.

6.1 Gravitational N-body simulations with MERCURY

As stated above, there is no general analytical solution for the dynamical evolution of a
system with more than two bodies. Instead, one has to opt to use numerical methods
to efficiently find approximate solutions to such a problem, which usually goes under the
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name of ‘the classical N -body problem’, where N > 2. To find a solution, I consider a set
of equations of motion that corresponds to the change in position and velocity over time in
each dimension of our system. This type of relation is referred to as an Ordinary Differential
Equation (ODE). They are integrated by considering the change in each parameter for a
small time step over a finite period of time. The total force per unit mass acting on a
specific particle with index k in set of N particles is given by the sum of its gravitational
interactions

r̈k = −
N∑

k=1,n6=k

GMn(rk − rn)

|rk,n|3
. (6.1)

The complete solution for the position rk and velocity vk at a given time t is given by 6N
first order differential equations.

As integration can only be performed over a finite time, this hinders my ability to find
a unique solution to the problem. Furthermore, numerical errors will arise during the
integration due to the limitations of the instruments performing the calculation, since they
have a limited precision as compared to analytical methods. This is commonly referred
to as machine error. The numerical errors that arise can often be characterised by using
conservation laws. For example, I expect the energy to be constant in a closed system and
the change of energy can thus be used to quantify the success of the integration.

The energy loss in astronomical N -body simulations mainly comes from the fact that the
choice of time steps for the integration generally do not provide the same detail in the
movements of all objects in a system. To elaborate, errors tend to propagate in e.g. short-
period orbits as a step in time affects the motion of such a particle more than for planet
positioned further out in the system. Hence, if the time step is not adaptive or very small
in order to account for such precision errors, they will quickly grow larger for a system with
largely different semi-major axes, causing the integration to diverge from the true physically
accurate behaviour. The simplest method for estimating the ODE solutions is given by
Euler’s method (Euler, 1768), which is based on the first order Taylor expansion

ṙk(t) = r̈k∆t+ ṙk(t0) (6.2)

rk(t) =
1

2
r̈k∆t

2 + ṙk(t0)∆t+ rk(t0), (6.3)

where ∆t = t− t0 and t0 is the time for the previous position and velocity. This primitive
method will quickly accumulate a large error if ∆t is not kept small and also requiresO(N2)
operations for each summation, making it computationally expensive. Such methods that
do not introduce explicit approximations to compute the derivatives are referred to as
‘direct methods’. While codes based on the direct method are much slower than other
approaches, such as tree codes, mesh codes or fast multiple methods (see Aarseth, 2003,

74



6.1. N -BODY SIMULATIONS CONSUMING SYSTEMS

for an extensive review), they nevertheless provide the highest accuracy, which is why it is
the method of choice for this thesis.

In order to mitigate the time-consuming approach of the direct method, N-body simula-
tion codes often employ adaptive time steps, where the size of the time step changes with
the level of accuracy needed to find a good estimate for ODE solutions. Another way of
reducing numerical errors when computing the solutions to the ODEs is to use various
integration schemes that improves accuracy using higher order estimates of the deriva-
tives. For example, one can opt for the commonly used explicit Runge-Kutta methods
(Runge, 1895), which essentially are higher order versions of Euler’s method with weighted
derivatives from intermediate time steps in the range [t0, t].

The best choice for the integrator in this work is a highly accurate method with an adaptive
time step to deal with extreme mass ratios, differences in orbital period and numerous close
encounters. The well-tested and popular MERCURY code has several integrators to choose
from and performs especially well for planetary systems with few bodies as shown in the
comparison by Grimm & Stadel (2014), making it an appropriate code for this work. The
integrator of choice is based on the Bulirsh-Stoer method (Bulirsch & Stoer, 1966), which
I introduce in the next section.

6.1.1 The Bulirsch-Stoer method

Instead of using a static high order expansion of the derivatives to estimate a solution for
the equation of motion (6.1), the Bulirsch-Stoer integrator is based on extrapolation. The
main idea behind the method is the assumption that the answer to the numerical calcula-
tion over a single time step is in itself an analytic function, which is called ‘Richardson’s
deferred approach to the limit’. Hence, by evaluating the derivative for a number of dif-
ferent time steps ∆t that will not yield a high enough accuracy by themselves, the results
can be fitted to said analytical function. A good approximation of the true value can then
be obtained by evaluating the analytical function at ∆t = 0 yr. This method is known as
Richardson extrapolation (Press, 1992). The number of time steps needed for each analyt-
ical fit depends on the accuracy of the estimate. Hence if the errors for the extrapolation
are deemed too large, the number of intermediate time steps will be increased along the
proposed sequence from Stoer & Bulirsch (2013)

n = 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, . . . (6.4)

The fit to the assumed analytical function that solves the problem is carried out using
Richardson extrapolation with either polynomials or rational functions. An elegant prop-
erty of the Bulirsch-Stoer method is that it has an error series that is strictly even, i.e.
consists of only even powers of ∆t, which was found by William B. Gragg (Press, 1992).
This result leads to the fact that the error can be evaluated in terms of ∆t2, increasing the
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accuracy of the fit two orders at a time when combining all separate attempts for n steps
within ∆t.

While each fit can be a time-consuming process, since the value of n needed to obtain an
adequate analytical fit varies, the key property of the Bulirsch-Stoer method is that the
size of the time step depends on each separate problem, meaning that it is inherently using
adaptive time steps. Given the fact that I expect a period of chaotic dynamical evolution,
where a number of bodies are lost due to CME events that last between 103 and a few
106 yr, followed by a few 105 − 106 yr of calm motion, the use of an adaptive time step is
necessary to keep the elapsed real time reasonably low.

In order to govern the accuracy of the variable time step integration, MERCURY uses an
accuracy parameter as input, which roughly determines how large error the integrator
will tolerate for each time step. For a typical simulation of the dynamical evolution of a
tightly packed planetary system with mass ratios between 10−3 and unity with an accuracy
parameter of 10−11, the relative energy error during the integration was always kept at less
than 10−3.

6.1.2 Initial setup in MERCURY

In order to investigate the evolution of potentially planet-consuming systems, I have used
version 6.2 of MERCURY which was written by John Chambers in the programming language
Fortran77 (Chambers, 1999). For all integrations, I have used the Bulirsch-Stoer method
with an accuracy parameter of 10−11 to have a low relative energy error for each time
step. Due to the results in section 5.4.3, the choice of central body is a host star with
M? = M� and R? = R�. The coordinate system of choice is centred on the host star. This
simple system facilitates the determination of the final position of the planets with respect
to the host star after the conclusion of an integration. However, a potential issue with
this approach is that a planet consumption event where the planet transfers a significant
amount of energy will perturb the initial position of the host star relative to the system
barycentre1. Hence, a barycentric coordinate system would allow for better estimates
when comparing the final orbital elements of several planets. Nonetheless, since the main
purposes of this work is to survey the separation between a given planet and the host
star during the dynamical evolution, I chose to proceed with the central body coordinate
system.

Each planet is initiated with a specific semi-major axis, average density and radius within
which it will undergo close encounters. The average density is computed for a given mass
by the joint mass-radius relation in equations (3.1) and (3.2) under the assumption that
the planets are completely spherical. The number of mutual Hill radii needed to trigger a
close encounter is kept at unity. The remaining orbital elements required to initiate the
planetary orbits are drawn at random from a set of uniform distributions given in table
6.1.

1Usually the centre of mass for all bodies in the system.
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Orbital element e i θ ω Ω
Distribution range [0, 0.01] [0, 5]◦ [0, 360]◦ [0, 360]◦ [0, 360]◦

Table 6.1: Ranges for the initial orbital element values of each planet initialised in the
MERCURY simulations.

The orbits are initially kept circular with low eccentricities e < 0.01, while they are given
random inclinations between 0◦ and 5◦. Such a distribution of inclinations leads to average
mutual inclinations of 2◦ − 3◦, which is consistent with ‘Kepler’ satellite observations of
planetary systems with multiple super-Earths (Johansen et al., 2012).

6.2 Potentially planet-consuming configurations

Given that I obtained a set of predictions from the two-body analysis (see section 5.5) as
to which type of system will likely be planet-consuming, they were the motivation behind
the choice of fiducial orbital configuration for the full three-dimensional analysis of planet-
consuming systems. In this section, I go through them one by one and explain how the
initial configuration of the planets abide by these theories.

First of all, the AMD within the two-planet subsystem that undergoes planet–planet scat-
tering needs to be above a given threshold. Hence, since the initial orbits of my planetary
systems of choice (see section 3.2) are quite circular, the AMD of the individual planets
will not allow for orbital crossing. Therefore, there must be a clear pathway for that to
occur during the evolution. To elaborate, the total AMD must be redistributed among the
planets during the initial stages of the evolution such that there will be a surplus of AMD in
at least one planet before there can be any close encounters. To ensure that the system will
undergo a dynamical evolution with a significant change in AMD between the planets, it
has to be initially unstable. While there can be various causes for the instability within the
planetary system, as discussed in section 4.1.5, I simply assume that the system has been
made unstable through one of the aforementioned mechanisms early on after the conclusion
of the planetary formation phase. By then having a small initial spacing between two or
more planets in the system, the planets are certain to exchange angular momentum at an
early phase in the evolution, ensuring that planet–planet scattering will occur in just a few
Myr. As shown by Malmberg, Davies, & Heggie (2011), the timescale for instability within
a planetary system does not affect the duration of the scattering phase nor the general
properties of the system post-evolution. Recalling from section 3.1, the presence of three
gas giants within a planetary system can be related to the Kepler dichotomy (Johansen
et al., 2012). Hence, placing three gas giants within a small distance of each other means
that short timescale chaotic dynamical evolution will be highly probable. Additionally,
previous studies have found that the highest eccentricities are produced by giant planets
with equal mass during scattering experiments (Ford & Rasio, 2008; Carrera, Davies, &
Johansen, 2016).
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Furthermore, since planet consumption is more likely for planet–planet scattering events
that occur at small semi-major axes, I opted to place the planets further in towards the host
star. This also coincides with the distribution of orbital elements for observed exoplanets,
as discussed in section 3.2. The third finding from the two-body analysis is that planet
consumption is more likely to occur if there exists a large mass difference between planets in
the system. Hence, I once more chose to include test-particle-like planets of Earth-mass, as
well as Jupiter-mass planets in the fiducial configuration to increase the likelihood of getting
planet–star collisions. A key part of the ‘Kepler’ dichotomy, where outer gas giants suppress
the growth of inner planets, suggests that placing said terrestrial planets closer to the sun
than the gas giants will be the most physically accurate scenario. From the two-body
analysis, I also found that such a configuration will facilitate planet consumption.

Interestingly, the system of choice with two terrestrial planets interior to three outer giants
is essentially a dynamically unstable and simplified version of Venus, Earth and the three
outer giants Jupiter, Saturn and Uranus. I place the two Earth-mass planets at the same
semi-major axes as Venus and Earth and the first Jupiter-mass orbit is placed at 5 AU.
The separation between the three Jupiter-mass planets is set to ∆ = 5.1, which most
often triggers instability in just a few Myr (Carrera, Davies, & Johansen, 2016). I refer to
this system as 2E+3J. The system can be altered in a straightforward manner by either
removing or increasing the masses of the inner planet to investigate how the fraction of
planet-consuming outcomes changes. I refer to such systems as 3J and 2X+3J, respectively
and each version of these are denoted with a given letter in alphabetical order, e.g 2X+3Ja,
where MX = 3 M⊕. All initial orbital configurations used in this chapter can be found in
figure 6.1, where the number in between each pair of planets corresponds to the separation
between them in terms of ∆. Table 6.2 shows the specific properties of the planets for
each configuration. There are a number of systems that I have not yet mentioned. As
for 2E+2J, this configuration exists because I naturally wanted to understand how the
evolution changes the number of Jupiter-mass planets outside the orbits of the terrestrial
planets is reduced. For the different versions of 3J, I have altered the semi-major axis
of the first orbit while keeping the separation in terms of ∆ static. This was to confirm
whether or not a smaller semi-major axis leads to a larger number of planet consumptions.
There are also configurations with five Jupiter-like planets referred to as 5J, two systems
with five planets of Saturn-mass called 5S and finally a single one with three Saturn-mass
planets by the name of 3S. The reasoning behind the choice of simulating these initial
orbital configurations will be laid out in section 6.4.1.

6.3 Post-evolution orbital configurations of planet-

consuming systems

Before I go into the results of the numerical integrations, I will introduce the terminology
used when referring to said simulations.
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Planetary configurations

Figure 6.1: The orbital configurations of the systems I consider for the MERCURY simu-
lations of this work. The planets are distributed in semi-major axis along the horizontal
axis. The vertical axis shows the name of each system. The planet sizes are proportional
to M

1/3
p .

• planetary configuration : An initial setup of planets with predefined multiplicity,
initial semi-major axes and masses orbiting a host star with a given mass.

• progenitor system : The initial phases of the planets in a planetary system at the
onset of integration.

• planetary system : The final phases of a planetary configuration after ttot yr of
integration, where planets with static semi-major axes have been given randomised
orbital elements from the distributions in table 6.1.
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• realisation : A realisation is the integration over ttot yr for a given progenitor system
that in the end creates a planetary system.

• run : Refers to all N realisations for a given planetary configuration, creating N
planetary systems.

Hence, the orbital configurations of planets in figure 6.1 are all planetary configurations
because the planets have no specified phase except for their semi-major axis and mass. For
each run N was set to be either 50 or 100 depending on the details needed for statistical
purposes. The time of integration for the realisation was kept at a static ttot = 10 Myr,
with output every yr. However, to save computation time during analysis and keep data
files at a reasonable size, the minimum time between outputs for orbital elements was set to
10 days, which still yields a satisfactory level of detail for changes in the orbital elements of
the planets during the dynamical evolution. While many previous studies on planet–planet
scattering and their outcomes have employed a static radius for ejection, usually reject ∼ 103

AU (e.g. Ford & Rasio, 2008; Raymond, Armitage, & Gorelick, 2010; Carrera, Davies, &
Johansen, 2016), this was shown by Carrera, Raymond, & Davies (2019) to preemptively
remove planets at large semi-major axes with large eccentricities e > 0.99 that were still
bound to the system. Prior to ejection, the semi-major axis of a high-eccentricity planet
increases diffusively through scatterings with other planets, meaning that it still could
obtain an eccentricity such that it collides with the host star before being ejected. Hence,
I have employed their value of reject = 105 AU.

6.3.1 The Carrera plot

In order to show the resulting distribution of semi-major axes and eccentricities for the
surviving planets in the N planetary systems produced after 10 Myr of integration, I have
adopted the plotting style from Carrera, Davies, & Johansen (see their figure 2) with a few
modifications. The orbital configurations of the planetary systems from a N = 50 run of
2E+3J can be found in figure 6.2.

The initial orbital configuration of the five planets can be seen at the top of the plot with
their semi-major axes indicated on the horizontal axis. The sizes of each planet’s dot
is proportional to M

1/3
p . The eccentricity of the final orbits is shown by the error bars

centred on each planet, representing the periastron and the apastron. Mergers are shown
by a multi-coloured dot, where the outer and inner colours correspond to the primary
and secondary planet in the merger, respectively. For each realisation, distinguished by
its system index on the vertical axis, we can observe which planets have been consumed
as they are plotted within of the physical radius of the host star, indicated by a black
dashed line. All systems where a planet-consuming event has occurred are also marked
with a green, translucent bar to the left of the star radius line. The translucency of the
green bar indicates the varying amount of mass consumed by the host star in the given
system, allowing us to see that there are five distinct groups of systems in terms of mass
consumed. Furthermore, there is a red bar that shows the range of rmin = a(1 − e) and
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rmax = a(1+e) values for the surviving planets over the course of the simulation, indicating
radial incursions and radial excursions, respectively. The purple bars indicate the range
of semi-major axis values over the simulation for the surviving planets. The systems have
been ordered in terms of

1. The mass consumed by the host star.

2. The extent of radial incursions made by the surviving planets.

In this way I can observe the distribution of radial incursions for each type of planetary
system that is shown in figure 6.2.

There are two additional vertical lines in the plot. The grey dashed line indicates the tidal
disruption radius of the least dense planet remaining in the system, with a bulk density
ρmin. Said radius is given by the Roche radius

RRoche =

(
9M?

4πρmin

)1/3

. (6.5)

As for the dotted line, it represents the semi-major axis corresponding to the binding energy
of a planet on a circular orbit that has ejected two other Jupiter-mass planets, computed
by

af =

[
1

aJ1

+
1

aJ2

+
1

aJ3

]−1

. (6.6)

For the planetary configuration 2E+3J, this value corresponds to af = 2.41 AU. While some
of the absolute energy among the planets in the system has been lost with the consumed
Earth-mass planets or transferred to a Jupiter-mass planet in the cases where a terrestrial
planet has been ejected, their comparably low fractional energy will not affect the position
of af in a notable manner.

I will now go through the five groups of systems one by one in terms of increasing consumed
mass and point out noteworthy features of their orbital parameter distributions.

Systems 0-2: This is arguably the least interesting group of planetary systems from the
integration, where no planet has been consumed. System 0 is still unresolved after 10 Myr of
integration, indicating that the set of phases for the Jupiter-mass planets impedes exchange
of angular momentum, keeping the system stable for a long time. In the remaining two
systems, there has been a merger between two Jupiter-mass planets that appear to have
occurred early on during the evolution given the lack of radial incursions and excursions
for the planets. The remaining two giant planets are seemingly Hill stable, which indicates
that any further evolution is unlikely.

Systems 3-9: Here, one of the terrestrial planets has been consumed after being scattered
into the host star. There are signs of significant radial incursions for all these cases, but
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Figure 6.2: Examples of the final orbital configurations of the surviving planets in the
2E+3J configuration considered. For an explanation, see the text in section 6.3.1.
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none of the planets are on highly eccentric orbits in the final configuration, as indicated
by their error bars. In turn, it appears that one of the Jupiter-mass planets has been on
a more eccentric orbit and then undergone planet–planet scattering with another Jupiter,
ultimately leading to an ejection. Since ejection occurs for planets with small absolute
orbital energy |E| ∼ 0 J, said quantity must have been transferred to one of the remaining
planets in the system. In all but one case, system 4, there is one Jupiter-mass planet with
ap ' af . The further out the second Jupiter-mass planet is, the closer the semi-major axis
of the innermost Jupiter will be to af , indicating the importance of energy conservation
to explain the final orbital configuration in these systems. Given the semi-major axis
dependence of the binding energy, a planet at ∼ 100 AU can practically be considered
to have been ejected, which can be clearly seen for system 9. Furthermore, the radial
incursion has been most considerable in said system. This is a clear case of anti-scattering,
where a planet on an eccentric orbit is put on a less eccentric and wider orbit. Such an
event often culminates with the other planet being ejected. In system 4, the Jupiter-mass
planet that was on an eccentric orbit has, instead of anti-scattering, directly merged with
another Jupiter-mass planet. A noteworthy feature of the final orbital configurations is the
production of Jupiter-mass planets with large semi-major axes ap > 40 AU on both circular
and eccentric orbits in some systems. The existence of such planets is difficult to explain
in planet formation models due to early planet migration (e.g. Bitsch, Lambrechts, &
Johansen, 2015; Wimarsson, Liu, & Ogihara, 2020). This result is consistent with Veras,
Crepp, & Ford (2009), who predicted the existence of wide orbit giant planets due to
planet–planet scattering that can survive for several tens of Myr before they are eventually
ejected.

Systems 10-36: The dominant type of system is where two terrestrial planets have been
consumed and two massive planets remain. There are three exceptions. In systems 23
and 35 there are three Jupiter-mass planets remaining, but the orbits of the two outer
Jupiters are still crossing meaning that the dynamical evolution has not concluded. One of
the planets will undoubtedly be ejected if the simulation was to be continued for another
Myr. The other exception is system 10, where the radial incursion of the surviving planet
has not been large enough to invade the orbits of the inner two planets and scatter them
into the host star. Instead, looking at the detailed evolution of this system, this is one
of the cases where the inner two planets have been made eccentric through Lidov–Kozai
oscillation with either the Mp = 2 MJ planet or the remaining Jupiter before it was ejected
from the system. I will return to this new pathway to consumption in the next section. A
majority of the remaining systems have all behaved similarly to system 9 in the previous
group, where one Jupiter has been fully ejected and the other is on a large semi-major
axis orbit. The distribution of eccentricities for the two planets differ notably between
the two-Jupiter systems and seems to indicate that consumed planets remove different
amounts of angular momentum from the surviving planets. However, recall that the AMD
in this full three-dimensional scenario also is affected by the inclinations of the orbits (see
equation (4.3)), which does not become clear from figure 6.2. Another outstanding feature
is the radial incursion of the surviving planets in system 36, indicating that one of the
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planets would have been fully consumed if I had opted for rcrit equal to the tidal disruption
radius of a Jupiter-mass planet (grey dashed line). As a matter of fact, this is a case where
the outermost planet, J1, is yet to be considered fully ejected by MERCURY, meaning that
it has a semi-major axis of 104 < ap < 105 AU and is thereby not visible in the plot.
Given the extreme semi-major axis, it will have an immensely long period as P 2 ∝ a3 and
will probably never get close enough to the host star for such an event to occur before
being fully ejected. The final observation from this group is that the magnitudes of the
radial incursions for the two cases where two Jupiter-mass planets have merged are at
the lower end of the distribution. This coincides with the merger-type systems from the
two previous groups as well, which again indicates that mergers tend to happen early on
during the dynamical evolution, impeding the magnitudes of radial incursions within the
system.

Systems 37 and 38: In these two systems, a single terrestrial planet and a Jupiter-
mass planet has been consumed. After a more detailed analysis of the evolution of the
orbital elements as a function of time, it is clear that the ejection of the other terrestrial
planet is due to the invasion of a Jupiter-mass planet into the inner subsystem, which then
weakly scatters the Earth-mass planet outwards where it is subsequently ejected by the
other Jupiters. Recalling that ejection becomes more likely with larger distance from the
host star from section 5.4.2, it is unsurprising that such an outcome is favoured when the
terrestrial planets are moved outwards. A notable aspect of the single surviving planet is
that it has a semi-major axis ap > af . This comes from the fact there are scenarios where
a large proportion of the energy will not be conserved among the planets if a massive
planet gets consumed. Instead any excess energy stored within the consumed planet will
be transferred to the host star. For these two systems, this has indeed been the case.

Systems 39-49: The main difference between the previous group and the final group
is that both terrestrial planets have been consumed during the evolution. There are also
systems that still retain two Jupiter-mass planets, but a majority of these still have crossing
orbits and will likely resolve with another ejection if integrated for a longer time. Hence,
there are only one or two systems where the two Jupiter-mass planets can exist in a stable
orbital configuration. Moreover, system 49 shows the case of a strong anti-scattering
event where a planet on an almost consuming orbit has significantly increased its angular
momentum by ejecting another Jupiter-mass planet. As compared to system 36, the planet
with the significant radial incursion could have been either tidally captured by the host
star becoming a hot Jupiter or eventually tidally disrupted and consumed. Looking at
systems 47 and 49, there is another distinct characteristic of systems where a Jupiter-mass
planet has been consumed, namely that it is still possible for Jupiters within such systems
to have ap ∼ af . This points to different pathways to consumption, as the consumed
planet clearly carries less absolute orbital energy with it that is transferred to the host star
in this scenario. I note here that the ejected planet can have a small positive energy at
the point of ejection, but it generally is non-negligible (Ford, Havlickova, & Rasio, 2001).
Hence, the consumed Jupiters in these two systems appear to have gone through diffusive
consumption. In the remaining cases, the Jupiter has been consumed with a lower ap value
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and in turn a large (negative) energy, which indicates strong consumption through a few
scatterings.

I now summarise the most important findings from this plot briefly.

Insights from dynamical evolution of 2E+3J

1. Both terrestrial planets have been consumed in the majority of the sys-
tems and a Jupiter-mass planet has been consumed in about a quarter
of them.

2. Mergers appear to happen early on during the dynamical evolution.

3. If one Jupiter has been ejected, the other two planets will most prob-
ably have semi-major axes such that a1 = af and a2 > 30 AU. This
can potentially explain the formation of gas giants with wide circular
orbits, consistent with the prediction of Veras, Crepp, & Ford (2009).

4. If a Jupiter has been consumed, the final semi-major axis of the sur-
viving planet(s) depends on how much orbital energy the consumed
planet has removed from the system.

5. The various configurations of the Jupiter-consuming systems reinforces
the theory of the two planet consumption mechanisms introduced in
section 5.4.2.

6. The consumption of terrestrial planets without any orbit crossing indi-
cates the existence of a third pathway to planet consumption, namely
Lidov–Kozai oscillations.

6.3.2 Pathways to planet consumption

In this section, I further investigate insights 5. and 6. based on the 2E+3J Carrera plot.
Note that while the main analysis is based on the N = 50 systems in figure 6.2, I have
confirmed the major findings using an extended set of N = 100 planetary systems. In
order to infer whether there indeed exist different types of pathways to planet consump-
tion for the planets in the 2E+3J configuration, it makes sense to look at the number of
scatterings for each CME-type planet in the planetary systems. As previously discussed in
section 5.4.2, there appear to exist diffusive and strong versions of the planet consumption
process. Either the planet will undergo a few strong scatterings that directly puts the
planet on a consuming orbit, or the orbital eccentricity will increase diffusively over time
through a large number of scatterings. If I expand this theory to include the consump-
tion through Lidov–Kozai oscillations, the planets that have been consumed through this
mechanism should have undergone only a few to no close encounters at all throughout the
dynamical evolution of the system. While simply looking at the number of scatterings for
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Figure 6.3: The average fractional change in AMD for each close encounter plotted
against the number of close encounters for each CME-type planet in 100 2X+3J planetary
systems. The star, plus and triangle symbols represent the fate of consumption, merger
and ejection for a planet, respectively. The colour indicates the initial position of the
planet in the 2E+3J configuration from figure 6.1. The arrow attached to every data point
indicates the fractional change in AMD for the final encounter of the planet.

each CME-type planet will provide a lot of information, it would be well complemented by
a quantitative measure of scattering strength. The most important quantity that governs
the outcome of scattering events appears to be the AMD, given that it carries composite
information of the distribution of orbital elements. Hence I provide a plot in figure 6.3
of the average fractional change in AMD per scattering of all CME-type planets across
the previously discussed N = 50 realisations of 2E+3J as a function of the number of
scatterings, NCE.

In the plot, I have added an arrow for each data point that indicates the fractional change
in AMD for the final registered closed encounter during the realisation. I will refer to
this quantity as ξf in the text, while the average fractional change in AMD is ξ. Given
the nature of how MERCURY treats close encounters, there is no guarantee that the final
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encounter for the CME-type planet occurred with the survivor that ultimately put it on a
CME orbit, except for the mergers. Nevertheless, the information inferred from the final
fractional change in AMD still hints at the dynamical history of all CME-type planets. I
now go through each CME type one by one.

Mergers: While mergers generally are a rare outcome, the majority of them tend to
happen at an early point during the evolution after a few to 100 close encounters. This
aligns with the perception from the analysis of figure 6.2, where the surviving planets in
an M-type system have not made any significant radial incursions. From the two-body
analysis, it has become clear that mergers are favoured when there is little-to-no total
deflection during the encounter. Given the importance of a large vb velocity, deflection will
be weak when either qp ∼ 1 or if the relative velocity between the planets is low. Moreover,
the relative velocity will be minimised for two planets with similar orbital elements. This
statement can be reinforced by simply looking at the geometry of the orbits in figure 5.4
and considering that a larger difference in eccentricity and semi-major axis will induce a
larger angle between the two initial velocities v1 and v2 at the crossing points. Considering
that the orbits most likely will have similar semi-major axes, eccentricities and low mutual
inclinations at the onset of the integration, it makes sense that mergers are favoured early
on during the dynamical evolution. As for the strength of the scatterings leading up
to the mergers, indicated by ξ, there is a significant spread of values. Given that the
final scattering strength represents the change for the primary planet prior to and after
merging with another planet, the overall trend clearly depends on the dynamical history
of the secondary planet as well. For the two leftmost examples, there is one case with
NCE = 1 where the two planets merge without inducing a notable change in AMD for
the primary planet. In the other with NCE = 9, the nature of the collision leads to an
overall decrease in the AMD for the primary planet. Hence, there does not seem to be
a typical scattering pathway that favours mergers, except for the fact that they occur
early on during the evolution of the system. Nevertheless, I expect that the eccentricities
and mutual inclinations should be kept small, meaning that the major change in AMD
comes from semi-major axis variations. I proceed to verify this hypothesis later in this
section.

Ejections: This outcome is evidently more of a diffusive process given it occurs for
NCE > 100 in all cases. This makes sense, since an enormous radial distance of 105

AU is needed to fully eject a planet in the simulations, which also indicates that eccen-
tricities of e ∼ 1 are needed. It is also apparent that ejection is the dominating outcome
for scattering cases where qp = 1. Again, ejection becomes more likely and consumption
becomes less likely with increasing distance from the host star (see section 5.4.2). With
this idea in mind, the explanation for the increased likelihood of ejection with NCE can be
found in the conservation of energy among the Jupiter-mass planets. If two Jupiter-mass
planets undergo a number of scattering events, I expect that one will gain a surplus of the
total energy between them. Hence, the semi-major axis of one planet will decrease while
the other planet’s semi-major axis increases over time. The more scatterings the planets
undergo, the larger this difference in energy (and angular momentum) will become. The
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insights from the two-body analysis have already hinted at the result that planets with
qp ∼ 1 will need a much larger number of scatterings for one planet to reach e ∼ 1 and
possibly be consumed. Hence, if two scattering Jupiter-mass planets do not merge early on,
the difference in their orbital elements and AMD will keep growing until one of the planets
is either consumed or ejected. Due to their distance from the host star in this planetary
configuration, the favoured outcome for qp ∼ 1 scattering is ejection. The strength of the
scatterings varies, but will always be positive, which agrees with the need for a large initial
AMD for ejection to be possible. Moreover, each ejection is concluded with a final scatter-
ing event that has one of the largest relative strengths during the dynamical history. There
is also a clear trend where both ξ and ξf decrease with NCE. Hence, the fractional change
in AMD is lower for planets that already are on highly eccentric and wide orbits.

Consumption: As for the average fractional change in AMD for the consumed planets,
there are a variety of noteworthy features. First of all, there is a clear difference in the
number of scatterings needed to consume an Earth-mass planet and a Jupiter-mass planet,
where the minimum values for NCE are 3 and ∼ 750, respectively. Focusing on the con-
sumption of Earth-mass planets, there is a wide range of ξ that can produce such events.
There is an especially large discrepancy between the two leftmost cases, where the Earth
at NCE = 3 has clearly undergone two very strong scatterings followed by a final weak
one, probably by the other Earth-mass planet in the system. The next planet at NCE = 4
seems to have undergone four weak scatterings with the other Earth-mass planet, where
it has lost AMD on average. This is evidently a case where scattering has not been the
pathway to consumption. Instead this planet has gained AMD through Lidov–Kozai oscil-
lations with a planet in the outer 3J subsystem. There are two other cases with NCE < 20
where ξ is negative and these planets are also likely to have been consumed through the
Lidov–Kozai mechanism. The remaining cases all have a positive ξ value, which indicates
that they have undergone strong or diffusive consumptions. To formulate a more robust
definition for the three different pathways, I define them as follows

• Lidov–Kozai consumption: ξ < 0

• Diffusive consumption: 0 < ξ < 10−1 and NCE > 20

• Strong consumption: ξ > 10−1

Note that these definitions imply that there is a strict boundary between diffusive and
strong scattering. However, judging from figure 6.3, these two regimes appear to be con-
nected by a continuum of average scattering strengths, ξ. In turn, diffusive and strong
scattering merely represent two extreme pathways to planet consumption. Nevertheless,
the two different cases provide an intuitive distinction between the qualitative difference
of consumption by many weak scattering events and a few strong ones. Therefore, I still
opted to use this terminology throughout this thesis to facilitate the discussion of planet
consumption events.

While it would be intuitive to categorise these mechanisms in terms of number of scat-
terings, it is rather the nature of the scatterings that is of interest. To elaborate, an
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Earth-mass planet can undergo a large number of weak ξ ∼ 0 scatterings with its Earth-
mass companion that do not result in a significant change in AMD, which in turn will not
bring it close to the critical AMD needed for planet consumption. Hence said scatterings
have not affected the orbital elements of the primary Earth-mass planet in a significant
manner. If it then undergoes a series of strong subsequent scattering events with a Jupiter-
mass planet that boosts the value of ξ, bringing the planet to its critical AMD, it makes
most sense to categorise this C-type planet as a strong consumption candidate. Looking
at the values of ξf , there are two scenarios that each make up approximately half of the
population: either ξf > ξ or ξf ≤ 0. While the fact that there are so many cases where
ξf ≤ 0 may seem surprising, since one would expect that the final scattering is the scatter-
ing that ultimately puts the planet on its consuming orbit, there is a logical explanation.
When the planet travels along its planet-consuming orbit towards the host star, it can
still undergo close encounters with other planets still present in the system. Said theory
is supported by the fact that ξf > ξ for all ejections. Given that ejections occur after a
period of diffusive scattering followed by strong scattering, planets eligible for ejection will
generally be on the orbit that is furthest away from the host star in the planetary system.
Hence, the planet is unlikely to encounter any other planets on its trajectory away from
the system. If this were to be the case, the relative strength of the scattering would still
be large given the sizeable AMD of the E-type planet.

Inclinations and eccentricities of CME-type planets

To verify the hypothesis of mergers occurring early on for orbits with little-to-no eccen-
tricities and mutual inclinations, I have plotted these respective traits prior to the final
scattering of the CME-type planets for the 2E+3J system in figure 6.4. The mutual in-
clinations of the planets have been plotted against the minimum separation between the
two scattering planets in terms of dcrit = Rp,1 + Rp,2. From the two plots, I observe that
the M-type final scatterings have low mutual inclinations im < 9◦ and low eccentricities
e < 0.5 for both the survivor and CME-type planet. Hence, it is fair to conclude that
mergers generally occur early on during the dynamical evolution when there is a small
difference in AMD between the two scattering planets.

The plots also provide more evidence for the Lidov–Kozai consumption pathway. A ma-
jority of the Earth-mass CME-type planets has mutual inclinations with the surviving
planet in their final close encounter within the active regime for Lidov–Kozai oscillations
39.20◦ ≤ im ≤ 140.77◦ (Naoz, 2016). Moreover, there are eleven cases where the eccen-
tricities of the scattering planet are within the low-eccentricity regime e < 0.5, which,
judging from the two-body analysis, does not allow for direct consumption through scat-
tering. Hence, Lidov–Kozai consumption may be more common than would be expected
from figure 6.3 and could be an active mechanism even for NCE > 20.

Further, the diffusive nature of the ejection process is also revealed as a vast majority of
the E-type planets have eccentricities ∼ 1 at the onset of the final scattering event. There
are some cases where e > 1, but this is due to the planets being able to undergo close
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encounters post-ejection because of their sizeable Hill radii. Again, the planets will not be
considered lost from the system by MERCURY until rp ≥ 105 AU.

I once more note that the final encounters for the C-type planets may be with a planet
that they pass on their path towards the host star given that around half the planets in
figure 6.3 have negative ξf . This could affect the distribution of the parameters for the
surviving planet in these plots. Nevertheless, the two-body analysis in chapter 5 indicates
that a large AMD in the CME-type planet is more influential than a large AMD in the
survivor.

6.4 Planetary mass ratio in planet-consuming scatter-

ings

At this point, it is clear that the mass ratio between the two planets undergoing a scattering
event heavily affects the outcome. To delve deeper into the findings of section 5.4.1, where
the mass ratio was investigated using the two-body model, I extended the study to the
full three-dimensional case using MERCURY. The configurations used for this investigation
are versions of the 2E+3J setup where the mass of the inner planets have been altered in
logarithmic steps. I refer to these systems as 2X+3J. Including 2E+3J, the inner planets
have masses of MX = 1, 3, 10, 30, 100, 300 M�. The semi-major axes of all planets in
the system are kept static, as can be seen in figure 6.1, while ensuring that the innermost
subsystem is always Hill stable (i.e. ∆ > 2

√
3). To compare the results in the different

configurations, I have plotted the average fractional outcome for the planets in a planetary
system across N = 100 realisations in figure 6.5. The outcomes shown in the bar plots are
consumption (green), ejection (orange), merger (grey) and survival (blue). Furthermore,
each bar has a hatched region which represents the average fractional outcome for the inner
2X subsystem. From the plot, there is a strong indication that the fraction of consumed
planets indeed goes down with increasing mass of the inner subsystem. Since the mass of
the outer 3J planets is constant, the number of times a Jupiter-mass planet is consumed
will remain roughly similar. Due to the number of consumptions per realisation being
independent of the number of realisations, I can expect the error in the statistics to follow
a Poisson distribution, i.e. σoutcome =

√
Noutcome. Given that I am looking at the mean

value for N realisations, the standard error will be σ =
√
Noutcome/N . The standard error

for the fraction of consumed planets is indicated with a thin black bar in the diagram.
With that in mind, it is difficult to judge whether or not the test particle limit lies inside
or outside of MX = 30 M⊕. Nevertheless, the decrease in the average fraction of consumed
X-planets between MX = 30 M⊕ and MX = 100 M⊕ cannot be explained by statistical
errors alone and there is a clear decrease for MX = 300 M⊕ as well. Hence, the mass ratio
test particle limit indeed seems to lie close to qp ∼ 10−1, which agrees with what was found
in figure 5.10. Looking at the change of average fraction for the outer outcome as qp → 1,
the increased number of mergers and ejections for the 2X subsystem also lies in line with
the previous analyses in the current and previous chapters. The more work a planet has
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Figure 6.4: Top: The eccentricities of the survivor planet plotted against the eccentricity
of the CME-type planet at the final close encounter. Bottom: The mutual inclination as
a function of the minimum separation in terms of dcrit = Rp,1 + Rp,2 before the final close
encounter. The colour and markers follows the same scheme as in figure 6.3.
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Figure 6.5: The mean fractions of outcomes per system across the 100 realisations I have
carried out for the 2X+3J configurations with varying MX values: 1, 3, 10, 30, 100 and 300
M⊕. The 1 M⊕ case corresponds to the 2E+3J configuration. The outcomes considered are
survival (blue), consumption (green), merger (grey) and ejection (orange). Hatched regions
represent the fractional outcomes for the inner 2X planetary subsystem. The black bar
represents the standard error for the mean fraction of consumed planets. For example, if
we consider an average planetary system for the leftmost configuration, 40% of planets are
consumed. Further, it is more likely that said planet is an X-type since the consumption
of an X-type planet corresponds to ∼ 35% of the outcomes on average.

to do to change the trajectory of the other planet during a scattering event, the less likely
planet consumption will be.

Another feature that needs to be addressed is the increased number of surviving X-planets
for MX = 100 M⊕ and MX = 300 M⊕. While it is expected that it will be more difficult to
consume planets as qp → 1, the dynamical evolution for systems based on these configura-
tions should still resolve on a similar timescale to those with a lower MX value. Looking
at orbital elements of the planetary systems after 107 yr, there is a significant difference
between the systems evolved from 2X+3Jd and 2X+3Je. In the former case there are three
completely unresolved systems that have yet to reach instability, which is in line with the
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cases of MX < 100 M⊕ and can be explained by the random phase of the progenitor system
not favouring early instability. However, for the case of five Jupiter-mass planets, there
are 22 unresolved systems, which is counterintuitive given that there is much more AMD
available for redistribution in the system that could trigger destabilisation. I dedicate the
upcoming section to the investigation of this peculiar result.

6.4.1 The five Jupiter problem

The entire motivation behind the 2E+3J and 2X+3J configurations is to have the three
outer Jupiter-mass planets become unstable on a short timescale, which will trigger chaotic
dynamical evolution that leads to strong exchanges of AMD and ultimately CME-type out-
comes. The prolonged stability timescale of 2X+3Je configuration directly led to thoughts
of numerical errors. Given the significant increase in total mass of the system, the behaviour
of the integrator used in MERCURY could potentially be affected. Nevertheless, there was
no increase in the fractional energy error of the integrations, which systematically stayed
below 10−4 for all realisations. Further, a thorough investigation of the initial orbital el-
ements for each progenitor system showed that there was no indication of a systematic
decrease in initial AMD for the planets, which could have been a potential explanation for
the existence of such a large number of unresolved systems. In the absence of an obvious
numerical explanation for this discrepancy, I formulated two possible scenarios that could
suppress chaotic dynamical evolution in these 22 systems.

1. AMD sink theory: The inner planets are massive enough to absorb an early excess
of AMD created in one of the outer planets, effectively acting as ‘sinks’ for the AMD
and prolonging the timescale for stability in the planetary system.

2. Altered potential theory: The increased mass of the inner planets creates a mass
quadrupole, which alters the gravitational potential acting on the outer 3J subsys-
tem. This effect is an important barrier that can effectively suppress Lidov–Kozai
oscillations (Mustill, Davies, & Johansen, 2017).

In order to determine if either of these theories are plausible explanations for the prolonged
stability of the 5J configuration, I conducted a more in-depth study of the problem using
the 5J, 5S and 3S configurations in figure 6.1. This can be found in appendix B. While
a conclusion would require additional integrations and deeper analysis, the investigation
points towards the second scenario being more likely. To summarise, the inner planets in
the 2X+3Je realisations appear to be massive enough to create a significant quadrupole
moment which alters the potential acting on the outer planets by breaking the symmetry
of the otherwise spherical stellar potential. This causes precession of the outer planets,
which can suppress oscillations of their orbital eccentricities. Moving the inner planets
closer to the host star reduces the timescale of instability for the 5J systems, probably due
to the potential becoming more symmetric.
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6.5 Radial dependence of planet-consuming scatter-

ing events

With the mass dependence verified, I next restricted the parameter space for radial distance
from the host star to find which regions of a planetary system favours planet consumption.
Since I had already confirmed that there are systems where giant planets are consumed
even when dealing with inner-outer planetary mass ratios of qp � 1, it was evident that
the isolated 3J subsystem would be able to produce planet consumptions. Hence, I opted
to not use the full 2X+3J configuration for these integrations. Instead I focused on altering
the semi-major axis of the first planet in the isolated 3J configuration while keeping the
∆ separation static at 5.1. The aJ1 values of choice were 0.3, 1, 5, 10 and 15 AU, where
the 5 AU configuration correspond to the position of the 3J subsystem in the 2E+3J
configuration. The corresponding planetary configurations 3Ja-e can be found in figure
6.1. The main gain of only using the three Jupiter-mass planets is that the elapsed real
time for the integration is significantly reduced when dealing with less planets that all have
similar periods.

The outcome fractions for the corresponding N = 100 realisation runs for all 3J configu-
rations are displayed in figure 6.6. From the results, I once more see indications that the
fraction of consumed planets steadily drops with increased semi-major axis, which coin-
cides with the findings in section 5.4.2. While there is unexpectedly a minimum at aJ1 = 1
AU instead of at the innermost value of 0.3 AU, this can be explained by the fact that the
rate of mergers is significantly increased at such small distances from the host star. The
escape velocity of the system will be much larger than the surface escape velocity of the
Jupiter-mass planets at these small semi-major axes, which from the Safronov number in-
dicates that planets are much more likely to merge than proceed to exchange large amounts
of AMD. Furthermore, given that dcrit is large for planets of this mass and bmax decreases
with the semi-major axis, the range of impact parameters that are planet-consuming will
be a small fraction of the entire distribution of possible b-values. Hence, a planet–planet
scattering with a small qp would still be more likely to produce a planet consumption than
a merger due to dcrit being a much smaller fraction of bmax, since the latter is proportional
to (Mp,1 + Mp,2)1/3. Hence, these results are still in line with the conclusions from the
two-body analysis.

One noteworthy feature remains to be addressed in figure 6.6. The number of unresolved
systems appears to increase significantly with aJ1. To investigate this further, I looked at
the cumulative distribution for the timing of the first close encounter, tCE, which functions
well as a measure for the level of instability for a given configuration (Chambers, Wetherill,
& Boss, 1996). The corresponding distributions for the 3J configurations can be found
in figure 6.7. There is a drastic decrease in tCE for smaller values of aJ1 despite the
planets having a constant separation in ∆. The explanation lies in the initial orbital
period for planets on different semi-major axes, since the orbital period is proportional to
a3/2 and will ensure that planets exchange angular momentum less frequently by action at
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Figure 6.6: The mean fractional outcomes across the 100 simulations I have carried out
for the 3J configuration with varying aJ1 values: 0.1, 1, 5, 10 and 15 AU. The 5 AU
case corresponds to the position of the 3J subsystem in the 2X+3J configurations. The
outcomes considered are surivival (blue), consumption (green), merger (grey) and ejection
(orange). The black bar represents the standard error for the mean fraction of consumed
planets.

a distance, effectively increasing tCE. Therefore, it will be much more difficult to induce a
large fractional increase in AMD for one of the Jupiter-mass planets early on that could
eventually lead to orbit crossing when the subsystem is far from the host star. Recall that
there is not much exchange of energy before orbits have crossed. Instead, the dynamical
instability timescale depends on the ability of the system to produce eccentric orbits, i.e.
create a surplus of AMD in one of the orbits. Moreover, after the onset of instability it will
take a longer time for the system to fully resolve since the close encounters will happen
less frequently. This theory is reinforced by the fact that the number of close encounters
needed to reach a CME outcome is not different from 3J systems that are situated further
in, since I found the relationship between ξ and NCE for these close encounters to be similar
for all values of aJ1. This is due to the scale-invariance of planetary dynamics (Malmberg
et al., 2011). Hence, each close encounter will lead to a large fractional change in energy
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Figure 6.7: The cumulative number of systems as a function of the timing of first en-
counter tCE in years for the different configurations used in the radial dependence investi-
gation.

and thereby a large change in the semi-major axis, which in turn also alters the angular
momentum of the orbit. Due to the long periods, around 20% of the systems are not yet
fully resolved after 10 Myr for the cases of aJ1 = 10 AU and aJ1 = 15 AU, which should
be kept in mind when interpreting the results of figure 6.6.

6.6 Multiplicity of giant planets in planet-consuming

configurations

The behaviour of the giant planets within a planetary configuration is clearly the driving
factor behind how much mass a host star of a given planetary system will consume. Up
until now, I have always assumed that there are at least three Jupiter-mass planets in the
configurations that all planetary systems are based on. As mentioned in section 3.1.1, it is
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still not well understood how multiple giant planets are formed. Yet, if a planetary system
is capable of producing one giant planet, there are indications that it will produce more
than one (Wittenmyer et al., 2020), especially around high metallicity stars (Buchhave
et al., 2018). But there will be scenarios where creating three giant planets around a Solar-
type star will not be possible. Hence, I investigated the impact of reducing the number
of giant planets in the fiducial 2E+3J configuration, creating a 2E+2J system. I opted
not to integrate any configuration with a single giant planet as such a configuration would
be completely stable unless the inner two Earth-mass planets would be Gladman unstable
with ∆ < 2

√
3. Such a configuration would be unlikely to produce any planet-consuming

events since the Safronov map in figure 4.1 indicates that mergers are highly favoured as an
outcome for Earth-mass planets at a ∼ 1 AU. There could be scenarios where the Jupiter-
mass planet is situated much further in towards the inner subsystem producing a Gladman
unstable configuration with the outermost Earth-mass planet. Here the Jupiter could drive
up the eccentricity of the Earth-mass planet and ultimately put it on a planet-consuming
orbit. The evolution of hierarchical two-planet systems has been investigated in Petrovich
(2015), who found that the fraction of consumed terrestrial planets increases with R?/ap,
which coincides with the findings in sections 5.4.2 and 6.5.

As seen in figure 6.1, the 2E+2J system has a giant planet separation of ∆ = 3.0 in
order to ensure fast dynamical evolution. The resulting planetary systems from a N = 50
run can be found in figure 6.8. Firstly, there are a larger number of unresolved systems
as compared to the 2E+3J case. Secondly, a majority of the innermost Jupiter-mass
planets have semi-major axes smaller than af . This indicates that planet–planet scattering
has been a more common pathway than Lidov–Kozai consumption for these systems. To
elaborate, all of these surviving Jupiter-mass planets have made radial incursions into the
inner subsystem, absorbing energy from the two Earth-mass planets. Nevertheless, the
combined orbital energy of the two Earth-mass planets is not be large enough to put the
survivors’ semi-major axes inside of af . Instead, the ejected planet likely has carried a non-
negligible amount of (positive) energy away from the system (Ford, Havlickova, & Rasio,
2001). Since two Jupiter-mass planets undergo a much less chaotic dynamical evolution
than three Jupiter-mass planets, I also expect the orbital inclinations of the Jupiters to
be kept small, which limits the possibility of having Lidov–Kozai oscillations between a
Jupiter-mass and a Earth-mass planet without any scattering events between them after
radial incursions by the Jupiter. The less chaotic dynamical evolution can also be inferred
from the fact that there are only two cases of a Jupiter-mass planet being consumed for
this configuration as compared to the 13 of the 2X+3J systems in figure 6.2. Interestingly,
system 49 does not have a single surviving planet left. This curious result is due to a single
scattering between two Jupiter-mass planets resulting in both an ejection and a planet
consumption event. In order for this to occur, both planets must be on highly eccentric
orbits e > 0.8 at the final encounter, leading to the ejected planet being scattered into an
orbit with e > 1 while the consumed planet has an initially planet-consuming orbit with a
large semi-major axis and an initial eccentricity of e . 1 and then gets anti-scattered onto
a less eccentric orbit by the ejected planet.
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Figure 6.8: Examples of the final orbital configurations of the surviving planets in the
2E+2J configuration considered. For an explanation of the plot, see the text in section
6.3.1.
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6.7 Planet-consuming systems in 3D

I now formulate a few statements regarding three-dimensional planet-consuming systems
based on the findings in the analysis of this chapter, analogous to section 5.5, which I pro-
ceed to tie to observational consequences of planet consumption in the next chapter.
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Insights from 3D analysis with MERCURY

1. Consumption of terrestrial planets up to a few ten M⊕ is very common
for planetary systems with at least two unstable giant planets.

2. Consumption of giant planets with Mp > 100 M⊕ occurs in approxi-
mately 10% of my systems where there are at least three giant planets
undergoing chaotic dynamical evolution.

3. There are three extreme pathways to planet consumption:

• Diffusive consumption: A planet undergoes a large number of
close encounters, slowly boosting up its eccentricity in a diffusive
manner.

• Strong consumption: A few strong subsequent scatterings rapidly
drives up the eccentricity of a planet, putting it on a planet-
consuming orbit.

• Lidov–Kozai consumption: The eccentricity of a planetary
orbit is increased due to Lidov–Kozai oscillations with a massive
companion with high mutual inclination. Relevant for systems
where there are mass ratios qp � 1 and more than two giant
planets.

4. Planet consumption of terrestrial planets is more likely if they become
strongly scattered at small distances from the host star r . 1 AU.

5. Planet consumption of giant planets is more likely if they are scattered
at distances of r ∼ 1 AU. For smaller distances merger will be the
dominating outcome due to the large physical radii of Jupiter-mass
planets, yielding a large dcrit. Nevertheless, a small separation from
the host star is preferable to distances of r > 5 AU.

6. The final orbital configuration of surviving giant planets within a re-
solved planetary system depends on the system’s initial energy, which
is conserved in the system. However, if a giant planet has been con-
sumed, a fraction of the total energy of the planets can be transferred
to the host star. Hence, planet-consuming systems can produce single
giant planets with wide orbits of ap > 20 AU.

• The magnitude of transferred energy depends on the pathway to
consumption. Strong consumption of a sufficiently massive planet
will put the remaining innermost planet on an orbit with ap � af ,
while diffusive consumption will transfer less energy to the host
star.
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Chapter 7

Observational consequences of planet
consumption

From the analyses in chapters 5 and 6, planet consumption seems to be a common occur-
rence in young, unstable planetary systems with multiple giant planets. However, given the
facts that the process of planet–planet scattering in such systems resolves over timescales
much shorter than the lifetime of the system and that it is generally difficult to detect ex-
oplanets, the probability of observing such an event directly is astonishingly small. There-
fore, any occurrences of planet consumption events in the history of a planetary system
have to be inferred using indirect methods. Luckily, there are a variety of possible obser-
vational consequences of planet consumption, not only for the host star, but also for the
remaining planets in the system. The main signatures are caused by the transfer of angular
momentum, energy and heavy elements to the host star. Hence, the signature caused by a
specific consumption event is highly dependent on the intrinsic properties of the consumed
planet, as well as the nature of the collision. The observational consequences of planet
consumption are summed up in Stephan et al. (2020) as

• Stellar spin-up: A planet tidally interacts with the host star, transferring angu-
lar momentum, which leads to a decrease in the rotational period of the star and
potentially reorientation of its spin.

• Planet merger transient : The transfer of energy from a planet to the host star
over small timescales leads to signatures in the form of electromagnetic radiation and
a temporary increase in luminosity.

• Surface-grazing interactions: A planet grazes the surface1 of a star, leading to
the ejection of stellar matter through gravitational disruption.

• Stellar metallicity enhancements: Disruption of a planet within the convective
envelope of a star leads to pollution with heavy elements, altering its metallicity.

1With surface, I refer to the edge of the stellar photosphere.
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In this chapter, I go through the main effects of planet consumption on the host star2 listed
above one by one and constrain the possible observable effects of such events based on the
results from my N -body simulations. Furthermore, I discuss the effects that planet con-
sumption can have on the observed configuration of surviving planets after the conclusion
of chaotic dynamical evolution.

7.1 Tidal planet–star interactions

A low density, massive planet with rmin ∼ R? undergoing a close encounter with its host
star will be made subject to strong tidal forces. These forces can lead to the creation of hot
Jupiters through tidal circularisation. The tidal forces acting on the planet dominate the
exchange of angular momentum which circularises the orbit, while the tidal forces acting
on the host star dominate the exchange of energy which reduces the orbital period (Davies
et al., 2014). Short-period orbits that have periods longer than the rotational period of
the host star will decay through tidal interaction with the host star such that the planet
spirals in towards the star and ultimately gets tidally disrupted at r ∼ RRoche (Metzger,
Giannios, & Spiegel, 2012).

The time it takes for a giant planet to circularise to short-period orbits depends highly
on the initial periastron of the orbit, tidal dissipation mechanics, as well as planetary
properties and spans several orders of magnitude (Dawson & Johnson, 2018). Nevertheless,
Nagasawa, Ida, & Bessho (2008) estimated that the circularisation timescale for a Jupiter-
like planet with a periastron around 0.03 AU is ∼ 106 yr. Hence, given that the initial
period of a planet at 5 AU is ∼ 11 yr, such a planet would need at least 105 orbits to
circularise. Moreover, the authors determined that a planet with rmin < rtide will not be
circularised during the chaotic dynamical evolution phase of the system. This is due to
the fact that the changes in orbital elements from planet–star tidal interactions occur on
much longer timescales than the exchanges of angular momentum and energy between the
unstable three Jupiter-mass planets. In order to circularise a giant planet during this stage,
it would first have to be scattered onto an orbit such that it is isolated from close encounters
with the other planets. This would also makes the system eligible for eccentricity increase
by Lidov–Kozai oscillation.

Hence, since it is not certain that each planet becoming a hot Jupiter will ultimately be
consumed by its host star, there might be an overestimation of the number of consumed
Jupiter-mass planets in the results from chapter 6 because of the exclusion of tidal effects
in my integrations. In order to get a rough estimate of how many hot Jupiters that would
have been produced in the 2E+3J realisations, I compare the cumulative number of orbital
periods spent in the region of tidal disruption and tidal decay, in terms of initial orbital
period P0. The region of tidal disruption corresponds to the distance from the host star
where the planet fulfils rmin ≤ RRoche. As for the region of tidal decay, this is where a

2Note that all the following analysis is for a Sun-like star prior to its turn-off towards the red giant
branch.
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Figure 7.1: The cumulative number of consumed Jupiter-mass planets as a function of
the number of periods spent in critical separations with the host star. 6R� corresponds
to the empirical limit for tidal circularisation determined for Sun-like stars by Beaugé &
Nesvorný (2012), while RRoche is the limit for tidal disruption.

tidal interaction with the host star leads to a significant exchange of angular momentum
and energy and is given by RRoche < rmin ≤ rtide. For the critical tidal decay radius, I
choose the empirically limited value for Sun-like stars from Beaugé & Nesvorný (2012) of
0.03 AU ∼ 6 R�. The corresponding cumulative distributions can be found in figure 7.1.
Given that a planet would need to spend around 105 orbits within the RRoche < rmin ≤ 6 R�
regime to circularise, the number of hot Jupiters produced during the 2E+3J run should
approximately correspond to the difference between the two plotted distributions at 105

P0 orbits or more. This difference of 3 to 4 planets is slightly lower than the results from
Beaugé & Nesvorný, who estimated that 10% of planetary systems with three Jupiter-mass
planets would produce a hot Jupiter, which I attribute to statistical fluctuation. Hence,
the exclusion of tidal forces in my integrations does not cause any significant change in
observed behaviour of the consumed Jupiter-mass planets. This is further reinforced by the
fact that any hot Jupiters created most probably would end up being consumed by their
host star due to rapid decay of their orbits. Teitler & Königl (2014) noted that there is a

104



7.1. TIDAL INTERACTIONS OBSERVATIONAL CONSEQUENCES

dearth of observed hot Jupiters with orbital periods of Pp . 2− 3 days around host stars
with rotational periods of P? . 5 − 10 days, which they attributed to this phenomenon.
Rapid decay of a planet’s orbit due to tidal interactions with its host star on timescales
shorter than its period is referred to as tidal plunging. For a Sun-like MS star, the plunging
radius is at approximately a tenth of the stellar radius below the stellar surface (Stephan
et al., 2020).

7.1.1 Mass transfer before planet consumption

Whenever a giant planet passes its Roche limit near the host star, it is not certain that
it will be completely disintegrated by the ensuing Roche lobe overflow. Instead, the mass
transfer between the planet and the host star can be stable and take place over a few
Gyr (Metzger, Giannios, & Spiegel, 2012), removing the gaseous envelope and leaving
the planet with an exposed rocky core. Stable mass transfer would be more likely for
low density planets with R� < rmin ≤ RRoche, which mainly targets short-period hot
Jupiters. Said phenomenon could explain the existence of short-period super-Earths and
hot Neptunes (Valsecchi, Rasio, & Steffen, 2014). There are three possible outcomes for
the mass transferred due to Roche lobe overflow

1. Self-accretion by the planet.

2. Direct impact on the stellar surface.

3. Disk formation around the host star.

Dosopoulou, Naoz, & Kalogera (2017) employed numerical means to investigate the be-
haviour of the ejected mass particle due to mass transfer in the ballistic limit and found
that scenarios 2. and 3. are only possible for low-eccentricity e < 0.2, prograde orbits. Said
outcomes would therefore only be viable for circularised hot Jupiters or planets that have
been put on short-period orbits through planet–planet scattering or disk migration. If that
is the case, the only possible outcome for the planet–planet scattering cases in my integra-
tions, where the planets have high eccentricities, would be self-accretion of the mass by the
planet undergoing Roche lobe overflow. Hence, there would not be any mass transfer onto
the host star before the planetary orbit decays, leading to direct impact on the stellar sur-
face. In turn, I have assumed that planets will retain their mass until they break through
the surface of their host star. This goes against the results in Guillochon, Ramirez-Ruiz,
& Lin (2011), who argue that a majority of Jupiter-mass planets with e & 0.97 within the
tidal disruption radius would be ejected from the system in just a few orbits. However,
their conclusion is largely based on the giant planet gaining a significant amount of energy
due to asymmetrical mass transfer onto the host star during their close encounter, increas-
ing its semi-major axis. Since I assumed that Jupiter-mass planets will retain their initial
masses prior to their impact on the stellar surface, it follows that none of them will end
up being ejected from the system.
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7.1.2 Fates of planets due to stellar tides

Tidal interactions between a planet and its host star remain a hot topic for research (see
review by Ogilvie, 2014) since different models can produce a large variation in results.
This comes from the fact that they are highly dependent on the so-called tidal quality
factor, Q′?, that can range several orders of magnitudes (see discussion in Popkov & Popov,
2019). The complexity of the problem is directly related to the many ways a planet can
interact with its host star, given the star’s strong magnetic field, energetic radiation and
stellar winds (Vidotto, 2020). Hence, to fully understand what the outcome would be
for each planet in my simulations it is clear that an extensive formal discussion would be
needed with detailed modelling of the complex interior of both the host star and the planet,
which is beyond the scope of this thesis.

Nevertheless, there are three main fates for a tidally interacting planet that can be derived
from the outcomes of the Roche lobe overflow above. These outcomes are directly related
to the bulk density ratio between the two bodies, which can highly affect the nature of
the close encounter between them since it determines the Roche limit for tidal disruption.
A low density planet, e.g. with Jupiter-mass, will get disrupted outside the stellar radius
for a Sun-like star, while a rocky Earth-mass planet has a Roche limit beneath the stellar
surface. This quantity will also determine the nature of mass transfer between the two
bodies and in turn the properties of any transient events (Metzger, Giannios, & Spiegel,
2012). To a first approximation, the limits are defined as

• Stable accretion ρp/ρ? . 1: The planet undergoes stable mass transfer with the
host star.

• Tidal disruption 1 . ρp/ρ? . 5: The planet is disrupted close to, but outside the
stellar radius.

• Direct impact ρp/ρ? & 5: The planet is disrupted below the stellar surface.

However, as previously mentioned, these conditions derived by Metzger, Giannios, &
Spiegel appear to only remain true for planets that are already on circularised orbits with
eccentricities e . 0.2 (Dosopoulou, Naoz, & Kalogera, 2017), which would only be the case
for 3 to 4 of my planets. Hence, I have not taken any scenarios where the planet undergoes
stable mass transfer or gets disrupted above the stellar surface, creating an accretion disk
around the host star, into account. I have however assumed that any Jupiter-mass planets
within the Roche radius will ultimately be consumed due to their strong tidal interactions
with the host star.

7.2 Planet-consuming encounters

There are a few parameters that govern which observational effect will be strongest for a
given planet. First of all, the properties of the orbit at collision will directly determine how
much time a planet will spend within the convective envelope before reaching the plunging
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Figure 7.2: Three examples of consuming orbits for a Sun-like host star to show the
difference in impact angle, which directly affects the time spent within the convective
envelope of the host star. All the orbits have a = 1 AU.

radius. This becomes clear when looking at figure 7.2, where I have plotted three different
cases of highly eccentric orbits with a semi-major axis of 1 AU. A change of merely 0.002 in
eccentricity significantly alters the impact parameter and in turn the velocity of the planet
relative to the surface. In the cases of e = 0.997 and e = 0.999, the planet will reach the
plunging radius during its first entry. I refer to such a scenario as a prompt collision. The
case where e = 0.995 and rmin ∼ R? is a grazing collision. A useful quantity to determine
whether or not the planet will plunge during its first passing within the host star is the
fraction of the planets velocity that is radial at rp = R?, which is provided in Church,
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Mustill, & Liu (2020) as

f⊥ =

√
1− a2(1− e2)

R?(2a−R?)
. (7.1)

For reference, from least eccentric to most eccentric orbit, they have f⊥ ∼ 0, f⊥ = 0.63
and f⊥ = 0.89. For a planet to have a rmin = 0.9 R�, the critical eccentricity for a 1 AU
orbit yields f⊥ = 0.40. Hence, without taking energy loss through gas drag and tidal drag
into account, a planet would need f⊥ & 0.40 to be consumed directly on its first passage
within the host star.

The second parameter is the the bulk density ratio between the planet and the host star,
which as previously mentioned will determine the nature of the planet consumption. Never-
theless, this is mainly true for non-eccentric orbits (Dosopoulou, Naoz, & Kalogera, 2017).
The final quantity is the inclination of the orbit, which can affect the exchange of angular
momentum between the two planet and the host star. Assuming that the reference plane
for Keplerian elements in the planetary system is perpendicular to the spin axis of the star,
an inclined orbit will have an angular momentum vector that is misaligned with respect to
the host star.

The most important quantities are summarised as follows:

• a(1 − e): The combined orbital elements (a, e) determine the impact angle for the
planet and in turn the fractional radial velocity f⊥. Hence, the periastron distance
will decide when and where the planet will get disrupted by the host star.

• ρp/ρ?: The fraction between the density of the planet and the host star will determine
the position of the Roche limit, at which the planet will be disrupted.

• i: The inclination is important when it comes to the reorientation of the spin axis
due to exchange of angular momentum.

The distribution of the final registered orbits for consumed planets in 100 2E+3J MERCURY

realisations is displayed in figure 7.3. Note the translucency of individual lines, which
provides a visual measure of the orbit number density given by the colour strength of a
line. The blue orbits represent Earth-mass planets and the red lines, which have been
plotted on top of the blue lines, represent Jupiter-mass planets. Further, the stellar radius
and Roche radius for the Jupiter-mass planet are shown with a black and grey dashed
line, respectively. A vast majority of the orbits are directly grazing the stellar surface,
which means that they will most probably survive the first passing beneath the surface
of the host star. Only two of the planets have trajectories that will put them well within
the plunging radius, meaning that they will spend much less time within the convective
envelope. This was confirmed by computing f⊥ for the orbits, which yielded only two
orbits with f⊥ & 0.4. Said result coincides well with the findings of Church, Mustill, & Liu
(2020), which indicate that systems where the dynamical evolution is dominated by the
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Figure 7.3: The final orbits of the consumed planets in N = 100 2E+3J realisations.
Blue orbits represent Earth-mass planets while the red orbits show the closest approach
for Jupiter-mass planets. The grey dashed line represents the Roche radius for Jupiter-
mass density for the MR-relation from section 3.4. The black dashed line is the radius of
the host star. From the plot, it is clear that a majority of the orbits will be grazing at
stellar impact.

Lidov–Kozai mechanism can produce a larger number of prompt collisions than systems
that evolve through planet–planet scattering. I discuss the implications of this effect in
section 7.6.

From figure 7.3, it is further evident that there is a significant number of orbits with
rmin > R�. This is due to a numerical caveat within MERCURY, where the final planetary
phases at the time of consumption are not necessarily included in the output data due
to poor resolution. To elaborate, planets that collide with the host star will be directly
removed from the integration. Hence, if the consumption occurs during the period in

109



7.3. STELLAR SPIN-UP OBSERVATIONAL CONSEQUENCES

between two outputs t = t0 and t = t0 + ∆t, at some time tCME, the final phase of the
planet will be given by the orbital elements of the planet at t = t0. Even though I chose a
maximum period in between outputs of 10 days, it did not suffice for the detail needed in
this analysis. Unfortunately, the nature of the numerical integration setup did not allow
for changes in the resolution of the data prior to the conclusion of a realisation. Hence,
I perform the analysis in this chapter with said issue in mind. The final few changes in
AMD of the orbits in figure 7.3 must have a low ξ value since MERCURY logs the data of
close encounters when they occur and not at the end of each time step. In turn, the final
changes in AMD that bring the planet to an orbit with rmin . R� are caused by either
Lidov–Kozai oscillations or other secular or resonant interactions. This means that any
further increase in eccentricity will be diffusive, which allows me to assume that the final
periastron distance for these planets will be equal to R?.

7.3 Stellar spin-up

A consequence of the interactions between a massive planet and its host star is that they
can lead to changes in the stellar spin due to an increase of its angular momentum. The
transfer of angular momentum to the host star can occur during two stages in the planet
consumption phase. If the planet is outside or in the outer regions of the host star,
exchange will mainly occur through the work done by tidal forces. If the planet instead
breaks the stellar surface, gas drag will be the dominating mechanism for exchange of
angular momentum (Metzger et al., 2012; Stephan et al., 2020). This holds under the
assumption that the host star is still on the MS. The drag forces will not be as strong for
e.g. a star on the Red Giant Branch (RGB), for which the stellar envelope has a lower
density.

While the angular momentum of a terrestrial planet or super-Earth will not be large
enough to induce a notable change in the rotational frequency of the host star, a Jupiter-
mass planet can spin-up the host star by up to 70% with respect to its initial rotational
frequency (Qureshi, Naoz, & Shkolnik, 2018). Given that the rotation of Sun-like stars
slows down due to magnetic braking3 effects (e.g. Parker, 1958), rapid rotation of a dwarf
star deep into its MS lifetime serves as a possible indicator of past planet consumption
events (e.g. Qureshi et al., 2018; Benbakoura et al., 2019; Stephan et al., 2020; Oetjens
et al., 2020). Moreover, the transfer of angular momentum to the host star can also lead
to reorientation of the stellar spin axis. Privitera et al. (2016) also found that a significant
spin-up can cause an RGB star to develop an observable magnetic field at its surface.

The magnitude of spin-up and change in the stellar rotational orientation depend not only
on the mass, but also on the inclination of the planet’s orbit. A large inclination can lead
to a large change in stellar obliquity, which is the angle between the rotational axis of
the host star and the angular momentum vector of the orbital plane. There have been
observations of hot Jupiters around MS stars with obliquities of ∼ 90◦. An example of

3The loss of angular momentum due to ejection of material caught in the magnetic field of the star.
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such an observation, made by CHEOPS (Lendl et al., 2020), is WASP-189 b, which is a
gas giant orbiting a 2 M� star with a stellar obliquity of ∼ 85◦.

7.3.1 Stellar spin-up for varying inclinations

In order to investigate the effects of stellar spin-up for the consumed Jupiter-mass planets
in the 2E+3J systems, I employed a simple calculation to estimate the resulting angular
momentum of the host star from Qureshi, Naoz, & Shkolnik (2018). Ignoring differential ro-
tation within the host star, the angular momentum of a spinning star is well-approximated
by the angular momentum of its envelope. Assuming that the envelope reaches down to the
core, its moment of inertia is I?,env ∼ 0.08M?,envR

2
? (Stephan et al., 2020). This yields

J? ≈ J?,env ≈ 0.08M?,envR
2
?Ω?,env (7.2)

where Ω?,env is the rotational frequency of the stellar envelope. Since angular momentum
is conserved, the post-consumption angular momentum of the envelope is given by

J?,f = J? + Jp = 0.08M?,envR
2
?Ω?,env,f . (7.3)

Solving for the final rotational frequency, I obtain that

Ω?,f = Ω?,env +
12.5

M?,envR2
?

Jp. (7.4)

I now assume that the reference plane for the Keplerian coordinates is coplanar with the
equatorial plane of the host star. Hence, I can obtain the final orbital frequency of the
host star by adding the two vectors in equation (7.4). For the initial rotational frequency
of the Sun-like star I obtained it from the average rotational period of the Sun, which is
about 27 days (Stenflo, 1990).

To determine the mass of the Sun’s envelope, I used the fact that its core has a radius of
around 0.2 R�. Employing modelled data for the Sun’s interior obtained from the Yale
Rotating Stellar Evolution Code (YREC: Demarque et al., 2008), the core makes up around
34% of the Sun’s total mass, which yields M?,env = 0.66 M�. Knowing said value, it was
straightforward to compute the magnitude of Ωf , which in turn provided the new rotational
period of the host star Pf . The negative fractional change in stellar rotational period as a
function of the inclination of the consumed planet obtained from this simplified analysis
is shown in figure 7.4. Note that only the orbits with rmin < RRoche have been included
here. From the results, it is evident that Jupiter-mass planets can significantly spin-up
the rotation of the host star, even for retrograde orbits where i > 90◦, which aligns with
results from Qureshi, Naoz, & Shkolnik and Stephan et al.. Due to the sizeable magnitude
of the angular momentum for the Jupiter-mass planets, the resulting period will always
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Figure 7.4: The negative fractional change in stellar rotational period after consumption
of a planet. The colour and marker scheme follows the same prescription as in chapter 6.
Note that any planets with rmin > RRoche for its final phase has been excluded.

lead to a decrease in the rotational period, even if the final orbit is retrograde. This result
implies the importance of the pathway to planet consumption. Since the Jupiter-mass
planets are more likely to undergo diffusive consumption, their eccentricities will slowly
increase until rmin ∼ R�. In turn, they will retain a value of Jp that leads to new stellar
rotational periods of Pf ∼ P�/40. However, for the case of the Earth-mass planets, their
angular momenta are too small to completely change the orientation of the rotation of the
host star despite the fact that they mainly undergo grazing collisions and will as a result
merely cause a small perturbation in the stellar spin period. From the simple analysis
performed here, it appears that subsequent accretion of Earth-mass planets could cause an
observable change in the stellar spin if the planets have i such that Jp and J? are parallel
or anti-parallel. However, due to likely overestimation of the orbital angular momentum of
the planets due to poor resolution around tCME and the lack of a proper stellar evolution
model for the host star, I cannot draw such a conclusion. Nevertheless, I will continue this
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discussion in chapter 8.

To a first approximation, if the host star gets spun up such that it has a period of

Pcrit = 2π

√
R3
?

GM?

, (7.5)

gravity will no longer be able to contain the stellar envelope since material would be
launched into orbit (Stephan et al., 2020). However, for the case of the Sun, which is still
on the MS, this period would correspond to an increase in rotational velocity by a factor
∼ 200. Hence, the planet would need a larger angular momentum by being more massive.
Another case where this effect could be more relevant is for post-MS RGB or Asymptotic
Giant Branch (AGB) stars since they have large values of R?/M?. For example, a Jupiter-
mass planet cannot spin up a Sun-like star beyond its critical rotational frequency in its
MS phase, but it is entirely possible if the star is in its helium burning or AGB phases
(Stephan et al., 2020).

7.3.2 Reorientation of stellar spin

Due to the angular momentum carried by the consumed Jupiters and their high inclina-
tions, a merger with a host star and a Jupiter-mass planet can lead to reorientation of
the stellar spin axis. For my simplified scenario, the star could obtain obliquities up to
∼ 90◦ when consuming a Jupiter-mass planet with an inclination of ∼ 90◦. While any
quantitative evidence for this effect would need a more sophisticated investigation with a
proper stellar model, the qualitative results align well with Matsakos & Königl (2015), who
argue that early planet consumption of a short-period hot Jupiter can account for some of
the observed misalignment patterns in planetary systems.

7.4 Surface-grazing interactions

When a planet grazes the stellar photosphere, it will gravitationally disturb matter at
the stellar surface. In turn this can lead to ejections of gaseous stellar material in the
form of ‘gas bullets’. This is a plausible explanation of the periodic ejections of matter
observed for the carbon star V Hya (Salas et al., 2019). Using a simple ballistic model from
Dosopoulou, Naoz, & Kalogera (2017), the speed of the bullet can be estimated by the sum
of the planet’s velocity at its periastron passage and its surface escape velocity

vbullet ≈
√
G(M? +Mp)

1 + e

a(1− e) +

√
2GMp

Rp

. (7.6)

By requiring that the bullet velocity must be larger than the stellar surface escape velocity,
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vbullet ≥ vesc,?, for ejection Stephan et al. (2020) formulated the following condition for
bullet ejection

Mp

Rp

≥ M?

R?

(
3

2
+
e

2
−
√

2(1 + e)

)
= ζ(e). (7.7)

Said relation only holds for the case of M? � Mp. The right-hand side of the expression
will go to zero when e→ 1, which means that the probability for bullet ejection is largest
for high density planets on highly eccentric orbits. On the other hand, note that an
eccentricity larger than ecrit will produce prompt collisions with small impact parameters,
which leads to little-to-no spin-up. I have plotted Mp/Rp against the eccentricity of the
C-type orbits from my MERCURY realisations of 2E+3J with rmin < RRoche in figure 7.5.
Due to the high eccentricities obtained from subsequent planet–planet scattering events,
all the consumed planets would be able to eject gas bullets if they are on grazing orbits. It
is noteworthy that the plotted values are for orbits with rmin ∼ R?, which is not the case
for all the final orbits in figure 7.3. Hence, some of the eccentricities are not completely
accurate. First and foremost, the ejection of bullets would not occur for planets with
rmin < R�, since they would have too high a f⊥ value and directly plunge towards the deep
interiors of the star. Furthermore, I argue that the bullets ejected by an Earth-mass planet
would prove difficult to detect due to their low mass. An additional issue with Earth-mass
planets as an origin for the ejecta, is the fact that they are less likely to undergo diffusive
planet consumption. As I showed in figure 6.3, Earth-mass planets are consumed earlier
on during the dynamical evolution with fewer total scatterings. In turn, this means that
they will make fewer passages close to the host star before they are consumed. Hence, the
gas bullet ejections originating from grazing encounters by an Earth-mass planet would
not be as numerous as for a Jupiter-mass planet. Moreover, the energy of the planet will
slightly decrease after each ejection of surface material bullets, which reduces the impact
velocity of the planet. Hence, subsequent bullet ejections become less likely the more
grazing encounters a planet has undergone.

7.5 Planet merger transients

As determined in section 7.1.1, a planet with an eccentricity e . 1 will most probably
not undergo stable mass transfer or get disrupted above the stellar surface. Hence, most
planets from my simulations (ignoring potential hot Jupiters) will stay intact during tidal
interactions with the host star and undergo grazing interactions with the stellar surface,
leading to direct impact. For said reason, I will not discuss transients originating from
tidal dissipation or stable accretion (for a discussion of said effects, see Metzger, Giannios,
& Spiegel, 2012). Due to tidal decay of its orbit, the grazing planet will fully submerge in
the convective envelope of the star after a few passages. Well within the stellar surface,
the planet continuously sheds orbital energy and angular momentum due to turbulent gas
drag, causing it to spiral in towards the centre of the star. Due to my assumption that
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Figure 7.5: The mass-radius ratio for the consumed planets in 2E+3J plotted against
their final registered value of 1 − e. The black line indicates the criteria for ejection of
bullets made up of gaseous stellar material after a planet has grazed the surface of the host
star. Planets on the right side of the line will eject bullets from the system. Valid for a
Sun-like star with M? �Mp.

the planet will get fully disrupted beneath the stellar surface, the energy released during
the disruption, given by Egrav ∼ GM?Mp/R? = 4 × 1046(Mp/MJ) erg, will heat up the
matter in the convective envelope. With a hotter stellar interior, the stellar luminosity
will initially increase, then decrease on the radiative cooling timescale. For the Sun, said
cooling occurs on the order of tcool ∼ 106 yr at 0.5 R�, leading to an increase in luminosity
of L ∼ Egrav/tcool & 1033 erg s−1, which is on the order of L� (Metzger, Giannios, &
Spiegel, 2012). While this is a notable change in behaviour of the star as compared to its
natal luminosity, it would be difficult to detect using a transit survey that aims to detect
variations in the luminosity of stars on much shorter timescales. Instead, the primary
observational consequence of energy exchange between the planet and the host star is
related to the production of a strong bow shock front as the planet breaks through the
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stellar atmosphere with a velocity larger then the local sound speed. This shock front
will produce electromagnetic radiation over timescales of weeks to a month that could
potentially be detected by transient surveys (Metzger, Giannios, & Spiegel, 2012).

The temperature of the shock front can be estimated as

Tshock = A
µmH

kB

v2
coll, (7.8)

where A is a numerical factor depending on the nature of the gas, µ is the mean molecular
gas of the mass, mH is the mass of a hydrogen atom, kB is the Boltzmann constant and
vcoll is the velocity of the planet at collision with the stellar surface (Stephan et al., 2020).
Assuming that the stellar envelope contains ideal, ionised gas, the numerical constants
become A = 3/16 and µ = 0.62. As for the velocity, I obtain it by solving equation
(2.6) for θ at r = R? and computing the radial and tangential velocities using equations
(2.25) and (2.26). For the planets in figure 7.3 that have rmin > R?, I assume that their
semi-major axis will stay approximately constant and use the corresponding value of ecrit

at rmin = R?.

The resulting shock front temperature has been plotted against 1−e in figure 7.6. From the
results, it is evident that a more eccentric orbit at collision causes a higher temperature
in general. However, since the impact velocity is related to the periastron distance of
the orbit, the bow shock temperature depends on the pathway to planet consumption. If
the planet has undergone diffusive consumption, it will likely have a minimum distance
rmin ∼ R? and in turn a lower collisional velocity than a planet with rmin < R?. As a
result, the highest eccentricity orbit, corresponding to the J2 planet at 1 − e ∼ 5 × 10−4,
will induce the same shock temperature as an Earth-mass planet on a much less eccentric
orbit. The results in this plot does not tell the entire story however, since it does not
provide information of how much gas is heated. A more massive planet has a larger radius
and will in turn heat up a larger volume of gas, leading to a larger emitting area. Hence,
the effective temperature of the radiation emitted from the volume is in reality less than
Tshock, especially for terrestrial planets.

As for the nature of the radiation, the problem gets quite complicated. For a hot Jupiter
with a final eccentricity of e . 10−3, Metzger, Giannios, & Spiegel argues that the bow
shock will produce an Extreme Ultraviolet (EUV)/soft X-ray transient that lasts for sev-
eral weeks. Furthermore, the collision is so strong that the luminosity produced by the
bow shock will exceed the local Eddington limit, creating a stellar wind. The wind in
turn induces an outflow of stellar material from the surface which can re-emit absorbed
radiation from the EUV/X-ray radiation produced by the bow shock. Hence, the high
energy transient will be followed by an Infrared Radiation (IR) transient that lasts for a
few days. In contrast, Yamazaki, Hayasaki, & Loeb (2017) studied transients caused by
planets on highly eccentric orbits. For such a scenario, they instead argue that the bow
shock produces an expanding bubble of plasma with temperatures around ∼ 106 − 107 K
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Figure 7.6: The temperature of the bow shock gas after collision with a planet plotted
against 1−e. Follows the same marker and colour scheme as the plots in chapter 6. Observe
the significant increase in temperature for planets that have large eccentricities and undergo
prompt collision. However, while a high eccentricity is important, a diffusive consumption
at a large semi-major axis will still have a fairly low impact velocity, leading to a lower
temperature. This is clearly seen for the high-eccentricity J2 planet with e > 0.9999 that
only causes a temperature of Tshock ∼ 5× 106 K.

beneath the stellar surface. The bubble is created when a Jupiter-like planet spiralling in
towards the deep layers of the stellar interior of a Sun-like star comes to a halt at a radius
of ∼ 0.9 R� prior to tidal disruption. This effect is due to energy loss by gas drag and also
produces a bow shock. This shock transforms the dissipated energy into thermal energy,
leading to the infusion of Eth ∼ 1.8 × 1045(Mp/MJ) erg into the stellar envelope. The
surrounding gas in these external layers of the host star is optically thick, which leads to
inefficient radiative cooling and ultimately the production of the expanding plasma bub-
ble. The bubble will keep expanding, emitting radiation in the optical/IR wavebands over
the course of ∼ 3700 s until it leaves the stellar photosphere. When it has reached the
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atmosphere, the expansion will create a second shock, which accelerates free electrons in
the vicinity. This produces an afterglow of radio synchrotron emission that can be seen for
103 − 104 yr after the planet consumption event.

Given the complexity of the problem and the fact that only a few studies have focused
on consumption of high-eccentricity planets, it is evident that there is a need for a more
in-depth study with a dedicated tidal model for interaction with the host star during the
N -body integration, followed by analysis using a hydrodynamical code for the post-impact
behaviour. Moreover, since the results from Yamazaki, Hayasaki, & Loeb suggests that
an Earth-mass planet on high-eccentricity can infuse Eth ∼ 6 × 1042 erg into the stellar
photosphere from a prompt collision, such planet consumption events, which I predict to
be common, could potentially create expanding plasma bubbles that produce observable
transients and afterglow as well.

7.6 Stellar metallicity enhancements

After the planet has deposited a sizeable amount of its orbital energy into the outer lay-
ers of the host star, it can produce another form of detectable effect that could provide
astronomers with a hint of a past planet consumption event for a planetary system host
star. If a planet dissolves within the outer layers of the star, it can enrich the stellar
surface abundances of heavy elements. This process was proposed as a possible origin of
anomalously high metallicities in planet hosting stars early on after the detection of 51
Pegasi (Laughlin & Adams, 1997; Sandquist et al., 1998, 2002) and has lately been backed
up with observations coupled to consumption of gas giants (Israelian et al., 2001; Li et al.,
2008; Ramı́rez et al., 2015) and super-Earths (Meléndez et al., 2017; Church et al., 2020).
One motivation for the consumption of planets with respect to metallicity enrichment is
the observed correlation where the giant exoplanets are more likely to exist around high
metallicity stars (see section 3.1.1). Furthermore, there is a connection between light metal
enrichment and increased rotational velocities of stars (Carlberg et al., 2013). Detectable
observational effects through the planet consumption mechanism has also been discussed in
regard to post-MS stars on the RGB or AGB (MacLeod et al., 2018; Jimenez et al., 2020)
and pollution of white dwarfs (Debes & Sigurdsson, 2002; Veras et al., 2013; Petrovich
& Muñoz, 2017). I will however keep the analysis in this section to MS stars and briefly
discuss planet consumption for post-MS stars in chapter 8.

When referring to metal enrichment by planet consumption, the main chemical compounds
in mind are the two stable lithium isotopes 6Li and 7Li (Sandquist et al., 2002; Soares-
Furtado et al., 2020), as well as heavy metals (Li, Lin, & Liu, 2008; Church, Mustill, &
Liu, 2020). The lithium isotopes make for great tracers of planet consumption events due
to the fact that the dominant 7Li is destroyed through the chemical reaction

p + 7Li→ 4He + 4He (7.9)
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Configuration 2E+3J 2X+3Ja 2X+3Jb 2X+3Jc 2X+3Jd 2X+3Je
MX [M⊕] 1 3 10 30 100 300

fcz 0.5 0.2 0.1 0 0 0

Table 7.1: The fraction of consumed mass that is deposited in the convective zone for a
planet with a non-grazing consuming orbit a the time of collision with the host star.

at temperatures of T & 2.5 × 106 K (Bodenheimer, 1965). Hence, depletion of the initial
lithium reserves in host stars onsets already during pre-MS, before the ignition of hydrogen.
In stars between 1 M� and 2 M�, the depletion of lithium will continue into the MS
phase (Carlos et al., 2019). As a result, any enrichment through planet consumption can
significantly alter the lithium content in MS stars, producing anomalously high abundances
that can be detected through observations.

While the total metal mass in the star is guaranteed to increase for each planet consumption
event, it is not certain that the chemical abundance enhancement will be detectable. Any
signature of pollution in stellar spectra depends on both where and when the planet gets
dissolved in the host star. The ‘where’ refers to the depth at which the planet gets dissolved.
Given the low relative mass of the planet with respect to the host star, it is essential
that any accreted rocky material is mixed into a small fraction of the star such that the
abundance enrichment would lead to pollution in the stellar photosphere (Church, Mustill,
& Liu, 2020). Further, if the planet is disrupted below the bottom of the stellar convective
zone, any metallicity enhancement would not affect the observable surface abundances
of elements. Therein lies the ‘when’, since the convective zone varies between stars of
different masses in different phases of their evolution. Soares-Furtado et al. (2020) found
that the convective zone is optimal for observations of lithium enrichment through planet
consumption for F-type stars with masses of 1.4 − 1.6 M� right before their MS turn-off,
where they transition towards the subgiant branch. For such an environment, the lithium
isotopes can survive between 108 − 109 yr, while they would be completely depleted after
merely 10 yr in a 1 M� post-MS star. As for heavy metals, Church, Mustill, & Liu
concluded that consumption of a super-Earth of masses Mp ≤ 30 M⊕ could explain the
average metal enhancement of 0.128 dex in the turn-off star M67 Y2235, which made it
stand out with respect to other stars in the M67 cluster. This star appears to have a mass
of 1.18 M�, which is significantly less than the optimal mass for Lithium detection.

As discussed early on in this chapter, high-eccentricity planets are likely to have velocities
such that they will retain their mass and undergo grazing collisions after dynamical evo-
lution by planet–planet scattering or the Lidov–Kozai mechanism. Planets suffering such
collisions will spend a few orbits beneath the stellar surface before ultimately getting dis-
rupted or plunging down below the convective zone. Hence, it is necessary that the planets
have f⊥ ≤ 0.4, which serves as my limit between grazing collisions and prompt collisions,
where the planets are fully consumed in one single orbit. To estimate the average consumed
rocky mass deposited in the stellar convective zone, Mmetals,CZ =

∑
MmetalsfCZ/Nsim, for
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the planets in all realisations of the various 2X+3J configurations, I extrapolated the re-
sults from figure 7 in Church, Mustill, & Liu (2020). Said figure shows that rocky planets
between 0.3 and 30 M⊕ will be fully disrupted within the convective zone of their 1.18 M�
star if they have their critical value for grazing collisions, which in their case is f⊥ ≤ 0.42.
The fractional consumed mass for f⊥ > 0.42 will be around unity for Mp < 0.4 M⊕, but
then quickly drops with increasing mass of the rocky planet. From 5 M⊕ and upwards,
little-to-no mass will be deposited in the convective envelope if the planet has a velocity
such that f⊥ is larger than the critical value for grazing collision. Due to the limited time
for this thesis and lack of a proper stellar model, I assumed that the Sun will have a fairly
similar structure to M67 Y2235 at its turn-off age and used a simple estimation by eye of
the fractional consumed mass within the convective zone from figure 7 in Church, Mustill,
& Liu (2020). The corresponding values are found in table 7.1. If a planet of any mass has
an orbit that leads to a grazing collision, I further assumed that it will be fully disrupted
in the outer layers of the host star after just a few orbits. Moreover, if a planet has an
orbit such that rmin > R�, I again assumed that the planet will have a similar value of ap

at tCME and assigned them an eccentricity such that rmin = R�. I motivate this approach
with the previous argument at the end of section 7.2, where I claim that these planets only
undergo diffusive exchange of angular momentum through action at a distance in the time
between the timestamp for the final registered orbital data and tCME. I further assumed
that the metal content of an exoplanet is limited to the mass of its core and used the
corresponding values introduced in section 3.4.1.

The average consumed masses, M consumed, and corresponding average metal masses de-
posited in the convective envelope, Mmetals,CZ, in a realisation of each 2X+3J system are
found in figure 7.7. Note again that the results only serve as a simple estimate and have
to be backed up with dedicated numerical computations of collisions between a planet and
its 1 M� MS host star. Nevertheless, there is a trend where M consumed increases with MX.
The sole exception is the case of MX = 300 M⊕ which has less consumed mass per run
than MX = 100 M⊕. Said behaviour can again be attributed to the large number of unre-
solved runs, discussed in appendix B. As for Mmetals,CZ, the values show that the average
deposited metal mass will be ∼ 8− 10 M⊕ for all configurations with MX ≤ 30 M⊕. This
result can be attributed to four coactive factors:

1. The fraction of consumed planets from the 3J subsystem is approximately constant
for all configurations and they are almost exclusively on grazing collision orbits.

2. The fraction of consumed X-type planets decreases with increasing MX.

3. The amount of metal within a planet is weakly dependent on the total mass and
appears tied to the core mass, which is limited by planet formation (see section
3.4.1).

4. For planets with gaseous envelopes, i.e. Mp ≥ 30 M⊕, that are on prompt collision
orbits, no metals will be deposited in the convective zone of the host star.

The case with MX = 100 M⊕, which displays the highest average consumed metal mass of
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Figure 7.7: The average consumed mass (squares) and the corresponding estimated metal
mass deposited within the convective zone of the host star (black circles) for all the 2X+3J
configurations (see figure 6.1). The red circles represent how Mmetals,cz would change if the
cases of MX = 3, 10, 30 were super-Earths. Note that there are many unresolved systems
for MX = 300 M⊕ which skews the results.

all with its 20 M⊕, shows that if the total average planet mass of the system goes up, the
dynamical evolution will be more chaotic. In turn each single planet consumption event
will have a larger impact on the properties of the host star. Given that the core masses of
the giant planets in my simulations are set to 20 M⊕, these type of systems will on average
consume one giant planet. Again, this does not hold for the 2X+3Je configuration due to
its prolonged phase of stability.

A critical caveat related to my choice of MR-relation is that it does not accurately depict
the existence of super-Earths, since it is valid under the assumption that all planets above
2.62 M⊕ will have a gaseous envelope and cores with Mcore < Mp. For the case of super-
Earths, almost the entire planet will consist of rocky material, leading to a larger deposited
metal mass. Hence I also include the values of Mmetals,cz for the case of Mmetals = Mp when
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the X-type planets have masses of 3, 10 and 30 M⊕. As observed in the plot, these values
are notably higher than for the fiducial composition cases, indicating that consumption of
super-Earths may be the prime source of observable metallicity enhancement in planetary
host stars.

While the Jupiter-mass planet consumptions seem to be rarer and generally require more
than three massive giants present in the system at the onset of instability, they should
yield far stronger detectable pollution signatures than for the case of the more common
Earth-mass consumptions due to factor 1. above. Yet, if Earth-mass planets and rocky
planetesimals prove to be numerous after the conclusion of the planetary formation phase
in planetary systems, dynamical instability could lead to a large number of low-mass planet
consumptions which would induce a strong observable metal enrichment in the photosphere,
assuming that they would happen in rapid succession. Nonetheless, the ‘when’ and ‘where’
for disruption of Earth-mass planets will complicate matters, as consumptions of planets
below the test particle limit for systems tend to occur early on during evolution, meaning
that MS stars consuming Earth-mass planets in intrinsically unstable systems most prob-
ably will not obtain any detectable metal enrichment. Furthermore, it is more common
for low-mass planets to end up on prompt collision orbits due to the fact that the primary
pathways for consumption for these planets is Lidov–Kozai and strong scattering. Hence,
for consumption of planets with masses below the test particle limit to produce a detectable
signature, dynamical instability has to ensue at a later evolutionary stage of the host star
by any of the mechanisms mentioned in section 4.1.5.

7.7 Orbital configurations of surviving planets

As found during the analysis of 50 2E+3J realisations in section 6.3.1, the final orbital
configuration of the surviving planets in a planetary system can provide hints of prior
planet consumption events. For cases where a Jupiter-mass planet is consumed by a host
star, energy is not necessarily conserved among the planets, meaning that the semi-major
axis of a sole surviving Jupiter can have semi-major axes that differ from af , which is the
semi-major axis of a Jupiter-mass planet that has ejected two other planets. For several
systems in figure 6.2, the single surviving Jupiter-mass planet will have ap � af with
varying eccentricities and inclinations.

In order to infer if there are any significant giveaways for a past planet consumption event,
I chose to investigate the final orbital element of the surviving 3J planet(s) in the 2X+3J
configurations. In the cases where MX/MJ � 1, the inner planets are not massive enough
to carry a notable portion of the total orbital energy to the host star. Hence, it makes most
sense to only investigate the distribution of the surviving 3J planets, which is the common
feature of all six configurations. While the inner X-type planets are massive enough to
remove energy from the J-type planets for 2X+3Jd and 2X+3Je effectively altering the
value of af , the final orbital properties of the surviving 3J planets in these configurations
serve as a comparison for how the orbital elements change when increasing the total initial
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System ap [AU] e i [◦]
2E+3J, MX = 1 M⊕ 87.3[2.2-1039.3] 0.62[0.18-1.01] 20.1[1.1-175.8]

2X+3Jc, MX = 30 M⊕ 67.2[5.0-1069.0] 0.54[0.10-0.96] 19.0[1.1-99.6]
2X+3Jd, MX = 100 M⊕ 71.7[2.9-585.3] 0.58[0.09-0.96] 18.5[0.3-70.0]
2X+3Je, MX = 300 M⊕ 108.0[5.1-1807.9] 0.52[0.11-0.99] 23.0[0.8-141.5]

Table 7.2: The distribution of semi-major axes, eccentricities and inclinations for the
orbital configuration of surviving 3J planets in J-type planet-consuming systems. The
leftmost value is the mean of the quantity over all surviving planets while the values
within the bracket represents the minimum and maximum.

System ap [AU] e i [◦]
2E+3J, MX = 1 M⊕ 6735.0[2.2-93750.8] 0.49[0.01-0.99] 16.6[0.4-98.2]

2X+3Jc, MX = 30 M⊕ 36.2[1.7-559.7] 0.47[0.02-0.97] 16.9[0.5-141.5]
2X+3Jd, MX = 100 M⊕ 53.2[0.8-3323.2] 0.43[0.03-0.99] 17.0[0.4-164.5]
2X+3Je, MX = 300 M⊕ 107.5[1.1-5393.1] 0.46[0.01-0.99] 14.3[0.2-48.6]

Table 7.3: Same as in 7.2 but for systems that had no J-type planet consumption.

mass of the system.

I show the final semi-major axes and eccentricities for surviving 3J planets in the 2E+3J and
2X+3Jc-e configuration systems where a Jupiter-type (J-type) planet has been consumed
in the top plot of figure 7.8. Furthermore, I provide the corresponding distribution for the
case of no J-type consumption in the bottom plot of said figure. The average values of the
parameters for each configuration plotted in figure 7.8 along with the minima and maxima
are provided in tables 7.2 and 7.3, for J-type and no J-type consumptions, respectively. I
chose not to include the orbital elements of the 2X+3Ja-b 3J planets because of results
in section 6.4, where I found that the test particle limit when there is a Jupiter-mass
planet in the system seems to be around 10 M⊕. Hence, I expect these configurations to
behave similarly to 2E+3J. There is one major difference between the top and bottom
distributions given the lack of planets around af in the top panel (indicated by a dotted
line). This can, as mentioned in section 6.3, be attributed to energy conservation since the
consumed planet has transferred a significant portion of the total orbital energy to the host
star. Another important observation is that close to all MX = 1, 30 M⊕ systems in the
bottom plot have two or more surviving planets while a large fraction of the systems that
have undergone J-type planet consumption have only retained one planet, as can be seen
in figure 6.2. In turn, many J-type planet consumption systems also had an ejection of a
Jupiter-mass planet. From the timestamps indicating tCME, I conclude that the ejections
almost exclusively occur very shortly before the planet consumption. Hence, I can lay out
a general timeline for the consumption of a J-type planet.

1. The system becomes dynamically unstable.
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Figure 7.8: Distribution of semi-major axes and eccentricities for surviving 3J planets.
Top: J-type planet-consuming systems. Bottom: Systems without J-type consumption.
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2. The three planets in the 3J subsystem exchange AMD, which leads to the crossing
of orbits.

3. AMD exchange grows larger, leading to a surplus of AMD in one J-type planet.

4. Perturbation of the inner X-type orbits leads to Earth-mass planet consumption
through strong scattering with a J-type planet after radial incursion or through
Lidov–Kozai oscillation.

5. The highly eccentric Jupiter-mass planet undergo close encounters with one or both
of the other Jupiters.

6. The close encounters are resolved with a scattering and anti-scattering (the planet
becomes less eccentric and more bound) event in close succession, where one planet
is ejected shortly before the innermost planet is consumed.

As for the rest of systems 37 to 49 in figure 6.2 that have two remaining Jupiter-mass
planets, the fact that a majority of them (systems 41, 43, 44 and 45) are unresolved due
to crossing orbits indicates that the anti-scattered planet did not gain enough energy to
be ejected. Instead it will proceed to undergo close encounters with the other remaining
Jupiter, which likely will end with an ejection because of their large semi-major axes (as
found in section 6.5). The lower number of scatterings for these planets explains the lower
average eccentricities and inclinations when comparing tables 7.2 and 7.3. As for the few
planets that are close to af , they have indeed had planet consumptions that are diffusive,
meaning that the innermost planet never suffered any anti-scattering.

Another noteworthy feature is that many of the MX = 100 M⊕ planets have semi-major
axes such that ap < af . This is due to the increased total mass in the system, meaning
that the X-type planets are massive enough to remove energy from an outer J-type planet,
significantly decreasing the Jupiter’s orbital separation with the host star. This should
intuitively also be the case for the MX = 300 M⊕ systems, but they again remain largely
unresolved. The fact that the remainder of the distribution for ap > af is similar is
unsurprising since ejections and consumptions most often follow the same type of dynamical
evolution where the eccentricity is diffusively increased over a large number of scattering
events.

7.8 Conclusions regarding observational consequences

of planet consumption

I now present the main ideas obtained from the literature study and toy–model computa-
tions employed in this chapter to review the various consequences of planet consumption for
Sun-like MS host stars and the configuration of surviving planets in consuming planetary
systems.

125



7.8. SUMMARY OBSERVATIONAL CONSEQUENCES

Observational consequences of planet consumption

1. The strength of observational consequences depends on both ‘when’
and ‘where’ the planet collides with the host star.

• ‘Where’: The impact parameter is highly dependent on the eccen-
tricity and semi-major axis of the planet at consumption. This
leads to two different types of collisions.

- Grazing collision: The planet grazes the surface and spirals
in towards the center of the host star over a few orbits

- Prompt collision: Planets plunge directly towards the deeper
parts of the host star on its first orbit.

• ‘When’: The evolutionary phase of the host star determines the
detectability of an observational signature of planet consumption.

2. A large majority of the planets consumed in the MERCURY simulations
will end up on grazing orbits. Planets undergoing strong scattering
are more likely to end up on prompt collision orbits.

3. Planets on high-eccentricity orbits will largely stay intact prior to col-
lision, meaning that tidal disruption most probably will occur below
the stellar surface (Dosopoulou, Naoz, & Kalogera, 2017).

4. Spin-up: Transfer of angular momentum from the consumed planet
to the host star can lead to spin-up of the star’s rotation. Jupiter-mass
planets on any grazing orbit will reduce the rotational period of the
host star by a factor ∼ 40.

5. Grazing encounters: Grazing collisions between a planet and its
host star will lead to the ejection of stellar surface material in the form
of ‘gas bullets’. All consumed planets in the MERCURY simulations can
eject material due to their high impact velocities but it is likely only
the Jupiter-mass planets could produce periodic ejections that would
be detectable.

6. Planet merger transients: Consumption of a high-eccentricity planet
will lead to the creation of an expanding plasma bubble beneath the
stellar surface, emitting in the optical/IR waveband for ∼ 1 hr. The
bubble will expand and accelerate electrons, creating radio synchrotron
radiation that could be detectable for up to 103 − 104 yr (Yamazaki,
Hayasaki, & Loeb, 2017).

7. Stellar metallicity enhancements: The two isotopes 6Li and 7Li,
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as well as heavy metals, make for great tracer elements for planet
consumption. Relevant for post-MS FG stars at their turn-off point,
when their convective zone is shallow. All planet consumptions for the
2X+3J configurations will deposit at least 8 M⊕ worth of metals on
average, which is enough to produce a detectable metallicity enhance-
ment (Church, Mustill, & Liu, 2020) for post-MS FG stars at their
evolutionary turn-off towards the giant branch within stellar clusters.

8. Configuration of surviving planets: Due to conservation of energy
and transfer of energy to the host star, the final semi-major axes of
the surviving planets can hint at a previous giant planet consumption
event. When a host star in a multiple giant planet system has con-
sumed a Jupiter-mass planet carrying a fair share of the orbital energy
in the system, the remaining planets will orbit the host star at wider
orbits. In some cases, this will produce planetary systems with a single
giant planet on a wide orbit.
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Chapter 8

Discussion

In this chapter, I discuss the results from this thesis in a broader context. First, I lay out
potential shortcomings of the methodological approach employed in this thesis. Second,
I tie planet consumption to the current state of planet formation theory and properties
of observed exoplanets. Third, I discuss the detectability of observational consequences
induced by planet consumption. Finally, I lay out future work that can be done to expand
on this study.

8.1 Shortcomings of theoretical models

Two separate theoretical models have been used to simulate planet–planet scattering events
in this thesis. In chapter 5, I employed the isolated, two-dimensional two-body planet
scattering scenario with the analytical solution derived in section 5.1. As mentioned in
the beginning of said chapter, this simplified scenario only holds for a coplanar two-body
planetary system where the separation between the two planets fulfils Rp,1 + Rp,2 < d �
0.03rp. For the case of a Jupiter-mass planet undergoing a close encounter with an Earth-
mass planet at 1 AU, the maximum impact parameter bmax for a close encounter would be
∼ 0.02 AU, which still would yield a force between the two planets that has a magnitude
of 3/2 times the magnitude of the force exerted on the Jupiter by the host star, i.e.
Fpp = 2F?p/3. Hence, the isolation approximation would only be valid for the very smallest
impact parameters in the collision. For the example system in table 5.1, the largest impact
parameter that will put the Earth-mass planet on a consuming orbit is b ∼ 0.25bmax, as
seen in figure 5.6, which still means that Fpp = F?p/6. When it comes to the flatness
approximation, it overestimates the total fraction of mergers in a given system. Looking
at the impact parameter that yields a merger for the example Jupiter-Earth system b =
0.057bmax, the corresponding mutual inclination needed for the planets to miss each other
would be im ∼ 28◦. While this seems like a large mutual inclination, the Jupiter-Earth
system in consideration must have already undergone substantial dynamical evolution to
cross in the first place, meaning that they will likely have an even larger mutual inclination
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than 28◦, in line with the final mutual inclinations of CME-type planets in systems based
on the 2E+3J configuration in figure 6.4. It is thus evident that my two-body model should
not be used to estimate quantitative results in two-body scatterings. Nevertheless, from the
results in chapter 6, I can conclude that it still replicates qualitative trends well. The ability
to constrain the parameter space for planet-consuming orbits in an efficient way saved many
hours of integration and allowed me to choose appropriate configurations for the MERCURY

runs. It is unfortunate that the model did not function well for the Monte Carlo simulation
attempted in section 5.6, as all planet–planet scatterings resolved in mergers before ejection
or planet consumption was possible. However, this could potentially be circumvented by
introducing an artificial inclination that will be altered after each individual scattering
event during the Monte Carlo simulation, making the problem three-dimensional.

The second theoretical model I have employed to investigate the dynamical evolution of
planet-consuming systems is the full three-dimensional N -body scenario from chapter 6.
A potential error source for the consumption of Jupiter-mass planet within this model is
related to the choice of coordinate system, which is centred on the host star (see section
6.1.2). While this reference system is optimal for tracking the position of planets relative
to the host star, it does not account for changes in the position of the host star with respect
to the barycentre of the system. If a high-mass planet undergoes a prompt collision with
a high f⊥, transfer of momentum will perturb the host star from its initial position within
the planetary system. In turn, the total change in orbital elements for the planets might be
skewed. In particular when it comes to the position of multiple planets relative each other.
However, since the host star is not a rigid object, it is difficult to predict the magnitude
of the perturbation for the host star position when the planetary orbit decays over the
course of several orbits. Hence, it would be necessary to perform detailed simulations of
the planet–star collision in question to fully understand how large of an error this model
inaccuracy will produce. Nevertheless, it is not certain that this will be a significant
problem given that host stars are more likely to consume lower-mass planets than Jupiter-
mass planets for the hierarchical type of system that I have investigated. Consumption of a
low-mass planet will induce a much weaker perturbation to the position of the star, meaning
that the final positions of the Jupiter-mass planets in systems without J-type consumption
in the Carrera plot (figure 6.2) will not be misrepresentative. It is also noteworthy that J-
type planet consumption systems are likely to only have one single Jupiter-mass planet left
in the system after the conclusion of the dynamical evolution which means that potential
perturbations in the position of the host star will not be of importance.

8.1.1 The absence of a tidal model

As previously discussed, the main assumption for the numerical integrations in this thesis
is that tidal forces have been ignored. This leads to two possible sources of errors in the
results. First, the absence of tidal interactions between planets means that none of the
planets undergoing close encounters can end up in a planet binary system after tidal capture
(Podsiadlowski et al., 2010). This phenomenon would mainly be relevant for 3J systems
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at a minimum distance of 0.3 AU from the host star and could occur in ∼ 10% of N -
body integrations, a number independent of the semi-major axis of the innermost Jupiter
(Ochiai, Nagasawa, & Ida, 2014). Moreover, Ochiai, Nagasawa, & Ida found that most of
the tidal captures that led to the creation of a planet binary occurred when the separation
during the encounter was around 1 to 2 dcrit = (R1 + R2). Therefore, this effect is highly
related to the strong scattering pathway to planet consumption for Jupiter-mass planets.
In turn, it is unsurprising that only a tenth of integrated 3J systems will produce such a
binary given that the dominant pathway for planet consumption and ejection is driven by
diffusive exchange of angular momentum over a large number of close encounters (see figure
6.3). Since few J-type consumptions have large average fractional changes in AMD for their
scattering events, it is difficult to say whether or not the inclusion of tidal effects would
affect the number of observed J-type planet consumptions in the 2X+3J configurations
without dedicated numerical integrations with an implemented tidal model.

Second, the stellar tides play an important factor for the creation of hot Jupiters and the
disruption of low-density planets outside the confines of the host star. While I extensively
discussed this section 7.1 in regards to the creation of hot Jupiters, it is clear from the
rest of chapter 7 that tidal interactions with the host star will largely affect the nature of
mass transfer and in turn the collision between the host star and the planet. The nature
of the collision will directly affect the strength of the various observational signatures of a
consumption event. Hence, the implementation of a tidal model in the N -body integration
model is necessary to fully draw conclusions regarding the ultimate fate of Jupiter-mass
planets. When it comes to compact, rocky planets of lower mass such as terrestrial planets
and super-Earths, the Roche limit is situated inside the MS host star, making the exclusion
of a tidal model less critical for the analysis of the planet consumption event. Given that
the rate of low-mass planet consumptions is significantly higher than the corresponding
rate for giants and occurs earlier on during the dynamical evolution (see figures 6.3 and
6.5), the resulting outcomes for low-mass planets from the simulations should be largely
unaffected by the exclusion of the tidal model.

8.1.2 Planet population and stellar properties

The evident importance of the low-planet mass regime highlights another modelling inac-
curacy, as I opted to use the highly simplistic joint planet MR-relation in figure 3.4. Given
that the impact parameter between the planets during a scattering event needs to be
small to cause planet consumption, but not small enough to cause a planet–planet merger,
the bimodality of the observed MR-relation for planets between 3 and 20 M⊕ affects the
outcome of the dynamical evolution for these planets. The radii of the two planets will
therefore effectively determine the likelihood of a planet undergoing strong consumption.
This conclusion is in line with Ford & Rasio (2008), where the authors found that planet
consumption events are highly sensitive to the physical size of the planets. Furthermore,
looking at the difference in metal mass deposited in the convective zone of the host star
for consumption of super-Earths, it is clear that different compositions of the planet will

130



8.1. SHORTCOMINGS OF THEORETICAL MODELS DISCUSSION

lead to highly different signature strengths for metallicity enhancements. In turn, it will
be of high importance for any future studies to properly account for the varying internal
structure for planets of these masses, preferably by using a state-of-the-art population syn-
thesis model based on statistically derived distributions of parameters coupled to ‘Kepler’
data (e.g. He et al., 2020) or on planet formation theory (e.g. Lambrechts et al., 2019;
Bitsch et al., 2019). To ensure that systems drawn from the underlying population will be
inherently stable, the model could be further extended to require AMD instability criteria
from Laskar & Petit (2017) (see section 4.1.3).

As concluded in section 7.8, the ’when’ of a planet consumption event will largely determine
its outcome and the detectability of any observational consequences. For my simulations
there is a strong assumption that the system will dynamically evolve on timescales tCE � τ
while the host star remains on the MS, which may not be true. In reality, the ZAMS
approximation (which assumes that all planetary systems will be made unstable shortly
after the conclusion of the planetary formation phase) breaks down for systems where the
host star enters its post-MS phases before onset of dynamical instability. As mentioned in
section 4.1.5, there exists several external sources that can trigger dynamical instability at
later times during the stellar evolution. Therefore, there is a lack of information regarding
the post-MS planet consumptions in my model. For example, RGB stars have a large
R?/M?, which enhances the likelihood of planet consumption (see section 5.4.3) and have
been studied elsewhere (e.g. Carlberg et al., 2013; Privitera et al., 2016; Jimenez et al.,
2020). White dwarfs are also likely targets for planet collisions, as the mass loss at the
initiation of the white dwarf phase can destabilise systems (Debes & Sigurdsson, 2002;
Voyatzis et al., 2013). The detectability of metal pollution in white dwarfs is also high given
that most heavy elements are expected to have sunk deep into the stellar interior, meaning
abnormally high surface abundances of metals most probably are due to consumption of
asteroids or, in some cases, rocky planets (Zuckerman et al., 2003, 2010; Veras et al., 2013;
Koester et al., 2014; Petrovich & Muñoz, 2017; Gänsicke et al., 2019).

To circumvent the problems related to the stellar age and arrive at more realistic conclu-
sions regarding the observational consequences of planet consumptions in multiple plan-
etary systems, it would be necessary to create systems with a host star of a given age
and mass populated with planets drawn from a population synthesis model. The N -body
integration of the dynamical evolution should further be combined with a stellar evolution-
ary model that determines the structure of the host star at a given timestamp. After the
detection of a planet consumption event, the final orbital elements of the planet should be
directly saved in order to avoid the issues with poor output resolution from section 7.2.
Finally, the host planet–star collision should be simulated with a separate hydrodynamical
code to properly understand which observational consequences that the planet-consuming
event can give rise to. Only then will it be possible to arrive at a more complete picture of
how detectable various types of observational consequences from planet consumption can
be.
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8.2 Tying planet consumption to planet formation the-

ory

A key property of the planet-consuming configurations investigated in chapter 6 is the
presence of multiple giant planets. In section 3.1, I explained that while observational data
from ‘Kepler’ indicate that there is a surplus of single planet systems, both observational
methods and inaccuracies in the ‘Kepler’ pipeline introduces strong biases that can skew
the current understanding of multiplicity in exoplanetary systems. Moreover, if planets
tend to form in high multiplicity, hierarchical and tightly-packed systems, dynamical evo-
lution would most probably lead to disruptions of one or more orbits by CME events early
on after the depletion of the protoplanetary disk. In turn, it is difficult to constrain from
observations how often a hierarchical system with at least two giant planets is born. From
planet formation models, it seems as if multiple cold Jupiter planets can be grown consis-
tently from massive protoplanetary disks by conventional pebble accretion and migration
(Bitsch et al., 2019) combined with mergers between planetary embryos (Wimarsson, Liu,
& Ogihara, 2020). Wimarsson, Liu, & Ogihara showed that their fiducial model on average
could produce six cold giants with masses Mp ≥ 18 M⊕ and Mp = 99 M⊕. Nevertheless,
the models from literature that can consistently grow multiple distant giant planets are
highly dependent on the properties of the protoplanetary disk and how it interacts with
the growing, migrating planets. Such parameters remain poorly constrained due to the
lack of high resolution observations of protoplanetary disks.

In any case, while the presence of distant giant planets possibly can be explained from such
theoretical models on planet formation, they still struggle when it comes to producing very
distant giant planets with semi-major axes of several tens to hundreds of AU. This can be
attributed to both heavy inwards migration in the disk and poor mass growth in the outer
regions of the disk (Johansen & Lambrechts, 2017). However, the creation of such orbits
has been predicted to be a direct consequence of planet–planet scattering (Veras, Crepp, &
Ford, 2009). As seen in figure 6.2, the dynamical evolution of three tightly-packed giants
consistently puts one of these planets on a very distant orbit with varying eccentricity. The
fact that several cases (e.g. system 19) show that scattering can produce wide, pseudo-
circular orbits also provides insight into the importance of planet–planet scattering as a
part of the formation of stable planetary systems. Intuitively, the observation of a wide
low-eccentricity planet implies that the planet has not undergone any close encounters with
other planets and formed in-situ during the planet-formation phase, where its eccentricity
has been dampened by interaction with the protoplanetary disk. Again, such a scenario is
not supported by current planet growth models.

Planet consumption adds another aspect to this phenomenon, since the transfer of energy
that occurs when a Jupiter-mass planet collides with its host star can lead to the creation
of a planetary system with a single low-eccentricity planet on a wide orbit. While the
wide orbit single planet systems in figure 6.2 have moderate to high eccentricities, the
unresolved system 41 will likely conclude its phase of instability by producing a pseudo-
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circular single-planet system with a semi-major axis of ∼ 100 AU after the ejection of
planet J1. While planet consumption can be a pathway to single, wide orbit gas giants,
there have been detections of giant planets forming at wide orbits through gravitational
instability (Wagner et al., 2020). Furthermore, these type of orbits can be created after
capture of a planet from another planetary system in stellar clusters (Li, Mustill, & Davies,
2019, 2020). Nevertheless, the detection of a single planet on a wide orbit can suggest the
occurrence of a past planet consumption event.

8.3 Detectability of planet consumption consequences

Assuming that the toy–model estimates for the observational consequences of planet con-
sumption by a MS star in chapter 7 are accurate, I have yet to answer how detectable
these effects would be. Since a majority of the consuming orbits will be grazing, I base
the discussion on such a case. Note that the observational consequence of surface-grazing
interactions, where the planet causes periodic ejections of stellar surface material, has al-
ready been confirmed to be detectable (Salas et al., 2019). I will thus not discuss said
effect any further.

First, it is necessary to know how often these types of events will happen. While there
has not been any dedicated study to derive a planet consumption rate for planet–planet
scattering events, Metzger, Giannios, & Spiegel (2012) and Popkov & Popov (2019) derived
such rates for tidal decay of short-period orbits. The latter study used a population
synthesis model to expand on the study by the former, leading to a more detailed result.
Popkov & Popov found that for MS stars, the planet–star collision rate for low-mass planets
is ∼ 0.006− 0.009 yr−1 per galaxy and 0.003 yr−1 per galaxy for giant planets. For RGB
stars, planet consumption is more common with a rate of 3 yr−1 per galaxy. Since the
authors do not take direct consumption by planet–planet scattering events into account, I
expect that these rates are underestimated given the discussion in the sections above.

8.3.1 Planet merger transients

Popkov & Popov further argue that these different planet consumption types would have
highly different detectabilities. Recalling that direct impact events for narrow, tidally
decayed orbits with low eccentricity will produce EUV/X-ray transients, it is uncertain
how much of this radiation it would be possible to observe. If the host star is in its
MS phase when the collision occurs, the increase in luminosity from the bow shock can
as mentioned exceed the Eddington limit, leading to the creation of stellar winds. Said
winds will be optically thick to the emitted radiation, blocking a large portion and re-
emitting it isotropically in the optical/IR wavebands. The re-emitted radiation would in
turn overlap with the stellar blackbody radiation. Hence, this type of transient event would
only be detectable for a brief period of time on the order of ∼ weeks after the onset of
the merger (Metzger et al., 2012). Moreover, extinction in the galactic plane of the Milky
Way would further complicate detections of planet consumption events within the Galaxy,
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meaning that surveys aiming to detect planet merger transients from low-eccentricity direct
impacts have to focus on other galaxies such as M31 (Andromeda) or the Large Magellanic
Cloud (LMC). An instrument that would be capable of performing such a search would
for example be the Vera Rubin Observatory (VRO) that is currently under construction
(Ivezić et al., 2019).

When it comes to high-eccentricity direct impacts, the behaviour of the transient appears
to be different, as argued for by Yamazaki, Hayasaki, & Loeb (2017). Instead of EUV/X-
ray radiation being the most promising feature for detection, the plasma bubble created by
the high velocity impact will instead produce radio synchrotron afterglow by acceleration
of electrons that could be detectable for 103 − 104 yr after the planet consumption event.
The authors argue that the main argument against detection is the similar radio signatures
of supernovae remnants and classical novae. However, for the case of planet consumption
afterglow, the radio surface brightness would be smaller with a source diameter that is
distinguishable from that of novae. Yamazaki, Hayasaki, & Loeb believe that the main
reason for the lack of such observations is due to their model predicting a low surface
brightness similar to that of the detection limit for current instrumentation. Hence, such
observations may only be possible with the next generation of radio telescopes such as the
Square Kilometre Array (SKA), which will be the largest radio telescope ever constructed
with a total collecting area of 1 km2 (Dewdney et al., 2009).

Note that it is unknown how the signature of of these transient events will change when con-
sidering the energy-loss due to ejection of gas bullets during the grazing encounters of the
planet pre-consumption. This would have to be further investigated in future work.

8.3.2 Stellar spin-up

The rotational frequency of a star can be directly inferred from broadening effects of the
absorption lines in its spectrum (Gray, 1992). Hence, this parameter can be obtained with
the use of stellar spectroscopy. The difficulty in detecting stellar spin-up is due to the effect
of magnetic braking, which causes stars to spin-down over time. Hence, even though a star
may have consumed a Jupiter-mass planet on a grazing orbit, substantially decreasing its
rotational period, it may have spun-down to nominal rotational frequencies predicted by
stellar evolution at the time of observation. Nevertheless, this effect also provides a strong
argument for the occurrence of stellar spin-up by planet consumption. From observations
of stellar clusters of varying ages, a distinct bifurcation feature has been observed related
to the stellar periods. Stellar clusters with ages of ≥ 100 Myr show two distinct groups
of fast and slow rotating stars. This bifurcation is not seen from observations of young
clusters of a few Myr and very old clusters with an age of ≥ 400 Myr (Qureshi, Naoz, &
Shkolnik, 2018). In turn, there is an indication that planet consumption occurs around
some young stars after the depletion of the protoplanetary disk and destabilisation of the
remaining planets, leading to a spin-up of the stellar rotation which then slows down over
a few hundred Myr until it reaches nominal rotational periods again.
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Hence, the presence of fast and slow rotating stars has already been established. Yet, planet
consumption is still only one possible explanation for the bifurcation (Qureshi, Naoz, &
Shkolnik, 2018), meaning that observations of rapidly rotating stars have to be coupled to
observations of other consequences of planet consumption to confirm whether or not this
hypothesis is true.

8.3.3 Stellar metallicity enhancements

When it comes to the enrichment of surface metal abundances by planet consumption,
the ‘when’ and ‘where’ of the planet–star collision will determine the detectability of the
enhancement. From my discussion in 7.6, the ‘where’ does not to seem to be an issue for
planet consumption induced by planet–planet scattering, as they consistently will produce
grazing collisions between the planet and the host star. The most important criteria is
instead the ‘when’, given that the planet consumption event must occur during the early
post-MS phase when the convective zone is shallow, before expansion of the stellar envelope
on the RGB. Stars on the RGB and AGB will have deeper convective zones, meaning that
no planet will contain enough heavy metals to produce a detectable signature of metal
enrichment. Furthermore, the lifetimes of the 6Li and 7Li isotopes in RGB stars are too
short for any enrichment by planet consumption to be detectable. In turn, any signatures
of increased Li abundances in such stars must be due to other mechanisms (Soares-Furtado
et al., 2020).

Hence, it is clear that the observational consequence of Li enrichment is most important for
post-MS stars at their turn-off towards the subgiant branch in the mass region 1.4 M� ≤
M? ≤ 1.6 M�, where depletion of Li is slower. For less massive stars post-MS stars,
heavy metal pollution will produce detectable signatures. Given the different behaviour
of these two detectable features of planet consumption, they can be used to locate planet-
consuming host stars in different stellar environments. For metallicity enhancement by
heavy metals, planet consumption surveys should mainly focus on stellar clusters. The
intrinsic metallicity of a star is highly related to the environment it was born in, meaning
that any deviations in metallicity must be detected through comparison with other stars
originating from the same environment. Another benefit of surveying stellar clusters for
planet consumption signatures is that the high number density of stars within such an
environment facilitates stellar fly-by encounters, which can trigger dynamical instability
(Malmberg et al., 2011). In turn, the issue where planet consumption of rocky planets in
an intrinsically unstable system occur during the early MS phase of the host star (when
the convective zone is too deep) can be circumvented.

When it comes to signatures caused by enrichment of Li, the location of the planet is less
important. This comes from the fact that the depletion of Li in the host star is mainly
related to its evolutionary phase and mass. In turn, when it comes to the detection of
planet-consuming systems using Li abundances, it can be used for free-floating stars in less
densely populated regions of the galaxy. Nonetheless, this assumes that the age of the host
star can be determined to restrict its expected intrinsic Li abundances. Age estimation
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is facilitated if the star is located within a cluster, given that an approximate age for the
entire cluster can be inferred from the MS turn-off in its Hertzsprung-Russell diagram
(Prialnik, 2000).

8.3.4 Detection of wide orbit planets

As predicted by Veras, Crepp, & Ford (2009), planet–planet scattering can produce giant
planets on wide orbits with semi-major axes 102 ≤ ap ≤ 105 AU. The authors argue that
these planets are detectable over their lifetime, which is on the order of ∼ 10 Myr, by direct
imaging or microlensing methods. Since my analysis predicts that planet consumption of
giant planets can produce single-planet systems with wide orbit giants, the presence of such
a planet serves as an indicator of a past planet consumption event. Again, such planets
can also be produced through gravitational instability (Wagner et al., 2020) or by the
exchange of a planet in a close encounter between stars in a stellar cluster (Li, Mustill, &
Davies, 2019, 2020). Hence, such a detection must be coupled with additional observable
signatures to firmly conclude that it belongs to a planet-consuming system, especially if
the star is a member of a stellar cluster. However, it still poses a challenge to detect these
wide orbit planets given that the direct imaging and microlensing methods for detection
of an exoplanet still are highly inefficient in comparison to the the more common methods
(Wright & Gaudi, 2013). Nevertheless, the detection of wide orbit planets can still serve
as a primary indicator for the consumption of a giant planet.

8.3.5 How to detect a planet-consuming system

While detectable outcomes of planet consumption produced by planet–planet scattering
events are highly dependent on several parameters such as the mass, age and environment
of the host star, as well as the impact parameter and intrinsic properties of the consumed
planet, I can still formulate a rough recipe for which observational consequence will produce
the most detectable signatures for a given planet type. Note that I only consider the stellar
mass range inferred from figure 3.5 of 0.6 M� ≤M? ≤ 2 M�.

Detectability of planet consumption

1. Terrestrial planets: Consumption of a single Earth-like planet will
not produce strong enough signals to indicate a past planet consump-
tion event. However, the consumption of multiple Earth-like planets
can most probably induce weak perturbations in stellar spin and stellar
luminosity that can be detectable with the next generation of obser-
vational instruments. Said effects would likely only be detectable for
MS stars on the lower end of the mass range.

2. Super-Earths: Consumption of a single super-Earth will primarily
produce a detectable enhancement in a star’s observed metallicity, both
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in terms of heavy metals and Li. This type of event is highly likely to
occur in hierarchical multiple giant planet systems, and probably more
common than the rate of narrow, low-eccentricity orbit consumptions
from Popkov & Popov (2019) of ∼ 0.1 yr−1 per galaxy. In turn, I
expect that consumption of super-Earths will occur one to a few times
per year in the Milky Way. Most easily detectable for post-MS stars
with 1 M� ≤M? ≤ 1.6 M� at their MS turn-off point.

3. Mini-Neptunes/Neptunes: Since these planets have cores of roughly
2.5 M⊕, multiple consumptions would be required to induce a simi-
lar metallicity enrichment to that of super-Earths. Instead, the most
promising detectable consequences would be perturbations in the stel-
lar spin and radio afterglow caused by weak planet merger transients.
Would mainly be relevant for low-mass MS stars.

4. Giant planets: While the consumption of giant planets is less likely
than less massive exoplanets, they will induce the strongest detectable
observational consequences. The consequence of choice when conduct-
ing a survey can be determined from the stellar types in consideration.
Note that the detection of a single, wide orbit giant planet will be
relevant for all of these mass ranges.

• 0.6 M� ≤ M? < 1 M� : I expect that the main observational
consequences for low-mass stars to be stellar spin-up and effects
caused by a planet merger transient.

• 1 M� ≤ M? < 1.4 M� : For a MS star, the planet consumption
event can induce strong stellar spins, potentially threatening ro-
tational break-up if the planet has a mass such that Mp > 10 MJ.
Furthermore, radio afterglow transients and gas bullet ejection
will likely be detectable with future astronomical missions. Metal-
licity enhancements by heavy metal pollution in the convective
zone of the host star will also be detectable, mainly for post-MS
stars near its MS turn-off point. As for the RGB and AGB phases
of the star, the most detectable effects will be periodic gas bullet
ejections and stellar spin-up, which has a high possibility of end-
ing with the star reaching break-up periods. For the white dwarf
phase, the dominant consequence will likely be pollution of heavy
metals.

• 1.4 M� ≤ M? ≤ 1.6 M� : For these stars, the dominant effect
will likely be pollution of 6Li and 7Li when the planet is on its
MS-phase. I expect the host star to behave similarly to those in
the lower mass range during its remaining phases.
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• 1.6 M� ≤M? ≤ 2 M� : Here, pollution is restricted by deeper con-
vective zones and spin-up will be made difficult because of larger
angular momenta. Hence, the most detectable effect will likely
be planet merger transients during the MS phase and periodic
ejections of gas bullets during the MS, RGB and AGB phases.

With this formulated recipe in mind, I can draw a final conclusion regarding which obser-
vational consequence is most reliable for detecting planet-consuming systems within 1. the
Milky Way and 2. Other galaxies:

Most promising observational consequences

1. the Milky Way: Given the high consumption rate of super-Earths,
observed metallicity enhancements of post-MS turn-off stars in stellar
clusters within the mass range 1 M� ≤ M? ≤ 1.6 M� will provide a
strong indication of a previous consumption-event. Said events could
potentially also trigger weak radio afterglow events that should be
detectable with mission such as SKA.

2. Other galaxies: The short but strong energy transients in opti-
cal/IR detected by e.g. VRO followed by the radio afterglow caused
by the consumption of a Jupiter-mass planet detectable with SKA will
strongly hint at a recent planet consumption event in a local galaxy
such as M31 or LMC.

8.4 Future work

Below, I list a set of improvements based on the discussion above that can be applied to
the methodology in this thesis to extend the study.

• Base the planetary systems investigated on a population synthesis model, e.g. based
on statistics He et al. (2020) or planet formation theory Bitsch et al. (2019), and
employ a more complete stability criterion in terms of AMD from Laskar & Petit
(2017).

- The population synthesis model should also include a proper stellar evolution
model to properly understand the importance of stellar age on the detectability
of observational consequences of planet consumption.

- Varying properties should be stellar metallicity, age, mass and radius.

• Implement a tidal model in the N -body integrations for the treatment of both plane-
tary and stellar tides to better understand the ratio between consumption of planets
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on short-period orbits through tidal decay and planet consumption due to planet–
planet scattering events. Furthermore, this would allow for a more physically accurate
case with the creation of planet binaries.

• Ensure to increase the resolution when reaching low values of rmin to avoid having to
extrapolate eccentricities to obtain rmin ∼ R?.

• Employ hydrodynamical simulations of a planet–star collisions to perform more in-
depth studies on how the little-to-no mass loss during tidal decay of high-eccentricity
orbits, predicted by Dosopoulou, Naoz, & Kalogera (2017), will affect the signature
strength of observational consequences such as gas bullet ejection and planet merger
transients.

• Improve the two-body model by including an inclination of the orbits.

• Further investigate the 5J problem, where the presence of two inner Jupiter-mass
planets stabilises the system, to determine whether the effect originates from the
‘AMD sink theory’ or the ‘altered potential theory’ (see appendix B).
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Chapter 9

Summary & conclusions

In this chapter, I briefly summarise the work done in this thesis before presenting the
main conclusions from the analysis of planet-consuming events in multiple planetary sys-
tems.

9.1 Summary

In this thesis, I have investigated the phenomenon where planet–planet scattering in un-
stable, multiple planetary systems leads to the consumption of one or more planets by a
single host star. Such a scenario has been proposed by previous theoretical studies on the
outcome of planet–planet scattering and been tied to observational consequences of planet
consumption, such as stellar spin-up, periodic ejection of stellar surface material, stellar
metallicity enhancement and planetary merger transients. Using analytical and numerical
analysis of planet–planet scattering events, I have been able to narrow down which type
of systems are more likely to produce planet consumption events. Furthermore, I have
employed toy–model estimates of planet–star collision outcomes based on the results of the
numerical analysis, from which I have formulated a proposal for which kind of observa-
tional consequences that can be used to detect potential past planet consumption events
in various planetary systems.

I began in chapter 5 by employing a simplified isolated, coplanar two-body model to in-
vestigate planet–planet scattering events after the crossing of two planetary orbits. This
approach allowed me to narrow down the parameter space that governs the outcome of
scattering events. Focusing on MS stars, I found that extreme mass ratios between the
planets on hierarchical and short-period orbits, of which at least one is highly eccentric,
around an F, G or K-type star with a low bulk density are optimal for consistently pro-
ducing planet consumption events. The main conclusions from said chapter can be found
in section 5.5. With a more constrained parameter space, I set up full three-dimensional
numerical experiments in the N -body integrator MERCURY to in detail investigate the dy-
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namical evolution of unstable hierarchical, multiple planetary systems in chapter 6. The
fiducial system was a Solar System analogue consisting of two Earth-mass planets within
three Jupiter-mass planets, referred to as 2E+3J. This choice was motivated by the results
from the two-body analysis and architecture of planetary systems as predicted by obser-
vational data from ‘Kepler’ and planet formation theory (see section 6.2). I then altered
properties such as mass, radial separation from the host star and multiplicity of this fidu-
cial system to determine how they affect the system’s ability to produce planet-consuming
events. From the results of the numerical integrations, I found that the predictions from
the two-body analysis are in line with the behaviour of the more complete model and serves
well as a first approximation to single planet–planet scattering events. The main difference
between the two-body and N -body analyses is that the former only can model the outcome
of scattering events after substantial dynamical evolution since at least one of the orbits
need to be on a high-eccentricity orbit. The current understanding of planet formation
will favour initially circular and coplanar orbits, leading to a low initial AMD. Hence, I
found that intrinsically unstable systems require a subsystem with at least two unstable
giant planets to consistently trigger dynamical instability that leads to the crossing of
orbits.

The properties of the system and the bodies involved in the scattering will furthermore
determine the main pathway to planet consumption and the nature of the planet–star
collision. From the analysis, I have concluded that there are three extreme pathways:

1. Diffusive consumption: A planet undergoes a large number of close encounters,
slowly increasing its eccentricity in a diffusive manner. Common for scattering events
with qp ∼ 1, meaning that it is the main pathway for consumption of giant planets.

2. Strong consumption: A few strong subsequent scatterings rapidly drive up the
eccentricity of a planet, putting it on a planet-consuming orbit. Mainly occurs for
scattering events with qp � 1. Connected to diffusive consumption through a con-
tinuum of average scattering strengths.

3. Lidov–Kozai consumption: The eccentricity of a planetary orbit is increased due
to Lidov–Kozai oscillations with a massive companion with high mutual inclination.
Relevant for systems where there are mass ratios qp � 1 and more than two giant
planets.

The pathway to consumption for giant planets is thus highly similar to the pathway to
ejection. Furthermore, given that the Jupiter-mass planets in 2E+3J have been placed
further out in the system, ejection frequently occurs for said Jupiter-mass planets and is
their dominant CME-type outcome. As a result, consumption of low-mass planets occurs
in a large majority of the integrated planetary systems, while consumption of Jupiter-mass
planets only occurs in about 10% of them. The complete set of conclusions from chapter
6 are found in section 6.7.

In chapter 7, I carried out a literature study of observational consequences for planet-
consuming events and performed simple calculations to predict dominant outcomes for the
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systems created in my simulations. Firstly, I determined that there are two types of planet–
star collisions when the consumed planet is on a highly eccentric orbit. For a Sun-like MS
star, they can be distinguished by using the fractional radial velocity f⊥ of the incoming
planet (Church, Mustill, & Liu, 2020), which is a measure of the impact parameter of the
collision.

1. Grazing collision: The planet undergoes close encounters with the host star, as its
eccentricity grows diffusively such that rmin → R�. The planet ultimately reaches
eccentricities such that rmin = R�, where headwind from stellar gas, as well as tidal
decay of the orbit, will cause the planet to spiral inwards over the course of several
orbits. Holds for f⊥ < 0.4.

2. Prompt collision: The planet obtains a high-eccentricity orbit such that rmin < R?.
In turn, the planet will be directly consumed during its first orbit beneath the surface
of the host star. Holds for f⊥ ≥ 0.4.

From the results of the numerical integrations of 2E+3J and its derivative configurations,
it stands clear that grazing encounters will dominate for consumption of Earth-mass and
Jupiter-mass planets, especially for the latter which undergo diffusive consumption. To-
gether with the toy–model computations based on literature studies of planet-consuming
events, I could estimate which observational effects that will dominate for my simulations.
The conclusions of the analysis in chapter 7, found in section 7.8, show that the outcome
is dependent of many parameters such as the metallicity, age, mass and radius of the host
star, as well as composition, mass and radius of the consumed planet. However, given the
rate of planet consumptions within the dynamically evolved systems based on 2E+3J and
discussion of the detectability of different observational consequences summarised in sec-
tion 8.3.5, I could draw two main conclusions. For planetary systems within the Milky Way,
it seems that metallicity enhancement by consumption of a massive or several less massive
super-Earth(s) will consistently produce a detectable signal for Sun-like MS stars within
stellar clusters, in line with the findings of (Church, Mustill, & Liu, 2020). Nonetheless,
primary indications of planet consumption should be followed up with observations of sec-
ondary signatures. In this case, a good choice would be detection of radio afterglow caused
by a planet merger transient (Yamazaki, Hayasaki, & Loeb, 2017) or perturbations in the
period of the stellar spin (Qureshi, Naoz, & Shkolnik, 2018). For extragalactic planet-
consumption events, consumptions of giant planets will induce a detectable optical/IR
transient followed by radio synchrotron radiation afterglow, suggesting that such events
make good candidates for multi-waveband astronomy with future observational missions
such as VRO and SKA.

9.2 Conclusions

The main conclusions for the work done in this thesis based on the discussion above and
the conclusions from sections 5.5, 6.7, 7.8 and 8.3.5 are as follows:
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Major conclusions from this thesis

1. Planet consumption induced by planet–planet scattering is likely to
occur when

• the planetary mass ratio qp = Mp,1/Mp,2 is small:

• the planets are orbiting a host star with low density:

• one orbit is highly eccentric, preferably for hierarchical config-
urations where the eccentricity of the lower-mass planet is the
highest:

• the scattering event occurs for planets on short-period orbits near
the host star.

2. Consumption of low-mass planets below ∼ 30 M⊕ will consistently
occur for hierarchical planetary systems with at least two giant planets.

3. Consumption of giant planets will occur in around 10% of my systems
when the initial configuration contains three giant planets. Such an
event can produce a unique observational consequence where a single
giant planet is left on a wide orbit with arbitrary eccentricity.

4. There are three extreme pathways to planet consumption: diffusive,
strong and Lidov–Kozai consumption (see description above).

5. Grazing collisions between the host star and the planet will dominate,
no matter which pathway for consumption the planet follows.

6. The dominant observational consequence depends on

• Stellar age, mass, metallicity and radius.

• Planetary mass, radius, composition and impact parameter.

7. Detections of observational signatures that are likely to depend on
planet consumption ought to be followed up with a secondary detection
method, making planet consumption a good candidate for future multi-
waveband astronomy missions.

8. From numerical integrations of a planetary configuration motivated
from observations of planetary systems by ‘Kepler’ and planet for-
mation theory, the dominant observational consequence from planet
consumption in the Milky Way will be metallicity enhancement by
consumption of super-Earths. Outside the galaxy, the dominant ob-
servational consequence will be planet merger transients caused by the
consumption of a Jupiter-mass planet.
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List of Symbols

α Angle between radius and velocity vectors

β Numerical factor for bmax

∆ Separation in Hill radii

δ Deflection angle [◦]

` Semi-latus rectum [m]

ε Specific orbital energy [J kg−1]

µr Reduced mass [kg]

Ω Longitude of the ascending node [◦]

ω Argument of the periastron [◦]

Ω? Rotational frequency of host star [s−1]

φ Angle between semi-major axes of two orbits [◦]

ψ Angle between orbits at infinite separation [◦]

ρ Density [kg m−3]

σSB Stefan-Boltzmann constant [W m−2 K−4]

τ Lifetime of a planetary system [s]

Θ Safronov number

θ True anomaly [◦]

θcross True anomaly at orbital crossing [◦]

ε Eccentric anomaly [◦]

ϕ Angle from point of closest separation during deflection [◦]

ξ Fractional change in AMD

a, ap Semi-major axis [m]
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af Semi-major axis of a planet that has ejected two Jupiter-mass planets [m]

b Planet–planet scattering impact parameter [m]

bmax Limiting value of b during planet–planet scattering [m]

C Centre of orbital ellipse

c Position of the host star [m]

d Distance between planets during planet–planet scattering [m]

dmin Minimum distance between planets during planet–planet scattering [m]

E Energy [J]

e Eccentricity

f⊥ Fraction of the velocity that is radial

fconsuming Fraction of consuming orbits in a set of systems

G Gravitational constant [m3 kg−1s−2]

h Specific angular momentum [m2 s−2]

i Orbital inclination [◦]

imut Mutual inclination [◦]

J Orbital angular momentum [m2 kg s−2]

kB Boltzmann constant [J K−1]

L? Luminosity of host star [J s−1]

M Mass [kg]

NCE Number of close encounters

P Orbital period [s]

P? Rotational period of host star [s]

qp Mass ratio of planets in a planet–planet scattering

q? Mass ratio of planet and host star

R Radius [m]

r Radial distance from star [m]

rapa Apastron distance [m]

rcrit The critical radial distance for planet consumption [m]

rcross Radial distance to orbit crossing [m]
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RHill,m Mutual Hill radius [m]

rmax Maximum distance from host star [m]

rmin Minimum distance from host star [m]

rperi Periastron distance [m]

rp Radial distance between planet and star [m]

RRoche Roche radius of host star [m]

rtide Tidal circularisation radius [m]

T Temperature [K]

t Time [s]

tCE Time until first close encounter [s]

tCME Time at the onset of a CME-event [s]

ttot Total integration time [s]

v, vp Planet velocity [m s−1]

v∞ Velocity at infinite separation [m s−1]

vcm Centre-of-mass velocity [m s−1]

vesc Escape velocity [m s−1]

vrel Relative velocity [m s−1]

vr Radial velocity [m s−1]

vθ Tangential velocity [m s−1]

vp,b Velocity relative to the centre-of-mass [m s−1]

Z Metallicity

MJ Mass of Jupiter [kg]

MNep Mass of Neptune [kg]

M� Mass of the Sun [kg]

M⊕ Mass of Earth [kg]

RJ Radius of Jupiter [m]

R� Radius of the Sun [m]

R⊕ Radius of Earth [m]
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Acronyms

AGB Asymptotic Giant Branch. 113

AMD Angular Momentum Deficit. 35

CME Consumed, Merged or Ejected. 53

CMF Core Mass Fraction. 27

EUV Extreme Ultraviolet. 116

IR Infrared Radiation. 116

LMC Large Magellanic Cloud. 134

MMR Mean-Motion Resonance. 35

MR-relation Mass-Radius relation. 27, 40

MS Main Sequence. 7, 105

ODE Ordinary Differential Equation. 74, 75

RGB Red Giant Branch. 110

SKA Square Kilometre Array. 134

VRO Vera Rubin Observatory. 134

ZAMS Zero Age Main Sequence. 30
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Glossary

‘Kepler’ dichotomy The apparent existence of two populations within the sample of
planets observed with the Kepler Space Telescope. One of the populations consists
of multiple planet systems with low mutual inclinations, while the other consists of
single planet systems or systems with high mutual inclinations. 22, 25, 78

action at a distance Interactions between two planets with low separations where they
exchange angular momentum without the crossing of orbits. 36, 95, 120

adaptive time step A variable step size in time for integrators that depends on the level
of accuracy needed to provide a good estimate of the solution to the problem at hand.
75

anti-scattering When a planet on an eccentric orbit is put on a less eccentric and wider
orbit after planet–planet scattering. 84

close encounter When two planets which have crossing orbits are within one mutual Hill
radius of each other (see equation (4.1)). 34, 43, 156

cold Jupiter A giant planet with a minimum mass of 0.3 MJ orbiting its host star at
distances of ap > 1 AU. 22

deflection The alteration of a planet’s trajectory and in turn its orbital parameters during
a scattering event. 43

ejection An outcome of a planet–planet scattering event where a planetary orbit becomes
so eccentric that the planet becomes unbound from the planetary system. 7, 38

flat system A planetary system where the orbits have little to no mutual inclination,
meaning that they will all be coplanar. 42, 67, 70

gravitational focusing A deflection where the gravitational force between the two ob-
jects enhances the likelihood of them colliding and merging. 44
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grazing collision The planet impacts its host star with an eccentricity e ∼ ecrit such that
it spirals in towards the tidal plunging radius over the course of several orbits. 107

Hill stable When two orbits are sure to never cross due to exchanges of angular momen-
tum and energy during their mutual long-term gravitational interactions. 34

hot Jupiter A giant planet with a minimum mass of 0.25 MJ . Mp sin(i) . 20 MJ,
orbiting its host star with a period of 10 days or shorter (ap . 0.1 AU). 7, 30, 103,
130

impact parameter The distance between two planets during a close encounter on their
unperturbed orbits. 43

Lidov–Kozai A mechanism where a highly inclined companion perturbs a planetary orbit
inducing large periodic changes in orbital eccentricity and inclination (see section 4.2).
37

magnetic braking The loss of angular momentum for a star due to ejection of material
getting caught in the star’s magnetic field. Effectively causes the star to spin-down
over time. 110, 134

mutual inclination The angle between the angular momentum vectors of two orbits. 14

planet consumption An outcome of a planet–planet scattering event where one planet
physically collides with the host star of the planetary system. 4, 8, 38

planet–planet merger The outcome of a scattering event where the impact parameter
is smaller than the combined physical radii of the two planets, resulting in a physical
collision. Also referred to as merger . 7, 38

planet–planet scattering An event where two planets with crossing orbits are close
enough to each other to exchange a significant amount of angular momentum and
energy to alter the orbital elements of one or both of the orbits. 7, 34, 43, 155, 156

planet-consuming orbit An orbit where the planet is heading directly towards the host
star and will be consumed. 39

planetary configuration An initial setup of planets with predefined multiplicity, initial
semi-major axes and masses orbiting a host star with a given mass. All planetary sys-
tems are subsets of planetary configurations. Also referred to as orbital configuration.
80, 81, 156, 157

planetary system Part of a subset of a given planetary configuration where planets with
static semi-major axes have been given randomised orbital elements. 80, 81, 156, 157

progenitor system The initial phase of a planetary system at t = 0 yr. 80, 81, 157
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prompt collision The planet impacts its host star with an eccentricity e > ecrit such that
it undergoes tidal plunging after only one orbit. 107

radial excursion Refers to the excursion made by a planet outwards in the planetary
system, away from the host star. Corresponds to the apastron distance of rmax =
a(1 + e). 34, 82

radial incursion Refers to the incursion made by a planet inwards within the planetary
system, towards the host star. Corresponds to the periastron distance of rmin =
a(1− e). 34, 82

realisation A realisation is the integration over 10 Myr for a given progenitor system that
in the end creates a planetary system. 81, 157

run A run refers to all N realisations for a given planetary configuration, creating N
planetary systems. 81

secular theory The long-term change in the orbital elements of a Keplerian orbit over
time. 35

short-period orbit A short-period orbit has a small semi-major axis, meaning the planet
will have a small separation with its host star. 21

stellar obliquity The angle between the stellar spin axis and the angular momentum axis
of a planetary orbit. 110

tidal circularisation A planet on an eccentric orbit obtains angular momentum from
the host star, effectively decreasing its eccentricity, putting it on a more circular and
shorter period orbit. This is a potential formation channel for hot Jupiters. 24, 31,
103

tidal plunging The decay of a short-period orbit caused by tidal interactions with the
host star, which ultimately leads to disruption of the planet. 105

transient Short for ‘transient astronomical event’ which refers to an observable astronom-
ical event that occurs on very short timescales that can last between a few seconds
and several years. In this thesis, the word indicates luminous transients, where the
radiative activity of a star is increased for a short period of time. 102

wide orbit A wide orbit has a large semi-major axis, meaning the planet will have a large
separation with its host star. 21
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Appendix A

Impact parameter distribution

I have until now not addressed the assumption that the impact parameter will be uniformly
distributed for a given planetary system. Which impact parameter a given scattering will
have in a two-planet system depends on the relative values of the initial true anomaly θ0

for the planets. Hence, where the planets will have their closest approach during a period
of their orbits is entirely a question of timing. In order to test the assumption, I have used
a simple numerical approach where I estimate orbital motion using Kepler’s equation. The
details can be found in the function scatter.test bvals.

First, I compute the periods of both planets using Kepler’s third law of planetary mo-
tion

P 2 =
a3

Mtot

, (A.1)

where Mtot is the total mass in Solar masses and P is the period in yr. The total compu-
tation time is then given by ttot = max(P1, P2). To setup the test, I produced 500 initial
angles for the true anomaly of the secondary orbit θ0,2 with uniform steps while the true
anomaly of the primary orbit is kept static θ0,1 = 0◦. Each combination of θ0,1 and θ0,2 in
turn yields a given separation at closest approach min(d) which will be equal to the impact
parameter. Hence, by computing all these different variations of the orbital motions for
ttot yr, I obtained a set of separations that corresponds to the closest approach between
the two planets at every single time t. Kepler’s equation is given by

θ = ε− e sin(ε), (A.2)

where ε is the eccentric anomaly of the orbit. The iterative scheme used to solve this
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IMPACT PARAMETER DISTRIBUTION

equation is based on Newton’s method (Weisstein, 2020)

εn+1 = εn −
εn − e sin(εn)− θ(t)

1− e cos(εn)
. (A.3)

The initial guess is ε0 = θ0 for e < 0.8 and for large eccentricities e ≥ 0.8, an appropriate
guess was found to be ε0 = π. For each time step, ∆t, the Cartesian coordinates are
computed with the following coordinate transformations

x = a(cos(ε)− e) (A.4)

y = a
√

1− e2 sin(ε). (A.5)

The separation for each value of θ0,2 at a time t is then given by

d =
√

(x1 − x2)2 + (y1 − y2)2. (A.6)

Note that the separation d is unaffected by gravitational focusing in this model. Nev-
ertheless, since the sole purpose of this analysis was to find the distribution of impact
parameters between the two planets this posed no problem. The impact parameter for
each value of θ0 will naturally correspond to b = min(d(t)). All-in-all, I performed two sets
of computations. The first set was coarse with only 250 different time steps. For each step
I iterated equation (A.3) 100 times to guarantee convergence. By then finding the sign
change in the difference between each adjacent value of b I could detect the two minima
for each initial angle θ0, which correspond to the closest initial separation within a circle
of radius RHill,m centred on the two orbit crossing points, i.e. θcross,2. Here, I performed
the second set of computations where I only estimated the orbital motion in the range
θ0,2 ∈ [θcross,2 − 5◦, θcross,2 + 5◦] to obtain a finer distribution of impact parameters using
104 time steps.

After again finding the minima for the finer distribution, I could test the hypothesis of a
uniform distribution of impact parameters by making four first order polynomial fits to the
distribution of impact parameters left and right of the minima. If these linear fits proved
to be good approximations with similar absolute values of their first order constant, I could
conclude that the assumption of a uniform distribution for b is indeed fair. After testing
several different combinations of orbital elements for the two orbits with different values
of φ, I found that this was indeed the case.
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Appendix B

5J stability investigation

In order to conduct a study of the instability timescales for the configurations mentioned
in section 6.4.1, it was necessary to define a metric that will quantify said timescale. A
conventional way of measuring this timescale is to look at the timing of the first close
encounter between two planets in a planetary system, which I have chosen to denote tCE.
While said timescale depends on the initial phase of the system, the overall distribution of
tCE for a given configuration will give insight an into how unstable it is. Hence, comparing
the distributions of tCE for different configurations can provide a good general understand-
ing of how they differ. As for the two hypotheses for the 5J stability problem, I began by
investigating the AMD sink idea.

To begin, I noted that there are two main distinctions between the 2X+3Jd and 2X+3Je
configurations in figure 6.1. Firstly, the masses of the planets in the inner subsystem are
equal to the masses of the planets in the outer subsystem. Secondly, there is a significant
difference in ∆ separation between the inner and outer subsystem since 2X+3Jd has ∆23 =
18.1 and 2X+3Je has ∆23 = 15.8. If the hypothesis is correct, replicating these key
features in another system should produce similar results. Hence, I created the 5S and
3S configuration. The first distinction between 2X+3Jd and 2X+3Je can be reproduced
by creating another configuration where all planets have equal masses, in a 2X+3J-type
manner. I chose to use planets that are approximately of Saturn-mass, i.e. Mp = 100 M⊕
and denoted this configuration 5Sa. The second distinction can be reproduced by using
the same ∆23 separation as for 2X+3Je, which gave birth to the 5Sb system. Since the
instability timescale does not only depend on separation, but also on mass (Chambers,
Wetherill, & Boss, 1996), the ∆ separation between the outer subsystem planets was set
to 4.0 instead of 5.1 to hasten the elapsed real time of the integrations. This should
only offset the instability timescales between the 2X+3J-type and 5S-type systems. The
two configurations were both integrated for 10 Myr in sets of 50 realisations. Lastly, I
performed a run with 50 realisations for a system only consisting of the outer subsystem,
which served as a reference to determine how the position of the inner planets affected
the tCE distribution of 5Sa and 5Sb. The cumulative distribution of tCE for all systems
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Figure B.1: The cumulative number of systems as a function of the timing of first
encounter tCE for the different configurations used in the investigation of the AMD sink
theory.

in the three configurations can be found in B.1. I have also included the corresponding
distribution for 2X+3Je. While it is not possible to directly compare said distribution
with the other three due to the difference in ∆ between the outer planets, it still provides
a reference for the varying behaviour between the planetary systems in the 5S-type and
5J-type configurations. Nevertheless, it is clear that the presence of the inner subsystem
does not affect the instability timescale in a notable manner. To verify the similarity
between the cumulative distributions for these three configurations, I employed a two-
sample Kolmogorov–Smirnov (KS) test based on the method laid out in Hodges (1958).
The KS statistic of relevance is given by

Dn,m = sup |F1,n(x)− F2,m|, (B.1)
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5Sa & 5Sb 5Sa & 3S 5Sb & 3S
Dn,m 0.16 0.10 0.16

p-value 0.549 0.967 0.549

Table B.1: The KS-test statistics and p-values for the three S-type configurations inves-
tigated for the AMD sink theory.

2X+3Je & 5Ja 2X+3Je & 5Jb 5Ja & 5Jb
Dn,m 0.08 0.21 0.22

p-value 0.981 0.101 0.179

Table B.2: The KS-test statistics and p-values for the three J-type configurations of
interest investigated for the five Jupiter problem.

where sup is the supremum function while F1,n(x) and F2,m(x) are the cumulative distri-
bution functions of the two samples that are tested. The null hypothesis is that the two
samples belong to the same underlying distribution. The results of the tests can be found
in table B.1. Judging from the KS statistic, the 5Sa and 3S systems have evolved very
similarly while the 5Sb system appears to differ slightly from both of them. Hence, while
the separation between inner and outer planets seems to have some effect on the instabil-
ity timescale, it does not prove the theory. In turn, it was still difficult to say whether
or not there is a correlation between having equal mass planets and a more stable outer
subsystem. I could nevertheless conclude that a separation of ∆23 = 15.8 is small enough
for some AMD to be transferred to the inner subsystem, thus prolonging stability.

To investigate further, I then turned to systems consisting of five Jupiters. I made use of
five different configurations except for 2X+3Je. The first system was 5Ja, where I increased
∆23 to 18.1, which is the separation between the inner and outer subsystems in 2X+3Jd.
I included a case where the separation is even larger as well, putting the inner subsystem
inside 0.5 AU, closer to the host star. As a sanity check, I also carried out a run where the
separation between all planets in terms of ∆ was 5.1. This configuration should intuitively
evolve significantly quicker and more chaotically than any other configurations considered
in the MERCURY study since the AMD can easily be redistributed among the planets. If it
did not, then there was some underlying effect in the treatment of large total planetary
masses in MERCURY that yielded faulty results. The final configuration was a reference
system with only the outer 3J subsystem, referred to as 3Jc.

All cumulative distributions for tCE of these configurations can be found in figure B.2. As
expected, the fastest evolving system by far was 5Jc, which indicates that the explanation
is unlikely to lie in the behaviour of MERCURY. Moreover, the tCE distributions for 2E+3J
and 3J are very similar. This is consistent with the findings up to this point, where the
inner planets will not affect the chaotic evolution of the outer subsystem for a small mass
ratio qp � 1. The most noteworthy difference lies between the 2X+3Je, 5Ja and 5Jb
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Figure B.2: The cumulative number of systems as a function of the timing of the first en-
counter tCE for the different configurations used in the investigation of the altered potential
theory.

cases. Again, there is a discrepancy between the 2X+3Je and the larger separation in 5Jb.
However, 2X+3Je and 5Ja are practically identical, as can be inferred from the table of
KS-test values for these three systems in table B.2. Intuitively, if the AMD sink theory is
correct, then it should be more difficult to transfer AMD for ∆23 = 18.1 than for the case
of ∆23 = 15.8. Furthermore, the next step in terms of ∆23 between 5Ja and 5Jb is even
smaller, yet the two configurations seem to evolve on slightly different, albeit statistically
indistinguishable, timescales. Therefore, it appears that the most likely explanation for
the prolonged stability of 2X+3Je does not lie in AMD transfer.

Instead, the altered potential theory could provide the answer. A key idea is that the
increase in separation between the two subsystems also moves the inner subsystem closer
to the host star for these cases. Given the large total mass of two MJ for the inner two
planets, they produce a large quadrupole term that will alter the potential experienced of
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the outer planets. This induces precession, which stabilises the outer subsystem (Mustill,
Davies, & Johansen, 2017). If a planet is closer to the host star, the potential will be less
asymmetric, making precession weaker. Hence the large difference between tCE for 5Ja and
5Jb.

While there is not enough evidence in this study to draw any firm conclusion regarding the
origin of the prolonged stability for 2X+3Je, it can be expanded upon in future work by
comparing the instability timescale for additional configurations with both intermediate
and larger ∆23 values. Furthermore, it would be useful to employ a different integrator
that is not based on the Bulirsch-Stoer method to confirm the behaviour.
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