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Abstract 
 
In the laboratory, minimum-effort coordination games routinely reach low levels for larger 

group sizes. Weber (2006 American Economic Review) showed that by simply starting with a 

small group and adding players that are exposed to the group’s history over time, one can 

“grow” larger groups with high effort levels. Adapting the concept of introspective equilibrium, 

I create a model to replicate the findings of minimum-effort games with growing player counts. 

While remaining simple and flexible for further extensions it manages to explain almost all 

findings of previous growth experiments. 
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1 Introduction  
Coordination problems are common feature of human interactions, from where to meet a friend 

to working with your coworkers to large scale challenges like merging two organizations. 

While they do not show incentive problems, miscoordination or inefficient equilibrium can and 

do occur. Inefficient equilibria can be costly, especially for repeated interactions, where for 

every round you lose out compared to more efficient outcomes. Understanding why some 

groups coordinate on efficient outcomes while others do not is needed in order to avoid less 

efficient ones.  

One particularly striking setting in which coordination problems have been studied is the so-

called minimum-effort coordination game. In this game players choose between different levels 

of effort and receive a payoff based on their choice and the group minimum. The higher the 

minimum the higher the payoff, while matching the minimum gives the highest individual 

payoff.  

Previous experiments on minimum-effort coordination games (Van Huyck et al. (1990), Knez 

and Camerer (1994) among others) have repeatedly shown that large groups do not coordinate 

successfully during lab experiments. Yet, as pointed out by Weber (2016) we can observe large 

groups in the real world that do just that. He suggests growth as one reason for the contrast 

between large groups in the laboratory and the real world. Whereas groups in laboratories start 

at a large size, groups in the real world often start small and increase in size over time.  

The idea in Weber’s experiment is straightforward; fewer players in the beginning make it 

easier to coordinate on a (more) efficient equilibrium. When expanding the group, entrants’ 

(the players joining throughout the game) uncertainty is alleviated through the exposure to the 

group’s previous results. His experiment demonstrates that through such a treatment (more) 

efficiently coordinated groups can be created in lab experiments. 

Using a simplified version of the game in Weber’s experiment and adapting Kets and 

Sandroni’s (2019) concept of introspective equilibrium to a finitely repeated game where 

players enter over time, I build a model that reproduces the main findings of Weber’s 

experiment with growth groups.  

Kets and Sandroni use (cultural) salience of certain behavior and introspection (taking the 

perspective of others) to explain why groups (culturally diverse or not) coordinate on an 

equilibrium (hence introspective eq.) for a wide variety of strategic interactions. 
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As Weber’s and other experiments on minimum-effort coordination games do not test for the 

effect of cultural diversity, I am abstracting from this factor. This allows for the model to 

remain simple while also being more fitting to the experimental data. 

My model manages to reproduce almost all of the key findings of Weber’s experiment while 

remaining simple. Most importantly, it explains the improved performance of growth groups 

where entrants are informed, their relatively lower performance compared to the starting pair 

and the unimproved performance of growth groups where entrants are uninformed at the same 

time. It is also flexible and allows for the implementation of extensions such as player types 

for example to add more complexity if needed. 

The paper is organized as followed. Chapter 2 shortly presents Weber’s (2006) growth 

experiment with minimum-effort coordination games and their key findings. In Chapter 3 I 

introduce Kets’ and Sandroni’s concept of introspective equilibrium and adapt it for extensive 

form games with entrants. Chapter 4 presents the propositions drawn from my new definition 

as well as their proofs and Chapter 5 demonstrates how my model can explain the key findings 

from Chapter 2. Chapter 6 concludes. 

 

2 Weber’s experiment and findings 
2.1 The experiment:  
 

Weber (2006) experimentally investigates a minimum-effort coordination game. In this game 

there are n players who simultaneously and independently choose between seven actions: 

1,2,3,4,5,6,7, which are interpreted as effort levels. Payoffs are given by Table 1, Weber (2006) 

 

 
 
ordinating activity efficiently. Once they have
done so, they can establish a set of self-
reinforcing rules or norms governing what ac-
tions are appropriate, and these allow the group
to continue to coordinate activity successfully.
As the group grows, entrants’ exposure to these
norms allows these entrants to be aware of the
appropriate behavior, and creates an expectation
for everyone in the group of what everyone else
(including the entrants) will do. Thus, by coor-
dinating efficiently as a small group, growing
slowly, and exposing entrants to the group’s
previous norms, a group can become large and
efficiently coordinated.

The rest of this paper demonstrates the influ-
ence of growth on tacit coordination using an
experiment involving the minimum-effort coor-
dination game. The experiment is motivated by
a simple model—discussed briefly later in this
paper—which shows why growth should work
when entrants are exposed to the group’s his-
tory. In the experiment, efficiently coordinated
large groups, which are impossible to obtain
when a group starts out at a large size, are
“grown” in the laboratory by starting with small
groups and adding a few entrants at a time who
are exposed to the group’s history. This paper
produces the only laboratory demonstration of
the regular occurrence of efficient tacit coordi-
nation among large groups. The experiment also
reveals, however, that the ability of entrants to
observe the group’s history is crucial—if they
are not aware of what incumbent members did
in the past, coordination failure results.

I. The Minimum-Effort Coordination Game

The minimum-effort, or weak-link, coordina-
tion game was first studied experimentally by

Van Huyck et al. (1990).3 In the game—which
is a seven-effort-level version of the stag hunt
game (see Crawford, 1995)—n players choose
from a set of integers that can be thought of as
orderable strategies such as effort or contribu-
tion levels. Every player’s payoff is a function
of her choice and the minimum choice of all n
players (thus the term “weak-link,” since every
player’s payoff is partially determined by the
lowest choice in the group). Table 1 presents the
payoff to each player as a function of her choice
and the minimum choice.4

When everyone makes the same choice and
therefore receives the same payoff (represented
by cells along the diagonal), the outcome is one
of the game’s seven pure-strategy Nash equilib-
ria. The equilibria differ because those corre-
sponding to higher choices also yield higher
payoffs. Therefore, “more efficient” coordina-
tion corresponds to all players making higher
choices in equilibrium and the Pareto-optimal (or
efficient) equilibrium results when all players se-
lect the highest choice, 7, and receive $0.90.

Since all symmetric outcomes, including the
efficient one, are equilibria, this game does not
have the incentive problem present in the pris-
oner’s dilemma. Nonetheless, the efficient equi-
librium may not be easy to achieve because
players are faced with strategic uncertainty. Ev-
eryone may recognize the efficient equilibrium,

3 See also Jack Hirshleifer (1983) for an early theoretical
discussion of the problem underlying the game.

4 The game in Table 1 is the same as Game A in Van
Huyck et al. (1990), except every payoff is lower by $0.40.
Of course, real payoffs also differ due to differences in
experimental location and time. However, experiments us-
ing the two sets of payoffs produce similar small versus
large group results.

TABLE 1—PAYOFFS (IN DOLLARS) FOR MINIMUM-EFFORT GAME

Minimum choice of all players

7 6 5 4 3 2 1
Player’s choice 7 0.90 0.70 0.50 0.30 0.10 !0.10 !0.30

6 0.80 0.60 0.40 0.20 0.00 !0.20
5 0.70 0.50 0.30 0.10 !0.10
4 0.60 0.40 0.20 0.00
3 0.50 0.30 0.10
2 0.40 0.20
1 0.30

115VOL. 96 NO. 1 WEBER: MANAGING GROWTH TO ACHIEVE EFFICIENT COORDINATION
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(Note that there is no incentive problem). In the standard version the number of players is fixed 

equal to 12 and the game is repeated 12 times. In another version (growth), the game starts with 

2 players that play the game for 22 rounds with new players joining over time, until the group 

consists of 12 players as well. 

Describing the growth version more precisely, Weber varies two dimensions. First, he 

establishes growth groups. As the name suggests, these groups start small at a size of 2 and 

grow in size over time. The starting pair plays 5-6 rounds before the new agents, called entrants, 

join. These entrants join at given times until the group as a whole reaches 12 players (max. 

size) and only one entrant enters the group simultaneously, with the exception of the last two1. 

Also, all agents stay until the last round has been played. The growth path, deciding at which 

points entrants join the game is predetermined and common knowledge as well as the total 

number of rounds. The second dimension that Weber varies is the exposure to the group’s 

history which includes all the previous minima reached by the specific group. If treated, 

entrants observe said history before joining and actively playing themselves and incumbents 

are informed about this.  

 

Groups that vary in both dimensions are called history groups and are the main focus of this 

paper. Groups that only vary in the second dimension are called no-history groups. Both in 

history groups and no history groups, it is common knowledge if entrants are exposed to history 

or not. Lastly, groups that are not altered in any dimension, meaning they start with 12 players, 

are control groups. Besides checking for the effect of variating the two dimensions, control 

groups are there to check if the sample behaves differently in relation to previous weakest-link 

coordination experiments (they do not).  

Besides the control groups in Weber’s experiment there is data from other weakest link 

experiments on fixed groups of varying size, which are useful for comparison with growth 

groups at different stages in time. From here on, I will refer to all such fixed groups as control 

groups. There, all groups that start with 8 players or more end up at the least efficient 

equilibrium after 5 rounds or earlier. (see Table 2, Weber (2006), Appendix) 

 

 

 
1 Weber experiments with more than one growth path. However, they only differ marginally so I do not treat 
them differently 
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2.2 The experimental results:  
 

Weber’s experiment exhibits some key findings that I aim to explain with my model. These 

are: 

1. History groups show significantly higher minima on average than control groups. 

2. History groups tend to perform lower than the starting pair (not 100% efficient). 

3. No-history groups do not achieve higher minima than control groups. 

Although not as prominent as the findings above, two other points are worth noting. 

4. There seems to be more instability concerning the (growth) groups equilibrium in later stages 

of the game. 

5. Correlation between an entrant joining and the minimum decreasing in both forms of growth 

groups. 

 

The first three findings are the clearest ones. Weber (2006) and prior experiments [Van Huyck 

et al. (1990), Camerer and Knez (2000), Knez and Camerer (1994); Gerard P. Cachon and 

Camerer (1996), Chaudhuri et al. (2001)] demonstrate that with a larger fixed group size, 

minima decrease quite drastically. Control groups from the size of 8 end up at a minimum of 1 

after 5 rounds in every case. For Weber’s history groups, 5 out of 9 cases have a minimum 

higher than effort level 1 four rounds after reaching their max. size, two of them being at the 

highest level possible (see Table 4, Weber (2006), Appendix).2 Here you can also observe 

finding 2. That is even though entrants observe all previous minima of the group and it 

improves the average minima compared to control groups, most groups do not manage to 

maintain the minimum reached by two player groups (86% level 7, see Table 2, Weber (2006), 

Appendix). Further it is clearly visible, that no-history groups do not sustain higher levels of 

coordination. By the time these groups reached a size of 8 all of them reached the lowest level, 

coinciding with the findings from previous experiments on control groups seen in Table 2 of 

Weber (2006).  

Finding 4. comes from the Table 3, Weber (2006) (see Appendix) describing the course of 

group minima in Weber’s treatment, where there seems to be more instability in the middle to 

later stages of a game. In Weber’s chapter “Growing Efficient Coordination, he argues that the 

variance decreases from the previous round if all entrants are informed of the history. This 

 
2 Important to keep in mind is, growth groups play significantly more rounds than control groups, so there are 
more opportunities for the minimum to drop 
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would imply that as long as all players are informed, the variance decreases round by round, 

making a decrease less and less likely the longer the game goes on. 

The last finding is the correlation between an entrant joining and the minimum decreasing 

mentioned by Weber in one of his footnotes. 71% of all decreases in minima occurred in rounds 

an entrant joined. 

 

3 Theory 
3.1 The game 
 

To analyze this coordination game of seven effort levels, I am simplifying it to two choices: 

High, representing effort level 7 and Low, representing effort level 1. 

One reason to simplify it this way is that both effort level 7 and effort level 1 stand out, as 7 is 

the payoff dominant action and level 1 is the risk dominant action. Further assume that players 

are risk neutral and they maximize their expected payoffs 

 

Simplifying Weber’s weakest link coordination game gives a one-shot game of the form: 

 

   minimum  
  H  L 

 H 	0.9   	−	0.3 
P1       

 L 	0.3   	0.3 
 

 

Introducing more rounds to it leads to an n-player, m-rounds version of the one-shot game 

depicted above. I will simplify the strategy space of the repeated game by restricting attention 

to two strategies, “start high”(H*) and “start low”(L*) where in every round but the first, both 

strategies play the lowest number of the previous round.  
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   minimum  
  H*  L* 

 H* 	0.9 ∗ 𝑚    −0.3	 + 	0.3 ∗ (𝑚 − 1) 
P1       

 L* 0.3 ∗ 𝑚   0.3 ∗ 𝑚 
 

 

I will analyze the interactions with the aid of Kets and Sandroni’s (2019) notion of an 

introspective equilibrium. In the set-up of Kets and Sandroni (2019) all players of a game 

receive an impulse prior to the start. These impulses are drawn independently from a given 

distribution, are privately observed and do not affect the payoff function. They represent the 

“instinctive reaction” to the game and are an element of the set of actions players can take in a 

game.  

 

I assume that impulses can take one of two values, H with probability p or L with probability 

1 – p. This way players take the sucker’s payoff into account, inspired by Blonski et al. (2011). 

In my simplified version impulses of players are also independent of each other, whereas in 

Kets and Sandroni (2019) cultural factors such as group membership matter. In my model I 

abstract impulses from such factors. 

In the one-shot game, impulses H and L correspond to the one-shot actions H and L 

respectively, for the repeated game they correspond to the strategies H* and L* 

 

3.2 Noise  
 

Another addition to my model is the existence of noise during the game. Noise (denoted with 

ε) is the exogenous random error probability every player has, and in accordance with Crawford 

(1991), it causes agents to deviate from their action with said probability. As there are only two 

actions in my model, the action from an error is clear. Also, errors are unintentional (they don’t 

choose to make a mistake) and can occur both to players intending to choose H or L. The noise 

can be understood as a residual inability of players to best respond, summing up factors such 

as players inattention and forgetfulness. From a player’s perspective it means the remaining 

lack of trust about other players (to best respond). 

 



7 
 

3.3 Solution concepts. 
 
3.3.1 Introspective Equilibrium 
 

Kets and Sandroni’s (2019) theory states that in an environment of strategic uncertainty players 

resolve said uncertainty by taking another person’s perspective. This is based the theory of 

mind, a concept from psychology (see Apperly (2012)). Taking another’s person perspective 

requires players to reflect on their impulse (introspection). Kets and Sandroni define a concept 

of introspective equilibrium for strategic form games. Before choosing their actions each player 

privately observes a signal (called impulse) drawn from a commonly known distribution. A 

player’s set of signals is equal to her set of actions, and the drawn signal is interpreted as an 

impulse to take the action in question. However, players do not act on the impulse. Instead, 

they go through an introspective process by which they  

(i) calculate the best response assuming that all other players follow their impulses,  

(ii) calculate the best response assuming that all others behave as described by (i) 

(iii) calculate the best response assuming that all others behave as described by (ii) 

… and so on forever. 

 

This repeats itself until players choose to no longer alter their action. The limit of this process 

is the introspective equilibrium. For this Kets and Sandroni (2019) assume that the distribution 

of impulses is common knowledge. 

Or to put it differently: An IE means that all players of a game have an instinctive reaction to 

the game before the first round starts, they reflect on their instinct, realize that others also have 

an instinctive reaction and choose a strategy based on this process. All players choosing their 

strategy based on an impulse at the start of a game works well for groups where every player 

participates from the start. In an environment where informed entrants join over time it is 

however insufficient. There entrants are confronted with the actual response of others instead 

of their beliefs about those. To extend this concept to extensive form games with entrants, I 

have to adapt it. 

 

3.3.2 Defining “introspective equilibrium with informed entrants” 
 

To extend the introspective equilibrium to an extensive form game I introduce the concept of 

introspective equilibrium with informed entrants.  
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Definition: An Introspective Equilibrium with informed entrants (IEie) is a strategy profile 

such that 

(1) Incumbents strategy profile constitutes an IE in the game that would result from removing 

all periods except the ones in which only the incumbents participate.  

 

(2) All players best respond to each other (in the game as a whole) 

 

(3) The strategy profile does not require incumbents to change their behavior when new players 

enter, given that such a strategy profile respects (1) and (2) 

 

This definition does not apply to no-history groups where uninformed entrants would have 

trouble best responding to history as they do not observe previous minima. As a consequence, 

all active participants (incumbents and entrants) draw a signal (impulse) whenever an entrant 

joins, and the introspective process repeats itself, given the current player count 𝑛!. This means 

that a game with uninformed entrants can be analyzed as a series of games with fixed player 

sets where the ordinary notion of IE can be applied. 

 

In general, the intuition is that without history players build an introspective eq., whereas with 

history players choose to best respond to it. 

 

4 Results  
As mentioned in 3.1 the available strategies are “start high”(H*) and “start low”(L*). Thus, in 

the very first round with two incumbents, the possible strategy profiles are: (a) (H*; H*),  

(b) (H*; L*), (c) (L*; H*), (d) (L*; L*). Directly following the strategy implied by the impulse 

defines the level-0 strategy. 

 

Let 𝑝 be the probability of impulse H and let all players choose their impulse as their action 

(level-0 strategy). Since the game at hand is a weakest link game, probabilities of the minima 

(if all players are level 0) are: 

𝑃(𝑚𝑖𝑛 = 𝐻) = 𝑃(𝑋 = 𝑛) = 𝑝" 𝑃(𝑚𝑖𝑛 = 𝐿) = 𝑃(𝑋 < 𝑛) = 1 − 𝑃(𝐻) = 1 − 𝑝" 
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4.1 Results without noise 
 

The first result establishes a condition under which different strategy profiles constitute an IEie 

of the repeated game with informed entrants. 

Proposition 1: 

- (a) (H*; H*) constitutes an IEie if  𝒑∗ 	≥ 9 𝟏
𝒎+𝟏

𝒏"𝟏
   

- (d) (L*; L*) constitutes an IEie if  𝒑∗ 	≤ 	 9 𝟏
𝒎+𝟏

𝒏"𝟏
 

 

The IEie is unique unless 𝑃(𝐻) = 𝒑∗ 

 

Proof of proposition 1:  

Given the probabilities mentioned in the beginning of this chapter, the expected utilities for a 

n-player one-shot game are: 

𝐸[𝑈(𝐻)] 	= 	0,9𝑝"$% − 0,3(1 − 𝑝"$%) 	= 	1,2𝑝"$% − 0,3  

𝐸[𝑈(𝐿)] 	= 	0,3  

 

If incumbents consider multiple rounds (1) together with (2) “players best respond in the game 

as a whole” it changes to: 

𝐸",'[𝑈(𝐻∗)] = 0,9𝑚𝑝"$% + (0,3𝑚 − 0,6)(1 − 𝑝"$%)  

= 0,6𝑚𝑝"$% + 0,6𝑝"$% + 0,3𝑚 − 0,6  

𝐸",'[𝑈(𝐿∗)] = 0,3𝑚 	

 

It holds that 𝐸",'[𝑈(𝐻∗)] 		≥ 	𝐸",'[𝑈(𝐿)] if and only if:  

 

0,6𝑚𝑝"$% + 0,6𝑝"$% + 0,3𝑚 − 0,6	 ≥ 	0,3𝑚  

⇔ 	0,6𝑚𝑝"$% + 0,6𝑝"$% 	≥ 	0,6  

⇔	𝑝"$%(𝑚 + 1) 	≥ 	1  

⇔	𝑝"$% 	≥ 	 1
𝑚+1  

⇔ 	𝑝 ≥ 𝒑∗ 	≔ 	 9 𝟏
𝒎+𝟏

𝒏"𝟏
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Hence H* is the best response to the level-0 strategy if the inequality “≥” is fulfilled and L* if 

“≤” is fulfilled. If both inequalities hold at the same time, that is, 𝑝 = 𝒑∗ both H* and L* are 

best responses and the equilibrium is not unique. 

QED 

Note that to 𝒑∗also applies: 

For 𝑛	 → 	∞, 𝑝∗ 	→ 	1 

For 𝑚	 → 	∞, 𝑝∗ 	→ 	0	

If n and m grow at the same rate, for 𝑛	 ∧ 	𝑚	 → 	∞, 𝑝	 → 	1  

This demonstrates that the more player there are, the higher 𝑝 needs to be to establish the 

efficient equilibrium, while more rounds facilitate it.  

Other implications from proposition 1 are that strategy profiles (b) and (c) “only exist as a 

result” at level-0, meaning before any incumbents introspective process has started. When they 

consider the other incumbent having an impulse (level-1), they realize that, for a given 

probability p, switching strategies might be optimal to match the other’s anticipated action 

(based on the calculation in the proof of proposition 2.) While strategy profiles (a) and (d) are 

equilibria of the game, they are only an IEie if the respective inequalities hold. Otherwise, 

incumbents best respond by switching from (a) to (d) or vice versa. Switching from (a) to (d) 

corresponds to the inefficient lock-in in Kets and Sandroni (2019), where players choose what 

action they believe to be salient rather than payoff-efficient, even though they themselves had 

the impulse to do so. 

Furthermore, the introspective equilibrium with informed entrants is reached at level-1 at latest. 

This is due to the combination of introspection and coordination game without multiple types 

of players. As explained before level-1 is the best response to level-0. With common beliefs 

about 𝑝 incumbents reach the same “conclusion” at level-1. And since it is the best response to 

match the action of others, the level-2 strategy of oneself is equal the level-1 strategy of the 

other incumbents which is the same as one’s own level-1 strategy.   
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4.2 Results with noise 
 

The second result establishes the condition for which values of 𝜀, IEie (H*; H*) remains stable 

Proposition 2 (introspective equilibrium with informed entrants under noise): 

When considering errors, nobody deviates intentionally from the introspective equilibrium 

(H*; H*) (from best responding to it) if the error probability 𝜺 fulfills: 𝟏 − 9 𝟏
𝒎+𝟏

𝒏"𝟏
> 𝜺

  

Proof of proposition 2: 

The error lies in the execution of an action and not the introspective process so the process 

itself is not directly affected. The error probability needs to be sufficiently low so that players 

do not deviate from the IE in expectation of an error occurring. For this, 𝐸[𝑈(𝐻∗)] >

	𝐸[𝑈(𝐿∗)] needs to hold after considering for errors. The probability of no error occurring is 

1 − 𝜀, so I calculate 𝐸[𝑈(𝐻∗)] > 	𝐸[𝑈(𝐿∗)] with the probability of no error occurring instead 

of 	𝑃(𝑚𝑖𝑛 = 𝐻) giving me 1 − 𝜀	 > 	 9 1
𝑚+1

$"%
	⇔ 𝟏 − 9 𝟏

𝒎+𝟏
𝒏"𝟏

> 𝜺. 

QED 

 

Proposition 2 states the error probability needed so players do not deviate from the IEie  

(H*; H*) in expectation of an error happening. If 𝜀 would be too high, then it is players best 

response to switch from action H to action L in anticipation of somebody else making an error. 

It can be understood as an upper limit for the error probability, so action H remains a best 

response to the IEie (H*; H*) 

 

The third result constructs the probability of H being the minimum effort in round 𝑡, given IEie 

= (H*; H*)  

Proposition 3: 

If (H*; H*) is the IEie of the first round, the probability of the efficient IEie to remain at period 

T is: 	

L(1 − 𝜀)"&
(

!)*
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From that it follows that the probability of having reached low at period T when starting high 

is:  

1 −L(1 − 𝜀)"&
(

!)*

 

 

 

Proof of proposition 3: 

The probability of making no error occurring in a round is  1 − 𝜀 and since it is a weakest link 

game not a single player can make a mistake so → (1 − 𝜀)"&. This has to repeat over 

consecutive rounds for the equilibrium to remain at high after being established in the first 

round, so with a changing number of participants the probability of no error occurring in any 

round so far is 

 	

L(1 − 𝜀)"&
(

!)*

 

 

The probability of having reached low is the probability of at least one error occurring in the 

rounds so far, which simply is the complement of no error occurring, so  

 

1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑛𝑜	𝑒𝑟𝑟𝑜𝑟 = 1 −L(1 − 𝜀)"&
(

!)*

 

QED 

 

Given that the incumbents have coordinated on strategy profile (H*; H*), proposition 3 

describes the probability of a group to have a minimum of H (or L) at round 𝑡, dependent on 𝑇 

(number of rounds played so far), 𝜀 (error probability) and 𝑛! (number of players in round t). 

 

5 Explaining the experimental findings with 
the theory 
Next, with the definition of IEie and the propositions above I am going to explain Weber’s key 

findings listed in 2.2. First in a scenario without noise and secondly with noise. 
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5.1 Without noise: 
 

Without noise is a benchmark scenario of sort and it is apparent this is too optimistic.  

Proposition 1 (𝒑∗ 	> 	 9 𝟏
𝒎+𝟏

𝒏"𝟏
) together with players best responding (definition (2)) explains 

finding 1. Control groups start with 𝑛 = 12	and as a consequence the critical value p* needed 

for the introspective process to result in a High equilibrium is larger. Thus, it is less likely 

compared to growth groups that start with 𝑛 = 2. This holds even after considering that players 

in control groups might take more future rounds into account. Unless the number of rounds for 

control groups massively outnumbers the incumbents’ in history groups, the negative effect of 

more players dominates the positive effect of more rounds. 

No-history groups being analyzed as a series of games with ordinary IE explains finding 3. 

since there, no-history groups are modelled to play similar to control groups of the same size. 

What it cannot explain is finding 2., that is that history groups tend to perform lower than the 

starting pair. Without an error probability, my model predicts that the minimum reached by the 

IEie is maintained without fail. This contradicts finding 2.  

By the same argument it cannot explain finding 4., the seemingly higher instability in later 

stages of the game as well as finding 5. (correlation between entrants joining and minimum 

decreasing). 5. is not fulfilled only for history groups. No-history groups’ decrease can be 

explained by the repeated introspective process when uninformed entrants join. 

 

5.2 With noise: 
 

Adding noise to the model, proposition 1 now together with proposition 3 still explains finding 

1. and 3. The lower 𝑛 facilitates the payoff efficient equilibrium during the introspective 

process while a sufficiently low error probably allows for a share of groups to maintain it. As 

an example, with an error probability of 0.01, this model predicts 26.27% of history groups to 

maintain H as the minimum with proposition 6 being fulfilled at the same time (2 out of 9 ≈ 

0,22 in Weber’s experiment). The highest tolerable error probability in this game is 1 −

9 1
1+1

%'"%
≈ 0.061 (max. number of players (𝑛 = 12) and min. number of rounds (𝑚 = 1)) 
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Regarding finding 3., with noise scenario predicts that no-history groups perform at most as 

good as control groups. Their introspective process equals that of controls groups of the same 

size but since they play more rounds, they are predicted to make more mistakes. 

Proposition 3 explains finding 2. and 4. because with every period as well as with every 

additional entrant the probability of an error occurring rises. With every additional round 

played 1 − ∏ (1 − 𝜀)"&(
!)*  (probability of reaching “Low”) increases (finding 2.). 

And with every added entrant the probability of the minimum dropping rises as (1 − 𝜀)" 

decreases with an increase in “n” and hence 1 − (1 − 𝜀)" (probability of at least one error) 

increases (finding 2. and 4.).  

Finding 5. regarding history groups is still not explained. To keep in mind is that an error 

occurring and a player joining can coincide especially if an entrant joins every round for 8 or 

more consecutive rounds (As it happens in Weber (2016) experiment). However, the 

correlation is still a concern. 

 

6 Conclusion 
I created a model to explain the different behavior of groups in weakest link coordination game 

based on their growth path (starting large vs. starting small and growing large). It shows that 

smaller groups are more likely to coordinate on high effort levels while at the same time 

allowing them to maintain it if informed entrants join the group, resulting in high effort levels 

despite being a large group later on. The model indicates the importance of the starting pair to 

establish a high level of effort as a minimum which informed entrants orientate on. Projecting 

this on the real world would implicate that a group’s performance is significantly shaped by 

their initial members. This appears intuitive as it is another form of “success breeds success”. 

However, it is a simplified model, so limitations are unavoidable. By simplifying the game 

from seven choices to two, it loses out on range. Mentioned previously, this theory can model 

how many groups will maintain a coordination level of 7, represented by High in my model. 

On the other hand, as one error means the equilibrium will go to Low, representing effort level 

1, effort levels from 2 to 5 cannot be modelled and are aggregated together with level 1 instead. 

Another limitation is introduced through the introspective process. It is assumed that this 

happens instantaneously or to put it differently, it finishes with the first round. As sometimes 

seen in Weber’s experiment and more thoroughly explained in Crawford (1991), a fixed two 

player pair needs a bit longer to coordinate on one equilibrium. Typically, they tend to increase 
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their coordination level over time, if it is not already at the maximum. This is however not 

impactful on my model as groups performance in all experiments usually is given by their fifth 

period minimum which my model compares to. 

Lastly, with the error probability comes a limitation as well as implications. It models that 

players deviate but does not explain why. While it is realistic that mistakes happen, be it 

through inattention or forgetfulness, it is limited in explaining why it happens. Also, with an 

error probability groups are predicted to end up at the lowest effort level. This implies that a 

successful team of incumbents and informed entrants is not enough to assure sustained levels 

of high performance indefinitely. Without a tool to sort out errors, effort levels of group 

members would eventually dwindle leading to the lowest effort level. One possible way of 

groups to solve this is the creation of social norms, which appears to happen in one of Weber’s 

(2006) sessions. 

Furthermore, the prospect of inevitable errors is less dire in the real world since there not every 

interaction fails due to one single error. In a less error sensitive scenario, a single error is simply 

not enough to “torpedo” the efforts of every other group member which makes it easier to 

correct one’s own action in future rounds.  

 

The paragraph above already hinted at some avenues one could research and people are already 

doing. Better understanding the cause of errors allows to take precautions compared to an 

exogenous error probability that you do not know the source of. How to enable groups to 

“repair” errors through social norms using evolutionary game theory is another. When 

considering ways of extending my model, implementing player types and/or heterogenous 

beliefs about impulses is one option. The closest example for this can also be found in Kets 

and Sandroni (2019) where players belong to cultural distinct groups causing heterogeneity 

between types and cultural strength allowing for heterogeneity inside a type. Another could be 

by accounting for inattention or forgetfulness, which in my model would be informed entrants 

ignoring a group’s history (through higher error probabilities for new entrants for example). 
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Appendix 
 
Table 2 from Weber (2006) 
 

 
 

 
Table 4 from Weber (2006) 
 

 
 
 
 

but may be unsure of what others will do.
Therefore, players may choose something other
than 7, particularly when they think it is likely
that someone else will choose something other
than 7. Simply being unsure about what others
will do may lead to choices other than 7.

Previous experiments with minimum-effort
coordination games established clear regulari-
ties. Tacit coordination on the efficient equilib-
rium is impossible for large groups. Of the
seven sessions initially conducted by Van
Huyck et al. (1990) with groups of size 14 to 16,
the minimum in all sessions after the third pe-
riod was the lowest possible choice. For small
groups (n ! 2) playing in fixed pairs, coordi-
nation on the efficient equilibrium was much
easier—it was reached in 12 of 14 (86 percent)
of the groups (a result replicated by Colin F.
Camerer and Marc Knez, 2000). Table 2 sum-
marizes the distributions of fifth-period minima
in several different experiments, all using vari-
ants of the Van Huyck et al. game in which
players choose integers from 1 to 7, and choos-
ing 7 is efficient.

The effect of group size could hardly be
stronger. Subjects in a group size of 2 are al-
most assured to coordinate on the efficient equi-
librium, while subjects in larger groups (six or
more) are almost assured to converge to the
least efficient outcome in which at least one
player chooses 1. Thus, there is a strong nega-
tive relationship between a group’s size and the
ability of its members to coordinate efficiently.5

II. Growing Efficient Coordination

Given the link between coordination in min-
imum-effort games and coordination problems
faced by such real-world groups as firms (e.g.,
Camerer and Knez, 1997; Ashish Nanda, 1997;
Jody H. Gittell, 2001), the work above suggests
an impossibility to regularly obtaining efficient
coordination in large groups outside the labora-
tory. This is inconsistent, however, with the
observation that there exist efficiently coordi-
nated real-world groups. To see how we might
resolve this apparent inconsistency, we need to
begin by recognizing that few large groups start
off at a large size. Most groups, in fact, begin
small, when solving coordination problems is
easier according to the experimental literature
noted above. Once successfully coordinated,
then, these groups might be able to remain
coordinated as entrants are added—particularly
if the entrants are aware of the group’s previous
success.

Using a simple dynamic model based on Vin-
cent P. Crawford’s (1995) model of adaptive
dynamics in order-statistic coordination games
(which include minimum-effort games), Weber
(2005) shows how growth can produce large,
efficiently coordinated groups (see, also,
Weber, 2000). The model assumes that player
i’s discrete action in period t (xit) is determined
by a continuous latent strategy variable (ait) (for

5 Once these groups reached the inefficient outcome,
they were not able subsequently to increase the minimum.

This result has also been replicated using different versions
of the game (e.g., Weber et al., 2001). A few studies show
that changing incentives improves coordination for groups
of seven to eight players (Siegfried Berninghaus and Karl
Ehrhart, 1998; Gary Bornstein et al., 2002).

TABLE 2—DISTRIBUTIONS OF FIFTH-PERIOD GROUP MINIMA IN VARIOUS 7-ACTION MINIMUM-EFFORT STUDIES

(1 ! inefficient; 7 ! efficient)

Minimum choice in fifth period
Group
size

Number of
groups Source7 6 5 4 3 2 1

86% 3% 3% 3% 0% 0% 5% 2 37 VHBB, CK
18% 4% 0% 11% 15% 15% 37% 3 27 KC, CK
0% 0% 0% 0% 10% 10% 80% 6 10 KC
0% 0% 0% 0% 0% 0% 100% 8 5 CSS
0% 0% 0% 0% 0% 0% 100% 9 2 CC
0% 0% 0% 0% 0% 0% 100% 14–16 7 VHBB

Sources: Van Huyck et al., 1990 (VHBB); Camerer and Knez, 2000 (CK); Knez and Camerer, 1994 (KC); Gerard P. Cachon
and Camerer, 1996 (CC); Chaudhuri et al., 2001 (CSS).
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Table 3 from Weber (2006) 

 
  

a minimum of three or higher for at least two
periods at a size of 12, and in three of those they
coordinated on the efficient equilibrium.

In addition, in all the sessions that ended up
at a minimum of 1, the minimum was higher at
least through a group size of 9. This higher level
of efficiency for groups of up to size 9 is sur-
prising in light of the fact that the minimum was
always 1 for the large groups (8 or larger) in
Table 2.19 Thus, there is clear support for the
hypothesis that starting with a two-person
group, which can reliably reach efficiency, and
then adding informed players at a slow rate
enables more efficient coordination than start-
ing with a large group.

An equally important result is that growth
does not work in the three no-history sessions
(10 to 12). In all of these sessions, the minimum
fell below 7 by the time the group reached a size
of 4 and the minimum equaled 1 by the time the
group reached a size of 8. Moreover, this failure

was never driven entirely by only one sub-
ject—in every session, at least 6 of the 10
entrants chose a number below 7 in their first
play.20

To test directly whether growth with history
results in higher minima, we need to compare
choices in the control and no-history sessions
with those in the history sessions. Table 4 com-
pares the distributions of subject choices in the
five control sessions, the three no-history ses-
sions, and the nine history sessions in the fourth
period in which participants played at a group
size of 12.21

19 While Table 2 reports the fifth-period minima, the
first-period minima in previous experiments were not as
high as in the sessions reported here, and there was never a
minimum of 7. Note that in the control sessions, the mini-
mum was never above 4.

20 Overall, there appears to be a relationship between
changes in group size and decreases in the minimum. Of the
34 total decreases, 24 (71 percent) coincided with an in-
crease in group size, 6 (18 percent) occurred after the group
reached a size of 12 (see footnote 18), 3 (9 percent) occurred
before the growth process began, and one (3 percent) oc-
curred during a “pause” in growth. These percentages do not
differ significantly between the history and no-history
sessions.

21 A reasonable comparison is to compare the control
groups in period t with the t-th period in which the grown
groups played as groups of size 12. The analysis here sets
t ! 4, because this is the greatest value of t for which there
are data in all the growth sessions.

TABLE 3—AVERAGE MINIMA (MEDIANS) BY SESSION FOR RANGES OF GROUP SIZE

Growth path 1: Group size (number of periods at that size)
First n ! 12

minimum2 (6) 3 (2) 4–6 (4) 7–11 (5) 12 (5)

Session 1 (h) 7.0 (7) 6.0 (6) 4.5 (4.5) 2.0 (2) 1.0 (1) 1
Session 2 (h) 6.3 (6.5) 5.5 (5.5) 5.3 (5) 5.0 (5) 4.2 (5) 5

Growth path 2: Group size (number of periods at that size)

2 (5) 3 (4) 4–6 (4) 7–11 (5) 12 (4)

Session 3 (h) 7.0 (7) 5.0 (5) 5.0 (5) 3.4 (5) 1.0 (1) 1
Session 4 (h) 7.0 (7) 7.0 (7) 7.0 (7) 7.0 (7) 5.5 (5.5) 7

Growth path 3: Group size (number of periods at that size)

2 (5) 3 (4) 4–6 (4) 7–10 (4) 12 (5)

Session 5 (h) 6.6 (7) 7.0 (7) 7.0 (7) 3.3 (3) 2.6 (3) 3
Session 6 (h) 7.0 (7) 7.0 (7) 7.0 (7) 3.5 (3.5) 1.0 (1) 1
Session 7 (h) 6.0 (6) 6.0 (6) 4.8 (6) 4.0 (4) 2.0 (1) 4
Session 8 (h) 7.0 (7) 7.0 (7) 7.0 (7) 7.0 (7) 5.8 (7) 7
Session 9 (h) 7.0 (7) 7.0 (7) 7.0 (7) 7.0 (7) 7.0 (7) 7

Session 10 (nh) 5.8 (6) 7.0 (7) 3.8 (4) 1.8 (1) 1.0 (1) 1
Session 11 (nh) 7.0 (7) 7.0 (7) 2.8 (2.5) 1.0 (1) 1.0 (1) 1
Session 12 (nh) 5.6 (6) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1
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