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Abstract

In this thesis, a study is made into relative positioning and control systems for fly-
ing wing Micro Aerial Vehicles (MAVs) intended to be used by the Swedish Sea
Rescue Society (SSRS) for the purpose of providing assistance during sea rescue
missions. The particular scenario of interest is robust relative positioning to be used
for autonomous landing of a MAV on a boat at the end of a rescue mission. Three
positioning methods, Global Navigation Satellite System (GNSS), 3D LiDAR and
a scaled down version of an Instrument Landing System (ILS) are explored and
evaluated through physical testing, modeling and simulation. In addition, a control
system based on Model Predictive Control (MPC) is proposed for autonomous land-
ing of a flying-wing MAV on a moving boat. A full simulation of the target scenario,
including positioning systems, control system and environmental factors is made,
from which conclusions about the feasibility of successfully performing a landing
for the combined positioning system and landing algorithm are drawn. The results
of the thesis indicate, given the proposed landing strategy, that a high performance
GNSS would be sufficient to complete this type of landing consistently. The 3D
LiDAR solution also shows potential, but is based on a number of assumptions and
simplifications in modeling. The small scale ILS method proposed suffered from
precision issues that make it unfit for the target scenario.
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1
Introduction

In recent years, the use of Micro Aerial Vehicles (MAVs) has risen substantially
with applications spanning from geographical mapping and visual crop surveillance
in agriculture to distribution of medicine to remote areas. The small form factor
and low weight make it possible to, at a low cost, cover large distances and areas
quickly. Lately MAVs has also gained popularity in search and rescue missions,
where they serve as an excellent tool for video feedback.

Figure 1.1: One of the rescue boats in the SSRS fleet. [SSRS rescue fleet 2020]

At the Swedish Sea Rescue Society (SSRS), a non profit sea rescue organization
mainly operated by volunteers, efforts are being made to incorporate autonomous
systems and drone technology into their mission routines. Today, if incidents occur
at sea, boats are sent out to help and assist. An example of an SSRS rescue boat
can be seen in Figure 1.1. By deploying a flying-wing MAV instantly when an

9



Chapter 1. Introduction

incident is called in, video feedback from the scene of incident could be provided to
the rescue-team on its way or even before the departure of the rescue boat(s). This
could give access to valuable information for the rescue-team on what to prepare for,
the severity of the situation and what equipment to bring. Another scenario where
MAVs could be of great value is if the exact site of the incident is unknown. Then
a MAV can fly in a search pattern with the goal of more accurately locating the site
of incident.

1.1 Background

To maximize the utility of the MAV in a sea rescue mission, as much time as possi-
ble should be spent at mission related tasks. When a rescue mission is finished, the
MAV somehow has to land. This requires the MAV to either fly back to an appropri-
ate landing spot at the coast, to land in the sea or to land on one of the boats. In the
former case, the limited battery capacity of the MAV can severely shorten the time
of operation spent at the scene of incident. Because of this, it is preferable to go
with one of the latter alternatives and spend all the available energy in a more useful
way. Landing in the sea is the simple solution but it also introduces other problems.
If the MAV is to be used for multiple missions, loosing or damaging the MAV is
highly undesirable. A landing in the sea increases the risk of getting hit by waves
and would also require the MAV to be completely water-proof. Landing on a boat
is technically more advanced, but does not suffer from any of the disadvantages
mentioned above. In order to land the MAV on a boat, there is need for a robust
relative positioning system that is good enough to accomplish the task. Using the
strategy of landing on a boat, an increase in cost is acceptable since it might allow
the MAV to be reused many times. However, adding weight to the MAV should be
avoided to the highest extent possible, as extra weight also lowers the maximum
flight-time.

There are other applications related to sea rescue operations that might benefit from
a robust relative positioning system as well. Examples includes to autonomously
control a rescue runner or a tethered drone to follow a boat. It is not certain that a
positioning system working well for one of these applications is equally suitable for
another application. However, because of the performance needed and the relatively
large relative velocities and distances involved, the landing of a flying wing drone
on a boat is arguably the most demanding case for such a positioning system. This
is why the thesis is focusing on this particular topic.

Aside from a positioning system, a robust control algorithm is required to guide the
MAV to its destination. In general, the positioning system and the control system
are dependent on each other in several ways. This because different kinds of relative
positional information might influence the design of the control strategy, or depend-
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1.2 Target Scenario

ing on the control strategy, there could be different requirements on the positioning
system. In light of this, the inter-relationship between the two makes it necessary to
study them together.

1.2 Target Scenario

The target scenario described below reflects SSRS’ current belief on how rescue
operations aided by autonomous MAVs could unfold. The mission starts with an
incident alarm being received. From information on where the incident has occurred
as well as the current weather conditions, a software finds the MAV with the best
accessibility to the scene of incident. An operator authorizes the mission and the
MAV is then automatically deployed and flies towards the site of incident. During
flight, the MAV is guided by so called way-points, defining straight line segment
for the MAV to follow. The way-points are set manually by an operator or found by
an algorithm, either making sure to reach the destination as fast as possible while
keeping the flight safe, for example by avoiding controlled airspace. Upon arrival
the MAV would loiter the scene while recording and sending back a video stream
to the operator where it, in real time, is distributed to the relevant people. When
the rescue boat(s) has arrived and attended to the incident the landing phase can be
initiated.

In order minimize the impact of the MAV upon landing and maximize the chances
of a successful landing, the relative velocity of the boat and MAV should be kept to
a minimum. To achieve this, the boat could navigate forward with a certain velocity
while the MAV approaches from the rear. In most cases the relative velocity is lim-
ited by the maximum convenient speed of the boat. Since the type of boat, weather
and wave conditions, and surrounding environment can be expected to vary, the
maximum velocity of the boat will change as well. Depending on weather and wave
conditions, the velocity of the boat is estimated to be between 2 and 8 m/s. If no
obstructions exist, the boat will be able to line itself up towards the wind in order
to further minimize the relative velocity as this will allow the MAV to fly slower in
relation to the ground.

Since the MAV is very lightweight, the actual landing impact can be achieved by
letting a crew member, positioned in the rear of the boat facing backwards, catch
the MAV with their hands. With this in mind, the MAV target is defined as a 1
m radius circle in the vertical plane, 2 m over the water-surface. This reflects an
approximation of the area which a crew member can reach while standing still.

MAV Setup
Multiple MAV setups are currently used by SSRS for development and testing
purposes. Most frequently, a Parrot Disco airframe, which can be seen in Figure

11



Chapter 1. Introduction

1.2a, is used. A custom designed airframe is intended to be used in the future and
can be seen in Figure 1.2b.

(a) Parrot Disco airframe used for develop-
ment and testing.

(b) A custom designed airframe.

Figure 1.2: Flying-wing airframes of importance to SSRS.

Except the airframe, a typical MAV setup currently includes the following compo-
nents

• A flight computer (including IMU and barometer) running Ardupilot or PX4
software.

• A 4G (LTE) cellular data communication link.

• A Raspberry Pi computer capable of communication with the operator
(through the cellular communication link), and the flight computer running
PX4 or Ardupilot.

• Motor, Electronic Speed Controllers (ESC) and servos for control of speed
and control surfaces.

• Batteries powering the MAV.

• Additional sensors such as pitot tube for airspeed, laser range finder for accu-
rate altitude measurements and GNSS for global positioning.

• Camera(s) used for capturing video to be streamed to the operator.

1.3 Scope

This section states the problem formulation, a brief description what has been done
within the thesis, and what delimitations have been made.
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1.3 Scope

Problem Formulation
With the target scenario set, the problem can be formulated. The objectives of this
thesis are the following:

• Investigate feasible solutions for robust relative positioning between a MAV
and boat according to the target scenario.

• Design and evaluate an appropriate control algorithm that can be used for
autonomous landing of a flying-wing MAV on a boat.

• Make a real-world implementation of a combined relative positioning system
and landing algorithm.

Extent of Project
For this thesis, three different kinds of positioning systems were explored as alter-
natives for the target scenario. Analysis of the systems were made regarding how
well they would fit the end goal of providing robust positioning. To evaluate the
theoretical performance, the positioning systems were modeled and used in full
system simulations. Tests were performed on the physically available systems and
some of the results and conclusions drawn were incorporated into the full system
simulation to make it more realistic.

A control system and corresponding landing strategy were also designed and eval-
uated. The main focus was on implementing a Model Predictive Controller (MPC)
and to make use of its strengths in order to complete a landing strategy.

A complete simulation, including the different positions systems, the boat, the MAV
and the proposed control system was implemented in Matlab. The simulation also
includes a Dryden wind model and a simple sinusoidal model of waves. Naturally,
the parts of the simulations identified as more important have been given more
focus than less important parts. The simulation is meant to evaluate the feasibility
of a few positioning-control system pairs by looking at flight trajectories, where the
MAV believes it hits the boat, and where the MAV actually hits the boat.

The initial idea was to physically implement the most promising positioning system
if possible. The plan was to also implement the chosen control-system on a phys-
ical MAV of similar size to the ones used by SSRS, and make real world test of
the full system. Unfortunately neither of those ideas came nearly as far as initially
planned. General time constraints, together with a world wide pandemic (COVID-
19), causing extra delays and logistics problems, made it impossible to realize the
initial scope within an acceptable time-frame. However, some initial tests, designs
and implementations were done, and these are described briefly in the report al-
though not completed. Thus, a few additional experiments and designs that might
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Chapter 1. Introduction

be helpful for future implementation were added to the report, even if they do not
directly relate to the contents of the results in Chapter 6.

Delimitation
For positioning systems, only a narrow set of alternatives were explored compared
to all previously proposed systems in this area of research. Most notably, vision
based systems were not considered. Because of the problems rain can cause vision
based systems, including rain on the lense and sun glares in the water, this approach
to positioning was considered too fragile for further studies for this particular pur-
pose.

On the control system side the focus has been MPC. Other approaches such as
PID-controllers could have been explored in more detail but was not considered
promising enough to be prioritized among many other areas important to address.
Also, some functionality needed for the MAV to land was not considered in this
project. Examples include decisions on when to abort a landing, and functionality
that is already directly available in the flight stacks used by SSRS. Examples of
such available functionalities are the MAV state estimator and estimation of ambient
wind. Ideally, for the purpose of simulation, an approximation of the covariances for
the outputs of these state estimators should have been identified for the real-world
MAV. However this would require a flying MAV as well as a ground truth, neither
being available.

Division of Work
Both authors have worked with vehicle modeling and general tasks necessary for
the thesis such as project planning, report writing and general administration. Apart
from this, Olle has been working with evaluation, testing and simulation of the
positioning systems while Martin has been focusing on control system design and
simulation of landing scenarios.

1.4 Related Work

Before this thesis, several other masters theses and university projects have been
conducted to serve the purpose of including new technology into SSRS search and
recuse missions. This includes a launchpad for autonomous flying wing takeoffs
[Valero Beltrá, 2018], control systems for rescue-runners to autonomously follow a
boat [Voigt and Alkaysi, 2020] and an optimization-based strategy for autonomous
landing for flying-wing MAV on land [Fridén, 2020]. In addition a mission specific
flying wing airframe has been designed as part of a master’s thesis project, which
at the time of writing has not been published. References to this airframe are made
throughout this thesis and relevant information about it has been compiled in Ap-
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1.5 Outline

pendix C.

Positioning of small unmanned aerial vehicles (UAVs) has been researched in many
different ways. For indoor positioning, several methods are presented in [Pérez et
al., 2018], some of which include Ultra Wide-Band (UWB), vision based systems,
WLAN and Inertial Measurement Unit (IMU). Methods for outdoor purposes tra-
ditionally include Global Navigation Satellite System (GNSS) systems and sensor
fusion methods using an IMU. Recent research has studied 3D LiDAR devices and
object detection, as in [Hammer et al., 2018].

Quite a few studies on autonomous landing of UAVs have been conducted. Many of
these studies have been focusing on rotor UAVs aided with computer vision tech-
niques to perform the landing. However, the case of using a fixed wing and a copter
drone are quite different and vision based approaches might come short outdoors
when fog, mist or glares come into play. A summary of some studies, both for
fixed-wing and copter style drones, can be found in [Gautam et al., 2014]. Previous
work on landings of fixed-wing UAVs on moving targets, similar to the situation
in this thesis, has been done in [Muskardin et al., 2017] and [Persson, 2019]. First,
experimentally using a PID-based control approach and then in simulation with a
MPC-based approach. In these studies cooperative landing has been used, i.e. when
both aircraft and target vehicle are controlled simultaneously by the landing algo-
rithm, which will not be the case for this thesis. The concept of using a MPC to
perform autonomous landing with a small fixed-wing MAV has also been explored
in [Mathisen et al., 2016], here using a deep stall approach.

1.5 Outline

In Chapter 2 the report starts by presenting notations, definitions and the mathe-
matical models used for the simulation. Chapter 3 explores the positioning side of
the problem and three positioning methods are analysed and evaluated. In Chapter
4, a control system and corresponding strategies for landing on a moving target is
proposed. After this, Chapter 5 combines Chapter 3 and Chapter 4 into a full simu-
lation, also including environmental factors such as wind and waves. In Chapter 6,
the results of the simulation is presented and chapter 7 facilitates a short discussion
on steps taken towards a real-world implementation, including simple real-world
small scale test on a RC car. Chapter 8 concludes the thesis, discussing and reflect-
ing upon the contents of the report. Suggestions on how to proceed with the project
in the future is also included.
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2
Modeling

In this chapter, the relevant models used in the simulations are presented. This in-
cludes an introduction to the reference frames used as well as mathematical models
for the MAV, the boat, and external factors such as wind and waves.

2.1 Reference Frames

To facilitate a discussion of relative movement of mechanical bodies, the concept
of reference frames is introduced. This is done in order to derive and keep track of
relationships between kinematics and dynamics in a way as easy and intuitive as
possible. In situations where large spatial distances are considered, the curvature of
earth will have significant impact on relative positions and orientations. However,
this will not be the case for this report and thus regular Cartesian coordinates will
be used. A few reference frames will be of particular interest; inertial frame (I),
vehicle frame (V), vehicle-1 frame (V1), body frame (B), stability frame (S) and
wind frame (W). A rotation of a vector a from I to B will be denoted by

aB = RB
IaI . (2.1)

where RB
I is a matrix defining the rotation, and the vector a is expressed in a specific

frame by the following notation

aI = iIx ax + jIy ay +kI
z az = (ax,ay,az)

T (2.2)

where ix, jy and kz are basis vectors of that particular frame. The rotations of the
frames themselves are defined by positive rotations around the axis of rotation.
Thus, the corresponding transformation of vectors between the frames, are nega-
tive rotations around the same axis of rotation.

Inertial Frame
The inertial frame (I) used in this report is an earth-fixed, Cartesian coordinate
system, with the origin defined at some home location. The principal axis are de-
fined with iIx pointing north, iIy pointing east and iIz pointing down. This convention
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2.1 Reference Frames

is standard for aircraft and marine applications and is sometimes referred to as a
north-east-down (NED) reference frame.

Vehicle Frame
The next frame of importance is the vehicle frame (V). The origin of V is located
in the center of gravity of the vehicle and is using the same directions as the inertial
frame for its principal axis (i.e north-east-down respectively), see Figure 2.1a. The
transformation from I to V is simply a translation along the three axis in the inertial
frame.

Vehicle-1 Frame
We also introduce the vehicle-1 frame (V1). This frame is defined by rotating V
around kV

z by an angle ψ (later referred to as yaw) such that iV1
x is pointing in the

same horizontal direction as the vehicle (see Figure 2.1b).

jIy

iIx

kI
z

iVx

jVy

kV
z

(a) Illustration of the relation between I and V .

jIy

iIx

kI
z

jV1
y

iV1
x

kV1
z

ψ

(b) Inertial frame (I) and vehicle-1 frame (V1).

Figure 2.1: Illustration of the relations between frames I, V and V1, with the MAV
seen from above.

Body Frame
The body frame (B) also has its origin in the vehicle center of gravity, but with
its principal axes attached to the body of the vehicle. The principal axes in B are
defined with iBx pointing in the forward direction of the vehicle, jBy pointing through
the right side of the vehicle and kB

z pointing through the bottom of the vehicle (see
Figure 2.2).

The transformation between the vehicle frame and the body frame is a single ro-
tation. This rotation can be described in a more intuitive way by splitting it up in
three successive rotations using the intrinsic ZYX Tait-Bryan representation. First
the coordinate frame is rotated around the kV

z -axis by angle ψ (resulting in V1). The
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Chapter 2. Modeling

iIx

jIy

kI
z

iBx

jBy

kB
z

Figure 2.2: Illustration of the relation between inertial frame (I) and body frame
(B).

second rotation is around the jV1
y -axis by angle θ (later referred to as pitch). The

third rotation is around the new ix-axis by angle φ (later referred to as roll). For a
vector in V , each one of these rotations can be expressed by a matrix. Multiplying
these matrices together gives the final transformation of a vector from the vehicle
frame (V) to the body frame (B). The rotation of the frames themselves are defined
by positive rotations. Thus, the corresponding rotations that transform the vectors
from one frame to another, are negative rotations. The rotation-matrix transforming
a vector from V to B is given by

RB
V = Rx(φ)Ry(φ)Rz(ψ) =

1 0 0
0 cφ sφ

0 −sφ cφ

cθ 0 −sθ

0 1 0
sθ 0 cθ

 cψ sψ 0
−sψ cψ 0

0 0 1


(2.3)

RB
V =

 cθ cψ cθ sψ −sθ

sφ sθ cψ − cφ sψ sφ sθ sψ + cφ cψ sφ cθ

cφ sθ cψ + sφ sψ cφ sθ sψ − sφ cψ cφ cθ

 (2.4)

where cφ

∆
= cos(φ) and sin(φ) ∆

= sφ .

Stability Frame and Wind Frame
The velocity of the MAV in relation to the surrounding air is called the airspeed-
vector (Va) and the magnitude of Va is called airspeed (Va). Angle of attack (α)
is defined as the angle from iBx to the projection of Va into the iBx kB

z -plane (see
Figure 2.3a). We also define the side-slip angle (β ) which is the angle from Va to
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2.2 MAV Modeling

its projection onto the iBx kB
z -plane (see Figure 2.3b).

iBx
jBy

kB
z

Vaα

(a) Angle of attack, α from a side view of the
flying wing. Notice that this is a simplified case
where roll is zero (i.e. φ = 0).

jBy

iBx

kB
z

Va
β

(b) Slip angle β from a top-view of the flying-
wing. Notice that this is a simplified case where
B is aligned with V1 (i.e. θ = φ = 0).

Figure 2.3: Illustration of angle of attack (α) and side slip angle (β ).

The wind frame (W) has its origin in the center of gravity of the MAV and is defined
by rotating B with two intrinsic rotations. First, a negative rotation around jBy by
angle α , resulting in an intermediate frame called stability frame (S). Continuing
with a positive rotation around kS

z by angle β , finally results as W . The rotation
taking a vector from the B toW will be the corresponding negative rotations, and
is given by:

RW
B = Rz(β )Ry(−α) =

 cβ sβ 0
−sβ cβ 0

0 0 1

 cα 0 sα

0 1 0
−sα 0 cα

 (2.5)

Path Angle and Course Angle
The velocity of the MAV in relation to the ground is called the ground speed vector
(Vg). The flight path angle (γ) is defined as the angle from Vg to its projection in
the horizontal plane (iVx jVy -plane), see Figure 2.4a. Here we also define the course
angle (χ) as the angle from the projection of the ground speed vector (Vg) on the
horizontal plane (iVx jVy -plane) to the north (iVx ), see Figure 2.4b. The triangle created
by the Vg, Va and Vw is usually referred to as the wind triangle.

2.2 MAV Modeling

In order to develop control strategies, perform simulations and getting more familiar
with MAV kinematics and dynamics a MAV model was adopted from [Beard and
McLain, 2012]. The states used in the full model of the MAV can be seen in Table
2.1.
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iV1
xjV1

y

kV1
z

Va

Vg

Vw

γ

(a) Path angle (γ) from a side view of the flying
wing. Notice that the displayed angle represents a
negative path angle.

jVy

iVx

kV
z

Va

Vg

Vw

χ

(b) Course angle (χ) from a top-view of the flying-
wing.

Figure 2.4: Illustration of course angle (χ) and path angle (γ).

MAV States
Description Symbol Vector

notation
MAV position in I (xm,ym,zm)

T pm
MAV linear velocities in B (u,v,w)T u

MAV roll φ -
MAV pitch θ -
MAV yaw ψ -

MAV angular velocities in B (p,q,r)T ω

Table 2.1: Summary of the states used for the modeling of the MAV.

Rigid Body Kinematics
The kinematic relationships presented in this section are not specific to the MAV, but
can be used for all rigid bodies using the same definitions of reference frames.The
linear kinematics establish the relationship between the body frame and the inertial
frame velocities of the MAV. The angular kinematics establish the relationship be-
tween the body frame angular velocities and the time derivatives of yaw, pitch and
roll respectively.

Linear Kinematics The time derivative of the MAV position in I, (ẋm, ẏm, żm)
T ,

does not equal the body frame velocities, (u,v,w)T , since they are expressed in
different reference frames. The relationship can be established by rotating a vector
from B to V (notice that the time derivative of a position in I and V are equal).
An inverse rotation for a given rotation matrix can be performed by transposing the
matrix. Thus (RB

V)
T can be used for the purpose of this. The final relationship is

given by
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2.2 MAV Modeling

ẋm
ẏm
żm

= RV
B

u
v
w

= (RB
V)

T

u
v
w

 (2.6)

Angular Kinematics The time derivative of the MAV orientation, (φ̇ , θ̇ , ψ̇)T , is
not equal to the body frame angular rates, (p,q,r)T , as they are expressed in differ-
ent reference frames. Roll(φ ), pitch(θ ) and yaw(ψ) are defined by intrinsic rotations
and are therefore also internally defined in different reference frames. Using the suc-
cessive rotations from the intrinsic ZYX Tait-Bryan convention (see Equation (2.3))
a relation between the two can be established asq

p
r

=

φ̇

0
0

+Rx(φ)

0
θ̇

0

+Rx(φ)Ry(θ)

0
0
ψ̇

 (2.7)

Multiplying matrices, extracting and concatenating columns, and inverting yields
([Beard and McLain, 2012])φ̇

θ̇

ψ̇

=

1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(φ)
0 s(φ)/c(θ) c(φ)/c(θ)

q
p
r

 (2.8)

Rigid Body Dynamics
The dynamic relationships presented in this section are not specific to the MAV, but
can be used for all rigid bodies using the same assumptions and definitions of refer-
ence frames. The dynamics establish the relationship between the time derivative of
body frame linear and angular velocities, and forces and moments acting upon the
body. More detailed derivations of the dynamic equations can be found in [Beard
and McLain, 2012] and [Murray et al., 1994]. With a state vector

x =
[
uT vT ]T =

[
u v w p q r

]T (2.9)

and forces and torques as

Q =
[
fT τT ]T =

[
fx fy fz l m n

]T (2.10)

where fx, fy and fz are forces and l, m and n are moments around the iBx , jBy and kB
z

axis respectively, the dynamic equations for a rigid body can be described by the
standard Newton-Euler equations below, similarly as in [Murray et al., 1994].

Mẋ+C(x)x = Q (2.11)

Here

M =

(
mI3x3 03x3
03x3 J

)
(2.12)
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where J is the inertia matrix and m is the mass of the MAV. Since the MAV body is
symmetric in the iBx kB

z -plane J can be expressed as

J =

 Jx 0 −Jxz
0 Jy 0
−Jxz 0 Jz

 (2.13)

and C(x) is called the Coriolis matrix

C(x) =
(

m[u]× 03x3
03x3 [u]×J

)
(2.14)

where

[u]× =

 0 r −q
−r 0 p
q −p 0

 (2.15)

is the skew-symmetric vector product matrix of u = (p,q,r)T .

Forces and Moments
In this section will expand on the different components of the forces and moments
(Q) acting upon the MAV. The total force acting upon the MAV is the sum of gravi-
tational forces, aerodynamic forces and propulsion forces. The total moment acting
upon the MAV is the sum of aerodynamic moments and propulsion moments. For
simplicity the propulsion moments will be neglected in this report. A more detailed
explanation of the modeled forces and moments can be found in [Beard and McLain,
2012].

Gravitational Forces The force from gravity acting upon the MAV is

fVg =
[
0 0 mg

]T (2.16)

where m is the mass of the MAV and g is the gravitational constant. Rotating fVg to
B yields

fBg = RB
V fVg (2.17)

Control Surfaces In this report mainly two control surfaces are of interest; the
elevator, mainly controlling pitch angle (θ ), and the ailerons, mainly controlling roll
angle (φ ). A positive elevator deflection angle (δe) is defined as a positive rotation
of the elevator joint around the jBy -axis (trailing edge pointing down). An aileron
deflection angle (δa) defined as

δa =
1
2
(δa,le f t −δa,right) (2.18)
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2.2 MAV Modeling

where the deflection angle δa,le f t is positive with the trailing edge pointing down
and the deflection angle δa,right is positive with the trailing edge pointing up.

A flying wing has neither rudder nor elevator control surfaces. Lacking a rudder,
direct control of yaw (ψ) is not possible for a flying wing. Instead of an elevator
control surface, the ailerons of a flying wing, usually called elevons, are simultane-
ously used as ailerons and elevator. The deflection angles of the right elevon (δer)
and the left elevon (δel) are both defined positive when their trailing edge is pointing
down (see Figure 2.5). With these definitions we can convert between elevator and
aileron commands to elevon commands according to(

δe
δa

)
=

1
2

(
1 1
−1 1

)(
δer
δel

)
(2.19)

With this conversion established the aerodynamic forces and moments can be ex-
pressed in terms of δe and δa [Beard and McLain, 2012] (here there is an error in
the original publication, corrected in the errata [Errata; Small Unmanned Aircraft:
Theory and Practice 2020]).

δel

δer

iBx

jBy
kB

z

Figure 2.5: Illustration of the left and right elevon deflection angles (δel and δer).

Aerodynamic Forces and Moments The longitudinal aerodynamic forces and
moments are expressed in the stability frame (S). The forces and moments mod-
eled are lift force (Fli f t ) along the negative kS

z -axis, drag force (Fdrag) along the
negative iSx -axis and moment m (see Figure 2.6). In order to express forces in B,
Fli f t and Fdrag can be converted from S by negation and then rotation by α [Beard
and McLain, 2012].

Fli f t =
1
2

ρV 2
a SCL(α,q,δe) (2.20)

Fdrag =
1
2

ρV 2
a SCD(α,q,δe) (2.21)
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VaiSx

kS
z

Fdrag

Fli f t

jBy

iBx

kB
z

α

m

Figure 2.6: Lift and drag forces in relation to frames S and B. Notice that the forces
are acting upon the aerodynamic center rather than center of gravity. This also in-
troduces the moment m around jBy .

m=
1
2

ρVaScCm(α,q,δe) (2.22)

where ρ is the air-density, S is the planform area of the MAV, c is the mean chord
of the MAV wing and, CL, CD and Cm are aerodynamic coefficients depending on α ,
q and δe. The nonlinear aerodynamic coefficients, CL, CD and Cm, are approximated
with a first order Taylor series expansions.

Notice that Fli f t is highly nonlinear in angle of attack (α), specially when the mag-
nitude of α is large. In order to model stall behaviour this non-linearity has to be
taken into account. Thus, the linear α-dependency in the Taylor expansion is sub-
stituted with a nonlinear function. Fdrag is also nonlinear in angle-of-attack and this
α-component is in a similar way substituted with a nonlinear function. Finally

CL(α,q,δe) =CL(α)+CLq

c
2Va

q+CLδe
δe (2.23)

CD(α,q,δe) =CD(α)+CDq

c
2Va

q+CDδe
δe (2.24)

Cm(α,q,δe) =Cm0 +Cmα
α +Cmq

c
2Va

q+Cmδe
δe (2.25)

where the parameters are usually found from wind tunnel experiments or computer
fluid dynamics (CFD) simulation, and

CL(α) = (1−σ(α))[CL0 +CLα
α]+σ(α)[2sign(α)sin2(α)cos(α)] (2.26)
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where σ(α) is a sigmoid blending function and

CLα
=

πb2/S

1+
√

1+(AR/2)2
(2.27)

where b is the wingspan and

CD(α) =CDp +
(CL0 +CLα

)2

πeb2/S
(2.28)

where CDp is the parasitic drag and e is the Oswald efficiency factor [Beard and
McLain, 2012].

The lateral aerodynamic forces and moments are expressed in the body frame. The
forces and moments modeled are fy, l and n.

fy =
1
2

ρV 2
a SCY (β , p,r,δa) (2.29)

l =
1
2

ρV 2
a SbCl(β , p,r,δa) (2.30)

n =
1
2

ρV 2
a SbCn(β , p,r,δa) (2.31)

where b is the wingspan of the MAV and, CY , Cl and Cn are aerodynamic coefficients
depending on β , p, r and δa.The parameters CL, CD and Cm are approximated with
a first order Taylor series expansion, similar as for the longitudinal components, but
without any nonlinear behaviour except for the Va dependency. Finally

CY (β , p,r,δa) =CY0 +CYβ
β +CYp

c
2Va

p+CYr

c
2Va

r+CYδa
δa (2.32)

Cl(β , p,r,δa) =Cl0 +Clβ β +Clp

c
2Va

p+Clr
c

2Va
r+Clδa

δa (2.33)

Cn(β , p,r,δa) =Cn0 +Cnβ
β +Cnp

c
2Va

p+Cnr

c
2Va

r+Cnδa
δa (2.34)

where the parameters are usually found from wind tunnel experiments or computer
fluid dynamics (CFD) simulation.
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Propulsion Using Bernoulli’s equation, the thrust force (fBp ) can be expressed
by the pressure difference upstream and downstream of the propeller [Beard and
McLain, 2012]. The final propulsion force is modeled as

fBp =
1
2

ρSpropCprop

(kmotorδt)
2−V 2

a
0
0

 (2.35)

where Sprop is the area swept by the propeller, Cprop is a propeller coefficient and
kmotor is a constant defining the proportional relationship between thrust command
δt to the speed of the airflow exiting the motor.

Parameters
Currently there is no available set of aerodynamic parameters for the designed
flying-wing MAV intended for usage in the real-world mission. Instead, a slightly
modified version of the parameter-set for a flying-wing MAV called Zagi, identified
in [Platanitis and Shkarayev, 2005] was used. The Zagi MAV is slightly larger than
the intended MAV, and can be seen in Figure 2.7 [Zagi website 2020]. The full set
of parameters used for the simulation can be seen in Appendix A.
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2.2 MAV Modeling

Figure 2.7: The Zagi flying-wing. [Zagi website 2020]

Simplified MAV Model
For control design a simplified model of the process might be beneficial to use. For
this purpose, a slightly modified version of the model presented in [Persson, 2019]
is used. In the original model the direction of flight is set by the flight path angle
(γ) and the course angle (χ) (see Section 2.1). For this model it is also assumed that
the acceleration (a), path angle (γ) and course angle (χ) are set by some low-level
controller with first order, unit gain transfer functions. The simplified model of the
MAV can be seen below



ẋs
ẏs
żs
v̇s
ȧs
γ̇s
χ̇s


=



vscos(γs)cos(χs)
vscos(γs)sin(χs)
−vssin(γs)

as
1
τa
(ascmd −as)

1
τγ
(γscmd − γs)

1
τχ
(χscmd −χs)


(2.36)
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where vs is the speed, ascmd , γscmd χscmd are inputs and τa, τγ and τχ are time con-
stants. Since a flying wing can not directly control yaw (lacking a rudder), yaw and
course angle are controlled by rolling the MAV, which is having the secondary ef-
fect of changing the yaw. Somewhat simplified, the ailerons control the roll angular
rate, integrating up to roll angle. In turn, roll is affecting the yaw-rate, integrating
up to yaw and course angle. Thus, the behaviour of the course angle to some degree
resembles a second order transfer function. Modeling this behaviour, the χs transfer
function is extended to a second order function with unit gain, on the form

χs =
τχ0

s2 + τχ1s+ τχ0

χ
cmd
s (2.37)

Converting Equation (2.37) to state space form we get the final simplified model
below 

ẋs
ẏs
żs
v̇s
ȧs
γ̇s
χ̇s
χ̈s


=



vscos(γs)cos(χs)
vscos(γs)sin(χs)
−vssin(γs)

as
1
τa
(ascmd −as)

1
τγ
(γscmd − γs)

χ̇s
−τχ1 χ̇ + τχ0(χ

cmd
s −χs)


(2.38)

where τχ0 and τχ1 should be chosen to make the model dynamics as similar as
possible to the real MAV dynamics.

2.3 Wind Modeling

As mentioned in Section 2.1, the ground velocity, Vg, of the MAV is the sum of the
air speed vector, Va, and the wind velocity Vw. This relation is usually called the
wind triangle.

Vg = Va +Vw (2.39)

The modeled wind velocity consists of two parts, one ambient stationary component
and one stochastic gust component

Vw = Vwa +Vwg (2.40)

where Vw is the total wind velocity, Vwa is the ambient component and Vwg is the
gust component. The ambient component is defined in the inertial frame and the
gust component is defined in the body frame

VI
wa = (wxa ,wya ,wza)

T (2.41)
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VB
wg = (uwg ,vwg ,wwg)

T (2.42)

Dryden Wind Model
The gust component of the wind is modeled with a Dryden wind model. The Dryden
model is defined by one transfer function for each gust component. The gust is the
output from the transfer function when filtering white noise. The transfer function
for each component is [Beard and McLain, 2012]

Hu(s) = σu

√
2Va

Lu

1
s+ Va

Lu

(2.43)

Hv(s) = σv

√
3Va

Lv

(s+ Va√
3Lv

)

(s+ Va
Lv
)2

(2.44)

Hw(s) = σw

√
3Va

Lw

(s+ Va√
3Lw

)

(s+ Va
Lw
)2

(2.45)

where σu, σv and σw are the intensity for each component of the white noise driving
the process and Lu, Lv and Lw are spatial wavelengths.

2.4 Boat Modeling

In order to perform full system simulations, a five state boat model is used. The
model is based on a planar 2D model with simple boat kinematics. The model does
not exert any pitch or roll behaviour and the the elevation zb is driven by the be-
haviour of the waves, described in Section 2.5.

ẋb
ẏb
zb
ψ̇b
v̇b

=


vbcos(ψb)
vbsin(ψb)

Pw(xb,yb, t)
vb

1
dr

tan(krδr)
1

mb
(−Cdv2

b + ktδu)

 (2.46)

where δr and δu are input signals, mb is the mass of the boat, xb, yb and zb is the boat
position in I, vb is the speed and ψb is the heading. Cd is a coefficient for modeling
the drag of the water. The steering behavior is defined by dr, the distance between
the center of gravity and the center of rotation of the rudder, the steering input
rudder angle δr and a steering coefficient kr. The model behavior is decreasingly
realistic with increased rudder angle.
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The physical boat parameters have been taken from the "Viktoriaklassen" type boat,
which is a commonly used boat in the mid size range in the SSRS fleet. A few
characteristics are [SSRS rescue fleet 2020].

• Mass: 13 tonnes

• Max velocity: 34 knots = 17.5 m/s

The coefficient of drag Cd is set such that a full throttle (δu = 1) results in the steady
state maximum velocity of 17.5 m/s.

Figure 2.8: Simplified kinematic boat model.

Simplified Boat Model
An even simpler boat model will be used as a part of the control algorithm. The
boat model presented above could have been used here, but the simplified model is
meant to showcase the modeling error between the boat plant and the internal model
used by the control algorithm. For this purpose we use a unicycle, sometimes called
differential drive, as a minimal boat model. The system dynamics are
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 ẋb
ẏb
ψ̇b

=

δvcos(ψb)
δvsin(ψb)

δψ

 (2.47)

2.5 Wave Modeling

The waves are modeled as a displacements along kI
z from the nominal sea level.

Just as for the wind, the model consists of two parts, one deterministic component
and one stochastic component.

Pw = Pwd +Pws (2.48)

where Pw is the total wave displacement, Pwd is the deterministic component and
Pws is the stochastic component. The deterministic component is modeled as

Pwd (xb,yb, t) = Acos
(

2πcos(ψwave)
λ

xb +
2πsin(ψwave)

λ
yb− 2πt

T +φwave

)
(2.49)

where A is the wave amplitude, λ is the wavelength, T is the wave period, ψwave is
the direction of the wave, φwave is the phase of the wave and t is the current instance
in time. For now the stochastic component is modeled as white noise.
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3
Positioning

This chapter explores different relative positioning methods between MAV and
boat. Different configuration options of the sensor solutions are presented. General
requirements and robustness aspects are presented and discussed. Several potential
positioning solutions are explored and evaluated. Tests are performed on physical
devices. Finally, two of the the positioning systems are modeled to be used in a
full system simulation replicating the intended target scenario to evaluate their per-
formance. Discussions directly related to tests on the positioning systems or sub-
systems of them are made in this chapter. More general discussions related to the
performance of the positioning systems in the simulation environment together with
the control systems are presented in Chapter 8.

3.1 Main Robustness Aspects

In order to make the comparison between different positioning solutions more man-
ageable, the robustness aspects of a positioning system are divided into a number of
categories.

State Information In order to be able to control the MAV towards the boat, rel-
evant information has to be made available to the controller. The positioning sys-
tem can output different quantities, an absolute or a relative position measurement
depending on the sensor system. The positioning system output can also express
the measurement in different coordinate frames, which may or may not be easily
transformable to an appropriate state for the control system, which is why each
positioning system output has to be evaluated with the final control system in mind.

Performance There are several performance related aspects of a positioning sys-
tem and in this thesis, the most relevant ones that have been considered are accu-
racy, precision, refresh rate and delay. Accuracy and precision determine how well
the measurement corresponds with the real position state. Accuracy describes the
statistical bias of the measurements and the precision describes the statistical vari-
ability of the measurements. Accuracy and precision can for example be affected by
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factors such as sensor hardware, sensor mounting, signal noise and detection range.
The delay and refresh rate of the positioning system are additional performance
factors and can cause instability problems among others.

Environment The SSRS rescue missions occur in many weather conditions.
Specifically, the system has to work in rainy and windy conditions. In addition,
it has to function in different light conditions, including everything from night time
darkness to daytime sunlight as well as sun glare in the water. Every year on most
parts of the Swedish west coast, there are between 100 and 150 days with rain, 80
to 100 days with at least 1 mm of rain, and 20 to 30 days with at least 10 mm of
rain [SMHI - Nederbörd 2020]. However, accidents tend to occur more frequently
on days without rain, as people in general are more likely to go out with their boats
those days. Based on statistical data from SSRS, 5% of incidents occur when winds
are stronger than 15 m/s, which is an indication that strong winds can be expected.

Interaction Some positioning systems require data-communication while others
can operate differently, for example by radio wave interference patterns. The in-
teraction aspect is related to the connection between the MAV and the positioning
system, what is needed to establish a connection and how reliable the connection is.

Simplicity It is beneficial if the positioning system is kept as simple as possible
since the development of SSRS’ work with autonomous systems partially is carried
out through university projects or volunteer work. The person who implements or
builds something, might not be the one operating or providing maintenance on the
system at a later point in time.

Weight Addition
For some relative positioning systems there is a need to implement a sensor device
in the MAV, which potentially could add weight, volume and claim power con-
sumption. Weight addition to the MAV will increase the energy usage and shorten
the maximum possible time spent in the air. To evaluate the effect of added weight
on flight time, the lost flying time can be expressed as a function of added weight.
The design criteria of the custom designed airframe referenced in Appendix C was
that the drone should be able to fly at 35 m/s for 10 minutes and then loiter at the
scene of incident for at least 40 minutes. Assuming that the first flight phase of 10
minutes at 35 m/s remains at 10 minutes and that the decreased time only gets sub-
tracted from the second flight phase, the total energy required to perform the flight
can be approximated by

Eb = P1t1 +P2t2 (3.1)

where Eb is the battery energy required and P and t are the power and time for the
two different phases of flight. From the SSRS airframe design study, a motor and
propeller efficiency of 60 % is assumed for power calculations and the electronics
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on board is assumed to consume 5W continuously. The power consumption at a
certain point is then given by

P = (FdVa)
1

0.6
+5 (3.2)

where Va is the airspeed and Fd is the drag force. The drag force is a function of the
airspeed and the angle of attack. For steady state flight, the MAV adapts the angle
of attack to achieve a net zero vertical force component. Added weight has to be
compensated by an increase in the angle of attack to maintain this condition, which
in turn increases the drag force. To get an approximate value on how the drag forces
are affected by the mass, the MAV model, referenced in Section 2.2 was simulated
in steady state flight at 15 m/s and 35 m/s and the drag force was logged for a variety
of mass values. The simulations showed a 1.0 mN increase in added drag force per
added gram at 15 m/s and 7.6 mN at 35 m/s. This corresponds to about 9 seconds
of lost loitering flight time for every added gram of weight.

3.2 Possible Sensor Configurations

Since relative position can be found using many different sensor solutions, there are
multiple ways they can be physically mounted and configured. For example, a vision
based system can consist of a camera mounted on the MAV, on the boat, or on both.
Different configurations require different considerations. For the target scenario, the
possible configurations was divided into three major categories explained below.

Active Boat, Passive MAV In this configuration, the positioning is performed by
a sensor solution on the boat. The benefit of this setup is that no additional sensor
on the MAV is required which limits the risk of additional weight, space or power
consumption. The drawback of this configuration is that a communication link is
required to feed information between the boat and the MAV.

Figure 3.1: Active boat, passive MAV

Passive Boat, Active MAV In this configuration, the positioning is performed by
a sensor solution on the MAV. The benefit of this configuration is that the position
yielded is instantly ready to be processed for control output without the need for a
communication link. The drawback of this configuration is that the sensor solution
adds weight, volume and power consumption.
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Figure 3.2: Passive boat, active MAV

Active Boat, Active MAV This configuration uses sensor solutions on both ve-
hicles. This could potentially improve the accuracy of the relative position mea-
surement and provide measurement redundancy. Although, the drawbacks of this
configuration are both of the previous two configurations; added weight and more
space required on the MAV as well as the need for a communication link.

Figure 3.3: Active boat, active MAV

3.3 Communication

In the sensor configurations where the boat actively retrieves measurements, there
is a need for data to be communicated to achieve closed loop control. This can
principally be performed in many ways, but a radio communication link provides a
commercially available and relatively easy way to transfer data. In the long run, the
communication has to work between boats and devices in such a way that any boat
arriving at any scene of incident should be able to communicate with any one MAV
sent out to the scene. Initializing and maintaining the communication link has to be
robust and without the need of manual setup.

In order to evaluate one radio communication device, an Xbee RF-module (2.4
GHz), as seen in Figure 3.4, was chosen. The reason for choosing this device was
because it has multiple antenna configuration options. This allows the lightweight
(4 g) version, seen in Figure 3.4a, with the antenna integrated into the Printed Cir-
cuit Board (PCB) to be used one the MAV side. On the boat side, the version with
the standardized SMA antenna connector, seen in Figure 3.4b, allows any suitable
antenna that uses the SMA connector type to be used. Aside from the antenna as-
pect, the protocol used in Xbee supports a broadcast mode which makes it possible
to communicate with any device in a predefined network. This makes the protocol
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appropriate for the task as it makes any boat compatible with any MAV as well as
the ability for any boat to communicate with multiple drones.

(a) Xbee with PCB antenna. (b) Xbee with SMA antenna connector.

Figure 3.4: The different Xbee antennas used for radio communication.

Testing
To test the range of the device, multiple combinations of devices were used. Firstly,
two devices with PCB antennas were separated slowly while communicating, and
the distance at which they stopped communicating was noted. The same procedure
was performed for the combination PCB antenna and WiFi dipole antenna. The
results can be seen in Table 3.1.

Antenna PCB - PCB PCB - Dipole
Maximum range 35 m 550 m

Table 3.1: Test results from the range tests of Xbee communication modules with
different antennas.

In order to evaluate the magnitude and variation of the communication delay, 2000
messages each containing 14 bytes of data were sent from one device to another
and then back again. The round trip time was saved and divided by two to get an
approximation of the one way delay time. The 14 bytes represent approximately the
amount of data required to send one position measurement containing 5 bytes each
for a latitude and longitude and 3 bytes for altitude. One extra byte was added as
margin. As seen in Figure 3.5, the delay is normally below 23 ms. Two distinct peaks
can be seen and the cause of this phenomenon is not clear. A possible explanation
is that the low level communication protocol has a fault detection function which is
resending messages when data arrives corrupt, and thus sometimes adding time.
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Figure 3.5: Magnitude and distribution of delay for 2000 messages sent between
devices.

3.4 Selection of Positioning Systems

Three major positioning system alternatives have been evaluated. The systems are
Global Navigation Satellite System (GNSS) based positioning, 3D LiDAR based
positioning and a guidance system based on the Instrument Landing System (ILS).
GNSS positioning was chosen because the MAV will be equipped with a module for
other navigational purposes than landing, and utilizing it for landing would make
it possible to achieve the goal without the use of an additional positioning module.
This can in turn save weight and space. 3D LiDAR was chosen as an alternative be-
cause commercially available modules today provide a relatively accurate and fast
measurement. When mounted in the "Active boat - passive MAV" configuration, it
also does not add weight and extra power consumption on the MAV. 3D LiDARs
are becoming popular due to use in other industries which is likely to increase the
availability of high performance devices in the future. An Instrument Landing Sys-
tem (ILS) inspired solution using Received Signal Strength Indication (RSSI) and
directional antennas was chosen to be explored because of the fact that it would not
explicitly require any data communication which reduces the complexity. Depend-
ing on the measurement principle, this method also has potential to be a lightweight
solution.
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3.5 GNSS Positioning

Global Navigation Satellite System (GNSS) positioning is a common way to mea-
sure position for navigation purposes. GNSS refers to a collection of satellite
constellations that mainly consist of the Global Positioning System (GPS) (USA),
GLONASS (Russia), Galileo (Europe) and BeiDou (China) [Other Global Naviga-
tion Satellite Systems (GNSS) 2020].

The working principle of a GNSS module is based on distance measurements
between a receiver and multiple satellites in a constellation. The distance mea-
surement is done by measuring the time difference between a message to a certain
satellite being sent and received, which can be multiplied by the speed of light
to retrieve a pseudorange. Through trilateration of multiple pseudorange measure-
ments, a position can be estimated. When measuring the time of flight of a GNSS
signal, the system uses the code phase. This works by letting the GNSS device
send out a series of randomized patterns which is received and returned back by a
satellite. The GNSS device continuously checks the correlation between the signal
patterns of the transmitted signal the received ones and when a surge in correlation
is detected, the time difference can be determined. Some GNSS devices also utilize
the carrier phase to increase the accuracy of the time measurement. This works by
measuring the phase of the carrier signal with which the message code is sent. Since
the carrier frequency is much larger than the message frequency, the resolution of
the measurement is increased.

Positioning systems based on GNSS suffer from errors that affect the accuracy of
the measurement. The type of errors can be divided into three categories; constant
errors, correlated errors and uncorrelated errors. [Karaim et al., 2018] [Acharya,
2014a]

Constant Errors The constant error sources stem from the satellite and affect ev-
ery receiver it interacts with in a similar way. These errors can be caused by delay
in the satellite hardware or bias in its clock.

Correlated Errors The correlated errors are regional phenomenons that affect
GNSS receivers that are positioned in proximity to each other similarly. These er-
rors can be caused by the propagation of the radio signal, for example by errors in
the ionosphere and troposphere. These errors vary with the geographic location of
the receiver but can generally be well correlated in one region.

Uncorrelated Errors Uncorrelated errors are independent of geographic location.
This category contains signal noise errors caused by nearby devices, and multipath
errors, which is caused by reflection of the signal on objects and terrain in the
surrounding area of the receiver.
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For GNSS positioning, it is possible to send correction data between devices to
achieve better precision. One way to achieve this is called Real-Time Kinematic
(RTK). This method is based on having a stationary base station at a known position
that reports the measurement deviation in real-time to one or multiple rovers in a
receiver constellation. There also exists ways of similarly sending correction data
between multiple rovers but without the base station, for the purpose of achieving
better relative position when high precision absolute position is irrelevant [Acharya,
2014b]. This type of RTK integrated GNSS positioning is not considered in this
report, as the RTK method requires a high rate data communication between the
devices, which can be argued to add unnecessary complexity to a system that is
intended to be kept to a minimum.

When using two GNSS receivers for relative position, the precision of the measure-
ment depends on how large the constant and correlated errors are in relation to the
uncorrelated error. The position measurement retrieved from a GNSS receiver can
be expressed as

pg
r = pr +wr (3.3)

where pg
r is the measured GNSS receiver position, pr is the actual receiver position

and wr is the measurement error, all expressed in the inertial frame according to

pg
r =

[
xg

r yg
r zg

r
]T

, pr =
[
xr yr zr

]T
, wr =

[
wx wy wz

]T
The relative measured GNSS position of a MAV and boat can therefore be expressed
as

∆pg = pg
b−pg

m = pb−pm +wb−wm (3.4)

where subindex b is used for the boat and subindex m for the MAV. As seen in
Equation (3.4), the measurement precision depends on the size of the terms w and
how well they correlate, which depends on the relative size of the constant and
correlated error compared to the uncorrelated error. In the subsection "Testing", this
is explored further.

Devices
In the market segment of small, lightweight GNSS modules for aerial vehicles and
drones, there are a variety of devices available. Many devices are based on u-Blox
chips, two of which are studied in this thesis; u-Blox NEO-M8N and u-Blox ZED-
F9P. These GNSS modules can be seen in Figure 3.6. The main reason for com-
paring the two is to evaluate the difference in performance and whether the best
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achievable performance is enough for the task. The NEO-M8N is currently used
by SSRS for testing. This device uses only one frequency band, referred to as L1,
while the ZED-F9P uses two, L1 and L2. The L2 band uses a higher frequency
than L1 and devices that implement this band can be expected to achieve higher
performance. The specifications of the two devices can be seen in Table 3.2.

Figure 3.6: The two GNSS modules. NEO-M8N on the left and ZED-F9P with its
Helix antenna on the right.

Device NEO-M8N ZED-F9P
Frequency bands L1 L1 & L2

Specified precision1 2.5 m 1.0 m
Max. refresh rate 5 Hz 20 Hz

Weight (incl. antenna) 16 g 24 g
Dimensions 47 x 42 x 10 mm 103 x 32 x 28 mm

Table 3.2: Comparison of the two GNSS devices. [u-Blox NEO-M8 datasheet 2020]
[u-Blox ZED-F9P datasheet 2020]

Implementation
In order to achieve the necessary measurements and communication, the setup have
be configured according to "active MAV - active boat", thus requiring a data com-
munication link between them. A schematic of how this could be set up can be seen
in Figure 3.7.

Testing
To evaluate how well two concurrent position measurements correlate, a series of
relative position tests were conducted. One test was performed with two NEO-M8N

1 Precision according to Circular Error Probable (CEP), defined as the radius of a circle within which
50% of all stationary measurements occur during a 24h test [u-Blox ZED-F9P datasheet 2020].
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Figure 3.7: Chart of the implementation of the relative GNSS positioning system.

devices and one was performed with two ZED-F9P devices. In order to replicate
the environment where the positioning system is intended to be used, the test was
performed at a long jetty in Bjärred, Skåne. Using this location, the site for the
test was surrounded by water and far away from large objects which could possibly
cause multipath errors that would not be prevalent in the target scenario.

Setup The test was performed for both a pair of NEO-M8N receivers and a pair of
ZED-F9P receivers. For each test, the receiver pair was placed stationary approxi-
mately 20 m apart from each other on the jetty, as seen in Figure 3.8a. Each receiver
was connected to a Raspberry Pi host computer and the Xbee communication link.
The position was recorded with a the maximum frequency of the devices (see Table
3.2). One of the receivers streamed its position in real time to the host computer of
the other receiver, where both positions were recorded during a period of 15 min-
utes. As mentioned in Section 3.3, the Xbee communication adds approximately 20
ms delay to the "boat" position measurement, which was not compensated for.

(a) Test site at Långa bryggan, Bjärred. (b) Setup of one of the u-Blox NEO-M8N
GNSS receivers during the test.

Figure 3.8: The test location and setup for the GNSS tests.
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Results The test results consists of the absolute position deviations compared to
the relative position deviation for the two device pairs (see Figure 3.9-3.11). In the
plots, the deviation from the average measured position is shown for each device
and device pair. The numerical results are summarized in Table 3.3 and contains
values of average and maximum measured position deviation for absolute and rel-
ative measurements for each device as well as the correlation for each device pair.
The measurements for the NEO-M8N device can be seen in Figure 3.9.

Figure 3.9: Deviation over time for the measured absolute position shown in blue
and red, and the relative position, shown in yellow.

The measurements for the ZED-F9P device can be seen in Figure 3.10.
A comparison of the relative position deviation between the two different models
can be seen in Figure 3.11.

NEO-M8N ZED-F9P
Average deviation from absolute position (m) 1.52 0.31

Maximum deviation from absolute position (m) 5.31 0.77
Average deviation from relative position (m) 2.12 0.18

Maximum deviation from relative position (m) 5.21 0.43
Average correlation between a receiver pair 0.02 0.72

Table 3.3: Summary and comparison of values on the measurement deviation for the
two device pairs. The correlation value is the average of the longitude and latitude
correlations for each device pair.
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Figure 3.10: Deviation over time for the measured absolute position shown in blue
and red, and the relative position, shown in yellow.

The error of the relative position measurement is 39% larger than for the absolute
position measurement for the NEO-M8N. For the ZED-F9P, the relative position
error is 42% smaller than for the absolute position measurement.

Discussion The results of the test show that not only is the absolute position de-
viation of the ZED-FP9 significantly smaller than that of the NEO-M8N, but the
correlation of the measurements of the receiver pair is significantly larger, making
the relative position measurement even better. For the NEO-M8N device it can be
seen that the average error is increased by 39% for relative position compared to the
absolute position. The average error is decreased by 42% for the ZED-F9P, which
indicates that the ratio of constant and correlated measurement error to uncorrelated
error is larger for the ZED-F9P receiver. Aside from the higher general performance
of the ZED-F9P, this is likely to partially be a result of a better antenna. The error of
the ZED-F9P is small and shows promising results. It should be noted that the test
was performed during 15 minutes and that a longer test could yield a larger error.

Modeling
To model the behavior of the GNSS modules in simulations, the relative position
error from each device pair retrieved during testing was used as a relative position
error in the simulation model. Every simulation attempt had a randomized starting
point in the error time series to better simulate the unpredictability of the measure-
ment. The delay caused by the communication link was also added.
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Figure 3.11: Deviation from average relative position over time for the two different
GNSS devices, NEO-M8N in blue, and ZED-F9P in orange.

3.6 3D LiDAR

LiDAR is a distance measuring method that uses the time-of-flight (ToF) of a laser
light pulse to determine distance. Versions of the LiDAR methods have been used
since the middle of the 20th century, and has for example been popular in altitude
measurement applications for aircraft. A 3D LiDAR, see Figure 3.12a, refers to a
device that combines multiple distance measurements in different directions, where
the output is a point cloud of the surrounding environment. An example of such
a point cloud can be seen in Figure 3.12b. 3D LiDARs have gained popularity in
recent years, much due to the progress and advancements in autonomous vehicle
technology.

The working principle of a LiDAR is that a laser pulse is generated and sent in a
certain direction. When that laser pulse encounters an object, it is reflected back
towards the receiver in the LiDAR. The time it takes for the light pulse to travel is
measured and used for determining the distance to the object, as seen in Figure 3.13.

In this thesis, evaluation and comparison of multiple commercially available 3D
LiDARs has been performed. As no 3D LiDAR has been available to perform
physical tests on, the analysis has been made mostly on a theoretical basis using the
specifications from existing devices.
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(a) An example of a 3D LiDAR, Ouster OS1. (b) Visualization of the pointcloud generated
from a 3D LiDAR.

Figure 3.12: 3D LiDAR device and pointcloud. [Ouster OS1 3D LiDAR 2020]

Figure 3.13: Working principle of a LiDAR the distance d can be determined by
multiplying the speed of light, c, with the time elapsed, dt, from transmission to
reception of the light pulse, and dividing by 2.

When using LiDARs for the purpose of small object detection, a number of require-
ments exist. Most importantly, the LiDAR needs to be able to detect the MAV at a
long enough range to facilitate a control input early enough in the approach phase.
A sufficient angular field of view (FoV) in both the horizontal and vertical directions
are required. For the horizontal direction, most 3D LiDARs use a 360◦ FoV, which is
more than sufficient for this scenario. For the vertical FoV, there needs to be a large
enough interval to fit everything from the water surface and up to the angle at which
the approach glideslope takes place, with margin. In addition to that interval, there
is potentially a need for a margin to account for changes in the orientation of the
boat. This is further elaborated in in the "Implementation" section below. Another
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important factor is the angular resolution of the laser measurements. To explore this
aspect, LiDARs with different resolutions have been chosen for evaluation. Among
state-of-the-art 3D LiDAR producers, Velodyne and Ouster have products that are
commonly used and they provide accessible datasheets and specifications. This is
why their products have been chosen for the comparison. Three models with appro-
priate FoV and long specified range have been chosen. The models evaluated are
Velodyne Puck, Ouster OS1 and Velodyne Alpha Prime. The most relevant charac-
teristics are summarized in Table 3.4 below.

Velodyne Alpha Prime Velodyne Puck Ouster OS1
Maximum range 245 m 100 m 120 m
Horizontal FoV 360◦ 360◦ 360◦

Vertical FoV 40◦ 30◦ 45◦

Horizontal resolution 0.1-0.4◦ 0.1-0.4◦ 0.2-0.8◦

Vertical resolution 0.11◦ 2◦ 0.7◦

Refresh rate 5-20 Hz 5-20 Hz 10-20 Hz
Laser wavelength 903 nm 903 nm 865 nm

Table 3.4: Specifications of LiDAR products. The horizontal resolution and refresh
rate can be configured together, to achieve either higher resolution, or higher refresh
rate. [Ouster OS1 Datasheet 2020] [Velodyne Product Guide 2020]

When studying the properties of a 3D LiDAR, there are a few important char-
acteristics to take note of. The range measurement is usually accurate to a few
centimeters, depending on the range of the object. Combined with a low angular
error (0.01◦ for the Ouster OS1), the position accuracy and precision of 3D LiDARs
can be expected to be enough for the purpose of landing the MAV on the boat. The
actual position error depends of how the returned point cloud is processed. This is
expanded upon in the "Implementation" section.

Other aspects of the 3D LiDAR can be analyzed by studying the optical echo power,
which can be expressed by a range finder equation,

P(R) = P0ρ
A0

πR2 η exp(−2αR) (3.5)

where P(R) is the power detected by the LiDAR receiver, R is the distance between
the LiDAR and object, P0 is the power in the emitted light pulse and A0 is the
area of the receiver, η is a coefficient describing power losses due to hardware
and geometry configurations in the LiDAR, ρ is a reflectance coefficient related
to characteristics in the object, and α is an extinction coefficient that describes
the attenuation of the light energy when travelling through air [Wojtanowski et al.,
2014]. [Alkholidi and Altowij, 2012]
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The most relevant aspect of the equation is that a fraction of the emitted power will
be reflected back to the LiDAR. The size of this fraction depends on a number of
factors, two of which are relevant to discuss with the target scenario of this thesis in
mind. Firstly, the extinction coefficient α , which describes absorption and scattering
in the air, is affected by environmental factors such as rain and fog. Secondly, the
reflectance ρ varies with the color, material and angle of incidence of the object. In
addition, the relationship between the sizes of a beam laser-spot and the detected
object is also a significant factor. All of these factors affect the received power,
which in turn limits the maximum detection range of objects for the LiDAR.

Extinction
As seen in Equation (3.5), the power attenuation caused by the extinction coefficient
α is nonlinear. A doubling of α results in a 63% decrease in received power, which
means that the receiver is significantly affected by rain. Therefore it is important to
analyze the impact of rain on the maximum detectable range.

The attenuation caused by the extinction can be attributed to two factors, scattering
and absorption. The extinction coefficient is the sum of the two. The relationship
between scattering coefficient, absorption coefficient and rainfall rate can be seen
in Table 3.5 [Guo et al., 2015].

Scattering coeff. Absorption coeff.
Light rain (5 mm/hr) 0.0013 m−1 0.00132 m−1

Moderate rain (12.5 mm/hr) 0.0024 m−1 0.00244 m−1

Heavy rain (25 mm/hr) 0.0038 m−1 0.00387 m−1

Table 3.5: Values for the scattering coefficient and absorption coefficient for rainy
conditions. This data is based on a laser wavelength slightly larger than the ones
used by the LiDAR devices evaluated in this report.

From Table 3.5 we can approximate a proportional relationship between the extinc-
tion coefficient and the rainfall rate where we let the

α = kexr (3.6)

where kex = 0.00044 hr
mmrainm and r is the rainfall rate in mm per hour. We can derive

the relationship of the rainfall rate and the corresponding maximum range using
Equation (3.5), which yields

r =−
ln PR2π

P0ρA0η

2kexR
(3.7)
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The LiDAR detects an object if a power P ≥ Pmin is returned. We let Pmin be de-
termined by the device specific maximum range at optimal scattering conditions
(α = 0), such that Pmin = P(Rmax), which yields

Pmin = P0ρ
A0

πR2
max

η (3.8)

With P = Pmin, combining Equation (3.7) and (3.8) yields

r =−
ln R

Rmax

kexR
(3.9)

From equation (3.7) the maximum detection range as a function of the rainfall rate
can be plotted, as seen in Figure 3.14.

Figure 3.14: The theoretical maximum range of LiDAR devices, expressed as a
percentage of its maximum range at no rainfall, as a function of rainfall rate.

Reflectance
Reflectance is an important phenomenon when it comes to LiDAR performance.
The reflectance of an object, the ratio of reflected light energy and incident light
energy, acts as an attenuation of the light pulse sent from the LiDAR and thus factors
into the maximum working range for a LiDAR. In Equation (3.5) the reflectance
coefficient is a linear contribution to the power loss. As a reference of the effect of
the object reflectance on the maximum distance detectable by LiDAR, we can use
equation (3.5), taking a few considerations into account. In [Ouster OS1 Datasheet
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2020], the maximum range is specified under the condition of a 80% reflectivity, and
we assume it is under optimal extinction conditions (α = 0). Rearranging equation
(3.5)

ρ =
PπR2

P0A0η exp(−2αR)
(3.10)

If we let the minimal detectable power Pmin = P(Rmax,ρmax) where the ρmax = 0.8
we get

R = Rmax

√
ρ

ρmax
(3.11)

A plot of the theoretical impact of the reflectance on the maximum range of the
LiDAR is shown in Figure 3.15.

Figure 3.15: The impact of reflectance on the maximum range of a LiDAR. This is
based on specifications from the Ouster OS1.

Beam Divergence
The laser beams of LiDARs have a certain divergence. This causes the intensity
of the light pulse to spread out over a larger area, the spot size. In the application
of detecting small objects at a distance, this has the effect of limiting the reflected
power and in turn also the maximum range which an object can be detected at.
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For the Ouster OS1, this divergence is specified as 0.18◦ which means that the
laser spot size is as large as the height of the MAV (around 5 cm) at a distance of
approximately 16 m.

Figure 3.16: The divergence of single laser beams limit the power reflected back to
the LiDAR when the object is at a large distance.

Implementation
As the weight of 3D LiDARs usually ranges from hundreds of grams an up, they are
most suitable for the "active boat, passive MAV" configuration. A 3D LiDAR needs
a clear line of sight to the space behind the boat in which the MAV approaches.
One possible way of mounting the device can be seen in Figure 3.17. Since the boat
changes orientation depending on the waves and velocity, the orientation of a rigidly
mounted 3D LiDAR changes with it. There are two major ways of countering this.
In the first way, the relative position between MAV and boat, expressed in the ve-
hicle frame of the boat, can be calculated with the knowledge of the orientation of
the boat. This can be achieved with an Inertial Measurement Unit (IMU). A chart
of this solution can be seen in Figure 3.18. A problem with this solution is that the
boundaries of the FoV change and the MAV have a higher probability of going out
of view when the boat encounters large pitch and roll angles. This sets a minimum
boundary required for a sufficient FoV. The value of this boundary is a function
of how much the boat exerts pitch and roll, the altitude of the MAV when it gets
detected by the 3D LiDAR, and at what distance that detection occurs.

Another solution would be to mount the 3D LiDAR on a gimbal that stabilizes its
orientation. In this way the relevant relative position can be acquired without any
transformation of the sensor reading. A problem with this solution is the addition of
an extra component with potential of failure. The gimbal would have to be robust
and withstand water and weather.

The actual point cloud returned by the device has to be processed to yield a MAV
position. One basic way to do this is to define a volume in which the MAV is ex-
pected to approach within, which excludes all points that are false positives and
might come from the boat, people in the line of sight or other objects. In this vol-
ume of interest, a collection of points close to each other could be identified as the
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Figure 3.17: 3D LiDAR mounting alternative.

Figure 3.18: Chart of a potential LiDAR implementation.

MAV and the average position of those points could be used as the sensed position.
There are several papers written on alternative methods in this area. For example, in
[Hammer et al., 2018], 3D object detection algorithms are developed for the purpose
of detecting small scale unmanned aerial vehicles. The results of the paper indicate
that the algorithms are successful but depend strongly on range and resolution.

Testing
As no physical 3D LiDAR device was available, no actual tests were performed.
However, there are several important factors that need to be tested in order to prop-
erly evaluate the suitability of such a device in the way described in the "Potential
Implementation" section. Presented below are a number of these factors.

The maximum range at which a 3D LiDAR device is able to detect a MAV should
be tested. This could be done by hanging the MAV from thin lines and finding
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the range. Different orientations of the MAV would have to be considered as the
difference in visible area is affected by this.

The degree of the 3D LiDAR being prone to report false positive hits, also referred
to as "ghost hits" is important to test because it can make the detection of the MAV
hard if ambiguities emerge. The influence of rain on this phenomenon is also im-
portant to evaluate as it could limit the utility of this positioning method in rainy
conditions.

Modeling
To simulate a 3D LiDAR in the target scenario, all of the laser light beams were
modelled as lines from one single point that has a fixed translational and rotational
offset from the origin of the boat, seen in the body frame of the boat, aiming rear-
wards. A visualization of this can be seen in Figure 3.19. The device specific FoV,
resolution and refresh rate were used. In the simulation, the MAV was modeled as
two rectangular planar areas representing its approximate cross section seen from
its front, and from below it. In every sensor reading in the simulation model, all in-
tersections of any of the two MAV planes and a laser beam were recorded as a hit, to
which a random Gaussian error was added in the device specific error range. Since
the error information only contained the magnitude, it is assumed that a Gaussian
distribution is appropriate. For every LiDAR reading, all hits were stored in an array
from which the average position was returned and used as the scanned position.

Figure 3.19: 3D LiDAR laser beams visualized as lines.

A complex value to estimate is the actual maximum LiDAR range at which a de-
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tection of a MAV can take place. As mentioned, this depends on many factors and
cannot be verified without a physical 3D LiDAR device. To account for this in the
simulation model, two values were used to limit maximum detection range, 60 m
and 30 m.

3.7 Instrument Landing System

In commercial aviation, the Instrument Landing System (ILS) is the most com-
monly used guidance system for aircraft in the approach and final stages of the
flight. It was first introduced in 1964 and is now present at the majority of large
airports. The system allows pilots or autopilots to navigate through the approach
stage of the flight regardless of sight conditions.

ILS works by transmitting radio waves with different properties to the left side and
right side of the center line of the runway intended to be landed on. This is achieved
by using phased antenna arrays positioned on the far end of the runway, as seen in
Figure 3.20 and 3.21. These signals are received and processed into an angular de-
viation from the predetermined approach path in the receiving aircraft. This allows
the aircraft to control course and pitch to align with the approach path and line up
correctly with the runway. The system mainly comprises two subsystems referred
to as the localizer and the glideslope. The localizer is responsible for the horizontal
guidance and runway alignment of the aircraft. The glideslope is responsible for the
vertical guidance. [Van Valkenburg, 2002] [Ground-Based Navigation - Instrument
Landing System (ILS) 2020]

The actual positioning principle of ILS is based mainly on two techniques, one
referred to as transmitter modulation and the other as space modulation. In the
transmitter modulation process, a carrier sine wave in the Very High Frequency
(VHF) range is generated and split up into two separate carrier waves with the same
frequency, phase and amplitude. Each one is sent to a radio modulator unit which
modulates a 90 Hz or 150 Hz sine wave onto the carriers. In the space modulation
process, the phase of the 90 and 150 Hz waves are altered and the two signals
are combined, before being distributed to different sections of the antenna array.
Through directional radiation of the antenna array, the 150 Hz modulated signal
dominate the right side of the runway, seen from an approaching airplane, and the
90 Hz modulated wave dominate the left side. The resulting configuration creates
an interference pattern that alters the depth of modulation of the received signals
depending on the angular offset of the receiving airplane, the principle of which
can be seen in Figure 3.22. The difference in depth of modulation between the 90
Hz dominant wave and the 150 Hz dominant wave is what is measured and used for
positioning in the aircraft. [McCollum, 1983]
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Figure 3.20: The ILS glideslope and localizer antenna patterns. The signals with
different frequencies are radiated in different directions which makes it possible to
determine position relative to the approach path. [Acharya, 2014a]

Figure 3.21: ILS antenna array consisting of multiple Log-Periodic Dipole Array
(LPDA) antennas. [VHF Nav 2020]

Implementation
With inspiration from the ILS positioning system, there are multiple ways to po-
tentially implement an approach path following system. As the full extent of the
ILS system is immensely complex and comprehensive, this thesis focuses on a sig-
nificantly scaled down version. In order to evaluate what can be achieved using
relatively simple and accessible components, this thesis explores a version using di-
rectional antennas and RSSI measurements. A possible way of achieving a guidance
path for the MAV to follow could be to mount two directional antennas on the boat
as seen in Figure 3.23. This way, two independent radio signals can be sent out and
the difference between the signal strength of the two can be used as a measurement
of the approach path deviation.
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Figure 3.22: An angular offset from the center line of the runway is detected through
a phase difference that is measurable on the aircraft. [Smith, 1988]

Figure 3.23: Possible configuration for mounting of antennas and corresponding
main lobe radiation patterns.

Directional antennas come in multiple versions such as parabolic antennas, panel
antennas, Log-Periodic Dipole Array (LPDA) or Yagi antennas. They have radi-
ation patterns that make the signal strength vary with the angle offset from their
center beams. A directional antenna is usually defined by its antenna gain, a num-
ber that reflects how much it is able to direct its radiation in a specific direction,
measured in dBi (Decibel isotropic). The unit is defined as the ratio of an antenna’s
signal strength at its center beam, and the signal strength of ideal antenna with a
completely spherical, isotropic radiation pattern. Another defining property of a di-
rectional antenna is its beam width, which specifies the width of the radiation beam.
More specifically, it is defined as the angle of the circular sector of its radiation pat-
tern, that has at least -3 dB radiated power compared to the power in its center beam.

There are a number of limitations and requirements to take into account when
discussing radio frequency methods. Firstly, the available and license free radio
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frequencies are limited to the Industrial, Scientific and Medical (ISM) bands which
limits the number of available frequencies and the amount of power that can be
used. Secondly, directional antennas often have a smaller beam width and more
directionality for shorter wavelengths, i.e. higher frequencies. For the purpose of
the guidance system, it would be required to have a fairly small beam width because
of the need of a relatively large change in signal strength for a certain deviation in
flight path. This in turn requires relatively high frequencies.

Testing

Setup To evaluate how well the directional antenna concept works, a number of
tests were performed. A directional antenna was set up and the received signal
strength was measured at different angles on an open field. The antenna used was a
panel antenna with a beam width of 60◦ and an antenna gain of 9 dBi. In order to
measure the signal strength, a pair of the Xbee communication devices described
in the "Communication" section were used. The devices have a Received Signal
Strength Indication (RSSI) measurement available. One of them was connected to
the directional antenna and used as the transmitter, The other was used as an RSSI
measurement device. The setup can be seen in Figure 3.24.

Figure 3.24: Test setup with a directional antenna and an Xbee device.

First, the Xbee transmitter was set to a low power mode in order to keep the receiver
from saturating the RSSI measurement which occurred at close distances and close
to the center beam. The signal was then recorded at the center beam of the antenna
to measure the RSSI value and the noise of the signal. The measurement can be
seen in Figure 3.25.
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To measure how the measured RSSI value changed with the angle offset from the di-
rectional antenna, measurements were taken every 5◦ starting from the center beam
and up to 90◦, at a constant distance of about 20 m away from the directional an-
tenna. The same test was done three times to evaluate repeatability.

Results The result of the noise test can be seen in Figure 3.25.

Figure 3.25: RSSI plot during a short time period, at the center beam of the direc-
tional antenna.

The result of the test of RSSI value as a function of angle offset from the center
beam can be seen in Figure 3.26.

Discussion The result of the first test shows that there is significant noise in the
RSSI measurement. When combined with the result of the second test, it can be
seen that the noise is almost 15 dB, and the signal spans approximately 18 dB which
yields a signal-to-noise ratio of slightly over 1. The measuring method supported
in the Xbee module consisted of a Pulse Width Modulated (PWM) signal which
had to be read from a micro controller. As a result, the micro controller returned
the measured value in steps of 1 dB, which is not precise. Further, when measur-
ing the RSSI at every 5◦, there was a significant inconsistency, causing the whole
"envelope" to jump up or down for a short moment, making the measurement less
precise. To summarize the test, there was a large amount of troubling factors and
the precision of the measurement cannot be expected to be enough to be used for
this type of navigation.

The antenna used for the test had roughly the double beam width than the type
that would be desirable for guidance purposes. An antenna with a smaller beam
width would have had a larger antenna gain and in turn a larger signal to noise ratio
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Figure 3.26: Measured RSSI as a function of the offset angle from the antenna center
beam.

could have been achieved. However, it is not likely that it would have increased the
quality of the signal enough to make it a functioning guidance system.

As only one pair of Xbee devices were available, this test only takes into account
one of two signals required for guidance. It is not clear how much the two signals
would affect each other and there is a risk that the measurement would have been
worse with two parallel systems.

Modeling
To model the small scale ILS system, a few subsystem models were created. The
system was modeled such that two directional antennas were positioned on the
boat with a certain directional angular offset according to Figure 3.23. The antenna
model was based on a commercially available Yagi antenna, Laird Connectivity
PC2415N, which has a beam width of around 30 degrees. This model can be seen
in Figure 3.27.
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(a) The Laird PC2415N Yagi antenna. (b) The radiation pattern of the The Laird
PC2415N Yagi antenna.

Figure 3.27: The evaluated antenna and its radiation pattern. [Laird PC2415N
datasheet 2020]

First, the RSSI value was calculated using a completely spherical radiation pattern
such that the distance between MAV and antenna determined the magnitude. The
value was then multiplied with the antenna gain, and then compensated for the offset
angle of the MAV from the antenna center beam, according to the radiation pattern
shown in Figure 3.27b. However, after the RSSI and directional antenna tests were
performed and the results showed the disadvantages of this method, the modeling
and simulation of this concept was down prioritized and no further analysis was
made based on this method.

3.8 Summary

In summary, three positioning systems were investigated; relative GNSS, 3D Li-
DAR and a small scale version of ILS. Based on testing, GNSS showed promising
results and is evaluated further in simulation. 3D LiDAR was investigated on a the-
oretical basis and a model was set up to be investigated through simulations. The
proposed small scale ILS method was experimentally tested, but the results indi-
cated flaws in precision. The method was not investigated further.
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Autonomous Landing

In this chapter the landing strategy used for landing of the MAV on the boat will be
explored. To facilitate this discussion, the chapter details control theoretical tools,
design logic and practical considerations for a real-time implementation on a MAV.

The chapter starts with a short look at the PX4 flight controller stack in order to
design a strategy compatible with its current functionalities. After this the low level
controllers are addressed, proceeding with a discussion on the high-level controllers
with a detailed look on the MPC used for generation of feasible flight trajectories,
both in a linear and nonlinear setting. This is followed by a discussion on additional
decision logic and strategies used for the landing. Finally, a section on system
identification for the parameters of the internal MAV-model used by the Model
Predictive Controller is included.

A few things such as aborting or retrying a landing will not be considered, i.e. a
landing will always push trough even if it might be obvious and detectable that
there is no chance of successfully completing the landing. In Figure 4.1 below,
an overview of the modules involved in the landing are included to make it easier
following the discussion and getting a quick overview on how the modules are
relating to each other.

4.1 PX4 Flight Controller

PX4 is an open source autopilot software mainly used for flying drones such quad-
copters and fixed-wing airplanes. There are also a number of available hardware
platforms compatible with the software stack [PX4 - Autopilot User Guide 2020].

The flying wings currently used by SSRS are using the PX4 flight stack (or Ardupi-
lot, a autopilot software similar to PX4) for their missions. Thus, the proposed land-
ing strategies focus mainly on the high level control and planning of the landing
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4.1 PX4 Flight Controller

Figure 4.1: Overview of the control modules used for the autonomous landing. The
modules intended for implementation in the companion computer is marked within
the orange box. The state estimation was not implemented in the simulation. Al-
though, the state estimation module is directly available in the PX4 flight stack.

rather than low level control and state estimation, already fully functioning and
implemented in the PX4 flight controller. Since the PX4 software is running on a
microcontroller, it is well suited for reading sensors, running state estimators, sta-
bilize the flight and control the vehicle to execute commands and missions. If more
computationally demanding tasks need to be performed or if external hardware, not
compatible with PX4 is to be used, a companion computer can be attached via the
MAVLink communication protocol. MAVLink is a lightweight communication pro-
tocol made for drones, and it can be used to communicate with the PX4 system by
reading sensors, logging system status or uploading new missions and instructions.
In the so called offboard mode, a companion computer can continuously control the
actions of the PX4 controlled vehicle, for example by setting attitude, angular rates
or way-points to follow. The MAVLink protocol can also interface with the Robot
Operating System (ROS) via the MAVROS node. The proposed controllers were de-
signed with this system architecture in mind. As long as a controller or planner can
be implemented in ROS (Python or C++) it can run on a companion computer and
simply send commands to the PX4 in offboard mode via MAVROS and MAVLink.
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4.2 Low Level Control

This section will focus on how to perform the low level control needed for the land-
ing strategies used. All controllers that are generic for a flying wing, and thus not
directly related to the landing sequence, will be considered low level controllers.
In this report, a general characteristic for the low level controllers is that the infor-
mation used has nothing to do with, and is not in relation to the boat. Hence, the
sensors used for these controllers is only telling something about the state of the
MAV, not about the boat.

Using the PX4 stack, controllers for pitch and roll angles can be assumed to be ac-
cessible and working. Although, for the simulation (see Chapter 5) these controllers
have to be implemented and will therefore be described briefly as well. Direct yaw
control will not be considered since a flying wing does not have any control surfaces
dedicated mainly for yaw control. Instead, a change in yaw is acquired by rolling
the plane resulting in a yaw rate.

Pitch and Roll Control
Both roll and pitch are controlled using simple PID and PD-controllers, using the
control surfaces (see Section 2.2) of the MAV as seen in Equations (4.1) and (4.2)
below

δa(t) = kpφ
(φ cmd(t)−φ(t))+ kiφ

∫ t

0
(φ cmd(τ)−φ(τ))dτ + kdφ

p(t) (4.1)

δe(t) = kpθ
(θ cmd(t)−θ(t))+ kdθ

q(t) (4.2)

where p and q are the body roll rates around the iBx and jBy respectively, used instead
of the true derivatives φ̇ and θ̇ . A more detailed explanation on successive loop-
closing for controlling pitch and roll for a MAV, as well strategies for choosing
initial controller gains can be found in [Beard and McLain, 2012]. The parameters
used for the simulations were found by manually tuning the initial parameters, and
can be seen in Tables B.1 and B.2 in Appendix B.

Heading Control
Since a flying wing aircraft does not have a rudder it can not control the yaw (ψ) or
course (χ) angles directly. However, the yaw-rate (ψ̇) of the MAV is also coupled
with roll, and thus the heading of the aircraft can be controlled by cascading a PI
controller with the roll angle controller as in [Beard and McLain, 2012], here written
as

φ
cmd(t) = kpχ

(χcmd(t)−χ(t))+ kiχ

∫ t

0
(χcmd(τ)−χ(τ))dτ (4.3)
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The parameters used for the simulations were found by manually tuning the initial
parameters, and can be seen in Table B.3 in Appendix B.

Total Energy Control System
Some control strategies used for longitudinal control of fixed-wing aircraft assume
independence between airspeed and altitude. This can lead to undesired effects
when coupling is active [Argyle and Beard, 2016]. An alternative is to use a total
energy control system (TECS), a control system for longitudinal control which
makes use of the altitude-airspeed coupling. Instead of separately controlling air-
speed and altitude the idea is to simultaneously control the total energy of the
system and the energy balance between potential and kinetic energy. The total en-
ergy is controlled by the throttle, adding energy to the system, and by the drag force,
continuously removing energy from the system. The energy balance is controlled
by sending commands to the pitch-controller, which in turn is making a conversion
between airspeed and altitude. For this project two different versions of TECS were
used, one controlling energies and the other one controlling energy rates.

Energy Controller Using this type of controller, the quantities desired to control
are altitude (h) and airspeed (Va), which can be done indirectly by simultaneously
controlling the total energy and the energy balance. The total energy of a the MAV
can be expressed as the sum of kinetic and potential energy as following

ET =U +K = mgh+
1
2

mV 2
a (4.4)

where U is the potential energy, K is the kinetic energy and h is the altitude. In a sim-
ilar way the energy balance between potential and kinetic energy can be expressed
as

EB =U−K = mgh− 1
2

mV 2
a (4.5)

With the desired setpoints for velocity and altitude as V cmd
a and hcmd , two PI con-

trollers can be designed independently to minimize the total energy and energy bal-
ance error respectively.

δt = kp,δt (E
cmd
T −ET )+ ki,δt

∫ t

0
(Ecmd

T −ET )dτ (4.6)

θ
cmd = kp,δe(E

cmd
B −EB)+ ki,δe

∫ t

0
(Ecmd

B −EB)dτ (4.7)

where δt is the motor control command and θ cmd is the command sent to the low
level pitch PD-controller [Total Energy Control for Longitudinal Autopilot 2020].
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Energy Rate Controller In a similar way, a controller can be designed based on
energy rates. The quantities desired to control are now flight path angle (γ) and
acceleration V̇a, which can be done indirectly by simultaneously controlling total
energy rate and energy balance rate. Time derivatives of equation (4.4) and (4.5)
yields

ĖT = mgḣ+mVaV̇a (4.8)

ĖB = mgḣ−mVaV̇a (4.9)

Usually scaled versions of (4.8) and (4.9) are used [Argyle and Beard, 2016]. These
scaled versions are denoted as Ėt and Ėb, and are defined below.

Ėt =
ĖT

mgVa
=

V̇a

g
+

ḣ
Va

(4.10)

Using γ = tan( ḣ
Va
), a small angle approximation yields

Ėt =
V̇a

g
+ γ (4.11)

Similarly for the energy balance rate

Ėb =
ĖB

mgVa
=−V̇a

g
+

ḣ
Va

=−V̇a

g
+ γ (4.12)

Corresponding PI controllers for Ėt and Ėb can now be designed using desired V̇ cmd
a

(equal to acmd if the wind is constant in the direction of flight) and γcmd as inputs to
the TECS energy rate controller.

δt(t) = kp,δt (Ė
cmd
t (t)− Ėt(t))+ ki,δt

∫ t

0
(Ėcmd

t (τ)− Ėt(τ))dτ (4.13)

θ
cmd(t) = kp,δe(Ė

cmd
b (t)− Ėb(t))+ ki,δe

∫ t

0
(Ėcmd

b (τ)− Ėb(τ))dτ (4.14)

A more detailed explanation and more advanced variants of the TECS controller
can be found in [Argyle and Beard, 2016]. The parameters used for the simulations
was found by manual tuning, and can be seen in Table B.4 in Appendix B.
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4.3 High Level Control

To perform an autonomous landing, decisions on desired direction of flight contin-
uously have to be made. An approach could be to make a high level decision once
and then follow the generated reference trajectory as in [Fridén, 2020]. This ap-
proach could work well for a landing on a static target but is unlikely to be suitable
for a scenario with a dynamic target, where and position and velocity is changing
over time. For a problem quite similar to the target scenario, a strategy based on
PID controllers was tested in [Persson, 2016], but the performance of the land-
ing was highly dependant on the starting conditions of the landing being correct.
Continuation of this work indicates that a strategy based on online optimization is
performing better than the initial PID approach [Persson, 2019].

In our case a PID approach could be achieved by simply cascading one more layer
of PID controllers with the existing low level controllers described above. Here
the left/right motion would be controlled with the heading controller and in the
up/down motion by sending altitude commands to the energy version of the TECS.
However, previous studies show that the online optimization strategy seems more
promising than a PID approach. Also, the proposed ILS positioning system, suitable
to combine with a PID landing strategy, seems unfit for the purpose due to the
hardware constraints outlined in Section 3.7. Thus, focus was shifted towards the
optimization based strategy Model Predictive Control (MPC).

4.4 Model Predictive Control

The first part of this section will present the fundamentals of model predictive con-
trol (MPC) and the later part will cover how this can be used to plan an execute an
autonomous landing. Practical considerations for real time implementation are also
discussed towards the end of the section.

Introduction
Model predictive control (MPC) is an online optimization based control strategy.
The main idea of MPC is to continuously optimize the plant behaviour over a pre-
defined number of discrete steps into the future, in a receding horizon fashion. A
MPC is relying on the availability of a discrete time model of the plant being con-
trolled. The plant model is used to give the MPC an approximate idea of the plant
dynamics, which can be used to predict how future states of the plant will propa-
gates given certain control inputs. Using this knowledge of plant model dynamics,
as well as other system constraints such as physical actuator limits, the MPC is
running optimizations in fixed time intervals. In each optimization the plant model
behaviour is optimized over a fixed number of steps into the future by finding the
corresponding sequence of control inputs. The first control input on the horizon is

65



Chapter 4. Autonomous Landing

then used as a control command to the real plant. The rest of the sequence is dis-
carded as new sequence is given in the optimization at the next time-interval. The
number of time-steps which the plant model behaviour is optimized over in each it-
eration, is called the prediction horizon (Hp). The corresponding number of control
inputs is called the control horizon (Hu). The principle described is visualized in
Figure 4.2. The control horizon is naturally always shorter than the prediction hori-
zon. If Hu = Hp− 1 there are one control input for each step along the prediction
horizon. If Hu < Hp−1 the control input is usually held constant for the last steps
along Hp.

Figure 4.2: Visualization of the working principle of a MPC at time k. With the
notation used in the report p in the figure is corresponding to Hp− 1. [Wikimedia
Commons, 2007]

Quadratic Programming
The optimization is a central part of the MPC. The focus of optimization in this re-
port will be on problems that can be formulated as a quadratic program (QP), as this
type of problem is well documented and can be solved efficiently (more details on
the speed for solving a QP is given later in Section 4.4). A QP consists of a quadratic
objective function that is to be minimized (or maximized), possibly subject to a set
of linear inequality constraints and/or a set of linear equality constrains

J = min
x̄

1
2

x̄T H̄x̄+ f̄T x̄

subject to

F̄ineqx̄≤ b̄ineq

F̄eqx̄ = b̄eq

(4.15)
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where H̄, F̄ineq and F̄eq are matrices, and f̄, b̄ineq and b̄eq are column vectors. In
order to use a standard QP-solver, an optimization problem should be formulated
accordingly.

Linear MPC Formulation
One system that can be expressed as QP is a linear MPC. For a discrete linear system
at time k, with state vector x(k) ∈ Rn×1 and control vector u(k) ∈ Rm×1

x(k+1) = Ax(k)+Bu(k) (4.16)

an initial basic MPC formulation can be made. Defining the current state of the
plant as x0, aiming to follow a reference trajectory xr, while using linear constraints
and a quadratic objective function, the optimization at time k can be formulated as
follows

min
u(k+i)

Hp−1

∑
i=0
‖xr(k+ i)−x(k+ i)‖Q +

Hu−1

∑
i=0
‖ur(k+ i)−u(k+ i)‖R

subject to

x(k+ i+1) = Ax(k+ i)+Bu(k+ i), i = 0 ... Hu−1
Fx+ix(k)≤ bx, i = 0 ... Hp−1
Fu+iu(k)≤ bu, i = 0 ... Hu−1

x(k) = x0,

(4.17)

where Fx and Fu are matrices, and bx and bu are column vectors, together defining
the inequality constraints of the optimization. Here, the equality constraints are
ensuring that the system dynamics are not violated during the optimization, and the
inequality constraints defines allowed boundaries for the solution which for exam-
ple could be used to set limits on x and u. The matrices Q ∈ Rn×n and R ∈ Rm×m

are defining the penalties for the state error and control command usage.

A linear MPC like this can be reformulated as Equation (4.15), and thus be solved
with a standard QP solver. In order to do this a new vector x̄(k), stacking all states
and control commands along their horizons at time k, is introduced

x̄(k) = [xT (k) · · · xT (k+Hp−1), uT (k) · · · uT (k+Hu−1)]T ∈ R(nHp+mHu)×1

(4.18)
Similarly for the for the reference trajectory

x̄r(k) = [xT
r (k) · · · xT

r (k+Hp−1), uT
r (k) · · · uT

r (k+Hu−1)]T ∈ R(nHp+mHu)×1

(4.19)
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The objective function and the constrains in Equation (4.17) can now be expressed
as a function of x̄(k) and x̄r(k). Introducing H as a block-matrix built from multiple
instances of Q and R

H =


Q 0 · · · 0 0
0 Q 0
...

. . .
...

0 R 0
0 0 · · · 0 R

 ∈ R(nHp+mHu)×(nHp+mHu) (4.20)

the objective function to be minimized in Equation (4.17) can be expressed as

J = [x̄r(k)− x̄(k)]T H[x̄r(k)− x̄(k)]

= x̄T (k)Hx̄(k)−2x̄T
r (k)Hx̄(k)+ x̄T

r (k)Hx̄r(k)

=
1
2

x̄T (k)H̄x̄(k)+ f̄T x̄(k)

(4.21)

arriving at the desired structure of the objective function. Here the constant term is
dropped and

H̄ = 2H (4.22)

f̄ =−H̄T x̄r(k) (4.23)

Notice that the diagonal structure of H is a result of penalizing states and control
signals independently from each other.

In order to satisfy the system dynamics, the equality constraints and initial state
from Equation (4.17) should be fulfilled while being expressed as

F̄eqx̄ = b̄eq (4.24)

which can be done by defining F̄eq from the matrices A and B (see Equation (4.17))
as

F̄eq =



I 0 0 · · · 0 0 0 0 · · · 0 0
A −I 0 · · · 0 0 B 0 · · · 0 0
0 A −I 0 0 0 B 0 0
...

...
. . . . . .

...
...

...
...

. . .
...

...
0 0 A −I 0 0 0 B 0
0 0 · · · 0 A −I 0 0 · · · 0 B


(4.25)

and defining b̄eq as
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b̄eq = [xT
0 0 0 · · · 0 0]T (4.26)

In a similar way F̄ineq and b̄ineq can be designed to fulfill the inequality constraints
of choice. A common choice is to separately set upper and lower bounds on the
states and the control signals as follows

xmin(k)≤ x(k)≤ xmax(k) (4.27)

umin(k)≤ u(k)≤ umax(k) (4.28)

This can be done by defining F̄ineq and b̄ineq as

F̄ineq =

(
I
−I

)
(4.29)

b̄ineq = [x̄T
max(k), −x̄T

min(k)]
T ∈ R(2nHp+2mHu)×1 (4.30)

where

x̄T
max(k) = [xT

max(k) · · · xT
max(k+Hp−1), uT

max(k) · · · uT
max(k+Hu−1)]T (4.31)

x̄T
min(k) = [xT

min(k) · · · xT
min(k+Hp−1), uT

min(k) · · · uT
min(k+Hu−1)]T (4.32)

Notice that the bounds can be set differently for each time-step along the horizon,
and that additional inequality-constraints can be added by increasing the number of
rows in the F̄ineq matrix and the size of b̄ineq correspondingly.

Several extensions to the basic linear MPC formulation can be made. One example
of a regularly used extension is adding a separate terminal state penalty (i.e a sep-
arate Q for x(k+Hp− 1)). Another common extension is adding slack variables,
giving the opportunity to set soft inequality-constraints (i.e. violations of the con-
straints are allowed, but are adding a penalty to the objective function).

Nonlinear MPC Formulation
The simplified MAV model, introduced in Section 2.2, does not fit into the linear
MPC formulation as it is a continuous system with nonlinear dynamics. In order
to use non-linear dynamics in an MPC, the model has to be discretized and the
concept of linear MPC has to be expanded further. With a discretized version of
the simplified MAV model ( fd), an extension to a Nonlinear Model Predictive Con-
troller (NMPC), allowing for nonlinear objective function, dynamics and constrains,
results in the following formulation
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min
u(k+i)

Hu−1

∑
i=0

l(x(k+ i),u(k+ i))+ lT (x(k+Hp−1))

subject to

x(k+ i+1) = fd(x(k+ i),u(k+ i)), i = 0 ... Hu−1
fx(x(k+ i))≤ 0, i = 0 ... Hp−1
fu(u(k+ i))≤ 0, i = 0 ... Hu−1

x(k) = x0,

(4.33)

A nonlinear optimization problem like this cannot be directly solved with a QP-
solver. Instead a general purpose nonlinear solver could be used, but this will
typically result in longer computational times. Although, if the objective function
is kept quadratic the nonlinear optimization problem in Equation (4.33) can be
reformulated into a set of optimization problems similar to the one of the linear
MPC, where each one can be solved with a QP-solver. One way of doing this is
with sequential quadratic programming (SQP).

Sequential Quadratic Programming SQP is an iterative method of solving a con-
strained nonlinear optimization problems. The basic idea of SQP is to use the so-
lution from the previous iteration as the point around which the nonlinear problem
is approximated as a QP. In order for the nonlinear problem to become a QP, the
objective function is approximated as a quadratic function and the constraints are
approximated as linear functions, similarly as in Equation (4.15). This procedure
is usually repeated for a fixed number of iterations or until some other terminal
condition is met. With an infinite number of iterations the solution converges to a
local minimum of the constrained non-linear problem [Lecture notes in Optimiza-
tion Theory. Chapter 4 2020].

Optimization Speed The type of systems where a MPC could be applied is highly
dependent on the time required for solving the optimization problem. Typically,
slow solving times restricts the applications of MPC to systems with slow dynam-
ics. Several methods and strategies for fast solving of QPs in a MPC context are
presented in [Wang and Boyd, 2010]. The strategies presented include methods for
exploiting the structure of the problem, making approximations as well as warm
stating. By implementing all these methods, a solution to the MPC optimization
problem can be achieved roughly 100 times faster than with a generic solver. Using
these methods the typical computational time for one time-step in a MPC with
12-states, 3-inputs and a 30 step prediction horizon would be around 5 ms for 3
GHz AMD Athlon running Linux.
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In MPC, warm start is the procedure of exploiting the result from the previous time-
step optimization as the initial guess for the current optimization. This can be easily
achieved by shifting the old solution one step along the prediction horizon, throwing
away the current state and propagate the system dynamics on step at the further end
of the horizon. This is similar to what is done by the SQP within one time step, with
the difference of the warm-start using the result from the previous time step rather
than the result from the previous QP iteration.

MPC for Autonomous Landing
For the purpose of landing the MAV on the boat, the MPC could be simultaneously
used for control (sending commands to the to the low level controllers) and path-
planning. In this section, the MPC formulation, cost matrices and constraints used
for the landing algorithm, as well as generation of the reference trajectory will be
presented.

As mentioned earlier, the nonlinear MPC-formulation has to be used in order to
maintain the nonlinear dynamics of the simplified MAV model. By using as few
non-linearities as possible in the optimization formulation, the SQP heuristic might
prove a useful alternative for solving the optimization problem in Equation (4.33)
efficiently. This requires linearization and discretization of the simplified MAV
model, which can be done with standard methods such as a first order Taylor ex-
pansion for linearization and zero-order-hold for discretization. However, for the
purpose of simulation Matlab’s global solver fmincon was used. Thus the simplified
MAV model was not linearized, only discretized. Recalling the system dynamics of
the simplified MAV model

f (x,u) =



vscos(γs)cos(χs)
vscos(γs)sin(χs)
−vssin(γs)

as
1
τa
(acmd

s −as)
1
τγ
(γcmd

s − γs)

χ̇s
−τχ1 χ̇ + τχ0(χ

cmd
s −χs)


(4.34)

the discretization was performed with first order Euler discretization, using the MPC
timestep hmpc as follows

x(k+1) = fd(x(k),u(k)) = x(k)+hmpc · f (x(k),u(k)) (4.35)

where

x(k) =
[
xs(k) ys(k) zs(k) vs(k) as(k) γs(k) χs(k) χ̇s(k)

]T (4.36)
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and

u(k) =
[
acmd

s (k) γcmd
s (k) χcmd

s (k)
]T (4.37)

Using this discrete model together with a quadratic objective function, linear in-
equality constraints, and setting ūr(k) to zero, the nonlinear MPC formulation pre-
sented above reduces to

min
u(k+i)

Hp−1

∑
i=0
‖xr(k+ i)−x(k+ i)‖Q +

Hu−1

∑
i=0
‖u(k+ i)‖R

subject to

x(k+ i+1) = fd(x(k+ i),u(k+ i)), i = 0 ... Hu−1
Fx+ix(k)≤ bx, i = 0 ... Hp−1
Fu+iu(k)≤ bu, i = 0 ... Hu−1

x(k) = x0,

(4.38)

With well chosen penalties and inequality constraints as well as a reasonable refer-
ence trajectory this formulation will drive the MAV to align its trajectory along Hp
with the corresponding boat reference-trajectory. In the end this incentive will lead
to the MAV attempting to align itself with boat, both vertically and horizontally
while also trying to match speed and course angle.

Reference Trajectory In order to use the MPC in this way, a reference trajec-
tory for the boat must be available. Since the boat can not be controlled, and its
trajectory is unknown and changing with time, some kind of approximation has
to be made in each time-step. This is done by using an internal model of the boat
dynamics, and then propagate the states forward in time given the current state. For
each point along Hp the boat states are matched to the states in the simplified MAV
model, inserting zeros for non-applicable states, forming x̄r(k). For the simulations
of the landing, the simplified boat model presented in Section 2.4 is used for this
trajectory generation. Forming the reference trajectory like this assumes knowl-
edge of the current state (pb and ψb) and inputs (δv and δψ ) to the simplified boat
model. The position is provided by the positioning system used and the heading
and control signals are assumed to be made available by sensors on the boat via the
communication link. Here δv = vb and δψ = ψ̇b are assumed to be constant along
the horizon. The assumptions made forming x̄r(k) should be reasonably precise if
the boat is maneuvered with speed and angular velocity as constant as possible.
Also, the reference trajectory corresponding to the earlier states on the horizon
can be expected to be both the most important for the landing, and being better
approximated than later states. This since the approximation of the boat states will
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get worse when getting further into the future from the latest available measurement.

Cost and Constraints The final costs and constraints used were found by manual
tuning in the simulation environment. The final Q and R penalty are

Q =



6 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0
0 0 9 0 0 0 0 0
0 0 0 35 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 5 0
0 0 0 0 0 0 0 5


(4.39)

R =

2 0 0
0 5 0
0 0 20

 (4.40)

and the limits for x and u used were defined by

Fx+i =

(
I
−I

)
∈ R2n×n ∀ i (4.41)

Fu+i =

(
I
−I

)
∈ R2m×m ∀ i (4.42)

and

bx =
[
xT

max −xT
min
]T (4.43)

bu =
[
uT

max −uT
min
]T (4.44)

where

xT
max(k) =

[
in f in f 100 25 3 1 in f 0.25

]
(4.45)

xT
min(k) =

[
−in f −in f −1 12 −3 −1 −in f −0.25

]
(4.46)

uT
max(k) =−uT

min(k) =
[
3 0.3 in f .

]
(4.47)

Notice that the -1 m lower bound for the vertical position does not mean that the
MAV is allowed to fly under the water surface. This, as target was set 2 m over the
water surface to reflect reasonable altitude where a human could catch the MAV.
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Optimization The optimization was solved with Matlab’s function fmincon using
the interior-point algorithm with the parameter MaxFunctionEvaluations set to 200.
Also, gradients were specified for the objective function and the constraints.

4.5 Landing Strategy and Additional Decision Logic

A specific control algorithm might be well suited for the most parts of the landing
sequence. Although, additional logic might be necessary in order to improve perfor-
mance, increase safety and even make the landing feasible. This section will cover
the strategies used for compensation of jitter and delays coming from sensors and
communication as well as a method of suppressing undesirable MPC behaviour in
the final part of the landing. A layer of logic that is not considered in this report is
detection and decisions regarding when and how to a abort a landing. Even though
this kind of logic would be highly desirable when attempting a real world land-
ing, for the purpose of this thesis all landing attempts are pushed trough without
considering abortion.

Sensor Jitter Compensation Strategy
If the successful sensor-readings are not periodic (as expected in LiDAR case) or
sampled at a rate lower than the desired MPC update rate (as in the NEOM8N-
GNSS case), it would be beneficial to use some strategy to minimize negative
effects on the control performance. With the MPC aiming to run at some certain
time interval, the strategy was to make use of the previously completed optimization
results if no new sensor reading is available at the start time for the next optimiza-
tion. If there are several consecutive periods passing without a sensor reading, the
next control command at the control horizon can be used when a time interval has
passed since the last control signal update. A flowchart of this scheme can be found
in Figure 4.3. With this strategy the MPC optimization is only run if a relative
position to boat is made available by the positioning system.

An alternative method could be to use dead reckoning to make an estimation of the
boat position, and then make a new optimization every time step interval. Although,
this approach requires the boat to continuously send sensor data or its estimated
position found with the dead reckoning. Even though this approach was not used in
the simulation, the assumptions mentioned could easily be fulfilled as long as there
are relevant sensors on the boat as well as a working communication link between
the MAV and the boat.

Delay Compensation Strategy
Naturally, there are delays in the system from sensor readings, communication and
MPC computational time. These delays will hurt the performance of the landing
algorithm since the distance between the MAV and the boat will not be the same
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4.5 Landing Strategy and Additional Decision Logic

Figure 4.3: Illustration of the jitter compensation strategy. If no new data from the
positioning system is available when it is time to start the MPC optimization, the
inputs are taken from the control horizon of the previous solution.

when the sensor is read as when the MPC optimization is done. If the relative ve-
locity is 10 m/s a total delay of 0.1 s would lead to a 1 m positional error in the
direction of flight caused by the delay alone. In order to minimize the effects on the
performance of the landing, a simple delay compensation was implemented. Using
the simplified models for the MAV (see Section 2.2) and the boat (see Section 2.4),
the states were extrapolated by propagating the system dynamics forward with cor-
rect time compensation for the MAV and the boat respectively. Note that the boat
states should be compensated for the sensor, communication and MPC delays while
the MAV states should be compensated for the MPC delay only. This strategy was
implemented with the assumption of known and constant sensor delay and MPC
computational time.
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Vanishing Horizon
With the MAV moving faster than the boat, the MPC will react by trying to lower
the velocity and align the MAV and boat trajectories as much as possible. If it is
impossible for the MAV to slow down to the velocity of the boat (as will be the
case most of the times) the MPC will do everything it can in order to slow down the
MAV. It turns out that the MPC is doing this by letting the MAV trajectory oscillate
heavily, making the flight distance longer. This behaviour is highly undesirable and
needs to be avoided.

To counteract this behaviour, a simple algorithm refereed to as vanishing horizon is
proposed. This is done by removing the MPC x and y-penalties from all states along
the prediction horizon which are spatially in front of their corresponding state on
the boat trajectory. With this strategy all incentive for the MAV to start oscillating
goes away while keeping the desire to find the boat, stay at the correct altitude and
minimize the relative MAV-boat velocity. An illustration of the principle can be seen
in Figure 4.4.

Figure 4.4: Illustration of the vanishing-horizon principle. Here, the red and green
dots represent the prediction horizons for the MAV and the boat respectively. The x
and y penalty weights of the MPC are set to zero for points k+9 to k+Hp−1. In
the illustration, the final part of the MAV trajectory is shifted slightly downwards to
make it easier to see the two trajectories.

Wind Compensation
The MPC states and constraints are defined in I (with kz pointing up), while
forces and moments acting upon the MAV, velocity limits, etc., are all dependent
on the air-relative movement of the MAV. With wind magnitudes large enough to
significantly separate Vg and Va (see Sections 2.1 and 2.3), this is something that
preferably should be taken into account when designing the control system. In order
to make any compensations for wind, an estimation of the wind must be available.
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This is the case when using the Extended Kalman Filter (EKF) in PX4 or Ardupilot,
if the MAV is equipped with an airspeed sensor and a GNSS receiver.

To some extent, the effects of the winds are inherently counteracted by the integral
action in the TECS and course controller respectively. Even though a change in
direction might result in diverse responses under different wind conditions, the
integral action makes is possible for the MAV to set path and course angles inde-
pendently of the wind. Instead, the wind effect that most urgently must be addressed
in the control system is the velocity inequality constraint in the MPC. The velocity-
state of the MPC, and thus also the corresponding velocity inequality constraints,
are, as mentioned above, defined in the inertial frame. The true limits of the MAV
ground velocity should therefore, if possible, be adjusted for the wind in the direc-
tion of flight.

With this in mind a simple strategy was deployed to change the velocity inequal-
ity constraints given the current course and wind conditions. Every time, before
the MPC is updated, the projection of the horizontal component of the wind vec-
tor (Vwa ) onto the horizontal component of the MAV ground-speed vector (Vg) is
computed. The resulting value is the horizontal wind component in the direction of
flight. This value is then added to the MPC velocity inequality constraint along Hp.

Wave Compensation
A simple strategy counteracting the effects of waves was also used. If the boat was
to vertically oscillate, this could either be ignored or be incorporated in the landing
strategy. Incorporation would require the MAV to time the periodicity of the boat
and plan the intersection accordingly. However, in order to keep things simple, the
wave periodicity was ignored and a simple 1st -order low-pass filter was used for
filtering of the vertical component of the estimated boat position. The filter used
was the following

zb, f ilter(k) = 0.98zb, f ilter(k−1)+0.02zb(k) (4.48)

Final Push
Since the MAV, in most cases, can not move as slowly as the boat, the landing is
done by letting the MAV fly over or into the boat and being captured by a human
being (see Sections 1.2 and 5.2). Although, in a few scenarios with a lot of headwind
present, it might be possible for the MAV to move at the same or even lower velocity
than the boat, leading the MAV to slowly aligning itself with the boat. This might
lead to the MAV not passing the boat and thus not clearly define a point where the
landing is completed and the offset from target can be recorded. In order to avoid
this situation, a minimum threshold was set on velocity used for calculation of the
boat reference trajectory, pushing the MAV forward a little extra if needed.
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Parameter Identified Value Used Value
τa 0.111 0.056
τγ 0.601 0.076
τχ0 2.371 10.3619
τχ1 6.663 133.26

Table 4.1: Identified and used parameters for the simplified MAV model. Notice that
there is significant difference in the corresponding values.

4.6 System Identification

In order to maximize the MPC performance, the model used in the MPC should
reflect the real behaviour of the plant as much as possible. To find initial parameter
values of the model, a simple system identification was made. The parameters that
need to be identified from the simplified MAV model (see Section 2.2) are τa, τγ ,
τχ0 and τχ1 , The corresponding systems are two 1st order input-output system for
the acceleration and flight path angle, and a 2nd order input-output system for the
heading angle, all with unit gain.

The identification was made in the simulation using using the closed loop system of
the MAV and the low-level controllers (pitch, roll, course and TECS). At a nominal
airspeed of 15 m/s, an isolated step input was sent to each of the inputs of the
TECS (a and γ) and to the course controller (χ) respectively. For each attempt the
corresponding state of interest was recorded and saved. The input-output data was
then fed to Matlabs tfest function for identification of the sought parameters.

For acceleration and flight path angle the step-responses are expected to behave
differently for positive and negative input steps. This as the mechanisms driving
positive and negative quantities are not symmetrical. For example, in the accelera-
tion case the sign will be decided by the balance between the propulsion force and
the total drag force, two forces unlikely to be symmetrical. Thus, the data recorded
for identification of τa and τγ was generated by negative step responses, to better
capture and approximate the dynamics of a landing sequence.

The step responses for the MAV and corresponding response for the identified
parameters can be seen in Figures 4.5 - 4.7 below. The identified parameters can
be seen in Table 4.1. From the plots in Figures 4.5 - 4.7 it can be seen that the step
responses are far from perfect. I might be argued that the γ input-output behavior
should be modeled with a 2nd order transfer function, similarly as was done for χ .
Another factor that might have significant effects on the correspondence between
the identified parameters and the behaviour in the simulation is whether or not the
control surfaces are getting saturated.
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4.6 System Identification

Figure 4.5: Step response for acceleration (a) and the corresponding identified sys-
tem.

As one might expect from the step responses, the found parameters did not work
very well in practice. Instead the parameters were manually tuned with the identi-
fied values as a starting point. In the end, the parameters used significantly differed
from the identified ones. Another thing worth noticing is that input responses vary
significantly with airspeed (Va). This behaviour comes as no surprise as the aerody-
namic forces and moments modeled are dependent on airspeed.

Parameter Interpretation The parameters take part in describing the MPC’s belief
on the MAV response to certain control control commands. For example, a small
value of τa or τγ implies a faster believed change in system state for a given control
command. With this in mind the MPC will output smaller control commands in
order to predict the same trajectory. This might lead to a less aggressive controller.
However, one cannot forget that this is also coupled with the penalty of the control
signal. If the penalty on the control signal stays the same, a belief of a higher gain
makes it cheaper to lay out a more aggressive trajectory.
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Figure 4.6: Step response for flight path angle (γ) and the corresponding identified
system.

Figure 4.7: Step response for course angle (χ) and the corresponding identified
system.
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5
Simulation

The simulation combines the system models of the MAV and its control systems,
the boat, positioning systems, wind, and waves. The purpose is to replicate the real
target scenario in order to analyze the performance of the positioning systems in
combination with the control algorithms and the impact of external factors. The
simulation was implemented in Matlab.

Each simulation represents a landing attempt, where the MAV is initialized at some
position behind boat. The MAV then navigates towards the boat with the control
strategy for autonomous landing, using information from the simulated sensors for
relative positioning. The simulations were run for the different sensors systems,
each one from a number of combinations of initial positions and environmental
conditions. In all scenarios the heading of the boat was constant. Additionally the
initial state and control signals of the MAV were trimmed such that the initial course
remains constant with no need of additional control commands, also taking ambient
wind into account.

5.1 Discretization

Most of models used are described by continuous time differential equations and
had to be discretized in order to work with the discrete time simulation. To keep
this step as simple as possible, a first order Euler discretization was used, i.e., for a
continuous time system

ẋ = f (x,u) (5.1)

the corresponding discrete time system is

xt+1 = xt +h · f (xt ,ut) (5.2)

where h is the time between two consecutive discrete time steps. For the simulations,
h was set to 0.01 s.
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5.2 Assumptions

The number of possible MAV-boat relative starting positions in combination with all
possible weather conditions is large. In order to reduce the number of simulations
and focus on the most likely and realistic scenarios, assumptions on each subsys-
tem in the simulation were made. These assumptions and corresponding underlying
reasoning are described below.

Wind and Waves
In the archipelago where most accidents occur, the dominant factor in waves form-
ing is wind. This, since the sways present at open sea is broken up by small islands
and cobs. Dealing with mostly wind-generated waves, it was assumed that wind and
waves always are moving in the same direction and that their magnitudes are some-
what correlated. For zero wind, zero waves was assumed. For wind magnitudes of
around 10 m/s, two wave amplitudes, 0.5 m and 1 m was used. For all combinations
of wind and waves used in the simulation, see Tables 5.3 and 5.4 in Section 5.3.

MAV
At the start of the simulation the MAV is commanded to fly in a straight line un-
til the first successful position sensor reading. The line is defined by the MAV’s
initial course angle, altitude and air-relative speed. The control actuators, angle of
attack and side-slip angle are trimmed in order for the MAV to continue flying along
the initially defined path without changes in the control commands. The trimming
also takes ambient wind into account and makes the corresponding compensations
needed.

Boat
In general, the landing is easier if the relative velocity between the MAV and the
boat is as small as possible (as long as the MAV can fly fast enough to reach the
boat within reasonable time). For example, in [Persson, 2019] the landing strategy
is based on aligning the MAV and the target in the horizontal plane while making
the approach from above. To some extent, this strategy makes the assumption of
the MAV and boat being able to move equally fast. A small relative velocity in the
horizontal plane provides a larger time window where the approach from a above
can be made. In our case this might not be easily achievable since the nominal speed
of the MAV is significantly higher than regular boat speeds. Even though there is
an overlapping speed-interval for low MAV speeds and high boat speeds, it is also
convenient if the boat is moving as slowly as possible. This, since a slower boat
speed makes less obstacles and other interfering factors come into play.

As mentioned before, the velocity limitations of the MAV relates to the surrounding
air rather than to the ground. In order to minimize the relative velocity without the
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MAV moving slower or the boat faster, the boat can turn up against the wind and
make the landing take place in headwind. Thus, an assumption on the boat moving
straight or almost straight against the wind was made.

Waves are another external factor which might limit the velocity of the boat. Ideally
the some kind of relationship between the weather conditions and a reasonable boat
velocity should be established. However, this was not done and the boat velocity
was set to 5 m/s for all simulation cases.

Positioning Systems
The GNSS and 3D LiDAR positioning systems were simulated with their specified
update rate, delay and positioning error/dynamics. The sensors are assumed to be
sampling at a constant rate without jitter. Although, for example in the LiDAR case,
updates can still arrive with different time intervals since it possible for the sensor
to sample without getting a reading of the MAV position (if there is no laser beam
hitting the MAV). It was also assumed that the delay from the actual time of sam-
pling until the reading being available to the MAV, is both constant and known to
the MAV. Finally the positioning error was simulated as described in Sections 3.5
and 3.6.

MPC
Based on the discussion of computational time for solving QPs and assuming the
MPC optimization is solved with SQP, the MPC was simulated to have 30 ms exe-
cution time in the simulation. The time-step used in the MPC (hmpc) was set to 100
ms.

5.3 Simulation Cases

Positioning Systems
The sensors used for the simulations was mainly of two types, GNSS and LiDAR.
The GNSS sensors used was the NEO-M8N and ZED-F9P described in Section
3.5 as well as a ’perfect’ GNSS sensor with zero delay and zero positioning error,
used as a reference. The 3D LiDAR sensors simulated are Velodyne Puck, Velodyne
Alpha Prime and Ouster OS1 as described in Section 3.6, representing LiDAR units
in different segments of price and performance. A summary of the simulated sensors
can be seen in Table 5.1.

Initial Conditions
For the simulations a few initial states of the MAV in relation to the boat were cho-
sen. Ideally the the MAV starts the landing sequence right behind the boat with its
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Sensor
Sensor Type Update rate (Hz) Delay (ms)

PERFECT GNSS 100 0
NEO-M8N GNSS 5 25
ZED-F9P GNSS 20 25

Velodyne Puck LiDAR 5 50
Velodyne Alpha Prime LiDAR 5 50

Ouster OS1 LiDAR 10 50

Table 5.1: Update rate and delay for each sensor used in the simulation.

course directly towards the boat. However, this condition is not anything the oper-
ator would like to spend a lot of time to achieve. In light of this, a few different
MAV-boat relative starting conditions were tested, with the common factor of the
MAV being heading approximately towards the boat. The different starting condi-
tions of the MAV can be seen in Table 5.2.

MAV Starting Conditions in relation to the boat
Pos. # xV1boat

m (m) yV1boat
m (m) zV1boat

m (m) χV1boat (rad) Va (m/s)
Pos. 1 -80 0 -5 0 17
Pos. 2 -80 8 -5 0 17
Pos. 3 -80 8 -5 -π/12 17
Pos. 4 -80 -8 -5 0 17
Pos. 5 -80 -8 -5 π/12 17

Table 5.2: Starting conditions for the MAV used in the simulation. Notice that the
states xm, ym, zm and χ are expressed in the boat veichle-1 (V1) frame.

Wind and Waves
For each combination of positioning sensor and MAV starting position, three wind-
wave scenarios were simulated. The different wind-wave combinations used can be
seen in Tables 5.3 and 5.4.

Wind Parameters
Scen. # wV1boat

xa wV1boat
ya wV1boat

za Lu Lv Lw σu σv σw
Scen. 1 0 0 0 - - - 0 0 0
Scen. 2 -10 0 0 200 200 50 4.06 4.06 4.06
Scen. 3 -7 -7 0 200 200 50 4.06 4.06 4.06

Table 5.3: Wind parameters for the three different environmental scenarios. Notice
that wxa , wya and wza are expressed in the initial boat veichle-1 (V1) frame.
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Wave Parameters
Scenario # A ψ

V1boat
wave λ T φwave σPw

Scenario 1 0 0 10 2.5 0 0
Scenario 2 0.5 π 10 2.5 0 0
Scenario 3 1 −π/4 10 2.5 0 0

Table 5.4: Wave parameters for the three different environmental scenarios. Notice
that ψwave is expressed in the inital boat veichle-1 (V1) frame.
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Results

The results of the simulation are evaluated by the ability of the MAV to reach a
certain landing point tied to the boat. This ability is measured by the MAV lateral
and vertical offset from the target point when it passes the boat. The landing target
point reflects the position at which a crew member would stand and catch the MAV.
Other factors relevant to the landing quality might be the total time of the landing
or the relative velocity at the time of landing. However, those metrics were not
included in the evaluation of the landing in order to limit the results to the most
important factors of a successful landing.

The results consist of two plots for every tested positioning system. Firstly, the target
grouping plot shows how well the MAV was able to reach the desired position. The
red crosses in these plots show the estimated hitpoints, showing the controller belief
of the relative position between the MAV and the boat when the controller thinks
the MAV crosses the boat. The blue crosses show the true relative position when the
MAV actually crosses the boat. Secondly, the results also contain trajectory plots,
showing the trajectories of the MAV during the landings. The starting position of
the MAV in each simulation case is marked in red, and the position where the first
sensor reading occurs is marked in blue. When a landing is completed by the MAV
having passed the boat, commands are given to gain altitude and turn right. This,
resulting in a hook at the end of the trajectory for a finished landing attempt.

6.1 Evaluation of Landing Algorithm

In order to separate behaviours dependent on the landing strategy itself and the
sensor used, the first results presented are from landings where a PERFECT sensor
was used. Here, the error and delay is set to zero and the refresh rate is the same as
the simulation time-step. The target grouping plot and trajectory plot can be seen in
Figure 6.1.
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(a) Target grouping plot. (b) Landing trajectories.

Figure 6.1: Target grouping plot and landing trajectories for the MAV when using
the PERFECT position sensor.

6.2 GNSS

NEO-M8N
The target grouping plot and trajectory plot for the simulation case when using a
NEO-M8N GNSS device can be seen in Figure 6.2.

(a) Target grouping plot. (b) Landing trajectories.

Figure 6.2: Target grouping plot and landing trajectories for the MAV when using a
NEO-M8N GNSS device.
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ZED-F9P
The target grouping plot and trajectory plot for the simulation case when using a
ZED-F9P GNSS device can be seen in Figure 6.3.

(a) Target grouping plot. (b) Landing trajectories.

Figure 6.3: Target grouping plot and landing trajectories for the MAV when using a
ZED-F9P GNSS device.

6.3 3D LiDAR

When running the simulations with a 3D-LiDAR, scenarios where the MAV never
enters the volume in which it can be detected by the LiDAR might arise. This will
result in the MAV flying in its initial direction without trying to reach the boat, in
turn leading to straight lines in the trajectory plots (no hook at the end).

Velodyne Puck
The target grouping plot and trajectory plot for the simulation case when using a
Velodyne Puck 3D LiDAR device can be seen in Figure 6.4. The detection range
limit for the 3D LiDAR was set to 60 m.
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(a) Target grouping plot. (b) Landing trajectories.

Figure 6.4: Target grouping plot and landing trajectories for the MAV when using a
Velodyne Puck 3D LiDAR device with 60 m detection range limit.

The results for the same simulation cases as above, but with a 30 m detection range
limit, can be seen in Figure 6.5.

(a) Target grouping plot. (b) Landing trajectories.

Figure 6.5: Target grouping plot and landing trajectories for the MAV when using a
Velodyne Puck 3D LiDAR device with 30 m detection range limit.

Velodyne Alpha Prime
The target grouping plot and trajectory plot for the simulation case when using a
Velodyne Alpha Prime 3D LiDAR device can be seen in Figure 6.6. The detection
range limit for the 3D LiDAR was set to 60 m.
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(a) Target grouping plot. (b) Landing trajectories.

Figure 6.6: Target grouping plot and landing trajectories for the MAV when using a
Velodyne Alpha Prime 3D LiDAR device with 60 m detection range limit.

The results for the same simulation cases as above, but with a 30 m detection range
limit, can be seen in Figure 6.7.

(a) Target grouping plot. (b) Landing trajectories.

Figure 6.7: Target grouping plot and landing trajectories for the MAV when using a
Velodyne Alpha Prime 3D LiDAR device with 30 m detection range limit.

Ouster OS1
The target grouping plot and trajectory plot for the simulation case when using an
Ouster OS1 3D LiDAR device can be seen in Figure 6.8. The detection range limit
for the 3D LiDAR was set to 60 m.
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(a) Target grouping plot. (b) Landing trajectories.

Figure 6.8: Target grouping plot and landing trajectories for the MAV when using
an Ouster OS1 3D LiDAR device with 60 m detection range limit.

The results for the same simulation cases as above, but with a 30 m detection range
limit, can be seen in Figure 6.9.

(a) Target grouping plot. (b) Landing trajectories.

Figure 6.9: Target grouping plot and landing trajectories for the MAV when using
an Ouster OS1 3D LiDAR device with 30 m detection range limit.
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7
Implementation

7.1 PX4 & ROS

The original problem formulation in Section 1.3 included implementation on a
real-world system and thus the control system naturally had to be transferred to the
indented platform. But as previously mentioned, due to time constraints, this was
never done. However, before coming to this insight, some parts were implemented,
for example the TECS and course controllers described in Section 4.2.

As discussed in Section 4.1 the target platform is the PX4 flight stack controlled by
a companion computer running ROS. Using the PX4 softwar§e in the loop (SITL)
simulation in Gazebo (a robot simulation tool) together with MAVROS and the
PX4 offboard mode, those controllers could successfully interact with the flight
stack as intended. The performance of those controllers was never evaluated but the
behaviour seemed reasonable and the successful interaction with PX4 trough ROS
was a valuable proof-of-concept.

7.2 Small Scale Test Vehicle

Because a GNSS positioning system was available and ready to use, a real life
test with a vehicle navigating with input from relative positioning between two
receivers, a small scale test vehicle, seen in Figure 7.1, was prepared. A test case
was set up where the car was intended to drive from an initial position of around 30
m away from, and heading away from, another stationary GNSS receiver streaming
its position to the vehicle according to the suggested implementation presented in
Section 3.5.

The vehicle used was a 1:10 scale RC car, equipped with a Vedder Electronic Speed
Controller (VESC) that enables it to drive steadily forward at slow velocities. A
Raspberry Pi computer on board the car was used for reading sensors, estimating
states, processing data and producing control output. A compass module was added
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7.2 Small Scale Test Vehicle

to enable course measurement.

Figure 7.1: Small scale test vehicle.

Due to time constraints, the control system used was not MPC-based as in Section
4.4, but a simpler P-controller for course control was used. As the main purpose of
the test was to validate whether the isolated GNSS tests made in Section 3.5 would
apply to moving receivers, this simple control system was considered sufficient.

The test sequence, where the vehicle drove with a velocity of around 2 m/s, was run
7 times before the system encountered battery issues. The results of the test showed
that the car was able to navigate towards the remote GNSS station and always hit
the target within approximately 0.3 m. A freeze frame of every test run shortly
before the vehicle hit the remote station (covered by a blue backpack) can be seen
in Figures 7.2 through 7.5.
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Chapter 7. Implementation

(a) Test run 1. (b) Test run 2.

Figure 7.2: Endpoint for the test vehicle at run 1 & 2.

(a) Test run 3. (b) Test run 4.

Figure 7.3: Endpoint for the test vehicle at run 3 & 4.

(a) Test run 5. (b) Test run 6.

Figure 7.4: Endpoint for the test vehicle at run 5 & 6.

(a) Test run 7.

Figure 7.5: Endpoint for the test vehicle at run 7.
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8
Discussion

In this chapter, discussions related to the previous chapters of the thesis are made.
This is then continued with a section on conclusions drawn from the project, fol-
lowed by a final section on future work including suggestions on steps to take the
project further, in the future.

Throughout the project many assumptions were made in order to simplify a complex
problem. Naturally all of the assumption make the results of the simulation less
reliable. The natural way of finding out how well the landing strategy combined
with the different positioning systems actually is working, would be to start making
more real life tests. Even though the initial intention was to do exactly so, the many
aspects and complexity of the problem together with time constraints put a stop to
those plans.

8.1 Modeling

In general, most aspects of the modeling could have been done with more detailed
models. A natural step for increasing the complexity of the modeling is to move to
a flight simulator. Nevertheless, as all models used were implemented directly in
code, full control of the mathematical models used was obtained.

Starting with the MAV, the modeling was done with an aerodynamic model captur-
ing most of the behaviour characteristics of a flying wing (Zagi) around its normal
point of operation. The parameter-set used for the MAV is based on a different
flying wing than the one that will be used in real life situations, introducing an
element of uncertainty regarding the dynamic and kinematic behavior of the MAV
during flight. Since there is no aerodynamic parameter set available for the newly
designed airframe, using the parameters for the Zagi airframe could probably be
considered one of the better approximations available for desired MAV behaviour.
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Chapter 8. Discussion

The parameters used in the Dryden wind model are taken directly from litera-
ture. Therefore, it is hard to tell how realistic these are for the particular cases of
simulation. For simulation purposes it would have been interesting to identify the
magnitude of these parameters for a few different typical weather conditions and
locations along the coastline. One, possibly major, factor regarding winds was not
modeled; the turbulence in the air created by the boat. In real life this factor will
comes into play close to the boat, where the most critical part of the landing takes
place, and might have large effect on forces affecting the MAV. For sure this is
something that has to be evaluated carefully, either by literature and simulation or
real life testing. This turbulence could be a factor that makes the proposed landing
impossible. A few intuitive alternative approaches would be to either minimize the
velocity of the boat in relation to the surrounding air, or try to approach the boat
from the top or the side. Although, such approaches would require more from the
landing strategy as the time window for a possible landing would decrease signifi-
cantly if the MAV can not fly as slowly as the boat moves.

In general the wave model is simplified. In order to make the model more realistic,
the sinusoidal wave could have been replaced by a trochoidal wave, which more
accurately resembles ocean waves. Another improvement would be to add a more
realistic stochastic behaviour on top of the deterministic part of the wave.

Closely related to the modeling of waves is the modeling of the hydrostatic and
hydrodynamic interaction between the boat and the water. The model of the boat
is simplified and only contains two-dimensional kinematics, except for the vertical
position component driven by the wave behavior. Roll and pitch behavior was not
included into the model because of down prioritization due to time constraints. This
simplification imposes several constraints onto the conclusions that can be drawn
on the full system simulation. Most notably, the changes in the 3D LiDAR vertical
FoV due to variations in the boat orientation is not taken into account in the case
where the 3D LiDAR is mounted fixedly onto the boat. This should be considered
an important factor as it with time changes the limits of where the MAV can be
detected. This can be expected to limit the utility of a fixedly mounted 3D LiDAR
positioning system in wavy conditions.

8.2 Positioning

The analysis of the influence of weight addition on lost flight time on the MAV
is based on the parameter set of the Zagi airframe and is therefore not directly
applicable to the airframe that will be used in the end. Differences in what velocities
the airframes are optimized for make the parameters for lift and drag forces vary,
which in turn makes an influence on how additional weigh affects the flight-time.
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8.2 Positioning

There is no guarantee that the design criteria has been similar for the two airframes
or that the calculated value should be used as a reference figure. The calculated value
is also valid only for small changes in added weight, as the drag and lift coefficients
tend to be nonlinear over larger intervals of angle of attack. Even so, the 9 seconds
of lost loitering time per added gram of weight suggests that there is room for small
scale devices with low weight without sacrificing any significant flying time.

Communication
The results of the radio communication link tests were promising both in isolated
range and delay tests, as well as in the implementation with the small scale test
vehicle. There was both a long enough communication range to connect at a large
enough distance, as well as a small enough delay for the full system simulation
to avoid instabilities. However, there are more ways that the information can be
communicated from boat to MAV which have not been explored.

GNSS
In the simulations, the GNSS errors recorded from testing were used as the position
error. The conditions that the tests were performed in is not directly applicable to
the conditions that the MAV is intended to fly in eventually, even though the tests
were performed around water. Since the devices remained still throughout the tests,
and no analysis has been made into any delays within the process of measurement
in the GNSS device there might be an additional delay that has not been taken into
account.

The information returned by the GNSS modules is the difference in latitude, longi-
tude and altitude by the two GNSS modules. Together with information about the
heading of both vehicles, it is well suited for a controller such as an MPC. The tests
performed on the GNSS devices are mostly related to performance, where the test
results as well as small scale test implementation indicate that the precision, refresh
rate and delay are within, or close to, the required limits when using the ZED-F9P
device pair. Since the devices use radio frequency, there is little influence of rain,
fog or other environmental factors which make them robust in many weather condi-
tions. Since the configuration of the GNSS setup requires data to be communicated,
there is need for a communication link which adds to the complexity of this solution.

3D LiDAR
The 3D LiDAR method was difficult to evaluate as no physical device was available
for testing purposes. It is, however, an interesting method to evaluate because of
the surge in popularity in recent years and the increase in availability of higher
performing devices. In hindsight it is obvious that the analysis made on the method
contains a large amount of assumptions, simplifications and a model that requires
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quite a large amount of validation to be considered useful.

A number of simplifications have been made in the simulation of the 3D LiDARs,
some of which are mentioned in Section 3.6. It is assumed that no other objects than
the MAV are visible to the 3D LiDAR. In reality there might be other objects like
bird, boats and similar things that come into the field of view and cause position
ambiguities. Looking deeper into object detection strategies would be beneficial for
this purpose.

The difficulty of modeling the 3D LiDAR behavior, without access to an actual
device for testing, lies in approximating how far away the MAV can be detected.
As presented in the the LiDAR section, rain, object material, surface, color and
orientation affect the maximum distance and determining this value is difficult.

The information returned by the 3D LiDAR is the position of the MAV expressed in
the body frame of the boat. Using information about the orientation as well as the
course of the boat and the MAV, the relative position can be used in the same way as
a GNSS measurement. As LiDAR is based on light, there is a risk using the system
in rainy conditions. The accuracy of LiDAR is relatively high, with decimeter or in
some cases centimeter precision. The 3D LiDAR relative positioning method would
require data to be communicated to the MAV in real time which makes it necessary
to facilitate the communication. The method cannot be considered a simple system
as it comprises many sub modules, considerable processing of data and potentially
implementation of complex object detection strategies.

ILS
Two fundamental flaws exist with the explored implementation of the small scale
ILS system using two directional antennas and RSSI. Firstly, the antennas have to be
mounted in a stabilized way in order to avoid two consequential issues, vibrations
that cause additional noise to the measurements at long distances, and changes in
antenna direction due to variations in the boat orientation. Secondly, directional
antennas have side lobes that would create heavily irregular measurement patterns
when approaching close to the boat. The real ILS system can avoid these problems
by having the antennas positioned at the far end of the runway. The side lobe issue
can potentially be attenuated by considering different type of directional antenna.

8.3 Autonomous Landing

In general, the landing algorithm is working pretty well in the simulations. There
is likely room for improvement, specifically in terms of getting the controller to be
more aggressive under some circumstances while being less so under others. This
problem is believed to arise from the model mismatch between the full and the
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simplified MAV model.

Starting from the bottom with the low level controllers for pitch and roll, they
seem to be doing their jobs. Those controllers would not be used during a im-
plementation in PX4 or Ardupilot as the corresponding functionality is already
implemented an ready to use in those flight stacks. By looking at the step response
in Figure 4.7 in Section 4.6, the course controller itself seems to behave reasonably
well, and something similar could probably be used successfully. Similarly, based
on Figures 4.6 and 4.5, the TECS is also doing what is should reasonably well,
with some reservation for the somewhat strange behavior of the step response of the
acceleration. Based on the work in [Argyle and Beard, 2016], the TECS could prob-
ably be improved to some extent by using a more advanced version of the controller.

Moving on to the MPC, this is a place where a few major improvements possibly
could be made. In general the MPC seems to be working quite well, but it took bit
of tuning to get there. The major problem was finding a balance between turning
aggressively enough when not facing directly towards the boat, while avoiding
oscillations when doing so. A reason for this could be differences between the full
MAV model and the model used by the MPC. A model matching the real plant
as closely as possible is essential for the performance of the MPC, and it is clear
from the parameter identification in Section 4.6 that the MPC internal model is a
little bit off from the full MAV model. Solving a problem in a optimal way may
sound very good, but does not necessarily have to be so. Specifically if the problem
solved by the optimization is not the true problem, which partially seems to be the
case for the model used in the MPC. A simple idea that could be used to extend
the MAV-model used by the MPC is to expand the path angle behaviour to a 2nd

order system, similarly as for the course angle. Another idea of interest could be to
somehow incorporate the airspeed into the model, as the airspeed has quite large
effects on the MAV response to control commands. Another area of improvement
could be to address the wind in a better way. Successfully incorporating magnitude
and direction of the wind directly into the model could potentially help the MPC to
utilize wind to its advantage.

However, a more detailed model of the plant used by the MPC, will in most cases
result in additional states as well. More states will lead to longer computational time
or more computational power needed. This is trade-off that has to be considered if
the MPC-model is to be expanded further. The speed of solving the MPC optimiza-
tion on the indented CPU should be analysed in order to get an idea how much the
MPC model could be expanded before causing a computational bottleneck. From
the discussion in [Wang and Boyd, 2010] it seems like adding a few more states
should be possible without causing too much trouble. The optimization step itself
could also have been done differently, for example by adding slack variables allow-
ing for soft constraints, or formulating the optimization in terms of ∆u, allowing
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to penalize ∆u rather than u directly. However, if any of these additions would
improve the landing performance is not certain. The slack variables might be useful
if the MAV somehow moves outside the boundaries of the inequality constraints,
as the solver might be unhappy with such an event (this was for the fmincon solver
used in the simulation).

Compensation for sensor, communication and computational delay was done used
the internal models of the MAV and the boat. As the times compensated for are
relatively small, this approximation is probably not too bad, but a more sophisticated
dead-reckoning method could definitely increase the performance to some degree.
Dead-reckoning might also be incorporated into the jitter compensation strategy.
Here it could be used to estimate the MAV and boat states in a better way (than
using the prediction from the MPC), potentially allowing to run new optimizations
even without new sensor data from the positioning system.

8.4 Simulation

The scenarios used for simulation was chosen based on the discussion in Section
5.3, but are still somewhat arbitrary. It might have been interesting to run simula-
tions from a larger verity of conditions (starting positions and weather conditions)
in order to get a better idea on the landing performance. The current assumptions
on the relationship between correlation between wind speed and wave parameters
seem reasonable, but it would have been good to explore this topic in more detail.

The simulation time-step could have been set to a lower value for more detail of
the "world" in the simulation. However, as most systems were originally modeled
as ordinary differential equations (ODEs), a better starting point would probably be
to interchange the first order Euler discretization with some more advanced method
for numerical integration, for example some variant of the Runge-Kutta method.

As no state estimation for either MAV states or wind was made, the assumption
of MAV states and ambient wind being known, with some additional noise, was
made. The corresponding estimators are available in the flight stacks that are to be
used, so this information is available to the controller. However, in the simulation
the variance of the added noise was somewhat arbitrary chosen and for a more
realistic result it should have been matched with identified variances from the state
estimators used by the flight stacks.

Results
As expected, the results when using the perfect positioning system seem to have the
best overall performance. Even if the positioning is perfect is should noted that there
is still noise on the MAV and the boat states as well as waves and wind present.
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The simulations for the ’perfect’ sensors system could be considered an evaluation
of how well the landing algorithm is working by its own. For these results it can be
noted that lateral displacements seems to be small with good consistency. The ver-
tical displacements are much larger, but this could also be expected since no regard
is taken to matching the periodicity of the waves. Thus, if an intersection between
the MAV and the boat occurs on a wave ridge or valley, a vertical displacement like
this is expected.

The GNSS modules show an expected difference in the results between the two
models. From the simulation results it can be concluded that the NEO-M8N is not
capable of delivering the required precision, while the ZED-F9P is considerably
more reliable. The ZED-F9P has very high lateral precision, while the vertical
precision is lower, but not much worse than any other positioning method. This
is likely, similarly as for the ’perfect’ sensor, a result of the waves affecting the
vertical position of the boat, which is problem for every positioning method. The
results show that the ZED-F9P GNSS module is a viable candidate.

For the 3D LiDAR case, all models show good results, which is unexpected as the
performance of the models vary quite substantially in performance. As previously
discussed, this is likely a result of inadequate modeling, false assumptions and over
simplification. For the simulation case where the 3D LiDAR has a 30 m detection
range, there are landing attempts that fail because of the starting condition, which
despite issues with modeling should be considered a valid risk. The MAV never
succeeds to enter the volume in which it is visible to the 3D LiDAR. This shows
that there is need for a setup phase of the MAV, before it enters the landing phase.
A difference in precision is expected between the different 3D LiDAR models, and
the lack of such difference in the results is a troubling factor which indicate that
the model used is insufficient. Therefore, few conclusions can be drawn about the
feasibility of this method.

8.5 Conclusion

The analysis of relative positioning systems indicates that a relative GNSS ap-
proach is possible when using the ZED-F9P devices. The simulation and real life
implementation test showed an error that was within tolerable range. Used together
with an Xbee communication device there seems to be enough robustness for the
system to be an implementable alternative. More research and testing is needed to
draw conclusions on whether 3D LiDAR is a suitable method since the conclusions
drawn in this thesis are based on a large number of assumptions and simplifica-
tions. However, relevant research has been and is being conducted specifically on
detection of small UAVs which indicate potential in the method. Further, the mar-
ket for devices can be expected to diversify, and suitable devices may increase in
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availability and decrease in price. The small scale ILS system proposed suffered
from issues related to precision when performing test measurements. The cause of
these issues is likely to be the inherent result of the method itself but further tests is
needed to verify this. Other versions using different methods, such as sensing the
phase difference between two signals should be considered.

The implementation of the full system for a real world test was not finished, but a
small scale implementation test was performed which helped to validate the quality
of the full scale simulation and isolated tests.

The proposed landing algorithm seems to be a good starting point for reaching
the goal of consistently performing successful landings on a boat during varying
weather conditions. However, the optimality of the internal plant model used by the
MPC could be questioned, and there are quite a bit of work left to do in order to get
ready for real-world flight tests.

In conclusion, given the assumptions that were made in this thesis, it is clear that the
GNSS positioning method using two ZED-F9P devices and a Xbee communication
device, in combination with the proposed landing strategy is a viable candidate
for a first step towards a real-time implementation. As further implementations of
positioning methods other than GNSS are investigated, they can benefit from using
the same communication method.

8.6 Future Work

Positioning
GNSS Continue to implement a system where the ZED-F9P devices are used.
There is a need to evaluate if it is possible for the MAV to use such a large volume
helix antenna as the one which were used to perform the tests. Different antenna
options could be explored.

3D LiDAR Perform actual testing of 3D LiDARs where the ability to detect the
MAV is tested for different orientations and different versions. For example, a new,
small, low-cost Velodyne device named Velabit has been proposed, which could be
tested and evaluated in the near future.

ILS As the small scale ILS system proposed in this thesis seems to have multiple
flaws, other possible versions could be explored. Another version based on the space
modulation principles briefly described in Section 3.7 could be evaluated for design.
Another suggestion is to make use of the phase difference between a signal sent out
by two antennas located at some distance from each other, to measure angular offset
from the center line.
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Autonomous Landing
On the landing side of the thesis there are a few things that could be explored further
in the future. The most obvious thing is of course to make the implementation on a
real MAV. For a start, this would include implementation of the landing strategy in
ROS (C++ or Python) and make it work within PX4 or Ardupilot. Notice that the
Ardupilot-mode corresponding to the PX4 offboard mode is currently not as feature
rich when used with planes, and might lack features necessary for being controlled
in the way described in the report. Additionally, verification on the computational
needs for real-time optimization as well as implementation of decision logic on
when and how to abort a landing, would both be necessary steps towards real world
usage. Many of the topics covered in the earlier discussion could be interesting
to evaluate as well, for example changing the MPC state model or improving the
strategy for delay compensation.

Before transferring any system to the MAV for real world tests, the systems could
(and probably should) be tested in PX4 or Ardupilot simulation environments. After
this, the next step would be to transfer, tune, test and evaluate the low level control
systems on the real MAV. Now the needed identification of parameters used in
the MPC could be done. Finally, the MPC and high level decision logic could be
transferred, tuned, tested and evaluated in real life.
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A
Model Parameters

Zagi Airframe Parameters
Parameter Value Parameter Value

m 1.56 Cmq -1.399
Jx 0.1147 Cmδe

-0.3254
Jy 0.0576 CY0 0.0
Jz 0.1712 CYβ

-0.07359
Jxz 0.0015 CYp 0.0

Swing 0.2589 CYr 0.0
b 1.4224 CYδa

0.0
c 0.3302 CYδr

0.19
Sprop 0.0314 C`0 0.0

ρ 1.2682 C`β
-0.02854

kmotor 20.0 C`p -0.3209
e 0.9 C`r 0.03066

CL0 0.09167 C`δa
0.1682

CLα
4.8776 C`δr

0.0024
CLq 2.8932 Cn0 0.0
CLδe

0.2724 Cnβ
0.04

CD0 0.01631 Cnp -0.01297
CDα

0.2108 Cnr -0.1434
CDp 0.0254 Cnδa

-0.00328
CDq 0.0 Cnδr

-0.069
CDδe

0.3045 Cprop 1.0
Cm0 -0.02338 M 50.0
Cmα

-0.5674 ε 0.1592
α0 0.4712

Table A.1: The modified parameter-set of the Zagi airframe used in the simulation.
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B
Controller Parameters

Roll Controller Parameters
Parameter Value

kp,φ 3.5
ki,φ 0.1
kd,φ -0.3358

Table B.1: Controller gains for the roll PID-controller.

Pitch Controller Parameters
Parameter Value

kp,θ -5
kd,θ 1.0389

Table B.2: Controller gains for the pitch PI-controller.

Course Controller Parameters
Parameter Value

kp,χ 5.0226
ki,χ 16.4980

Table B.3: Controller gains for the course PI-controller.
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Appendix B. Controller Parameters

TECS Controller Parameters
Parameter Value

kp,δt 0.2
ki,δt 10
kp,δe 0.1
ki,δe 1

Table B.4: Parameter values for the energy rate TECS controller.
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C
SSRS Custom Designed
Airframe Specifications

Figure C.1: Top view of airframe.

Figure C.2: Side view of airframe.
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Appendix C. SSRS Custom Designed Airframe Specifications

Figure C.3: Front view of airframe.

• Wingspan: 1 m

• Volume: 4413 cm3

• Mass: 154 g (only EPP-foam, no components added)

Figure C.4: Glide polar (ratio of lift and drag) at different velocities, for the airframe.

Figure C.5: Drag force for different velocities for the airframe.
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