
 
Department of Automatic Control 

 

Image-based anomaly detection  
using β -Variational Autoencoder  

for surface vehicle collision avoidance 

Johan Ahlqvist 

André Skoog 



 
 

 

 

 

 

 

 

 

 

 

 

MSc Thesis 
TFRT-6121 
ISSN 0280-5316 

Department of Automatic Control 
Lund University 
Box 118 
SE-221 00 LUND 
Sweden 

© 2020 by Johan Ahlqvist & André Skoog. All rights reserved. 
Printed in Sweden by Tryckeriet i E-huset 
Lund 2020 

 



Abstract

Unmanned vehicles need robust systems to ensure the safety of the vehicle and its
environment. Being able to find and avoid perilous situations is paramount to such
a system. In this paper we suggest an unsupervised image-based anomaly detection
algorithm using a variational autoencoder and a superpixel segmentation algorithm,
which is adapted to the maritime obstacle detection task. The algorithm locates po-
tentially hazardous objects and calculates the distance to them by measuring the
images’ reconstruction error over segmented regions. The algorithm’s results on the
public MODD2 dataset shows that it has difficulties finding small objects and that
it cannot compete with the current state-of-the-art supervised segmentation algo-
rithms on the same dataset, with an F1 score of 26.6% compared to 82.7%. Although
further research and optimization is required to utilize the algorithm in a production
level product, the results indicate that the algorithm is worth investigating further
as it is able to detect many of the objects in our testing videos and due to it having
applications in several areas.
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1
Introduction

A driver of a vehicle observes and acts on his surroundings. Traffic signs and other
cues tell the driver what can and can not be done. In an autonomous vehicle, the
same task may be performed by a system trained using supervised learning, in which
an object detection model is taught to detect the presence of such cues. The perfor-
mance of object detection algorithms has increased significantly in recent years,
which has led to them being deemed sufficiently reliable to be used in modern,
semi-autonomous vehicles present on public roads.

In 2016, a Tesla Model S with its semi-autonomous mode engaged was heading
down a highway in Gainesville, Florida. Further up the highway, a tractor drag-
ging a semi-trailer was crossing the highway perpendicular to the lanes, effectively
blocking them. Due to the height of the trailer’s undercarriage and its unusual po-
sitioning, the Tesla’s software did not acknowledge the trailer as being an obstacle,
resulting in the system not performing evasive actions [Golson, 2016].

The cause of this crash is likely complex, but it highlights a necessity for au-
tonomous systems. While such a system can be taught to recognize many situations,
there is a near infinite number of possible situations that can arise, however unlikely
they may be. For this purpose, an autonomous system must also be able to recog-
nize when it is facing an anomalous situation, i.e., a data sample which is unlikely
to belong to the distribution known to the system [Zimek and Schubert, 2018]. In
the case of the autonomous system, detecting these anomalous data points can be
used to aid in the decision making process, possibly avoiding dangerous situations.

With the advancements in the field of deep learning, new techniques for obstacle
detection algorithms are available. With this report, the authors aim to answer if it
is possible to create an obstacle detection algorithm for surface vehicles using an
autoencoder trained through unsupervised learning and what measures can be taken
to increase the performance of such an algorithm.
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2
Related work

A large amount of research has been conducted in order to provide autonomy for
unmanned surface vehicles, or USVs. The research areas include autonomous nav-
igation, obstacle detection and collision avoidance using a wide variety of sensor
combinations.

Several methods have been tested for ship detection. One option is to segment
the water line and then subtracting the water from the segmented area leaving only
objects found in the water [Hu et al., 2011]. A similar approach uses discrete cosine
transformation for the background subtraction followed by foreground segmenta-
tion [Zhang et al., 2017b]. An edge segmentation-based ship detector, using Sobel
filters and support vector machines was proposed in 2015 [Eum et al., 2015].

Deep learning has broadened the possibilities. Deep learning architectures such
as RPN and YOLO have introduced new methods for object detection, which were
applied to enhance performance by Zhang et al [Ren et al., 2015; Redmon and
Farhadi, 2017; Zhang et al., 2017b].

Combinations of sensors have also been tested. One approach is to fuse radar
and camera data, using the radar data to locate objects of interest and the camera
data to help the process of discarding false positives [Zhang et al., 2017a]. Another
suggested approach used a combination of radar, GPS, AIS, cameras and many
more to tackle the problem [Elkins et al., 2010].

Outside the naval area, a few unsupervised image anomaly detection algorithms
have been proposed. One algorithm suggested the use of a hybrid autoencoder
(HAE) which would combine features from deep Boltzmann machines, autoen-
coders and support vector machines to detect anomalies [Dairi et al., 2018]. A
second variation was presented in 2016 where the developers used a hybrid so-
lution using a deep belief network and a support vector machine for classification
of anomalies [Erfani et al., 2016].
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3
Theory

In this chapter, a brief theoretical background on the different components that
constitute our anomaly detection system is given. Section 3.1 and Section 3.2 ex-
plain the terms anomaly detection and collision avoidance. This is followed by an
overview of neural network related components, metrics and optimization methods
in Sections 3.3 - 3.6. Relevant information regarding digital imagery, image prepro-
cessing, segmentation and depth estimation is given in Sections 3.7 - 3.10. Finally,
a short comment about the data set used for evaluation is presented in Section 3.11.

3.1 Anomaly detection

In 2002 former U.S secretary of defence Donald Rumsfeld delivered what is now
known as “Rumsfeld information theory”. In response to a question about the status
of WMDs in Iraq the secretary answered:

Reports that say that something hasn’t happened are always interesting
to me, because as we know, there are known knowns; there are things
we know we know. We also know there are known unknowns; that is to
say we know there are some things we do not know. But there are also
unknown unknowns – the ones we don’t know we don’t know. And if
one looks throughout the history of our country and other free coun-
tries, it is the latter category that tend to be the difficult ones. [United
States Department of Defense, 2002]

Rumsfield information theory defines three subcategories of information. The
first subcategory is the known knowns. This category handles the information which
we know to be true e.g events that we know will happen. The second category is
the known unknowns, which handles conditional information e.g events that have
a probability of happening. And the final subcategory is the unknown unknowns
which handle unknown conditional information e.g events that could happen which
we are unaware of. The objective of an anomaly detector is to locate informational
patterns which relate to the two latter categories.

11



Chapter 3. Theory

The tragic accident in Gainesville described in Section 1 was caused by the sys-
tem failing to handle an unknown unknown. The events that transpired underline
the necessity for a collision avoidance system to handle previously unknown cir-
cumstances. Given a collision avoidance system which relies on camera sensors,
the initial process may consist of an anomaly detection system.

An image-based anomaly detection system for collision avoidance can be di-
vided into three sub-problems: anomaly classification, anomaly segmentation and
anomaly localization. Given an input image I, anomaly classification can be consid-
ered as calculating a performance metric Pc over I such that if Pc(I) ≥ Tc where Tc
is the classification threshold, I is labeled as anomalous.

Anomaly segmentation relates to classifying regions of an image as anomalous
or not. Given an anomalous image Ia, anomaly segmentation can be described as
extracting a feature set F from Ia and from that feature set finding a subset f, such
that f⊆ F where fi ≥ Ts where Ts is the segmentation threshold used to determine if
feature fi is to be considered responsible for labeling Ia as anomalous. An example
of this process can be seen in Figure 3.1.

Anomaly localization is the process of calculating where a segmented anomaly
is in relation to the camera. Anomaly localization can be described as, given an
image segmentation, Is, calculate the angle θ and the distance ∆ to the segmented
areas.

Figure 3.1: An illustration of how per pixel anomaly segmentation may look. The
anomalous image Ia is shown on top and its anomaly segmentation is shown below
it. The segmentation displays anomalous and non-anomalous pixels shown in white
and black respectively. The most prominent white region corresponds to the closest
navigation mark.
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3.2 Collision avoidance

3.2 Collision avoidance

A collision avoidance system is an automated system designed to prevent or re-
duce the impact of a collision [Lim and Taeihagh, 2019]. One widely used collision
avoidance system is the Adaptive Cruise Control (ACC). ACC uses sensors, e.g., li-
dar and radar, to maintain the distance between the sensor and the vehicle ahead by
regulating the acceleration. In a fully autonomous vehicle, the collision avoidance
system will need to be able to control the vehicle in all its degrees of freedom.

A collision avoidance system can be divided into two main components: sensors
and a control module. These two components have different but related purposes.
The task of a sensor is to detect features indicating obstacles whilst the control
module’s objective is to determine what action leads to the safest outcome given
the sensor data as well as information regarding the vehicle and its environment.
The algorithm suggested in this paper only constitutes a sensor component in this
division. This is done in order to keep the solution as general as possible, as a control
module requires data specific to the vehicle it is to control.

3.3 Neural networks

Basics
A neural network is an algorithm which estimates a function to transform a given
input to a given output. This is done by passing the input data X through a series of
nodes that manipulate the data. The nodes, which are also known as neurons, each
have an associated weight and bias that together controls how the input is changed.

The weights are updated by an algorithm known as backpropagation [Rumelhart
et al., 1986]. Backpropagation computes how to set the weights in order to reduce
the error of a prediction ŷ as compared to the ground truth y. The error between a
prediction and the corresponding ground truth is given by a loss function L, which
is chosen to fit the task at hand.

Two common problems types that herald distinct loss functions are regression
and classification. Regression is the process of predicting a continuous quantity,
while classification is predicting a label. Due to this fundamental difference, two
different classes of loss functions are normally used. For regression, such a function
is mean squared error while classification is normally done by some variation of
cross-entropy.

Neurons are often followed by an activation function. They play an important
role in neural networks as they allow controlled manipulation of the values flowing
through the network, e.g., for normalizing a vector in order to interpret the output as
a probability distribution over the output classes. Most activation functions are also
nonlinear, which enables the network to estimate complex functions. A common
such nonlinearity is the ReLU activation function, which is defined in (3.1) and
illustrated in Figure 3.2, effectively allowing the neuron to be shut off if its input is
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Chapter 3. Theory

not needed [Nair and Hinton, 2010].

f (x) =

{
0 x < 0
x x≥ 0

(3.1)

Figure 3.2: Illustration of the ReLU activation function, as shown in blue, and its
derivative depicted as a dotted red line.

A neural network is commonly conceptualized as layers, where each layer per-
forms a type of operation on the data. Some of the layers are trainable, i.e., having
learnable parameters, whereas others are not, e.g., pooling operations and activa-
tion functions. Some common, trainable layer types include fully-connected layers,
convolutional layers and recurrent layers, each with their own parameters such as
the number of neurons and other, type-specific settings.

A neural network architecture is a set of layers connected in some fashion.
The types of layers, their parameters and their intermutual connections together
define the architecture, which is chosen to suit the task. For image-based tasks,
architectures commonly incorporate convolutional layers, which unlike e.g., fully-
connected layers utilize the local connectivity of the data.

The fully-connected layer
A fully-connected layer learns a regression from its input to its output. The regres-
sion can be defined formally as in (3.2), where f is the activation function, X is
the output from the previous layer, ω are the weights, b are the biases and yi is the
output from neuron i.

yi = f (Xω +b) (3.2)

The main characteristic of a fully connected layer is the connectivity. Specifi-
cally, all neurons of layer i are connected to all neurons of layer i+1. The structure
of a network utilizing two fully-connected layers with five and four neurons respec-
tively can be seen in Figure 3.3. The lines in between the nodes indicate connections.
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3.3 Neural networks

Figure 3.3: A visualization of a fully-connected neural network with two layers
with five and four neurons respectively. Between the two layers are the connections
which indicate that the layers are of the fully-connected variety, i.e., that every node
in a given layer is connected to all nodes of the adjacent layers.

The convolutional layer
A convolutional neural network is a network which incorporates convolutional lay-
ers. [Goodfellow et al., 2016]. The convolutional operation describes the response
of a system if a function f is subject to another function g. Formally the operation
is defined as in (3.3).

s(t) =
∫

f (τ)g(t− τ)dτ (3.3)

The operation can be discretized and applied to higher dimensional data. Given
a 2-dimensional image I and a kernel K, a 2-dimensional convolution can be defined
as in (3.4).

s(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n) (3.4)

An example of this operation can be seen in Figure 3.4. The operation passes a
kernel, also known as a filter, over all positions in the original image and calculates
a response for the given location, which results in a feature map.

Convolutional layers are beneficial due to three core characteristics: sparse con-
nectivity, parameter sharing and local connectivity. Sparse connectivity means that
only a few neurons from the input layer is connected to each neuron in the output
layer. This reduces the memory requirements of the algorithm, allowing for deeper
networks. Parameter sharing means that the parameters used to map from input to
output are the same for the entire input. This is due to the only parameters being
those in the kernel, which reduces the memory requirement of the network. Local
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Chapter 3. Theory

Figure 3.4: Illustration of the convolutional operation on an image. To the left is
the original image depicting the digit zero. In the middle is the filter applied by
the convolutional operation, and to the right is the resulting image. Image source
[Chollet, 2017]

connectivity means that the convolution is performed over the local area and as such
is independent of features outside of the current scope.

Autoencoders and variational autoencoders
An autoencoder is a type of neural network commonly used for representation learn-
ing [Bengio et al., 2012]. The network’s architecture consists of two main parts, an
encoder and a decoder. The objective of the encoder is to map an input, x ∈ Rd to
a lower dimensional latent vector z. The decoder takes z as input and maps it to an
output x̂ ∈ Rd . The reconstruction error rec_err, i.e., the distance between x and x̂
in some metric, is then used to update the network to better reconstruct the input.
An example of such a reconstruction error is shown in (3.5).

L(x, x̂) = rec_err = ‖x− x̂‖2 (3.5)

The vector z, also known as the code, is a compressed representation of the
input x. By updating the autoencoder’s weights using samples from the domain,
domain-specific encodings can be extracted which promotes sparse, approximate
representations of similar input data. In the case of an autoencoder trained to re-
construct images of human faces, the code might contain values that are decoded to
features in the reconstruction such as happiness, beardiness and whether the person
is wearing glasses or not. An example of this can be seen in Figure 3.5.

Variational autoencoders (VAE) are structurally related to autoencoders, but
makes the assumption that the latent vector variables follows a distribution. As such,
the goal of the variational autoencoder is to find the distribution qφ (z|x) of the la-
tent variables in z. The latent variables will then be passed to the decoder, which
will generate a new sample x̂ based on its distribution Pθ (x̂|z).
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3.3 Neural networks

Figure 3.5: Illustration of how a variational autoencoder trained to reconstruct hu-
man faces might function. To the left is the input image, which is fed into the en-
coder component of the autoencoder. The encoder encodes the image into a code
representation consisting of disentangled values where each value is related to some
domain-specific feature, as depicted by the scales in the middle. The code is then
decoded by the decoder and a reconstructed image is outputted, as shown to the
right. Notice the imperfections in the reconstructed image.

To regulate the distributions of the code variables, a regularization term is in-
troduced to the loss function. The regularization term is the Kullback-Leibler diver-
gence, defined in (3.7), between pθ and qφ , which will penalize the network relative
to the scale of the difference in the two distributions. This in turn will cause the la-
tent variables to disentangle, i.e., prompting a one-to-one correspondence between
input features and code values, as it penalizes them for relying on linear combina-
tions of features. The loss function of a VAE can be seen in (3.6).

L(θ ,φ ;x) = rec_err−KL(qφ (z|x)||pθ (z)) (3.6)

KL(qφ (z|x)||pθ (z)) =
∫

∞

−∞

pθ (x)log(
qφ (z|x)
pθ (x)

)dx (3.7)

VAEs are generative models. The code of the VAE is stochastic, which means
that the values of the code are sampled from a distribution. Therefore, if a VAE
was tasked to reconstruct the same image N number of times, it would lead to N
different reconstructions. Thus, unseen samples can be produced.

The reparametrization trick is necessary for the code to utilize sampled values.
A stochastic function is not derivable and if one were used, the network would
not be able to perform backpropagation. To solve this problem, it is necessary to
separate the stochastic part from the network.

This separation can be performed by providing the random value through an
auxiliary input to the network. The input provides values sampled from an N (0,1)
distribution, henceforth denoted as ε . This is possible since inputs are not parame-
ters that the network needs to update. The way to determine the value of the latent
code variable zi ∈ z is described in (3.8) and illustrated in Figure 3.6, where µ and
σ is the mean and standard deviation, respectively.
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Chapter 3. Theory

zi = (εiσi +µi) (3.8)

Figure 3.6: Image illustrating the reparameterization trick. Operations are shown as
circles, trained parameters are shown as squares and inputs are shown as triangles.
Together, the structure calculates the equation z = (εσ +µ)

β - variational autoencoders
A β -variational autoencoder (β -VAE) was introduced to provide disentanglement
of the latent variables of a VAE [Mathieu et al., 2018]. The disentanglement is a con-
sequence of the hyperparameter, β , added to the KL divergence term in the VAE’s
loss function. By changing the value of β , it is possible to change the ratio of impor-
tance between the reconstruction loss and the KL divergence. By incrementing β ,
the impact on the loss caused by the KL divergence will increase, which will force
the distributions closer to each other. The loss function for a β -VAE is defined as in
(3.9).

L(θ ,φ ;x) = rec_err−βKL(qφ (z|x)||pθ (z)) (3.9)

Anomaly detection with machine learning
There are many ways to perform anomaly detection. Some of the methods regard
the nature of the data used for training the algorithm. Three such possibilities are
the supervised, weakly supervised and unsupervised methods.

18



3.3 Neural networks

Unsupervised anomaly detection uses a data set without labels and tries to la-
bel samples as anomalous using statistical methods. Under the assumption that the
majority of the data set comes from the same distribution, the probability of a data
sample belonging to the same distribution can be calculated using the mean and
standard deviation of the data set.

Supervised anomaly detection uses labeled data. This data is used to train a
classifier to find a decision boundary such that it separates anomalous and normal
samples.

Weakly supervised anomaly detection uses a data set for which imprecise la-
belling methods have been used. When using a weakly supervised annotation
scheme, the data has been labeled using a set of rules or functions determined by
the user. This means that there is no proof that the label of each sample is correct,
but the labeling process can be done automatically.

What data labeling scheme to use depends on the problem domain. For a task
where the amount of labeled data is insufficient in relation to the project’s goals,
using a supervised labeling scheme may not be the best option. A better option
under these circumstances could be a weakly supervised or unsupervised scheme. In
turn, in a situation where the margin for error is really small, it would be inadvisable
to use a weakly supervised labeling scheme.

Perceptual loss
Basing the reconstruction loss on the distance between pixels might not be a suffi-
cient method to solve an image reconstruction task. By calculating the mean squared
error per pixel in an input image and its reconstruction, a metric for how well the
system has reconstructed the image is obtained. However, this metric is solely based
on the intensity values of the individual pixels and ignores the spatial information
of sets of pixels. A problem such a naive reconstruction loss may cause is illustrated
by Pihlgren et al., in Figure 3.7 [Pihlgren et al., 2020].

Transfer learning enables using perceptual loss. Transfer learning is the process
of using knowledge gained through previous experiences and applying it to new
problems. In case of image-based problems this means that parts of networks, like
AlexNet, which have been trained on other tasks can be added to new networks
in order to improve the networks performance on the new task [Krizhevsky et al.,
2012].

Perceptual loss as described by Pihlgren et al., is defined as a loss calculated
over some activations of an independent network. Formally this can be described
as: given an image x and its reconstruction x̂, extract features from x and x̂ using the
output of network N at layer i and calculate the distance between the feature sets.
An example of perceptual loss using the euclidean norm is described in (3.10).

||Ni(x)−Ni(x̂)||2 (3.10)
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Chapter 3. Theory

Figure 3.7: Example illustrating the issues with a MSE-based loss for image recon-
struction. To the left is the input image and in the middle is the same image but with
every pixel shifted slightly to the right. The rightmost image is simply the average
color of the input image. While the middle image to a human observer looks more
similar to the input than the rightmost image, a per pixel loss such as MSE would
give the middle image a significantly higher reconstruction error than the rightmost
image, as shown below the examples. Image courtesy of [Pihlgren et al., 2020].

3.4 Hyperparameter search

Hyperparameters are settings that affect the algorithm, but which are not optimized
automatically. They may play a big role in the performance of the algorithm and
thus needs to be chosen wisely.

While good value ranges can generally be calculated, finding the optimal values
is commonly done by automated searching. There are many methods of hyper pa-
rameter searching. Two of them are grid search and random search. Grid search lets
the user set a list of potential values for each parameter. The combinations are then
evaluated and the combination with the best performance is saved. Random search
works by the user setting ranges for the parameters from within their values are to
be sampled. This method has been proven to be the better of the two options for
hyper parameter search [Bergstra and Bengio, 2012].

3.5 Common neural network issues

When training a neural network it is necessary to consider a few common problems.
Two commonly encountered issues in deep learning that have been accounted for in
this project are the vanishing gradient and dying ReLU problems.

Vanishing gradient
A neural network learns through backpropagation. It is through backpropagation
that the error contribution of every parameter is determined. By utilizing the chain
rule, updates can be made for layers beyond the last one. Since each subsequent
layer is dependent on the output from the previous layer, the network’s hidden func-
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3.5 Common neural network issues

tion can be considered a composite function of the functions of the layers. Thus,
when the derivative of a layer is computed, the inner derivatives need to be consid-
ered as well. This is illustrated in (3.11).

d
dx

f ◦g = f ′(g(x))g′(x) (3.11)

Choosing activation functions poorly can stop early layers from receiving up-
dates. One of the functions that can cause this behaviour is the sigmoid function,
which is illustrated in Figure 3.8. The sigmoid function takes an input in the range
between -∞ and ∞ and returns a value between 0 and 1. More importantly, the
derivative of the sigmoid function is strictly less than 1 for all possible inputs. This
means that the inner derivative of a layer using the sigmoid activation functions
will act as a shrinking factor for the gradient. If sufficiently many sequential layers
use activation functions with similar properties, the gradient will shrink to the point
where it will not provide updates to earlier layers. Mathematically this problem is
presented in (3.12), where x is the average inner derivative and n is the number of
layers.

lim
n→∞

xn = 0, x < |1| (3.12)

Figure 3.8: The sigmoidal activation function and its derivative. The sigmoid activa-
tion function squishes the output to be between 0 and 1. This causes the derivative
to be small and converges on 0 as |x| increases.

Dying ReLU
The dying ReLU problem can cause parts of the network to become inactive. This
is due to the function setting all negative values to 0, as demonstrated in Figure
3.2. Consider the derivative shown in the figure, which is defined mathematically
in (3.13). It is 0 for all negative input values and one for all positive values. In a
state where all inputs are negative, the network would not be updated due to the
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Chapter 3. Theory

activation function always multiplying the gradient with 0. This condition is known
as the dying ReLU problem.

f (x) =

{
0 x < 0
1 x≥ 0

(3.13)

Using the Leaky ReLU (LReLU) activation function mitigates the dying ReLU
problem. LReLU is defined in (3.14) and illustrated in Figure 3.9. It differs from
ReLU by leaking a fraction of the input for negative values. This ensures that the
activation function’s derivative is 0 only when the input is 0. If the network would
reach a state where it would normally encounter the dying relu problem, LReLU can
still cause updates which could resolve the problem. Noticeable is that choosing an
α value of 0 makes the LReLU a ReLU activation function and choosing an α value
of one makes it a linear activation function. It is thus advisable to choose an α value
close enough to 0 such that it closely approximates a ReLU function, while still
being large enough to cause updates to the network.

f (x) =

{
αx x < 0
x x≥ 0

(3.14)

Figure 3.9: Figure illustrating the LReLU activation function and its derivate. The
function’s α is in this case set to 0.01.

3.6 Metrics

To be able to evaluate the performance of the anomaly detector, several metrics
are necessary. The ones covered here are mean squared error, cosine similarity, bi-
nary cross entropy, receiver operating characteristics, F1-score and intersection over
union.
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Mean squared error
Mean squared error (MSE) is a loss function commonly used in neural networks.
MSE calculates the average squared difference between feature sets. Formally it can
be defined as in (3.15), where n is the number of samples, Xi is the feature vector of
the i:th sample in X and X̂i is the predicted feature vector of the same sample. MSE
is a suitable loss function for regression type problems.

MSE =
1
n

n

∑
i=1

(Xi− X̂i)
2 (3.15)

Binary cross entropy
Binary cross entropy (BCE) is a loss function commonly used in neural networks.
Given the true label and the predicted probability of the sample belonging to that
label, the binary cross entropy can be calculated as seen in (3.16), where yi is the
ground truth and ŷi is the predicted probability for that class and n is the number of
samples. Binary cross entropy is a suitable loss function in classification problems.

L(y, ŷ) =
1
n

n

∑
i=1

yi · log(ŷi)+(1− yi)(log(1− ŷi)) (3.16)

Cosine similarity
The cosine similarity is a similarity metric that examines the cosine value of the
angle between two feature vectors. Formally it is defined as in (3.17).

similarity = cos(θ) =
A ·B√

∑
n
i=1 A2

i

√
∑

n
i=1 B2

i

(3.17)

Thus, this metric calculates a score based on how large the angle between the
two vectors A and B are. A consequence of this is that vector scale is disregarded.

Receiver operating characteristic
Receiver operating characteristic (ROC) is a metric which evaluates a binary clas-
sifier. It outputs a confidence by varying the decision boundary of the classifier and
comparing the true positive rate and the false positive rate. The related ROC area
under curve (ROC AUC) metric is evaluated by calculating the area created under
the ROC curve. The true positive rate (TPR) and the false positive rate (FPR) is
described in (3.18) and (3.19) respectively.

TPR = Recall =
True positives

False positives + True positives
(3.18)

FPR =
False positive

False positives + True positives
(3.19)
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The ROC curve illustrates the predictor performance for all confidence thresh-
olds. The illustration simplifies choosing a decision boundary, which matches the
requirements set by the application.

F1 score
The F1 score is a measurement related to a test’s accuracy. It is computed as the
weighted harmonic mean of the test’s precision and recall. The F1 score is useful for
getting an evaluation which balances both precision and recall and as such giving
a more realistic measurement of the networks performance. Recall, precision and
F1-score are defined as in (3.18), (3.20) and (3.21) respectively.

Precision =
True positives

True positives + False positives
(3.20)

F1 = 2 · Precision ·Recall
Precision+Recall

(3.21)

Intersection over union
Intersection over union (IOU) is a metric which calculates how well two areas over-
lap. This is done by calculating the two areas’ intersecting area and dividing it by
their combined area. IOU is commonly used in object detection tasks to determine
how well a predicted bounding box matches a ground truth bounding box. The met-
ric is defined as in (3.22).

IOU =
A∩B
A∪B

(3.22)

3.7 Digital image representation

A color model is a numerical representation of the color spectrum. Digitally, these
color models can be represented as tuples, where each value indicates how much of
a characteristic is prevalent in a pixel. A common color model is the RGB model
which describes a pixel using red, green and blue color saturation.

The choice of color model is important for image segmentation performance.
Previous research has shown that the choice of color model is an important factor
to improve image segmentation results [Chebbout and Merouani, 2012]. Two of
the commonly used color models are the HSV and LAB models. Comparing these
two methods has shown that HSV generally performs better for image segmentation
[Bora et al., 2015].

3.8 Data preprocessing and augmentation

Preprocessing Preprocessing the input data to a neural network is important. The
preprocessing modifies the representation of the data that the network is given,
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which in turn impacts how well it performs. For example, a representation of the
data which makes important features easily interpretable may speed up learning and
decrease model capacity requirements as less work is needed to extract important
features from the input data.

A common preprocessing step in deep learning is normalization. Normalization
is done by modifying the input data in some way in order to have the different in-
put features be of similar sizes, which in turn simplifies adjusting the network’s
weights to fit the data. Commonly, this involves scaling the features to the (0,1)
range, e.g., by dividing by the maximum possible value or through Z-score normal-
ization, which is described in (3.23).

z =
x−µ

σ
(3.23)

Histogram equalization is a method used to increase contrast in images, which
can also be used during the preprocessing step. By examining the histogram in
Figure 3.10a, it can be seen that the image has a majority of the pixel intensities
in the range between 75 and 150. Histogram equalization is a monotonic function
that mitigates this issue by spreading the intensity values over the entire available
spectrum.

Contrastive limited adaptive histogram equalization (CLAHE) is an advanced
equalization method. It works on subregions of the image and limits the spectrum
that a pixel can get its intensity value from. As such, CLAHE is able to limit the
amplification of noise. Applying CLAHE to the photograph in Figure 3.10a modi-
fies it as shown in Figure 3.10b.

(a) (b)

Figure 3.10: Two images depicting a photograph with and without the histogram
equalization method CLAHE applied. The image is accompanied by its histogram
which shows the distribution of pixel intensities. The unmodified photograph is
shown in 3.10a and its modified counterpart in 3.10b.
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Data augmentation The amount of training data impacts the algorithm’s perfor-
mance on unseen data. A machine learning algorithm aims to learn a function from
the input to the output. It does so by evaluating the function value for a sample
and comparing the output to a given ground truth. Depending on the error given
by this comparison, the function is subsequently updated to better reconstruct the
ground truth. This means that the function the algorithm finds is reliant on the data
it has been provided. If the input data provided does not represent the input domain
well enough, the function’s ability to generalize, i.e., make accurate predictions on
unseen samples, will be poor.

Data augmentation is used to alleviate some of the issues related to the data re-
quirements. This is done by manipulating an original sample to create a new sample
with slightly modified features. In the image data case, such augmentations may
include changes to e.g., rotation and scale.

It is important that the augmentations stay within the input domain. The aug-
mentations can create a large variety of new samples, some of which would never
be seen in the input domain. As an example, if an image portraying an ocean and
sky is flipped vertically, it will create a sample image with the sky below the ocean,
which is not how landscape images are generally represented. This example can be
seen in Figure 3.11. This augmentation should therefore not be used to modify a
data set containing such images.

(a) Original image (b) Horizontal flip (c) Vertical flip

Figure 3.11: Three images depicting possible augmentations of a landscape photo.
3.11a contains the original image while 3.11b and 3.11c are augmented images.
While 3.11b is likely to be in the domain of possible samples, 3.11c is not as it
strays from how a landscape photo is generally represented.

3.9 Image segmentation

Image segmentation is the process of dividing an image into partitions. By seg-
menting the image, it is possible to construct areas which only contain objects of
interest. Using these areas, it is possible to separate objects from the background.
An example of a segmented image is shown in Figure 3.12, in which an image con-
taining a laptop, a cable, a glass, a table surface and a background wall has been
segmented into five differently colored regions corresponding to the objects in the
original image.
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Figure 3.12: An illustration of image segmentation. To the left is the input image
and to the right is the same image but segmented into five differently colored regions
corresponding to the objects in the original image.

A wide variety of image segmentation methods are available, such as Sim-
ple Linear Iterative Clustering (SLIC), Bayesian adaptive superpixel segmentation
[Uziel et al., 2019] (BASS) and QuickShift (QS). While these methods are gener-
ally quite slow, Fulkerson implemented a modification of the QuickShift algorithm
which runs on GPU, which may significantly speed up the process [Fulkerson and
Soatto, 2010].

QuickShift The QuickShift algorithm is defined as, for each pixel (x, y), Quick-
Shift regards x, y, I(x,y) as a sample from a d + 2 dimensional vector space and
calculates the Parzel density estimation as seen in (3.24). The pixels are then con-
nected to the closest higher density estimation that fulfills the property described
in (3.25). The algorithm can then choose useful superpixels using the maximum
distance parameter τ [Abdelhameed et al., 2014].

E(x,y) = ∑
x′y′

1
(2πσ)d+2 exp

− 1
2σ2

 x− x′

y− y′

I(x,y)− I(x′,y′)

 (3.24)

dist(x,y) = min(x′,y′)>P(x,y)(x− x′)2 +(y− y′)2 +‖I(x,y)− I(x′,y′)‖2 (3.25)

3.10 Image-based depth estimation

Image depth estimation is the process of measuring distances using image data. The
task of estimating the distances to objects in the world using ocular information
is difficult. It requires the estimator to combine a set of 2D images to create a 3D
estimation of the world.
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Depth cues
Pictoral depth cues Pictoral depth cues are cues which are based on perceived
sizes, orientations and occlusions of objects in a 2D plane. These can be used to
determine objects’ relative distances given some prior knowledge about the objects.
Figure 3.13 shows a bookcase from which it is possible to determine which side of
the bookcase is farther away by finding the edges of the bookcase and measuring
which vertical line is longer.

Figure 3.13: A photograph depicting a bookcase with its edges marked with red
lines. By comparing the lengths of the vertical lines, it is possible to determine
which side of the bookcase is closest as both sides of the bookcase are of the same
height in real life.

Given two identical objects, observed from the same direction, it is possible to
determine which one is closest by comparing the image area cover. This is illustrated
in Figure 3.14 where the trees get smaller and smaller the farther away they are.

Figure 3.14: A photograph depicting trees at the side of a road. Given that the trees
are of similar size it is possible to determine which tree is closest by comparing the
image area cover of each tree.

The observant reader will notice that in Figure 3.14 it is possible to find edges
along the road similar to the ones found in Figure 3.13. By traversing along the
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edge of the road towards the horizon, the trees also decrease in size showing the
correlation between the cues.

Depth cues from motion The perception of an object’s movement is relative to
the distance between the object and the observer. This relativity is called motion
parallax [Kim et al., 2016]. Motion parallax can be observed when two objects
at different distances to the observer travel the same distance within a given time
frame. They will seem to have travelled different distances to the observer. This
phenomenon is due to the change in angle from the observer to the objects as caused
by their movement. The change in angle can be described mathematically as in
(3.26), where h is the distance to the object and b is the distance travelled. This
indicates that objects at larger distances will have a smaller angular change and thus
appear to move less, which is also illustrated in Figure 3.15.

Figure 3.15: Illustration of an observer who observes two objects. When the objects
travel a set distance, the angle at which the observer perceives the objects change.
The difference in the angle is relative to the objects’ distance from the observer.
Image source [Brinkmann, 2008].

θ = tan1(
b
h
) (3.26)

Stereopsis Stereopsis is the perception of a 3-dimensional environment using im-
ages from two sources. It is similar to motion parallax, but instead of having one
observer taking two images with a time difference, two observers at slightly differ-
ent positions are used to take images at the same time. Since the distance between
the observers is known, it is possible to estimate the distance to an object by com-
paring the difference of an object’s position in the two image sources.

Algorithmic implementations
Optical flow Optical flow is a motion parallax algorithm which can be used for
computer-based depth estimation. The motion of an object in a two dimensional im-
age plane indicates the object’s motion relative to the observer. Using said motions,
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tasks such as object segmentation and relative depth estimation can be performed
[Beauchemin and Barron, 1995].

Stereo vision Reconstruction of a 3-dimensional space using stereo vision re-
quires rectification of the images. Rectifying images from stereo cameras is the
process of projecting the images onto the same plane such that they are coplanar. To
be considered coplanar the two images need to conform to two properties: all epipo-
lar lines need to be parallel to the horizontal axis and have corresponding points at
identical vertical coordinates. The task of finding corresponding points is made eas-
ier by using a flat object depicting a known pattern, usually a checkerboard. With
corresponding points known, the projective transformation of the images can be
computed [Zhang, 2000]. If the cameras are parallel with the same focal lengths,
calculating the distance to the point can be done using (3.27), where Z is the dis-
tance, f is the focal length of the cameras, B is the distance between the cameras
and d is the disparity for the point [Lim et al., 2017].

Z =
f B
d

(3.27)

Corresponding points matching When a pattern is not available, a matching strat-
egy is required. This would be slow as it would require the algorithm to search all
possible locations for a matching candidate. The coplanar constraint reduces the
search space significantly as the only points necessary to consider are the points
along the horizontal line, which makes the process more feasible.

Several matching strategies are available. A naive approach to the problem
would be to examine each point along the horizontal line and matching with the
pixel with the least difference. More sophisticated methods such as graph cuts,
Markov random field minimization and semi-global block matching are also avail-
able [Boykov et al., 1999; Szeliski et al., 2008; Hirschmuller, 2008].

3.11 Evaluation dataset

The Multi-modal Marine Obstacle Detection Dataset 2 (MODD2) is a maritime
data set for semantic segmentation [Bovcon et al., 2018b]. The data set consists
of 28 video sequences where the water and maritime objects have been manually
annotated.

Algorithm performance on the data set is determined using a supplied Matlab
script. The script has two major evaluation areas: segmentation of the water line,
i.e., where the water and the sky intersect, and object segmentation. How well the
algorithm segments the horizon line is based on the MSE compared to the ground
truth. How well an algorithm segments objects is determined by the intersection
over union, true positive rate, false positive rate, and false negative rate.

Certain specific rules apply to the dataset. The minimum intersection over union
for a detection to be valid is 0.15 and objects smaller than 5x5 pixels are disregarded.
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Additionally, the dataset’s definition of an anomalous object is one which have the
entirety of its segmentation below the water line, i.e., all objects that cross the water
line or are completely above the water line are disregarded.

Figure 3.16: An image from the MODD2 dataset with a cargo ship in the back-
ground. Using the evaluation scheme of MODD2, the ship would not be declared
anomalous, even though it poses a potential problem for the USV, as its highest
portion is above the water line.
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Resources used

Access to cameras and surface vehicles were necessary for the project. Axis Com-
munications provided cameras and SAAB Kockums provided surface vehicles and
means of data gathering.

4.1 Cameras

FA1105
The camera used for this project is the FA1105 seen in Figure 4.1. The FA1105
sensor unit is a small camera measuring 29x20 mm making it a suitable choice for
mounting on a small surface vehicle. The camera has a 111◦ horizontal field of view
and a 61◦ vertical field of view. It is able to capture 30 frames per second in 1080p
resolution.

Figure 4.1: FA1105 sensor unit. Image source [FA1105 product page 2017]

FA54 Main Unit
The FA1105 sensor unit requires a main unit. The main unit chosen for this project
is the FA54 seen in Figure 4.2. The FA54 main unit allows for the usage of up to
four cameras.
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Figure 4.2: FA54 main unit. Image source [FA54 product page 2016]

4.2 Surface vehicle

The surface vehicle this project is designed for is the Piraya manufactured by SAAB
Kockums and seen in Figure 4.3. The Piraya is a small unmanned surface vehicle
measuring four meters in length. The Piraya allows for a top speed of 20 knots. The
Piraya hosts numerous sensor capabilities such as lidar, radar, GPS and two FA1105
camera sensors and a FA54 main unit. However, for image data gathering, SAAB
Kockums provided other surface vehicles.

Figure 4.3: Two unmanned surface vehicles of the Piraya class. Image source:
[Clearing the mine threat 2017]

4.3 Computational resources

Axis Communications provided computational resources. Both cloud and local re-
sources were made accessible, but most work was done on a desktop PC using an
Intel 9700K CPU and a NVIDIA 2080 Ti GPU.
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Methodology

5.1 Neural network

The model used in our approach is a convolutional neural network with a β -
variational autoencoder (β -VAE) architecture. The input image, which has a size
of 1024x1024 pixels and three channels is passed through the encoder. It encodes
the image to a latent space, producing a code with 512 dimensions. The decoder
then tries to reconstruct the image from the code.

The encoder and decoder consists of several consecutive ResNet-blocks [He
et al., 2016]. Each such block consists of three convolutional layers forming two
paths: one with two layers and one with one layer. The output from the two paths are
summed before being connected to the next block. This allows for deeper networks
as it mitigates the vanishing gradient problem by allowing the flow of the gradient
to take shortcuts. To avoid the dying ReLU problem, in which an activation outputs
nothing but zero and thus gets stuck in an unrecoverable state, every convolutional
layer is followed by a LeakyReLU activation with a default α of 0.3.

In each block of the encoder, the spatial resolution is halved while the number of
filters is doubled. This is done in order to continuously compress the data and distill
it into more abstract features. After eight such blocks, the input has been reduced
from 1024x1024x3 to 8x8x192 values and is then fed through the reparametrization
trick logic of µ and log(σ) and through global average pooling to reduce the code
parameters and then finally to the latent space z. The decoder follows the same
structure but with the layers in reversed order and using transposed convolution
instead of convolution. A visualization of the general structure of the network is
shown in Figure 5.1.

Throughout the experiments, the neural network architecture and configuration
remained largely the same, with changes mostly concerning the scale of the net-
work.
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Figure 5.1: A visualization of the general structure of our autoencoder. The flow
of data is from the left to the right, with the left dotted rectangle encapsulating
the encoder related components and its right counterpart encapsulating the decoder
components. The intersecting area of these rectangles holds the code. Each block
is accompanied with its output dimensions, with the height on top, the width to
the left and the number of channels below each block, except for the code which
is one dimensional and thus only shows its number of neurons. The visualization
is simplified: each visualized convolutional layer corresponds to a ResNet block in
the actual model and neither the global average pooling used before the code nor
the reparametrization trick logic is shown.

5.2 Neural network training data specifics

A neural network is wholly dependent on the data it is trained on. Due to this, Saab
supplied the project with suitable video footage of a surface vehicle’s perspective of
the archipelago. This video was divided into six separate sessions, with one of the
sessions being recorded in four different directions from the ship.

The video footage was recorded from two vehicles: a small civilian boat and a
larger, military-class boat. In both cases, the camera placement includes some of
the structure of the vehicle. The smaller boat has two railings clearly visible in the
images while the recordings from the larger boat has much of the mast and forward
area of the vehicle present. A typical image from the training dataset can be seen in
Figure 5.2.

The data was divided into two data sets. As the algorithm is an anomaly detec-
tion system, the data which containing objects which could pose a danger to a ship
and that were not naturally occurring and static were removed from the training set,
in order to make these features anomalous. The argument for drawing the classifi-
cation line at naturally occurring and static objects were that these objects, while
posing a danger to ships, were easily avoidable by using nautical charts.

The process of data selection was done manually. Images were looked through
for objects that met the criteria and subsequently placed in the clean or non-clean
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Figure 5.2: A sample from the image dataset used to train the neural network. This
specific image is taken from the small boat, which can be seen by the railings visible
in the image.

categories. This process was quite fast as the images were frames of a video and thus
sequential, which enabled labelling chunks of images as it came down to finding
the first and last frame containing each object. For images containing very small
objects or when the classification was for other reasons not obvious, a non-clean
classification was given as to keep the training data as clean as possible.

The data consists of about 200000 images of archipelagos from the east coast
of Sweden. Categorizing the frames into clean and non-clean data took roughly
two days. After this process, about 88000 frames were retained as training data,
69000 frames were labelled as non-clean and 49000 frames were discarded for some
reason, e.g., due to repositioning of the camera causing blocked views.

The images were resized prior to training. Resizing is necessary since the reso-
lution of the original images is 1920x1080. This is due to the network requiring an
input size of 1024x1024. As the process of resizing an image is slow, it was done
using bicubic interpolation before training to reduce the input data loading time.

5.3 Data augmentation

Data augmentations were applied to the data set. Throughout all experiments data
augmentations were performed to limit overfitting of the model. Augmentations
were chosen carefully to not stray too far from the data distribution.

The random augmentations performed were rotation, cropping, histogram
equalization and horizontal flipping. The cropping was performed independently
for each side of the image. The specific augmentation settings used can be seen in
Table 5.1.
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Data augmentation settings
Setting Value

Rotation (deg) ±3
Cropping (px) [0,16]

Histogram equlization (p) 0.5
Horizontal flipping (p) 0.5

Table 5.1: The settings used to augment the autoencoder’s input data during the
fitting process.

5.4 Training scheme

The training scheme of the model regards the settings of its training process. These
are important for making the training efficient and for the final performance of the
model to be as good as possible.

Throughout the project, roughly the same training scheme settings were used.
The number of epochs was set to 25, which took roughly 50 hours to complete.
The initial learning rate produced instabilities when set to values higher or equal
to 0.001 and was thus set to 0.0003. Additionally, it was decreased by multiplying
the current learning rate with 0.1 every 10 epochs. The batch size was set to 8, with
higher values leading to GPU memory issues due to the large dimensions of the
perceptual loss features.

For evaluation purposes, a small validation data set of 5% of the data was used.
The validation data was set up to be a contiguous sequence of frames in order to
minimize fitting to images similar to the validation data. However, as other images
from the same videos had been trained on, a much larger test data set on completely
unseen videos was used to get a better measure of how well the learned features
generalized. In order to also get qualitative comparisons during training, a specific
validation image was reconstructed at the end of each epoch.

5.5 Tiling

Tiling divides the image into sub regions. In the experiments using tiling, it was used
to split the image into quadrants. Tiling was used to allow the network to process
the image at a higher resolution without increasing its capacity. Additionally, tiling
allowed not having to downsample the reconstructed image to fit the perceptual
loss network input. Thus, when using tiling, the input to the network was an image
of size 512x512 pixels. Four such predicted images were then merged to form the
reconstruction of the full, original image.
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5.6 Code pertubations

A technique used in most of the experiments was code perturbation. By altering the
code produced by the encoder processing an input sample, values mapping to image
features are changed. By decoding the altered code, the resulting reconstruction will
be different from the original reconstruction.

The technique can be used for direct classification. Given that the β -VAE has
learned a disentangled distribution, it is possible to vary specific image features of a
reconstruction by perturbing the code. Indicated by Wang et al, these changes to the
code will cause larger variation in anomalous data samples due to structural consis-
tency, which makes it possible to detect anomalous regions based on the variation
produced by the code perturbations [Wang et al., 2020].

The pertubations were also used for smoothing. This was done by producing a
set of randomly altered reconstructions and then using the minimum error per pixel
as compared to the original image, i.e., choosing the best reconstructed pixel to
represent the position within the reconstructed image.

5.7 Initial approaches

Thresholded reconstruction error The initial approach for image anomaly detec-
tion using a VAE was to use the reconstruction error in the simplest possible way.
This was done using the absolute difference, the error, between the original image
and the reconstruction.

A threshold on the error was used to classify pixels as anomalous or not. Pix-
els with an error magnitude exceeding the threshold were labelled as anomalous.
This is shown in (5.1), where x is the input image, x̂ the reconstruction, xp an in-
dividual pixel and T the error threshold. Anomalous pixels are labeled with 1 and
non-anomalous pixels are labeled with 0.

f (xp, x̂p) =

{
1 |xp− x̂p|> T
0 |xp− x̂p| ≤ T

(5.1)

Perturbation error The second iteration of the algorithm for anomaly classifi-
cation used a β -VAE with perturbations. The code of a β -VAE was perturbed to
produce slightly varied reconstructions. For each pixel in every perturbation, the re-
construction error was checked against a set threshold. Then, if a pixel had an error
above the threshold in all perturbations, the pixel would be marked as anomalous.

The thought behind this experiment was that the perturbations would cancel out
noise. This was due to the noise consisting mainly of imprecise water lines, tree
lines and high frequency details. On the other hand, it was thought that regions
containing anomalous objects would have a high error in all perturbations, retaining
the true positives while cancelling the noise.

38



5.8 Superpixel segmentation methods

Applying perceptual loss Another attempted modification was to train a β -VAE
using perceptual loss. When using perceptual loss, the image and its reconstruction
are passed to a pre-trained image classification network such as AlexNet, for the
purpose of extracting features from them. The differences in the feature sets are
then used for classification purposes.

The network used for this task was the EfficientNet-B7 model [Tan and Le,
2019]. Its weights had been trained on the ImageNet dataset containing images of
1000 object classes with the self-supervised Noisy Student technique [Deng et al.,
2009; Xie et al., 2020]. This network was chosen as it is one of the current top
performers in object recognition and because of the unusually high resolution of
its input. Specifically, the EfficientNet-B7 model uses images of size 600x600 as
input, which means that less information would be discarded when downsampling
the reconstructed image for the loss function, as compared to other models.

5.8 Superpixel segmentation methods

The final group of methods adds superpixel segmentation to the algorithm. These
segmentation techniques were used to encapsulate objects in the image data. It was
reasoned that by utilizing the probable object boundaries in conjunction with the
reconstructed image, it would be easier to perform anomaly classification and seg-
mentation. An overview of how this algorithm works can be seen in Algorithm 1.

To get as good results as possible, different superpixel segmentation methods
had to be considered. The methods were examined based on time per image and the
method’s ability to create an encasing segmentation of objects in the image. The
results of the experiment can be seen in Table 5.2 below. The tests were conducted
using a computer with a NVIDIA 1050 Ti GPU and an Intel Core i5-7300HQ CPU.

Segmentation experiment
Segmentation
method

Time/image Segmentation
performance

Usable Platform

QuickShift 18.84s Good No CPU
Slic 1.6s Poor No CPU
Felzenschwalb 2.13 Poor No CPU
BASS 27.54s Excellent Potentially GPU
QuickShift++ 0.67s Good Yes GPU

Table 5.2: Table illustrating the results from testing the performance of different
superpixel segmentation methods. The hardware used was a NVIDIA 1050 Ti GPU
and an Intel Core i5-7300HQ CPU.

During testing, it was made obvious that only QuickShift++ filled the require-
ments of this project. This was due to the necessity of the segmentation algorithm to
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segment objects well along their borders with an acceptable frame time of no more
than 1 second. BASS was found to have the shortcoming of being remarkably slow,
but with excellent segmentation performance. Given a faster implementation of the
algorithm, it would be a contender. However, Quickshift++ was chosen due to its
combination of frame time and segmentation performance. Its settings are presented
in Table 5.3.

QuickShift settings
Setting Value

σ 2
τ 10

Table 5.3: The settings used for the QuickShift++ algorithm. The settings are σ ,
which is the Parzel density standard deviation and τ is the maximum distance be-
tween a pixel and its centroid.

Parallel to this, a β -VAE was used to create perturbed reconstructions of the
original image. Four perturbations were created by adding random vectors sampled
from N (0, 0.1) to the code outputted by the encoder. These were concatenated with
the original code and used as input to the decoder, resulting in five slightly varying
reconstructions of the input image.

Once the perturbed reconstructions and the segmentation were completed, error
averaging was performed. This was done by calculating the absolute values of the
subtraction between the input image and each of the reconstructions. This formed
a volume of size (N,W,H,C), where N is the number of reconstructions and W ,
H, and C are the image dimensions. The (N,W,H,C) volume was averaged over
the color channels, which reduced the volume to an (N,W,H) array. While giving
the individual channels special treatment might prove advantageous to detecting
certain situations, it was decided that the algorithm should be designed neutrally in
this regard, as to encourage its ability to detect anomalies.

Next, the array was reduced to a 2D image. It was noted that the interesting ob-
jects, i.e., anomalies, usually had quite consistent pixel values over the reconstruc-
tion errors. However, this was not seen to the same degree with noise and errors the
authors classified as uninteresting. This led to reducing the array’s first dimension
by taking the minimum of each reconstruction error, resulting in an image of size
(W, H), where each pixel corresponded to the minimum reconstruction error for the
reconstructions’ channel-averaged pixel values.

The segmentations and the refined reconstruction error were then combined.
This was done by averaging the error for every segment region, thus producing a
value for how incorrectly that segment was reconstructed. As these regions corre-
spond to objects or parts of objects in the image, the resulting combination would
indicate how well an object is reconstructed. If a region had an error above a set
threshold it was marked as anomalous.
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Algorithm 1: Monocular superpixel anomaly detection

z← encode input image
zp← z+ random vectors
reconstructions← decode zp
segmentation← segment input image
reconstruction error← |input image − reconstructions|
reconstruction error← average reconstruction error over its channels
reconstruction error←minimum reconstruction error over its perturbations
anomaly mask← False like input image
for all s: segmentations do

if average reconstruction error of region s > T then
anomaly mask[s]← True

end if
end for
return anomaly mask

The algorithm’s speed depends in part on the number of segments. This is due
to the averaging of the error being performed over each segment region. Thus, more
regions lead to more masks being calculated and more averaging operations per-
formed. Further, the QuickShift algorithm does not have a parameter which directly
limits the number of segments produced, which resulted in certain images having
thousands of tiny segments in homogenous regions, such as blue skies.

For performance and noise reduction reasons, segments with an area of less
than 32 pixels were removed. This roughly corresponds to a 6x6 pixel object. Once
neighbouring anomalous segments have been joined, the same removal of small
objects was performed but with a minimum area of 128 pixels. The values were
chosen simply based on how small objects detection was needed for. At a later
stage in the algorithm’s development, this removal of small objects was disabled in
order to treat all detections equally.

Temporal matching addition
For the purpose of reducing the amount of false positives, the previously described
superpixel segmentation method was extended with segment matching over time.
This was done by extracting a few hand crafted features from the segments. These
features were used to match segments from sequential time steps. The window size
w, which decides the number of time steps, was set to five. Segments were consid-
ered to match if the mean squared error between their features was below a fixed
threshold. An overview of how this algorithm works can be seen in Algorithm 2.

The algorithm for matching over time consisted of three simple steps. First, the
erroneous segments stemming from the most distant time step t −w was used to
initialize the set of active segments St−w. Next, for each active segment, the best
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match in the set of erroneous segments from the next time step, t−w+1, was cal-
culated. The matches that had a similarity meeting the threshold were then selected
to be the new set of active segments. This step was iterated until the current time
step t−w+w was reached. The resulting set of active segments, if any, were then
considered validated anomalous segments.

Algorithm 2: Temporal monocular superpixel anomaly detection

anomaly candidates list← perform Algorithm 1 on input image
create segment features list
for all a: anomaly candidates do

segment feature list← extract features(a)
end for
validated segments←match segment features list with previous iterations
anomaly mask← False like input image
for all s: validated segments do

anomaly mask[s]← True
end for
return anomaly mask

The choice of features for the temporal matching process is task-specific. This
is due to the features needing to be able to discern between different objects in se-
quential frames and because the properties of those objects differ based on the task.
For an obstacle detection system in a car, the features must reflect that an object’s
position and direction may change a lot between frames and still be the same object.
However, in the case of maritime obstacle detection, an object is unlikely to move a
long distance between frames and its shape and size will likely remain similar.

The chosen features exploit the properties of maritime objects. As most such
objects are seen from a distance and move slowly, their shape and position also
changes slowly. Thus, width, height, centroid and size, i.e., the number of pixels an
object occupies, were chosen as features. All features were normalized to the [0,1]
range by dividing them by the individual image property they were measured in.
In order to emphasize the importance of locality, the corresponding features were
given weights of 5, while the other features had a weight of 1.

As the segmentation algorithm does not have the same concept of objects as a
human might, it will likely produce several segments per object. To mitigate hav-
ing several anomaly detections per object, neighbouring segments that had been
detected as anomalous were joined into a single, larger segment. This is also a cru-
cial component for temporal matching due to the shapes of the segmented regions
changing in an unpredictable manner in each frame.
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Stereo vision addition
For the purpose of reducing the amount of false positives further and finding the
relative positions of anomalies, the previously described temporal matching method
was extended with stereo vision. The stereo method of the algorithm runs two in-
stances of the temporal matching, monocular method in parallel with some addi-
tional combining logic. Each instance is responsible for the image stream from one
camera. An overview of how this algorithm works can be seen in Algorithm 3.

When an anomaly has been detected in the left image, the detection is com-
pared to candidates from the right image. Due to the images having been rectified,
it is known that corresponding points will exist on the same horizontal line in both
views. Thus, a subset of the detections found in the right view can be extracted by
filtering out such regions that are not on the same horizontal level as the segment in
the left view.

Algorithm 3: Temporal stereo superpixel anomaly detection

left anomaly mask← perform Algorithm 2 on left input image
right anomaly mask← perform Algorithm 2 on right input image
anomaly mask← False like input image
for all left anomalous segment: left anomaly mask do

right anomalous segments← horizontally similar right view segments
if possible right anomalous segments exist then

best matching segment← feature match the left and right segments
left points← extract points from left segment
right points← extract points from right segment
anomaly position← triangulate left and right points
anomaly mask[left segment]← True

end if
end for
return anomaly mask, anomaly positions

Anomalous segments in the right view were filtered by using multiple horizontal
levels. Specifically, two bands were projected from the left segment, which were
each 20% of the segment’s height and extended toward the center of the region from
its top and bottom pixel level. Only right detections which intersected with both of
these bands were evaluated as a potential match. Once a potential match was found
through this method, its features were compared to the features of the left segment
in the same manner as for the temporal segment matching method. If the matching
error was below a set threshold, the segments were marked as matching.

To get an accurate position, corresponding points from both of the views were
needed. The points were chosen by projecting 20 equiangular rays, together span-
ning 2π , from the segment’s centroid and selecting the farthest point belonging to
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the segment. This was done as to get measurements from all sides of the object,
reducing the likelihood of a poor segmentation in one area ruining the positioning.

With the corresponding points chosen, the location of the anomaly could be cal-
culated. This was done by triangulating the positions of the point pairs by the views’
projection matrices. As some point pairs were likely to be poorly matched, the re-
sulting positions were sorted by relative distance and the position corresponding to
the median distance in this list was selected as the anomaly’s final position.

Certain tweaks were made to the previous methods to better exploit the advan-
tages of the stereo setup. This included reducing the small segment removal from
two passes of 32px and 128px area to a single pass of 15px, corresponding to re-
moving objects covering less than 0.0015% of the view, which allowed the detection
of smaller objects. This was possible as the two algorithm instances had to agree on
a detection, which reduced noise. Additionally, the naive joining of neighbouring
anomalous segments was rejected and a simple system for joining neighbouring
anomalous segments based on the similarity of their hue was implemented instead.

44



6
Results

6.1 Network capacity

Several VAE code sizes were tested. Specifically, these were 8, 64, 512 and 4096.
An illustration of the reconstructive performance of the models on a set of images
from the validation dataset can be seen in Figure 6.2. In the figure, the leftmost col-
umn correspond to the original images followed to the right by the reconstructions.
The reconstructions are sorted by the code sizes in the ascending order of 8, 64, 512
and 4096 from the left to the right. The final training losses for these models can
be seen in Figure 6.1. It can be seen that the larger code sizes have a lower training
loss.

Figure 6.1: Illustration of the autoencoder’s training loss. The four lines correspond
to the four different code sizes used.
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(a) Original (b) zdim=8 (c) zdim=64 (d) zdim=512 (e) zdim=4096

Figure 6.2: Illustration of the reconstructive performance of models with differing
code dimensions on different five images from the validation dataset, handpicked to
cover a broad range of scenes. The leftmost column consists of the original images
followed to the right by the reconstructions produced by each model with a code
size of 8, 64, 512 and 4096 respectively.

6.2 Initial approaches

The initial approaches showed results that indicated that the project was worth ex-
ploring. Heatmaps of the reconstruction error was created by having the β -VAE re-
construct an image. This is displayed in Figure 6.3, where the input image is shown
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to the left, the reconstruction is shown to the right and a heatmap of the difference
between the two is displayed in the middle.

The apparent loss of detail in the reconstruction leads to certain hotspots in the
error heatmap. These mainly correspond to houses, tree tops extending above the
tree line, a navigation mark and the two rails extending from the front of the boat.

Figure 6.3: Illustration of an image sample and the heatmap created when looking
at the difference between the original image and its reconstruction

To utilize the reconstruction error, the perturbation error approach was used. In
this method, the pixel errors greater than a set threshold in all of the perturbations
were marked as anomalous. An example of when this approach successfully classi-
fied a navigation mark as anomalous is shown in Figure 6.4, where the Figure 6.4a is
the same as the leftmost image in Figure 6.3. The non-anomalous pixels are shown
in blue, while the others are shown with a white color.

In Figure 6.4, three important features can be seen. The navigation mark is
shown as a thin line of unconnected, anomalous pixels. The anomalous pixels are
covering a fraction of the mark’s area. To the right of the navigation mark, another
small clump of anomalous pixels have been marked, corresponding to a house in
the distance. As the work with the algorithms at this stage was solely experimental,
no quantitative experiments were performed.

6.3 Superpixel segmentation

Superpixel segmentation clusters the pixels in an image depending on their charac-
teristics. The segmentation was applied under the assumption that the image area
covered by an object would have similar characteristics. Figure 6.5 shows a seg-
mented image from the MODD2 dataset.
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(a) Original heatmap with the area of in-
terest marked using a bounding box

(b) Zoomed in image of the marked area
in Figure 6.4a

Figure 6.4: Illustration of the results from a logical and operation performed over all
perturbations. Figure 6.4a is the entire image’s results where a magenta bounding
box highlights the interesting area. Figure 6.4b displays the area inside the magenta
bounding box from Figure 6.4a. In Figure 6.4b the navigation mark seen in the
bottom left of Figure 6.3 is clearly visible.

The image illustrates positive and negative effects of using superpixel segmen-
tation in this domain. The positives are that it is possible to find segments which
encapsulates objects well, e.g., the buoy in the image. Thus, if the algorithm eval-
uates the errors over the segments, it is possible to find anomalies based on the
magnitude of the error for a segment. However, as the segmentation algorithm has
no understanding of objects, phenomena such as sun glitter, which can be seen in
the bottom left of the image, will be segmented as well.

Using the superpixel segmentation method as described in Section 5.8 led to a
significant amount of false positives. A test clip from the MODD2 dataset was used
to gauge the influence of the different components of the algorithm on the result-
ing detections. Evaluating the algorithm on this clip, without the noise reduction
techniques from Section 6.4 or Section 6.5, resulted in 6 true positives, 2941 false
positives and 109 false negatives.

6.4 Temporal matching addition

Temporal matching addition to the algorithm was implemented to reduce the
amount of noise causing false positives. The temporal matching addition to the
algorithm was evaluated as described in Section 6.3, but with temporal matching
enabled. Evaluating the algorithm on this clip resulted in 7 true positives, 1136
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Figure 6.5: Image taken from the MODD2 dataset which has been segmented. In
the image it is possible to see that the island and bouy are encapsulated in their own
segments. Sun glitter in the bottom left corner is also segmented well.

false positives and 108 false negatives. Notably, this was a false positive reduction
of 61% from the results in Section 6.3.

6.5 Stereo vision addition

The stereo vision addition was added to further reduce noise as well as enable
anomaly positioning. The evaluation of the noise reduction was done as described
in Section 6.3, but with both the temporal matching and stereo vision components
enabled. Evaluating the algorithm on this clip resulted in 12 true positives, 176 false
positives and 103 false negatives. Thus, this addition resulted in roughly 85% less
false positives than the algorithm using the previous addition described in Section
6.4.
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6.6 Evaluation of final algorithm

Multi-modal Marine Obstactle Detection Dataset 2
The algorithm was evaluated on the object detection component of the MODD2
data set. It was done by running the dataset evaluation script which is available
at https://github.com/bborja/modd. The scores from the testing can be seen in
Table 6.1.

Algorithm
Metric

TP FP FN F1

BiSeNet 5014 1667 435 82.7%
ISSMstereo 1828 105 3621 49.5%
Our (z=64) 772 2421 4677 17.9%

Our (z=512) 859 1424 4590 22.2%
Our (z=4096) 1359 3406 4090 26.6%

SegNet 5106 1852 343 82.3%

Table 6.1: Table displaying the scores of algorithms on the MODD2 data set. The
best scores are marked with bold text. In the table, our algorithm is presented to-
gether with the supervised segmentation algorithms BiSeNet, ISSMstereo and Seg-
Net, which were evaluated by the MODD2 dataset creators. [Yu et al., 2018; Bovcon
et al., 2018a; Badrinarayanan et al., 2015]

In the same table are also the scores of three other algorithms which are top
performers in the different metrics on the same task. These are supervised algo-
rithms which, in the case of BiSeNet and SegNet, have been pretrained on the 14
million sample image classification dataset ImageNet and then had their supervised
segmentation finetuned on the MaSTR1325 dataset, which contains 1325 annotated
images similar to those found in the MODD2 dataset. Their scores were retrieved
from the MODD2 website.

The metrics used to evaluate the performance of the algorithms are TP, number
of true positives, FP, number of false positives, FN, number of false negatives and
F1 which is defined in (3.21).

Depth estimation in laboratory setting
To calculate distances using stereo vision, the cameras had to be calibrated. In Fig-
ure 6.6a and Figure 6.6b, two images captured from the left and right camera and
used for calibration can be seen. To measure the performance of the depth estima-
tion, the distance to a point on the showcase seen in the images, highlighted in ma-
genta, was measured. The measured distance was 408 centimeters, without taking
into account the height difference. The algorithm evaluated the distance, including
the height difference, to 421 centimeters.

50



6.6 Evaluation of final algorithm

(a) (b)

Figure 6.6: Two images taken from a stereo camera setup. Figure 6.6a is the image
taken from the left camera and 6.6b is the image taken from the right camera. Image
illustrates the process of calibrating the cameras using a checkerboard.
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7
Discussion

7.1 Evaluation of our algorithm’s performance

The anomaly detection algorithm described in this project was successful in some
regards. During the testing, qualitative results indicated that most of what the au-
thors regarded as anomalies were detected. This included navigation marks, other
boats, buoys and some debris, which were found in the water in one recording. How-
ever, the algorithm performed worse on the newer recordings, which were slightly
different in recording quality, weather and scenery to the training data. This indi-
cates a need for the algorithm to have observed similar imagery to the setting it is
to be used in for it to be efficient.

The used approach with combining an autoencoder and a segmentation algo-
rithm has a few strengths. It is easy to train in the data gathering regard, as the input
data simply needs to be void of anomalies. It is also mostly successful at detecting
anomalous regions, but there are some conditions that need to be met in order to do
this reliably. First, the background and the object needs to be of different enough
colors to generate a high enough reconstruction error, an example of this can be
seen in Figure 7.1. Second, the segmentation algorithm needs to be able to encap-
sulate the full object without its surroundings with one or multiple regions. Third,
the background should be mostly homogenous, i.e., devoid of high frequency pat-
terns such as checkerboards, as this has proven to the authors to be difficult for the
autoencoder to reconstruct.

There are also downsides to this algorithm. It is quite hard to find a suitable
network capacity, with large models showing a tendency to successfully reconstruct
large anomalous objects. It is also not very robust, with the background color being
important to the detection results. For example, a view of a white boat sailing into a
sunset will prove difficult to detect due to the object’s similarity to the background
resulting in a low reconstruction error.

From the results described in Sections 6.3, 6.4 and 6.5, it is obvious that noise
reduction techniques are needed. While the clip chosen to signify this was particu-
larly hard with building reflections, glitter and objects in the water, it demonstrates
how the algorithm functions without any postprocessing. The results also show that

52



7.1 Evaluation of our algorithm’s performance

(a) (b)

Figure 7.1: Two images from the MODD2 dataset. Figure 7.1a, depicts several boats
that have sharp contrasts with the background. Figure 7.1b depicts a harbour and a
buoy. The buoy has a color that blends well into the background making it difficult
to see, which in turn makes it difficult to detect for the algorithm. For visualization
purposes, it has been marked with magenta. It is likely that the reconstruction error
for the boat will be larger than the error for the buoy since it differs more from its
background.

the noise reduction additions work well. It should be noted that such additions may
impair the performance of the anomaly detection system to detect unknown un-
knowns as our experiences on objects shapes how we design the noise reduction. In
this case, the temporal matching mitigates detection of objects that quickly change
shape, which may also stop certain legitimate anomalies with those properties from
being detected.

Considerations on the training data
The algorithm was trained on roughly 200000 images. While this proved sufficient
for getting decent performance on samples similar to the training data, evaluating
the algorithm on recordings captured during significantly different conditions re-
sulted in an increase in false positives. Thus, while the amount of data was likely
enough, it was not varied enough to make the model generalize well to scenes that
were very different to those seen in the training data. The takeaway from this is that
when gauging data requirements, it is important to remember that sequential im-
ages from video recordings, such as those used in this project, contribute less to the
domain subspace coverage due to their shared information. An illustration of this is
shown in Figure 7.2.

The data used for training the algorithm is likely noisy. The data was manually
annotated by removing what the authors classified as anomalies. While rules were
set up to decide what was to be considered clean data, the classification was not
always obvious. This could have been mitigated by a firmer understanding of what
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Figure 7.2: Three sequential frames from the training dataset which demonstrates
how much information is shared between the sequential video frames used to train
the neural network.

is to be considered anomalous from the outset, which depends on having domain
knowledge.

Data requirements depends on the variability of the domain. The environmental
data used in this project varies with many factors, such as time of day, season of
the year, sea region, water on the lens and their many interchanging variations. This
makes data gathering for a general model difficult and time consuming. This is
also a problem in our model, as can be seen in Figure 6.2a, where the top four are
more similar to the training data than the bottom one, and also significantly better
reconstructed.

Anomaly detection evaluation
Our domain-specific adaptations makes using existing anomaly detection evaluation
data sets difficult. A wide variety of image data sets aimed at anomaly detection
exist e.g., the pedestrian data set [Mahadevan et al., 2010]. However, in the case of
this project, several domain-specific adaptations have been made to the algorithm
which would have had to be removed or redesigned in order to make the algorithm
useful on those data sets. Therefore, it was decided that the MODD2 data set was
to be used. While it is not an anomaly detection evaluation dataset, it is a data set
from the algorithm’s domain of maritime obstacle detection.

The algorithm’s score for the MODD2 dataset is shown in Table 6.1. While
it is poor compared to the supervised algorithms’ score shown in the same table,
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they are not directly comparable. This is mainly due to two reasons: algorithm type
and evaluation rules. Regarding the algorithm types, the three listed models are not
made for anomaly detection, but rather supervised pixel classification. Supervised
methods for detection tasks inherently have an advantage over their unsupervised
counterparts, given that there is annotated data that covers the task at hand, as the
approximated function can be more directly evaluated. In this case, the listed algo-
rithms were trained on a dataset similar to MODD2, with pixel-level annotations
for objects that were to be marked as obstacles.

The MODD2 evaluation rules are a bad fit for our algorithm. The evaluation
script used by MODD2 disregards segments which crosses the horizon line. This
means that only objects that are fully encapsulated by image regions containing
water will be considered, which limits the evaluated objects to small ones, due to
the low camera position of the recording. This poses an issue for the suggested
algorithm as it depends on the segmentation algorithm being able to encapsulate the
object alone within one or multiple segmented regions, which is difficult for objects
that have an area of a few pixels. This issue is illustrated in Figure 7.3.

Figure 7.3: An image from the MODD2 dataset demonstrating the issue with us-
ing it as a performance indicator for obstacle detection. The image contains three
evaluated objects, of which all are buoys, i.e., the two boats are not counted.

Large objects, such as other surface vehicles, are highly relevant to the obsta-
cle collision task. Thus, to disregard these objects and focus the evaluation on very
small objects, such as distant buoys, leads to a poor indication of performance on
the maritime obstacle detection task this algorithm is adapted to. While this dataset
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in particular is skewed toward favoring detection of certain object classes, the per-
formance of an anomaly detection system in general is hard to measure as the eval-
uation data must cover a significant part of the anomaly space to provide a good
measurement, and that coverage may be hard to gauge simply due to the anomalies
being anomalies.

Algorithm refresh rate constraints
The time needed for inference puts constraints on the surface vehicle. The position
of the segments in the image if regarded over time will vary with the velocity of the
USV. With a high velocity and low algorithm refresh rate, the difference between
images will be large. An illustration of how far a vehicle travels at different speeds
during one update of a 1 Hz algorithm is shown in Figure 7.4.

Figure 7.4: Illustration of the distance travelled by boats travelling at 3, 10 and 30
knots respectively in the time frame between predictions of our algorithm. In the
images, t represents the current time step, v represents the velocity, d is the distance
travelled and each tick on the bar below the images represents 5 meters.

56



7.2 Algorithm components

The algorithm’s refresh rate in its current state poses a problem to its useful-
ness. This is due to it currently processing images at a frequency of roughly 1 Hz.
Because of the spatial nature of the features used to match segments, scene changes
attainable at 1 Hz may cause the features of a segment to become too dissimilar
between frames. Thus, unless improvements can be made to the algorithm’s perfor-
mance, it is necessary to limit the velocity at which a vehicle is allowed to rely on
the system. During testing, roughly 70% of the computation time was used by the
per region logic, which was responsible for combining the reconstructions and seg-
mented regions. This should be highly parallellizable, implying that a higher refresh
rate is possible to attain.

7.2 Algorithm components

Neural network considerations and issues
Choosing β Fine tuning a β -VAE can be difficult. The loss of a β -VAE depends
on two factors that vary independently: the reconstruction loss and the Kullback-
Leibler divergence.

The reconstruction loss varies with the input size. Given that the input image
size is incremented, the reconstruction loss will increase. This is due to the error
being calculated as the euclidean norm of the original image and its reconstruction.

The Kullback-Leibler divergence varies with the latent size of the code. An
increase in the number of latent variables in the code will cause the Kullback-Leibler
divergence to increase, since the difference between the distribution of each latent
variable and a distribution N (0,1) is always greater than 0. This poses a tricky
problem in choosing β as it depends on both the code size and the input size.

Network code capacity When utilizing a VAE as is done in this project, it is im-
portant to limit the reconstructive capacity. This can in part be controlled by ma-
nipulating the code size of the VAE. It impacts how much information can be used
during the decoding, and as such, it is easy to think that a VAE with a larger code
size is a better network. However, depending on the task, the ideal network might be
one which only encodes the most important features by being forced to work with
a small code size. If the network is given more variables to work with, it will find
a representation for the easier parts of the data while being allowed to map harder
parts more directly to the reconstruction. This means that the additional variables
in the code could be used to represent previously unseen data. An example of this
problem is presented in Figure 7.5.

In Figure 6.2e, reconstructions by networks with differing code sizes are illus-
trated. While the neural network using the smallest code size of 8 produces recon-
structions that are hard to interpret, the VAE with the largest code size has a too
great reconstructive ability for this task. During training the network has never seen
e.g., boats and should therefore perform poorly at reconstructing them. However,
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(a) (b)

Figure 7.5: Illustration of the code size required to reconstruct a circle and a trian-
gle. The circle in Figure 7.5a, requires a parameter for x, y and r while the triangle
in Figure 7.5b, needs a minimum of 6, x0,x1,x2,y0,y1 and y2. Given an autoen-
coder trained to reconstruct images of circles, by increasing the code size from 3
to 9, it would give the autoencoder 6 free parameters which are not necessary for
reconstructing a circle. If an image of a triangle would be used as an input to the
autoencoder, the other 6 parameters could be used to find a representation of the
triangle.

in the reconstructed image containing a large boat, it is nevertheless slightly recon-
structed, which would have interfered with it being detected as an anomaly.

For our algorithm, a key component is the network’s inability to reconstruct
objects unseen during training. Thus, it is necessary to limit the network’s code ca-
pacity such that the network is poor at reconstructing the anomalies yet satisfyingly
good at representing the non-anomalous components of the scene. Adjusting the
z dimensions changes the sensitivity of the network, with a smaller z leading to a
higher sensitivity, which thus needs to be adjusted according to the task.

Tiling Less parameters are needed when using a smaller input. When using tiling,
the image would be divided up into smaller segments before being passed to the net-
work. With the smaller input dimension, the number of parameters of the network
also decreases. This is beneficial as the system is limited by the amount of available
memory.

By splitting the image, the system is allowed to act on a more local stage. This
makes it easier for the algorithm to reconstruct details in the image. The trade off is
that cutting the image into smaller segments removes contextual information, i.e the
information from neighbouring tiles. Additionally tiling becomes disastrous when
anomalous objects are found in the seams between the tiles as in those cases the
anomalous objects found in the original image are split.

Ultimately, tiling was not used in our algorithm. This was due to the benefits
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of lower memory requirements were not needed after changes were made to the
network structure and because of the loss of contextual information, which led to
bad reconstructions at the seams.

Perceptual loss Perceptual loss builds on transfer learning from a pretrained net-
work. This is beneficial as a network having been trained on big data sets of sizes not
available for the own task can be utilized. For a convolutional network, this may for
example allow information on how to interpret objects to flow from the pretrained
network.

The network used for transfer learning also poses limitations. When it comes
to images, this primarily means that the input images need to be of a specific size.
This is due to the pretrained network having a specific input size. For the Ima-
geNet dataset, the pretrained networks’ input sizes are usually between 224x224
to 512x512. In our algorithm, the EfficientNet-B7 network was used, in part due
to its large 600x600 input size. However, our algorithm which reconstructs images
of size 1024x1024 will still have its reconstruction downsampled before a loss is
calculated, resulting in a loss in information.

Superpixel segmentation considerations
Having to function in real time imposes limitations on the available superpixel seg-
mentation methods. Several methods were tested during development. The most
interesting method was the Bayesian Adaptive Superpixel Segmentation, BASS
[Uziel et al., 2019]. This segmentation method did not meet the systems perfor-
mance requirements as it segmented one image in approximately 30 seconds. In-
stead the QuickShift method described by Fulkerson was used, which could perform
the segmentation process in less than a second. If a faster version of BASS was
available it would be interesting to use. A qualitative comparison between BASS
and QuickShift can be seen in Figure 7.6.

Using BASS would add adaptability to the system. When using the QuickShift
algorithm it is necessary to determine the maximum distance that a pixel can be
from its cluster centroid. As such, an object which is larger than the given maximum
distance will be segmented into more than one segment. When evaluating segments
over time this can be an issue as the segments which represent large objects will
vary. The adaptability of BASS would allow the algorithm to determine the number
of segments to split the image into, potentially resulting in a solution to the problem.

IOU was implemented to circumvent segment variability issues. As objects get
larger, QuickShift will require more segments in order to encapsulate them. Since
the matching method used to match segments over time depends on features ex-
tracted from the segments it causes concerns as the features will vary due to the
object requiring more than one segment. The idea with IOU was to combat this
behaviour as it would give the system an opportunity to label an active segment
as anomalous not only if it resembles an active segment from previous time steps
but also based on the segment overlap in relation to segments found in previous
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Figure 7.6: A qualitative comparison between the segmentation algorithms Quick-
Shift and BASS as they are tasked with segmenting Figure 3.16. The left image has
been segmented by QuickShift while the right image has been segmented by BASS.
While the segmentation of the ship in the background is of similar quality, BASS
is able to segment the image using far less segments due to the adaptability of the
algorithm.

time steps. The approach was quickly discarded as it was inherently poor at moving
targets.

Segment joining can accidentally join different physical objects. By joining
neighbouring segments that are classified as anomalous some of the issues related
to QuickShift segmenting large objects as multiple segments can be avoided. This
poses a problem in cases where two or more segments of different anomalous ob-
jects are neighbouring each other. In that case, the algorithm will join all those
segments together, which results in the segment matching failing due to the feature
consistency requirements.

Stereo vision and temporal matching
It is necessary to find a suitable solution to the correspondence problem. Since the
method used to match corresponding points is the feature matching method, there
are some concerns regarding the robustness of the depth estimations. This is due
to the features being hand crafted, which is also true for the temporal matching
addition to the algorithm. For a production level algorithm, it would be wise to apply
more sophisticated methods such as Markov random field minimization, feature
extraction using a deep neural network or a classic feature extraction method such
as SURF [Bay et al., 2006].

Segment joining makes distance estimation less reliable. The logic controlling
what segments can be joined is non-discriminatory and will join all neighbouring
anomalous segments. Thus, it is possible that the algorithm joins segments from
different objects. This can have catastrophic effects on the depth estimation since
the two objects rarely will be at a similar distance, causing the error of the distance
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estimation to increase dramatically. In the same manner, this affects the temporal
matching algorithm, as an incorrect segment joining will cause an object to change
shape.

The temporal matching component of the algorithm effectively reduces the false
positives, but is not without issues. One problem with this technique is how it affects
the algorithm’s otherwise rather pure perception of what an anomaly is, as discussed
earlier. Another problem with temporal matching is its dependence on the anomaly’s
location within the image. When setting up this component, both worst-case refresh
rates of the algorithm and maximum object movement speed across the image needs
to be considered as anomalies may otherwise get discarded.

7.3 Ethics

Algorithms can have multiple areas of use. Once a product has been produced and
left the hands of its creator, it is up to the users to determine how to use it. In case of
the algorithm that has been presented, the authors’ intentions are that the algorithm
is to be used solely for the purpose of avoiding dangerous situations by locating
objects in image data. However, nothing stops the algorithm from being used to find
things to target instead.

An anomaly detection algorithm is discriminatory in nature. The objective of
an anomaly detection algorithm is to find patterns that deviate from the norm. But
determining what the norm is is not as easy as one might expect. Patterns which
are completely normal but have not been represented in the training data of the
algorithm will be seen as anomalous. If the same data and purpose stated in this
thesis would be used then this could mean that the algorithm would become useless
during winter as it would not have trained for those conditions.

In an environment filled with people, training the algorithm using biased data
could cause the algorithm to behave egregiously. Imagine the algorithm applied to
the problem of finding suspicious individuals at an airport. Depending on the data
used to train the algorithm, the norm of what a non-suspicious person looks like
will be different. If the data is not thoroughly balanced based on these differences,
it could lead to the algorithm not evaluating an individual’s suspiciousness based on
the proper features. In a worst case scenario, this could lead to the algorithm being
discriminative toward people having some feature.

It is important that the results from the algorithm is interpreted as intended. The
algorithm is intended to locate anomalies using only image data. This means that an
anomaly detection from the algorithm implies that there is an object at that location.
On the other hand, a lack of a detection does not imply that the area is safe. The dif-
ference between the two might sound small but they carry large implications related
to how the algorithm should be used. The system should be used as a component of
a larger collision avoidance architecture and therefore it is important that the user
understands its purpose.
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In this thesis, an image-based anomaly detection algorithm has been covered and
tested. In our tests, some strengths are seen but also weaknesses and thus, possibil-
ities for improvements.

The options for evaluating the performance of an algorithm on this task is cur-
rently limited. While data sets such as MODD2 exist, they are not a good enough
fit for the problem. Therefore, a data set should be gathered and annotated to en-
sure that algorithms with a similar purpose as the one presented in this paper can
be assessed. During the creation of the data set, clear rules as to what constitutes
anomalies need to be determined. These rules might entail conditions such as: min-
imum size of anomalies and what object types that are not deemed anomalous e.g
small or otherwise insignificant objects.

Further research is needed to find the best segmentation method. In the current
version, the usefulness of the algorithm is mostly limited by the segmentation. The
processing of the segmented regions is responsible for the majority of the process-
ing time per image and as such it is a prime candidate to research to improve the
algorithm’s performance.

More work is required to optimize the hyper parameters fed to the network and
segmentation method. The hyper parameters have all been selected manually and
are as such a result of the ability of the authors to determine what settings perform
better. This is mainly due to lacking a suitable data set to evaluate against. As such
it would be advisable to annotate a data set using bounding boxes to evaluate the
algorithm’s settings’ performance in a more robust manner.

Investigating methods to reduce the algorithm’s dependence on color. The color-
based reconstruction error has its weaknesses, with the background and object hav-
ing to be in somewhat stark contrast to each other. If this could be avoided, e.g,. by
using another metric than pixel intensity for how well a region is reconstructed, the
algorithm could see its usefulness extended to new areas.

In its proposed state, the algorithm matches segments over time by evaluating
the euclidean norm over a set of hand crafted features. However, this method is
not robust. A better approach could be to e.g., train a neural network such as an
autoencoder to learn to reconstruct segments found in the images in order to extract
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useful features on their e.g., shapes and contents. This could make for a more robust
method of matching the segments over time as well as matching between the two
cameras’ perspectives.

Image-based anomaly detection has applications outside the maritime domain.
Currently the most limiting factor of the algorithm is its processing time. In an
environment such as on a USV where it is necessary to make split second decisions,
the algorithm might not be usable. If trained on other data, the algorithm could be
applied to similar problems in other domains such as airport security or parking
surveillance to detect e.g., lost luggage or illegal parking.
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