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Populärvetenskaplig sammanfattning

Cancer är en vanlig sjukdom i dagens samhälle, och man estimerar att en av tre i Sverige
n̊agon g̊ang i livet kommer f̊a en cancerdiagnos. De stora framsteg som skett inom forskning
och teknologi har gjort att man har blivit bättre p̊a att behandla s̊a att allt fler överlever sin
sjukdom. Det finns dock studier som tyder p̊a att personer med samma diagnos kan reagera
olika p̊a samma typ av behandling. Varje tumör och patient är unik i sin genuppsättning
och inom onkologi strävar man därför efter att ge en s̊a individualiserad behandling som
möjligt. Olika former av medicinsk bilddiagnostik (röntgen, magnetresonanstomografi
(MR), Datortomografi (DT) m.m.) används idag inom sjukv̊arden som ett verktyg för att
säkerställa diagnos, rita ut tumör/omgivande organ, dosplanera o.s.v. s̊a att behandlingen
kan skräddarsys s̊a mycket som möjligt. Bilderna granskas visuellt av specialiserade läkare
som bedömer tumörens utbredning, form och lokalisation. Detta kallas för en kvalitativ
bedömning.

Radiomics är ett relativt nytt forskningsomr̊ade som innebär att man studerar medicinska
bilder kvantitativt, d.v.s. information i bilden kan översättas till en faktiskt siffra, s.k.
features, som kan kopplas till en specifik fr̊ageställning. Den underliggande hypotesen
är att medicinska bilder inte enbart kan tolkas visuellt, utan att de best̊ar av data som
kan ge ytterligare diagnostiskt värde. Heterogena strukturer och mönster ej synliga för
blotta ögat tros inneh̊alla biologisk/fysiologisk information om tumören eller omgivande
vävnad som kan användas för att optimera behandlingen efter patientens behov. Det
l̊angsiktiga m̊alet med radiomics är att undersöka dessa kvantitativa features för ett stort
antal patienter och p̊a s̊a vis kunna bygga kliniska modeller som kan användas för att
förbättra diagnostik och beslutstagande.

Målet med detta examensarbete var att undersöka ett stort antal radiomic features som

beräknats fr̊an bilder tagna med en s.k. integrerad MR-Linac. Det finns flera yttre faktorer

utöver biologiska/fysiologiska förändringar som kan p̊averka resultatet av en features värde

s̊asom bildtagningsmetod, inställningar, upplösning o.s.v.. Man m̊aste s̊aledes säkerställa

vilka features som är stabilia under olika förh̊allanden s̊a att ett kvantitativt m̊att beror

p̊a fysiologi och inte olika bildinställningar. I detta arbete undersöktes därför stabiliteten

av features fr̊an b̊ade patient- och fantomdata (fantom är solida objekt som används för

kvalitetskontroll av utrustning) med olika inställningar. Ett flertal gemensamma stabila

features identifierades och ett stort antal av dessa har även visat sig vara kopplade till

kliniskt utfall i literaturstudier. Detta är lovande d̊a radiomics har förutsättningarna att

spela en stor roll i individanpassad onkologi.
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Abstract

Purpose: In an era of personalized oncology where the aim is to give every patient the
right treatment at the right time an area of promising research is emerging called radiomics,
or quantitative image analysis. The main underlying hypothesis is that pathophysiological
information can be found in image texture not visible to the bare eye that can improve
diagnosis, treatment adaption or be linked to a certain clinical outcome. This project in-
vestigates the stability and repeatability of radiomic features extracted from images acquired
with an integrated MRI-Linac with a 0.35 T scanner. The main objective was to identify
radiomic features that are robust over various imaging conditions in both phantom and
human data.

Methods: The patient dataset included 50 images from ten stereotactic body radiation
therapy (SBRT) pancreas cancer patients treated with 5 fractions, given on a daily basis,
on the integrated MRI-Linac. Two anatomical sites were selected to represent heteroge-
neous invariant tissue: the kidneys and liver. Eleven images from a Magphan RT phantom
and 11 images from a ViewRay Daily QA phantom acquired monthly and daily respec-
tively, constituted the basis for the phantom data, representing ideal imaging conditions.
All images were acquired with a True Fast Imaging with Steady State Free Precession
(TRUFI) pulse sequence with two different protocols. A high resolution (1.5mm3 voxel
resolution) protocol was used for all phantom images and a protocol with lower resolution
(1.5mm2 x 3.0mm) was used to collect the patient images. Totally 1087 shaped-based,
first order statistics, second order statistics and higher order statistical radiomic features
were extracted from each region of interest (ROI) and subject. Stability was assessed with
the Coefficient of Variation (CoV) where features with CoV<5% were classified as robust.
Common robust features among all datasets were identified as a final step.

Results: There were in total 130 radiomic features demonstrating robustness (CoV<5%)
among all datasets. Robust features could be identified within each category, apart from
two second order statistics groups: Gray level size zone and Neighborhood gray tone
difference. The mean value of the CoV and the corresponding standard deviation was
calculated for each robust feature in all four datasets.

Discussion and Conclusion: Several robust features in common with the result of this

work can be identified in other MRI-based radiomics studies, which is promising. However,

no overall agreement is found between all studies, emphasizing the need of more stability

assessment research. The result in this work indicates that robust radiomic features over

various imaging conditions, in both phantom and patient data, can be identified. It im-

plies that phantom measurements can be used in stability assessment studies and that the

0.35 T scanner of the integrated MRI-Linac in this work is sufficiently stable over time

for radiomic studies. An additional promising finding is that many robust features also

have been reported to have predictive value or discriminative power in other studies. Al-

though preliminary, this result can serve as guidelines for further model building or further
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radiomics studies.
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ABBREVIATIONS

cCR = Clinical Complete Response
CoV = Coefficient of Variation
CT = Computed Tomography
DICOM = Digital Imaging and Communications in Medicine
FFF = Flattening-filter-free
GLCM = Gray Level Co-occurrence Matrix
GLRLM = Gray Level Run Length Matrix
GLSZM = Gray Level Size Zone Matrix
IBSI = Image Biomarker Standardization Initiative
ICC = Intraclass Correlation Coefficient
IGRT = Image Guided Radiation Therapy
IMRT = Intensity Modulated Radiation Therapy
LoG = Laplacian of Gaussian
LRE = Long Run Emphasis
MRI = Magnetic Resonance Imaging
NEX = Number of Excitations
NGTDM = Neighborhood Gray Tone Difference Matrix
OAR = Organ at Risk
OS = Overall Survival
PET = Positron Emission Tomography
QA = Quality Assurance
RF = Radio Frequency
RLNU = Run Length Non-Uniformity
ROI = Region of Interest
RPC = Run Percentage
RT = Radiation Therapy
SBRT = Stereotactic Body Radiation Therapy
SNR = Signal-to-noise Ratio
SRE = Short Run Emphasis
TRUFI = True fast and Steady State Precession
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1 INTRODUCTION

One out of three people in Sweden will receive a cancer diagnosis at some time in
their lives. Thanks to efforts in research and considerable technological advances
two out of three will survive the disease [1]. Treatment method varies depending on
type or stage of cancer, but it has been shown that people with the same diagnosis
can respond differently to the same treatment. This entails for an emerging era
within oncology called precision medicine or personalized medicine, meaning that
treatment is tailored to each patient’s tumor genetics [2] [3]. Medical imaging is
an existing tool in radiation therapy for tumor staging, outlining, treatment plan-
ning, dose adaptation etc so that treatment can be as personalized as possible for
every person. As a result from technological evolution an integrated system called
MRI-Linac has been developed, which improves medical imaging even further. The
system provides high soft tissue contrast images that are acquired in the planning
stage or during actual treatment [4] [5]. Medical images are currently qualitatively
analyzed by radiologists to state diagnosis. However, quantitative image analysis,
Radiomics, is a promising area of research which aims to extract further pathophys-
iological information from tumors. By interpreting images not only as pictures but
as data, the hypothesis is that texture not visible to the naked eye contain additional
biological/physiological information, that can lead to treatment optimization [6] [7].
Hence, radiomics is an area of great promise in the pursuit of personalized medicine.

2 AIM

This master’s thesis aims to investigate radiomic features extracted from images
acquired with a 0.35 T scanner on an integrated MRI-Linac, with the primarily focus
on stability, repeatability and reproducibility of the system. The main objective was
to identify radiomic features that are robust across many imaging conditions in both
phantom and patient images.
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3 THEORETICAL BACKGROUND

3.1 Technical design and description of the ViewRay MRId-
ian system

The ViewRay MRIdian Linac (ViewRay Inc., Oakwood, USA) is a hybrid system
combining a magnetic resonance imaging (MRI) system with a radiation therapy
(RT) device. The MRI modality provides a superior soft tissue contrast in com-
parison to x-ray based methods, as well as the advantage that image acquisition
is performed with no use of ionizing radiation [5]. Image guided radiation ther-
apy (IGRT) using techniques such as onboard cone-beam CT (CBCT) has already
improved the accuracy of today’s radiation therapy treatments, and is even further
expanded through the actualization of the ViewRay integrated MRI-linac and thereof,
MR-IGRT [8].

This hybrid system consists of a 0.35 T split-bore superconducting magnet inte-
grated with a 6 MV flattening-filter-free (FFF) linear accelerator, so that the two
components share the same isocenter [4]. It has a 50 cm diameter spherical field
of view and uses a 75 cm whole-body radio frequency (RF) transmit coil with inte-
grated RF shielding. Furthermore, the gradient system has a maximum strength of
18 mT/m and a maximum slew rate of 200 T/m/s on each axis [9]. The system al-
lows for 3D conformal RT and step-and-shoot intensity-modulated-radiation-therapy
(IMRT) treatment plans [4].

The MRI system enables imaging pre- and post-treatment as well as cine imaging
(in the sagittal plane at four frames/s) during the actual treatment. Both the daily
set-up and the cine imaging are acquired with a True fast and Steady State Preces-
sion (TRUFI) pulse sequence which results in a T2/T1-weighted contrast [4]. Daily
images are acquired to ensure accurate patient positioning, target localization and
visualization of organs at risk (OAR). Additionally, online adaption of treatment
plans is possible so that the dose distribution from the original plan is compared
to the daily dose prediction, and can thereby be optimized depending on the daily
anatomy [5] [4]. The cine MRI allows the user to contour a region of interest (ROI)
around the target in the daily set-up image, used for online tracking and automatic
beam control. A desired boundary is then defined which specifies a certain percent-
age of the target volume that is allowed to exceed the chosen boundary before the
beam is interrupted [8].

3.2 Radiomics: Background and process

Medical imaging is a fundamental part of current diagnostics where modern tech-
niques such as computed tomography (CT), positron emission tomography (PET)
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and MRI are available. These modalities are widely used within oncology as standard
practice for e.g. screening, staging or decision making where images are analyzed
qualitatively by radiologists [10]. The aim of radiomics is to, in addition to a solely
visual interpretation, extract more underlying information from the image not ob-
servable by the bare eye. There is an underlying hypothesis that texture, patterns,
voxel value distribution and so on contain physiological information of diagnostic
value [7]. By converting medical images into mineable data this information can
be extracted mathematically to generate so-called quantitative imaging features. A
large amount of possible imaging features exist, which will be discussed in further
detail later on, that can be utilized to improve or support decision making [6] [11].
The idea is that this data, in combination with other patient information, eventually
will constitute a basis for building descriptive models of patient response, outcome,
treatment alternatives and so on [6]. Thus, by combining qualitative and quantita-
tive information radiomics holds promise to play an important role within the future
aspects of personalized oncology, i.e. precision medicine [12] [13] [14].

The work-flow of radiomics involves several steps; (i) image acquisition, (ii) iden-
tifying and segmenting volumes of interest, (iii) feature extraction, (iv) statistical
analysis and (v) building predictive models [6] [11] [13]. Every step has challenges
which will be described in more detail in the subsequent sections.

3.2.1 (i) Image acquisition

Radiomics can be performed on clinical MRI, PET or CT images to extract a large
number of quantitative features [12]. However, for each modality there is also a
great variation of imaging parameters and reconstruction methods which have been
shown to influence the feature extraction outcome [14] [11]. In MRI differences
regarding gradient strength, pulse sequence, acquisition protocols, k-space trajectory
sampling etc will affect the outcome and reliability of the radiomic data [15]. This
makes comparison between institutions difficult and urges the investigation of robust
features, as well as standardized imaging protocols for radiomics to become a useful
qualitative tool in the clinic [13] [6] [14].

3.2.2 (ii) Identifying and segmenting volumes of interest

A fundamental part of the physicians job is to study diagnostic medical images
and based on location, size, geometry etc identify the region of interest [15]. Seg-
mentation can then be done manually, automatically or semi-automatically which
consequently will affect the final outcome of the evaluated imaging features [13].
This is therefore a critical and challenging step in the radiomics procedure. Manual
segmentation is often considered as ground truth but is time consuming and af-
fected by interreader variations [11]. Automatic and semi-automatic methods, such
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as thresholding, region growing, artificial neural networks and so on [15], could offer
a more rapid segmentation process [11]. However, due to challenges regarding areas
with complex anatomy, reproducibility and reliability of the algorithm should be
taken into consideration [6].

3.2.3 (iii) Feature extraction

Once segmentation is completed quantitative imaging features are extracted from
the outlined volumes of interest. Medical images are commonly visually interpreted
by radiologists by studying tumor shape, location, geometry, size or tissue contrast.
The aim of radiomics is to provide further information, hidden within the feature
data, in addition to these qualitative characteristics [16] [12]. However, different
institutions use different software to extract features which will affect the outcome
of the quantitative values. There is today no standard method for feature computa-
tion, but a large research collaboration called the Image Biomarker Standardization
Initiative (IBSI) is working on implementing standard procedures and guidelines [17].

3.2.4 (iv) Statistical analysis

Depending on the study’s purpose and setup, relating to e.g. clinical outcome,
different statistical methods are suitable for handling the large number of radiomic
features which, from a single image, can exceed hundreds or even thousands. Hence,
there must be a systematic feature selection procedure to reduce the number of
features [7] [11]. One approach to avoid overfitting of data is clustering, i.e. highly
correlated features are identified and then collapsed into one descriptive feature.
Another reduction method is based on the reproducibility of the feature values,
using test-retest data [6] [12]. Once feature dimensionality have been reduced the
most informative features can be identified and further analyzed for how they relate
to e.g. treatment outcome [7].

As radiomics aim to provide additional information related to clinical outcome and
decision support [6] it is essential that feature values are stable under various imag-
ing conditions [18]. A model based on non-robust features might be unreliable
when used to predict outcome on new data, hence emphasizing the importance of
assessing feature robustness so that these models eventually can be implemented
clinically [19]. However, there is at this moment no standardized guidelines on how
to assess robustness, although it is recommended by IBSI as a prior step before
feature selection [18].

Test-retest imaging, i.e. the same object or ROI is imaged twice within a certain
time interval so that two similar images (however, not identical) are obtained, is a
recommended method for stability assessment. Comparison between the two images
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will allow for identification of non-robust features [19]. The Intraclass Correlation
Coefficient (ICC) is a descriptive statistic, used in several studies [19] [18] [20] to
quantify robustness in a test-retest setup. ICC describes the degree of correlation
as well as agreement between measurements, and has different forms of calculation
depending on the type of study [21]. Another similar descriptive statistic mentioned
in literature [22] [23] [20] for studying variability and assess robustness, when e.g.
looking at intrascanner variability, is the Coefficient of Variation (CoV) defined as:

CoV = 100 · σ
|µ|

(1)

were σ is the standard deviation and |µ| is the absolute value of the mean. It is
expressed as a percentage and describes the dispersion of the data points, low value
indicates high stability (low variability) and vice versa.

Defining robustness is not straightforward, but as stated in the systematic review
about stability assessment of radiomic features by Traverso et al. [10] repeatability
and reproducibility are two key elements. Repeatability refers to the degree of which
features remain unchanged under the same imaging conditions, e.g. the same sub-
ject is being scanned multiple times with the same scanning parameters, equipment
etc. Reproducibility means that features stay unchanged under various imaging con-
ditions, i.e. using different equipment, image acquisition parameters, same imaging
parameters but different subjects and so on [10] [20]. Features fulfilling both of
these requirements, i.e. having a high stability (low variability) under unchanged
conditions as well as for different subjects, ROI and/or imaging parameters, will be
classified as robust or stable.

3.2.5 (v) Building predictive models

With the hypothesis that quantitative image analysis can detect underlying pat-
terns in medical images revealing pathophysiology, the final aim of radiomics is to
create predictive models for improving decision support [7]. Model building can be
done using statistical methods, machine learning or artificial intelligence [6] but in
common for all is the need of large and integrated databases [11]. One of the main
challenges for creating these predictive models is the limited possibility of sharing
image and patient data across institutions [6]. There are different approaches on
how to deidentify confidential information according to patient safety regulations,
but no common ground has yet been found [11] [6].
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3.3 Radiomic features

As mentioned previously, a limitation in the field of radiomics is that there is no
existing standardization and the lack of reproducibility. IBSI is an independent
international collaboration working to provide standard biomarker nomenclature,
definitions, image processing workflow etc for the radiomic process [24]. Quantitative
imaging biomarkers, or features, are described in the IBSI manual as indicators of
pathophysiological processes and the aim is to find common guidelines in how to
interpret and use them.

An important aspect of radiomics is that imaging features can be derived from the
entire tumor (or other volume of interest) and not a single sample. However, het-
erogeneous sections of the tumor, so-called habitats, can be chosen as well. Once a
volume of interest has been segmented a large number of features can be extracted,
which are divided into ”semantic” and ”agnostic” descriptors of the volume [6]. Se-
mantic features are used in today’s clinics as a tool for radiologists to qualitatively
describe lesions such as size and shape descriptors. However, some of these fea-
tures can be extracted quantitatively as well [6] [12]. Agnostic features are solely
quantitative descriptors of the region of interest, characterizing the voxel intensity
histogram, texture patterns and so on [11]. Furthermore, quantitative features can
be categorized into first, second and higher order features [18]. Each feature category
will in the following subsections be described into further detail.

3.3.1 Shape-based features

Shape-based features describe the geometric properties of the ROI and are based on
ROI voxel representations of the volume [24]. There are three voxel representations
defined in the IBSI standardization manual accordingly:
1. The volume is represented by a collection of voxels with each voxel taking up a
certain volume.
2. The volume is represented by a voxel point set Xc that consists of coordinates of
the voxel centers.
3. The volume is represented by a surface mesh.

The first definition does not handle partial volume effects at the ROI edge well and
is therefore not recommended to be used for purposes other than volume approxima-
tions. When the inner structure of the ROI is of importance the second representa-
tion should be used. A mesh-based representation connects points in space (vertices)
generating triangle meshes to cover the ROI, allowing for a more consistent surface
representation than a voxel-based representation. Thus, the third definition should
be used when the outer surface is important [24].
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Tumor compactness, surface area, volume etc are examples of features that can
be extracted. Surface-to-volume ratio is an example of an important characteristic
that is used to differentiate between a speculated tumor (higher value) from a more
round tumor (lower value) with the same volume [11]. Feature values are calculated
according to the unit of length defined in the DICOM standard [24]. Features
within the category ”Long & Short axis” should also be included in the shape-based
definition, but are in this work calculated in a separate group.

3.3.2 First order statistics

First order statistical features describe the distribution of voxel intensities within the
ROI without taking the spatial distribution between them into account [6]. There
are solely intensity based features that do not require discretisation. However, these
features lack meaning if an arbitrary intensity scale is being used [24]. Intensity
histogram based features are similar descriptors, but the selected 3D volume data
is in this case first reduced into a histogram by discretisation of the intensity dis-
tribution into intensity bins. Examples of descriptors that can be calculated from
intensity/intensity histogram distributions are mean intensity, min, max, kurtosis,
interquartile range and other common statistics [24] [11].

3.3.3 Second order statistics

While first order statistics do not provide any information about patterns in the
image, the second order features do. They are also known as texture features and
describe how combinations of voxels with similar intensities are distributed along
different directions [6] [24]. The assumption is that texture information not visible
for the naked eye can be found in the spatial distribution between voxel intensi-
ties [25]. The second order features are therefore derived from so-called gray-tone
spatial-dependence matrices that describe distances and different directional rela-
tionships between neighboring voxels [26].

Gray level co-occurrence based features

A gray level co-occurrence matrix (GLCM) describes the distribution of intensities
in neighboring resolution cells. This analysis is applicable on both 2D images and
3D volumes but following examples will be considered in 2D for simplicity [24]. The
formation of a GLCM is based on so-called nearest-neighbor resolution cells where
a pixel has eight neighboring pixels (except at the periphery) [26], shown in figure
2. The probability of finding a pixel with gray level value i at distance d and angle
θ from a pixel with gray level value j is denoted P(i,j,d,θ) [25].
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Figure 2: Two-dimensional nearest-neighbor resolution cell. Each pixel, except at
the margin, has eight neighboring pixels.

Consider the following example; a rectangular image with 4x4 pixels and 4 discrete
gray levels 0 to 3 as shown in figure 3. If d=1, let Mθ(i, j) be the 4x4 GLCM where θ
is the directional vector and i, j a combination of intensities in neighboring resolution
cells. This means that e.g. the element M0◦(1, 2) in the GLCM will denote how many
times gray level 1 and 2 occur alongside each other in the horizontal direction in
the image. Thus, M0◦(i, j) is the final resulting matrix in the horizontal direction,
M45◦(i, j) in the 45◦ direction and so on. The final matrices calculated from this
simple example can be seen in figure 4.

Figure 3: A 4x4 image with 4 discrete gray levels, ranging from 0 to 3.

After computation of a matrix in each direction, the subsequent step is to normalize
the GLCM so that each element will represent the probability of acquiring a certain
combination of neighboring gray levels [27]. The normalized matrix Pθ(i, j) is de-
rived by dividing each entry by the total sum of entries in each matrix (see example
in figure 5 (a) and (b)) [24] [26].
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Figure 4: The four final directional gray co-occurrence matrices calculated from the
example 4x4 image.

With the initial assumption that texture information is found in the GLCM [26],
feature values are derived from the normalized GLCM as a final step. The GLCM
features are descriptors relating to contrast, homogeneity and other textural char-
acteristics of the image [26]. IBSI describe six different methods to aggregate the
features, e.g. features can be computed from each 2D directional matrix and then
averaged over 2D direction and slices or features can be computed from a single
matrix after merging all 3D directional matrices. However, feature values may vary
depending on method [24].

(a) (b)

Figure 5: The GLCM for the 0◦ direction (a); and the corresponding normalized
matrix Pθ(i, j)P0◦(i, j) in the same direction (b).
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Gray level run length based features

The gray level run length matrix (GLRLM) is another method, similar to the GLCM,
to describe various patterns and texture features in an image. The matrix Rθ(i, j)
is computed in a similar approach, based on the resolution cell intensity distribution
within the image [24]. However, rather than identifying combinations neighboring
gray level pairs a run-length is defined as the number of consecutive pixels having the
same gray level value along a certain direction [28]. The probability of finding run
length j with intensity i in direction θ is then denoted P(i,j,θ). Using the same 4x4
pixel image, shown in figure 3 as an example, will result in the subsequent matrices
seen in figure 6. Normalization and feature extraction is then done analogous to
the procedure mentioned in the GLCM section. Quantitative descriptors such as
short and long run emphasis or gray level non-uniformity can be extracted from the
GLRLM [11]. Feature values are again dependent on the aggregation method [24].

Figure 6: From the example 4x4 are the following four directional gray level run
length matrices computed.

Gray level size zone based features

IBSI describes the gray level size zone matrix (GLSZM) as the count of neighboring
pixels (or voxels in 3D) within an image. A group, or zone, is defined as the number
of linked pixels having the same gray level [24]. An element in the GLSZM Z(i,j) is
then defined as the number of times a zone of size j with intensity i occurs within an
image. As opposed to the GLCM and GLRLM, where the directional vector leads
to four matrices, only one matrix is generated from the whole image. Using the
image in figure 3 as an example again results in the matrix shown in figure 7. IBSI
then defines three methods to aggregate features from the resulting matrix, where
feature definitions are similar to the GLRLM descriptors [24].

15



Characterization of Radiomics Features Extracted from Images Generated by the
0.35 T Scanner of an Integrated MRI-Linac

Figure 7: The resulting gray level size zone matrix based on the example 4x4 image.

Neighborhood gray tone difference based features

The neighborhood gray tone difference matrix (NGTDM) G(i,Āi,d) describes the
difference between a pixel with gray level value i and the average intensity Āi of its
neighboring pixels within distance d. The sum of intensity differences is represented
by the elements in the NGTDM. A distance d = 1 will result in 8 neighboring pixels
and is therefore defined as a valid neighborhood. If a pixel k with gray value i has
a valid neighborhood the elements si are computed accordingly (equation 2):

si =
N∑
k

|i− Āi| (2)

Figure 8: Each pixel within the rectangle boundary is defined as having a valid neigh-
borhood. The NGTDM is computed based on these pixels and their neighboring
pixels.

where N here is defined as the number of pixels within the ROI and the valid
neighborhood. Using the same 4x4 image in figure 3 as an example, pixels having
a valid neighborhood are located within the rectangle (see figure 8). The resulting
NGTDM is shown in figure 9 where ni is number of pixels with intensity i, pi = ni/N
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is the gray level value probability and si the neighborhood gray level difference.
From this matrix features such as coarseness, contrast, complexity and so on can be
extracted. The above description was based solely on the IBSI definitions [24].

Figure 9: The final neighborhood gray tone difference matrix based on the 4x4 image
with a defined neighborhood.

Laws’ texture energy measure

This is another approach to analyze underlying texture patterns in an image by using
convolution kernels, also referred to as convolution masks. The method is meant to
capture the amount of variation within the image, i.e. the texture energy [29]. The
convolution masks are generated by combinations of the following three vectors [30]:

L3(Level) = [ 1, 2, 1 ]
E3(Edge) = [−1, 0, 1 ]
S3(Spot) = [−1, 2, −1]

(3)

The purpose of each vector is written within brackets; L3 gives a center-weighted
local average, E3 detects edges in the image and S3 detects spots [29]. A mask is
a kernel, or filter, emphasizing different structures in the image depending on the
specific combination of L3, E3 and S3 in the x-, y- and z-direction. They are gen-
erated by convolution of the vectors leading to nine two-dimensional masks with
length three and 27 three-dimensional masks generated by 2D and 3D convolution,
respectively. The masks are then applied to the image to extract quantitative de-
scriptors [30].

3.3.4 Higher order statistical features

These methods utilize filters or mathematical transforms on the image to i.a. iden-
tify repetitive/non-repetitive patterns, reduce noise or extract details [6] [12]. There
are different methods to perform higher order statistical analysis including e.g.
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wavelet transforms, fractal analysis and Laplacian transforms of Gaussian-filtered
images [12], which will be described into further detail below.

Wavelets

The idea behind the wavelet analysis is to obtain a time-frequency representation of
the signal. A wavelet has oscillating properties but is better described as a ”small
wave” with a finite energy concentrated in time [31]. Wavelets have similar proper-
ties as band-pass filters [32], meaning that they allow frequencies within a certain
span to pass and attenuate frequencies outside of that range. Different combina-
tions of low- (L) and high-pass (H) filters can be obtained in three-dimensional
wavelet transform, emphasizing various patterns and structures in the image. As
an example, HHL indicates a wavelet transform using high-pass filters in the x- and
y-direction and a low-pass filter in the z-direction [33]. The image is multiplied with
a matrix of these complex small waves to extract certain patterns [6].

Fractal analysis

Fractals are structures in the image having repeating patterns at different size
scales [34]. In fractal analysis patterns are imposed on the image and the number of
elements with a certain gray level value can then be identified [6]. The parameter
of quantification is called fractal dimension and this type of analysis has shown to
be a reliable method for tumor heterogeneity characterization [34].

Laplacian transforms of Gaussian-filtered (LoG) images

This is a more straightforward analysis method used to extract areas with coarse tex-
ture, were a Gaussian bandpass filter is applied to the image followed by a Laplacian
filter [6].
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4 MATERIALS AND METHODS

4.1 Phantom properties

4.1.1 Magphan® RT phantom

One part of the phantom feature analysis was performed on images from the monthly
QA of the integrated MRI-Linac, acquired with the Magphan® RT phantom (see
figure 10 (a) and (b)). The phantom has two modules, bottom (TMR007) and top
(TMR009), containing a uniform background fill solution and several hundred 1
cm sphere fiducials and other solid test components. The background fill solution
consists of 96.4 % distilled water, 2.5 % PVP, 0.9 % Sodium Chloride, < 0.2 %
Potassium Sorbate, < 0.2 % Copper Sulfate and < 0.2 % Blue Food color defined
in percentage by weight. This results in T1 and T2 values about 175-225 ms at 0.35
T [35] [36].

(a) (b)

Figure 10: The Magphan® RT phantom used for the monthly image acquisition
dataset.

4.1.2 ViewRay Daily QA phantom

The ViewRay Daily QA phantom is a cylindrical phantom filled with distilled water
to ensure MR imaging properties. The phantom has outlined markings for laser
alignment that coincides with the active volume of an ionization chamber, which
can be placed in a central chamber position. Four additional chamber positions
exist at the periphery [37]. The phantom is shown in figure 11 (a) and (b).

4.2 Data selection and image acquisition

The purpose of the phantom studies was to investigate the variability of radiomic
features over time in an invariant object. Hence, the aim of the data collection was
to represent ideal imaging conditions and thereby identify features that are robust

19



Characterization of Radiomics Features Extracted from Images Generated by the
0.35 T Scanner of an Integrated MRI-Linac

(a) (b)

Figure 11: The ViewRay Daily QA phantom used for the daily image acquisition
dataset.

under these conditions. Eleven scans acquired over a 13-month period using a Mag-
phan® RT phantom, and 11 workdays using a ViewRay Daily phantom respectively,
constituted the phantom data. The phantom positioning and set-up were identical
for every scanning occasion for both phantoms using a Torso coil and a high res-
olution TRUFI pulse sequence. Following imaging parameters were used; (1.5mm
x 1.5mm x 1.5mm) resolution, (500mm x 449mm x 432mm) FOV and 172 s total
image acquisition time.

The patient dataset included 50 images from ten anonymized stereotactic body radi-
ation therapy (SBRT) pancreas cancer patients treated on the integrated MRI-Linac
(5 fractions, given on a daily basis). All images were acquired with a Torso coil
and TRUFI pulse sequence with a (1.5mm x 1.5mm x 3.0mm) resolution, (540mm
x 465mm x 432mm) FOV and a 25 s total imaging time.

4.3 Image registration and segmentation

Image import, export, segmentation and registration was done in Mirada RTx (Mi-
rada RTx 1.6, Mirada Medical, Oxford, UK). For the phantom data the first scan in
chronological order was used as the baseline imaging set in which the contours were
drawn with a manual segmentation tool. Identical cylindrical ROIs with a volume
of 4.2 cm3 were contoured in different sections of the two phantoms. Four regions
displaying interesting heterogeneous patterns were chosen in the Magphan® RT
phantom and two heterogeneous regions in the ViewRay Daily phantom. Contours
are shown in figure 12 (a)-(d). All structures were then propagated from the baseline
to the remaining ten imaging sets by rigid registration in Mirada RTx.

As a transition between ideal imaging conditions in the phantom data to a more
complex structure such as human tissue, the kidneys and liver were chosen to rep-
resent heterogeneous but theoretically invariant objects in the patient, i.e. with the
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(a) (b)

(c) (d)

Figure 12: Four identical ROIs were placed in the Magphan® RT phantom, in regions
displaying interesting heterogeneous patterns.
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(a) (b)

Figure 13: Two identical ROIs were placed in the ViewRay Daily QA phantom, in
regions displaying heterogeneity.

hypothesis that these organs not were affected by the radiation during the treatment.
Both kidneys were manually segmented in Mirada RTx for each scanning occasion
and patient, shown in figure 14. A spherical 14 cm3 ROI was placed 4 cm caudally
from the diaphragm, 11 cm laterally from the aorta and in the midsection in the
anterior/posterior direction so that the relative placement within the liver for each
patient was identical (see figures 15 a) and b)).

Figure 14: The kidneys were manually segmented for each scanning occasion and
patient.

Hence, four final datasets were defined for further analysis: monthly phantom, daily
phantom, patient kidney data and patient liver data. The experimental setup was
similar to a ”classical” test-retest setup. However, instead of comparison between
two nearly identical images solely, this setup included comparison between several
intrasubject as well as intersubject images in order to identify robust features. The
aim was to identify common robust radiomic features among all datasets.
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(a) (b)

Figure 15: A spherical 14 cm3 ROI was placed in a defined position in the liver for
each scanning occasion and patient.

4.4 Statistical analysis workflow

Feature extraction was performed using an in-house program, based on the defini-
tions from IBSI and those found in the work by Shafiq-ul-Hassan et al. [14], that
aggregated 1087 radiomic features (48 categories). A summary of all groups can be
seen in table 1 with total number of features written within brackets. The DICOM-
file and structure set(s) for each scanning occasion and subject had to be uploaded
manually in the program one by one. The extracted feature values were then sum-
marized in an excel spreadsheet and organized for each phantom/patient dataset
accordingly for further analysis. An outline of the statistical analysis workflow after
feature extraction is shown in figure 16.

Figure 16: Statistical analysis workflow.

Stability was assessed with the Coefficient of Variation defined in equation 1. A
boundary for feature stability was set to CoV<5%, i.e. features that fall under this
limit were classified as robust. The limit was based on similar work done by Molina
et al. [23] and Rai et al. [20] using CoV<10% and CoV<5%, respectively, to assess
feature stability. The stricter confinement was chosen accordingly.
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Statistical analysis included five daily setup images from 10 different patients as well
as 11 images each from two different phantom, and multiple ROIs in all subjects.
The CoV was therefore a suitable statistical descriptive measure in this experimental
setup, allowing for a straightforward methodology to identify robust features among
all the datasets, fulfilling both of the stability requirements. First, the CoV mea-
sures the degree of variability for all features within each subject individually, i.e.
identifying features fulfilling the repeatability requirement. Second, by calculating
the mean value of the CoV for each feature in every dataset and identifying common
features that are stable over various imaging conditions, the CoV will capture the
degree of reproducibility as well.

Once radiomic features were extracted for every scanning occasion and ROI for each
subject, the CoV for all 1087 radiomic features was calculated for the two phantoms
and all patients individually. Then, the mean value of the CoV for every feature in
each dataset (kidney, liver, monthly phantom and daily phantom separately) was
computed. Features with no value, i.e. 0 for each scanning occasion were excluded
from further analysis. Lastly, features with a CoV mean value categorized as robust
(CoV< 5%) were identified for each dataset, and common robust features among all
four datasets were identified as a final step.
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Table 1: List of all feature categories that were analyzed, with number of features
within each group written within brackets.

Feature category
Intensity&Shaped based (70) Laws SEE (22)
Long&Short axis (22) Laws SEL (22)
Co-occurrence (40) Laws SES (22)
Run-length (17) Laws SLE (22)
Gray level size zone (12) Laws SLL (22)
Neighborhood gray tone diff. (11) Laws SLS (22)
Laws EEE (22) Laws SSE (22)
Laws EEL (22) Laws SSL (22)
Laws EES (22) Laws SSS (22)
Laws ELE (22) Wavelet HHH (22)
Laws ELL (22) Wavelet HHL (22)
Laws ELS (22) Wavelet HLH (22)
Laws ESE (22) Wavelet HLL (22)
Laws ESL (22) Wavelet LHH (22)
Laws ESS (22) Wavelet LHL (22)
Laws LEE (22) Wavelet LLH (22)
Laws LEL (22) Wavelet LLL (22)
Laws LES (22) Fractal dimension (6)
Laws LLE (22) LoG sigma=0.5mm (22)
Laws LLL (22) LoG sigma=1.0mm (22)
Laws LLS (22) LoG sigma=1.5mm (22)
Laws LSE (22) LoG sigma=2.0mm (22)
Laws LSL (22) LoG sigma=2.5mm (22)
Laws LSS (22) LoG sigma=3.0mm (22)
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5 RESULT

After statistical analysis 130 radiomic features were identified as demonstrating high
stability in both phantom and patient data. All final robust features within each
category are shown in table 2. Stable features were found within every category apart
from two second order statistics groups: Gray level size zone and Neighborhood gray
tone difference. The variability, expressed as the mean value of the CoV, for each
robust feature in every dataset is presented graphically in figures 17-21. The exact
CoV mean values and the corresponding standard deviations for each feature are
summarized in tables 3-10 in Appendix.

Table 2: Table demonstrating the resulting 130 radiomic features that were identified
as being robust in both human and phantom data.

Long & Short axis Intensity & Shaped based LoG sigma=0.5mm
LongAxis(mmCOM) V(voxels) Energy
Maximum 3D diameter(mm) Volume Entropy

Surface area Hist entropy
LoG sigma=1mm Surface to volume ratio Norm energy
Entropy Volume density(axis) Norm entropy
Hist entropy Area density(axis)
Norm Entropy Volume density(convex) LoG sigma=1.5mm

Area density (convex) Coeff vari
LoG sigma=2mm Sphericity Energy
Coeff vari Asphericity Entropy
Energy Compactness 1 Hist entropy
Entropy Spherical disproportion Norm energy
Hist entropy Volume fr. at 0.10 intensity Norm entropy
Norm energy NIenergy
Norm entropy Entropy LoG sigma=2.5mm

Hist entropy Coeff vari
LoG sigma=3mm Norm NIenergy Energy
Coeff vari Norm entropy Entropy
Energy Hist entropy
Entropy Wavelet LLL Norm energy
Hist entropy Coeff vari Norm entropy
Norm energy Energy
Norm entropy Entropy Wavelet LLH

Hist entropy Coeff vari
Continued on next page
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Table 2 – continued from previous page

Wavelet LHL Norm energy Entropy
Entropy Norm entropy Hist entropy
Hist entropy Norm entropy
Norm entropy

Wavelet HLL Wavelet LHH
Wavelet HLH Entropy Entropy
Entropy Hist entropy Hist entropy
Hist entropy Norm entropy Norm entropy
Norm entropy

Wavelet HHL Wavelet HHH
Laws EEE Entropy Coeff vari
Hist entropy Hist entropy Energy

Entropy
Laws EEL Laws EES Hist entropy
Hist entropy Hist entropy Norm energy

Norm entropy
Laws ELE Laws ELL
Hist entropy Hist entropy Laws ELS

Hist entropy
Laws ESE Laws ESL
Hist entropy Hist entropy Laws ESS

Hist entropy
Laws LEE Laws LEL
Hist entropy Hist entropy Laws LES

Hist entropy
Laws LLE Laws LLL
Hist entropy Energy Laws LLS

Entropy Hist entropy
Laws LSE Hist entropy
Hist entropy Norm energy Laws LSL

Norm entropy Hist entropy
Laws LSS
Hist entropy Laws SEE Laws SEL

Hist entropy Hist entropy
Laws SES
Hist entropy Laws SLE Laws SLL

Hist entropy Hist entropy
Continued on next page
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Table 2 – continued from previous page

Laws SLS
Hist entropy Laws SSE Laws SSL

Hist entropy Hist entropy
Laws SSS
Hist entropy Co-occurrence Run-length

Entropy SRE
Gray-level size-zone Mean LRE
- Inverse diff. moment RLNU

Inverse diff. RPC
Nbrhood. Gray-Tone Diff. Sum entropy
- Vnorm Mean Fractal dimension

Gnorm Mean meanLac1
Gnorm Sum Entropy meanLac2
Gnorm Mean meanLac3
VGnorm Mean

Figure 17: Graphical representation of the variability for all robust radiomic features
in each dataset. Presented in this chart are features from the Long&short axis and
Shaped-based categories.

28



Characterization of Radiomics Features Extracted from Images Generated by the
0.35 T Scanner of an Integrated MRI-Linac

Figure 18: Graphical representation of the variability for all robust radiomic features
in each dataset. Presented in this chart are features from the Co-occurrence and
Run Length categories.

Figure 19: Graphical representation of the variability for all robust radiomic features
in each dataset. Presented in this chart are features from the Laws category.
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Figure 20: Graphical representation of the variability for all robust radiomic features
in each dataset. Presented in this chart are features from the Wavelet and Fractal
dimension categories.

Figure 21: Graphical representation of the variability for all robust radiomic features
in each dataset. Presented in this chart are features from the LoG category.
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6 DISCUSSION

6.1 Stability of MRI-based Radiomics

Currently, little work has been done on stability assessment for MRI-based radiomics
and more research is required [18]. The purpose of this section is to give a brief
summary of a few available studies and compare the results with the outcome of
this thesis. Studies with similar questions, aim, method or other findings relevant
to this work were selected to add valuable information.

In an article by Cattell et al. [18] they describe a phantom study mapping the
variability of radiomic features on images acquired on a 3 T system under vari-
ous conditions. The phantom was composed of a pineapple core, banana, orange,
strawberry and kiwi placed on a Styrofoam box. They looked at first order, shape,
GLCM and GLRLM features and used the intraclass correlation coefficient (ICC)
as measure of variability. The study included evaluation of feature robustness to
signal-to-noise ratio (SNR), ROI delineation, small voxel size variation and different
normalization methods. Most first order features were found to be robust against
variations of SNR, erosion of the ROI, while moderately to highly robust against
dilation of the ROI and pixel size variations. All shape-based features showed ro-
bustness against pixel size variation as well as the two ROI delineation methods.
Most GLCM and GLRLM features were moderately robust against SNR variations
but had higher stability against variations in delineation. Eight robust features in
common with the result of this thesis and their study were identified: Sphericity and
Spherical disproportion (shape-based), Inverse difference and Sum entropy (GLCM)
and SRE, RPC, LRE and RLNU (GLRLM).

Padgett et al. [22] did a variability study on radiomic features extracted from images
from a ViewRay 0.35 T MRI system, similar to the one in this thesis. They used
an ACR-MR phantom and selected six different regions of interest demonstrating
various interesting patterns for extracting radiomic features. The high resolution
protocol with 1.5mm3 voxel resolution was used to acquire 12 scans collected over
a 6-months period. They investigated the robustness of 8 geometric features and
34 first and second (GLCM) order features with the Coefficient of Variation as the
measure of stability. A fixed bin width was used to extract the first order features,
while the stability of the GLCM features were analyzed using different number of
bins as well as varying bin size. All of the geometric features were found to be stable,
of which four are in agreement with the result in this work; Surface area, Surface to
volume ratio, Compactness 1 and Spherical disproportion. Furthermore, they found
that using different number of fixed bins had less impact (i.e. lead to a more robust
result) on second order feature variability than when varying bin width. However,
most first and second order features had a variation between 20% to 30% and only
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two features apart from the geometric ones had a comparable level of robustness
as the stable features that were found in this thesis: Hist entropy (first order) and
Entropy (GLCM).

Molina et al. [23] explored the stability of textural features in pretreatment 3D T1-
weighted MR images (3 T system) by studying patients harboring glioblastoma. The
stability of sixteen GLCM and GLRLM features were investigated when changing
the dynamic range (number of gray level values) and matrix size (spatial resolu-
tion). Robustness was assessed with the Coefficient of Variation with CoV<10% as
the limit for stability, compared to CoV<5% in this thesis. They found that none
of the textural features were robust when varying the number of gray level values.
Only one GLCM feature, Entropy, was found to be robust when changing the spatial
resolution. Hence, they conclude that due to a lack of feature stability standardiza-
tion is a requirement before using these features in multi-center clinical studies. No
other common robust feature, apart from GLCM Entropy, was identified between
their study and this thesis.

In a recent multi-center study by Rai et al. [20] a novel radiomics phantom was de-
signed for stability and reproducibility assessment of different MRI-scanners. They
developed 3D-printed phantoms using MRI visible materials, that display various
complex textures aiming to imitate the heterogeneity in human tissue. Radiomic
features were extracted from the first order, shape and texture based categories. In-
trascanner reproducibility was assessed with the Coefficient of Variation (CoV<5%
was classified as a very small range of variation, i.e. equivalent to the level of robust-
ness in this work) and the Intraclass Correlation Coefficient was used for stability
assessment across eight different scanners. Nine features, classified in this thesis
as robust, had a CoV<5%: Surface to volume ratio and Spherical disproportion
(Shape), Entropy, Inverse difference moment and Sum entropy (GLCM) and SRE,
LRE, RLNU and RPC (Run length). The authors stated that most stable features,
when looking at interscanner stability, were found in the first-order statistics while
the shape-based category had the least number of stable features. Stable texture fea-
tures could be identified, but the category displayed a varied result overall. Lastly,
the authors conclude that the novel 3D-printed phantom was successfully designed
and can be utilized for further MRI-based radiomics analysis.

A phantom study by Buch et al. [38] compared changes in 41 radiomic features
(histogram, GLCM, GLRLM, gray level gradient matrix (GLGM) and Laws) when
varying magnet strength, flip-angle, number of excitations (NEX) (which has an
impact on signal-to-noise ratio) and scanner platform. Changes were assessed by
calculating two-tailed t-tests and corresponding P- and Q-values for each parameter
and feature. They found that statistically significant changes in the Laws and most
of the GLGM features were observed when varying magnetic field strength (1.5 T
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vs 3 T). On the contrary, GLCM, GLRLM and histogram features were invariant to
these changes. Variations in flip angle affected mostly the GLCM features, and many
GLRLM, GLGM and histogram features were significantly affected by changes in
NEX. However, the parameter that generated most significantly changes among all
categories, except for the Laws features, was the difference in scanner platform (GE
vs Siemens). They conclude that understanding how radiomic features are affected
by variation of imaging parameters is important for quantitative evaluation, and
highlight the need of standardized protocols. No features were stable across all the
different types of variations.

In summary, these findings are promising, indicating that robust features in common
to the result of this work can be found in other MRI-based radiomics studies. How-
ever, it is also an indication that feature stability assessment has been investigated to
a certain extent but lacks standard methodology. The result from above mentioned
studies suggest that feature values are sensitive to external factors such as spatial
resolution, signal-to-noise ratio and segmentation method etc., thus emphasizing the
importance to identify features that are robust across many different imaging condi-
tions. Features must be stable enough to differentiate between pathological effects
without being significantly affected by the MRI scanning parameters. The quanti-
tative image analysis in this thesis was based on images from the MRIdian Linac
which, at this moment, has a very limited set of scanning protocols. Hence, this
work could provide guidelines for future stability assessment research, correlation
studies or other radiomic analysis being performed on this system.

6.2 Predictive performance

The main objective of this master’s thesis has been to characterize radiomic features
that are robust over various imaging conditions, by comparison of both phantom
and patient data. However, feature robustness does not imply that the imaging
biomarker is correlated to outcome or has a predictive value [18]. The following
sections therefore discuss possible predictive performance of the features found to
be robust (table 2) based on MRI radiomics literature studies.

Boldrini et al. [39] evaluated the use of ”delta radiomics” (the study of radiomics
features variation over time) on rectal cancer patients being treated with an 0.35
T integrated MRI-Linac system, similar to the one in this thesis. They looked
at 53 different shaped, statistical, fractal and textural (GLRLM) based features
and correlated them with clinical complete response (cCR) to state their predictive
performance. Delta features were defined as the ratio of feature values between each
treatment fraction (5 fractions + 1 simulation) and the simulation. Predictive ability
was assessed with the Wilcoxon-Mann-Whitney test. Six simulation features and 57
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delta features were found to be significant in their discrimination between cCR and
not-cCR patients. Nine common features, identified as robust in this thesis, also
had a predictive value: Volume, Sphericity, Asphericity, Compactness 1, Spherical
disproportion (shape), and SRE, LRE, RLNU and RPC (GLRLM).

In a study by Spraker et al. [40] they investigated whether MRI radiomic features are
independently associated with overall survival (OS) in soft tissue sarcoma. Thirty
radiomic features from 5 categories; tumor volume, intensity histograms, GLCM,
NGTDM and GLSZM, were extracted from T1-weighted contrast enhanced MR im-
ages. A univariate analysis was performed, using Cox proportional hazard model
to explore the correlation between OS and imaging feature. Four significant fea-
tures common to this work were identified: Volume (Shape), Hist entropy (Intensity
histogram) and Entropy and Inverse difference moment (GLCM). However, the au-
thors were interested in multivariate analysis and looked at the association between
OS and a clinical-only model, radiomics-only model and combined model, respec-
tively. Number of radiomic features were reduced before model training by assessing
collinearity using R2 statistic. Apart from Volume (Shape) no common features
between their result and this thesis were found after feature selection.

The textural feature GLCM Entropy, which was classified as robust in this work, was
a notable feature as it has been shown to have high predictive performance in several
studies [41] [42] [43] [44] [45] [46]. Three studies [41] [42] [43] performed texture
analysis on contrast-enhanced breast MRI images and identified GLCM entropy
to be one of the most significant features for discrimination between benign and
malignant lesions. Wibmer et al. [44] looked at texture analysis of prostate MRI for
cancer detection and Gleason score assessment. Again, GLCM entropy was found
to be a significant classifier for differentiation between non-cancerous and malignant
prostate tissue with different Gleason scores. Two additional studies investigated
prostate cancer detection as well, one with computed-assisted diagnosis [45] and the
other in pre-operative MRI images [46], and stated Entropy on T2-weighted images
as one of the features with most discriminant power. In summary, this indicates
that GLCM Entropy is a feature with discriminative power in several studies, and
has a high stability in images from a 0.35 T integrated MRI-Linac.

Furthermore, the textural feature Inverse difference moment (GLCM) was identified
in two of the above mentioned studies [46] [42] as having high predictive value, as
well as Sum entropy (GLCM) in the study by Viswanath et al. [46]. Both of these
features were found to be stable in this work.

In a study by Lacroix et al. [47] they looked at radiomic features from T2-weighted
MR images (3 T system) of lung cancer patients. Their aim was to find a prepro-
cessing procedure that improves the predictive performance of the features. Images
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were corrected for magnetic field inhomogeneities followed by intensity normaliza-
tion with fat as a reference tissue. They looked at shape, first order and second order
features extracted from the whole tumor volume (3D analysis) and from slices of the
tumor (2D analysis). They concluded that number of informative features increased
after image processing such as magnetic field inhomogeneity correction and voxel
value normalization.

In conclusion, several radiomic features identified as robust in this work are found
to have diagnostic or predictive value in different radiomic based MRI studies. Nine
common features had significant predictive performance in a study done on a low-
field scanner system similar to the one in this thesis, which is a promising result.
GLCM Entropy, classified as robust in this work, is a feature with diagnostic sig-
nificance correlated to lesion discrimination mentioned in several papers. However,
as concluded by Lacroix et al. [47] the predictive value of a feature are in various
cases dependent on image processing method, such as magnetic field inhomogeneity
or voxel value normalization. Standardization and assessing feature robustness is
therefore of great importance in order to obtain radiomic features with optimized
predictive performance.

6.3 Limitations

This work has several limitations that ought to be mentioned. First, it should be
noted that a phantom measurement is not fully representative of a patient study.
Phantoms are often designed to mimic different parts of the body but similarities are
limited to some degree, due to the complex nature of the human anatomy and the
simplified phantom. The phantoms used in this work are designed for QA and do
fulfill the requirements for this purpose. However, in radiomics we are interested in
heterogeneous structures that simulates the complex structure of human tissue or a
tumor, and the simplicity of these phantoms do not provide texture in this sense. The
Magphan® RT and ViewRay Daily phantom both consist of homogeneous non-MRI
visible fabrics filled with a signal generating liquid, giving rise to a more or less binary
signal which is not ideal for radiomics. Results from radiomic studies might not
therefore be completely translated to the texture and wide range of gray level values
seen in human tissue. Nonetheless, these results represent ideal imaging conditions
and can, together with patient data, give an indication of feature variability and
behavior solely due to inherent machine properties.

In a work by Valladares et al. [48] they have summarized several MRI (as well as
CT and PET) texture analysis studies were the authors have tested different com-
binations of phantom materials for simulating tumor heterogeneity. Most phantoms
are designed by embedding solid structures such as polystyrene spheres or porous
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foams in an agarose gel mixture. However, the authors conclude that temperature
and humidity regulations are limitations for using these phantoms as standard in
multicenter trials. Developing such a heterogeneous phantom (similar to the one by
Rai et al.) for future feature stability research of a low-field integrated MRI-Linac
would be an interesting expansion of the work in this thesis.

Additional components to take into consideration is the segmentation and registra-
tion procedures. In this work identical cylindrical volumes placed in different regions
of the two phantoms in the baseline set were propagated to the remaining imaging
sets. Thus, the only uncertainty present is due to the registration. The ROIs were
propagated via rigid registration since identical positioning for every scanning occa-
sion was assumed and a phantom is considered an invariant object. All shape-based
features were found to be stable in both phantoms, hence supporting the hypothesis
of ideal imaging conditions. However, not all features within the long & short axis
category (belonging to the shape-based features as well) were stable. This devia-
tion is due to the choice of a cylindrical volume, which can have multiple options
for long/short axis hence causing the feature value to vary randomly, rather than
registration uncertainties.

For patient images an identical spherical volume was used for the liver data, but
placed manually for every scanning occasion and not through rigid registration.
The kidneys, however, were segmented manually one by one for every patient by a
single user. This will affect the result due to intraobserver variability, any error will
be systematic. Segmentation is, as mentioned in previous sections, a crucial part
in the radiomics workflow chain and should be an uncertainty to take into account.
Debates whether to seek ground truth or reproducibility are highly topical in present
studies and different approaches are being investigated.
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7 CONCLUSION

The stable features presented in table 2 are the result of quantitative image analysis
on images from the scanner of a 0.35 T integrated MRI-Linac. Images were acquired
with two different protocols; a high (1.5mm3) and low (1.5mm2 x 3mm) voxel res-
olution respectively. Two invariant objects, a basic phantom for daily QA and a
more complex constructed phantom for monthly controls, represented ideal imaging
conditions and were compared with patient data to identify common stable features.
Thus, this result indicates that there are radiomic features demonstrating robustness
over a wide range of imaging conditions on a low-field integrated MRI-Linac, and
that phantom studies can be useful for feature stability assessment. Additionally,
it implies that the 0.35 T scanner in this study is sufficiently stable over time for
performing radiomic studies.

As mentioned in previous sections, features will be sensitive to image acquisition
parameters, segmentation method etc to a certain extent. Assessing feature stabil-
ity therefore ought to be a fundamental step in the radiomic process in order to
formulate reliable predicative models, outcomes or conclusions. This study included
analysis of 1087 radiomic features, of which 130 of them were found to be stable. As
radiomics implies the throughput of a large amount of features, this result means
that a relatively large number of features are robust and thereby appropriate for
further outcome analysis or model building. On the other side, this also indicates
that a many features are not appropriate for further clinical studies, emphasizing
the value of stability assessment. Radiomic models need to be based on features
with low variability that are insensitive to external factors. Hence, more research in
this area is needed.

Although preliminary, these results are promising as several stable features also were
found to have predictive value in different MRI-based radiomics papers. Radiomics
has the potential to be an essential part in the pursuit of personalized oncology and
this work provides a comprehensive investigation of radiomic features that can be
used for future model building.
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Michael Götz, Matthias Guckenberger, Sung Min Ha, Mathieu Hatt, Fabian

40



Characterization of Radiomics Features Extracted from Images Generated by the
0.35 T Scanner of an Integrated MRI-Linac

Isensee, Philippe Lambin, Stefan Leger, Ralph T H Leijenaar, Jacopo Lenkow-
icz, Fiona Lippert, Are Losneg̊ard, Klaus H Maier-Hein, Olivier Morin, Henning
Müller, Sandy Napel, Christophe Nioche, Fanny Orlhac, Sarthak Pati, Elisa-
beth A G Pfaehler, Arman Rahmim, Arvind U K Rao, Jonas Scherer, Muham-
mad Musib Siddique, Nanna M Sijtsema, Jairo Socarras Fernandez, Emiliano
Spezi, Roel J H M Steenbakkers, Stephanie Tanadini-Lang, Daniela Thorwarth,
Esther G C Troost, Taman Upadhaya, Vincenzo Valentini, Lisanne V van
Dijk, Joost van Griethuysen, Floris H P van Velden, Philip Whybra, Chris-
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9 Appendix

Table 3: Robust radiomic features [%CoV mean value (standard deviation)] for the
patient liver dataset.

Long & Short axis Intensity & Shaped based LoG sigma=0.5mm
LongAxis(mmCOM) [0.19 (0.09)] V(voxels) [0.58 (0.23)] Energy [0.72 (0.37)]

Maximum 3D diameter(mm) [0.13 (0.07)] Volume [0.58 (0.23)] Entropy [0.08 (0.04)]
Surface area [0.73 (0.24)] Hist entropy [1.95 (0.51)]

LoG sigma=1mm Surface to volume ratio [0.32 (0.09)] Norm energy [0.36 (0.28)]
Entropy [0.21 (0.10)] Volume density(axis) [1.72 (0.89)] Norm entropy [0.02 (0.02)]

Hist entropy [2.01 (0.87)] Area density(axis) [1.23 (0.47)]
Norm Entropy [0.15 (0.05)] Volume density(convex) [0.58 (0.25)] LoG sigma=1.5mm

Area density (convex) [0.60 (0.27)] Coeff vari [2.06 (1.66)]
LoG sigma=2mm Sphericity [0.42 (0.09)] Energy [1.88 (1.88)]

Coeff vari [3.03 (1.77)] Asphericity [1.28 (0.28)] Entropy [0.21 (0.08)]
Energy [2.45 (1.49) ] Compactness 1 [0.63 (0.14)] Hist entropy [1.89 (0.79)]
Entropy [0.23 (0.12)] Spherical disproportion [0.42 (0.09)] Norm energy [1.55 (1.31)]

Hist entropy [1.86 (0.70)] Volume fraction at 0.10 intensity [0.45 (0.26)] Norm entropy [0.12 (0.09)]
Norm energy [2.31 (1.38)] NIenergy [0.66 (0.35)]
Norm entropy [0.17 (0.09)] Entropy [0.08 (0.03)] LoG sigma=2.5mm

Hist entropy [2.26 (1.37)] Coeff vari [3.90 (2.04)]
LoG sigma=3mm Norm NIenergy [0.28 (0.23)] Energy [3.22 (1.88)]

Coeff vari [4.33 (2.14)] Norm entropy [0.02 (0.02)] Entropy [0.30 (0.15)]
Energy [3.94 (2.40)] Hist entropy [2.20 (0.81)]
Entropy [0.37 (0.21)] Wavelet LLL Norm energy [3.08 (1.77)]

Hist entropy [2.22 (0.84)] Coeff vari [3.21 (1.21)] Norm entropy [0.22 (0.13)]
Norm energy [3.52 (1.98)] Energy [1.21 (0.59)]
Norm entropy [0.27 (0.14)] Entropy [0.14 (0.06)] Wavelet LLH

Hist entropy [1.27 (0.92)] Coeff vari [3.70 (1.63)]
Wavelet LHL Norm energy [1.39 (0.53)] Entropy [0.69 (0.27)]

Entropy [1.41 (0.48)] Norm entropy [0.13 (0.04)] Hist entropy [1.15 (0.48)]
Hist entropy [1.12 (0.51)] Norm entropy [0.70 (0.27)]

Norm entropy [1.40 (0.49)]
Wavelet HLL Wavelet LHH

Wavelet HLH Entropy [1.37 (0.58)] Entropy [2.13 (0.88)]
Entropy [2.27 (1.02)] Hist entropy [1.19 (0.33)] Hist entropy [1.15 (0.48)]

Hist entropy [0.95 (0.50)] Norm entropy [1.38 (0.59)] Norm entropy [2.13 (0.91)]
Norm entropy [2.26 (1.02)]

Wavelet HHL Wavelet HHH
Laws EEE Entropy [1.55 (1.59)] Coeff vari [3.90 (2.14)]

Hist entropy [1.71 (0.77)] Hist entropy [1.13 (0.39)] Energy [0.57 (0.27)]
Entropy [0.07 (0.03)]

Laws EEL Laws EES Hist entropy [1.23 (0.43)]
Hist entropy [2.20 (1.09)] Hist entropy [1.56 (0.67)] Norm energy [0.23 (0.15)]

Norm entropy [0.01 (0.01)]
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Table 4: Robust radiomic features [%CoV mean value (standard deviation)] for the
patient liver dataset.

Laws ELE Laws ELL
Hist entropy [1.83 (0.80)] Hist entropy [2.16 (1.41)] Laws ELS

Hist entropy [1.84 (0.86)]
Laws ESE Laws ESL

Hist entropy [1.52 (0.35)] Hist entropy [1.42 (0.66)] Laws ESS
Hist entropy [1.59 (0.62)]

Laws LEE Laws LEL
Hist entropy [1.86 (0.92)] Hist entropy [1.81 (0.82)] Laws LES

Hist entropy [1.64 (0.81)]
Laws LLE Laws LLL

Hist entropy [1.96 (0.87)] Energy [0.66 (0.33)] Laws LLS
Entropy [0.08 (0.03)] Hist entropy [2.09 (1.03)]

Laws LSE Hist entropy [2.71 (1.28)]
Hist entropy [1.90 (0.70)] Norm energy [0.23 (0.24)] Laws LSL

Norm entropy [0.02 (0.02)] Hist entropy [2.79 (1.41)]
Laws LSS

Hist entropy [1.78 (0.68)] Laws SEE Laws SEL
Hist entropy [1.33 (0.73)] Hist entropy [1.71 (0.89)]

Laws SES
Hist entropy [1.63 (0.94)] Laws SLE Laws SLL

Hist entropy [1.76 (0.76)] Hist entropy [2.49 (1.49)]
Laws SLS

Hist entropy [1.61 (0.68)] Laws SSE Laws SSL
Hist entropy [1.38 (0.41)] Hist entropy [1.23 (0.26)]

Laws SSS
Hist entropy [1.70 (0.64)] Co-occurrence Run-length

Entropy [3.46 (1.38)] SRE [0.91 (0.59)]
Gray-level size-zone Mean [1.01 (0.48)] LRE [3.59 (2.32)]

- Inverse diff. moment [0.35 (0.13)] RLNU [3.58 (1.96)]
Inverse diff. [0.93 (0.37)] RPC [1.38 (0.66)]

Neigborhood Gray-Tone Diff. Sum entropy [3.42 (1.39)]
- Vnorm Mean [0.70(0.42)] Fractal dimension

Gnorm Entropy [3.46 (1.38)] meanLac1 [3.81 (2.42)]
Gnorm Sum Entropy [3.42 (1.39)] meanLac2 [1.10 (0.66)]

Gnorm Mean [1.01 (0.48)] meanLac3 [0.60 (0.22)]
VGnorm Mean [0.70 (0.42)]
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Table 5: Robust radiomic features [%CoV mean value (standard deviation)] for the
patient kidney dataset.

Long & Short axis Intensity & Shaped based LoG sigma=0.5mm
LongAxis(mmCOM) [1.60 (0.61)] V(voxels) [2.41 (0.87)] Energy [2.71 (0.93)]

Maximum 3D diameter(mm) [1.19 (0.50)] Volume [2.41 (0.87)] Entropy [0.25 (0.09)]
Surface area [1.64 (0.70)] Hist entropy [1.90 (0.47)]

LoG sigma=1mm Surface to volume ratio [1.49 (0.54)] Norm energy [0.65 (0.35)]
Entropy [0.29 (0.10)] Volume density(axis) [3.25 (1.15)] Norm entropy [0.03 (0.02)]

Hist entropy [1.85 (0.92)] Area density(axis) [1.80 (0.43)]
Norm Entropy [0.06 (0.03)] Volume density(convex) [0.79 (0.33)] LoG sigma=1.5mm

Area density (convex) [0.72 (0.37)] Coeff vari [1.28 (0.58)]
LoG sigma=2mm Sphericity [1.04 (0.41)] Energy [2.92 (1.08)]

Coeff vari [1.68 (0.80)] Asphericity [2.31 (0.87)] Entropy [0.29 (0.11)]
Energy [3.17 (1.06) ] Compactness 1 [1.56 (0.62)] Hist entropy [1.79 (0.74)]
Entropy [0.30 (0.11)] Spherical disproportion [1.05 (0.41)] Norm energy [1.01 (0.46)]

Hist entropy [2.00 (0.90)] Volume fraction at 0.10 intensity [0.57 (0.53)] Norm entropy [0.06 (0.02)]
Norm energy [1.36 (0.66)] NIenergy [2.71 (0.98)]
Norm entropy [0.08 (0.03)] Entropy [0.25 (0.09)] LoG sigma=2.5mm

Hist entropy [1.21 (0.47)] Coeff vari [2.08 (1.12)]
LoG sigma=3mm Norm NIenergy [0.61 (0.35)] Energy [3.45 (1.13)]

Coeff vari [2.10 (1.17)] Norm entropy [0.03 (0.02)] Entropy [0.31 (0.11)]
Energy [3.56 (1.33)] Hist entropy [2.02 (1.13)]
Entropy [0.32 (0.13)] Wavelet LLL Norm energy [1.76 (0.98)]

Hist entropy [2.00 (1.03)] Coeff vari [3.08 (1.39)] Norm entropy [0.10 (0.0.4)]
Norm energy [1.82 (1.04)] Energy [3.06 (1.23)]
Norm entropy [0.10 (0.05)] Entropy [0.28 (0.12)] Wavelet LLH

Hist entropy [1.12 (0.38)] Coeff vari [4.55 (1.89)]
Wavelet LHL Norm energy [1.63 (0.70)] Entropy [1.13 (0.51)]

Entropy [0.99 (0.44)] Norm entropy [0.12 (0.06)] Hist entropy [1.40 (0.52)]
Hist entropy [1.62 (0.60)] Norm entropy [1.13 (0.50)]

Norm entropy [0.96 (0.45)]
Wavelet HLL Wavelet LHH

Wavelet HLH Entropy [1.16 (0.70)] Entropy [2.28 (1.01)]
Entropy [3.07 (1.08)] Hist entropy [1.24 (0.56)] Hist entropy [1.46 (0.62)]

Hist entropy [2.13 (0.79)] Norm entropy [2.24 (0.99)] Norm entropy [2.13 (0.91)]
Norm entropy [3.08 (1.12)]

Wavelet HHL Wavelet HHH
Laws EEE Entropy [2.98 (1.40)] Coeff vari [4.66 (2.59)]

Hist entropy [1.33 (0.65)] Hist entropy [1.22 (0.40)] Energy [2.64 (1.02)]
Entropy [0.24 (0.09)]

Laws EEL Laws EES Hist entropy [1.18 (0.46)]
Hist entropy [1.54 (0.77)] Hist entropy [1.23 (0.58)] Norm energy [0.47 (0.28)]

Norm entropy [0.02 (0.01)]
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Table 6: Robust radiomic features [%CoV mean value (standard deviation)] for the
patient kidney dataset.

Laws ELE Laws ELL
Hist entropy [1.45 (0.62)] Hist entropy [1.41 (0.69)] Laws ELS

Hist entropy [1.69 (0.54)]
Laws ESE Laws ESL

Hist entropy [1.40 (0.80)] Hist entropy [1.97 (1.01)] Laws ESS
Hist entropy [1.29 (0.60)]

Laws LEE Laws LEL
Hist entropy [1.82 (0.94)] Hist entropy [1.82 (0.62)] Laws LES

Hist entropy [1.74 (0.96)]
Laws LLE Laws LLL

Hist entropy [1.76 (0.68)] Energy [2.69 (0.88)] Laws LLS
Entropy [0.25 (0.09)] Hist entropy [2.48 (1.17)]

Laws LSE Hist entropy [1.32 (0.70)]
Hist entropy [1.91 (1.11)] Norm energy [0.53 (0.35)] Laws LSL

Norm entropy [0.02 (0.02)] Hist entropy [2.19 (0.82)]
Laws LSS

Hist entropy [1.73 (0.76)] Laws SEE Laws SEL
Hist entropy [1.11 (0.35)] Hist entropy [1.17 (0.55)]

Laws SES
Hist entropy [1.47 (0.58)] Laws SLE Laws SLL

Hist entropy [1.44 (0.59)] Hist entropy [1.66 (0.69)]
Laws SLS

Hist entropy [1.33 (0.49)] Laws SSE Laws SSL
Hist entropy [1.51 (0.81)] Hist entropy [1.98 (0.86)]

Laws SSS
Hist entropy [1.49 (0.49)] Co-occurrence Run-length

Entropy [1.72 (0.80)] SRE 3.45 (1.81)]
Gray-level size-zone Mean [2.71 (0.85)] LRE [3.45 (1.81)]

- Inverse diff. moment [0.08 (0.04)] RLNU [4.17 (1.70)]
Inverse diff. [0.31 (0.15)] RPC [1.19 (0.62)]

Neigborhood Gray-Tone Diff. Sum entropy [1.73 (0.80)]
- Vnorm Mean [0.63 (0.32)] Fractal dimension

Gnorm Entropy [1.72 (0.80)] meanLac1 [4.36 (1.92)]
Gnorm Sum Entropy [1.73 (0.80)] meanLac2 [1.25 (0.49)]

Gnorm Mean [2.71 (0.85)] meanLac3 [2.00 (0.72)]
VGnorm Mean [0.63 (0.32)]
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Table 7: Robust radiomic features [%CoV mean value (standard deviation)] for the
Magphan® RT phantom dataset.

Long & Short axis Intensity & Shaped based LoG sigma=0.5mm
LongAxis(mmCOM) [0.45 (0.16)] V(voxels) [1.37 (0.99)] Energy [2.15 (0.72)]

Maximum 3D diameter(mm) [0.37 (0.14)] Volume [1.37 (0.99)] Entropy [0.45 (0.08)]
Surface area [0.58 (0.07)] Hist entropy [1.01 (0.25)]

LoG sigma=1mm Surface to volume ratio [1.19 (1.05)] Norm energy [1.97 (0.27)]
Entropy [0.50 (0.09)] Volume density(axis) [3.83 (3.43)] Norm entropy [0.27 (0.06)]

Hist entropy [2.63 (0.84)] Area density(axis) [1.51 (0.80)]
Norm Entropy [0.34 (0.12)] Volume density(convex) [1.02 (0.70)] LoG sigma=1.5mm

Area density (convex) [0.40 (0.23)] Coeff vari [2.94 (0.80)]
LoG sigma=2mm Sphericity [0.80 (0.61)] Energy [3.00 (0.98)]

Coeff vari [2.30 (0.37)] Asphericity [1.97 (1.53)] Entropy [0.39 (0.10)]
Energy [2.44 (0.80) ] Compactness 1 [1.20 (0.91)] Hist entropy [1.93 (0.18)]
Entropy [0.35 (0.16)] Spherical disproportion [0.82 (0.64)] Norm energy [0.33 (0.13)]

Hist entropy [1.08 (0.09)] Volume fraction at 0.10 intensity [2.88 (2.24)] Norm entropy [0.06 (0.02)]
Norm energy [2.12 (0.21)] NIenergy [2.24 (0.61)]
Norm entropy [0.22 (0.05)] Entropy [0.35 (0.06)] LoG sigma=2.5mm

Hist entropy [1.59 (0.65)] Coeff vari [3.77 (0.86)]
LoG sigma=3mm Norm NIenergy [1.25 (0.71)] Energy 3.86 (1.34)]

Coeff vari [4.28 (0.81)] Norm entropy [0.21 (0.11)] Entropy [0.53 (0.19)]
Energy [4.60 (1.58)] Hist entropy [1.43 (0.57)]
Entropy [0.62 (0.22)] Wavelet LLL Norm energy [3.26 (0.63)]

Hist entropy [1.19 (0.31)] Coeff vari [2.59 (0.90)] Norm entropy [0.39 (0.12)]
Norm energy [3.72 (0.90)] Energy [2.08 (0.38)]
Norm entropy [0.45 (0.14)] Entropy [0.27 (0.05)] Wavelet LLH

Hist entropy [1.30 (0.55)] Coeff vari [3.34 (1.74)]
Wavelet LHL Norm energy [1.82 (0.72)] Entropy [0.78 (0.52)]

Entropy [1.17 (0.63)] Norm entropy [0.22 (0.09)] Hist entropy [0.49 (0.19)]
Hist entropy [0.49 (0.02)] Norm entropy [0.79 (0.66)]

Norm entropy [1.11 (0.53)]
Wavelet HLL Wavelet LHH

Wavelet HLH Entropy [1.24 (1.36)] Entropy [3.24 (2.95)]
Entropy [3.09 (1.65)] Hist entropy [0.59 (0.26)] Hist entropy [0.41 (0.12)]

Hist entropy [0.52 (0.20)] Norm entropy [1.21 (1.24)] Norm entropy [3.26 (2.90)]
Norm entropy [3.04 (1.69)]

Wavelet HHL Wavelet HHH
Laws EEE Entropy [4.99 (6.74)] Coeff vari [2.59 (1.13)]

Hist entropy [1.59 (0.63)] Hist entropy [0.57 (0.17)] Energy [1.88 (0.78)]
Entropy [0.24 (0.11)]

Laws EEL Laws EES Hist entropy [0.58 (0.17)]
Hist entropy [1.68 (0.38)] Hist entropy [2.40 (1.02)] Norm energy [0.97 (0.55)]

Norm entropy [0.11 (0.06)]
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Table 8: Robust radiomic features [%CoV mean value (standard deviation)] for the
Magphan® RT phantom dataset.

Laws ELE Laws ELL
Hist entropy [1.71 (1.25)] Hist entropy [1.69 (0.69)] Laws ELS

Hist entropy [1.38 (0.26)]
Laws ESE Laws ESL

Hist entropy [1.79 (0.20)] Hist entropy [2.48 (1.10)] Laws ESS
Hist entropy [2.55 (0.83)]

Laws LEE Laws LEL
Hist entropy [1.58 (0.44)] Hist entropy [1.24 (0.35)] Laws LES

Hist entropy [1.53 (0.21)]
Laws LLE Laws LLL

Hist entropy [1.66 (0.73)] Energy [2.20 (0.67)] Laws LLS
Entropy [0.30 (0.09)] Hist entropy [1.31 (0.46)]

Laws LSE Hist entropy [0.82 (0.32)]
Hist entropy [1.82 (0.68)] Norm energy [1.10 (0.81)] Laws LSL

Norm entropy [0.15 (0.10)] Hist entropy [3.16 (1.12)]
Laws LSS

Hist entropy [2.62 (1.02)] Laws SEE Laws SEL
Hist entropy [2.01 (0.38)] Hist entropy [1.88 (0.34)]

Laws SES
Hist entropy [2.26 (1.30)] Laws SLE Laws SLL

Hist entropy [1.40 (0.51)] Hist entropy [1.79 (0.36)]
Laws SLS

Hist entropy [2.46 (1.05)] Laws SSE Laws SSL
Hist entropy [2.57 (0.88)] Hist entropy [2.66 (0.42)]

Laws SSS
Hist entropy [2.75 (0.18)] Co-occurrence Run-length

Entropy [1.59 (0.29)] SRE [0.85 (0.24)]
Gray-level size-zone Mean [1.86 (0.91)] LRE [3.30 (1.57)]

- Inverse diff. moment [0.17 (0.10)] RLNU [4.61 (1.35)]
Inverse diff. [0.24 (0.07)] RPC [3.16 (1.25)]

Neigborhood Gray-Tone Diff. Sum entropy [1.55 (0.52)]
- Vnorm Mean [0.96 (0.32)] Fractal dimension

Gnorm Entropy [1.59 (0.29)] meanLac1 [2.34 (0.62)]
Gnorm Sum Entropy [1.55 (0.52)] meanLac2 [1.85 (1.20)]

Gnorm Mean [1.86 (0.91)] meanLac3 [1.06 (0.49)]
VGnorm Mean [0.96 (0.32)]
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Table 9: Robust radiomic features [%CoV mean value (standard deviation)] for the
ViewRay Daily QA phantom dataset.

Long & Short axis Intensity & Shaped based LoG sigma=0.5mm
LongAxis(mmCOM) [0.47 (0.01)] V(voxels) [0.55 (0.18)] Energy [0.75 (0.26)]

Maximum 3D diameter(mm) [0.50 (0.09)] Volume [0.55 (0.18)] Entropy [0.10 (0.04)]
Surface area [0.52 (0.07)] Hist entropy [1.41 (0.18)]

LoG sigma=1mm Surface to volume ratio [0.22 (0.10)] Norm energy [0.46 (0.13)]
Entropy [0.58 (0.21)] Volume density(axis) [1.30 (0.93)] Norm entropy [0.05 (0.02)]

Hist entropy [3.45 (0.66)] Area density(axis) [0.95 (0.70)]
Norm Entropy [0.49 (0.19)] Volume density(convex) [0.50 (0.16)] LoG sigma=1.5mm

Area density (convex) [0.32 (0.08)] Coeff vari [3.01 (0.58)]
LoG sigma=2mm Sphericity [0.20 (0.20)] Energy [3.01 (0.78)]

Coeff vari [3.71 (0.31)] Asphericity [0.48 (0.47)] Entropy [0.35 (0.09)]
Energy [2.86 (0.58) ] Compactness 1 [0.30 (0.30)] Hist entropy [2.17 (0.59)]
Entropy [0.29 (0.04)] Spherical disproportion [0.20 (0.20)] Norm energy [2.34 (0.54)]

Hist entropy [1.84 (0.34)] Volume fraction at 0.10 intensity [0.30 (0.07)] Norm entropy [0.22 (0.05)]
Norm energy [2.96 (0.37)] NIenergy [0.72 (0.26)]
Norm entropy [0.29 (0.02)] Entropy [0.10 (0.04)] LoG sigma=2.5mm

Hist entropy [1.84 (0.70)] Coeff vari [4.29 (0.12)]
LoG sigma=3mm Norm NIenergy [0.20 (0.08)] Energy [3.83 (0.48)]

Coeff vari [3.41 (0.83)] Norm entropy [0.03 (0.01)] Entropy [0.46 (0.08)]
Energy [3.91 (0.27)] Hist entropy [2.33 (0.34)]
Entropy [0.51 (0.04)] Wavelet LLL Norm energy [3.44 (0.07)]

Hist entropy [1.77 (0.11)] Coeff vari [1.74 (0.62)] Norm entropy [0.33 (0.03)]
Norm energy [2.72 (0.87)] Energy [1.33 (0.56)]
Norm entropy [0.27 (0.07)] Entropy [0.16 (0.06)] Wavelet LLH

Hist entropy [0.95 (0.41)] Coeff vari [2.62 (0.89)]
Wavelet LHL Norm energy [1.04 (0.39)] Entropy [0.37 (0.15)]

Entropy [0.78 (0.51)] Norm entropy [0.11 (0.04)] Hist entropy [0.60 (0.16)]
Hist entropy [0.54 (0.06)] Norm entropy [0.79 (0.66)]

Norm entropy [0.76 (0.48)]
Wavelet HLL Wavelet LHH

Wavelet HLH Entropy [0.53 (0.34)] Entropy [1.49 (0.34)]
Entropy [3.24 (2.42)] Hist entropy [0.66 (0.24)] Hist entropy [0.46 (0.16)]

Hist entropy [0.58 (0.25)] Norm entropy [0.56 (0.37)] Norm entropy [1.51 (0.32)]
Norm entropy [3.22 (2.39)]

Wavelet HHL Wavelet HHH
Laws EEE Entropy [0.83 (0.25)] Coeff vari [1.91 (1.26)]

Hist entropy [2.44 (0.69)] Hist entropy [0.54 (0.19)] Energy [1.80 (0.42)]
Entropy [0.10 (0.04)]

Laws EEL Laws EES Hist entropy [0.37 (0.02)]
Hist entropy [3.04 (0.78)] Hist entropy [2.92 (0.83)] Norm energy [0.41 (0.27)]

Norm entropy [0.03 (0.02)]
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Table 10: Robust radiomic features [%CoV mean value (standard deviation)] for the
ViewRay Daily QA phantom dataset.

Laws ELE Laws ELL
Hist entropy [2.93 (0.35)] Hist entropy [1.98 (0.18)] Laws ELS

Hist entropy [2.63 (0.29)]
Laws ESE Laws ESL

Hist entropy [2.81 (0.64)] Hist entropy [3.01 (1.69)] Laws ESS
Hist entropy [2.59 (1.02)]

Laws LEE Laws LEL
Hist entropy [0.83 (0.33)] Hist entropy [1.21 (0.07)] Laws LES

Hist entropy [1.25 (0.01)]
Laws LLE Laws LLL

Hist entropy [0.82 (0.10)] Energy [0.70 (0.26)] Laws LLS
Entropy [0.10 (0.04)] Hist entropy [0.71 (0.34)]

Laws LSE Hist entropy [2.15 (1.12)]
Hist entropy [1.34 (0.03)] Norm energy [0.19 (0.06)] Laws LSL

Norm entropy [0.03 (0.01)] Hist entropy [1.57 (0.39)]
Laws LSS

Hist entropy [1.60 (0.01)] Laws SEE Laws SEL
Hist entropy [2.53 (0.19)] Hist entropy [2.68 (0.31)]

Laws SES
Hist entropy [2.94 (0.04)] Laws SLE Laws SLL

Hist entropy [3.08 (0.78)] Hist entropy [2.49 (0.08)]
Laws SLS

Hist entropy [3.35 (0.46)] Laws SSE Laws SSL
Hist entropy [3.32 (0.66)] Hist entropy [3.15 (0.20)]

Laws SSS
Hist entropy [3.56 (0.44)] Co-occurrence Run-length

Entropy [2.13 (0.58)] SRE [0.55 (0.16)]
Gray-level size-zone Mean [1.02 (0.10)] LRE [2.33 (1.01)]

- Inverse diff. moment [0.07 (0.03)] RLNU [3.18 (0.61)]
Inverse diff. [0.11 (0.01)] RPC [2.13 (0.25)]

Neigborhood Gray-Tone Diff. Sum entropy [2.24 (0.38)]
- Vnorm Mean [0.77 (0.21)] Fractal dimension

Gnorm Entropy [2.13 (0.58)] meanLac1 [0.68 (0.07)]
Gnorm Sum Entropy [2.24 (0.38)] meanLac2 [0.92 (0.25)]

Gnorm Mean [1.02 (0.10)] meanLac3 [0.78 (0.14)]
VGnorm Mean [0.77 (0.22)]
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