
LUND UNIVERSITY

MASTER THESIS

Reinforcement Learning in Industrial
Applications

Author:
Niklas KOTARSKY
Eric BERGVALL

Supervisor:
Dr. Johan GRÖNQVIST

Examiner:
Prof. Bo Bernhardsson

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Engineering, Engineering Physics

in the

Intersection of Reinforcement Learning and Automatic Control
Department of Automatic Control

October 14, 2020

http://www.lu.se
https://www.lth.se/forskning/forskning-i-korthet/reglerteknik/
https://www.lth.se/forskning/forskning-i-korthet/reglerteknik/
http://www.control.lth.se/personnel/johan-groenqvist/
http://control.lth.se/personnel/bo-bernhardsson/
http://researchgroup.university.com
http://www.control.lth.se/

iii

Declaration of Authorship
We, Niklas Kotarsky, Eric Bergvall, declare that this thesis titled, “Reinforcement
Learning in Industrial Applications” and the work presented in it are our own. We
confirm that:

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where we have consulted the published work of others, this is always clearly
attributed.

• Where we have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely our own work.

• We have acknowledged all main sources of help.

• Where the thesis is based on work done by ourself jointly with others, we have
made clear exactly what was done by others and what we have contributed
ourself.

Signed: Eric Bergvall, Niklas Kotarsky

Date: 23/9-2020

v

“People worry that computers will get too smart and take over the world, but the real problem
is that they’re too stupid and they’ve already taken over the world.”

Pedro Domingos

vii

LUND UNIVERSITY

Abstract
Automatic Control

Department of Automatic Control

Master of Science in Engineering, Engineering Physics

Reinforcement Learning in Industrial Applications

by Niklas KOTARSKY

Eric BERGVALL

Although reinforcement learning has gained great success in computer games,
there are only few yet known implementations in industrial applications. This de-
spite the fact that reinforcement learning offers interesting methods to optimise the
control of nonlinear processes. In this thesis we have used two model free reinforce-
ment learning algorithms (PPO and DDPG) to control three different simulations of
industrial processes, the simplified Tennessee Eastman, original Tennessee Eastman
and the Haldex brake valve. Both reinforcement learning algorithms could in al-
most all cases learn to reach a set point. In addition, hyperparameters were found
to have a high impact on training performance. In conclusion, our tests indicate that
the model free reinforcement learning algorithms are basically capable of control-
ling industrial processes. Python code for the PPO algorithm applied to the Original
Tennesse Eastman process can be found at Github. 1

1https://github.com/Heigke/Reinforcement-Learning-In-Industrial-Applications

HTTP://WWW.LU.SE
http://www.control.lth.se/
http://www.control.lth.se/

ix

Acknowledgements
Our sincerest thanks and well wishes to,
Johan Grönqvist at the Automatic Control department at Lund University for the
many hours of advice and discussions,
Johan Roos, Adrian Sahlman and Johan Ullén at Sentian.AI for their never ending
stream of curiosity and help in the facing of new challenges,
Pontus Fyhr and Edo Drenth at Haldex Brake Products AB for letting us explore the
world of RL with the help of their model.

xi

Statement of Work
In this thesis Niklas Kotarsky and Eric Bergvall have together investigated model

free reinforcement learning on industrial processes. Although the work has been
done as a team it shall be clearly stated that Niklas Kotarsky has worked with the
DDPG algorithm and Eric Bergvall with the PPO algorithm. The STE process was
implemented by Sentian.AI, the Haldex brake was created by Haldex Brake Products
AB, the OTE process was created by J. J. DOWNS and E. F. VOGEL. The wrapping of
the OTE process was to a big extent done by Niklas Kotarsky and Johan Grönqvist.
The wrapping of the Brake, so that it behaved like the OpenAI gym, was done by
Niklas Kotarsky.

During a major revision of the thesis, done by Niklas Kotarsky during an inten-
sive week, the following was rewritten.

Eric Bergvall’s original formulation of the abstract was rewritten to explain what
has been done, what we have done and the conclusions. In chapter 1, introduction
sections written by Eric Bergvall about our perspective of reinforcement learning
(section 1.1.1), the reinforcement learning today (section 1.1.2) and in the future (sec-
tions 1.1.3) was distilled into a compact introduction (section 1.1). The technical
introduction to model free reinforcement learning (section 1.2.1) was jointly written
by Eric Bergvall and Niklas Kotarsky at first but Eric’s contribution of On-Off-policy
RL was removed at the revision since this difference is not discussed, to any great
length, in the thesis. Section 1.3 The different environments was originally written
by Eric Bergvall but the detailed descriptions of the environments were reduced to
the existing compact explanation. This also due to the fact that environment details
are discussed to a very small extent in the thesis. Section 1.4 Quantitative Prob-
lem Formulation was to a beginning written by Eric Bergvall but was rewritten by
Niklas Kotarsky during the revision. In chapter 2 the section 2.2 Method was first
written by Eric Bergvall and was rewritten by Niklas Kotarsky. The introduction to
Chapter 3 LQP Environment was written by Eric Bergvall but removed to make the
thesis easier to read. Two sections 3.1.2 and 3.1.3 with the titles “Can the algorithms
handle larger systems?” and “Can the algorithms handle oscillating systems?” were
written by Eric Bergvall but were removed due to their sparse information. In chap-
ter 4 Haldex Brake, section 4.3 Discussion was originally written by Eric Bergvall but
was rewritten by Niklas Kotarsky. In chapter 6 Original Tennessee Eastman chem-
ical plant the introduction was in the beginning written by Eric Bergvall but later
revised by Niklas Kotarsky. Chapter 8 Discussion from an Industrial Perspective
was jointly written by Eric Bergvall and Niklas Kotarsky and later revised by Niklas
Kotarsky. Also, chapter 9 Conclusion was at the beginning written by Eric Bergvall
and Niklas Kotarsky together and later rewritten by Niklas Kotarsky.

Thus the sections 1.2.3, 1.2.4, 2.1, 3.1, 5.2, 6.1 and 7.2 were solely written by Eric
Bergvall and the rest was written or rewritten by Niklas Kotarsky. The implemen-
tation details of the PPO algorithm can be found in section 1.2.4 and for the DDPG
algorithm it can be found in section 1.2.7.

xiii

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

Statement of Work xi

1 Introduction 1
1.1 Background and Motivation . 1

1.1.1 General Problem Formulation . 1
1.1.2 Previous Work . 2

1.2 The Basic of model free Reinforcement Learning 2
1.2.1 Technical introduction to model free reinforcement learning . . 2
1.2.2 Policy Gradients . 2
1.2.3 Trust Region and Approximations thereof 3
1.2.4 Proximal Policy Optimisation . 3
1.2.5 Bellman’s Equation and Q learning 5
1.2.6 Deep Deterministic Policy Gradient 6
1.2.7 Implementation details of the DDPG algorithm in this thesis . . 7

1.3 The different environments . 8
1.3.1 Linear Quadratic Problem . 8
1.3.2 Simplified Tennessee Eastman 9
1.3.3 Original Tennessee Eastman . 10
1.3.4 Haldex Brake Valve . 10

1.4 Quantitative Problem Formulation . 10

2 General Methods 13
2.1 Hardware . 13

2.1.1 Laptops . 13
2.1.2 Servers . 13

2.2 Test set up . 14

3 LQP environment: 15
3.1 Can the algorithms learn simple setpoint changes? 15
3.2 Can a roll up length be used that is shorter than the systems time

dependency? . 15
3.2.1 Reward design on LQP . 18

4 Haldex Brake 21
4.1 Experiments . 21
4.2 Results and discussion . 21

xiv

5 Simplified Tennessee Eastman 25
5.1 Experiments, results and discussion for the DDPG on STE 25

5.1.1 How does γ affect training performance 25
5.1.2 How different types of noise affect training performance 28
5.1.3 Do expert trajectories help performance? 29

5.2 Experiments with PPO . 30

6 Original Tennessee Eastman chemical plant 35
6.1 PPO algorithm . 35

6.1.1 Results . 35
6.1.2 Discussion . 42

6.2 DDPG algorithm on Original Tennessee Eastman process 43

7 General discussion 47
7.1 Model free reinforcement learning in gaming and industrial processes 48
7.2 Project Reflections . 48

8 Conclusion 51

Bibliography 53

xv

List of Abbreviations

STE Simplified Tennessee Eastman
OTE Original Tennessee Eastman
LQR Linear Quadratic Regulator
PPO Proximal Policy Optimisation
DDPG Deep Deterministic Policy Gradient
RL Reinforcement Learning

xvii

To infinity and beyond!. . .

1

Chapter 1

Introduction

1.1 Background and Motivation

Model free reinforcement learning has lately achieved great success by learning how
to play video games. Thus, algorithms can achieve higher scores than humans under
the same conditions. These algorithms are also often based on deep neural networks,
which successfully map the video game frames to actions. This makes these methods
promising candidates for controlling highly nonlinear tasks. These tasks often pro-
pose great challenges in the field of control theory. Despite these facts, reinforcement
learning has not yet seen widespread implementation in the industry. The reason for
that might be a yet unknown behaviour of the algorithms in real industrial settings.
Therefore it is of importance to test the algorithms on problems which are as close to
the real industrial processes as possible.

In this thesis we have studied how model free reinforcement learning algorithms
behave in three different simulations of industrial processes.

1.1.1 General Problem Formulation

In this thesis we have investigated how RL algorithms can handle complex industrial
processes. In the beginning, the RL algorithms were tested on the Linear Quadratic
Problem (LQP) environment. Thereafter, the complexity was increased gradually to
see the capabilities and failure modes of our chosen algorithms.

The next step was to implement the algorithms in more complex environments
like the Simplified Tennesee Eastman process (STE) implemented by Sentian.AI,
Original Tennesee Eastman challenge (OTE), and the Haldex brake valve. These
models are described in more detail in section 1.3.

The hypothesis of this thesis was that:

Hypothesis 1 Model-free Reinforcement Learning algorithms are able to learn from an in-
dustrial application process just like in the previous successes of Reinforcement Learning in
video games.

In order to test this hypothesis we wanted to answer the, following general ques-
tions:

Question 1 How can model free Reinforcement Learning algorithms manage complex pro-
cesses in an increasing complexity ladder represented by LQP→STE→Haldex Brake Valve→OTE?

Question 2 If the Reinforcement Learning algorithms succeed, what might be the key char-
acteristics of the architecture or interface with it that make it achieve its goals?

2 Chapter 1. Introduction

Question 3 If the Reinforcement Learning algorithms fail, what might be the key charac-
teristics of the architecture that cause the problem?

Question 4 Is model-free Reinforcement Learning, by itself, suitable for industrial applica-
tions?

After initial experimentation and results we adjusted the original problem for-
mulation see 1.4.

1.1.2 Previous Work

Before diving into the basic theory of reinforcement learning we take a look at what
already has been done in this discipline. An excellent introduction to the perspective
we try to take on in this thesis is given by Steven Spielberg, 2020. He goes through
the impressive work done by previous automatic control researchers in their quest
to identify and update the control of complex industrial processes, both discrete
and continuous. In a classical setting, some critical problems arise when one need
to reidentify the system for a process. This is because one often need to stop the
process and also expose it to external excitations.

A comparison between the fundamentals of model predictive control and rein-
forcement learning is presented in the paper by Joohyun Shin, 2019 in section 3 table
1. This might be of interest if one comes from a classical automatic control perspec-
tive and want to know the pitfalls and strengths of the two methods.

Furthermore if one wants to know how (online) adaptive control strategies in-
spire by reinforcement learning to find optimal solutions the paper by Lewis, Vrabie,
and Vamvoudakis, 2012 is most rewarding.

There are many attempts to close the gap between reinforcement learning and
classical automatic control with the vision to learn from each other’s disciplines but
there is still some way to go, hence we write this thesis.

1.2 The Basic of model free Reinforcement Learning

1.2.1 Technical introduction to model free reinforcement learning

In the most general setting of reinforcement learning, we have an agent that interacts
with its environment. The environment changes when the agent performs an action
and also provides the agent with an observation and a reward as feedback. Loosely
speaking, the reward measures how good the action given the state was. The agent’s
goal is to maximise the cumulative reward.

The agent’s behavior is summarised in the policy, which is a function that maps
the environment states to actions. It might be most natural to have a deterministic
policy, meaning that each state is mapped to an action. There are also many RL algo-
rithms that use a policy that returns a conditional probability over the actions given
the state. From this distribution, one can sample an action to mimic exploration or
simply just use expectation. There are multiple reasons why one would want to do
this. One such reason is the so called "Policy gradients" algorithm.

1.2.2 Policy Gradients

In order to have the agent learn from it’s past experience in the environment we need
to be able to maximise the expected reward 1.1 over the game with respect to some
set of Policies Π.

1.2. The Basic of model free Reinforcement Learning 3

Jπ = E[
tend

∑
t=0

r(st, at)] s.t.at = π(st); st+1 = Env(st, at) (1.1)

The simplest way of maximising the expected reward 1.1 would be to use stochas-
tic gradient descent, but this requires us to take the derivative of the environment
and the reward function. Both of these derivatives are often unknown or intractable
to calculate. Policy gradients circumvents this problem by using a stochastic policy
combined with a few clever tricks. First of all using stochastic policy lets us de-
fine the probability of getting a certain trajectory τ if we follow the policy π. With
these definitions it is possible to derive the policy gradient to be 1.3 as done in An
Outsider’s Tour of Reinforcement Learning. Were τt denotes the trajectory up to time t.

log(π(τ)) =
tend

∑
t=0

log(π(at|st)) (1.2)

Jpg =
tend

∑
t=0

log(π(at|st))R(at, st|τt) (1.3)

1.2.3 Trust Region and Approximations thereof

A policy gradient step can easily result in an accidental step which decreases per-
formance in the objective-function-landscape. Therefore, to bound the step size a
method called trust region was developed. The trust region gives a maximum step
size allowed. The trust region creates this by a measurement of change of action
distributions. After that the update chooses an optimal step within this region. This
is done by maximising the advantage subject to the trust region. In this optimisation
there appears a second order matrix derivative called the Hessian matrix, and its
inverse which are computationally expensive. The optimisation is instead approxi-
mated with soft constraints in the PPO algorithm which is described below. The soft
constraint could be a clipping in the objective function which we will go through
more thoroughly in section 1.2.4.

1.2.4 Proximal Policy Optimisation

The PPO algorithm works in the following fashion, say the algorithm has taken an
action which has resulted in a better discounted reward than it expected with the
value function. Then the update of the network simply increases the probability
of sampling that action. However, the update is limited in such a way that it does
not get to over-optimistic. The same thing goes for the opposite direction, if the
PPO has taken an action which has resulted in a worse discounted reward than it
expected then it decreases this probability. The update is not too over-pessimistic so
the update is limited. The objective function which should be maximized is given in
equation 1.4.

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(1.4)

Beginning from the outer part of the equation the Êt means the update will take a
mean over a batch of actions. The rt(θ) is described in equation 1.5 where θ refers to

4 Chapter 1. Introduction

the neural networks parameters.

rt(θ) =
πθ (at | st)

πθold (at | st)
(1.5)

This fraction corresponds to the ratio of probability between current policy and old
policy for the action the PPO has taken. PPO is based on the policy gradient de-
scribed above. The update then needs to be according to the current policy, in other
words, on-policy because the update is conditioned on the current policy. In a prac-
tical sense, when implementing PPO, mini-batches are used. Therefore the update
also compensates for the fact that the current policy changes after every update.
That is why the rt(θ) appears in equation 1.4. It compensates for actions that seem
to come from another distribution than the current one. The ratio in equation 1.5,
the denominator becomes big if the action has a high probability for the old policy,
and the nominator becomes small if the action is unlikely for the new policy and
thus the fraction becomes small, weighting this action less in the update. So the PPO
algorithm does a small amount of off-policy updates but tries to compensate for this
by reducing the size of updates which are more off-policy.

The advantage, Ât in equation 1.4 is basically the difference between how much
discounted reward the PPO got and how much it thought it would get, given by the
value function, see equation 1.6.

Ât :=
T

∑
k=t+1

γk−t−1Rk −V (st) (1.6)

Rk is the reward at time step k and the γ is a discount factor. The ε in equation 1.4 is
a hyperparameter which was set to 0.2 in this thesis.

Figure 1.1 shows the clipping of the objective function in the PPO. In equation 1.4
this is refered to as clip, an operator which limits the function to the given limits. As
described in the section about trust regions, the approximation of the update limi-
tation is done by applying a soft constraint. The soft constraint which plateau the
objective function limits the gradient in the update of the policy networks weights.

To make sure that the PPO algorithm keeps exploring, an entropy term is intro-

FIGURE 1.1: A positive advantage for the PPO means that it went bet-
ter than the value function expected and a negative advantage means
it went worse than the value function expected. We see how the gra-
dient of the objective function is clipped when moving too much in
the desired direction (upwards). The figure is taken from an article

by John Schulman, 2017

1.2. The Basic of model free Reinforcement Learning 5

duced in the objective function. Recall that entropy is just a negative sum of prob-
abilities times the logarithm of the probability which in layman terms is a metric of
"information", "surprise" or "uncertainty" as explained by Markowsky, 2017. More
specifically the entropy h(x) for a density function f (x) with support X can be writ-
ten as equation 1.7.

h(X) = −
∫
X

f (x) log f (x)dx (1.7)

So the objective function becomes as follows, see equation 1.8, where α is a hyperpa-
rameter mostly set to around 10−4.

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât + α · Entropy

)]
(1.8)

The implementation of this algorithm was to a big extent done by Goodger, 2020,
which we used. The alterations made were mostly concerning the application of the
algorithm to new environments and the hyperparameters were, to a large extent,
kept as in Nikolaj’s setting for "BipedalWalkerHardcore-v2".

An interesting note in the case of doing a novel implementation is that Nikolaj’s im-
plementation uses something called a recurrent sequence. The recurrent sequence
is a fixed amount of timesteps that the update roll through the recurrent networks
before correcting its action with backpropagation. This means it only corrects the
last action in the so-called recurrent sequence. So when updating the PPO algorithm
it only corrects the action at certain increments in time and not every time step.

1.2.5 Bellman’s Equation and Q learning

Policy gradients are just one solution to the problem that the environment and the
reward function in general are non differentiable. Another way to solve this problem
would be to find an approximation to the Q function, which maps every state and
action pair to their expected discounted reward 1.9. This effectively estimates how
good an action is. The equation that defines the Q function is often referred to as the
Bellman equation. If the Q function is given then the task of maximising the reward
turns into a maximisation over the actions space instead.

Q(st, at) = Est+1|st,at [r(st, at, st+1) + γmaxa∈AQ(st+1, a)] (1.9)

In most RL settings the Q function is not known, but there are cases were it is
easy to estimate. This estimation is normally done through minimising the tempo-
ral difference error of the bellman equation 1.10, were Q̂ is the estimate of the Q
function.

TDerror =

(
Q̂(s, a)−E

[
r(s, a) + ∑

s′∈S
P(s′|s, a)γmaxa∈A(Q̂(s′, a))

])2

(1.10)

The function approximators used in Q learning are often neural networks. This
gives rise to a well known failure mode referred to as "Catastrophic value approxi-
mation", which also affects some of Q learning’s extensions. This failure mode arises
due to that the neural networks learn unrealistically high estimations for seldom or
unseen state and action pair.

6 Chapter 1. Introduction

1.2.6 Deep Deterministic Policy Gradient

The algorithm deep deterministic policy gradient (DDPG) can best be explained as
a mixture of the actor critic algorithm and deep Q learning Timothy P. Lillicrap,
2015. Introduction to the corresponding algorithm is probably easiest from the per-
spective of deep Q-learning. In deep Q learning, the policy is usually defined as the
maximum over the action space. If the action space is continuous this maximisa-
tion turns into a costly non-convex optimisation. To reduce the computational cost,
DDPG uses a policy network π instead, which task it is to maximise the Q-network
1.11 over the actions given the state.

Lπ = − 1
N

N

∑
t=0

Q(st, π(st)) (1.11)

The loss term for the Q-network is very similar to the loss term of deep Q learn-
ing. Like in deep Q learning, target networks are used in order to stabilise the algo-
rithm. A target networks is defined as the geometric mean of the normal network.
The big difference is that the policy network is used instead of the maximum opera-
tor. This gives the loss for the Q-function as 1.12.

LQ =
1
N

N

∑
t=0

(Q(st, at)− rt − γQtarget(st+1, πtarget(st+1)))
2 (1.12)

To keep the training behaviour as similar as possible to deep Q learning the pol-
icy network should be trained to convergence for every Q network update. This
training scheme is incredibly inefficient, since the Q network is untrained at the start
of training. To improve training times both the policy and the Q network are up-
dated every training iteration.

To increase training efficiency further the DDPG algorithm is normally also trained
on previously collected trajectories. This is achieved by storing all collected trajecto-
ries in a replay buffer. Furthermore it is also possible to add trajectories from other
controllers to the replay buffer, which raises the question if trajectories generated
from other types of controllers or randomly generated trajectories could speed up
the algorithms convergence. This problem was studied in Mel Vecerik, 2017, which
train the DDPG algorithm to control a robot arm to perform different tasks such as
inserting a cable into a connector. They show that the training times can be short-
ened by adding successfully completed trajectories to the replay buffer.

To get an adequate amount of exploration in the environment the actions are
also often purposefully perturbed by noise. The original authors of the DDPG paper
Timothy P. Lillicrap, 2015 recommended noise generated by the Ohrnstein Uhlen-
beck process, but Gaussian distributed noise has also been proven to work, Open AI
spinning up.

The discrete Ohrnstein Uhlenbeck process (OU) is an AR(1) process that always
decays towards its mean. This gives the update equation for the next noise term xt
as 1.13.

at+1 = (1−)at + µ + σet (1.13)

Were is one minus the decay speed, µ is the mean, σ the standard deviation and
et N(0,I) distributed parameter. The noise at is then added as a disturbance to the
policy’s actions.

1.2. The Basic of model free Reinforcement Learning 7

1.2.7 Implementation details of the DDPG algorithm in this thesis

In this study, the DDPG algorithm was implemented stepwise and the multiple
modifications are described in the section below. The different algorithms are all
implemented in Python with the machine learning library Pytorch. The first DDPG
implementation without any extensions is largely based on the GitHub user Higgs-
field’s implementation, DDPG implementation. This code was then modified to be
able to solve the partially observable case with a prioritised replay buffer. To han-
dle the partially observable case, recurrent neural networks were included in both
the policy and the value networks. Due to the fact that we could not find any good
authoritative best practices for how to train the neural networks in the partially ob-
servable case we implemented three different variants.

The first variant splits each trajectory into multiple smaller training examples.
The algorithm is then trained on all time steps in the training example. We also in-
cluded a sequence of burn in steps in the beginning of each training example to allow
the hidden states of the policy and Q networks to converge, as suggested by Steven
Kapturowski, 2019. We also used the old hidden states of the policy and Q network
for initialisation during training, in a similar fashion as Steven Kapturowski, 2019.

We also implemented a training scheme were training samples were indepen-
dently drawn from the replay buffer. The simplest way to implement this is to sam-
ple the training points from the replay buffer. To be able to back propagate the
hidden states they were rolled up from the beginning of the trajectory. This forces
the algorithm to iterate through the batch as well, since the different samples in each
batch all have different roll up lengths.

The last update method we created is a combination of the previous two. It still
only trains on one time step at a time, but utilises a fixed length burn in and roll up
lengths.

The last implementation detail to be discussed is the exploration method. We
designed 3 different noise types for exploration. The probably simplest was the
normal distributed noise. To make this exploration strategy a little less susceptible
to a bad standard deviation the standard deviation was randomised in a reasonable
region.

We also used noise generated from the Ohrnstein Uhlenbeck process. To min-
imise the risk of bad hyperparameter tuning the different parameters of the noise
were distributed uniformly . Another reason why the standard deviation was ran-
domised is that some DDPG algorithms decay the standard deviation during train-
ing. We did not implement this, since it greatly interfered with Python’s multipro-
cessing.

Finally, we also used an AR(2) process of the form 1.2.7, were a is bounded be-
tween 0-1, σ is the standard deviation, et is a N(0,I) randomly distributed variable
and xt the noise that is added to the policy’s action.

xt+1 = (1− a)xt + axt−1 + σet(1.14)

8 Chapter 1. Introduction

1.3 The different environments

In this section we introduce the different process environments used in this mas-
ter thesis. The following three environments have been investigated: Haldex brake,
Simplified Tennessee eastman and the original Tenessee eastman. Every environ-
ment used has been wrapped in classes to represent an OpenAI gym environment
as much as possible. Thus, every environment gets a step function that takes the
policy’s actions as input and advances the process to the next time step. Finally, the
step function returns the observation, reward and if the environment has terminated.
The wrapper classes also have a reset function thereby restarting the environment,
see documentation of the OpenAI gym.

To test our algorithms, we start off with a toy environment. This environment is
based on the Linear Quadratic Regulator (LQR), but with some extensions which we
refer to as Linear Quadratic Problem (LQP). The environments allow us to vary the
degree of complexity on the problem, we can for example vary the number of inputs
and outputs as well as the degree of nonlinearity. After that, we will go through a
more complex industrial process called "Simplified Tennessee Eastman" (STE) which
is a scaled down version of the "Original Tennessee Eastman" (OTE) chemical plant.

1.3.1 Linear Quadratic Problem

The LQR and Linear Quadratic Gaussian-Control (LQG) problems are famous in the
automatic control community and act as good jump-off point for understanding the
RL algorithms. They are based around a linear system 1.15. Note that this equation
actually is a LQG formulation because of the partial observability induced by C and
the added noise ε. Our LQR-with-extension environment will further on be referred
to as LQP. 

xk+1 = Axk + Buk
yk+1 = Cxk+1 + ε
Jk+1 = xT

k Qxk + uT
k Ruk + 2xT

k Nuk

(1.15)

Were the system matrix is called A, the inputs u, the internal states x and the
observables y. Furthermore the reward J is the quadratic distance to origin of the
input and states weighted by the matrices Q, R and N.

This linear system can be minimized analytically by the Riccati difference equa-
tion if the variables A, B, C, Q, R, N and xn are known, as shown in equation 1.16.
Note that the formulation we have used is only valid for a fully observable problem.


ui = −Kixi

Ki =
(

BT
i Si+1B + Ri

)−1 BTSi+1Ai

Si = AT
(

Si+1 − Si+1B
(

BTSi+1B + Ri
)−1 BTSi+1

)
A + Qi, SN = Q

(1.16)

To allow for the study of set point changes the x-term in the reward function J as
shown below in equation 1.17 was modified. In equaton 1.17 the desired setpoint at
timestep k is sk.

xT
k Qxk → (xk − sk)

TQ(xk − sk) (1.17)

1.3. The different environments 9

The following method was used to generate system matrices, see equation 1.18.

Aoscillate = eArandom−AT
random (1.18)

The matrix Arandom is created with normally distributed entries. This ensures that
the system matrix is unitary, thus keeping the energy in the system constant.

1.3.2 Simplified Tennessee Eastman

Both the Original- and the simplified Tennessee Eastman were created as bench-
marks for model predictive control proposed in the articles DOWNS and VOGEL,
1992 and Ricker, 1993. The original Tennessee Eastman is based on processes in
a typical chemical plant. Downs and Vogel proposed it as a challenge to create a
controller without looking at either the code or the internal states. Ricker later de-
veloped the simplified TE, a simplified process that is still difficult to control with
model predictive control.

The STE process is an irreversible chemical reaction in a pressure vessel. More
precisely, chemicals A and C, in vapour phase, become liquid D, (A + C → D).
Below is a schematic sketch of the STE process, see figure 1.2.

FIGURE 1.2: A schematic sketch of the STE process with two inputs
and two direct outputs. Input 1 consists of chemicals A, C and trace
amounts of an inert B. Input 2 consists of pure A. Output 3 is the
purge loss and output 4 is the product. The product flow is adjusted
by a built-in proportional feedback controller (not shown) in response
to variations of the liquid inventory. The sketch is reprinted from an

article by Ricker, 1993.

The process is regulated by a controller changing the valve position of both the
inputs and purge loss to the reactor vessel. The controller also receives 10 measure-
ments from different sensors on the pressure vessel as feedback which are shown in
table 1.1.

For the reward function we used an absolute distance to the desired set point in
pressure (y5), purge A (y7) and product flow (y4). For some of our tests the cost of

10 Chapter 1. Introduction

Variable name Description

y1 Feed 1 flow measurement
y2 Feed 2 flow measurement
y3 Purge flow measurement
y4 Product flow measurement
y5 Pressure
y6 Liquid inventory
y7 Amount of A in purge (mol %)
y8 Amount of B in purge (mol %)
y9 Amount of C in purge (mol %)
y10 Instantaneous cost ($ per kmol product)

TABLE 1.1: The different observations from the STE process.

running the reactor was also included in the reward. In addition, the set point from
scenario 2 in the original article Ricker, 1993 was used. In this scenario the pressure
(y5) has to be increased from 2700 to 2850 pascal, the product flow (y4) from 100 to
130 and the purge fraction A (y7) from 47 to 63.

The STE environment also has an existing multi loop controller (MLC) built in,
which can be used to generate trajectories for the algorithms to train on. The MLC
is working well at scenario 2 mentioned above.

1.3.3 Original Tennessee Eastman

The original Tennessee Eastman process is a more complete process that takes more
processes relevant for a chemical plant into account. In this study, we will not go into
any process details, please see the original article for more information DOWNS
and VOGEL, 1992. For our application it is sufficient to note a few things. First
the process has 12 inputs and 41 measurements available for control. Furthermore
some of the observables are only sampled every 6th or 15th minute, while others
are sampled continuously. We choose to discretize the TE process with a sampling
distance of 1 minute. The quadratic distance of the constraint variables (reactor level,
pressure, temperature, separator level and stripper level) to their initial state were
used as the reward function.

1.3.4 Haldex Brake Valve

This model was kindly provided by Haldex. The brake is given as a Functional
Mock-Up Unit, which we can interface by using the python package FMPy. For our
purposes it is sufficient to know that it takes two different currents as input and has
also two outputs called "Brake torque" and "Apply pressure". The two input currents
are controlled by specifying the time for "turn off" or "turn on". Furthermore both
the input and output was scaled to be between about -1 to 1. Our goal was to control
the output "Apply pressure" and get it to follow set points.

1.4 Quantitative Problem Formulation

Knowing more about the environments described above leads to some of the follow-
ing questions;

1.4. Quantitative Problem Formulation 11

Question 5 How do terminal states affect the performance on the LQP environment?

Question 6 How well can model free RL maximise the reward function in STE scenario 2?

Question 7 How does the sampling period affect the ability to learn set points in Haldex
brake valve?

Question 8 Can model free RL learn to reach a set point in the OTE process?

13

Chapter 2

General Methods

2.1 Hardware

2.1.1 Laptops

For computer work, two laptops were provided by Sentian.AI with the specifications
given in table 2.1.

Laptop 1 Laptop2
RAM (GB) 16 24

CPU spec.
Intel(R) Core(TM)
i7-8565U
CPU @ 1.80GHz

Intel(R) Core(TM)
i7-6820HQ
CPU @ 2.70GHz

Cores 4 4
Threads 8 8

TABLE 2.1: The laptops provided by Sentian.AIs specifications.

2.1.2 Servers

Most of the more complex computations were run on Sentian server, see table 2.2. In
addition some of the tests were performed on Lunds supercluster LUNARC. Espe-
cially, the Aurora cluster consisting of nodes specified in table 2.3 was used.

Sentian server
RAM (GB) 48
CPU spec. 2 Intel(R) Xeon(R) CPU X5550 @ 2.67GHz
Cores 8
Threads 16

TABLE 2.2: Sentians server

Aurora Node
RAM (GB) 64 (3.2 GB/core)
CPU spec. 2 Intel Xeon E5-2650 v3 (2.3 Ghz, 10-core)
Cores 20
Threads 20

TABLE 2.3: LUNARCs Aurora node specification.

14 Chapter 2. General Methods

2.2 Test set up

In order to test our hypothesis in our three environments we choose to design more
specific tests for each environment. These tests and their results are presented and
discussed below. Thereafter, the results are summarized before their relation to our
hypotheses is analyzed in more detail in the final discussion.

15

Chapter 3

LQP environment:

3.1 Can the algorithms learn simple setpoint changes?

The first tests for the algorithms were to see how well they could handle setpoint
changes on a partially observable LQP problem. Both DDPG and PPO managed
setpoint changes without any problems. An example for PPO algorithm is shown in
figure 3.1.

(A)

The PPO algorithm’s action when
playing one LQP game. The setpoint
requests are shown in the right plot (B)
as a green line.

(B)

The observations of the LQP problem.
There are three observations, setpoint
(green), internal state (blue), and a linear
combination of the remaining two
internal states (orange). The red line
marks the setpoint level for this
particular run.

FIGURE 3.1: The PPO algorithm can handle different set-point
changes on a partially observable problem. The setpoint is shown
in green in the rightmost figure and the action response is shown in

the leftmost figure.

3.2 Can a roll up length be used that is shorter than the sys-
tems time dependency?

As described in 1.2.7, both DDPG and PPO use a short sequence to roll up the hidden
state when training. This raises the question if we can learn a state representation
that has a longer delay than the roll up length. To test this, an LQP environment
with the following matrices 3.1, 3.2,3.3 was used. This results in a partial observable
system with a 3 time step delay.

16 Chapter 3. LQP environment:

A =

0 0 1
1 0 0
0 1 0

 (3.1)

B =

0
0
1

 (3.2)

C =
[
1 0 0

]
(3.3)

FIGURE 3.2: PPO average training performance on the 3 delay system
with 3 roll up steps. It can clearly be seen that the training converges

against the optimal solution (green).

FIGURE 3.3: PPO average training performance on the 3 delay system
with 1 roll up step. It can clearly be seen that the training converges

against the optimal solution (green).

This shows that both algorithms can learn time dependencies longer than the
roll up length. From 3.3 and 3.2 it is clear that the PPO algorithm required about the
same amount of training data. This suggests that the use of fewer roll up steps in
our other environments might be successful.

Figure 3.4,3.7,3.5 show that the DDPG algorithm converges for both cases. How-
ever the training times were longer for the one with 2 roll up steps. In addition, the
training is also more unstable for the 2 roll up step case. One reasonable explanation
for this effect is that the hidden states might not be as accurate compared to the 6 roll
up step case, since the hidden states had a shorter distance to converge. The optimal
reward for the infinite game when starting with the vector [1,1,1] is -9, which both
algorithms seem to converge to.

3.2. Can a roll up length be used that is shorter than the systems time dependency?17

FIGURE 3.4: Maximum reward over 5 full training’s. The DDPG al-
gorithm was trained with 2 roll up and 3 burn in steps.

FIGURE 3.5: Average reward over 5 full training’s. The DDPG algo-
rithm was trained with 2 roll up and 3 burn in steps.

FIGURE 3.6: Minimum and maximum performance over 24 full train-
ing’s. The DDPG algorithm was trained on 6 roll up and 4 burn in

steps.

18 Chapter 3. LQP environment:

FIGURE 3.7: Average training performance over 24 full training’s.
The algorithm was trained on 6 roll up and 4 burn in steps.

3.2.1 Reward design on LQP

Both OTE and STE have specific termination conditions, which interfere with the
reward functions design. It is therefore of interest to study the interaction between
termination conditions and the reward function on the LQP problem. For the LQP
problem to be as similar to the OTE and STE a partially observable problem was
chosen. The games are also terminated once the absolute value of one state gets
bigger than three. The initial reward from the LQP problem was also translated such
that it always was positive. To keep the training times short the system dimension
was chosen to be 5. The A matrix was initialised according to 1.18 and multiplied
by a factor of 1.1. The B matrix was set to the identity matrix and the C matrix had 2
output dimensions and was randomly initialised. The performance of the following
reward designs was analyzed. The initial state of the linear system was randomised
during training mainly to avoid overfitting to a certain starting state. For the test
case, the unit vector was used for initialisation in order to reduce variance of the
performance.

• Positive reward with 0 as terminal reward

• Positive reward with −1 as terminal reward

• Positive reward with −106 as terminal reward

• Mixed reward positive and negative reward combined

In order to give each design good converging conditions the reward functions
was divided by a real number until one game converged. The drawback of this
strategy is that one can’t compare the scores in absolute terms. The results of 10
trainings are shown in 3.8, 3.9, 3.10.

The DDPG algorithm performance on the test case during training is summarised
in figure 3.8, 3.9,3.10. Some of the matrices in the linear system are randomly ini-
tialised and therefore the standard deviation was included as a measure of perfor-
mances distribution. In the mixed reward case 3.9 and in the small terminal reward
case 3.10 the mean test reward rises towards the end. In contrast, the increase in the
positive reward case is not as pronounced implying that there were very few games
that converged except the first.

3.2. Can a roll up length be used that is shorter than the systems time dependency?19

FIGURE 3.8: Positive reward: Statistics of the performance on the test
case during training. The average± 1 standard deviation of 10 games

is reported.

FIGURE 3.9: Mixed reward: Statistics of the performance on the test
case during training. The average± 1 standard deviation of 10 games

is reported.

FIGURE 3.10: Small terminal reward: Statistics of the performance on
the test case during training. The average ± 1 standard deviation of

10 games is reported.

20 Chapter 3. LQP environment:

All training’s for the large terminal reward case diverged, resulting in termina-
tion of the game on the first step in the test case [data not shown]. A likely explana-
tion for the observed problem is that the Q function has difficulties in learning the Q
value of game ending action and state pairs. This also influences the convergence of
the rest of the Q values, since the temporal difference error of the terminal state and
action pairs is an order of magnitude larger.

The fact that few trainings converged in the positive reward case may be caused
by difficulties in the design of the reward function. The problem here was to de-
sign and scale the reward function without having a positive reward in the terminal
states. Due to the design of the reward function and termination conditions the ter-
minal states have a higher reward than some of the non terminal states. It is very
possible that this could have an effect on the learnability of the Q function.

The mixed reward case performs better than the positive reward case. The main
difference between the cases is that the mixed reward has states with a negative re-
ward. This allows for a design with a larger difference between states, whilst keep-
ing the same maximum of the absolute reward thereby aiding in the learnability of
the Q function. This reward design is however highly dependent on tuning. Im-
proper tuning of the reward function can thus cause the algorithm to get get stuck in
a local minimum trying to end the game as fast as possible since the sum of the dis-
counted reward is higher for terminating the game than to receive another negative
reward. This is also the reason for not trying out the negative reward case.

In similarity with the mixed reward case, the small negative reward case perfor-
mance converged most of the time. In addition, it also improves the learnability of
the Q function.

In conclusion, this small test illustrates that the reward design has a big impact
on the algorithm’s performance. However, the fact that none of the three reward
designs managed to always converge shows the difficulty of this test. To get better
result one would need to decrease the difficulty of the linear system, such that one
of the three reward designs always converged. In addition, running more trainings
could also increase the difference between the reward designs and further reduce
the standard deviation.

21

Chapter 4

Haldex Brake

4.1 Experiments

The Haldex brake is a simulation of an actual valve in a truck brake. The big chal-
lenge with this environment is the lack of a good baseline, hence it is impossible to
asses if our algorithms are better than the existing controller. This model gives us the
opportunity to study how the different parameters in the algorithm impact perfor-
mance on multiple set point changes in a non linear process. Of special interest here
is how the sampling distance, the discount factor γ and the probability of switching
the set point interact with each other.

The average absolute distance to the setpoint was used as a performance metric
to enable comparisons between the two different sampling distances. All algorithms
were trained with quadratic distance to the setpoint as the reward function. To re-
duce the number of tests, the probability of switching setpoint was kept fixed at 0.1
and 0.01 for the 10 ms and 1 ms sampling distance, respectively. For 1 ms sampling
distance the discount factors 0.99, 0.9 and 0.1 were used. For 10 ms the different
discount factors used were 0.9, 0.3 and 0.1.

4.2 Results and discussion

(A)

The PPO algorithm’s action
response to the setpoint changes. The inputs are
labeled "applytimer" and "dumptimer".

(B)

The Haldex brake valve’s scaled states including
the varying setpoint for the variable Apply
pressure.

FIGURE 4.1: Sampling distance 10 ms: The trained PPO algorithm
controlling the brake valve.

22 Chapter 4. Haldex Brake

(A)

The PPO algorithms action in
response to the setpoint changes. The inputs are
labeled "applytimer" and "dumptimer".

(B)

The Haldex brake valve’s scaled states including
the varying setpoint for the variable Apply
pressure.

FIGURE 4.2: Sampling distance 1 ms: The trained PPO algorithm con-
trolling the brake valve.

Figures 4.1,4.2 illustrate that the algorithm almost always reaches the set point and
thus can learn setpoint changes. Thereafter, it was studied how different sampling
distances and discount factors γ affect performance.

Sampling distance (ms) discount factor γ Average distance per step
10 0.9 0.43
10 0.5 0.27
10 0.1 0.26
1 0.99 0.73
1 0.9 0.32
1 0.1 0.32

TABLE 4.1: Average distance to the setpoint of the trained PPO al-
gorithm varies with respect to the discount factor γ and sampling
distance. To clarify an absolute distance to the setpoint for each time
step was used and then an average of these distances was taken, this

is shown in the rightmost column.

A comparison of the results in table 4.1 reveals that the performance drops dras-
tically when the discount factor is too high. A higher discount factor presses the
value network in the algorithm towards taking future rewards more into account.
Setpoint changes are impossible to predict causing a degradation of the accuracy of
the value network.

This performance degradation can also be seen for 1 ms sampling distance 4.1.
In fact, this degradation occurs for a higher discount factor γ than in the 10 ms case.
Due to that lower probability of changing setpoint in the 1 ms case, this result is
expected.

Furthermore, comparison between 10 ms and 1 ms sampling distance in table 4.1
reveals that the mean distance to the setpoint is higher for the 1 ms case. The lower
performance persisted even after optimisation of the algorithm’s hyperparameters
[data not shown]. This is probably due to the large standard deviation of the policy
in the PPO algorithm.

The figures 4.3 and 4.4 present the difference in observed states for the untrained
PPO algorithm for 10ms and 1ms, respectively. The main difference between the

4.2. Results and discussion 23

heat maps is that the observables from the environment are Gaussian distributed for
a sampling distance of 10 ms 4.3, which they definitively are not for 1 ms 4.4. This
suggests lowering the standard deviation of the policy should be tested in further
investigations.

(A)

A heatmap for one of the Haldex brake valves
variables, braketorquecap.

(B)

A heatmap for one of the Haldex brake valves
variables, pApply.

FIGURE 4.3: Sampling distance 10 ms: Heat map of Brake torque ca-
pacity and Pressure Apply when sampling the actions from a normal
distribution. This is of interest because the state exploration is of key
importance for the algorithms and it seem like they are differing be-
tween sampling distances. This figure shows an expected Gaussian

exploration around some varying mean.

(A)

A heatmap for one of the Haldex brake valves
variables, Braketorquecap.

(B)

A heatmap for one of the Haldex brake valves
variables, pApply.

FIGURE 4.4: Sampling distance 1 ms: Heat map of Brake torque ca-
pacity and Pressure Apply when sampling the actions from a normal
distribution. This is of interest because the state exploration is of key
importance for the algorithms and it seem like they are differing be-
tween sampling distances. This figure does not show the expected

Gaussian exploration.

25

Chapter 5

Simplified Tennessee Eastman

The STE environment proposed by Ricker, 1993 models a chemical reactor. This
environment is less complex than the OTE, but it still contains the same features
including terminal states. Therefore it is a good starting point for the evaluation
of our algorithms’. Experiments were conducted with both the DDPG algorithm
and the PPO algorithm on the STE environment and their results are presented and
discussed below.

5.1 Experiments, results and discussion for the DDPG on STE

The following hyperparameters were used in all tests in this section. Learning rates
of 10−4 and 10−5 were used for the value network and policy network, respectively.
To avoid oversampling of the first few trajectories in the beginning of training the
replay buffer was filled with randomly sampled trajectories. The set point that was
used was the same as in scenario 2, with a of pressure 2850 pascal, product flow of
130 and purge fraction A of 63.

In order to closely monitor the performance of the algorithm the start state of
scenario 2 was used for the test case. This has the advantage of not being stochas-
tic, since performance variation is minimized naturally. In addition, the algorithms
noise is also turned off for the test case.

5.1.1 How does γ affect training performance

The effect of the discount factor on the training and test result was studied. To get a
good overview the algorithm was trained with following discounted factor: 0.2 ,0.9
,0.99.

The reward plots during training se figure 5.1 imply that different values of γ
have a comparable performance. In all three of these performance plots the total
reward is 0 for some episodes. One reasonable explanation for this unexpected be-
haviour is that the policy increases the pressure too fast, thereby terminating the
environment. This dip is shorter for higher discount values. This is probably an
effect of the higher back propagation of bad state and action pairs.

Furthermore, the total reward starts to increase before suddenly dropping to zero
around episode 5. This is probably best explained by good policy updates due to
choice of learning rates.

26 Chapter 5. Simplified Tennessee Eastman

(A)

γ = 0.2: Test performance during training.

(B)

γ = 0.9: Test performance during training.

(C)

γ 0.99: Test performance during training.

FIGURE 5.1: The test performance during training for different γ.

The training loss of the Q network can also give some insight into testing per-
formance. The only γ for which the Q networks training loss could have converged
to 0 is γ = 0.2. For γ = 0.9 and γ = 0.99 the training loss of the Q network should
be larger because their discounted Q values are much larger, which is demonstrated
in the figures 5.2. However, the Q network’s training loss still increases at the end

5.1. Experiments, results and discussion for the DDPG on STE 27

(A)

γ = 0.2:Value loss during training.

(B)

γ = 0.9: Value loss during training with.

(C)

γ = 0.99:Value loss during training.

FIGURE 5.2: The effect of different γ on the value loss.

of training. This could probably be solved by better tuning of the hyperparame-
ters to aid the convergence of the Q networks training loss. The main parameters
to be tuned are the batch size, learning rate, and different scaling of the reward. In
addition, there are also two extensions to the DDPG algorithm that could mitigate
this issue. First, a mixture of n-step and 1-step temporal difference learning could

28 Chapter 5. Simplified Tennessee Eastman

FIGURE 5.3: Gaussian noise: Statistics of the test performance. The
average and standard deviation of 4 games is presented.

FIGURE 5.4: OU noise: Statistics of the test performance. The average
and standard deviation of 4 games is presented.

improve performance. Second, the DDPG extension called TD3 could be of use.

5.1.2 How different types of noise affect training performance

In this section of the study the impact of the noise type on algorithm performance
was analysed. Thus, the algorithm was run with noise generated from a normal
Gaussian distribution, Ohrnstein Uhlenbeck process and a AR(2) process. See sec-
tion 1.2.7 for details.The algorithm was trained with the different noise types 4 times
to give a good understanding of the variation in performance.

The figures 5.3,5.4,5.5 illustrate the testing performance during training. As pre-
sented in these figures, a large portion of the training’s with OU noise and Gaussian
noise did not manage to increase the reward at the end. Comparing the three differ-
ent noise types reveals that the algorithm consistently got the highest reward when
trained with AR noise. However, this changed if maximal number of sample in the
replay buffer was reduced by a factor of two 5.6.

Comparison of the test performance during training with reduced replay buffer
size 5.6 to 5.3, 5.4, 5.5, reveals that there is an improvement in performance for both
Gaussian and OU noise case. Thus, whilst the different types of noise have an impact
on training performance. They also significantly impact the optimal hyperparame-
ters. Therefore, it would have been interesting to compare the test performances
of different types of noise with optimised hyperparameters. However, this requires

5.1. Experiments, results and discussion for the DDPG on STE 29

FIGURE 5.5: Ar noise: Statistics of the test performance. The average
and standard deviation of 4 games is presented.

orders of magnitude more compute resources and is therefore beyond feasibility of
this study.

5.1.3 Do expert trajectories help performance?

For the Simplified Tennessee Eastman we have had access to an already existing
controller that can control the reactor. The MLC receives a reward of 860 on second
scenario. This makes it possible to train the DDPG algorithm on data generated
from the MLC. To test this, the algorithm was trained on the following types of
trajectories:

• Only played trajectories

• Only expert trajectories

• A mixture of 50% expert and 50% random trajectories

The results from the DDPG algorithm training on data generated from the MLC
are presented in figures 5.7,5.8,5.9,5.10 and 5.11. Due to the similarity between figure
5.11 and 5.8 we conclude that the random trajectories do not affect testing perfor-
mance. This shows that the random initialised multi loop controller probably shows
enough of the state and action space to avoid the Q functions divergence.

Comparing testing performance in figures 5.11, 5.8 and 5.7 indicates that differ-
ent trajectories result in similar performance. However, training on random and
expert trajectories 5.11 and only expert trajectories 5.8 find the termination condi-
tion faster than training on generated trajectories 5.7. This is probably an effect of
that the algorithm sees very few trajectories that terminate if training on random
and expert trajectories. The observation of Q networks training loss displayed in
figure 5.10 compared to figure 5.9 strengthens this idea. In figure 5.9, the Q net-
works training loss gets larger at the end of training when trained with generated
trajectories. This might be due to the fact that the policy increases the pressure too
fast and shuts down the plant. The reason why we do not see an immediate effect
is that the likelihood of sampling these trajectories is very low at the beginning of
training. However, in figure 5.10 the increase of the Q networks loss is missing when
trained on expert and generated trajectories thus indicating that the number of those
trajectories is rather low in the replay buffer.

30 Chapter 5. Simplified Tennessee Eastman

(A)

OU noise: Statistics of the test performance. The average and
standard deviation of 4 games is presented.

(B)

Gaussian noise: The test reward during 1 training.

(C)

Ar noise: The test reward during 1 training.

FIGURE 5.6: The test performances during training when the replay
buffer size was reduced by a factor of two compared to 5.3, 5.4,5.5.

5.2 Experiments with PPO

For the four different multi-loop controller baselines we get the performance:

5.2. Experiments with PPO 31

FIGURE 5.7: DDPG’s test performance at the start of training when
trained on its own trajectories

FIGURE 5.8: DDPG’s test performance at the start of training when
trained on expert and random trajectories

FIGURE 5.9: DDPG’s value loss when trained on generated trajecto-
ries.

32 Chapter 5. Simplified Tennessee Eastman

FIGURE 5.10: DDPG’s value loss when trained on expert and random
trajectories.

FIGURE 5.11: DDPG’s performance when trained on only expert tra-
jectories.

(A)

The STE states
when PPO algorithm is trying to reach the setpoint
2850 Pa, 63 % of A in purge and 130 kmolh−1 in
product flow.

(B)

The PPO algorithms
actions when trying to reach the setpoints 2850 Pa,
63 % of A in purge and 130 kmolh−1 in product
flow.

FIGURE 5.12: In this result we see the PPO algorithms ability to con-
trol the STE process. This is after around 6000 failures. The per-
formance metric pure quadratic reward was 853 which was slightly

worse than the multiloopcontroller baseline at 860.

We can see that the PPO algorithm, with its performance in pure quadratic re-
ward of 853 does not manage to beat the baseline of the multiloop controller which
scores 860. It is however interesting to see the characteristics of the control which, in
the beginning, does some oscillation and then keep the actions rather constant and

5.2. Experiments with PPO 33

Reward type MLC PPO
Pressure, Product flow, Purge A 860 853
Pressure, Product flow,
Purge A and Instantaneous Cost

794 745

TABLE 5.1: This table shows the pure quadratic reward metric be-
tween the PPO and the multiloop controller. We can clearly see that
the PPO algorithm performs worse than expected and does not man-
age to beat the multiloop controller. We believe that the discount
factor gamma γ has a large impact on the performance of the PPO
algorithm in environments where there is risk for a shutdown. The
discount factor gamma effects the farsightedness of the algorithms.

still manages to get close to the multiloop controller’s performance.

35

Chapter 6

Original Tennessee Eastman
chemical plant

The OTE was originally developed by DOWNS and VOGEL, 1992 as a benchmark
in control theory, which is representative for the chemical industry. It is therefore of
interest to study how well model free RL algorithms can control the process.

6.1 PPO algorithm

The OTE process is started in its base case, see the paper by Ricker, 1994, with a
quadratic loss distance to the base case on the constraint variables given in the article
by DOWNS and VOGEL, 1992.

The first investigation was to see if we could get the algorithm to survive in the
OTE environment since it is an unstable process. The results from this can be seen in
figures 6.2 and 6.6. The interpretation of these results is that a very large exploration
is successful in terms of making the algorithm learn how to survive in the OTE en-
vironment.

Secondly, it was investigated whether the PPO could get closer to the setpoints and
actually do what is expected of a regulator. This was done by lowering the standard
deviation of the exploration to try and push it towards the setpoints. This can be
seen in figure 6.12 where the training reward is shown and how it is effected by the
change of standard deviation. The increased performance in distance to the reactor
level and reactor pressure is shown in figure 6.13.

Thirdly, the performance in connection to the planning horizon was investigated by
altering the discount factor gamma. It was lowered from 0.99 to 0.96 which roughly
effects the planning horizon from 4 hours to 1 hour. The training performance and
how it is effected by a change in standard deviation can be seen in figure 6.11.

6.1.1 Results

The PPO algorithm on the OTE process after around 22 hours of training and 16000
shutdowns of the OTE. Laptop 1 was used, see table 2.1 for specifications.

36 Chapter 6. Original Tennessee Eastman chemical plant

FIGURE 6.1: This result shows the mean reward per game during
training performance, the training has not converged. The variance
is high and it explores early shutdowns often. This is after around 22

hours of training (1600 shutdowns).

(A)

The PPO algorithms mean action
response when trying to keep the setpoints shown
in figures 6.3a, 6.3b, 6.4a,6.4b and 6.5a.

(B)

The 41 observable variables and the 5 desired
setpoints shown in figures 6.3a, 6.3b, 6.4a,6.4b and
6.5a.

FIGURE 6.2: These plots show how the PPO algorithm manages to
survive in the OTE environment with, just like in the STE environ-
ment, a quick oscillation in the beginning and then constant actions
with small adjustments. The states do not reach the desired setpoints
as shown below. This is after around 22 hours of training (1600 shut-
downs) on the OTE process where it played at most 24 hours in game.
It manages to survive for more than 5 days in the OTE environment
when tested. The algorithm uses the mean of its actions whereas in

figure 6.6 it uses a sample.

6.1. PPO algorithm 37

(A)

The normalized reactor level together with max,
min, mean and the actual state.

(B)

The normalized reactor pressure together with
max, (there is no min for this variable), mean and
the actual state.

FIGURE 6.3: This figure shows the reactor level and reactor pres-
sure on the OTE process for a PPO algorithm with a discount factor
gamma of 0.99 and a log standard deviation of -1. It does not reach

the setpoints and just survives.

(A)

The normalized reactor temperature together with
max, (there is no min for this variable), mean and
the actual state.

(B)

The normalized separator level together with max,
min, mean and the actual state.

FIGURE 6.4: This figure shows the reactor temperature and separator
level on the OTE process for a PPO algorithm with a discount factor
gamma of 0.99 and a log standard deviation of -1. It does not reach

the setpoints and just survives.

38 Chapter 6. Original Tennessee Eastman chemical plant

(A)

The normalized stripper level together with max,
min, mean and the actual state.

FIGURE 6.5: This figure shows the stripper level on the OTE process
for a PPO algorithm with a discount factor gamma of 0.99 and a log
standard deviation of -1. It does reach the setpoint but with a slight
offset and this was the easiest one to reach considering the others are

off to a greater exent.

(A)

The PPO algorithms sampled action
response when trying to keep the setpoints shown
in figures 6.7a, 6.7b, 6.8a,6.8b and 6.9a.

(B)

The 41 observable variables and the 5 desired
setpoints shown in figures 6.7a, 6.7b, 6.8a,6.8b and
6.9a.

FIGURE 6.6: This figure shows the PPO algorithm with a gamma of
0.99 and a log standard deviation of -1. The sampled action goes out-
side the interval of -1 and 1 which are the limits of the actions in the
OTE process. This type of noise creates a very large exploration which
effects the convergence to the setpoints. These figures represents a
state of the algorithm after around 22 hours (1600 shutdowns) of

training on the OTE process.

6.1. PPO algorithm 39

(A)

The normalized reactor level together with max,
min, mean and the actual state.

(B)

The normalized reactor pressure together with
max, (there is no min for this variable), mean and
the actual state.

FIGURE 6.7: This figure shows the exploration of the states when the
PPO trains with a log standard deviation of -1. The exploration makes
the algorithm see a large part of the state space of the reactor level
and reactor pressure. The exploration varies a lot between variables

which will effect optimisation.

(A)

The normalized reactor temperature together with
max, (there is no min for this variable), mean and
the actual state.

(B)

The normalized separator level together with max,
min, mean and the actual state.

FIGURE 6.8: This figure shows the exploration of the states when the
PPO trains with a log standard deviation of -1. The exploration makes
the algorithm see a large part of the state space of the reactor temper-
ature and separator level. Notice however that the exploration varies

a lot between variables which will effect optimisation.

40 Chapter 6. Original Tennessee Eastman chemical plant

(A)

The normalized stripper level together with max,
min, mean and the actual state.

FIGURE 6.9: This figure shows the exploration of the states when the
PPO trains with a log standard deviation of -1. The exploration makes
the algorithm see a large part of the state space of the stripper level.

FIGURE 6.10: This result shows the miniscule variation of log stan-
dard deviation by the learnable standard deviation for the PPO al-
gorithm. The PPO algorithm has the option to let the standard de-
viation of the action distribution be learnable in a sense that back
propagation will try to adjust it during training. The figure shows
the mean over the 12 input variables learnable logarithm of standard

deviations. This is over the full training of 22 hours.

6.1. PPO algorithm 41

FIGURE 6.11: This figure shows the training performance of the PPO
algorithm when a gamma of 0.96 was used (˜1 hour horison). At train-
ing round 7000 the log standard deviation was decreased from -1 to
-3. the change was made at a stage where the algorithm could survive
but not reach the setpoints. This made the algorithm get closer to the

setpoints and survive more in the training.

FIGURE 6.12: This figure shows the training performance of the PPO
algorithm when a gamma of 0.99 was used (˜4 hours horizon). At
training round 4900 the log standard deviation was decreased from -1
to -3. The change was made at a stage where the algorithm could sur-
vive but not reach the setpoints. This made the algorithm get closer
to the setpoints and survive more in the training. It can be seen that

its reward goes down more often than for gamma 0.96.

42 Chapter 6. Original Tennessee Eastman chemical plant

(A)

The normalized reactor level together with max,
min, mean and the actual state.

(B)

The normalized reactor pressure together with
max, (there is no min for this variable), mean and
the actual state.

FIGURE 6.13: This result shows the increased performance for the
PPO algorithm in terms of distance to the setpoint for the reactor pres-
sure and level when the log standard deviation has been decreased

from -1 to -3. To get a comparison see figure 6.8

(A)

The state exploration of the PPO in the variable
reactor level with gamma 0.99 before the change
in log standard deviation from -1 to -3.

(B)

The state exploration of the PPO in the variable
reactor pressure with gamma 0.99 after the change
in log standard deviation from -1 to -3.

FIGURE 6.14: This figure shows the PPO algorithms state exploration
in the variable reactor level with a gamma of 0.99. This investigates if
the state exploration differs before (A) and after (B) the change in log
standard deviation from -1 to -3. The slow oscillation decreases as we

decrease the standard deviation.

The findings shows how the PPO algorithm learns how to survive in the OTE
process with a lot of exploration. It can also be shown that the decrease of stan-
dard deviation decreases the distance to the setpoints both for discount factor at 0.99
and 0.96. A difference in state exploration could be seen as well when lowering the
discount factor.

6.1.2 Discussion

It can be concluded that the PPO algorithm manages to survive in the OTE process
while not paying much attention to the setpoints, see figure 6.2. It is thus concluded
that the PPO algorithm can survive in the OTE process and disregards the setpoints
when too much exploration is used, see 6.6. When trying to help the algorithm on

6.2. DDPG algorithm on Original Tennessee Eastman process 43

its way by manually decreasing the standard deviation one can notice that it is pos-
sible to push the PPO algorithm towards the setpoints, see figure 6.11. This is what
can be expected to happen when decreasing the exploration. However, it shall be
emphasised that the manual decrease in standard deviation does not always work.
Reinforcement learning algorithms are known for sometimes deviating in training
and this happened in a few tests when altering the exploration. It shall be added that
a very reliable first part of training was noticed when the PPO algorithm mainly fo-
cuses on surviving longer, in all the tests this seemed to succeed. It is probably a very
clear signal to the optimiser that if the PPO survives a longer amount of time it gets
more reward. This poses an interesting question which is: if the algorithm firstly
focuses on surviving and not to reach the setpoints, how long training in terms of
minutes should one then do to both make sure the algorithm learns how to survive
and to reach the setpoints? One would probably need to train long enough for the
algorithm to see the full dynamics of the states, for example if one variable has the
slowest oscillation period of around 12 hours then this might be a good choice as
training time.

A change in the characteristics of the training reward could be seen when try-
ing to increase the performance by lowering the discount factor gamma from 0.99
(a horison around 4 hours) to a value of 0.96 (a horison of around 1 hour), see 6.12
and 6.11. Although this is just one training and more statistics was difficult to gather
due to limited computational power it can be concluded that it would be interest-
ing to investigate further the relation between changing standard deviation and the
discount factor gamma.

The change in state exploration is not drastically changed when decreasing the
exploration as can be seen in figure 6.14. This is what we expect and it means the
algorithm can keep exploring and at the same time reach the setpoints.

Another interesting observation is that slow dynamics, which is not altered by
the quick random oscillation in the sampling of an action, could be seen as a part
of the system in which the feedback comes long after a certain choice of policy. For
example it is clearly written in the original Tennessee Eastman article, by DOWNS
and VOGEL, 1992 that the process is sensitive to rapid changes, in the region 3-7
minutes, in product flow (stream 11). This creates an interesting analogy to the well
studied computer games where the rewards are sparse and sometimes deceptive.
One famous example is Montezuma’s Revenge (if googling add the term “game” un-
less you want to find information concerning stomach problems for tourists in Mex-
ico) which basically is a 2D game where the player tries to find their way through an
underground maze avoiding dangers by jumping, running, sliding, climbing and
collecting items. Sparse rewards comes into play when the character needs to ex-
plore several rooms to finally find the desired item. Different exploring techniques
have been developed to address this issue as shown in works by Adrien Ecoffet and
Clune, 2018, based on the known problems of catastrophic forgetting which Roby
Velez, 2017 writes about. It might be interesting to investigate the more hand engi-
neered way of isolating neuron groups to create more of a memory. However, it is
difficult to know how far along the path of model-free vs model-based approaches
one shall go to potentially imitate the human way of learning.

6.2 DDPG algorithm on Original Tennessee Eastman process

To study the DDPG algorithm behaviour on the OTE all three training methods dis-
cribed in 1.2.7 were used with a wide variety of hyperparameters. Details of the

44 Chapter 6. Original Tennessee Eastman chemical plant

different strategies are explained in the implementation details 1.2.7. Unfortunately,
the computational power and time frame of this study was not enough to use auto-
mated hyperparameter tuning. Therefore, only general observations and trends are
presented and discussed below.

The first update strategy trained was the method were the gradients always are
rolled up from the beginning of the trajectory. Unfortunately, this update method
took too long time to ever be trained to completion [data not shown]. One reason
for that is the need of a small batch size, putting heavy constraints on the learning
rates. To avoid this problem, the training of the algorithm should also utilise multi-
processing. However, the longer the policy survives, the further back the gradients
get rolled up slowing down training speed heavily. In comparison, the other two
training methods do not suffer from this problem, since they use a fixed number of
roll up steps making them better suited for longer games.

The second strategy tested, was the training method with biased batches. This
method performed better than the first, almost trained to completion see figure
6.16b. An advantage of this strategy is that it can use extremely large batches ef-
fectively. The drawback is that it needs to use large batches, thereby being data
inefficient.

The third strategy tested was the training method with a fixed number of roll
up steps, but with unbiased batches. This method has the drawback that the policy
must survive at least the number of burn in and roll up steps combined. To achieve
this, actions for the first number of burn in and roll up steps were sampled from
a Gaussian distribution with a standard deviation of 0.01. The computational re-
sources and time frame of this study did not allow for enough tuning of this method
[data not shown]. For further study, it would have been interesting to sample the
first actions from the policy instead combined with fewer burn in and roll up steps.

FIGURE 6.15: Example of the Q networks training loss diverging.
This specific example was created with a γ of 0.98 and with the unbi-

ased batch method.

Figure 6.15 displays the diverging training loss of the Q network. This is the main
failure mode that was encountered when training the DDPG algorithm on OTE. On
all three methods it was found that increasing batch size, lower learning rates and
lower discount factor γ mitigated this failure mode. The main cause of this failure
mode is probably the phenomenon called catastrophic value approximation. For
further studies it would be interesting to investigate the Q values of certain action
and state pairs in more detail.

6.2. DDPG algorithm on Original Tennessee Eastman process 45

(A) Test performance of the most successful train-
ing of the DDPG algorithm on the TE environment.
In the end the DDPG algorithm survived 10 hours

before terminating the game.

(B) Q network’s training loss on the most successful
training of the DDPG algorithm on the TE environ-

ment.

47

Chapter 7

General discussion

The performance of the PPO and DDPG algorithms in LQP ,STE, OTE and Haldex
brake environments reveal general similarities in algorithm behaviour. Thus, testing
the algorithms in our experiments shows that the neural networks have a higher dif-
ficulty learning when the input and output is not bounded around 1 in magnitude.
This proved most challenging for the Q network and value network. A reason for
that might be that a well scaled reward does not necessarily lead to a well scaled
true value or Q function.

An additional similarity of our tests was the trade off between the discount factor
γ and the rewards scaling. As observed in our tests, lower absolute rewards enables
the use of a higher γ. This controls how far the algorithm takes future rewards into
account versus how much it maximises the next reward.

Another interesting aspect is that Gaussian noise provided enough state space
exploration such that the PPO could learn to control the tested environments to some
extent. Regarding the DDPG it was also shown that the type of noise also affects
which hyperparameters give good performance. Thus, making a direct comparison
between the different noise types for the DDPG difficult.

For both, PPO and DDPG algorithms the training time could be improved by
using more parallelisation. Fully taking advantage of the distributed computation
power on clusters would certainly decrease the training time.

In addition to the similarities described above, there are some algorithm spe-
cific behaviours observed in the different environments. For the PPO algorithm it
is shown in the LQP chapter that the roll up sequence length does not impact per-
formance. Furthermore, fewer roll up steps allowed for a faster training. This was
due to fact that algorithm only trains on samples that are the number of roll up steps
apart. Another big advantage for fewer roll up steps is that the policy needs to at
least survive the number of roll up steps in the environment.

For the DDPG algorithm, we propose that the hidden states are rolled up on a
fixed distance and unbiased batches are used. This strategy performed well for the
LQP, STE and Haldex Brake environments whereas it failed for the more complex
OTE environments probably due to bad hyperparameter tuning. Given the com-
putational power at our disposal we choose to focus on the PPO algorithm for the
Haldex Brake and OTE experiments.

In conclusion, the algorithms managed to control our environments to some ex-
tent. Furthermore we could reach setpoints in both the STE and the Haldex Brake
indicating the use of model free reinforcement learning are basically capable of con-
trolling industrial processes.

48 Chapter 7. General discussion

7.1 Model free reinforcement learning in gaming and indus-
trial processes

In this thesis we tested to apply model free reinforcement learning to industrial pro-
cesses by treating them as games. Two model free algorithms, DDPG and PPO, were
used to control three different simulations of industrial processes.

In this thesis we have shown that DDPE and PPO algorithms were able to reach
setpoints in the Haldex Brake and STE environments. The PPO algorithm also man-
aged to learn a policy that does not crash the OTE environment in the first 5000
steps. This would correspond to around 12 hours on laptop 1. Thus, from a game
perspective, the algorithms could learn to complete the industrial processes.

However, there are few key differences between a game approach and an indus-
trial approach, which are beyond the feasibility of this thesis. The main difference is
that in a game environment the algorithms can play millions of games with the only
drawback being the need for more computing resources. This does not transfer to
an industrial setting were it is expensive to run with sub-optimal performance and
environment termination often results in a catastrophically high cost.

These challenges need to be solved in order for model free RL to succeed in in-
dustrial environments other than in niche applications. There are some emerging
approaches that try to solve these challenges. For example, research is going on to
integrate model free reinforcement learning with classic control theory. These com-
bined approaches could provide performance and stability guarantees, which does
not exist in today’s RL methods.

Another solution would be to pre-train the actor before deployment in the real
environment. This is studied in the field of inverse reinforcement learning.

7.2 Project Reflections

In this short section, we go through some thoughts about whether we think we have
succeeded or not with what we planned to do in this thesis. The grand vision was
all along to be able to successfully make our algorithms control the environments
to our liking. In almost all of the environments, we managed to give our directions
in the form of setpoints to the algorithms which they managed to follow. Thus we
feel that the main hypothesis 1 is fulfilled to some extent. To some extent because
the algorithms have a lot of potentials to improve their control. For example, we
would like the algorithms to get closer to the setpoints, handle more variables as
setpoints and be able to handle more complex variations of setpoints instead of just
step changes.

We have realised that the questions about characteristics for success and failure,
question 2 and 3, are very difficult to answer scientifically but we have done our
best to do so. In retrospect, a more discrete or quantitative version of these ques-
tions could have been formulated where the word "success" and "characteristics"
would have been more clear. We can say that there is some way to go, either in
the further development of algorithm architecture or hyperparameter tuning, before
model free RL makes it out to the industry. Despite these insights question 4 which
asks whether model-free RL is suitable for industrial applications could also have
been answered better if it were more clear what we define as "suitable".

Concerning the more quantitative problem formulations, we could easier ad-
dress them and say if they were fulfilled or not.

7.2. Project Reflections 49

All in all, we feel that model free RL has great potential if not as a single lonely
controller then definitely as a small cog in a greater wheel of the control architecture.

51

Chapter 8

Conclusion

Our results show hyperparameters have a great impact on the algorithm’s training
performance. In order to automatical tune the hyperparameters running time of the
algorithms needs to be shortened. However, even with automatical tuning of the
hyperparameters we would still need a basic understanding of how those affect the
learning.

A major challenge for model free RL algorithms is to reach a baseline perfor-
mance of existing controllers. We have had some preliminary success with adding
trajectories from a controller to the replay buffer.

Taken together, reinforcement learning is a fast evolving field opening with high
potential for optimization of industrial processes. With this potential in mind more
effort will be needed to lift RL algorithms from games to real industrial processes.

53

Bibliography

Adrien Ecoffet Joost Huizinga, Joel Lehman Kenneth O. Stanley and Jeff Clune (2018).
“Montezuma’s Revenge Solved by Go-Explore, a New Algorithm for Hard-Exploration
Problems (Sets Records on Pitfall, Too)”. In: URL: https://eng.uber.com/go-
explore/.

DOWNS, J. J. and E. F. VOGEL (1992). “A plant-wide industrial process problem”.
In: URL: http://users.abo.fi/khaggblo/RS/Downs.pdf.

Goodger, Nikolaj (2020). “Proximal Policy Optimisation with PyTorch using Recur-
rent models”. In: URL: https : / / medium . com / @ngoodger _ 7766 / proximal -
policy-optimisation-in-pytorch-with-recurrent-models-edefb8a72180.

Higgsfield. DDPG implementation. URL: https : / / github . com / higgsfield / RL -
Adventure-2. (accessed: 22.07.2020).

John Schulman Filip Wolski, Prafulla Dhariwal Alec Radford Oleg Klimov (2017).
“Proximal Policy Optimization Algorithms”. In: URL: https://arxiv.org/abs/
1707.06347.

Joohyun Shin Thomas A. Badgwell, Kuang-Hung Liu Jay H. Lee (2019). “Reinforce-
ment Learning – Overview of recent progress and implications for process con-
trol”. In: URL: http://www.sciencedirect.com/science/article/pii/S0098135419300754.
"(accessed: 09.24.2020)".

Lewis, F. L., D. Vrabie, and K. G. Vamvoudakis (2012). “Reinforcement Learning and
Feedback Control: Using Natural Decision Methods to Design Optimal Adaptive
Controllers”. In: IEEE Control Systems Magazine 32.6, pp. 76–105.

Markowsky, George (2017). “Information theory”. In: URL: https://www.britannica.
com/science/information-theory. (accessed: 24.06.2020).

Mel Vecerik Todd Hester, Jonathan Scholz-Fumin WangOlivier Pietquin Bilal Piot
Nicolas HeessThomas Rothörl Thomas Lampe Martin Riedmiller (2017). “Lever-
aging Demonstrations for Deep ReinforcementLearning on Robotics Problems
with Sparse Rewards”. In: URL: https://arxiv.org/pdf/1707.08817.pdf.
"(accessed: 09.08.2020)".

Open AI spinning up. URL: https://spinningup.openai.com/en/latest/algorithms/
ddpg.html. (accessed: 22.07.2020).

OpenAI. OpenAI gym. URL: https://gym.openai.com/. (accessed: 24.06.2020).
Recht, Ben. An Outsider’s Tour of Reinforcement Learning. URL: http://www.argmin.

net/2018/06/25/outsider-rl/. (accessed: 22.09.2020).
Ricker, N. Lawrence (1993). “Model predictive control of a continuous, nonlinear,

two-phase reactor”. In: URL: https : / / www . sciencedirect . com / science /
article/pii/095915249380006W.

Ricker, N.L. (1994). “Optimal steady-state operation of the Tennessee Eastman chal-
lenge process”. In: URL: https://www.sciencedirect.com/science/article/
pii/009813549400043N.

Roby Velez, Jeff Clune (2017). “Diffusion-based neuromodulation can eliminate catas-
trophic forgetting in simple neural networks”. In: URL: https://journals.plos.
org/plosone/article?id=10.1371/journal.pone.0187736.

https://eng.uber.com/go-explore/
https://eng.uber.com/go-explore/
http://users.abo.fi/khaggblo/RS/Downs.pdf
https://medium.com/@ngoodger_7766/proximal-policy-optimisation-in-pytorch-with-recurrent-models-edefb8a72180
https://medium.com/@ngoodger_7766/proximal-policy-optimisation-in-pytorch-with-recurrent-models-edefb8a72180
https://github.com/higgsfield/RL-Adventure-2
https://github.com/higgsfield/RL-Adventure-2
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://www.sciencedirect.com/science/article/pii/S0098135419300754
https://www.britannica.com/science/information-theory
https://www.britannica.com/science/information-theory
https://arxiv.org/pdf/1707.08817.pdf
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://gym.openai.com/
http://www.argmin.net/2018/06/25/outsider-rl/
http://www.argmin.net/2018/06/25/outsider-rl/
https://www.sciencedirect.com/science/article/pii/095915249380006W
https://www.sciencedirect.com/science/article/pii/095915249380006W
https://www.sciencedirect.com/science/article/pii/009813549400043N
https://www.sciencedirect.com/science/article/pii/009813549400043N
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187736
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187736

54 Bibliography

Steven Kapturowski Georg Ostrovski, John Quan-R emi Munos Will Dabney (2019).
“Recurrent experience replay in distributed reinforcement learning”. In: URL:
https://openreview.net/pdf?id=r1lyTjAqYX. "(accessed: 20.06.2020)".

Steven Spielberg Aditya Tulsyan, Nathan P. Lawrence Philip D Loewen R. Bhushan
Gopaluni (2020). “Deep Reinforcement Learning for Process Control: A Primer
for Beginners”. In: URL: https://arxiv.org/pdf/2004.05490.pdf. "(accessed:
09.24.2020)".

Timothy P. Lillicrap Jonathan J. Hunt, Alexander Pritzel Nicolas Heess Tom Erez
Yuval Tassa David Silver Daan Wierstra (2015). “Continuous control with deep
reinforcement learning”. In: URL: https://arxiv.org/abs/1509.02971. "(ac-
cessed: 28.06.2020)".

https://openreview.net/pdf?id=r1lyTjAqYX
https://arxiv.org/pdf/2004.05490.pdf
https://arxiv.org/abs/1509.02971

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER’S THESIS
Date of issue

October 2020
Document Number

TFRT-6111
Author(s)

Niklas Kotarsky
Eric Bergvall

Supervisor

Johan Grönqvist, Dept. of Automatic Control, Lund
University, Sweden
Bo Bernhardsson, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Reinforcement Learning in Industrial Applications

Abstract

Although reinforcement learning has gained great success in computer games, there are only few yet
known implementations in industrial applications. This despite the fact that reinforcement learning
offers interesting methods to optimise the control of nonlinear processes. In this thesis we have used
two model free reinforcement learning algorithms (PPO and DDPG) to control three different
simulations of industrial processes, the simplified Tennessee Eastman, original Tennessee Eastman
and the Haldex brake valve. Both reinforcement learning algorithms could in almost all cases learn to
reach a set point. In addition, hyperparameters were found to have a high impact on training
performance. In conclusion, our tests indicate that the model free reinforcement learning algorithms
are basically capable of controlling industrial processes. Python code for the PPO algorithm applied
to the Original Tennesse Eastman process can be found at Github. 1

1 https://github.com/Heigke/Reinforcement-Learning-In-Industrial-Applications

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280-5316
ISBN

Language

English
Number of pages

1-54
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Statement of Work
	Introduction
	Background and Motivation
	General Problem Formulation
	Previous Work

	The Basic of model free Reinforcement Learning
	Technical introduction to model free reinforcement learning
	Policy Gradients
	Trust Region and Approximations thereof
	Proximal Policy Optimisation
	Bellman's Equation and Q learning
	Deep Deterministic Policy Gradient
	Implementation details of the DDPG algorithm in this thesis

	The different environments
	Linear Quadratic Problem
	Simplified Tennessee Eastman
	Original Tennessee Eastman
	Haldex Brake Valve

	Quantitative Problem Formulation

	General Methods
	Hardware
	Laptops
	Servers

	Test set up

	LQP environment:
	Can the algorithms learn simple setpoint changes?
	Can a roll up length be used that is shorter than the systems time dependency?
	Reward design on LQP

	Haldex Brake
	Experiments
	Results and discussion

	Simplified Tennessee Eastman
	Experiments, results and discussion for the DDPG on STE
	How does affect training performance
	How different types of noise affect training performance
	Do expert trajectories help performance?

	Experiments with PPO

	Original Tennessee Eastman chemical plant
	PPO algorithm
	Results
	Discussion

	DDPG algorithm on Original Tennessee Eastman process

	General discussion
	Model free reinforcement learning in gaming and industrial processes
	Project Reflections

	Conclusion
	Bibliography

