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Abstract

Circulating tumour cells (CTCs) are cancer cells that have en-
tered the circulation of the body breaking free from their primary
tumour and that can act as progenitors of metastasis. At the time
of writing, a study on a novel method to detect and count CTCs
using imaging flow cytometry (IFC) is being conducted at Lund
University. In the study, a problem was found where CTCs clus-
tered with normal white blood cells (WBCs) were not detected as
CTC candidates. These CTCs were not detected because the anal-
ysis software treated clusters the same as single cells. The rarity of
CTCs in blood means it is important to detect every single one in
a sample.

This thesis aimed to develop an algorithm that could detect
CTC - WBC clusters in IFC data of prostate cancer patient sam-
ples. An algorithm that could automate the detection of CTC can-
didates would simplify the present process which su�er from ex-
cessive manual assessment. The main problem to be solved was to
segment the di�erent cells in the clusters from each other in the
images.

An algorithm to detect CTC - WBC clusters in IFC data was
proposed and was initially tested on three patient datasets. The al-
gorithm showed stable segmentation results. The problem of seg-
menting cells was solved by using an Otsu threshold and watershed
approach on images of cells stained with the nucleic fluorescent
marker DAPI. The segmented regions could then be used to ex-
amine the fluorescent intensity of other stains within the regions.
The initial results of CTC detection were promising. The number
of candidates to manually assess to find CTC - WBC clusters was
greatly reduced and is now at a manageable level.

At the time of writing this, the program is deployed and ready
for use in the continuation of the study.

Keywords: MSc, Image Analysis, Segmentation, Otsu Threshold, Water-
shed, Circulating Tumour Cells, Imaging Flow Cytometry
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Chapter 1

Introduction

Circulating tumour cells, or CTCs, are cancer cells that have entered the circu-
lation of the body breaking free from their primary tumour. These cells have
the potential to migrate into other tissue and act as progenitors of metastasis.
[1] Survivability generally decreases substantially when cancer has the ability to
metastasize. [2]

Since CTCs are a precursor to metastasis, the number of CTCs in blood
could act as a marker for cancer progression. In fact, a study published in 2004
concluded that the number of CTCs in patients before treatment was a predic-
tor in survivability of metastatic breast cancer. [3]. Thus, a reliable method to
measure the number of CTCs is of great interest, both diagnostically and ther-
apeutically. This thesis attempts to reduce manual labour and partly automate
a step in a novel method to identify and count CTCs in blood samples.

Currently, there is only one approved method to count CTCs used clinically,
the CellSearch® CTC Test, which is commercially available. This test was FDA
approved in January 2004. The first stage of this method is to separate cells that
are positive to an epithelial cancer cell marker called EpCAM using immuno-
magnetic beads. However, studies have shown that far from every epithelial
CTC express EpCAM. [4, 5] Further, CTCs of non-epithelial origin cannot be
detected.

As CTCs are extremely rare, they are di�cult to detect in patient blood
samples. Failing to detect just a few CTCs could have an impact on test results.
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1. Introduction

Typically, CTCs attribute to less than 1 cell per 105 to 106 mononuclear cells in
blood. [6] This ratio would pose a great challenge on any detection method.

Advancements in technology have led to new opportunities in developing
better methods. The proposed novel method is using microfluidic CTC enrich-
ment chips and imaging flow cytometry, or IFC. IFC is a powerful method pro-
viding image data on fluorescent markers as well as morphology of cells one by
one. [7] This method should have the advantage of being more general because
it does not initially separate cells based on one marker.

At present, the IFC data is analysed in proprietary software where a problem
has been identified. CTCs clustered with white blood cells (WBCs) are sorted
out and it is not feasible to manually find them. Thus, an automatic method of
detecting these CTC - WBC clusters is necessary.

It is known from literature that CTCs form clusters with themselves and
that they can also form clusters with WBCs. [8] A 2019 study in Nature sug-
gests that CTC-neutrophil clustering, the most common type of CTC-WBC-
interaction, increases the metastatic potential of the CTCs. [9] This makes CTC
clustering interesting to detect and study further.

In this thesis, a specialized algorithm pipeline was developed in MATLAB®

to detect CTCs in imaging flow cytometry data of prostate cancer patient sam-
ples. Specially, to aid the detection of clusters of CTCs and WBCs. As every
dataset is di�erent with regards to the intensity of fluorescent markers, the main
goal was to limit the number of cell images needed to manually assess. A nuclear
image segmentation approach is proposed with the intensities of the fluorescent
markers then analysed within these regions. A graphical user interface was also
created to ease the use of the algorithm.

1.1 Background Study
The background to this thesis was a study conducted by Cecilia Magnusson at
the department of biomedical engineering and the department of translational
medicine collaboratively at Lund University. At the time of writing this the
study is still on-going. The purpose of the study is to develop and assess the
viability of an alternative method to detect CTCs using microfluidic CTC-chips
and imaging flow cytometers. The way the method is initially evaluated is by
direct comparison to that of the only approved method, the CellSearch CTC
test.

The long-term goal of the study aims to develop a general purpose CTC de-
tection method that can detect CTCs based on any cancer markers in conjunc-
tion. The main benefit being not including an initial enrichment step based on
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1.1 Background Study

a sole marker.

1.1.1 CellSearch CTC Test
The CellSearch method enriches CTCs from blood by separating EpCAM pos-
itive cells using immunomagnetic beads. These are anti-EpCAM antibodies at-
tached to ferrofluid nanoparticles that can be magnetically manipulated. Ep-
CAM is an epithelial cancer marker. The separated cells are then fluorescently
stained with cytokeratin antibodies, DAPI and CD45. Cytokeratin is an epithe-
lial cancer cell marker, DAPI is a cell nucleus marker and CD45 is a WBC marker.
The cells are then imaged in fluorescence microscopy and are manually assessed.
A CTC is defined as cytokeratin positive, DAPI positive and CD45 negative (as
well as EpCAM positive). The reason for CD45 inclusion is WBC contamination
in the initial separation step. The CellSearch CTC test is a commercial method.

Problem The main problem with the CellSearch method is that it separates
EpCAM positive cells in the initial step. All EpCAM negative cells are then
discarded. Research has shown that epithelial tumour cells might undergo so-
called epithelial-to-mesenchymal transition, or EMT. [4] This is a sort of stem
cell-like transition. EMT causes an epithelial tumour cell to lose its epithelial
characteristics, such as losing expression of EpCAM. This means such CTCs are
not detected. Also, the CellSearch method cannot be used on non-epithelial
CTCs.

1.1.2 New IFC Method
The method proposed in the study enriches CTCs by utilizing a microfluidic
acoustophoresis CTC enrichment chip. [10] This CTC chip separates CTCs by
their acoustic properties. All remaining cells can then be fluorescently stained
using any markers of choice and then imaged in an imaging flow cytometer. If
the same markers are used as in the CellSearch method then the main benefit
is that it is possible to detect EpCAM or panCK positive cells separately. See
section 3.1 for a more in depth summary of the method.

Problem The price paid using the CTC chip is that smaller CTCs are sorted
out along with WBCs. This makes it necessary to allow for some WBCs to con-
taminate the sample. The numbers of WBCs are orders of magnitude larger than
CTCs which means that they will produce a lot of irrelevant data in IFC. This
calls for robust image analysis methods to discriminate CTCs from WBCs.
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1. Introduction

1.2 Definition of CTC
In this thesis a CTC is defined as a cell that conforms to the following criteria:

1. DAPI positive (has nuclei),

2. CD45/CD66b negative (is not a WBC) and

3. EpCAM or panCK positive (has epithelial cancer marker).

Please note the fact that CTCs are defined as either EpCAM or panCK pos-
itive. If a cell expresses both EpCAM and panCK it is here called classic CTC,
referring to the fact that it would be detected in the CellSearch CTC test.

In addition, CTCs have single lobe nuclei while some WBCs have frag-
mented nuclei or non-circular shapes. This last step is done qualitatively both
in the CellSearch method and in the new proposed method. It is not specifically
addressed in this thesis.

1.3 Problem Statement
The problem addressed in this thesis is that CTCs and WBCs form clusters and
cannot be detected. This is because the current software does not di�erentiate
between fluorescence coming from di�erent cells in the IFC images. This essen-
tially means that it treats clusters as single cells. When a CTC and a WBC lies
side by side in an image the WBC produces positive signal in the CD45/CD66b
channel. This causes the software to sort out the cell based on criteria 2 in section
1.2. This is of course not acceptable. The main problem to solve in this thesis
was to segment the cells in the images from each other. Then, the fluorescent
intensities of each single cell can be examined on its own.

1.4 Aim
The aim of this thesis was to construct a program that could reduce the number
of images of cells needed to be manually assessed to find the clusters mentioned
in section 1.3 by detecting CTC candidates. A finished program were then to be
used in the continuation of the study by Cecilia Magnusson.

10



Chapter 2

Theory

2.1 Imaging Flow Cytometry
In the last 10-15 years imaging flow cytometry has emerged as a standard piece
of equipment in medical laboratories. Imaging flow cytometry can be described
as a marriage between conventional flow cytometry and fluorescence imaging.
In contrast to conventional cytometry it supplies images of the objects. This al-
lows for far more complex analysis of morphology and signal origin. Of which,
in theory, could be automated by image analysis methods. On the other hand,
this results in larger comprehensive datasets putting its demands on the analysis.
Imaging flow cytometers can capture brightfield and multiple fluorescence im-
ages of thousands of cells in the matter of hours, which means it enables studies
of rare cell populations, e.g. CTCs. [11]

Flow cytometry and fluorescence imaging both spring from the same un-
derlying concept, which is to label cells by conjugates of antibodies and flu-
orophores. Both approaches combines the specificity of antibodies to specific
molecular targets and the detectability of fluorophores. By using specific molec-
ular properties, di�erent cell types can be di�erentiated. [12] The di�erence is
that fluorescence microscopy is typically a qualitative technique using relatively
few cells. Flow cytometry, on the other hand, is unquestionably a quantitative
technique that can count thousands of cells per second and reliably provide
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2. Theory

repeatable results. [12] It is, of course, possible to construct fluorescence mi-
croscopy systems with high throughput. However, flow cytometry and imaging
flow cytometry are well suited for cells in suspension, e.g. blood samples.

Fluorescence When a fluorophore absorbs a photon the molecule’s energy
state moves from the ground state to an excited state. This excess energy is
dissipated by emitting another photon. This other photon has slightly lower
energy than the original photon due to energy being lost in the process. [13]
Because the light leaving the excited molecule is slightly red-shifted, one can
di�erentiate between the excitation light and the fluorescent light.

Fluorescence Microscopy In fluorescence microscopy a sample is illu-
minated with a specific wavelength of light, which gives rise to fluorescence of
a slightly longer wavelength. This much weaker light is then separated by filters
in the optics. Ideally, only fluorescent light should pass through the filters to the
observer shown on a dark background. [13] The downside of this technique is
that the analysis is often time consuming and is prone to user bias. [12]

Flow Cytometry In flow cytometry, cells are focused to the center of a
microfluidic channel, in a process called hydrodynamic focusing, ideally passing
one by one through the sensing zone. In the sensing zone, the cells are exposed
to focused laser light, which give rise to fluorescence and scattered light. Optics
can then pick up these signals at di�erent wavelengths and finally measure cell
properties. [12] The downside to this technique is that it provides no morpho-
logical or spatial information. Flow cytometry is today used diagnostically for
many diseases. [11]

Imaging Flow Cytometry Imaging flow cytometry combines the high
throughput and high level of automation o�ered by flow cytometry with the
qualitative aspects of fluorescence imaging. This makes it a powerful technique
able to capture data inaccessible with each individual technique.

As of 2017 there were only two imaging flow cytometry systems available,
the Amnis Flowsight and the Amnis ImageStream. As the cells pass the sensing
area they can be imaged in twelve di�erent ways, two brightfield images and up
to ten fluorescent or darkfield images. [12] Brightfield measures the transmit-
tance of light through a sample. The background is thus bright and the speci-
men appears dark. Darkfield is the opposite, measuring light at an angle from
the light direction detection only scattered light. The background is thus dark
and areas where light scatters of the specimen appear bright.
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2.1 Imaging Flow Cytometry

The images share the same problem with time consumption and user bias in
analysis. However, there is a potential to much more easily automate the process
using image analysis techniques. This is because it is much easier to locate and
segment single cells in a channel rather than hundreds of randomly positioned
cells on a microscopy slide. [14] Of course, problems can arise when two or more
cells have clustered, which is the issue addressed in this thesis.

As of today imaging flow cytometry is usually not used to its full poten-
tial. The produced images contain high degrees of morphological and structural
data but are usually analysed by only a few hand-selected features and often
by applying subjective binary gates that reduces the information content enor-
mously. [11] The Amnis devices today come with the proprietary analysis soft-
ware IDEAS. This software provides automated segmentation and for example
allows for setting gates for selected features.
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2. Theory

2.2 Fluorescent Dyes
Fluorescent staining is the principal component of fluorescent imaging. It uses
the specificity of specially designed molecules, e.g. antibodies (immunofluores-
cence), to bind to specific target molecules. This means they will co-localize
with the target to be detected. The molecule is either itself fluorescent or has a
fluorophore attached to it. The core function of the fluorophore is, after absorb-
ing laser light produced by the instrument, to emit red-shifted light of a specific
wavelength. [15] This light can then be detected by a camera sensor in an optical
microscope or by a photodetector in the case of a flow cytometer. The fluores-
cent dyes used in this work are presented below. As most cancers are of epithelial
origin [16], the cancer markers used here are essentially epithelial markers. This
way, cancer cells can be di�erentiated from WBCs and other blood cells that do
not express these markers.

2.2.1 DAPI
DAPI, 4,6-diamidino2-phenylindole, is a molecule that binds to DNA forming
a fluorescent complex. [17] As most DNA exists within the nucleus, DAPI can
be used as nuclear staining to visualize nuclei in fluorescent imaging.

2.2.2 panCK
panCK, or pan anti-cytokeratin, is a type of antibody designed to target human
cytokeratin proteins. Cytokeratins are proteins forming parts of the cytoskeletal
intermediate filaments in epithelial tissue. The panCK used in this study detects
cytokeratin 4, 5, 6, 8, 10, 13 and 18. The exact expression of di�erent cytokeratins
vary with tissue type. These filaments are found throughout the cytoplasm and
should be detected over the whole cell. When epithelial tissue turns cancerous,
cytokeratin expression is usually unchanged and thus used as an epithelial cancer
cell marker. [18] In the study, panCK was conjugated with the fluorophore AF-
488.

2.2.3 EpCAM
EpCAM, or epithelial cell adhesion molecule, is a transmembrane glycoprotein.
Antibodies targeting EpCAM are thus found on the surface of EpCAM-positive
cells. EpCAM has many proposed functions, the main being involved in adhe-
sion between adjacent epithelial cells. [19] Nearly all cancers derived from ep-
ithelial cells express EpCAM [20] and is thus an excellent epithelial cancer cell
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2.2 Fluorescent Dyes

marker. In the study the EpCAM antibody was conjugated with the fluorophore
phycoerythrin (PE).

2.2.4 CD45/CD66b
CD45 is a transmembrane glycoprotein expressed by all WBCs and exclusively
by cells of the hematopoietic system. [21] It has an important function in sig-
nalling immunological responses. [21] Antibodies targeting CD45 should there-
fore be found on the surface of WBCs and not be found on any CTC.

In the background study, CD45 was determined not adequate in staining
all WBCs, in particular some granulocytes. This is because some granulocytes
did not express enough CD45 to distinguish them from CTC auto-fluorescence.
CTCs often exhibit high levels of auto-fluorescence and were in some cases in-
distinguishable from these WBCs. On that account, CD66b was added to later
patient samples to bump up their signal. CD66b is a glycoprotein anchored
to the extracellular membrane. [22] It has only been shown to be expressed in
granulocytes. [23]

In the study, CD45 and CD66b antibodies were conjugated with the flu-
orophores allophycocyanin (APC) and AF-647 respectively, sharing the same
excitation laser wavelength and emission spectra. This means the signal will be
combined in immunofluorescent imaging.

2.2.5 Auto-Fluorescence
Cells can contain naturally occurring fluorophores, so-called endogenous fluo-
rophores, and the fluorescence from these substances is called autofluorescence.
[13] This can be a major nuisance and challenge in fluorescent imaging, introduc-
ing noise and false-positives in experiment data. In the study, the most notable
cells exhibiting this phenomenon are eosinophils. Compared to other WBCs,
they produce bright auto-fluorescence attributed to the molecule flavin adenine
dinucleotide existing within eosinophil granules. [24] This causes eosinophils
to fluoresce in every channel in the imaging flow cytometer, which provides a
challenge when classifying the cells. It is also important to note that debris or
non-cell material imaged by IFC have a tendency to auto-fluoresce as well.
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2. Theory

2.3 Image Analysis
An image can be represented as discrete numbers in a matrix corresponding to
intensity and location. This means one can apply mathematical operations to
alter (filter) or extract information from images.

Another way to represent an image is with histograms. They show the distri-
bution of pixel intensities in the image, although losing all spatial information.
This is for example useful for thresholding that is described below.

2.3.1 Segmentation and Thresholding
Image segmentation is the operation of partitioning pixels in an image into re-
gions. It is in fact a key problem in image analysis, often presenting bottlenecks
for automated algorithms. The simplest of segmentations would be to deter-
mine foreground and background in an image, e.g. where there is signal and
where there is not. When a region has been segmented one can extract useful in-
formation about it, such as shape, mean intensity and more. A more challenging
example could be segmenting a car in a streetview image.

Image thresholding is one way to segment an image. In fluorescence imaging
the region of interest is usually a light region on a dark background. In this case
one wants to group pixels of similar intensity with each other. A simple way
to do this is by thresholding. [25] Thresholding of an image, i(x, y), yields the
thresholded (binary) image, b(x, y), with the threshold, T , conforming to the
equation

b(x, y) =
1, if i(x, y) > T
0, otherwise.

(2.1)

One way to select T is by using Otsu’s threshold. See figure 2.1 for an example
of a thresholded image.

Figure 2.1: a) original image and b) thresholded im-
age by Otsu’s method. Image depicting nuclear DAPI
staining of probably two clustered neutrophils from
imaging flow cytometry data.
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2.3 Image Analysis

2.3.2 Otsu Thresholding
Otsu thresholding is an automatic threshold selecting method based solely on
the histogram of a grayscale image. The method is commonly used global thresh-
olding method in fluorescence microscopy. [26] It is a global thresholding method
as it computes a single threshold based on all pixels in the image. The method
was first proposed by Nobuyuki Otsu in 1979. [27] The output is a binary image
of the same size as the original image.

In essence, the method maximizes the separability of two assumed classes
in histograms (e.g. pixel intensity peaks in a bimodal histogram) by maximizing
the between-class variance. [28] This means the method seeks to find a threshold
such that the di�erence between the classes is the greatest. The method has
the advantage of not requiring any prior knowledge of the data origin. Otsu
thresholding can easily be implemented in MATLAB via in-built functions. See
figure 2.1 for an example of an Otsu thresholded image.

Algorithm
The following simplified description of Otsu’s algorithm is based on the original
article. [27] At first, the normalized histogram, pi , is computed using the pixel
intensities i = 1 through L. L being the largest pixel value. The histogram then
satisfies

1 =
L∑

i=1
pi, where pi ≥ 0. (2.2)

Assuming a threshold T creates two classes, the background C0 = {1, . . . ,T }
and foreground C1 = {T + 1, . . . , L}, please refer to figure 2.2. The probability
of class C0 is

P(C0) =
T∑

i=1
pi. (2.3)

The probability of class C1 is simply the statistical complement

P(C1) = 1 − P(C0). (2.4)

The means of each class are computed via

µ0 =

T∑
i=1

ipi

P(C0)
(2.5)

and

µ1 =

L∑
i=T+1

ipi

P(C1)
, (2.6)
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2. Theory

Figure 2.2: a) original image, b) otsu thresholded im-
age and c) histogram of original image. An approxi-
mate otsu threshold, C0 and C1 have been marked.

which can be shown by Bayes’ formula. The global mean (P(C0) = 1) of the
image is

µG =

L∑
i=1

ipi. (2.7)

The between-class variance, well known in discriminant analysis, is defined as

σ2
B = P(C0)(µ0 − µG)2 + P(C1)(µ1 − µG)2. (2.8)

The Otsu threshold, T ∗, is obtained by computing σ2
B in eq. 2.8 for all pos-

sible integer thresholds T, 1 ≤ T ≤ L, using the values computed in eq. 2.2-2.7.
T ∗ is chosen to maximize between-class variance, or in mathematical terms

σ2
B(T ∗) = max

1≤T≤L
σ2

B(T ). (2.9)

It is worth noting that maximizing between-class variance is equivalent to
minimizing within-class variance, σ2

W , due to

σ2
W = σ

2
G − σ

2
B, (2.10)

where σ2
G is the global variance independent of chosen threshold T. Between-

class variance is chosen due to less computational expense.
The algorithm presented here can be heavily optimised. It is also typically

implemented as standard in image processing software.
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2.3 Image Analysis

2.3.3 Binary Morphological Operations
Morphological image processing is a collective name for techniques based on
mathematical morphology which refers to the study of geometrical structures.
Not to be confused with biological cell morphology. Extended to grayscale, wa-
tershed is a part of this family since it treats images as topographical surfaces. In
this section a few basic binary morphological operations will be presented that
can easily be extended and defined the grayscale domain.

Morphological operations in image processing are based on images where
objects (foreground) are represented as sets that are processed with smaller struc-
turing elements. A structuring element is a small shape represented by a pixel
matrix. The following discussion is based on a book on image processing. [28]
The operations explained here are the foundation of many complex algorithms
in morphological image processing. Example images are provided in figure 2.3-
2.6, the original image is 140x125 pixels and a disk-shaped structuring element
with radius 5 pixels was used in each image.

Erosion

The definition of erosion in an image containing the foreground pixel set(s) A
with the structuring element B is

A 	 B = {z | Bz ⊆ A} (2.11)

where (B)z denotes the structuring element B translated with z. In other words,
for every pixel z, does the translated structuring element Bz fully fit into the
original pixel set A? If yes, this pixel is part of the eroded image A 	 B.

The e�ect of erosion is to reduce the size of objects. How much smaller they
become is determined by the size of the structuring element. Any object smaller
than the structuring element, such as dots or lines, will disappear.

Figure 2.3: Example of a) original image and b)
eroded image.
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Dilation

Dilation is essentially the opposite of erosion. The e�ect of dilation is to enlarge
the size of objects in an image by a size determined by the structuring element.
Using the same notation dilation is defined by

A ⊕ B = {z | Bz ∩ A ⊆ A} . (2.12)

In other words, for every pixel z, does the translated structuring element Bz have
any overlap with the original pixel set A? If yes, this pixel is part of the dilated
image A ⊕ B.

Figure 2.4: Example of a) original image and b) di-
lated image.

Opening

Opening is erosion followed by dilation with the same structuring element,

A ◦ B = (A 	 B) ⊕ B. (2.13)

The e�ect of opening is removing small objects and eliminating thin structures
such as narrow bridges.

Figure 2.5: Example of a) original image and b)
opened image.
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2.3 Image Analysis

Closing

Closing is dilation followed by erosion with the same structuring element,

A • B = (A ⊕ B) 	 B. (2.14)

The e�ect of closing is eliminating small holes and fusing narrow breaks.
It is worth noting that the perimeter or overall size of objects do not change

when opening or closing.

Figure 2.6: Example of a) original image and b) closed
image.

2.3.4 Watershed
Watershed is a grayscale morphological image segmentation method that can
automatically separate touching objects from each other. A watershed etymo-
logically refers to a geological ridge dividing two water drainage areas. This is
essentially what the watershed algorithm seeks to emulate, viewing the image as
a topographical surface, as in figure 2.7. An image contains ridges and valleys
depending on high or low pixel intensities respectively. There are a few varia-
tions of watershed algorithms. This thesis used the MATLAB implementation
of watershed which is based on the Fernand Meyer algorithm. [29]

A way to visualize the watershed algorithm is to imagine creating small holes
in the surface at the locations of all regional minima. Then slowly starting to
submerge the surface into water at constant velocity. The valleys in an image
then start to act as catchment basins. Eventually two catchment basins will
flood over into each other. At these locations a one-pixel infinitely high bor-
der is constructed partitioning the regions. These borders are called watershed
ridges. It is important to note that the watershed does not take into account the
magnitude of the regional minima. Thus, it will create small catchment basins
in the regional minima of noise. This is further addressed below. When every
pixel in the image is divided into regions the process is complete and the image
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Figure 2.7: Topographic representation of the image
in figure 2.1a. The image was inverted to show catch-
ment basins rather than mountains.

has been segmented into regions. The exact implementation of this process can
vary, many simply simulating the process of flooding a topographical map. [29]

Binary Watershed
Watershed can be performed on binary images. Before the image can be inputted
to the watershed algorithm it must be converted to grayscale with a fitting topo-
graphical map. One way to do this is to use the Euclidean distance transform. For
every pixel within the mask the Euclidean distance is computed to the nearest
pixel outside the mask, see figure 2.8. This creates high values for pixels firmly in
the middle of the mask with a high probability of being a true catchment basin.

Figure 2.8: Euclidean distance transform of the bi-
nary image in figure 2.1b. The image was inverted to
show catchment basins rather than mountains.

It is important to note that when the flooding of the pixels reaches the top
of figure 2.8 it spills over the whole surface immediately, see figure 2.9a. A mask
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is needed to subtract the background from these regions. In figure 2.9b it is clear
that the image has been successfully segmented when removing the background
using the mask.

Figure 2.9: a) watershedded image from figure 2.8
and b) the same image with the background removed
using the mask in figure 2.1b. In this case the two
lobes of the bilobular nuclei of the neutrophils have
been segmented. This shows that a binary mask is
needed to produce a correct watershed. However, it
should be noted that it might not always be desirable
to segment the lobes separately and depends on the
application.

Grayscale Seeded Watershed

Watersheds can also be directly applied on grayscale images. Typically, this re-
quires some preprocessing in advance. Watershedding an unprocessed image
usually results in a phenomenon called oversegmentation, see figure 2.10. This
is because the algorithm uses all regional minima in the image regardless of size.

Figure 2.10: Watershed oversegmentation of the im-
age in figure 2.1a due to the lack of preprocessing.

A solution to oversegmentation is providing the algorithm with predeter-
mined starting points, called seeds. The seeds can be obtained in a multitude
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of ways, often specific to the specific dataset. When the seeds have been ob-
tained the original image can be morphologically reconstructed such that the
seed points become the only regional minima in the image. This process is
called minima imposition. The seeds can be thought of as the only holes that
are punched in the topological surface before submerging it. The watershed al-
gorithm can then proceed as normal.

In MATLAB, Morphological reconstruction for minima imposition can be
performed using a single line of code and a function called imimposemin. The
details of this algorithm is not presented here. For an interested reader a refer-
ence is provided [30], which is the basis for the implementation in MATLAB.

In brief, morphological reconstruction is performed by using a mask im-
age posing restrictions on an original grayscale image and a structuring element.
In the case of minima imposition, the mask image contains the locations of the
seed points that will become regional minima. The structuring element is neigh-
bourhood of eight pixels around each pixel. At the location of the seeds, the pixel
values are statically set to 0. Then, the algorithm iteratively uses grayscale mor-
phological operations until the image conforms to having only regional minima
at the locations of the seeds. Please refer to figure 2.11 and 2.12 to visualize the
e�ect of minima imposition. In figure 2.11a, all regional minima of an image
are shown, and in 2.11b, one single minima has been imposed by morphological
reconstruction. In figure 2.12, the e�ect on the surface of imposing one single
minima is shown.

Figure 2.11: a) all regional minima of the surface in
figure 2.7 plotted as black dots and b) all regional
minima of the same surface after minima imposition
using a single seed.
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2.3 Image Analysis

Figure 2.12: One single imposed minimum through
morphological reconstruction on the surface in fig-
ure 2.7. Side view and top view. Notice that all other
regional minima have been suppressed. This is the
same image as represented in 2.11b.

2.3.5 Gaussian Filter
A gaussian filter smoothens images and suppresses noise. This is done by con-
volving an image with a 2-D Gaussian function [28], which from statistics has
the well known form

G(a, b) =
1

2πσ
e−

a2+b2
2σ2 , (2.15)

where σ is the standard deviation of the Gaussian distribution. In image pro-
cessing it is most often implemented symmetrically with respect to the axes, with
the change of variables r = (s2 + t2)1/2. The Gaussian function is then down-
sampled into discrete pixel values in a small sub image. This image is referred
to as a convolution kernel. This kernel is then swept over all pixel positions in
the original image. For each position, the sum of the products of all overlap-
ping pixels between the image and the kernel is calculated. This is called image
convolution.

The definition of image convolution is

[w ∗ f ](x, y) =
a∑

s=−a

b∑
s=−b

w(s, t) f (x − s, y − t), (2.16)

where f (x, y) is the image and w the kernel of size mxn. m and n are odd integers
(to allow for a center pixel) whereas a = (m − 1)/2 and b = (n − 1)/2. [28] This
is also referred to as a spatial linear filter with w.

A Gaussian kernel with size 5 x 5, σ = 0.5 computed to four decimal places

25



2. Theory

looks like 
0.0000 0.0000 0.0002 0.0000 0.0000
0.0000 0.0113 0.0837 0.0113 0.0000
0.0002 0.0837 0.6187 0.0837 0.0002
0.0000 0.0113 0.0837 0.0113 0.0000
0.0000 0.0000 0.0002 0.0000 0.0000


. (2.17)

This kernel is translated across every pixel in the original image setting the new
values to be the weighted average of the pixel vicinity specified by the kernel.
The center pixel value is the most influential pixel but values of surrounding
pixels also bleed into it. This causes the blurring e�ect. The larger the σ the
larger the blurring e�ect.

Because the Gaussian function decreases exponentially from the center it is
not necessary to compute an unnecessarily large Gaussian kernel. In fact, a mxm
kernel were m = ceiling(6σ) is completely satisfactory. [28] Thus, the outer
perimeter of the Gaussian kernel in eq. 2.17 is not computationally necessary.
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Chapter 3

Methods

3.1 Data Acquisition
This section describes how the data used in this project was obtained. These
steps were carried out before the thesis work began by Cecilia Magnusson. This
is provided for the interested reader.

Blood samples were drawn from male patients with confirmed metastasized
prostate cancer to vacutainer blood collection tubes containing EDTA (anti-
coagulant). Within four hours 6 ml of the blood was treated with BD FACS™lysing
solution for 15 minutes in room temperature to lyse red blood cells. This rup-
tures the membrane of red blood cells. The cells were centrifuged in 400g for 5
minutes and the remaining fluid was removed. The cells were then fixed with
4% paraformaldehyde incubated for 25 min in room temperature.

To wash the cells the mixture was centrifuged in 400g for 5 minutes and
the fluid was removed. The cells were dissolved in FACS bu�er solution and
centrifuged again in 400g for 5 minutes. The fluid was removed and then the
cells were dissolved in 12 ml FACS bu�er.

To further separate CTCs from WBCs a microfluidic acoustophoresis CTC
enrichment chip was used. This method to separate CTCs using sound has been
described elsewhere [10] and a principle schematic has been provided in figure
3.1. In brief, cells flow through a microchannel where a first acoustic field aligns
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them into two distinct bands. Thereafter, a second acoustic field separates cells
based on their acoustic mobility. Cells that are large or have high acoustic con-
trast tend to migrate to the central outlet, whereas small or low acoustic contrast
cells exit through the side outlets. The sample was run at 75 µlmin−1 using an
acoustic wave that should sort CTCs with a contamination rate of about 2%
WBCs.

Figure 3.1: Principle schematic of acoustophoresis.
[10]

Before immunostaining, the cells were centrifuged in 400g for 5 minutes
and the fluid was removed. The surface marker antibodies EpCAM-PE (40 µl),
CD45-APC (40 µl) and CD66b-AF (10 µl) were added to the cells along with
70 µl FACS bu�er and incubated for 25 minutes in room temperature. CD66b
was not used in early patient samples.

Thereafter, 10 ml SAP (saponin) bu�er was added. This is done to change
the bu�er in the sample by diluting the FACS bu�er along with loose antibodies
without losing too many cells. The SAP bu�er is designed to make small holes
in cell membranes such that intracellular antibodies can enter. The cells were
then centrifuged in 400g for 5 minutes and the fluid was removed. Then the
intracellular marker antibody panCK-AF488 (2 µl) with SAP (98 µl) was added
and incubated on ice for 1 hour. Then DAPI (1 µl) was added with SAP (899 µl)
and incubated on ice for 5 minutes.

10 ml SAP bu�er was added, the sample was centrifuged in 400g for 5 min-
utes and the fluid was removed. The sample was then washed twice by adding
10 ml, the first time with SAP bu�er then with FACS bu�er, and centrifuging
(400g 5 min) and removing the fluid.

The cells were then dissolved in 200 µl FACS bu�er and analysed in the
imaging flow cytometry system ImageStream according to the manufacturer’s
manual. The imaging data is then provided as a .rif-file (raw image file). The
data is imported to the associated software IDEAS where the images are adjusted
with a calibration file created by ImageStream before running the sample. The
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data is then exported as a .cif-file (compensated image file). This is the data used
in this thesis work.

Three datasets were provided from the on-going study, patient 6, patient
8 and patient 9. They had also already been analysed in the standard software
IDEAS. The number of CTC discovered in each sample had been counted ac-
cording to the criteria presented in section 1.2. A list of these confirmed cancer
cells was provided with the data for the thesis work. A few CTC - WBC clusters
were also discovered by time-consuming spot-checking. Setting the gate thresh-
olds is done subjectively and was done by qualitatively inspecting immunofluo-
rescence intensity histograms generated by IDEAS.

FACS bu�er: 1x PBS with 1% FBS (fetal bovine serum) and 2 mM EDTA.
SAP bu�er: 1x PBS with 0.1% Saponin and 0.5% BSA.

3.2 Datasets
The three patient sample datasets basically contain an array of events detected
by ImageStream. For every event there are seven associated images. These im-
ages are two brightfield channels, one darkfield scatter channel, one DAPI chan-
nel, one panCK channel, one EpCAM channel and one CD45/CD66B channel
(henceforth referred to as the CD45 channel). The last four are the fluorescent
channels. The images are of 16 bit depth and are generally in a size of slightly
smaller than 100x100 pixels.

Figure 3.2: Images of three events from the data
viewed in IDEAS stacked vertically. The darkfield
channel is here omitted and the fluorescent channels
have been coloured.

Figure 3.2 shows three examples of events in the data. The top event proba-
bly depicts a cancer cell as it has a positive EpCAM and DAPI signal, panCK is
debatably positive, and has no CD45 signal. The latter two are probably WBCs
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since they have a strong signal in the CD45 channel and a positive DAPI. These
WBCs then autofluoresce clearly in the panCK and EpCAM channels.

Patient 6 The patient 6 dataset contained 14632 events. In the dataset
there were a total of 12 previously confirmed events containing CTCs. 7 of them
were classic CTCs (both EpCAM and panCK positive), 3 of them were EpCAM
negative CTCs and 2 of them panCK negative CTCs. An important di�erence
to note about this dataset is that is contains no CD66b staining.

Patient 8 The patient 8 dataset contained 128002 events. In the dataset
there were a total of 11 previously confirmed events containing CTCs. All of
them were classic CTCs. Two of these CTCs were CTC - WBC clusters found
by spot-checking and were the only known occurence of such clusters in the
datasets.

Patient 9 The patient 9 dataset contained 6715 events. In the dataset
there were a total of 48 previously confirmed events containing CTCs. 22 of
them were classic CTCs and 26 of them were EpCAM negative CTCs.

3.3 Algorithm Development
The algorithm to detect CTCs from the dataset was developed in MATLAB.
The general approach was that of bottom up and trial & error using the listed
criteria of CTCs in section 1.2. The algorithm was implemented sequentially by

1. importing data to MATLAB,

2. performing segmentation and

3. region intensity analysis.

The approach was to perform segmentation on the DAPI channel image. The
reason for this is that DAPI only stains the nuclei. Since nuclei exist only within
cells it should provide an additional spatial separation of signal to make them
easier to segment. The segmentation approach was to use Otsu thresholding
and watershed. The reason for this is that they are both common techniques
in segmentation of fluorescence images. [26] The approach to measure fluores-
cence intensity was using the region median pixel value. The final algorithm is
presented in section 4.1.

In the region analysis stage threshold values need to be set to distinguish a
positive signal from a negative. The total intensity of the fluorescence in the
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di�erent datasets varied so much that it was not possible to set these threshold
values uniformly. This is illustrated in figure 4.12 to 4.14 in the results chapter.
Instead, a calibration procedure was developed to let the user set the threshold
values for each dataset. This created a histogram of all segmented regions’ me-
dian intensities for every channel. Using these histograms it is possible to set
reasonable threshold values.

Segmentation

While developing the segmentation algorithm, continuous evaluation of the vi-
sual e�ect on the DAPI image was performed. In order to finally assess the
e�ectiveness of the segmentation method a test was performed. In IDEAS, a
population of events was extracted where only cell clusters or larger pieces of
debris were present. This was done by selecting events with height and width
larger than that of a typical single cell in the standard DAPI mask. It was not
needed to test segmentation on single cells. The population was extracted from
the patient 8 dataset. The segmentations of the first 200 events in this popula-
tion (events not containing any DAPI signal were skipped) was examined visu-
ally and compared to respective DAPI image. They were deemed either perfect,
acceptable or unsatisfactory. The development of regional intensity analysis did
not continue until satisfactory segmentation results were attained.

CTC Detection in Datasets

When the algorithm was complete in full, it was tested on a subset of the pre-
viously confirmed CTCs by Cecilia Magnusson from patient 8. If a confirmed
CTC was not detected, the algorithm was debugged and algorithm parameters
were changed accordingly to correct the underlying problem.

Finally, to test the algorithm, a CTC detection test was performed on the
provided datasets. The datasets pertaining to patient 6, 8 and 9 were run through
the algorithm. It was noted whether the algorithm could detect all previously
confirmed CTCs and how many possible CTCs were detected. All detected
possible CTCs were also assessed manually by Cecila Magnusson. They were
grouped into two categories, either interesting or false-positive.

There were unfortunately not enough examples of known CTC - WBC clus-
ters at the time of this thesis to conduct a proper quantitative test on whether
the algorithm could detect them in particular.

31



3. Methods

GUI
As a final step, a graphical user interface (GUI) was developed through which
the algorithm could be applied to datasets. This was created as a MATLAB app.
In addition, another linked MATLAB app was developed where the results could
be visualised and sorted into classes defined by the end user. These classes were
classic CTC, EpCAM+/panCK- CTC, EpCAM-/panCK+ CTC and debris, as
well as distinguishing clusters from single cells.
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Chapter 4

Results

4.1 Overview of Algorithm
This section explains the proposed algorithm solution in detail based on figure
4.1. The data arrives as a compensated image file (.cif). The Bio-Formats library
was used to load the data into MATLAB. [31] Bio-Formats is an open-source
library widely used to load life science image files. A wrapper function was con-
structed to facilitate communication between MATLAB, Bio-Formats and the
data in question.

The DAPI channel image is used for cell segmentation. Firstly, images not
containing a DAPI signal is skipped. This is done by comparing the maximum
pixel intensity to a predetermined value. The value used here was the same as
the DAPI threshold used in the analysis later. Please refer to the section 4.1.1
on how this value is set. The main reason for this is to minimize computational
expense by skipping following image processing steps.

Shown in the left branch of figure 4.1, a binary segmentation mask is ob-
tained, determining where there is signal. To do this an Otsu threshold is ap-
plied to the image returning a binary image representing foreground (1) and
background (0). Thereafter small objects are filtered, any 8-connected region
with fewer pixels than a specific value is removed. This value was set to 70 pix-
els, which was later shown to be the largest value that did not miss any confirmed
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DAPI image

Discard no DAPI

Gauss filter Gauss filter 
(smaller)

Remove small objects

Morphological closing
→ Mask
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Figure 4.1: Flowchart overview of algorithm, which
is explained in detail in this section.
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cancer cells in the datasets. To fuse holes present inside a mask morphological
closing is applied using a square 5x5 shaped structural element. This binary im-
age is referred to as the mask.

Shown in the middle branch of figure 4.1, seeds are obtained to be used as
starting points for the watershed algorithm. To smoothen the DAPI image and
avoid more than one local maxima per nucleus, it is subject to a Gaussian filter.
The Gaussian smoothing kernel is determined by the standard deviation. This
value was set to 4 and was set by visually looking at the final seed points on sub-
sets of the data. Increasing this value joins close seeds and leads to fewer seeds
being found. Regional maxima in the smoothed image is then detected. A max-
imum, or seed point, is defined as a pixel where all its 8-connected neighbours
are less than or equal to said pixel. Connected maxima are treated as one seed
point. Thereafter, any seeds existing outside the mask is discarded.

Shown in the right branch of figure 4.1, another gaussian filter is applied to
the DAPI image. The standard deviation was here set to 0.5 by visually inspect-
ing the segmentation results on a subset of the data. The resulting image is then
used in watershedding. Before watershedding, the image is inverted, and using
morphological reconstruction the seed points are manipulated to be the only
regional minima in the image. This is done using MATLAB’s imimposemin-
function, as discussed in section 2.3.4. When watershedding the catchment basins
originate from the seeds. After watershedding the mask is used to remove the
background. The results are labelled regions where di�erent nuclei have been
separated. The regions are then slightly morphologically eroded using a 3x3 ma-
trix structural element where the corners are set to zero. This is to decrease the
chance of overlapping cells bleeding signal to each other in the other channels.

The labelled regions are then used to determine if there is a potential CTC at
this location. The user can decide whether to only analyse images with more than
one region, i.e. clusters, at this point. The analysis was made according to the
criteria established in section 1.2. For each segmented region, the median pixel
intensities are calculated for the DAPI, panCK, EpCAM and CD45 channels.
These values are compared to predetermined threshold values, please refer to
the calibration procedure, section 4.1.1, on how the thresholds can be set. If a
region is DAPI positive, CD45 negative and either panCK or EpCAM positive
it is marked as potential cancer cells. After scanning the whole dataset, a list of
image numbers is provided to the user containing potential cancer cells.
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4.1.1 Determining Thresholds
The issue of determining thresholds for the DAPI, panCK, EpCAM and CD45
channels was addressed by creating a way to visualize the data. Firstly, images
not containing a DAPI signal are skipped. Otherwise, this could yield strange
results as the segmentation could be performed on pure noise. This is done by
comparing the maximum pixel intensity to a value which is set by the user. A
value about three times larger than the background worked well on the provided
datasets.

The rest of the algorithm is then performed exactly as previously described.
However, instead of outputting a list of object numbers, the median intensities
of each channel are saved in arrays. Then the intensities of each channel are
plotted in histograms. The histograms of the provided datasets can be viewed in
figure 4.12 to 4.14. If the immunofluorescent dye is perfect, two separate peaks
should appear in the histograms. The first pertaining to negative signal and the
second to positive signal. However, it was noted that the histograms looked very
di�erent depending on which patient’s dataset was used.

The user needs to qualitatively study these histograms and determine suit-
able threshold values. This is somewhat subjective in nature. However, if there
already is a subpopulation of known cancer cells the user can use only these in
the calibration algorithm. Then, find thresholds that make sure to not miss any
of them. This would make a good estimate for the rest of the dataset. This
would be ideal if the previous IDEAS method already has been employed and
this program is only used to locate CTC-WBC clusters.

4.2 Examples of Detected Events
Figures 4.2 to 4.9 show examples of detected events containing CTC candidates.
The examples were taken from the patient 8 dataset and were all marked as
clusters by the algorithm.

Figure 4.2: Five clustered CTCs. Previously con-
firmed by Cecilia Magnusson.
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Figure 4.3: CTC-WBC cluster. The CTC, the bottom
cell in the image, was previously confirmed by Cecilia
Magnusson by spot-checking.

Figure 4.4: Previously unknown CTC-WBC cluster.
There is one, perhaps two, CTCs to the left of a
WBC.

Figure 4.5: This was marked as false-positive. It has
fragmented DAPI and odd-looking fluorescence.

Figure 4.6: The top object could be a CTC. However,
it does not look like a cell in the brightfield images.
This was marked as interesting.
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Figure 4.7: Possibly a CTC-WBC cluster, where the
CTC is EpCAM negative. This was marked as inter-
esting.

Figure 4.8: This is a false-positive piece of debris.
Auto-fluorescence in the DAPI image caused over-
segmentation and eventually a CTC detection.

Figure 4.9: False-positive. The top cell has frag-
mented DAPI. Noteworthy, the CD45 signal is low.
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4.3 Segmentation
The image segmentation of cells was performed on the nuclear staining channel
DAPI and was evaluated on 200 images. A few examples of the results of this can
be seen in figure 4.10. Out of the 200 images all were determined to be acceptable
segmentations, where 186 were deemed as perfect segmentations. In general, the
non-perfect segmentations sprung from providing too few seeds. This can be
somewhat adjusted using a smaller standard deviation in the Gaussian filter.

Figure 4.10: Twelve examples of the final seeded wa-
tershed segmentation method. Original DAPI im-
ages to the right and coloured segmented regions to
the left. The seeds are marked in red.
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Binary Watershed Segmentation

Another test was conducted on an alternative watershed algorithm and is pro-
vided here as means of comparison. This is the binary watershed segmentation
method presented in section 2.3.4. This method was not used in the final al-
gorithm. A few examples of the results of this can be seen in figure 4.11. This
algorithm worked quite well but performed weakly specially on complex nuclear
structures.

Figure 4.11: Twelve examples of the binary watershed
segmentation method on DAPI images. Original
DAPI images to the right and coloured segmented
regions to the left.

4.4 Detection of CTCs from Datasets

In this section, the initial test results on the three datasets are presented. In all
three patient samples every previously confirmed CTC by Cecilia Magnusson
was detected.

The calibration histograms are presented in figure 4.12 to 4.14 and the thresh-
olds are marked. Ideally, the thresholds should be between two peaks, the first
corresponding to negative signal and the second to positive. However, this was
not always the case. It is important to note that in each individual histogram
there are many positive (or negative in the case of CD45) events where CTCs,
WBCs and debris are mixed. However, CTC detection only occurs when one
single region is DAPI positive, panCK or EpCAM positive and CD45 negative.
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4.4.1 Patient 6
The calibration histograms of patient 6 are shown in figure 4.12. The sample
included 14632 events. This patient was not stained in with CD66b and thus
the CD45-histogram has an extra peak at about 200 intensity units which cor-
responds to the granulocytes, that do not express CD45. The threshold values
were chosen by looking at the intensity values of previously confirmed CTCs
and confirming the plausibility the histograms of figure 4.12. The values chosen
were: DAPI 170, panCK 100, EpCAM 100 and CD45 110 intensity units.

Using these threshold values the algorithm detected 104 events containing
possible CTCs. Every previously confirmed CTC event was detected. Out of
the remaining 92 events 9 were deemed interesting, the rest were false-positive.
The false positive rate was thus in this case 79.8 %. By choosing to only include
events with more than 2 segmented regions, i.e. clusters, less than ten possible
events containing CTCs were identified.

Figure 4.12: Patient 6 calibration. The used thresh-
olds have been marked.
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4.4.2 Patient 8
The calibration histograms of patient 8 are shown in figure 4.13. The sample
included 128002 events. The threshold values were chosen by looking at the
intensity values of previously confirmed CTCs and confirming the plausibility
the histograms of figure 4.13. The values chosen were: DAPI 100, panCK 100,
EpCAM 100 and CD45 150 intensity units. Compared to other patient samples
the DAPI signal was low.

Using these threshold values the algorithm detected 324 events containing
possible CTCs. The amount of detected events were too high to manually assess.
However, every previously confirmed CTC event was detected. By choosing to
only include events with more than 2 segmented regions, i.e. clusters, only 23
possible events containing CTCs were identified. Out of these, one previously
unknown CTC - WBC cluster was detected, which is the only new one detected
by this algorithm.

Figure 4.13: Patient 8 calibration. The used thresh-
olds have been marked.
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4.4.3 Patient 9
The calibration histograms of patient 9 are shown in figure 4.14. The sample
included 6715 events. The threshold values were chosen by looking at the inten-
sity values of previously confirmed CTCs and confirming the plausibility the
histograms of figure 4.12. The values chosen were: DAPI 120, panCK 100, Ep-
CAM 100 and CD45 150 intensity units.

Using these threshold values the algorithm detected 108 events containing
possible CTCs. Every previously confirmed CTC event was detected. Out of
the remaining 60 events 14 were deemed interesting, the rest were false-positive.
The false positive rate was thus in this case 42.6 %. By choosing to only include
events with more than 2 segmented regions, i.e. clusters, 17 possible events con-
taining CTCs were identified.

Figure 4.14: Patient 9 calibration. The used thresh-
olds have been marked.
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4.5 Graphical User Interface
The algorithm was made accessible through a GUI. An image of the GUI is pre-
sented in figure 4.15. From the GUI it is possible to load a data file, create cal-
ibration histograms, enter threshold values and search the data for CTCs. The
results are presented as event numbers. Further, the user can plot the images and
adjust the contrast of them. The user can also create an IDEAS population file
to automatically create an IDEAS population. This is essentially a text file con-
taining the list of event numbers. The user can alternatively launch the sorting
app, in which it is possible to step through the data and sort them into classes.
An image of the sorting app is presented in figure 4.16.

Figure 4.15: Graphical user interface.
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Figure 4.16: Sorting app interface.
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Chapter 5

Discussion

5.1 Segmentation
In general, biological data is infamous for low signal-to-noise ratios and biolog-
ical images are often hard to segment due to inherent noisiness. The provided
imaging flow cytometry datasets, however, proved to provide stable segmen-
tations using the proposed algorithm. For this thesis work, the segmentation
performance was determined satisfactory. In this section, some limitations and
observations of the proposed method are discussed.

In the thesis, the segmentation algorithm was only performed on the DAPI
channel. This discards some of the morphological information of the other chan-
nels in regions not overlapping with the DAPI region. It is, of course, possible
to use the same segmentation method on the other fluorescence channels. How-
ever, since these stains are not as localized as the DAPI nucleus stain, one cannot
as easily predict the image appearance in any given scenario. For example, two
or more cells close to each other might appear to look like one, etc. One way to
avoid this is to use the DAPI seeds as starting points for watershed in the other
channels. However, this might cause nearby auto-fluorescing pieces of debris or
nuclei-lacking cells to be included in the region. These considerations were only
reflected on conceptually and were not put to true test in the thesis.

The main limitation of choosing to only segment in the DAPI channel is

47



5. Discussion

that it will not separate clusters that appear to only have one nucleus, specifically
clusters with only one DAPI regional maximum. This can for example happen
when a cluster is vertically aligned on the camera axis. For an example of this see
figure 5.1, in the algorithm this was detected as one region. In the DAPI channel
it appears that there is only one nucleus but if the brightfield image is examined
it is clear that there are two cells in question. One cell is slightly superimposed
on top of the other. If this was a CTC cluster it would only be detected as a
single cell. Also, if this was a CTC - WBC cluster it might not be detected at
all depending on the signal intensity and area ratio between them. Noteworthy,
this particular case was correctly segmented by the binary watershed approach.

Figure 5.1: A superimposed cell cluster causing the
DAPI image to appear to contain a single cell. This
presents a challenge to the proposed algorithm.

How finely the regions are segmented is determined by how many regional
maxima are detected. This is in turn determined by the Gaussian smoothing
kernel before that step. Changing the value of Gaussian standard deviation here
lets one control how small segmentations regions are needed. For example, if
one wants to segment the two lobes of a neutrophil nucleus, such as in figure 2.1,
one could simply lower the standard deviation. This could be used for detection
of neutrophils when cross-examined with the original segmentation. However,
this could cause unwanted oversegmentation in other instances. In this thesis,
a standard deviation was chosen such that neutrophil nuclei were segmented in
one region, this meant it would not be detected as a cluster to the user.
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5.2 CTC Detection
The aim of this thesis has been fulfilled. The number of detected clusters to be
manually assessed by the user is now acceptable according to Cecilia Magnusson.
For patient 6, 14632 events were reduced to 104 or less than 10 clusters. For
patient 8, 128002 events were reduced to 324 or only 23 clusters. For patient 9,
6715 events were reduced to 108 or only 17 clusters.

The algorithm managed to detect all previously confirmed CTCs, as well
as one previously unknown CTC - WBC cluster. It is, however, not quantita-
tively proven that it has found all CTCs or will find all CTCs in other datasets.
It would not be feasible to go through the datasets manually to find any false
negatives and it is possible that some have not been detected. Although, this
possibility is assumed to be low. The fact that it has detected one new CTC
- WBC cluster and the rarity of these is a good indication that the algorithm
works as intended. In this section, a few observations on CTC detection are
further discussed.

A major problem when verifying that the algorithm worked in detection
of CTCs was the lack of data. Only 71 events known to contain CTCs were
available at the beginning of this thesis. Even fewer were CTC clusters, not
to mention that there were only two known CTC - WBC clusters. This was a
major problem and hindrance for the thesis work. If there were more datasets the
algorithm could have been tested more properly and the algorithm could have
been more finely tuned. As it stands, the algorithm should be able to detect most
CTCs. When more datasets become available through the study in the future,
they can be used for improving the algorithm.

When Cecilia Magnusson assessed the results of the CTC detection test she
applied more CTC criteria than the definition presented in this thesis. The mor-
phology and the shape of the cells in all channels were assessed before marking
them as either interesting or false positive. This meant for example that cells
with fragmented DAPI were deemed false positives. The proposed algorithm
does not discriminate on shape and could cause the algorithm to seem to have
lower quality than what it is designed for. This is especially apparent in patient
6 that does not have CD66b staining causing a lot of granulocytes to appear as
false positives. This does, however, give an indication on potential for improve-
ment in the future. Perhaps one could create a shape discriminant in addition
to this algorithm, this is discussed further in section 5.4.
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5.2.1 False Positives
The main drawback of the proposed algorithm is the amount of detected false
positives. The main culprit of this is auto-fluorescence and the fact that debris
and WBCs tend to express it substantially. The algorithm cannot distinguish
between an actual CTC and a piece of debris that exhibits DAPI and a cancer
marker without CD45. This could be improved upon and is discussed further in
section 5.4.

Patient 6 The sample from patient 6 was not stained with CD66b. This
meant some granulocytes exhibited low CD45 signal (as discussed in section
2.2.4) and made them hard to distinguish from CTCs, see the extra peak in 4.12.
Many false positives originated from this and were discarded because of frag-
mented nuclei. It is apparent that CD66b staining is important in detecting
CTCs using this method.

Patient 8 The sample from patient 8 seemed to exhibit unusually low levels
of DAPI staining, see figure 4.13. The peak of DAPI positives in patient 8 is at
around 160 intensity units while the peak in patient 6 and 9 were around 300
and 700 respectively. This probably caused debris to have comparable levels of
DAPI signal which creates a lot of false positives by debris. Although patient 8
had as many as 324 positive events, it should be noted that the size of the dataset
was an order of magnitude larger than the other two, which is another reason for
the many positive events. It is apparent that proper DAPI staining is important
in detecting CTCs using this method.

Patient 9 The patient 9 sample was in many ways the ideal sample where
the false positive rate was only 42.6 %. If the upcoming datasets will be similar
to this the proposed algorithm will work well.

5.2.2 Determining Thresholds
Another drawback of the method is that it is not entirely automatic, it needs
the user to determine threshold values. It was briefly investigated whether an
automatic threshold setting algorithm could be constructed. An Otsu thresh-
old approach and a standard deviation of the histograms approach were briefly
tested but did not o�er anticipated results. A major hindrance in finding a good
threshold setting algorithm was that the dataset histograms, see figure 4.12 to
4.14, were considerably di�erent. Perhaps this can be more easily implemented
when more datasets are available.
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5.3 Recommended Use of Algorithm
There are two recommended ways to use the developed program in the study.
The first is to completely replace the previous software, and the second, perhaps
more realistic, is to use it as a complement. The initial tests in this thesis were
made according to the second way.

1) Choose the data file in the program. Press “Calibrate w/ histogram” to
produce the dataset histograms and select reasonable threshold values. Replace
the standard values with these selected values.

In general, the histograms should have two peaks, the first corresponding
to negative signal and the second to positive signal. The thresholds should be
set such that they allow for the detection of events conforming to the CTC cri-
teria in section 1.2. One can adjust the threshold settings in order to be more
conservative or inclusive on the amount of detected events. The more inclu-
sive the thresholds are set the more events are detected. Conversely, the more
conservative the thresholds are set the risks of failing to detect CTCs are higher.

Then, tick the “single cells” box to include all detected cells and search the
dataset. The results can then be examined in the sorting app. The interface
comes with the option to adjust the contrast of the channel images individually.

2) Conduct a normal CTC detection in IDEAS. When a CTC population has
been created it can be extracted as a single .cif file. Choose this data file in the
program and then press “Calibrate w/ histogram”. The plotted values now only
represent confirmed CTCs. Thus, it is straightforward to set threshold values.
Replace the standard values with these new values. Then choose the original
data file instead and search the dataset. In this case the “single cells” box does
not need to be ticked as all single cells should already have been discovered in
IDEAS. This means fewer detected events will be presented. When the results
are printed press “Create .pop file” in order to get a file that can export the results
back to IDEAS.

If no CTCs are detected in IDEAS, this particular approach cannot be used.
In such a case, refer to the first recommended use of the algorithm.
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5.4 Future work
In this section a few ideas to improve upon the work are presented. In addition
to these ideas, it would be advisable to test the algorithm continually as more
datasets become available to avoid missing CTCs due to some unforeseen issue.

The main reason for false positives being detected in the algorithm is that
some debris auto-fluoresce in the CTC signatures. In the current algorithm, this
is not addressed. Naturally, an improvement would be to find a way to detect
the debris. One way to do this could be to use machine learning. However, this
is probably only possible as more data becomes available and labelled. Perhaps
one could create a simple model that classifies objects in the brightfield images
as cells or non-cells. Convolutional neural networks could be a natural first
approach. It would also be possible to try to distinguish fragmented or non-
round nuclei, which do not appear in CTCs. Deep learning on imaging flow
cytometry data is already widely discussed in the scientific community. [11, 32]

Currently, a lot of information is not used by the algorithm. Perhaps one
could try segmentation in the other channels. This might make it possible to
find new relationships in morphology and perhaps one could find some super-
imposed clusters. It is also possible to extract more features from the already
existing DAPI segmentation. Please refer to MATLAB documentation on the
function regionprops for convenient to use features. [33] When extracting
more features, the complexity in visualization will increase. One suggestion to
visualize the data is the package Voyager 2, available on GitHub. [34] It is also
possible to conduct machine learning on features. For example, using random
forest classifiers as described in [35].

In the future, it would be interesting to look at automatic threshold setting.
When this imaging flow cytometry based CTC detection method matures, it
might be easier to automatically set the threshold values. Perhaps by using Otsu
thresholding.

It would also be interesting to produce synthetic data to test the algorithm
on. A major problem in the thesis was the lack of known true positive CTC -
WBC clusters. If one could produce these artificial images with some similarity
to natural images it would be possible to quantitatively test the algorithm. For
example, the segmentation of clusters aligned on the camera axis, i.e. superim-
posed clusters, could be tested. These occurrences are hard to detect and test
at present. It may even turn out that the imaging hardware is insu�cient in
detecting these event.

There is also an open source program similar to IDEAS called CellProfiler.
This software was not tested during the thesis, however, it would be interesting
to do so. The CellProfiler program can be accessed at cellprofiler.org.
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Chapter 6

Conclusion

In conclusion, an algorithm to detect CTC - WBC clusters in imaging flow cy-
tometry data was proposed and was initially tested on three datasets. The prob-
lem of segmenting cells was mainly solved by Otsu thresholding and watershed-
ding. At the time of writing this, the program is deployed and ready for use in
the study. The number of images to manually assess to find CTC - WBC clus-
ters was greatly reduced and is now at a manageable level. The method has not
yet been quantitatively proven to find all clusters, however, initial tests on the
datasets show that the method seems promising.
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