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Abstract

The wood pulp industry has been around for a long time, but new higher quality
pulp require more advanced solutions to old processes. One of these processes is
the peroxide (PO) bleaching process, which is the last of a whole chain of bleaching
processes at the Mörrum pulp processing plant. The aim of this thesis was to develop
and study a model for the peroxide pulp bleaching process, and thereafter optimize
the process with the model. The PO-stage is a multivariable, non-linear process with
a variable retention time of a few hours. The models tested was a kinetic reaction
model, a Gaussian process regression (GPR) model and hybrid models of the two.
Before the models could be tested a retention time estimation model was made to
compensate for the variable retention time. The bleaching simulations showed the
kinetic model could not accurately model the brightness output. The kinetic lacked
variability in the maximum brightness parameter C∞. However, the combination
of estimating C∞ for the kinetic model with an GPR model proved to be a good
performing model. Prediction on slow brightness changes was accurate, but fast
changes was harder and large error could occur. The optimization of the hybrid
model showed that chemical dosages could be lowered while achieving a smoother
and more precise brightness. Further studies on robustness of the brightness model
and the optimization model are needed before implementation on the real process
can be done.
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1
Introduction

As sustainability becomes more important to consumers and manufacturers alike,
sustainable resources are needed in areas they previously weren’t. Wood pulp is
one of those. A large part of producing pulp of good quality is bleaching the pulp,
specifically the removal or breakdown of lignin. Lignin is part of what holds wood
together but has a negative effect on paper quality and darkens it. Cooking the pulp
removes some of the lignin while the rest has to be removed using chemical bleach-
ing. The bleaching process consists of several stages of different bleaching chem-
icals with washing. Whilst all stages require some form of control system, the hy-
drogen peroxide stage (PO) is particularly complex [Dence and Reeve, 1996] and
therefore, the focus of this thesis.

This thesis was conducted with the help from Södra Cell at their pulp plant in
Mörrum. The Mörrum plant has two pulp lines: Premium paper pulp and dissolving
pulp. Both lines have a similar structure and produces pulp of the kraft type, but
differs slightly in brightness and strength requirements. The PO stage studied in
this thesis is at the end of the premium paper pulp line.

Currently there is no model or control system implemented for the PO stage at
the Mörrum plant. Instead, the chemical quantities are manually controlled by an
experienced operator.

1.1 Problem Formulation

The PO stage process begins when the pulp is mixed with hydrogen peroxide and
sodium hydroxide, before slowly flowing upwards through a large bleaching tower.
Next, the pulp goes through another colder tower, where the chemical process is
continued but at a very slow pace.

The PO stage is a multivariable, non-linear process with a 4-5 hour long reten-
tion time, which is the amount of time the pulp spends in the PO stage. This presents
a need for more advanced control strategies that predict the behaviour of the system
using a mathematical model. Read Section 2.1 for a more in depth description and
analysis of the process.
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Chapter 1. Introduction

1.2 Aims and Objectives

The initial aim was to properly model and optimize the PO process. After studying
the process and reading studies [Alberth, 2011][Roberts et al., 2013][Jiang et al.,
2019] on similar processes more explicit objectives were formulated:

• Test the kinetic bleaching model presented in [Alberth, 2011].

• Test Gaussian process models on the process.

• Using Gaussian process models, identify important input features for predict-
ing output brightness.

• Combine the two models and test the resulting hybrid model on the process.

• Optimize the best performing model for brightness and chemical usage.

The last aim of optimizing the process with the model was left very open to focus
more on the modelling part and to simply showcase the possible usage of the model.

1.3 Related Work

Whilst some studies have been done on peroxide bleaching, most focus on the lower
brightness mechanical pulp instead of the high quality and high brightness kraft
pulp. One such study was done by [Roberts et al., 2013], in which they applied a
Gaussian Process Model coupled with an MPC controller. While their results in-
dicated successful optimization of the chemical dosage, they did not disclose the
exact performance of their model, and thus it’s difficult to use as a benchmark.

Additionally, a study done on a steel plant process [Jiang et al., 2019] was very
influential to the modelling approach of this thesis. Similarly it used a combina-
tion of Gaussian processes and linear regression to model the process. Lastly, an-
other significant study [Alberth, 2011] implemented a kinetic chemical model to
an equivalent peroxide bleaching process at a sister mill to Mörrum. This has very
useful information about the PO bleaching process and the kinetic chemical model
is used in the models here.

1.4 Outline

Chapter 2 starts off with an overview of wood pulping process and the chemical
formulation of peroxide bleaching. The chapter continues with a short presentation
of a kinetic bleaching model and Gaussian process regression models. Chapter 3
covers how the models are implemented, retention time estimation and chemical
optimization. The results of all the models are shown and discussed in Chapter 4.
Lastly, Chapter 5 wraps up the thesis with conclusions and suggestions of future
work on the subject.
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2
Background

2.1 Wood Pulp

The process of making paper pulp from wood is simply to separate the cellulose
fibers from lignin and hemicellulose, which bind the cellulose together. What re-
main is a mass of shorter unconnected cellulose fibers. There are two main ways of
cellulose separation: Mechanical pulping and chemical pulping. After pulping, the
pulp is bleached depending on the brightness requirements of the final product.

Mechanical pulping, as the name implies uses mechanical forces to break down
the wood into its constituents. While this is a very energy-demanding process, it
produces a high yield compared to other processes. Another downside is the cellu-
lose fibres are also damaged/cut, thus resulting in shorter fibres and weaker pulp.

On the other hand, chemical pulping produces stronger pulp with longer fibres at
a lower yield. By combining heat and chemicals in stages the lignin is broken down
into water-soluble molecules. Between the chemical stages the pulp is washed, re-
moving leftover chemicals and lignin.

The process at the Mörrum plant is a chemical pulping process known as kraft
pulping (or the sulfate process). Kraft pulping produces high quality pulp by remov-
ing most of the lignin, but not too much to weaken the pulp. However, the remaining
lignin darkens the pulp, which is not desirable. Thus, additional brightening is re-
quired.

Kraft Pulp Bleaching
Bleaching of wood pulp can be divided into two categories: Dissolving lignin (delig-
nification) and brightening. Kraft plants use a combination of the two in several
stages. Delignification is done in the early stages and brightening in the later.

In kraft pulping the main delignification process is done by boiling the pulp
with the chemical bleaching mixture called white liquor. Consisting of NaOH and
Na2S, the white liquor breaks down the lignin. To monitor pulp qualities and the
delignification process, the Kappa number is used. The Kappa number is an ap-
proximation of the lignin content. Therefore, the Kappa number are used to deter-
mine the amount of bleaching agents needed to reach a certain brightness. The value
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Chapter 2. Background

of Kappa ranges from 1-100, but can in certain circumstances exceed 100. Higher
Kappa means higher lignin content, and thus higher chemical dosages are needed.
How the Kappa number is measured is determined by the ISO 302:2015 standard.
However, after the delignification stages the pulp usually has a very low Kappa
number (9-14), making it unreliable and difficult to use further as the pulp bright-
ens. Instead, the later stages uses the diffuse blue reflectance factor, ISO brightness
(ISO 2470-1:2016), as quality control.

Brightening stages only break down the colored lignin (chromophore groups)
to non-colored and causes minimal changes to the pulp strength and quality. This
thesis focuses on one of the last bleaching stages at the plant, peroxide bleaching
(PO).

Peroxide Bleaching A peroxide bleaching stage has two main benefits over other
methods. The end brightness is more stable and no chlorine is used. However, per-
oxide bleaching has a few demanding requirements: Long reaction-time, high tem-
perature, high pH, no heavy metal ions in the pulp and in some cases high pressure.

Process Description
This section offers a description of the process from a control system perspective
and what challenges it presents in regards to modelling. Figure 2.1 shows a simpli-
fied chart of the process. In the figure, retention and dead time are used interchange-
able as they are the same for this process. Dead time is mostly used in control set-
tings and signifies the time between a change in controller output (H2O2 and NaOH
dosages) and measured response of the process variable (pulp brightness).

Figure 2.1 Simplified schematic of the peroxide bleaching process.

A long dead time causes problems for standard control solutions, as it need to
predict the future output of the process. That the dead time is variable does not
change the complexity of controlling the process significantly. Although, it does
add the need for a retention/dead time prediction, which can further add to the un-
certainty of predicting the process output.

Additionally, a long dead time can add one more complication. If the dynamics
of the process change they will not show up in the process output until after the dead
time. For the peroxide bleaching process the dynamics of the chemical reaction are
dictated by the pulp properties, specifically how bleachable the pulp is.
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2.1 Wood Pulp

With the problems mentioned above, the PO-stage modelling can be split into
two parts:

• The nominal chemical reaction of the peroxide bleaching process.

• The change in bleachability as the pulp properties change with new pulp com-
ing into the process.

Later in Section 3.4 this partition of the modelling is apparent in the use of a unique
model for each part.

Table 2.1 show the important variables to the process and where they are mea-
sured during the PO-stage. The variables that are measured before (B) the process,
can be used in PO-stage models as inputs. The variables measured during (D) the
process can also be used as inputs, but there is an uncertainty to where they are
measured during the dead time.

Table 2.1 The table highlights the important variables of the peroxide bleaching
process and where they are measured by a sensor. The sensor positions are divided
into Before B, During D and After A the process.

Type Variable Sensor Positions
Process Variable Brightness B A
Control
Output

[H2O2] Dosage B
[OH−] Dosage B

Other
measurements

Temperature B D
Kappa B

Fiber length B A
pH D

Pulp concentration B A
Pressure D

[OH−] Concentration D
[H2O2] Concentration D

Pulp Flow B A

Chemical Reactions The active bleaching chemical in the peroxide stage is the
hydrogen peroxide ion (OOH– ), which attacks the chromophore groups, breaking
them down to non-colored groups. Otherwise, the process preserves the lignin and
the structural strength of the pulp. A complication when using peroxide bleaching is
producing the highly reactive hydrogen peroxide ions. Currently, hydrogen peroxide
(H2O2) and sodium hydroxide (OH– ) are mixed into the pulp to react and produce
the hydrogen peroxide ions. The chemical reaction equation of hydrogen peroxide
ions is shown below,

[H2O2]+ [OH−]←−→ [OOH−]+ [H2O]. (2.1)
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Chapter 2. Background

Here brackets signify the concentration of the enclosed molecule. The chemical
equilibrium for the reaction above has been studied by [Teder and Tormund, 1980],
who formulated the following equation

KE = log10
[HO2

−]
[OH−][H2O2]

=
1300

T
−2.13+0.15 ·

√
[Na+]. (2.2)

Here T is the absolute temperature. Whilst the equilibrium equation was designed
mainly for lower temperatures 20− 80 C◦, later studies by [Malmberg, 2006] also
show that the equation is applicable to higher temperatures, which is the case for
the peroxide stage at the Mörrum plant.

2.2 Kinetic Peroxide Bleaching Model

Several studies [Mota et al., 2007] have been done to model the chemical kinetics of
peroxide bleaching. Eventually, the bleaching model from [Alberth, 2011] was cho-
sen for this thesis. Her model is an adaptation of a model presented in [Malmberg,
2006]. [Alberth, 2011] did her study on the sister mill of Mörrum, Värö pulp mill.
This is the main reason for choosing her model for this thesis, as the PO-stage of
the two mills are similar in design and specifically in available measurements. Fur-
thermore, the focus of her study was to validate and tune the different parts of the
model using chemical laboratory experiments. Her method of study complements
this thesis well, as the emphasis of this thesis is on modeling and optimizing using
real mill data. Below is a short description of the model [Alberth, 2011] designed
and tuned.

The kinetic bleaching model consists of three main differential equations, equa-
tions 2.3-2.5. These equations models the change in brightness and the peroxide and
hydrogen concentrations respectively.

dC
dt

= A1 · e
−E1
R·T · KC[HO2

−]
1+KC[HO2

−]
(C−C∞) (2.3)

d[H2O2]

dt
= [H2O2] ·A2 · e

−E2
R·T (2.4)

d[OH−]
dt

= ([OH−]−A3) · e−E3 (2.5)

Additionally, to connect equations 2.4,2.5 to the brightness reaction equation 2.3
the reaction equilibrium equation 2.2 mentioned previously have to be used. It is
reformulated to calculate the [HO2

−] and the equilibrium variable KE is not restated.

[HO2
−] = [OH−][H2O2] ·10KE . (2.6)
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2.3 Gaussian Process Regression

Something to note in Equation 2.5 is the lack of pH measurement usage. How-
ever, Alberth showed in her thesis that pH is a poor estimation of OH– concentra-
tion. The reason, she theorized, being that pH only measures free H+ ions and the
pulp has a buffer for negative charged ions, like OH− Her solution was to assume
the exponential model in Equation 2.5 and do laboratory tests to fit the parameters
A3 and E3.

Below, in Table 2.2, all the parameters used in the kinetic peroxide bleaching
model, equations 2.3-2.6, are presented.

Table 2.2 Values of the parameters used in the kinetic model, identified by [Al-
berth, 2011].

Parameter Value Description
C∞ 0.17 m2/kg Minimum light absorption
KC 13.3 (mol/l)−1 Concentration coefficient
A1 333 ·106 s−1

Reaction speedA2 1.8 ·1011 s−1

A3 0.013 mol/l
E1 70.1 kJ/mol Reaction activation

energyE2 99 kJ/mol
E3 5.2 s−1

R 8.3144 J ·K−1/mol−1 Universal gas constant
T K Temperature

ISO-Brightness
The mill were using ISO reflectance R as the brightness measurement while the
model uses the brightness absorption coefficient CK . Equation 2.7, shown below,
converts R to Ck and can easily be reversed.

CK = s · (1−R)2

2 ·R (2.7)

Here light scattering coefficient s is not known, but [Alberth, 2011] calculated an
average value for s over several laboratory experiments. This average value is used
in this thesis as the study done by [Alberth, 2011] is deemed close to equivalent in
chemical properties and brightness values.

2.3 Gaussian Process Regression

The following section offers a short description of Gaussian Process Regression
(GPR) models, for a more in-depth definition see [Rasmussen and Williams, 2006]
or [Roberts et al., 2013]. GPR models main benefit over dynamic models is the
ability to model a nonlinear process requiring very limited prior knowledge of the
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Chapter 2. Background

process dynamics. GPR models belong to the group Bayesian non-parametric mod-
els, as they do not infer a set of parameters and use probability theory as their main
tool. Before providing the definition of GPR models, the process problem itself
needs to be set up. A typical regression problem can be described by

yi = f (xi)+ ε. (2.8)

Here ε ∼ N (0,σ2
n ) is white measurement noise, xi is an input vector at time i, yi

is the output at time i and f (xi) is the unknown process function. For the peroxide
bleaching process xi are a selection of measurement from Table 2.1, yi is the output
brightness (or another pulp property) and f (xi) is the peroxide bleaching process.
Inferring an approximation of the unknown process function f (xi) is the goal of the
GPR models. With an approximation of f (xi), predictions of y j can be made for new
input vectors xj. How a GPR model is defined and can predict process outcomes is
explained in the remainder of this section. However, first a short exploration of some
probability theory concepts is appropriate.

Figure 2.2 Here different probability distributions for two random variables are
shown: The joint distribution (blue ellipsoids), the marginal distributions of both
variables (black solid lines) and the conditional distribution (black dotted line) for x2
when x1’s value is known. Picture taken from [Roberts et al., 2013].

The key concept of GPR models is conditional probability, which can simply
be explained as knowledge of some random variable x1 provides information of the
probability of another random variable x2. Figure 2.2 illustrates this concept us-
ing two Gaussian distributions x1 and x2. The blue ellipsoid figures represent the
joint distributions p(x1,x2) of the two variables, which is determined by their 2 x
2 covariance function and their mean values. The black solid line is the respec-
tive marginal distributions p(x1) and p(x2). The black dotted line is the conditional
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2.3 Gaussian Process Regression

distribution when the value of x1 is known, p(x2|x1) = known. The conditional dis-
tribution shows how information of the covariance and the value of one variable
can decrease the uncertainty of another variable. This thinking is the core of GPR
models. GPR models can use data points to gain knowledge of the covariance and
to then form conditional distributions to make predictions.

Describing how a Gaussian Process actually works, is difficult to do in a short
and intuitive manner. Therefore, the reader is once again referred to [Rasmussen
and Williams, 2006] for a complete explanation. However, one important property
of Gaussian Processes, which is needed later, is that they can be fully defined by a
mean function m(x) and a covariance function k(x,x′).

Kernel
So far the GP covariance function has only been defined for a single data point,
but it needs to work for many data points to gather as much information as possi-
ble. Therefore, the covariance function is defined over an arbitrary but finite num-
ber data points by introducing a covariance kernel function. The covariance kernel
function is a way to store the covariance between arbitrary data points in a prede-
fined manner. Thus, the GP can be extended to a complete training set of variables
(X,y) = {(xi,yi)|i = 1,2, ...,n}. The kernel function is defined as

K(X,X) =


k(x1,x1) k(x1,x2) · · · k(x1,xn)
k(x2,x1) k(x2,x2) · · · k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) · · · k(xn,xn)

 . (2.9)

Since only y is available for the training set, the measurement noise ε ∼ N (0,σ2
n )

have to be incorporated.

cov(y) = K(X,X)+σ
2
n I (2.10)

A common kernel function is the Squared Exponential (SE) kernel, also called
Radial Basis or Gaussian Kernel. The SE kernel can model several smooth non-
linear functions and has the property of being infinitely differentiable.

kSE(x,x′) = σ
2exp

[
−
(

x−x′

λ

)2
]

(2.11)

Here the SE kernel introduces two hyperparameters σ and λ . How these are de-
termined will be explored later in Section Hyperparameter Optimization. λ is the
length scale hyperparameter, which determines how fast the function changes. If the
input x is a vector then λ can also be a vector with equal length to x.
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Chapter 2. Background

Prediction
After conditioning on the training set (X,y), the GPR model is ready to predict on a
test set (X∗,y∗). Here y∗ is the so far hidden measurement. However, as y∗ includes
measurement noise, it isn’t interesting to predict. Instead the prediction objective is
the underlying problem function f∗ = f (X∗). Thus, a joint covariance function is
formed with the prior and the test set.

cov
(

y
f∗

)
=

(
K(X,X)+σ2

n I K(X,X∗)
K(X∗,X) K(X∗,X∗)

)
(2.12)

Finally, the predictive equations can be written as

f∗|X,y,X∗ ∼N (f̄∗,cov(f∗)), (2.13)

f̄∗ , E[f∗|X,y,X∗] = K(X∗,X)[K(X,X)+σ
2
n I]−1y, (2.14)

cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X)+σ
2
n I]−1K(X,X∗). (2.15)

One thing to note is even if the GP’s prior mean function is set to zero, the posterior
prediction mean is not necessarily zero.

Explicit Basis Function
For regression problems the GP model can be extended to include basis functions
h(x) and basis function coefficients β , as

g(x) = h(x)T ·β + f (x). (2.16)

The basis function can be seen as an replacement to the mean function of the GP.
However, basis functions can express a wide range of functions. For example, set
h(x) = [1 x]T and the basis function with coefficients can act as linear regression.
The basis function is most important when predicting far from observations where
most of the kernel functions have little to no impact.

Hyperparameter Optimization
To make the most out of a GP model, the hyperparameters needs to be inferred. A
common way is by maximising the likelihood P(y|X) over the hyperparameters: β

from the basis function, σ2 and λ from the kernel function. This can be written as

β̂ , σ̂2, λ̂ = arg max log
β ,σ2,λ

P(y|X,β ,σ2,λ ). (2.17)

This optimization can be very computational heavy as it scales as O(k · n3),
where k is number of function evaluations and n is the number of observations.
While there exists faster sparse fitting methods, they will not be discussed here and
the reader is referred to the documentation of the Statistics and Machine Learning
Toolbox of Matlab.
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3
Methodology

3.1 Retention Time Model

Estimation
Knowledge of the retention time is crucial for tuning and implementing the bleach-
ing model. Otherwise, the pairing of in- and out-data becomes inaccurate and the
bleaching model will not function. Figure 3.1 provides an overview of the PO stage,
excluding a few small external flows. The kinetic model needs the PO250 retention
time, but the measurements are made at point A and B. Therefore the retention time
model needs to estimate the retention time for PO250 and from point A to B. The
time spent in pipes and washer presses were assumed to be inconsequential com-
pared to time in PO250 and T260.

Figure 3.1 Simplified flowchart of the PO-stage. Point A and B are the sensor
stations for the vital measurements of process. The blue cylinder is the PO250 tower,
were the majority of the bleaching occurs. The green cylinder is the T260 tower,
which mainly acts a reserve in case of differing production speeds before and after
the stage. Washer press 245 and 265 washes the pulp mixture from chemicals.

A pre-existing retention time prediction was already implemented for the plant,
however the existing model had a number of issues. First, the pre-existing model

19



Chapter 3. Methodology

is a prediction, and therefore it assumes the time current in-/outflow will remain
constant. Any disturbances or quick temporary changes to the in-/outflow would be
extrapolated and dictate the retention time estimation. Second, the calculations of
the T260 outflow seemed to be missing some additional small external flows. Thus,
a more accurate retention time model were needed.

[Lenz et al., 2005] used a Kalman Filter for estimating the retention time. How-
ever, there are certain problems of applying one for this thesis. The main one is
imprecise and noisy volume measurement of the T260 tank, rendering any estima-
tion of the in-/outflow useless. Thus, the estimation in this thesis is done without
the volume measurement of the T260 tank. Without the sensor fusion of volume
measurement and outflow, the Kalman filter was deemed obsolete.

Integration of outflow In order to calculate the retention time of a container, two
measurements are needed: The volume flowing out and the volume in the container.
With that, an integration of the outflow is made backwards until the volume in the
container is reached. The equation of volume integration follows as

V (t) =
∫ t

t−tret

Ov(s)ds. (3.1)

Here V (t) is the volume at time t, tret is the wanted retention time and Ov(s) is the
volume flow at time s. However, as the measurements of time, flow and volume are
discrete, summation instead of integration is used.

Vt =
t

∑
i=t−tret

Ov,i (3.2)

First, the inflow is estimated using pulp concentration and flow measurement at
Point A and concentration measurement before the PO-reactor. This is possible as
the pulp flow is the same for both concentration measurements. This is important
as the concentration is 3−4 times higher after Washer Press 245 than before. Thus,
the inflow to PO250 is 0.25−0.3 of the flow at Point A.

The pulp concentration measurements show noisy and unreliable behaviour
when comparing values of pulp mass production across the line. So, an average of
the amount of mass flow was taken from before and after the PO-reactor, decreasing
the disturbances from measurements noise.

As the pulp mass flows upwards in the PO-reactor a decrease in pressure is
measured. While the expansion of the fluid can be ignored, some oxygen gas has
been added which will expand as the pressure decreases. Expansion of the pulp
mass increases the volume of the flow and thus the retention time decreases. To
counteract this disturbance an adjustment to the inflow volume has been added to
the retention time integrator. The adjustment is made by calculating the density of
the pulp mass flowing through the tower and knowledge of the weight of the pulp
mass before the tower. Density is determined using two pressure measuring points
along the height the tower.
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3.2 Kinetic Model Implementation

Iwe = Ipul p + I0 · (1−Cin) (3.3)

Iwe (kg/s) is the inflow weight, Ipul p (kg/s) is the pulp inflow weight, I0 (l/s) is
the original inflow volume and Cin is the pulp concentration.

Iv =
Iwe

ρ
=−Iwe

g ·∆h
∆P

(3.4)

Iv (l/s) is the new adjusted inflow volume, ρ (kg/m3) is the mean density of the
inflow, ∆P is the pressure difference, g is the gravitational constant and ∆h is the
height between pressure measuring points.

A major issue for estimating the retention time is the lack of accurate methods
to validate the estimation. A crude validation can be made by observing the fiber
length before and after the PO-bleaching stage. Change in fiber length is mostly due
to change of wood type. Measuring the time between before and after the PO-tank
for large step changes in fiber length, a retention time can be estimated. However,
the frequency of the sample time for fiber length is quite long and variable, so only
a very rough estimate can be made.

A similar validation can be made for just the PO-retention time using peroxide
inflow and peroxide concentration at the top of the PO-tower.

Prediction
To be able to predict accurately the retention time the future inflow/outflow have to
be known. The inflow and outflow of the PO-tower and P2-tower is determined by
the production speed of the whole bleaching stage. An operator sets the production
speed manually based on the several factors earlier in the production. The chain of
manually determined production speeds makes accurate prediction of the retention
time very difficult and out of the scope of this thesis. Thus, the retention time was
assumed to be known as accurately as the retention time estimation is in the section
above.

3.2 Kinetic Model Implementation

The kinetic model is based on the differential equations 2.3-2.5, which need to be
solved for the duration of the retention time. This problem is a non-stiff system of
ordinary differential equations. The solver chosen is the built-in Matlab function
ode45, which implements an explicit Runge-Kutta (4,5) method. Measurements
needed for the solver are the starting values of the three differential equations as
well as the retention time.

As mentioned in Section 2.2, the parameters of the kinetic model were fitted to
a similar process at another plant. Also, the wood pulp properties can change from
day to day based on the type of wood used. Therefore, a parameter fitting of those
presented in Table 2.2 is needed at appropriate intervals.
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Figure 3.2 The three graphs show state values of the differential equations of the
kinetic model, for five training data points. The blue lines represent the estimated
state values, the red circles represent the measured starting point and the red dots
represent the measured endpoints.

The parameter fitting was done with a trust-region-reflective least squares fit-
ting method using the Optimization toolbox from Matlab. The algorithm works by
choosing a starting point in the input space and simplifying the objective function
to reflect the true function over a trust-region. Next, a new point in the input space
is calculated by minimizing the objective function over the trust-region. If the new
point in input space is unchanged, the trust-region is shrunk instead. The previous
step are repeated to obtain an approximation of the minimized objective function
[Coleman and li, 1994] [Coleman and Li, 1996]. In this application, the objective
function is the norm error between the true values and the solver for the differential
equations 2.3-2.5.The input space are the parameters in Table 2.2.

Figure 3.2 show how the states of the differential equations develop over time.
The model was fitted for 20 data points, but only 5 are shown to obtain a better view
of the differential dynamics. From the two top graphs it can be clearly seen that the
model does not reach all the training endpoints. This was the case for all fittings of
the kinetic model.
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3.3 GPR Model Implementation

3.3 GPR Model Implementation

Implementing the GPR model was done using the built-in Matlab functions from the
Statistics and Machine Learning Toolbox. The toolbox offers a number of different
structural options for constructing a GPR model; however, the standard GPR model
(as described in Section 2.3) was used for this thesis.

Nonetheless, several parameters and features needed to be determined to achieve
an effective model. The remainder of this section describes how the the key param-
eters and features of the GPR models were determined. Section A.2 contains some
additional parameters as well as the simulations done to determine the the parameter
values.

Input Features
Deciding what input features to use from the data is a complex but crucial step to
obtain high performance machine learning models. Feature selection can improve
prediction precision and calculation speed. Knowledge of the process can also be
gained by feature selection. A number of techniques and algorithms have been de-
veloped for this purpose, and choosing one for this process is not straightforward
[Guyon and Elisseeff, 2003]. The feature selection method has to fit the type of
model used. Otherwise, features selected could be of value but unusable by the
model. Therefore, a more experimental approach was adopted.

GPR models have a built-in feature selection in the covariance kernel parameter
optimization. The kernel scales λ , shown in Equation 2.11, functions as inverse
weights for the model inputs. Along with the other hyperparameters, the kernel
scales are optimized over the training data, as explained in Section 2.3. Therefore,
by fitting a GPR model over a large part of the data, the importance of each input
feature can be seen in the kernel scale.

The difficult part is to choose the right data points. Since the fitting a GPR can be
computationally complex, there is a soft cap on the number of training data points.
The GPR is also susceptible to overfitting when training data points are all very
similar. Subsequently, the training data points were divided into two parts. The first
part has 600 data points spread equally on half of complete data set, so much of the
process dynamics are captured. The second part has 8 data points spread equally on
the other half of the complete data set. This has the purpose of preventing overfitting.
By introducing data points further apart, the algorithm assumes a higher uncertainty.

Subsequently, choosing input features under a certain kernel scale threshold,
only a few simulations of the complete models are needed to determine which input
features are best suited.

Training Set Selection
Similar to many other machine learning models the driving force of GPR models
is the training data. As there is a practical limit to the number of data points, a
selection has to be made. Simply selecting the most recent data is a valid option.
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However, as the process has a long retention time, the most recent output is already
as old as the retention time, and therefore less useful. Subsequently, recent data can
be reinforced with data selected from older sets. Presented below are two different
data selection methods. Both were used in testing the bleaching models described
in Section 3.4.

Big Data The idea is to use a very large data set to capture as much diverse in-
formation as possible for the GPR models. Practically, this means selecting evenly
spaced data points from the whole training set. More advanced selection of the in-
dividual data points would probably be advantageous, but was unfortunately passed
over due to limited time.

K-means Clustering K-means clustering is a data partition algorithm with several
applications in classification and machine learning training. K-means clustering par-
tition a data set into a fixed number of subsets (clusters), each with a center. Next,
the algorithm minimizes the total distance between all the data points to their clos-
est center by moving the cluster centers. The data was also normalized so the input
features would be equally important for the clustering algorithm.

The purpose for using K-means clustering in this study is to supply the GPR
models with more specific data points. Because of the covariance kernel dependence
on input distance (see Equation 2.16), only training data similar to the test data
contributes to the prediction. As K-means clustering also uses distance to partition
the training set, choosing the closest training data cluster to the test data should give
more useful training data.

3.4 Hybrid Models

In this section the two hybrid models are presented. To the author’s knowledge
combining a machine learning and a more traditional model has not been done in a
pulp bleaching setting.

An additional simple GPR model, which directly predicts the ISO brightness,
was also constructed and tested in the simulations. It will not be described here, as
its framework is rudimentary.

Absorption Floor Level Hybrid Model (C8 GPR)
A major issue with the kinetic model is the inference and use of the light absorption
floor level coefficient C∞, see Equation 2.3. C∞ is dependent on the type of chro-
mophore groups. A study done by [Peter and Manfred, 2006] divides chromophores
into three groups: fast bleaching, slow bleaching and non-bleachable. However, that
requires laboratory tests every time the pulp changes characteristics. As those lab-
oratory tests were not available for this thesis, another approach was needed. Also,
[Alberth, 2011] mentioned an improved dynamic inference of C∞ for future studies
would be of interest.
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The main idea of this model is to use a GPR model to predict the C∞ parameter
at every timestep and then use the kinetic model with the estimated C∞ to predict
the brightness. However, training this model requires the "true" C∞ to be calculated.
Using the input x, the end brightness y and the kinetic model, a "true" C∞ can be
solved for. Figure 3.3 illustrates the workflow of training and prediction using this
model.

Figure 3.3 Flowchart of the absorption floor level GPR model.

A benefit and a potential problem of this model is that the GP tries to capture
all the discrepancies between the kinetic model and process into the C∞ parameter.
This improves the accuracy of the model; however, it also limits the resulting kinetic
model when optimizing.

Kinetic Error GPR Model
The concept of this model is to first use the kinetic model to predict the brightness
output. Second, let the GPR model estimate the error of the kinetic prediction. Third,
combine their predictions to obtain final brightness prediction. Figure 3.4 describes
the structure of the model training and prediction.

Figure 3.4 Flowchart of the kinetic error GPR model.
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The concept of GPR models predicting the error of other models is not new, and
has been used in studies in several fields of research [Chen et al., 2014] [Jiang et al.,
2019].

3.5 Chemical Optimization

The dosage of the bleaching chemicals (hydrogen peroxide and sodium hydrox-
ide) is responsible for the largest variance in brightness output and production cost
in the PO-stage among the inputs. Therefore, improving the PO-stage process is
done optimizing the chemicals. Similar studies [Roberts et al., 2013] [Taylor and
Akida, 2007] have also focused on chemical dosage for bleaching optimization.
Their method for optimization was Model Predictive Control (MPC), which uses
quadratic optimization over a finite horizon step prediction of the model and con-
trol inputs. For this thesis MPC was not chosen for a couple of reasons. First, MPC
only works with linear models. Nonlinear MPC exists but can be computationally
heavy and linearizing the models could potentially result in loss in precision. Sec-
ond, control inputs are only at the start of the bleaching process. This causes the
control input at every time step of the prediction to be obsolete.

Instead, the goal attainment method was chosen as the optimization algorithm
[Gembicki and Haimes, 1975] [López Jaimes et al., 2011]. The goal attainment
method accepts a set of goals and a corresponding set of weights. This allows the
algorithm to under- and overachieve the goals based on their weights. And crucially,
the algorithm can handle nonlinear functions .

Implementation was done with the Optimization Toolbox from Matlab. The set
of goals are the a fixed value brightness output, and low amounts of hydrogen per-
oxide and sodium hydroxide. Thus, by adjusting the weights, the algorithm can
focus more on saving chemical costs or obtaining a smoother and higher brightness
output.

Optimizing C8 GPR Model
In the interest of time, only one brightness model was chosen to apply the optimiza-
tion. Section 4.3 presents the results which shows the reasons for choosing the C8
GPR model as the most suitable for optimization.

The optimization works by using the kinetic model with the predicted C∞ that
the C8 GPR model provides. The goal attainment method then uses the kinetic
model with the [H2O2] and [OH−] dosages as input variables to optimize the bright-
ness. Afterwards, the brightness has to be estimated with the new chemical dosages.
Using the original estimated C∞ at that particular timestep, the kinetic model can
make an estimation of the optimized output brightness. While this estimation of the
optimized brightness will not be perfect, the results in Section 4.3 show that the no
other model can accurately account for changes in chemical dosages.
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Data Preparation and Statistics
To obtain better models and test them accurately, large amounts of data were needed.
The data sets had to be carefully chosen to avoid any missing data input, caused by
malfunctioning sensors. Also, the data should represent as much of the process dy-
namics as possible. Therefore, data sets which were similar in output were avoided.

Three time periods of 96 hours each were found to be complete and have varying
degrees of output brightness variance. During testing, the time periods are slightly
shorter than 96 hours, as the retention time causes a time shift. Also, all models
require training data before making predictions, which further shortens the actual
testing time period. The time interval between data points is one minute.

Performance Evaluation Metrics
To evaluate the performance of the models the Root Mean Square Error (RMSE)
was used. RMSE penalizes large model errors. So even if the model predict ac-
curately for some parts of the test set, few but large errors can increase RMSE
substantially. This behaviour is wanted as large errors can potentially ruin the pulp
quality or damage process equipment. RMSE is formulated as

RMSE =
∑

N
i=1

√
(yi−y∗i )2

N
. (4.1)

Here y∗i is the predicted output, yi is the observed output and N is the number of
data points of the prediction set.

4.1 Retention Time

Estimation and Validation
As explained earlier in Section 3.1, the pre-existing models for retention time pre-
diction contained a number of issues, nevertheless they were once tuned originally
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back in 1995 and could help validate the current model. Especially, pre-existing
model for the PO retention time, which seems to have no clear model errors.

Another typical method for validation of retention time is to perform a step
response. This could not be done at the plant at the risk of making the pulp unusable.
Instead, a retention time was estimated by fitting an ARX model to the in- and
outdata.

Figure 4.1 presents the results obtained from estimation of the retention times in
two separate graphs: Top graph shows PO retention time and bottom graph shows
the PO + T260 retention time, which is assumed to be the same as retention from
point A to point B in Figure 3.1. A separate for T260 retention were omitted, as the
kinetic model does not require it and there are no valid input-output pairings to fit
an ARX model to.
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Figure 4.1 The top graph show PO retention time, while the bottom graph show
the PO + T260 retention time. The simulation were done over a 6 day period. The
black bars represent the ARX estimation divided evenly into 20 time periods. Blue
lines show the dynamic estimation by the retention time model (described in Section
3.1) and red lines are the pre-made retention time prediction.
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The results and the methods itself show that the ARX estimation is a poor way
of validating the retention time model. Therefore, there is no way of knowing how
accurate the estimation is. As the retention time is crucial to training and testing the
brightness models, this uncertainty will unfortunately carry over and weaken their
predictive ability.

4.2 Kinetic Model Simulations

Early simulations of the kinetic model showed little prediction accuracy and a very
heavy computational cost. Training the model with more than 25 training data points
were too time consuming and showed little to no increase in prediction accuracy.
The high computational complexity of the model can be explained by the difficulty
optimizing the eight parameters of the model (shown in Table 2.2). Yet, the eight
parameters seemed to be not enough to accurately describe the process, as the model
weren’t accurate on training data points. Figure 3.2 show this inaccurate fitting on
the training data points.

Figure 4.2 show the short term accuracy on completely new data. The simulation
was done with a single parameter fitting on 25 data points evenly spread out over
the training data set (first half).

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
89.4

89.6

89.8

90

90.2

90.4
Training Test

Time (min)

B
ri
gh

tn
es
s
(I
S
O
%
)

Kinetic Prediction

Figure 4.2 The graph (a) show a kinetic model simulation with training and test
data separate. Prediction value (blue line) from the model is compared to the mea-
surement value (red line) in both figures.

Figure 4.2 show that the kinetic model capture some of the process behaviour
but misses others completely. One example of such inaccuracy is at time 1750,
where the real measurement is a peak and the model predicts a valley. This, along
with the poor fitting mentioned above, suggest the model is missing a significant
part of the process dynamics. As was also mentioned in Section 3.4, these results
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may be explained by the C∞ parameter having fixed value in the model. Figure 3.2
showed a flat brightness curve, indicating the brightness value reaching close to the
limit, which is determined by C∞.

For the reasons mentioned, the kinetic model could potentially work better in a
lower brightness range, where the C∞ constant has a smaller effect on the process.
The process should in theory be easier to model with classical parametric models.
[Roberts et al., 2013] have significant success modeling the brightness gain under
static conditions using a simple linear regression model. While they do not explicitly
state the brightness range, they work with a lower quality recycled pulp process,
which is in the lower ranges. This points to the kinetic model potentially working
accurately for lower brightness pulp, where C∞ would have a lower impact on the
output brightness.

4.3 Hybrid Model Simulations

This section presents simulations done with the hybrid models described in Sec-
tion 3.4, as well as a simple GPR ISO brightness model. Before the models could
be simulated, parameters (described in Section 3.3) needed to be determined. Input
feature selection is shown in the section below, whilst the other parameters, such as
covariance kernel and training data size, can be found in Section A.2. Due to the
the small ranges and large increments of the aforementioned parameters in the sim-
ulations, the results are thought to be rough and thus difficult to make an analysis.
Therefore, the results in Section A.2 will not be discussed in great detail. A few
points of interest are given in the section below.

Parameter Approximation
Training lengths From the data in Table A.1, it is apparent that the training data
from the Big Data selection is more valuable to the GPR models than the most
recent data. On the other hand, K-means selection method show no such behaviour.
It is also an early indication of the poor performance of the models using K-means
selection.

Smoothing The second parameter to be estimated was the moving mean filter
window length. Table A.2 show that again k-means selection differs from the Big
Data selection. Both, however, show improvement with the filter.

Kernel and Basis Third, the kernel and basis functions had to be estimated. As
Table A.3 show, only the most common kernels and basis were tested. If there had
been more time, custom functions could have been developed and tested.

Cluster Count For the K-means data selection the number of clusters used is an
important part [Jiang et al., 2019]. For all three brightness models fewer clusters
improved the performance, see Table A.4. This could mean that the cluster selection
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when predicting is poor and chooses the wrong quite often. Therefore, fewer clusters
mean less probability to choose the wrong cluster for the prediction at each time
step.

One thing to note is that throughout the simulations K-means data point selec-
tion was shown to generate inconsistent results. The reason is that the k-mean clus-
ters are built from randomly generated starting points for the centers. The training
data provided to the models consists of continues sampling, thus preventing inde-
pendent clusters from forming. Therefore, the k-means algorithm may not converge
to similar clusters in different iterations of the simulation.

Feature Selection
The input features to be tested, shown in Table 4.1, were chosen based on avail-
ability, avoidance of redundancy and any connection to the chemical process. Some
new features were created by processing existing input features. One input feature
which is not included is the PO-tank retention time. In initial tests the retention
time showed to be clearly detrimental to the predictive performance of the bleach-
ing models, while showing a very low kernel scale value (large weight). This can
indicate the correlation of retention time and the output to be strong and irregular.
Another reason to not include the retention time is that it is an estimation. As ex-
plained in Section 3.1 the retention time estimation uses future data points and is
therefore more accurate than an prediction. Obviously, the GPR models can’t use
future data points. For the reasons mentioned above, the retention time input feature
was omitted from the simulations.

Table 4.1 Description of input features used in feature selection.

Input Feature Description
Bin ISO brightness before the PO-stage.
Pinp Amount of hydrogen peroxide applied.
Sinp Amount of sodium hydroxide applied.
κ Kappa number.

TPO Temperature in the PO-tank.
FL Pulp fiber length before the PO-stage.

CPO Pulp concentration before the PO-stage.
Bkin Kinetic prediction of brightness.
BD Difference between Bin and Bkin.
Prb Lower PO-tank hydrogen peroxide concentration.
PD Difference between Pinp and Prb.

pHD Difference between lower and upper PO-tank pH.
BSl Moving slope of Bin with window length 50.

As described in Section 3.3, a single GPR model was trained with data points
selected over the entire data set to infer the individual kernel scales of the input
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features. The training was repeated three times with a shift of data point selection
and three times more with mirrored data point selection. All input features were
standardized in order to avoid any scaling differences of the data. The kernel scale
values were also shifted so the lowest kernel scale value were close to zero. Other-
wise, difference in scaling of the kernel scales between the different GPR models
could be an issue. The kernel scales of individual GPR models and their mean values
for each model are shown in Figures 4.3.
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Figure 4.3 The graphs show the kernel scale of the individual input features after
fitting the GPR models to their respective outputs. Shown from top to bottom: ISO
GPR (a), kinetic error GPR (b) and C8 GPR (c). Red dots indicate individual trained
GPR models. Blue line and dots represent their mean values.

The three figures above show a very similar pattern for the different outputs.
Some of the input features have a large spread of their kernel scale, which suggests
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the GPR models find strong correlations for some parts of the data and weaker for
others. More iterations could have been done, but it was not deemed necessary. An
interesting point is the high value of hydrogen peroxide (Pinp) and sodium hydroxide
(Sinp), meaning low predictive ability for the GPR model. Obviously, Pinp and Sinp
are crucial for the process; however, as the kinetic model tells us, above a certain
amount the chemical dosage see a small impact on the final brightness. Data with
higher variance in the chemical dosages would probably lead to more accurate GPR
models. The current data has very high chemical dosage and low variance, as that is
required to reach the level of brightness specified. Consequently, the GPR models do
not capture the chemical dynamics of the process, and thus optimizing the chemical
dosages for the ISO GPR and Kinetic Error GPR models are unfeasible. The C8
GPR is the exception as optimization can be done with the kinetic model using
the predicted Ĉ∞. As mentioned in Section 3.4, all the discrepancies of the kinetic
model are estimated in Ĉ∞.

Kappa κ A thing to note is that the kappa number κ is not measured at point
A (see Figure 3.1) as all the other input features are. It is instead measured at an
earlier point at the plant. Additionally, between the kappa measurement and the
PO-tank, the pulp goes through several stages of bleaching and washing. Construct-
ing a retention time model only for the kappa measurement was considered too time
consuming. Therefore, the already existing retention time model was relied upon to
make a rough estimate of how much shift in time the kappa measurement needed.
With this in mind, the high importance the models put on the kappa measurement is
surprising. This indicates the GPR models find a high correlation between the kappa
measurement and output brightness, C∞ and kinetic error. As mentioned in Section
2.1, the kappa measurement is the principal measurement in the earlier stages of
the bleaching process and measures the lignin content. It is possible, therefore, that
the kappa measurement provides some information on the bleachability of the chro-
mophore groups (see Section 3.4). Part of this is what the C∞ parameter tries to rep-
resent. This could present an easy improvement to the brightness models by adding
a kappa sensor closer to the PO-tank.

Kinetic Model Prediction Bkin Perhaps unsurprising, the Bkin show a high impor-
tance with very little variance for all the models. The kinetic model should after all
contain new information to the GPR models about the chemical process. So even if
the C8 GPR model is not used, the kinetic model can still be an important part of
modeling the PO stage.

Selection To determine the best combination of input features for the six models,
test were done using the input features with the lowest kernel scale values. Then,
input features were added and removed based on Figure 4.3, to find the best per-
forming set of input features for the respective models. Table 4.2 show the chosen
set of input features for each model and Table A.5 show all the test results.
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Table 4.2 The chosen set of input features for each model based on Table A.5.

Model Inputs

Big Data
ISO GPR K,FL,Bkin,BD,pHD,BSL,TPO

Kin. Err. GPR K,FL,Bkin,BD,pHD,BSL,TPO,Pinp
C8 GPR K,FL,Bkin,BD,pHD,BSL

K-mean
ISO GPR K,FL,Bkin,BD,pHD

Kin. Err. GPR K,FL,Bkin,BD,pHD
C8 GPR K,FL,Bkin,BD,pHD,BSL,TPO,Sinp

Principal Simulations
The final simulations were done with all the model parameters and options deter-
mined in the previous section. Table 4.3 show the prediction performance of the six
models. Most notable is the poor performance of the K-means data selection mod-
els. A possible explanation is that the amount of data available is not enough. Also
likely is that basing the K-means on all the input features for the respective models
(see Table 4.2) was detrimental to selecting the right cluster for predictions.

During simulations, one time period acts as the testing data set, while the other
two acts as the large training data set for K-means and Big Data selection. The time
periods switch places so all three are simulated as the testing data set.

Table 4.3 The final simulation results of the six models.

Data Selection Model RMSE

Big Data
ISO GPR 0.2282

Kin. Err. GPR 0.2270
C8 GPR 0.2255

K-mean
ISO GPR 0.2572

Kin. Err. GPR 0.2446
C8 GPR 0.2486

While Table 4.3 only show a slightly higher performance for the C8 GPR model,
the tables A.1-A.5 confirms the superior performance of the C8 GPR model over
the other two. It is difficult to compare these results to other similar studies as
they either cover a different range of brightness, their process is not comparable or
their results are not shown in detail. The remainder of this section illustrates the
simulations of the Big Data C8 GPR model and analyses its performances.

Figure 4.4 show the results of a single training and prediction iteration using the Big
Data C8 GPR model. The test part of the graphs is the prediction that is used when
iterating over the complete data set, as to simulate the unavailability of recent data
for training because of the long retention time. The top graph clearly show that the
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retention is responsible for some of the difficulty of modelling the process, as the
prediction deteriorates significantly over the retention time.

Graph 4.4 (a) showing the "true" C∞ in red seem to have a smaller sample time
than the measured ISO in red 4.4 (b), however the "true" C∞ is calculated with the
smoothed measurements needed in Equation 2.3. Graph 4.4 (b) also show the poor
resolution of the ISO brightness sensor and a few large spikes, assumed to be errors.
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Figure 4.4 The two graphs illustrate the C∞ (a) and brightness (b) predictions of
the C8 GPR model for one iteration of training and prediction. Model prediction
(blue lines) and 95% confidence interval (gray area) is compared to measured values
(red lines).

Next, Figure 4.5 show the complete simulation over the three time periods us-
ing the Big Data C8 GPR model. Here the different dynamics of each time period
is visible. The first time period show an accurate prediction with only a few short
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outliers. The second time period have a smoother and higher ISO brightness, how-
ever the models performance is worse with longer-lasting errors. This could be due
to the Big Data selection uses the other two time periods, which with their lower
brightness provide poor training data for the high brightness of the second time pe-
riod. The third time period show a higher variance than the previous two for both the
C∞ and ISO brightness measurement. The model, however, handles the third time
period quite well considering the circumstances.
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Figure 4.5 The two figures show the C∞ (a) and brightness (b) predictions of the
C8 GPR model for the complete data set. Model prediction (blue lines) and 95% con-
fidence interval (gray area) is compared to measured values (red lines). The dashed
vertical lines mark the change in data sets.

The model seem to have difficulty accurately predicting the fast changes in the
brightness. Fast changes in this case are still several tens of minutes long and should
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not be due to sensor noise. These fast changes can be due to a number of other
reasons. The main one is differences in chemical properties of the pulp changing
fast, as the pulp is only mixed in smaller quantities. Another reason could be faults
in the previous bleaching stages which could lower the brightness significantly.

Chemical Optimization
In this section the optimization simulations are presented for the goal attainment
method, as explained in Section 3.5, applied on the C8 GPR model. Three objective
functions were set up for the algorithm: The brightness prediction from the kinetic
model with the predicted C∞, total dosage of [H2O2] and [OH−] as inputs to the
kinetic function. Each of the objective functions had a goal and weight w. The
brightness goal was 89 ISO%, and the chemical goals were 0.0253 and 0.0183,
which is half of their original mean values. The weights could then be adjusted to
under- or overachieve these goals. The weights were defined as

w =

 wB
1.3849

1

 . (4.2)

The first row is the brightness weight and other two are the chemical weights. The
chemical weights are fixed to the same relation as distance from their mean mea-
sured values to their set goals. Consequently, the algorithm treats the [H2O2] and
[OH−] dosages as equally costly. The next step is to determine wB, which decides
the importance of saving chemical versus reaching the goal brightness.
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Figure 4.6 Evaluation of the objective function values used in the optimization for
different weights wB. The RMSE of the estimated and goal brightness of 89.5% is
shown in the figure. The red line show the original measured value and the blue line
represent the optimized values.

37



Chapter 4. Simulations and Analysis

0 0.5 1 1.5 2
4.4

4.6

4.8

5

5.2
·10−2

wB

M
ea
n
[H

2
O

2
](
m
ol
/
l)

(a)

0 0.5 1 1.5 2
3.2

3.4

3.6

3.8
·10−2

wB

M
ea
n
[O

H
−
](
m
ol
/
l)

(b)

Figure 4.7 Evaluation of the objective function values used in the optimization for
different wB. Figures (a) and (b) presents the mean chemical dosages. Red lines are
the original measured values and blue lines are the optimized values.

From the graphs in Figure 4.6 and 4.7 we can see a large improvement in reach-
ing the goal brightness while saving chemicals at a low wB. The most likely expla-
nation is that too much chemicals were used in the original measured data. Later,
Figure 4.8 clearly show excessive amounts of chemicals were used in the middle
third of the simulations. As previously mentioned, the two chemical dosages were
treated as equally expensive to algorithm. However, this can be modified to adjust
for other ambitions. For example, they could be adjusted for their respective finan-
cial costs or environmental impact.

Choosing the proper weight wB is not straightforward and mostly up to the user.
For the following simulations wB was chosen as 0.4, which according to Figure ??
has a very low brightness error and still saves chemicals. Figure 4.8 presents the
results of the optimization.
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Figure 4.8 The three figures show the results from optimizing the bleaching pro-
cess using the C8 GPR model for prediction and wB = 0.4. The top figure (a) show
the absolute C∞ prediction error (blue line) and the 95% confidence interval of the
C8 GPR model. The middle figure (b) show the estimated ISO brightness after opti-
mization (black line) and originally measured (red line). The bottom figure (c) show
the total chemical dosage ([H2O2]+ [OH−]) after optimization (black line) and orig-
inally measured (red line).
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An obvious thing is the relation of C∞ prediction error and ISO optimization
error. It is impossible for the optimization algorithm to work perfectly without a
perfect model. This is hard to avoid unless a different control strategy is imple-
mented. Nonetheless, it can be seen that the optimization do improve the brightness
to be closer to 89.5%, while saving chemical costs. A pattern of the optimization is
that the brightness is optimized to be slightly below 89.5%, which is a consequence
of also trying to save chemicals at the same time. If it is very important that the
brightness is above a brightness threshold, the weights can be adjusted accordingly.

A possibility to improve the optimization is to implement a control rule based on
the confidence interval of the prediction [Yang and Maciejowski, 2015]. The figure
show that the prediction confidence interval size and prediction error correlate for
the most part. Adjusting the control based on the uncertainty of the model is not
something new, but there was not enough time to implement it in this thesis.

4.4 Limitations and Implementation Challenges

In this section the limitations of the simulations/models and the challenges of im-
plementing them at a plant, are discussed.

• The testing time periods were selected to have all the measurements avail-
able, which is not always the case. Missing just one input to the models will
disrupt the brightness prediction completely. This shows the need for adding
robustness to the prediction models.

• The retention time were an estimation instead of a prediction. As there is
no access to the future pulp flow data, the estimation presented in this thesis
cannot be implemented. This mostly affects the kinetic model and in turn the
C8 GPR model.

• Hardware requirements for the simulations are low, as they were conducted
on a laptop. Also, as shown in the simulations the process is very slow so
there is ample time to both make predictions and model training in a real-
time setting. However, if the training sizes for the GPR are greatly increased,
training time could present a problem.

• The optimization results are not conclusive as they are themselves an predic-
tion from the kinetic model with the C∞ solution. To avoid this, the optimiza-
tion would have be implemented on the real process.
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5
Conclusions

The aim of this thesis was to model and optimize the brightness of the PO bleaching
process, see 1.2. I think the modelling goals were mostly reached with some inter-
esting results. The kinetic model could have been tested in greater detail, especially
with different fitting methods. But I believe it was studied enough to conclude a
poor performance for this process. The optimization part, however, was not studied
as thoroughly and diverged from optimization implementations in previous studies.
But as the optimization aim stated, the optimization was more to show the potential
and application of the model. The following part highlights some key takeaways
from this thesis.

The kinetic model is not sufficient on it’s own, which probably is caused by the
C∞ parameter being time variant. However, the kinetic model can improve the GPR
models by making a hybrid model or as an input feature. Also validating the reasons
why the kinetic model failed, the GPR found the input brightness and especially
the chemical dosages to be poor predictors for the output brightness, which the
kinetic model depend on. Instead, the GPR model found that the output brightness
correlated more with the kappa and fiber length measurement, which can provide
information of the chemical properties of the pulp. The GPR models infers some of
the chemical properties of the pulp to predict the output brightness. However, more
sensors measuring chromophore groups or other chemical properties are needed to
develop accurate models. This points to the potential of the GPR models as more
inputs can simply be added without having to redevelop the model for the new
inputs.

5.1 Future Work

This section lists some of the more interesting parts of the thesis that require further
studying.

• As the GPR models can handle more input features than tested in this the-
sis, adding more inputs from earlier parts of the plant would be of interest.
Thus, the model can possible infer the chemical properties better by obtaining

41



Chapter 5. Conclusions

data from several bleaching stages. The only implementation challenge is the
amount of data and the multiple time-variant retention times.

• More advanced data selection methods for training the GPR models could
benefit the performance greatly, as the results showed very poor performance
with poor training data. This can also include improving the K-means clus-
tering with more data and better selection.

• More variation of the chemical dosages of the training data could help the
models to capture a greater range of the process dynamics. The GPR should
also find the chemical dosages more useful, and thus the GPR models could
be optimized.

• The optimization of bleaching chemicals and control of the brightness needs
to be studied further before implementation on the real process is viable. Es-
pecially, the robustness of the optimization/control.

• Adding a kappa sensor before the PO-tank and brightness, peroxide sensors
along the PO-tank would be interesting and could benefit the models greatly.
It could also help gain a greater understanding of the bleaching dynamics.
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Appendix

A.1 Kinetic Simulations

A.2 Model Simulations

Presented below are tables showing the results from simulations done in order to de-
termine appropriate parameters and features for the models. The tables are shown in
order in which the parameter and features were determined. Therefore, simulations
shown in one table uses the optimal parameters and features for the models from
the tables above it. Performance is measured by the RMSE of the ISO brightness.
The lowest value for each model and table have their table cell marked in grey.

Table A.1 The table show the ISO RMSE of model simulations to determine ap-
propriate sizes of the training data set. NRe is the size of the retraining data set, while
NSel is the size of the Big Data training set or the cluster size of K-means clustering.
Simulations with a total training size of more than 600 were not done as they would
be too time consuming. For the simulations the moving mean window was set to 160,
the covariance kernel was ardexponential and the basis function was linear.

Big Data K-means
NRe \NSel 200 300 400 200 300 400

ISO GP
200 0.2716 0.2698 0.2692 0.3792 0.3788 0.3747
300 0.2800 0.2777 ∼ 0.3296 0.3483 ∼
400 0.2732 ∼ ∼ 0.3295 ∼ ∼

Kin.Err.
GP

200 0.2710 0.2690 0.2688 0.3870 0.3926 0.3956
300 0.2785 0.2763 ∼ 0.3338 0.3157 ∼
400 0.2710 ∼ ∼ 0.3617 ∼ ∼

C8 GP
200 0.2716 0.2691 0.2679 0.4496 0.4542 0.4382
300 0.2812 0.2772 ∼ 0.4273 0.4039 ∼
400 0.2752 ∼ ∼ 0.4086 ∼ ∼
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Table A.2 The table show the ISO RMSE of model simulations to determine ap-
propriate smoothing mean window length of the data. NWind is the size of the mean
window. Training set sizes were set to the lowest RMSE from A.1 for the respective
models. The covariance kernel was ardexponential and the basis function was linear.

Big Data K-means
NWind ISO GP Kin.Err. GP C8 GP ISO GP Kin.Err. GP C8 GP

1 0.2485 0.2505 0.2485 0.3032 0.3524 0.3814
5 0.2370 0.2363 0.2324 0.3191 0.3372 0.3598
10 0.2331 0.2324 0.2312 0.3099 0.3258 0.3407
20 0.2389 0.2409 0.2406 0.2966 0.3263 0.2815
40 0.2544 0.2559 0.2566 0.3360 0.3007 0.2893
80 0.2855 0.2855 0.2791 0.3847 0.3663 0.3680

120 0.2838 0.2823 0.2743 0.4365 0.3561 0.4654
160 0.2834 0.2821 0.2754 0.3542 0.3396 0.4537

Table A.3 The table show the ISO RMSE of model simulations to determine ap-
propriate covariance kernel and basis function of the GPR model. On the horizontal
axis are the basis functions: none, constant and linear. The vertical axis contain the
covariance kernels: squared exponential (SE) and exponential (E). Training set sizes
and smoothing window length were set to the lowest RMSE from Table A.1 and
Table A.2 for the respective models.

Big Data K-means
Kern.\Bas. none const. lin. none const. lin.

ISO GP E 0.2311 0.2306 0.2331 0.3004 0.2756 0.3181
SE 0.4876 0.4586 0.2509 19.5901 0.3008 0.3056

Kin.Err.
GP

E 0.2334 0.2332 0.2324 0.3297 0.3402 0.3265
SE 0.3497 0.3308 0.2495 0.4010 0.3652 0.3099

C8 GP E 0.2309 0.2309 0.2312 0.3074 0.2982 0.2893
SE 1.0011 0.3359 0.2489 1.2438 0.3767 0.3024
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A.2 Model Simulations

Table A.4 The table show the ISO RMSE of model simulations to determine ap-
propriate covariance kernel and basis function of the GPR model. On the horizontal
axis are the basis functions: none, constant and linear. The vertical axis contain the
covariance kernels: squared exponential (SE) and exponential (E). Training set sizes
and smoothing window length were set to the lowest RMSE from Table A.1 and
Table A.2 for the respective models.

K-means
NClust ISO GP KinErrGP C8 GP

3 0.2432 0.2474 0.2839
6 0.2364 0.2704 0.2780
9 0.2478 0.3018 0.2864
12 0.2969 0.2537 0.2975
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Table A.5 The table show the ISO RMSE of model simulations to determine the
optimal input features used in the GPR input. The second colon contains the input
features, descibed in Table 4.1, used in the simulation. Training set sizes, smoothing
window length, kernel and basis function were set to the lowest RMSE from Table
A.1-A.3 for the respective models.

Model Input Features RMSE
Big Data

ISO GPR
K,FL,Bkin,BD,pHD,BSL 0.2289
K,FL,Bkin,BD,pHD,BSL,TPO 0.2282
K,FL,Bkin,BD,pHD,BSL,TPO,Sinp 0.2285

Kin. Err.
GPR

K,FL,Bkin,BD,pHD,BSL 0.2286
K,FL,Bkin,BD,pHD,BSL,TPO 0.2284
K,FL,Bkin,BD,pHD,BSL,TPO,Pinp 0.2270
K,FL,Bkin,BD,pHD,BSL,TPO,Pinp,Sinp 0.2273

C8 GPR
K,FL,Bkin,BD,pHD 0.2271
K,FL,Bkin,BD,pHD,BSL 0.2255
K,FL,Bkin,BD,pHD,BSL,TPO 0.2289

K-means

ISO GPR

K,FL,Bkin,BD 0.2686
K,FL,Bkin,BD,pHD 0.2572
K,FL,Bkin,BD,pHD,BSL 0.2763
K,FL,Bkin,BD,pHD,BSL,TPO 0.2727

Kin. Err.
GPR

K,FL,Bkin,BD 0.2800
K,FL,Bkin,BD,pHD 0.2446
K,FL,Bkin,BD,pHD,BSL 0.2466
K,FL,Bkin,BD,pHD,BSL,TPO 0.2671

C8 GPR

K,FL,Bkin,BD,pHD,BSL 0.2757
K,FL,Bkin,BD,pHD,BSL,TPO 0.2563
K,FL,Bkin,BD,pHD,BSL,TPO,Sinp 0.2486
K,FL,Bkin,BD,pHD,BSL,TPO,Sinp,Pinp 0.2935
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