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Abstract 

European rivers experience increasing concentrations of total organic carbon (TOC) 

from terrestrial sources due to factors involving changes in land use, climate and soil 

acidity. However, only low interest is given to the evolution of total organic nitrogen 

(TON) concentrations, the correlations with TOC concentrations and the influence of 

surrounding land cover. Investigating TON concentrations next to TOC 

concentrations on a wide spatiotemporal scale would also help understanding the role 

of TON in eutrophication episodes and its impact on water quality in general. By 

filtering TOC and TON annual concentration means from the Waterbase aggregated 

database, we gathered data from monitoring sites distributed over Europe and spread 

from 1990 to 2012. For each site, a concentration anomaly was calculated as the 

difference between a given year and a reference year (2001). This anomaly was then 

regressed as linear function of time to study trends in TOC, TON and TOC/TON. 

Through GIS and spatial analysis tools, each site was categorized into a land cover 

category depending on the dominant land cover falling within a 1-km buffer.  

We showed that TON and TOC concentrations observed are qualified high compared 

to ranges observed globally for rivers and estuaries, with the highest TOC 

concentrations observed for “Reference” sites (>95% natural land cover) and the 

highest TON concentrations observed for “Urban” and “Agricultural” sites. The 

TOC:TON ratios observed are consequently high, regardless of the surrounding land 

use, with a strong positive correlation observed in ratio ranging from 0.25 to 0.40 in 

favor of organic C. TOC concentrations showed an increasing trend overall from 1990 

to 2012, with “Urban” and “Agricultural” sites showing slightly decreasing trends and 

“Natural” and “Reference” sites showing steeply increasing trends. TON 

concentrations showed the opposite behavior with decreasing trends for all land cover 

categories, and particularly strong R2 coefficient for “Urban” and “Agricultural” sites. 

The observed TON decreasing trends can be explained as the results of improved 

monitoring methodologies and policies applied by the EU and suggest optimistic 

consequences on the occurrence of eutrophication episodes and the improvement of 

water quality. 
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I. Introduction 

Rising food, housing and energy demand of the increasing population creates an 

immense pressure on water resources around the world (Giri and Qiu, 2016), and the 

effects of land development on water systems is regularly assessed by studying the 

correlation between land use and stream water quality parameters (Reimann et al., 

2009; Cunningham et al., 2010; Tran et al., 2010; Utz et al., 2011). Fast and intense 

land development, in the form of urban and agricultural land cover expansion, has been 

found to have negative impact on water quality by increasing runoff, nutrients and 

heavy metal loads (Pratt and Chang, 2012; Wang and Yin, 1997; Paul and Mayer, 2001; 

Tsegaye et al., 2006; Lee et al., 2002; Zeilhofer et al., 2010). Moreover, the dissolved 

organic matter (DOM) loads from urbanized rivers show characteristics strongly 

influenced by human development, including elevated content of chlorinated and 

brominated disinfection by-product (DBP) which raises health concern (Kalscheur et 

al., 2012; Meng et al., 2013). Thus, without monitoring, regulation and mitigation 

efforts, land development leads to decreasing water quality, which affects drinking 

water availability and highly increases its treatment cost, ecosystem stability, 

recreational opportunities and tourism (Mehaffey et al., 2005; Versace et al., 2008; 

Heathwaite, 2010; Miserendino, 2011). 

 

Biogeochemical cycles are largely altered by human activity changes on both local and 

global scale. Climatic changes, via changes in temperature, hydrology, vegetation and 

other catchment properties, are strongly affecting the input of matter in riverine systems 

and, thus, recipient lakes and marine areas (Hessen et al., 2009; Huang et al. 2012). As 

a result, increasing carbon (C) and nitrogen (N) inputs to surface waters have been 

observed (Badr et al., 2008; Seitzinger et al., 2005; Wu et al., 2013). DOM increases 

have been observed in large parts of Europe (Berggren and Al-Kharusi, 2020), with 

anthropogenic dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) 

sources from urbanized catchments observed to be significantly higher than natural 

sources in the United Kingdom (Miller, 1999). Particularly widespread increases in 

concentrations of organic carbon have also been found in eastern North America and 

northern and central Europe (Montheith et al., 2007). 
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As the main DOM constituent, the spatiotemporal variations of the DOC fraction are 

widely covered in the literature, whereas less attention has been given to the DON 

fraction. In fact, most nitrogen cycling studies focus on the inorganic forms of nitrogen 

(ammonium NH4, nitrite NO2 and nitrate NO3) while ignoring the DON which is 

composed of a complex mixture including proteins, free and combined amino acids, 

amino sugars and nucleic acids (Badr, 2016; Huo et al., 2014; Seitzinger et al., 2002). 

Investigating the DON fraction in water along with other N species could provide better 

information on the effects of N loads in aquatic environment, such as their role in 

eutrophication (Huo et al., 2014; Seitzinger and Sanders, 1997; Sipler and Bronk, 

2015). Moreover, recent work and improved quantification methodologies have shown 

that the DON fraction accounts for a large part of the total organic nitrogen (TON) 

fraction in many water systems (Badr et al., 2008; Seitzinger and Sanders, 1997; Sipler 

and Bronk, 2015). Investigating the TON fraction alongside the total organic carbon 

(TOC) fraction could highlight correlations between the two compounds’ concentration 

trends and provide information on the spatiotemporal evolution of the C:N ratio 

(calculated [TOC]/[TON]). The C:N ratio is an important quality index that is strongly 

positively correlated with the aromaticity and specific light absorption (color) of 

organic matter produced from allochthonous processes (Yates et al., 2019). On the other 

hand, a low C:N ratio indicates autochthonous or anthropogenic organic matter sources 

with high protein contents and high reactivity (Fellman et al., 2008; Kroer, 1993). 

Studying the spatiotemporal variation of the ratio along with TOC and TON 

concentration trends could bring information on the source of DOM in surface waters 

and the influence of surrounding land use. 

 

Most studies on water quality monitoring and correlations with land use are based on 

short term records and projected on local or basin scale (Liegel et al., 1991; Mueller et 

al., 2014; Jordan et al., 1997). The availability of extended data is generally sparse, 

making it difficult to study correlations on a wide spatiotemporal scale. It can also be 

pointed out that no previous large-scale study has analyzed TOC and TON trends 

simultaneously and their response to spatial variations in land cover. In 2019, the 

European Union and European Environment Agency published an open and extended 

data collection of more than 30 million entries of diverse water quality compound 

records sampled from monitoring sites distributed over Europe. To this date, the 

database remains poorly exploited by the scientific community and stands as an 
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opportunity to study surface water organic compounds on a wide spatiotemporal scale. 

Additionally, the Corine Land Cover (CLC) datasets are land cover data collections 

also produced and openly distributed by the EU, that can be used for geospatial analysis 

with the Waterbase database published by the EU/EEA and following common site 

identifiers and methodologies. 

 

European rivers have shown decreasing inorganic N concentrations as a result to 

reduced use of excessive fertilizers in agriculture and better wastewater treatment 

(EEA, 2015, 2018). However, the organic matter concentrations continue to rise in large 

parts of Europe, affecting waters with eutrophication through water browning. While 

the importance of terrestrial DOC exports in this process is acknowledged (Hruska et 

al., 2009; Monteith et al., 2007; Skjelkvale et al., 2005), little is known about the 

influence of organic nitrogen. This project aims to investigate the fluctuations of 

organic N and C concentrations in European surface waters by addressing: 1) the 

temporal concentration trends of TOC and TON, 2) the correlation between TOC and 

TON concentration trends, 3) the spatial distribution of each compounds’ trends, 4) the 

correlation between rate of concentration change and surrounding land use, 5) the 

spatiotemporal evolution of C:N ratio. As carbon and nitrogen are two main 

components of DOM, which in known to have increased widely across Europe, the 

DOC and DON are expected to both show increasing trends over the past few decades. 

The C:N ratio trend is expected to show a slow increase in time, with TOC increasing 

at a higher rate than TON, because of the exacerbated inputs from allochthonous 

sources that have relatively low nitrogen contents. However, the impact of surrounding 

land cover on these trends is difficult to predict based on literature, and will therefore 

be analyzed on an explorative basis. This project presents some of the first large-scale 

analyses of organic nitrogen trends across Europe. 
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II. Literature overview 

II.1 Water quality and chemical compounds 

Nutrients and chemical compounds measured to assess water quality can be classified 

into two categories: inorganic and organic. Organic matter can, in turn, be divided into 

two fractions: a dissolved and a particulate fraction. These fractions are referred to as 

dissolved organic matter (DOM) or particulate organic matter (POM).  

 
 Dissolved Organic Matter 

The DOM, also referred to as natural organic matter, is largely composed of humic 

matter (humus) and operationally defined as any organic matter passing through a filter, 

as opposed to POM retained on the filter. Glass fiber filters with a nominal pore size of 

0.7 µm used to be standard, but smaller-sized filter pores (0.2-0.45 µm) are often used 

nowadays as they remove more of the bacteria, which can degrade a DOM sample 

(Hartnett, 2017). 

 

DOM is a heterogeneous class of water-soluble compounds that contain reduced 

(organic) carbon from a variety of biological and geological sources with a wide range 

of chemical reactivity (Hartnett, 2017). It originates within aquatic ecosystems, arises 

from groundwater sources and is imported from the surrounding terrestrial landscape 

(Findlay and Parr, 2017). DOM is generated from the partial decomposition of living 

organisms including plants, animals and soil microorganisms. Autochthonous 

biological production also leads to the release DOM within water systems. Processes 

that results in autochthonous DOM release may include phytoplankton exudation, 

sloppy zooplankton feeding on phytoplankton, zooplankton fecal pellet decay, bacterial 

degradation of algal-derived matter, viral induced cell lysis and solubilization of 

autochthonous detritus particles (Carlson and Hansell, 2015; Keller and Hood, 2011; 

Sipler and Bronk, 2014). The main sinks of DOM include bacterial uptake and 

mineralization, photochemical oxidation, and sorption to suspended particles (Carlson 

and Hansell 2015; Keller and Hood 2013). 

 

In general, DOM includes a small proportion of low-molecular weight compounds 

(e.g., carbohydrates or amino acids) and a large proportion of complex and high-

molecular weight compounds often referred to as humic substances. Humic substances 

show medium to high molecular weight and are a complex mixture of aromatic and 
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aliphatic hydrocarbon structures with attached amide, carboxyl, ketone and other 

functional groups (Leenher and Croué, 2003). 

 

Past analysis for DOM characterization has been limited to bulk elemental analysis 

(DOC, DON), broad structural features from bulk elemental ratios (e.g. carbon, 

hydrogen or oxygen) or spectral (infrared [IR], nuclear magnetic resonance [NMR] 

spectroscopy or fluorescence) signatures. Ultrafiltration techniques have been used to 

characterize DOM by molecular weight fraction (Benner et al., 1997; Hopkinson et al., 

1998). 

 

The quantification of DOM is important as the labile forms of C and N are the primary 

energy sources for bacteria and other microorganisms in aquatic environments (Volk et 

al., 1997). Bacteria in aquatic ecosystems are the main consumers of DON and DOC, 

but they can also be important producers (Sipler and Bronk, 2015). They facilitate the 

transformation of DOM into particulate organic biomass and re-mineralize it to its 

inorganic forms (Kerner and Spitzy, 2001). The organic matter can be stored and decay 

for varying length of time, making DOM present in natural waters ranging in age from 

recent to thousands of years (Raymond and Bauer, 2001). The decomposition of DOM 

decreases in time, with the most labile compounds being metabolized at higher rates 

first, and less labile compounds at lower rates (Carlson and Hansell, 2015). 

 

There is an important variability in the bioavailability and ecosystem effects of DOM 

(Seitzinger et al., 2005). The concentration of DOM in surface waters varies in time 

and space (Carlson et al., 1998; Stepanauskas et al., 2002; del Georgio and Davis, 2003; 

Worral et al., 2003; Evans et al., 2004; Mbaye et al., 2016; Badr, 2016; Harris et al., 

2018). The response of ecosystems (e.g. coastal plankton communities) to DOM inputs 

also depends on the source land use (e.g. forests or urban or agricultural runoff) 

(Herlihy and Stoddard, 1998; Seitzinger et al., 2002; Pellerin et al., 2004; Meneses et 

al., 2015), the population density (Chen et al., 2016), the topography (Pratt and Chang, 

2012) or the presence of animal feedlots and storage lagoons (Sun et al., 2017) for 

example. Rivers enrich coastal seawater with many dissolved compounds (Huang et al., 

2013), and contemporary riverine inputs of DOM now amount to approximately 0.25 

Gt C per year (Ribas-Ribas et al., 2011). 
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DOM affects aquatic ecosystems by having an influence on the acidity (Eshleman and 

Hemond, 1985), on trace metal transport (Lawlor and Tipping, 2003), light absorbance 

and photochemistry (Schindler, 1971 and Zafariou et al., 1984), energy supply (Wetzel, 

1992), nutrient supply (Stewart and Wetzel, 1981), water treatment processes 

(Alarconherrera et al., 1994). By transferring from terrestrial to aquatic and ultimately 

marine ecosystems, DOM is an important component of the global carbon cycle (Hope 

et al., 1994). 

 

The dissolved organic matter (DOM) is often the predominant form of organic C and 

N in aquatic ecosystems, while phosphorus P remains largely particulate (Findlay and 

Parr, 2017). For this reason, DOM is often indicative of the total organic (TO) fraction. 

 
 Particulate Organic Matter 

The particulate organic matter (POM) or fine particulate organic matter (FPOM) is 

defined as any organic particles in the size range of > 0.45 to <1000 µm that are either 

suspended in the water column or deposited within lotic habitats (Hutchens et al., 2017). 

Suspended fine particulate material, also referred to as seston, includes all living (e.g., 

bacteria, algae, protozoans, invertebrates, etc.) and nonliving (amorphous organic 

matter, detritus, as well as suspended inorganic sediment) substances. It can originate 

from many sources, including the breakdown of larger particles by physical forces, 

animal consumption, microbial processes, flocculation of dissolved substances and 

terrestrial inputs (Wotton, 1984; Wotton, 1990). Transported loads vary greatly among 

lotic systems, from micrograms in some small streams to metric tons in larger streams 

and rivers. Seston is important to many stream ecosystem processes and represents a 

major pathway of organic matter transport, deposition, and export. FPOM is thus an 

important consideration in ecosystem organic matter budget (Fisher and Likens, 1973; 

Cummins et al., 1983; Golladay, 1997; Webster and Meyer, 1997; Tank et al., 2010). 

Instantaneous seston concentrations (e.g., mass per volume of water; mg/L) can be 

measured by filtering known volumes of water through pre-ashed and pre-weighted 

glass fiber filters (GFFs) (Hutchens et al., 2017). 

 

II.2 Carbon 

As part of the global C cycle, inland waters receive roughly 5.1 Pg of terrestrial carbon 

per year, which equals to approximately 70% of the global annual terrestrial net 
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ecosystem production (Drake et al., 2017). The riverine C flux is mainly land-derived 

and partly represented by dissolved organic carbon (Hedges, 1992).  

 

 Dissolved organic carbon 

DOC is an operational measurement of the carbon content in DOM and made of a 

heterogeneous mix of yellow to brown or even black organic carbon compounds found 

in natural water in varying concentrations. The source of DOC may be either in-lake 

processes (autochthonous, macrophytes and phytoplankton) or from the surrounding 

watershed (allochthonous). DOC concentrations can range from <1 mg l-1 in the most 

transparent lakes to 50 mg l-1 or more (Williamson et al., 1999). 

 

DOC can be measured following different techniques. The sample is first filtered 

through a GFF, silver membrane filter or a nitrocellulose/polypro filter with pore size 

ranging between 0.2 and 0.7 µm. The filtered-out fraction forms the particulate organic 

carbon (POC) fraction. Two different methods exist to purge the dissolved inorganic 

carbon (DIC) fraction and measure the DOC fraction from the resulting sample. The 

high temperature combustion method involves the conversion of inorganic carbon to 

dissolved CO2. The remaining DOC is then oxidized at a high temperature, to form CO2 

which can be detected by nondispersive infrared (NDIR) sensor. The second method, 

or UV/Persulfate oxidation method, applies acid on the sample to lower its pH to 2.0. 

This process converts inorganic carbon to CO2 which is then purged from the sample. 

A persulfate reagent is added to the sample to oxidize the remaining carbon into CO2 

by UV radiation. Similarly, the CO2 can be detected by NDIR sensor (B. Schumaher, 

epa.gov). DOC is often referred to as synonymous with TOC, e.g. as it is represents as 

much as 90% of TOC across widely distributed European rivers (Berggren and al-

Kharusi, 2020). 

 

 Dissolved organic carbon changes 

The evolution of DOC concentrations are broadly documented and understood, and 

widespread increases in surface waters are observed in North America and in northern 

and central Europe (Monteith et al., 2007), including UK, the Czech Republic, Finland, 

Norway, Canada and USA (Worrall et al. 2004a, 2007; Evans et al. 2005, 2006; 

Monteith et al. 2007; Hongve et al. 2004; Skjelkvåle et al. 2001, 2005; Driscoll et al. 

2003; Stoddard et al. 2003).  There are different causes to explain increases of DOC, 
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such as simultaneous changes in atmospheric deposition of sulphur and sea salt 

(Monteith et al. 2007), temperature increases accentuated by land-use factors (Worrall 

et al. 2003), warmer climate (Tranvik et al. 2009), recovery from acidification, 

temperature change, hydrological change, land-use change, in-lake and in-stream 

removal, nitrogen enrichment, atmospheric CO2 enrichment (Evans et al., 2005). 

 

Increasing DOC concentrations in aquatic ecosystems influences freshwater biota, 

coastal marine ecosystems, upland carbon balances, drinking water quality (Evans et 

al., 2005) and potential for the formation of disinfection byproducts (Worrall et al., 

2003). 

 

II.3 Nitrogen 

Nitrogen is one of the most important nutrients and accounts for 78% of the Earth’s 

atmosphere as elemental N2 gas. Elemental N2 gas is inert, does not impact 

environmental quality and is not directly available for plant uptake and metabolism. 

Reactive nitrogen (Nr) is a term used for a variety of nitrogen compounds that are 

biologically or photochemically reactive in a system. The main inputs of Nr are termed 

as NHx (ammonia [NH3] and ammonium [NH4
+]), NOx (nitrite oxide [NO] + nitrogen 

dioxide [NO2]), nitrate (NO3
-) and nitrite (NO2

-) (Follett and Hatfield 2001). Nitrogen 

is a crucial element part of enzymes structure, proteins and nucleic acids (Galloway and 

Cowling 2002). The inorganic compounds nitrate NO3
-, nitrite NO2

- and ammonium 

NH4
+ can be used directly by organisms and are ‘fully’ bio reactive. Organic nitrogen 

(ON) needs to be broken down to small molecules by microorganisms and converted 

to inorganic forms before being used (Sadava et al. 2016). It is termed ‘partly’ bio 

reactive for this reason. 

 
 Dissolved organic nitrogen 

Most studies of dissolved N concentrations and cycling in natural waters focus on the 

inorganic species (ammonium NH4, nitrite NO2, nitrate NO3), and investigating the 

dissolved organic part will provide an improved assessment of total N loads to aquatic 

systems and their role in cultural eutrophication. 

 

The quantification and characterization of DON are still challenging for waters with 

high concentrations of dissolved inorganic nitrogen relative to total dissolved nitrogen 
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(TDN) due to the cumulative analytical errors of independently measured nitrogen 

species (i.e., DON = TDN - NO2
- - NO3

- - NH4
+/NH3) and interference of DIN species 

to TDN quantification (Chon et al., 2013). However, recent work and improved 

methodologies such as wet chemical oxidation (WCO) and high temperature oxidation 

(HTO) (Badr et al., 2003; Bronk et al., 2000; Dafner and Szmant, 2014; Sharp et al., 

2004) have shown that DON frequently forms the largest part of TDN in many lakes, 

rivers, estuarine and surface ocean waters (Badr et al., 2008; Seitzinger and Sanders, 

1997; Sipler and Bronk, 2015). Overall, DON averages to 58-77% of the TON pool in 

aquatic ecosystems, excluding deep oceanic waters (Sipler and Bronk, 2015).  

 
 N cycle changes 

Compared with N cycle research, the global C cycle receives a relatively larger research 

focus, mostly due to its pivotal impact on global warming. Nevertheless, the global N 

cycle shows changes that are even more pronounced, particularly in relative terms. The 

fertilizer industry and other various combustion processes have accelerated the 

transformation of atmospheric N2 into more reactive reduced or oxidized forms of 

inorganic N, and various human activities currently fix more N2 than natural 

ecosystems (Howarth et al., 1996; Boyer et al., 2002; Hessen et al., 2009; Vitousek et 

al., 1997; Galloway and Cowling, 2002; Galloway et al., 2008). This results in 

atmospheric reactive nitrogen (Nr) increases which cause the formation of smog and 

particulate matter which affect human health, terrestrial and marine ecosystems (Sutton 

et al., 2011). 

 

Increased N deposition has a global impact and generate concerns for the ecological 

integrity and environmental health of terrestrial, freshwater and coastal marine 

ecosystems (Nixon, 1995; Driscoll et al., 2003; Wu et al., 2013). Nitrogen deposition 

has consequently increased in surface waters (Vitousek et al., 1997), contributing to 

riverine N exports from the temperate North American region that are 5-15 times higher 

than pre-industrial exports (Howarth et al., 1996). The present-day output of nitrogen 

from large rivers in North America and Europe to the north Atlantic is estimated to be 

a quadrupling of pre-industrial values (Boyer et al., 2006; Boyer and Howarth, 2008). 

 

Atmospheric N deposition influences the concentrations of both dissolved DIN and 

DON in stream export from temperate forested watersheds (Hedin et al. 1995; 



11 

 

Campbell et al. 2000; Goodale et al. 2000; Perakis and Hedin 2002), and have an impact 

on aquatic and soil ecosystems by promoting acidification through increased NO3 in 

surface waters (Stoddard, 1994; Henriksen et al., 1997; Eshleman and Hemond, 1985; 

Schindler et al., 1985; Schuurkes and Mosello, 1988; Johnson et al., 1991), 

eutrophication and anoxia in heavily affected areas, not only in North America and 

Europe but also elsewhere on the planet (Diaz and Rosenberg, 2008; Swaney et al., 

2012). Additionally, N deposition affects the community and processes of ecosystems 

by changing the nature of elemental limitations for both autotrophs and heterotrophs in 

lakes and rivers. An increased N deposition over P would be an intensified limitation 

of P in surface waters (Hessen et al., 1997; Interlandi and Kilham, 1998; Bergström et 

al., 2005), or even large-scale shifts from N limitation over P limitation (Bergström and 

Jansson, 2006). 

 

The eutrophication of estuaries and coastal seas is a well-understood and documented 

consequence of human alteration of the N cycle (Howarth, 1988; NRC 1993; Nixon, 

1995; Nixon et al., 1996), and is associated to a loss of animal and plant diversity. 

Eutrophication can result in the multiplication and dominance of nuisance algae, 

characterized by toxic blooms of dinoflagellates (Anderson 1989, Burkholder and 

Glasgow, 1995, 1996) and brown tide organisms (Cosper et al., 1987). 

 

Nitrate in drinking water can also represent a health concern. Microorganisms in the 

stomach may convert nitrate to nitrite when concentrations are high, resulting in the 

conversion of hemoglobin into methemoglobin, which is ineffective in oxygen 

transport in the blood. Elevated methemoglobin can kill children, in a condition known 

as methemoglobinemia (Maynard et al., 1976; Lee, 1970). High concentrations of 

organic carbon and nitrogen in mineral waters also have effects on metabolism 

(Popovych et al., 2018). 

 

II.4 Organic nitrogen and organic carbon correlations 

Few studies focused on both TON and TOC concentrations in surface waters, their 

potential correlation and the implications on ecosystems. Organic carbon 

concentrations are generally increasing in the northern hemisphere (Worrall et al., 

2003; Monteith et al., 2007) and even though organic nitrogen has not been studied to 

the same extent, a correlation between TON and TOC is expected (Evans et al., 2005). 
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Understanding their spatiotemporal correlations is key to understand their sources, the 

effects of human development and land use changes, and plan for water management. 

For example, the study of the distribution and seasonality of DON and DOC in the Nile 

Damietta Branch showed high organic matter load from anthropogenic sources and 

recommended to consider DON and DOC for future water quality assessment (Badr., 

2016). In the UK, anthropogenic DON and DOC sources from urbanized catchments in 

the Severn and the Tamar rivers appeared significantly higher when compared with the 

natural sources of DON and DOC (Miller, 1999). In Sweden, DOC and DON 

concentrations in Swedish rivers from 1987 to 2017 showed significant increases of the 

two compounds, with different trend coefficients and spatiotemporal gradients 

(Ahlgren, 2018). 

 

II.5 Effects of land use on water quality assessment 

A large number of studies have illustrated the effects of different land use and land 

cover changes on surface water quality, on a local or basin scale (Liegel et al. 1991; 

Mueller et al. 2014; Jordan et al. 1997; A. Baker 2003, Li et al. 2012; Pratt and Chang 

2012; Meneses et al. 2015; Chen et al. 2016; Giri and Qiu 2016; Gu et al. 2019). Many 

of these studies have formed the basis or contributed to the design of water quality 

monitoring efforts (Puckett, 1995). While most research focuses on inorganic 

compounds and nutrients, only little research has focused on the relation between DOM 

concentrations in surface waters and land use changes. Pellerin et al. (2004) studied the 

role of wetlands and developed land use (urbanized and agricultural parcels) on DON 

concentrations and DON/TDN ratio from northeastern United States’ rivers and 

streams data sets. Sun et al. (2017) studied bioavailability of DON in wastewaters from 

animal feedlots and storage lagoons. However, relationships between DOM and land 

use changes have rarely been studied over large regions, due to the paucity of large data 

sets, and the effort involved in quantifying land cover for large numbers of sites 

(Herlihy et al. 1998). 

 

Several studies have documented the impact of urbanization and agriculture through 

land use changes on DIN concentrations and fluxes from temperate rivers and streams 

(Jordan et al. 1997; Valiela et al. 1997; Herlihy et al. 1998; Boyer et al. 2002). Additions 

of inorganic nitrogen in freshwater systems with enough phosphorus can cause 

eutrophication, independently or coupled to acidification (Schindler et al. 1985). 
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Additionally, a higher proportion of anthropogenically-derived DON is bioavailable to 

estuarine bacteria relative to forest-derived DON (Seitzinger et al. 2002). Therefore, 

urban and agricultural activity may not only alter the importance of DON in hydrologic 

N losses, but they may also have serious implications for our understanding of estuarine 

and coastal eutrophication. 
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III. Material and methods 

III.1 Water quality data 

The water quality data source used in this study is the “Waterbase-Water Quality” 

database, a corpus of six databases (Table 1) compiled by the European Environmental 

Agency (EEA). 

 
Table 1 EEA "Waterbase - Water Quality" databases and descriptions given by the EEA 

Databases Description 

Aggregated data Annual mean values and other statistics of determinants on water 

quality, by monitoring site. 

Aggregated data by 

water bodies 

Annual mean values and other statistics of determinants on water 

quality, by water body. 

Disaggregated data Raw disaggregated water quality data on the observed values 

(e.g. concentrations) of determinants in rivers, lakes and 

groundwater as reported by EEA Member Countries on an 

annual basis. 

Biology EQR data Annually aggregated biological ecological quality ratio (EQR) 

data from rivers and lakes, by monitoring site. 

Biology EQR 

classification procedure 

Information on national classification system for each biological 

determinant and waterbody type, including the boundaries of 

ecological status classes (and of ecological potential classes, for 

artificial or heavily modified waterbodies). 

Monitoring sites List of monitoring site identifiers present in the WISE4 dataset 

tables. 

 

The databases contain data on the status and quality of Europe’s water bodies (Table 

2), on the quantity of Europe’s water resources, and on the emissions to surface waters 

from point and diffuse sources of pollution. Published in April 2019 and containing 

more than 33 million data entries for the disaggregated dataset, “Waterbase – water 

quality version 2018_1” may be the newest and largest water quality data compilation 

for European waters. The Waterbase database remains largely unexploited by the 

scientific community, making it a unique source in terms of data availability. 
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Table 2 Definitions for the water bodies described in the Waterbase (Directive 2000/60/EC of the European 
Parliament) 

Water 
bodies 

Variable Description 

River RW Body of inland water flowing for the most 
part on the surface of the land but which may flow 
underground for part of its course. 

Lake LW Body of standing inland surface water. 

Groundwater GW All water which is below the surface of the ground in 
the saturation zone and in direct contact with the 
ground or subsoil. 

Transitional TW Bodies of surface water in the 
vicinity of river mouths which are partly saline in 
character as a result of their proximity to coastal waters 
but which are substantially influenced by freshwater 
flows. 

Coastal CW Surface water on the landward side of a line, every 
point of which is at a distance of one nautical mile on 
the seaward side from the nearest point of the baseline 
from which the breadth of territorial waters is 
measured, extending where appropriate up to the 
outer limit of transitional waters. 

 

The database “T_WISE4_AggregatedData” is the EEA database used in this study. It 

contains 3 211 183 records of mean concentration values for chemical compounds 

aggregated on annual samplings and categorized by monitoring sites, sampling years 

and water body categories amongst others. The data collection is the result of numerous 

national monitoring programs performed under several decades, with a wide selection 

of instruments and methodologies are involved. The CEN/ISO codes of the analytical 

methods used are provided in the database, and a description can be found on the EEA 

website (eea.europa.eu). 

 

The main feature of the Waterbase is its wide spatiotemporal distribution. Most of the 

literature found on water quality analysis focuses on short time and localized datasets, 

whereas the Waterbase provides observations distributed across the European 

continent. This allows for trend analysis on wide time ranges, study of global 

geographic gradients, comparison between sites and validation with localized results. 

The Waterbase is the product of a global effort between European countries, all 

coordinated under policies and regulations from the EEA to ensure data quality. 
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 Data preparation for TOC and TON (split datasets) 

Two datasets were first exported from the original Waterbase, for TOC and TON annual 

concentration means respectively. The TOC subset contains 40453 entries sampled 

from 6249 monitoring sites, covering 5 water body types (coastal, groundwater, lake 

water, river water, transitional water) and spanning from 1973 to 2017. The TON subset 

contains 17402 entries sampled from 4252 monitoring sites, covering 3 water bodies 

(lake water, river water, transitional water) and spanning from 1970 to 2017. The figure 

1 below shows the distribution of records per year for the original TOC (Figure 1a) and 

original TON (Figure 1b) datasets. 

 

 
Figure 1 Distribution samplings per given year for the a) TOC dataset (left) and b) TON dataset (right), as exported 
from the Waterbase without any cleaning and filtering 

Both datasets were then cleaned of all outliers (records with outstanding values), 

missing and non-finite values. The mean concentration records aggregated on less than 

3 replicate samples per year were filtered out. The resulting TOC dataset contains 

31157 entries from 5357 monitoring sites, with samplings spanning from 1976 to 2017. 

The TON dataset contains two times less data with 14523 entries from 3580 monitoring 

sites, spanning from 1970 to 2017. 

 

For each chemical compound, two different subsets were created out of the above 

cleaned datasets, bringing the final number of datasets to 4 (2 for TOC and 2 for TON). 

 

The first two subsets (1) and (2) keep all the data from monitoring sites showing at least 

three annual mean concentration records, regardless of the sampling time range (Figure 

2a and 2b). The datasets (1) and (2) were used to calculate and chart the annually 

averaged concentration difference (mg l-1 yr-1) and annually averaged rate of change 
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(%) for each chemical compound up to the latest known sampling years. The missing 

values were averaged from the under and overlaying records. 

 

 
Figure 2 Distribution of samplings per given year for the datasets a) TOC (1) and b) TON (2), after cleaning and 
filtering, used to graphically observed the sample distribution per year and limit the time range of study. 

The two following subsets (3) and (4) included all the data from monitoring sites having 

at least a measurement from a given reference year and three replicate measurements 

within the time range of interest. These datasets were used to calculate the concentration 

anomaly between a given year and the reference year for each site and regress this 

anomaly as a linear function of time. Because of the occurrence of records per year, the 

study range was set from 1990 to 2012 with 2001 as reference year for both TOC and 

TON variables (Figure 3a and 3b). This meant selecting the years including more than 

300 records for TOC, ending up with a dataset of 15242 entries from 968 monitoring 

sites, spanning from 1990 to 2012 and representing 3 water bodies (Riverine, lake and 

transitional waters). The TON subset is focused on the same time range and reference 

year because of enough entries n (1990-2012, n > 55) and to facilitate comparison with 

the TOC subset. The final version includes 4609 entries from 368 monitoring sites, 

spanning from 1990 to 2012 and representing 3 water bodies (Riverine, lake and 

transitional waters). 
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Figure 3 Distribution of samplings per given year for the datasets a) TOC (3) and b) TON (4), after cleaning and 
filtering, used to graphically observed the sample distribution per year and limit the time range of study. 

In their paper from 2007, Monteith et al. selected data from the monitoring sites 

showing records from at least 2/3 of a given time range for their trend analysis. The 

same method was tested for comparison, to apprehend the effect of data manipulation 

on results outputted from large datasets. A TOC subset was made with only entries 

from monitoring sites showing at least 17 annual mean values out of the selected 26 

years span (1990-2015). The final dataset contains 9247 entries, spanning from 1990 to 

2015 and representing 447 monitoring sites from 7 countries. An additional TON subset 

was similarly created by filtering all entries from monitoring sites showing at least 15 

annual mean values in this time range. The resulting dataset included 2992 entries from 

170 monitoring sites only and was therefore discarded. A new dataset was exported 

with all monitoring sites showing 10 or more samplings between 1990 and 2012, with 

4731 entries from 322 sites. The results of this study are provided as appendix. 

 
 Data preparation for TOC/TON (merged datasets) 

Two additional datasets (5) and (6) were created from the Waterbase to study the 

TOC:TON ratio and correlation analysis. 

 

The dataset (5) contains all the data from monitoring sites showing both TOC and TON 

annual mean concentration values (18131 entries resulting). All the outliers, non-finite 

and missing values were filtered out and only the entries aggregated on a minimum of 

3 samples per year were kept. The resulting dataset contains 3867 pairs of TOC and 

TON measurements from 1170 monitoring sites, representing three water body 

categories (river, lake and transitional water bodies), and spanning from 1992 to 2014. 
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The last dataset (6) was used to study the evolution of TOC:TON ratio in time and 

calculate an annually averaged rate of change per site. Only the years showing more 

than 100 records were kept, limiting the study range from 2002 to 2012 and with 2007 

as reference year. Finally, only the entries from monitoring sites showing more than 3 

pairs of records [TOC]:[TON] in the study range and including a record on the reference 

year 2007 were kept. The final dataset contains 1573 entries from 248 monitoring sites 

and spanning from 2002 to 2012. 

 
Table 3 List of all the datasets created for this study from the Waterbase 

Dataset no. Chemical 

compound 

Purpose 

1 TOC Annually averaged concentration difference and rate 

2 TON Annually averaged concentration difference and rate 

3 TOC Time trend with anomaly regressed from time 

4 TON Time trend with anomaly regressed from time 

5 TOC/TON TON regressed from TOC 

6 TOC/TON Annually averaged rate of change 

 
 Land cover data 

The Corine Land Cover (CLC) inventory was initiated in 1985 and the first dataset 

released in 1990. Updates have been produced in 2000, 2006, 2012 and 2018. The 

dataset charts land covers in Europe in 44 classes, organized into 15 subcategories and 

5 categories (Artificial, Agriculture, Forest, Wetland and Water). CLC uses a Minimum 

Mapping Unit (MMU) of 25 hectares for areal phenomena and a minimum width of 

100 meters for linear phenomena. The inventories involve 26 countries for the 1990 

edition and up to 39 countries from the 2012 and 2018 editions. 

 

The Eionet network National Reference Centres Land Cover (NRC/LC) is producing 

the national CLC databases, which are coordinated and integrated by the European 

Environmental Agency. CLC is produced by most countries by visual interpretation of 

high resolution satellite imagery. In a few countries semi-automatic solutions are 

applied, using national in-situ data, satellite image processing, GIS integration and 

generalization.  

 

The CLC dataset from 2012 was downloaded from the Copernicus programme website 

in raster format for this project. The raster contains land cover data with a resolution of 

100 meters over Europe. The 44 land cover categories have been reclassified into four, 
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to isolate monitoring sites into clusters and better identify relationships and correlation 

with chemicals’ concentrations (Figure 4). The reclassification was done in Arcmap 

and the resulting classes are: 

 
1. Artificial surfaces (Urban fabric; Industrial, commercial and transport units; Mine, 

dump and construction sites; Artificial, non-agricultural vegetated areas) 

2. Agricultural areas (Arable land; Permanent crops; Pastures; Heterogeneous 

agricultural areas) 

3. Natural areas (Forests; Scrub and/or herbaceous vegetation associations; Open spaces 

with little or no vegetation; Inland wetlands; Maritime wetlands) 

4. Water bodies (Inland waters; Marine waters) 

The fourth category “Water bodies” was disregarded as it does not tell us about land 

use and chemical compounds transportation. 
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Figure 4 Chart of CLC dataset after reclassification of the land use classes into 4 main classes  
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III.2 Methods 

The Waterbase aggregated database was downloaded in SQLite format and handled in 

DB Browser for SQLite software (v3.11.2, QT v5.11.3, SQLite v3.27.2). The first 

exports from the Waterbase were made through SQL script in DB Browser. The 

resulting datasets were exported to CSV (Comma-separated values) and all data 

preparation (cleaning, filtering, editing) and statistical analysis were done with R (R 

Development Core Team, 2013) under RStudio (v1.3.1073). 

 

The methodology used for time trend analysis is inspired by Berggren and Al-Kharusi 

(2020) framework, by calculating the difference (anomaly) between a given year and a 

reference year for each monitoring site, then regressing the anomaly as linear function 

of time. It must be noted that this study focuses on a fixed time range (1990-2012) to 

focus on the years with a high number of records, when Berggren and Al-Kharusi 

considered all anomalies without any time limits. The regression lines are weighted on 

the mean values of each annual distributions. 

 

The graphical representation of TOC and TON annual mean concentration exported 

from the Waterbase clearly showed skewed normal distributions. The log-transformed 

variables were therefore kept for all the latter analysis. All graphical representations for 

normal and log-transformed distributions are provided as appendices. 

 

Each entry of the database was ordered by monitoring site in alphabetical order and 

years of sampling in increasing order. A time step was calculated between the sampling 

year of an entry and the lagging one, for all monitoring sites. Similarly, a chemical 

concentration difference and difference ratios were calculated between a given annual 

record and the previous one. Concentration differences and rates of change were 

averaged by dividing their sums with the total time lag, and results were assigned to 

their unique site identifiers in a new table. The dataset was joined to the 

“MonitoringSite_DerivedData” table with relation to the EEA unique site identifiers, 

to assign each site with its corresponding pair of geographic coordinates (Lat/Long, 

WGS84). For secrecy reasons, some of the monitoring sites’ coordinates are not 

provided by the EEA. 
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The data studied is widely distributed over Europe, making it difficult to relate each 

monitoring site with the land use in its respective hydrological catchment. Instead, only 

the land use surrounding each site within a buffer of 1 km was considered. After several 

tests were made with different radius values (0.5 km, 2.0 km) without affecting the end 

results, the buffer of 1 km was kept. The Corine Land Cover 2012 was used to assign 

land use fractions to each site with zonal statistics tool from Arcmap. The CLC 2012 

dataset was downloaded as a raster with a resolution of 100 meters.  

 

The tool “Tabulate Area” in Arcmap (ESRI, v10.7.1) was used to assign each 

monitoring site with the surface of each land use category in its surrounding buffer. The 

resulting table was exported and formatted in R, with statistics on land cover around 

sampling points provided in the result section. 

 

Each monitoring site was assigned fractions of land use categories by association with 

its unique site identifier. All the sites showing more than 95% natural land use were 

considered reference sites. The remaining were categorized following their dominant 

land use fraction. The distribution of log-transformed annual means was plotted by land 

use categories. 

 

After data cleaning and filtering, the log-transformed annual mean concentrations of 

TON were regressed on TOC. Each entry was then assigned a pair of geographical 

coordinates and land use category fractions through zonal statistics. Annual mean 

log[TON] was again regressed on log[TOC] per land use categories. 

 

A last dataset was exported to study the evolution of [TOC]/[TON] ratio in time, which 

includes all entries from monitoring sites with at least 3 samples. All the entries were 

ordered by monitoring sites and sampling years. The time step was calculated as the 

difference between a given sampling year and the lagging one. The ratio difference and 

difference rate were calculated following the same technique. Two new tables were 

created to assign each monitoring site with an annually averaged TOC:TON difference 

and rate of change. 
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IV. Results 

IV.1 Total Organic Carbon 

 TOC annual mean concentrations 

For the dataset TOC (1) created to calculate annual differences and rates of change, the 

mean ± one SD log[TOC] was 1.74 ± 0.82  (= antilog 7.54 [7.47 – 7.60] mg/l). For the 

dataset TOC (3) created to calculate time trends, log[TOC] averaged 0.77 ± 0.37 (= 

antilog 7.82 [7.74 – 7.90] mg/l) (Table 3). The boxplot representations graphically 

confirm similar statistics between datasets (1) and (3) (Figure 5). 

 
Table 4 Statistics on the annual mean TOC concentration (mg/L) from the datasets created 

Variables Minimum 1st Qu. Median Mean 3rd Qu. Maximum 

TOC (1) 0.000 3.529 6.517 7.536 10.141 90.771 

TOC (3) 0.000 3.900 7.076 7.821 10.550 67.742 

 

  
Figure 5 Box and whisker plots summarizing the distribution of annual mean TOC records (mg/l) from a) TOC (1) 
(left) and b) TOC (3) (right). Boxes show the median values +/- one quartile, whiskers show min/max values within 
1.5 times interquartile range below/above quartiles and point 

From a similar dataset created from the Waterbase, Berggren and Al-Kharusi (2020) 

observed log[TOC] averaging 0.63 ± 0.36 (= antilog 4.3 [1.9-9.9] mg/l) and a DOC 

fraction making up 89% of TOC. The same conversion ratio (CTOC = CDOC / 0.9) was 

observed from another study of ca. 7500 lakes widely distributed (Sobek et al., 2007). 

Following the same conversion ratio, the annual mean DOC would approximate 5.87 ± 

4.88 mg/l and 6.37 ± 4.79 mg/l for TOC (1) and TOC (3) respectively. The results 

observed reflect high organic loads that are consistent with surrounding human 

activities. They depict the normal river as mesotrophic to slightly eutrophic, with the 

whole range from ultraoligotrophic to hypereutrophic systems represented in the 

dataset. 
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 Characterization of TOC monitoring sites 

For all monitoring sites from the subset TOC (3) (n = 968), the surrounding land use 

averaged 17.29% Urban, 30.97% Agricultural, 41.61% Natural and 10.13% Water 

dominant types. Following the fraction of dominant LU, 166 sites (17%) were 

categorized as “Urban”, 343 sites (35%) as “Agriculture”, 391 (40%) as “Natural” and 

62 (6.4%) as “Reference”. The remaining 6 sites with a dominant “Water” LU type 

were discarded. The sites classified as “Reference” showed the highest results with a 

mean ± one SD log[TOC] averaging 0.93 ± 0.35  (= antilog 10.75 [10.35 – 11.14] mg/l). 

The “Natural” sites showed the second highest value with mean averaging 0.79 ± 0.36 

(= antilog 8.1 [7.97 – 8.23] mg/l). The “Urban” and “Agriculture” sites showed the 

lowest means with 0.75 ± 0.37 (= antilog 7.47 [7.28 – 7.67] mg/l) and 0.72 ± 0.36 (= 

antilog 7.04 [6.89 – 7.18] mg/l) respectively (Figure 6). 

 

 
Figure 6 Mean (points) ± 95% confidence interval of measured log-transformed TOC concentrations (mg/L) and 
classified per dominant land use types. 

 
 TOC trends 

The log[TOC] anomaly relative to the reference year 2001 increased from 1990 to 2012 

(R2 = 0.42, p <= 0.001), with a linear trendline showing a global increase of 0.05 log 

units (+12% in absolute TOC) during the period (Figure 7). For sites with the dominant 

“Urban” land use, the log[TOC] anomaly remained stable from 1990 to 2012 (R2 = 

0.00048, p = 0.921). The dominant “Agriculture” land use type also showed a stable 

anomaly from 1990 to 2012 (R2 = 0.036, p = 0.383). Monitoring sites with the dominant 

“Natural” type showed an anomaly increasing under the time period (R2 = 0.8, p <= 
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0.001) with a linear trendline increasing by 0.10 log units (+26% in absolute TOC). The 

“Reference” monitoring sites followed the same previous observation with an anomaly 

strongly increasing under the time period (R2 = 0.91, p <= 0.001) and a linear trendline 

increasing by 0.17 log units (+46% in absolute TOC). All the graphics for trend analysis 

categorized per land use types are provided as appendices (Figure A-5 to A-8). 

 

 
Figure 7 Anomaly relative to 2001 in log-transformed values of TOC per monitoring sites. Symbols and error bars 
show the mean and 95% confidence interval of the mean, respectively, of the deviation from 2001 values. 

 
 TOC annual difference and rate of change 

For all monitoring sites n from the subset TOC (1) excluding the dominant land use 

“Water”  (n = 3123), the difference averaged -0.02 ± 0.69 [-0.14 – 0.17] mg/l/year, and 

the annual rate of change averaged 5.52 ± 25.31 [-0.97 – 6.33] %/year. The “Urban” 

sites averaged an annual concentration difference of -0.009 ± 0.71 [-0.154 – 0.146] 

mg/l/year, “Agriculture” sites averaged -0.077 ± 0.797 [-0.206 – 0.177] mg/l/year, 

“Natural” sites averaged 0.036 ± 0.493 [-0.060 – 0.159] mg/l/year and “Reference” 

sites averaged 0.144 ± 0.710 [-0.154 – 0.146] mg/l/year. These results show the same 

pattern as mean concentration results, with the highest and positive differences 

observed from “Natural” and “Reference” sites, highlighting an active and increasing 

input of labile organic matter from terrestrial sources. However, the spatial distribution 

of annual differences and rate of change did not show any pattern or geographical 

gradient (Figure 8). 

 

R2 = 0.42, p <= 

0.001 

y = -4.54+0.00227x 
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A total of 1484 sites showed a negative annually averaged differences, 1636 showed 

positive differences and 3 showed no variation. Of all sites, 175 showed significant 

increase (>= 25%/year) and 10 showed a significant decrease (<= -25%/year). Most 

positive differences align with the increasing trends strongly influenced by the input of 

terrestrial organic matter from “Natural” dominated sites. 
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Figure 8 Trends in total organic carbon (mg. l-1 .yr-1). Symbol size varies with the yearly averaged concentration 
rate of change (+/- 25%). Data are shown for monitoring sites from the Waterbase showing mean concentration 
records on a minimum of three different years.  
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IV.2 Total Organic Nitrogen 

 TON annual mean concentrations 

The first dataset TON (2) created to calculate annual differences and rates of change 

showed a mean ± one SD log[TON] was -0.11 ± 0.38 (= antilog 1.18 [1.15 – 1.20] 

mg/l), and the second dataset TON (4) for time trend analysis showed log[TON] 

averaging -0.06 ± 0.33 (= antilog 1.21 [1.16 – 1.25] mg/l) (Table 5). The boxplot 

representations for the datasets (2) and (4) confirm graphically similarities between the 

two datasets (Figure 10). 

 

Table 5 Statistics on the annual mean TON concentration (mg/L) from the datasets created 

Variables Minimum 1st. Qu Median Mean 3rd 

Quartile 

Maximum 

TON (2) 0.0000 0.4870 0.8009 1.1765 1.2531 18.9541 

TON (4) 0.0000 0.5761 0.8580 1.2063 1.2963 18.0585 

 

  
Figure 9 Box and whisker plots summarizing the distribution of annual mean TON records (mg/l) from a) TON (2) 
(left) and b) TON (4) (right). Boxes show the median values +/- one quartile, whiskers show min/max values within 
1.5 times interquartile range below/above quartiles and point 
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 Characterization of TON monitoring sites 

For all the sites n from the subset TON (4) (n = 368), the surrounding land use (1 km 

buffer) averaged 19.57% of Urban type, 51.79% Agricultural, 23.64% Natural and 

4.99% Water type. Following the percentage of dominant land use, 53 sites (14%) were 

categorized as “Urban”, 239 sites (65%) as “Agricultural”, 71 (19%) as “Natural” and 

5 (1.3%) as “Reference”. The highest concentration ranges were observed for the 

“Urban” and “Agriculture” sites, with mean ± one SD log[TON] averaging 0.046 ± 0.35 

(= antilog 1.60 [1.45 – 1.74] mg/l) and -0.05 ± 0.33  (= antilog 1.22 [1.16 – 1.27] mg/l) 

respectively. The “Natural” type sites averaged lower means of -0.14 ± 0.28 (= antilog 

0.93 [0.86 – 0.99] mg/l) and the “Reference” type sites showed lowest concentrations 

with -0.17 ± 0.28 (= antilog 0.83 [0.68 – 0.98] mg/l). The higher concentrations were 

thus observed from sites surrounded by developed land use types (Urban and 

Agriculture), highlighting the influence of human activities on organic nitrogen runoffs 

(Figure 11). 

 

 
Figure 10 Mean (points) ± 95% confidence interval of measured log-transformed TON concentrations (mg/L) and 
classified per dominant land use types. 

 
 TON trends 

The log[TON] anomaly relative to the reference year 2001 decreased from 1990 to 2012 

(R2 = 0.78, p <= 0.001), with a linear trendline showing a decrease of 0.3 log units (-

50% in absolute TON) during the period (Figure 12). All the dominant land use classes 

followed the same observation, with decreasing trends observed regardless of the type 

at different gradient nevertheless. The “Urban” sites showed the highest rate from 1990 

to 2012 (R2 = 0.77, p <= 0.001), with a linear trendline decreasing by 0.45 log units (-
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64% in absolute TON). The dominant “Agriculture” type also showed a decreasing 

anomaly from 1990 to 2012 (R2 = 0.75, p = <= 0.001), with a linear trendline decreasing 

by 0.27 log units (-47% in absolute TON). The “Natural” sites (R2 = 0.69, p <= 0.001) 

showed a linear trendline decreasing by 0.22 log units (-40% in absolute TON). The 

“Reference” sites followed same pattern with an anomaly strongly decreasing (R2 = 

0.30, p = 0.0066) and a linear trendline losing 0.30 log units (-50% in absolute TON). 

All the graphics for TON trend analysis categorized per land use types are provided as 

appendices (Figure A-9 to A-12). 

 

 

Figure 11 Anomaly relative to 2001 in log-transformed values of TON per monitoring sites. Symbols and error bars 
show the mean and 95% confidence interval of the mean, respectively, of the deviation from 2001 values. 

 
 TON annual difference and rate of change 

For all sites n from subset TON (2) excluding the dominant land use “Water” (n = 

1550), the annually averaged TON concentration difference was -0.01 ± 0.17 mg/l/year, 

and the annual rate of change averaged 13.41 ± 54.24 %/year. A total of 877 sites 

showed negative annually averaged differences, for 669 sites showing positive 

differences and 4 without variations. When classified into dominant land use, “Urban” 

and “Agriculture” sites showed the lowest averaged concentration difference with -

0.007 ± 0.246 [-0.055 – 0.016] mg/l/year and -0.015 ± 0.160 [-0.051 – 0.046] mg/l/year 

respectively. The “Natural” sites showed rates of 0.004 ± 0.133 [-0.025 – 0.0245] 

mg/l/year and “Reference” sites averaged the highest difference with 0.038 ± 0.2 [-

R2 = 0.78, p <= 

0.001 

y = 27-0.0135x 
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0.014 – 0.011] mg/l/year. Of all the sites, 224 showed significant increase (>= 

25%/year) and 32 showed a significant decrease (<= -25%/year). The sites showing 

significantly changing concentrations are charted with bigger symbols in Figure 12. 
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Figure 12 Trends in total organic nitrogen (mg l-1 yr-1). Symbol size varies with the yearly averaged concentration 
rate of change (+/- 25%). Data are shown for monitoring sites from the Waterbase showing a minimum of three 
occurences in annual mean TOC 
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IV.3 Relationship between TOC and TON 

The mean TOC/TON ratio for all monitoring sites except the “Water” type (n = 505) 

was 17.10 ± 13.16, with a 95% confidence interval of 16.62 - 17.58 and a 1st to 3rd 

quartile interval of 6.96 – 24.35. Table 6 shows all the statistics for the TOC and TON 

annual mean concentrations as well as the TOC/TON ratio. Graphical representations 

of the datasets’ distributions illustrate difference in concentrations, with TOC showing 

higher concentration values than TON overall. The TON dataset shows concentrations 

less dispersed than TOC, with 1st and 3rd quartiles more centered on the mean (Figure 

13). 

 

Table 6 Statistics on the annual mean TOC and TON concentrations (mg/L) from the dataset created for TOC/TON 
study 

Variables Minimum 1st. Qu Median Mean 3rd 

Quartile 

Maximum 

TOC 0.5025 3.6721 6.4395 8.2469 11.7000 88.4750 

TON 0.0178 0.2904 0.5260 0.7083 0.8507 16.5466 

TOC/TON 0.6212 6.9648 14.0575 17.0851 24.3489 164.4443 

 

  
Figure 13 Box and whisker plots summarizing the distribution of annual mean concentration records (mg/l) for 
the a) TOC and b) TON from the TOC/TON dataset. Boxes show the median values +/- one quartile, whiskers show 
min/max values within 1.5 times interquartile range below/above quartiles and points show outliers 

The TOC/TON ratio showed similar patterns for all dominant LU types, with “Urban” 

sites averaging 14.4 ± 8.72, “Agricultural” sites averaging 14.1 ± 10.6, “Natural” sites 

18.7 ± 10.5 and “Reference” sites 26.4 ± 16.7 (Figure 14). Considering the averaged 

approximations (DOC = 0.9*TOC, DON = 0.7*TON) for European rivers and 

estuaries, the mean ratio of DOC/DON would be 22.00 ± 16.88, with a 95% confidence 

interval of 21.37 – 22.61 and a 1st to 3rd quartile interval of 8.99 – 31.32. When 

considering all the sites without categorization per land use types, TOC and TON 

concentrations showed a clear correlation with R2=0.24 (p <= 0.001) (Figure 15). When 

categorized per land use types, developed land use types such as Urban and Agriculture 

showed similar results with R2 of 0.23 and 0.22 (p <= 0.001) respectively. Monitoring 
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sites with Natural and Reference dominant land use showed higher correlation with R2 

of 0.26 and 0.40 respectively (p <= 0.001). All the scatter plot categorized per land use 

types are provided as appendices (Figure A-13 to A-14). The rate of change of the 

TOC/TON ratio was calculated for each sites and charted to highlight any distribution 

patterns in the data (Figure 16). 

 

 
Figure 14 Mean (points) ± 95% confidence interval of the [TOC]/[TON] ratio averaged per monitorings sites and 
classified per dominant land use types 

 

 
Figure 15 Scatter plot of annual mean log[TON] relative to log[TOC]. Data are shown from monitoring sites in 
Europe with a pair of measurements on common years. 
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Figure 16 Trends in TOC/TON ratio (%/year). Data are shown for all monitoring sites from the Waterbase showing 
TOC and TON measurements on common years. 
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V. Discussion 

Variations of organic carbon and organic nitrogen concentrations in surface waters 

reflect the effects of human activities on water ecosystems. The spatio-temporal 

variations of TOC and TON concentrations sampled from European water bodies are 

studied here and their trends are correlated to the surrounding dominant land use. 

 

Both the TOC and TON concentrations observed are qualified high and lie at the upper 

end of the ranges reported globally for rivers and estuaries. Mean concentration ranges 

of DOC in the major Mediterranean rivers (Rhone, Po, Ebro) are between 1.61 and 2.62 

mg/l (Santinelly, 2015). The highest DOC values reported for the Wanquan River 

(China) averaged 2.33 ± 0.30 mg/l (Wu et al., 2013), and the average global river DOC 

concentration is estimated to be 5.29 ± 0.22 mg/l (Dai et al., 2012). This comparison 

with global DOC ranges was made by using a conversion factor observed globally 

(DOC = 0.9 * TOC) and comforted by results obtained from a similar dataset (Berggren 

& Al-Kharusi, 2020). Nevertheless, comparison between the Waterbase and global 

observations should be taken with care as the morphology and sizes of the streams are 

not considered. In fact, records from the Waterbase are assumed to origin from smaller 

rivers rather than large global streams, which can lead to and explain much higher 

concentrations. On the other hand, the organic matter is degraded over time as it flows 

through the aquatic network, and groundwater input contributes to further diluting the 

concentrations in large rivers. As methodology improvement, it is suggested to 

categorize the concentrations of organic C and N based on the morphology of their 

recipients, and to further compare results from different datasets based on water body 

morphologies. 

 

It has been observed that DON generally averages 58-77% of the TDN pool within 

lakes, rivers, estuarine, and surface ocean waters (Sipler and Bronk, 2015; Xia et al., 

2018). A study made on approximately 1000 Norwegian lakes confirms these figures 

by averaging a TN fraction made of 71% DON, reflecting that organic N is an important 

part of TN (Hessen et al., 2009). Considering this approximation, the mean 

concentrations calculated from the Waterbase are consistent with global DON 

observations and lie on the upper end of the ranges observed globally for estuaries 

(0.303 ± 0.223 mg/l) and rivers (0.333 ± 0.254 mg/l) (Sipler and Bronk, 2015). This 
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study did not focus on the dissolved organic fraction part of total organic fraction, but 

ratios documented for both C and N reinforce the view that omission of the dissolved 

organic measurements in water quality assessments may result in an underestimation 

of the inputs of total organic fraction in water systems and subsequently underestimate 

eutrophication pressures. Consequently, the calculation of the dissolved organic 

fraction relative to total organic fraction should be systematically added to the 

methodology as lead for improvement. 

 

A summarized TOC concentration calculated from a global dataset of approximately 

8300 lakes taken from 68 countries/regions on 6 continents averaged 5.578 ± 2.8 (5.43 

– 5.72) mg/l. The lowest mean TOC (3.690 mg/l) was observed from lake water in the 

north frigid zone and the highest mean TOC (5.809 mg/l) was observed from the south 

temperate zone, concluding on TOC concentrations unevenly distributed around the 

world with a climate dependent gradient (Chen et al., 2015). The present study focused 

on the relationships between TOC and dominant land cover classes, but the wide spatial 

extent of the analysis made by Chen et al. (2015) suggests a similar gradient to exist in 

Europe. The number of entries resulting from data filtering is an issue to reach a well 

distributed dataset over the European continent, but the study of a geographic gradient 

in Europe would constitute a lead for further research. 

 

The “Reference” sites showed the highest TOC concentrations, highlighting the fact 

that labile organic compounds (Lapierre et al., 2013) from terrestrial plant sources 

dominate as TOC source in many freshwaters (Wilkinson et al., 2013). However, these 

results are oppositely different from Berggren and Al-Kharusi (2020), who observed 

higher TOC concentrations from Urban and Natural sites. This could be explained by 

different data preparation, calculation methodologies or the categorization of the water 

bodies from the Waterbase. The “Reference” sites studied are represented by two water 

body categories: Lake water (n = 433) and River water (n = 565). As listed in Table 2, 

the definitions for the water body categories published by the EEA (Directive 

2000/60/EC) are broad and do not inform on the morphology on the units. Considering 

that the “Reference” class is attributed to a monitoring site surrounded by more than 

95% “Natural” land use, the high concentration of TOC could be assumed for small 

water bodies (e.g. small streams) surrounded by dense forest environment. A better 

categorization of the land cover by the mean of remote sensing and associated to a better 
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identification of the water body morphologies (e.g. stream widths) could help refining 

the results for further studies. 

 

The highest TON concentrations were observed from “Urban” and “Agricultural” 

dominant sites (Figure 11), reflecting the effects of developed land parcels as important 

source of DON in rivers and streams. Both autochthonous biological processes and 

anthropogenic organic matters produced by human activities on land contributes as 

DON sources in marine systems (Keller and Hood, 2011; Lonborg et al., 2009; Miller, 

1999). Linked to human activities, it has been reported that treated wastewaters are an 

important source of DON in urbanized rivers and streams (Kalscheur et al., 2012; Meng 

et al.; 2013), from animal feedlots and storage lagoons (Sun et al., 2017) amongst 

others. High surface water DON concentrations have also been linked to runoffs from 

intensive agricultural activities in the United States (Westerhoff and Mash, 2002). 

Seitzinger et al. (2002) reported that a higher proportion of human activity derived 

DON was bioavailable to marine ecosystems relative to forest-derived DON, meaning 

that urban and agriculture activities not only alter the concentrations of DON in 

hydrologic N losses but also have implications in understanding nutrient over-

enrichment and eutrophication episodes in estuarine and coastal systems.  

 

Estuarine and coastal systems are among the most productive ecosystems on Earth 

(Odum 1971), where nutrient over-enrichment creates a consequent stress that can lead 

to the development of eutrophic conditions in severe cases (Driscoll et al., 2003). 

Nitrogen is the most critical element in coastal ecosystems (Ryther and Dunstan, 1971; 

Oviatt et al., 1995), on the opposite of freshwater systems where eutrophication is 

mainly caused by excess of phosphorus (Vollenweider, 1976). Coastal eutrophication 

can be responsible for excessive production of algal biomass, blooms of toxic algal 

species, loss of important estuarine habitat, changes in marine biodiversity and species 

composition, increases in sedimentation of organic particles, and depletion of dissolved 

oxygen (hypoxia and anoxia). These primary effects can have further impacts on the 

food web (e.g. effects of hypoxia on fish) (Driscoll et al., 2003). Comprehensive and 

global datasets documenting the frequency, extent and rate of over-enrichment episodes 

are unfortunately lacking but national collections are being more and more published. 

The Waterbase adds to this dynamic and the results observed for decreasing TON 

concentrations may lead to an improvement of the effects listed above. We have a 
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limited understanding on the capacity of estuaries and coastal systems to recover from 

decreasing nutrient inputs, both in rate and extent. It is thought that systems dominated 

by phytoplankton with short water residence time will reverse their eutrophication 

trajectories faster. On the other hand, benthic-dominated systems with rooted, 

submerged aquatic vegetation will show delayed recovery (Driscoll et al., 2003). 

 

The TOC concentrations showed an increasing trend from 1990 to 2012, confirming 

the observations made globally on the European continent (R2 = 0.28 for log[TOC] 

anomaly from 1994 to 2014, Berggren and Al-Kharusi 2020) and North America. Many 

hypotheses, such as climate changes enhanced by human activity (Worrall et al., 2003; 

Freeman et al., 2001), nitrogen deposition (Findlay, 2005) or changes in land use 

(Garnett et al., 2000) have been published to explain unprecedented levels of TOC that 

will continue to rise in the future. Alternatively, other studies suggested that DOC levels 

are in fact returning toward pre-industrial levels as a result of gradual decline in the 

sulphate content of atmospheric deposition (Evans et al., 2005; Stoddard et al., 2003; 

Vuorenmaa et al., 2006). Monteith et al. (2007) published new results to explain 

declining DOC trends as a result of simultaneous fall in atmospheric sulfur SO4
2- and 

chloride Cl-. 

 

The concentrations around “Urban” (Figure A-5) and “Agricultural” (Figure A-6) sites 

showed trends decreasing slightly, reflecting improvements made in wastewater 

treatment and mitigation measures to reduce organic matter imports from agricultural 

fields (EEA, 2015; Skjelkvale et al., 2005). The “Natural” (Figure A-7) and 

“Reference” (Figure A-8) sites showed steep increase over the same time range, 

confirming the dominance of natural land cover in the import of labile terrestrial 

organic matter observed previously. Additionally, it has been observed that the decay 

coefficient k decreased by up to 50% from 1996 to 2012 in hundreds of rivers from the 

European continent (Berggren and Al-Kharusi, 2020). This could be an indicator of 

TOC source shifting from internal production by algae to external loading from 

terrestrial environment in surface waters. Other results stand as indicators to support 

this shift in TOC quality and source, such as a stable or decreasing levels of total and 

inorganic N and P from similar continental study in Europe (EEA, 2015) and general 

increases in colored terrestrially derived organic carbon in European freshwater 

(Hejzlar et al., 2003; Hruska et al., 2009; Montheith et al., 2007; Skjelkvale et al., 2005). 
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The opposite observation was made on TON concentrations, which showed a 

decreasing trend regardless of the land use classification. The Urban (Figure A-9) and 

Agricultural (Figure A-10) sites showed the highest R2 coefficients, following the 

previous observations on the contribution of land-derived anthropogenic organic matter 

to the levels of DON in surface waters. European rivers have experienced improved 

water quality over the last decade, with decreasing concentrations of N and P in 

response to reduced use of excessive fertilizers in agriculture and better wastewater 

treatment (EEA, 2015, 2018). 

 

Concentration trends are the result of permissive data filtering and should be handled 

with care. A strict filtering of sites with a minimum of observations within the time 

range of interest could be applied, as done by Monteith et al. (2007) for example. The 

number of observations should also be subject to other criteria, such as a minimum 

number of monthly observations over the time range of study or a minimum of 

observations to aggregated a yearly average for example. When this is not an issue for 

TOC observations, the interest given to organic N monitoring is relatively recent (Evans 

et al., 2005) and statistical calculations can be influenced by too few observations. 

 

The TOC:TON ratio showed high values compared to the ranges observed globally for 

rivers (32.5 ± 16.3) and estuaries (16.0 ± 7.40), regardless on the type of dominant land 

cover (Sipler and Bonk, 2015). The comparison to ranges observed worldwide was 

made by approximating the DOC and DON concentrations with averaged factors 

observed. All land cover types showed proportional increases between N and C, with 

ratio ranging from 0.25 to 0.40 in favor of C. This highest R2 was observed for 

“Reference” sites (Figure A-16), highlighting again the dominance of surrounding 

natural landscapes for TOC inputs. The global pattern observed of N and C increasing 

at different ratios confirms that organic N is closely associated with TOC, both 

originating primarily from allochthonous DOM (Kortelainen et al., 2006a) and that 

TOC, TN and TP are exported together from the terrestrial environment (Chen et al., 

2016). 

 

The evolution of TOC:TON ratio towards higher values informs on the organic matter 

quality and their derivate sources. As explained by Berggren and Al-Kahrusi (2020), 
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organic matter showing low C:N ratio is highly biodegradable (Fellman et al., 2009; 

Islam et al., 2019), because of its low contents of recalcitrant aromatic carbon rings 

(Hood et al., 2005), but high content of aliphatic and peptide-like structures (Kellerman 

et al., 2018; Textor et al., 2019). High organic N contents is common in agriculture 

runoffs (Textor et al., 2019) and typically originates from labile benthic algal and 

phytoplankton sources, whereas low N contents (high C:N) is linked to detritus from 

terrestrial sources (Balakrishna & Probst, 2005; Kaiser et al., 2004). Most 

allochthonous plant detritus entering rivers has C:N > 20, but the variability is large 

and some terrestrial organic matter sources such as fens, marshes, or sewage have lower 

ratios (Fellman et al., 2009; Lehman et al., 2015; Vaquer-Sunyer et al., 2016). Another 

explanation for high TOC:TON ratio could be the phytoplankton growth as a main 

source of C-enriched DOM (carbohydrate), as observed in the West Neck Bay, Shelter 

Island (Myklestad, 2000). Analysis from the same study showed that high molecular 

weight (HMW) organic matter was enriched in phytoplankton-derived carbohydrates 

and that such fresh DOM has often high C/N ratio. This large variability of C:N ratios 

that exists from both natural and human organic matter sources could explain why no 

overall nor distinct relationship with land use could be found. 

 

This study was designed to highlight global trends relative to dominant land cover 

categories for straightforward output. Studying the evolution of variables’ 

concentrations relative to the percentage of land use category in the vicinity, to 

apprehend linearity and threshold values such as applied by Herlihy and Stoddar 

(1998), could constitute a lead for methodology improvement. Suggestion are also 

made to study trends per water body types, as the geomorphology influences the 

spatiotemporal evolution of variables within and are exposed to climatic events. The 

example given is recipient lakes standing as “sentinel” for the study of N within 

catchments (Hessen et al., 2009). 

 

The calculation of the land cover fraction around sites and the resulting classification 

into dominant types were made empirically within a buffer of 1km. This method was 

preferred to fit the wide spatiotemporal extent of the original database and the scope 

for outputting global trends. As integration improvement, land uses should be selected 

within watersheds and related to geo-variables such as slopes, geology, population 

density or local precipitation for example. Another suggestion would be to study 
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chemical compounds’ trends against land use changes in time. The land use dataset 

used here depicts a situation at a given time, without indication of changes over time. 

For example, Hong et al. (2011) presented a methodology to calculate the area change 

rate for each land cover classes between land cover datasets. The rates are then assigned 

to a raster and easily integrated for correlation analysis with chemical variables’ trends 

(Meneses et al., 2015). 
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VI. Conclusion 

Based on a large database containing 3.2 million records of water quality indicators 

from monitoring sites distributed over the European continent, we were able to study 

the concentration ranges and trends of organic C, organic N and consequent TOC/TON 

ratio from 1990 to 2012. Furthermore, the results stated are correlated to the land cover 

surrounding each monitoring sites within a radius of 1 kilometer. We show that both 

the TOC and TON concentrations observed are qualified high when compared to 

concentration ranges observed globally for rivers and estuaries. The highest TOC 

concentrations are observed from monitoring sites categorized as “Reference site” 

(surrounded by >95% natural land cover), highlighting the role of surrounding 

terrestrial plants and dense vegetation parcels as sources of organic matter in 

freshwaters. On the other hand, the highest TON concentrations are observed from sites 

categorized as “Urban” and “Agricultural”, depicting the effects of surrounding human 

activities on surface water quality. The TOC:TON ratios observed are also qualified 

high when compared to global ranges, regardless of the surrounding land cover. A 

strong positive correlation is systematically observed between organic N and organic 

C, with ratio ranging from 0.25 to 0.40 in favor of organic C. 

 

The TOC concentrations showed an increasing trend overall, from 1990 to 2012. When 

categorizing the sites per surrounding land cover, the “Urban” and “Agricultural” sites 

showed slightly decreasing trends whereas “Natural” and “Reference” sites showed 

steeply increasing trends. The TON concentrations showed the opposite behavior, with 

an overall decreasing trend from 1990 to 2012. When categorized per land cover types, 

all TON monitoring sites showed decreasing trends, with the “Urban” and 

“Agricultural” trends showing the strongest R2 coefficient. This follows the observation 

made of decreasing N and P concentrations in European freshwaters and highlight the 

results of improved monitoring methodologies and policies in place in Europe (e.g. 

reduced use of excessive fertilizers and better wastewater treatments) for an improved 

surface water quality. As stated above, N is the most critical element for over-

enrichment episode in coastal zones. Decreasing organic N concentrations could 

suggest an improvement in the occurrence of eutrophication episodes in coastal zones 

and a partial or complete recovery depending on the nature of the ecosystem in place. 
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VII. Appendices 

 
Figure 17 Distributions of mean concentrations for a) TOC (1) and b) TOC (3) 

 
Figure 18 Normal distributions of mean concentrations for a) TON (2) and b) TON (4) 

 
Figure 19 Log-transformed distributions of mean concentrations for a) TOC (1) and b) TOC (3) 

 
Figure 20 Log-transformed distributions of mean concentrations for a) TON (2) and b) TON (4) 
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Figure 21 Anomaly relative to 2001 in log-transformed values of TOC dominant land use type “Urban”. Symbols 
and error bars show the mean and 95% confidence interval of the mean, respectively, of the deviation from 2001 
values. 

 

Figure 22 Anomaly relative to 2001 in log-transformed values of TOC for dominant land use type “Agriculture”. 
Symbols and error bars show the mean and 95% confidence interval of the mean, respectively, of the deviation 
from 2001 values. 

 

R2 = 0.00048, p = 0.921 

y = 0.141-6.12*10-5x 

 

R2 = 0.036, p = 0.383 

y = 1.73-0.000855x 
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Figure 23 Anomaly relative to 2001 in log-transformed values of TOC for dominant land use type “Natural”. 
Symbols and error bars show the mean and 95% confidence interval of the mean, respectively, of the deviation 
from 2001 values. 

 
Figure 24 Anomaly relative to 2001 in log-transformed values of TOC for dominant land use type “Reference”. 
Symbols and error bars show the mean and 95% confidence interval of the mean, respectively, of the deviation 
from 2001 values. 

 

R2 = 0.8, p <= 0.001 

y = -9 + 0.0045x 

 

R2 = 0.91, p <= 0.001 

y = -15.4+0.00768x 
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Figure 25 Anomaly relative to 2001 in log-transformed values of TON for dominant land use type “Urban”. 
Symbols and error bars show the mean and 95% confidence interval of the mean, respectively, of the deviation 
from 2001 values. 

 
Figure 26 Anomaly relative to 2001 in log-transformed values of TON for dominant land use type “Agriculture”. 
Symbols and error bars show the mean and 95% confidence interval of the mean, respectively, of the deviation 
from 2001 values. 

 

R2 = 0.77, p <= 0.001 

y = 40.9 – 0.0204x 

 

R2 = 0.75, p <= 0.001 

y = 25.3 – 0.0127x 
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Figure 27 Anomaly relative to 2001 in log-transformed values of TON for dominant land use type “Natural”. 
Symbols and error bars show the mean and 95% confidence interval of the mean, respectively, of the deviation 
from 2001 values. 

 
Figure 28 Anomaly relative to 2001 in log-transformed values of TON for dominant land use type “Reference”. 
Symbols and error bars show the mean and 95% confidence interval of the mean, respectively, of the deviation 
from 2001 values. 

 

R2 = 0.69, p <= 0.001 

y = 20.3 – 0.0101x 

 

R2 = 0.3, p = 0.0066 

y = 27.9 – 0.0139x 

 



54 

 

 
Figure 29 Scatter plot of annually mean log[TON] relative to log[TOC]. Data are shown from monitoring sites in 
Europe with a pair of measurements on common years for the "Urban" dominant land use type. 

 

 
Figure 30 Scatter plot of annually mean log[TON] relative to log[TOC]. Data are shown from monitoring sites in 
Europe with a pair of measurements on common years for the "Agriculture" dominant land use type. 
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Figure 31 Scatter plot of annually mean log[TON] relative to log[TOC]. Data are shown from monitoring sites in 
Europe with a pair of measurements on common years for the "Natural" dominant land use type. 

 

 
Figure 32 Scatter plot of annually mean log[TON] relative to log[TOC]. Data are shown from monitoring sites in 
Europe with a pair of measurements on common years for the "Reference" dominant land use type. 
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