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Abstract

Fifteen million people lose their lives to stroke and cancer every year. This amounts to
one in every four deaths worldwide, making these among the deadliest diseases affecting
humankind. Fruitful attempts at containing stroke- and cancer-related mortality hinge on
early detection. Diffusion MRI (dMRI) is an imaging modality that is sensitive to tissue
microstructure, and therefore unveils tissue changes before they become visible on morpho-
logical images. Maps of the apparent diffusion coefficient (ADC) find routine clinical use
for cancer and stroke diagnosis. More detailed microstructural information is obtained by
time-dependent dMRI, which probes the diffusion of water restricted within cells and ex-
changing between cellular environments. Measurements of water restriction and exchange
yield estimates of cell size and permeability, respectively. Tracking these features may
be important for reliable tumour characterisation and evaluation of treatment response.
Estimating cell size and permeability is a challenge because the phenomena of restriction
and exchange have opposing effects on the diffusion-weighted signal. With increasing dif-
fusion time, restriction elevates the signal while exchange decreases it. Restriction and
exchange can therefore not be disentangled by solely varying the diffusion time in a dMRI
experiment. Typical models assume that restriction is prevalent at short time scales while
exchange is dominant at long time scales. Estimates of size and exchange are made inde-
pendently by doing experiments in different time regimes. Nevertheless, previous research
has highlighted that this approach may induce inaccuracy in estimated diffusion metrics.
In light of this, the objective of this thesis work was to develop a unified theoretical frame-
work and experimental approach for measuring restriction and exchange at all time scales.
Extending previous work, a commonly used model of exchange within dMRI - the Karger
model - was generalised to accommodate arbitrary gradient waveforms. By incorporating
the restriction information contained in the diffusion spectrum, this thesis work derived a
general unified model of restriction and exchange that is valid for all time scales, gradient
waveforms and b-values. In other words, the proposed model is an exact solution to the
problem at hand. With the aim of deriving a complementary theory more informative for
experimental design, an alternative approach employing the relation between the parti-
cle velocity autocorrelation function and the diffusion spectrum was also explored. This
yielded a second-order signal representation applicable to any gradient waveform, all time
scales and moderate b-values. Monte-Carlo simulations were performed on a synthetic
structure to validate the developed theory. Excellent agreement between simulated and
estimated parameters was observed. Numerically optimised gradient waveforms improved
precision in parameter estimates by a factor of 2 in relation to standard pulsed-gradient
sequences. In a word, this thesis work presents a general, unified theoretical framework
describing the effects of restricted diffusion and water exchange on the diffusion-weighted
signal. The results pave the way for future research involving optimisation of experiments
to minimise scan times, which is a crucial step towards clinical implementation.



Popular abstract (Swedish)

Drygt femton miljoner ménniskor avlider av cancer och stroke varje ar, vilket gér dem
till nagra av de svaraste sjukdomarna som vi drabbas av. Ddédligheten hos dessa sjukdo-
mar paverkas framst av nar dem upptacks. Ju tidigare sjukdomen diagnostiseras, desto
hogre blir sannolikheten for att den botas. Tidig upptackt kraver kansliga diagnostiska
metoder, sarskilt de som kan detektera forandringar i vdvnaden innan de visas pa vanliga
anatomiska bilder. Diffusions MR (dMRI) &r en bildgivande metod som &r kénslig mot
vavnadens mikroskopiska struktur och funktion. dMRI kan saledes detektera forandringar
innan de syns pa konventionella medicinska bilder. Matningar av diffusionshastigheten
hos vattenmolekyler anvénds rutinmassigt inom kliniken for att diagnostisera cancer och
stroke. Mer information om vavnadens mikrostruktur utover diffusionshastigheten kan
bidra till diagnos och karakterisering av tumorer, samt utvérdering av respons pa be-
handling. Sadan information kan erhallas med hjalp av sa kallad tidsberoende dMRI,
vilket mojliggor méatning av cellernas storlek och genomsléapplighet. Dessa cellegenskaper
ar dock svara att mata pa grund av att de har motsatta effekter pa den insamlade MR
signalen. En minskning av signalen kan antingen bero pa att cellen har blivit storre
eller att genomslappligheten har okat, vilket gor det svart att sérskilja de tva effekterna.
Befintliga modeller inom dMRI antar att cellstorleken ar viktig endast vid korta tidskalor,
och genomslapplighet ar relevant endast vid langa tidskalor. Genom att utfora experiment
pa olika tidskalor kan man erhalla uppskattningar av cellstorlek och genomslapplighet.
Det har dock visats att denna metod kan infora osakerheter i de uppmatta egenskaperna.
Syftet med detta examenarbete var darmed att utveckla en teori och experimentell metod
for att kunna mata cellstorlek och genomslapplighet utan att gora de ovan beskrivna an-
taganden. Detta gjordes genom att generalisera och kombinera befintliga teorier som
beskriver effekterna av cellstorlek och genomslapplighet pa MR-signalen. Den generalis-
erade teorin gor det mojligt att designa, optimera och utfora experiment som ger palitliga
maéatningar av cellstorlek och genomslapplighet. Datorsimuleringar utfordes for att validera
den utvecklade teorin. Teorin visade god Gverensstammelse med simuleringarna. Detta
arbete utgor ett viktigt tillagg i forskningsomradet dMRI. Resultaten kan anvindas som
utgangspunkt for framtida forskning inom optimering av experiment for att minimera
undersOkningstider. Pa sa sitt kan metoden eventuellt implementeras i kliniken.
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1 Introduction

Cancer and stroke remain among the leading causes of death worldwide [1]. In 2018
alone, cancer single-handedly claimed just shy of ten million lives. Stroke affects fifteen
million people every year, killing five million and permanently crippling just as many [1].
Notwithstanding recent surges in medicine towards battling these diseases, they pose a
dire threat to human health. Innovation of more sensitive diagnostic tools lies at the heart
of successfully alleviating cancer- and stroke-related mortality.

The prognosis of any disorder is greatly improved by early detection. As regards can-
cer and stroke, magnetic resonance imaging (MRI) has proved a vastly potent instrument
in the arsenal of modern imaging techniques. MRI owes its success to the ability to de-
liver high resolution diagnostic data without exposing the patient to ionising radiation.
The ample quantity of water and the delicate transport of its molecules in the body are
exploited instead. Conventional MRI provides morphological images that are invaluable
for the diagnosis and treatment planning of brain tumours [2]. However, a greater head
start is offered by a diagnostic tool capable of revealing tissue alterations before they
manifest on anatomical images. This demands an imaging modality that is sensitive to
tissue micro-architecture and molecular function. Diffusion MRI (dMRI), by virtue of
its immaculate sensitivity to the random displacement of water molecules, provides a
non-invasive marker of tissue microstructure [3, 4, 5, 6]. Indeed, diffusion-weighted im-
ages show an elevated signal, and correspondingly reduced apparent diffusion coefficient
(ADC), in ischaemic tissue almost immediately after onset. T2-weighted images, by com-
parison, only show the corresponding tissue change hours following onset [3, 7].

Prospects of early detection and eventual eradication of pathology increase with the
amount of information that can be reliably inferred from registered images. The ADC - al-
though highly sensitive - does not communicate microstructural features such as cell sizes
and membrane permeability [4, 8]. Capturing the temporal dynamics of these quantities
enables non-invasive tumour characterisation and assessment of treatment response [9].
Alterations in cell size are indicative of cell proliferation or therapy-induced cell death,
while permeability is a direct reflection of membrane integrity [10, 11]. In the same breath,
explicitly treating cells as objects of finite size bounded by permeable membranes gives
more accurate estimates of ADC [11, 12]. The need for knowledge of cell sizes and perme-
ability necessitates time-dependent diffusion MRI. Water molecules restricted within cells
demonstrate time-dependent rates of diffusion that are characteristic of the geometry of
confinement [12, 13, 14]. The rate of exchange of water molecules between cellular envi-
ronments is proportional to membrane permeability [12]. Hence, probing restriction and
exchange using time-dependent dMRI provides estimates of cell size and permeability.



Measuring restriction and exchange is rendered a non-trivial challenge by the conflict-
ing influences that the two phenomena have on the diffusion-weighted signal. As the
diffusion time increases, the effect of exchange is to deplete the registered signal, while
restriction acts to the contrary by raising it [15]. Consequently, any dMRI experiment
that endeavours to probe time-dependence by varying the diffusion time fails to disentan-
gle the two effects. Exchange estimates are invariably confounded by restriction, and the
converse is true of size estimates.

To date, restriction and exchange are measured via the assumption that the two effects
prevail in distinct time regimes. Particularly, cells are treated as impermeable enclosures
at short time scales, enabling a size estimation while neglecting exchange. On the op-
posite end of the spectrum - long time scales - exchange is inferred by regarding cells as
components devoid of geometry [12]. It goes without saying that a just reflection of real-
ity would be a theory encompassing both restriction and exchange phenomena at all time
scales. This presents a research gap in the field of dMRI and an attempt at addressing the
void was the central aim of this thesis work. The project builds on the work of Nilsson
et al. [15], who developed a unified model of restriction and exchange that is applicable
to systems with slow exchange, short time scales and moderate b-values. Nilsson demon-
strated the superiority of numerically optimised gradient waveforms over conventional
pulsed-gradient spin-echo (PGSE) sequences. The present work aimed at addressing the
shortcomings of the unified model and building a general and robust theory of restriction
and exchange. Flexibility of experimental design was maintained by ensuring that the
theory could accommodate arbitrary gradient waveforms.

2 Background

The discovery of the nuclear magnetic resonance phenomenon dates back to 1938 when
Isidor Isaac Rabi observed the emission of radio waves at well-defined frequencies from
a beam of molecules traversing a magnetic field [16]. His work earned him the 1944
Nobel Prize in Physics. Felix Bloch and Edward Mills Purcell later demonstrated the
phenomenon in solids and liquids, providing the first experimental description in 1946
[17, 18, 19] and receiving the 1952 Nobel Prize in Physics. Already in 1971, Raymond
Damadian highlighted the potential of differences in relaxation rates for differentiating
between healthy and cancerous tissue [20]. Paul C Lauterbar [21] showed in 1973 that
nuclear magnetic resonance could be used to generate an anatomical image, receiving the
2003 Nobel Prize in Physiology or Medicine together with Sir Peter Mansfield [16]. These
pioneering breakthroughs saw the dawn of a cascade of research and clinical applications of
magnetic resonance. This section provides a succinct review of the fundamental principles
of MRI, the physics of diffusion and the foundation of diffusion MRI. In addition, models



used to describe restricted diffusion and water exchange in the field of dMRI are briefly
discussed.

2.1 Principles of MRI

Hydrogen nuclei bear a non-zero net spin and therefore possess a net magnetic moment
[22]. Unperturbed, the spin vectors exhibit random orientations in matter, giving rise to
zero net magnetisation. Exertion of a strong static magnetic field induces spin precession
about the direction of the field. The precession frequency - directly proportional to the
field strength - is called the Larmor frequency and is a physical quantity of paramount
importance. In the presence of the field, a measurement of the magnetisation of an indi-
vidual proton would yield one of two results: spin-up (parallel to the field) or spin-down
(anti-parallel) [23]. However, an MRI experiment registers signal from ensembles of in-
teracting spins, leading to a largely isotropic distribution of spin orientations. There is,
nevertheless, a slight skewing of the distribution in the direction of the field, giving rise
to a net magnetisation vector. In equilibrium, this vector is stationary, but otherwise
precesses about the static magnetic field at the Larmor frequency [23].

The energy difference between the spin-up and spin-down states corresponds to the energy
of electromagnetic radiation in the radio-frequency (RF) regime. Radio waves can thus
be utilised to influence the magnetisation vector. Indeed, as perceived from a rotating
frame of reference, the effect of an RF pulse in resonance with the precession is to rotate
the magnetisation vector into a plane perpendicular to the static field. In this plane, the
precession of the magnetisation vector becomes rotational motion. This produces a time-
varying magnetic field capable of inducing a current in a conducting coil. The induced
current is the MR signal [17, 22].

Exposure of the magnetisation to an RF pulse perpendicular to the static field is called
excitation. Once the excitation pulse is terminated, relaxation commences forthwith to
return the system to equilibrium. Longitudinal restoration of the magnetisation occurs
due to energy loss to the lattice and is characterised by the time-constant 7. Transverse
relaxation is driven by spin dephasing either due to interaction with neighbouring spins or
inhomogeneities in the static field (time constant T, or Ty, respectively). The transverse
net magnetisation thus decays over time and so does the registered MR signal [17, 22].

All the phenomena described above can be encapsulated into the Bloch equation [18],
which reads

dM M, + M, M,— M
@M mMxB- My 0
Ty T,

o (1)



where M = (M, M, M,)" is the magnetisation vector, v is the gyromagnetic constant,
B is the external magnetic field, M, is the equilibrium magnetisation and 77 and 75 are
time constants for longitudinal and transverse relaxation, respectively. The gist of equa-
tion 1 is that the magnetisation is given rise to by the magnetic field B and dissipated
both longitudinally and transversely. A solution of equation 1 provides a description of
the time-evolution of the MR signal as a function of 7} and T5. Note that equation 1 (and
all experimental designs based on it) assumes that spins are stationary.

An MRI experiment involves - in addition to the static magnetic field and the RF - a
combination of spatially varying magnetic fields (gradients) whose purpose is to localise
the registered MR signal to a given voxel [17, 22]. The blend of gradients consists of a
frequency-encoding (G), phase-encoding (G,) and slice-selection (G,) component. An
elucidative illustration of the function of these components is the basic spin-echo experi-
ment shown in Figure 1. Excitation is done by the 90° pulse while the 180° is a refocusing
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Figure 1: Spin-echo experiment. The 90° excitation RF pulse is followed by the 180° refo-
cusing pulse. Slice-selection gradients restrict the effect of the RF pulses to a specific slice.
The phase-encoding and frequency-encoding gradients localise signal vertically and horizontally,
respectively. All gradients save the phase-encoding are balanced to eliminate undesired signal
loss. The FID (Free Induction Decay) is the signal directly preceded by the 90° pulse. The echo
used for image generation is registered at the echo-time (TE). The experiment is repeated after
a repetition time (TR).



pulse that eliminates the effects of inhomogeneities in the static field. The slice-selection
gradient localises the excitation (and refocusing) to a desired slice of the imaged volume.
The negative gradient shown in black serves to reverse the spin dephasing (and conse-
quent signal loss) caused by the section of GG, shaded black. Signal localisation in the
vertical axis (y) is enabled by the phase-encoding gradient which is applied in that di-
rection. While on, the gradient changes both the precession frequency and phase of the
spins, but the frequency is restored when the gradient is switched off. On the contrary,
the induced position-dependent phase changes persist until the signal is registered at the
echo time (TE). The frequency-encoding gradient is applied along the horizontal (x) axis
and localises the signal in this direction based on the induced position-dependent pre-
cession frequencies. A preparation pulse shown in black in the time interval [0 TE/2]
reverses spin dephasing due to the section of GG, leading up to TE. Note that the axes z,y
and z are used here to indicate the relative orientations of the gradients, but their actual
directions in the imaged volume can be chosen arbitrarily. Signal arising directly after
the 90° pulse is termed the free induction decay (FID) and the signal used to generate
the MR image is the echo. The time taken to repeat the experiment in Figure 1 is called
the repetition time (TR).

2.2 Principles of diffusion

Brownian motion was first observed in 1827 by Robert Brown, who noticed the incessant
oscillation of pollen grains suspended in water [24]. Adolf Fick hypothesised in 1855
that the flux through a boundary is proportional to the concentration gradient across it,
arriving at what is now recognised as Fick’s first law of diffusion [25]:

J=-D.VC (2)

where J is the flux, C is the concentration and D is the diffusion coefficient. Note that
equation 2 is valid in isotropic media. If this condition is not met, D becomes a tensor
that may be represented by the matrix [26]:

Daccc D:cy Dwz
D = Dyr Dyy Dyz (3)
DZ.’E DZy DZZ

The continuity equation for C' dictates that the rate of change of particle concentration
in a given volume must be equal to the net flux across the boundaries. Assuming that
there is no source inside the volume, this relation can be expressed

oC
=V (4)



Combining equations 2 and 4 provides Fick’s second law of diffusion:

%—(i = DV*C (5)

Fick’s laws predict a zero net flux in the absence of a concentration gradient, disregarding
diffusion driven by thermal fluctuations (so-called self-diffusion). Einstein introduced a
probabilistic interpretation of Fick’s laws and arrived at an expression for the mean-
square-displacement of a diffusing particle from its starting position [27]:

([r(t) = r(0)]*) = 2nDt (6)

where n is the number of spatial dimensions and 7 is the particle position vector. Equation
6 can also be interpreted as the variance of the individual step lengths taken by the
particle, with time ¢ being replaced by the duration of steps (At). Self-diffusion can thus
be described by a propagator (P(x|xo,t)), which is a probability density function that
gives the probability of finding the particle at position z; given that it started at xy and
diffused for a time ¢ [14, 28]. An expression for the propagator may be obtained by solving
Fick’s second law and replacing the concentration C' with probability density P to obtain:

1 _ (z1—20)2
Lo (7)

which is a Gaussian distribution with variance equal to the right-hand-side of equation 6.
The generalisation of equation 7 to higher spatial dimensions is straightforward.

P(ZL’1|CL’0, t) =

2.2.1 On the diffusion spectrum

The motion of a particle diffusing in a confinement can be resolved into frequency compo-
nents, giving rise to a spectrum of diffusivities [29]. A heuristic but useful interpretation
is that a confinement renders the particle displacement perfectly sinusoidal in time. The
maximum amplitude of the oscillations is dictated by the size of the confinement. A
constraint on displacement at a given frequency translates to a restraint on the velocity
at that frequency. Motion at high frequency may attain the maximum possible particle
velocity (the intrinsic value). On the contrary, the velocity at low frequency is determined
by the confinement size. The result is a diffusion spectrum whose shape is characteristic
of the geometry of confinement. This interpretation holds even in a more realistic scenario
where restricted diffusion is not oscillatory [29].

Generally, the diffusion spectrum is defined as the Fourier transform of the velocity au-
tocorrelation function [14, 29, 30]:

D(w) = /OO (v(0)v(t))e ™'dt (8)
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Stepisnik [14] derived D(w) for parallel planes, cylinders and spherical geometries. For
ease of reference, the result for cylinders is given below

Z B, anDow? ()

a2 D2 + w?
where Dy is the intrinsic diffusivity and
2(R/ pin)?
g, = 2l w0
My — 1

and

a, = (%)2 (11)

where p,, are the roots of Jj(u) = 0 and Jj is a Bessel function of the first order and kind.
R is the radius of the cylinder.

2.3 Principles of diffusion MRI

As earlier alluded to, the Bloch equation describing the MRI experiment makes no provi-
sion for spin transport. Rather, water molecules are assumed to be fully in situ. Motion
may be incorporated into the Bloch equation by considering the continuity equation for
the magnetisation M [31]:

oM
ot

where R(t) represents a source-sink process (the right-hand-side of the Bloch equation)
and J(M) is a flux term denoting an arbitrary mode of spin transport (such as diffusion
or flow). The solution of equation 12 depends on the choice of the flux term J. In
fact, different choices of J yield distinct MRI techniques. J = 0 gives T1/T2-weighted
imaging [31]. Torrey [32] defined J according to Fick’s first law (equation 2) arriving at
the renowned Bloch-Torrey equation:

=R(t)—V-J(M) (12)

oM M, + M, M,— M,
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Diffusional motion can be encoded into the MR signal by the introduction of additional
gradient pulses into the spin-echo experiment (Figure 1). A pedagogical illustration is the

Stejskal-Tanner experiment, shown schematically in Figure 2 [33, 34].
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Figure 2: The Stejskal-Tanner experiment (single diffusion encoding). Two gradient pulses are
added to the spin-echo sequence of Figure 1, on either side of the 180° pulse. In the absence
of incoherent spin motion, the gradients cause no net dephasing and have no effect. Incoherent
motion such as diffusion leads to phase dispersion and consequent signal loss. ¢, A and g¢
represent the pulse duration, interval and amplitude, respectively.

This sequence is also referred to as Single Diffusion Encoding, stemming from the fact
that a single pair of gradient pulses are used to probe diffusion. One gradient pulse
is applied following the excitation RF-pulse, and another after the refocusing RF-pulse.
What transpires between the cessation of the first pulse and the onset of the second is
the backbone of diffusion MRI. The essence of the experiment is that, in the absence of
incoherent motion between the two pulses, the spin dephasing due to the first pulse is
exactly reversed by the second pulse. Consequently, the diffusion-encoding gradients have
no influence on the MR signal and a T2-weighted image is obtained. Nevertheless, should
spins migrate incoherently (as by diffusion), the second pulse does not fully eliminate the
dephasing due to the first pulse. A phase dispersion ensues and manifests itself as an
attenuation of the MR signal [34, 35]. The phase change following exposure to a magnetic
field gradient g(t) = [g.(t) g,(t) g.(t)] for a time 7" is given by

o(T) =~ / g(t) - (t)dt (14)

where r(t) is the particle position vector [14]. Note that the functional form of g(t) is
referred to as the gradient waveform. Let f, denote the probability density function of
the phase ¢. The signal attenuation due to phase dispersion can then be described by

S = / h e fydp = (e7?) (15)

—00
where the average is taken over all contributing spins. An intuitive interpretation of equa-
tion 15 is that there is no signal attenuation when there is no spin dephasing, and for
arbitrarily large phase changes, the signal vanishes.

10



An alternative signal representation employs the propagator formalism introduced in
equation 7. Assuming gradient pulses of short duration, the diffusion-weighted signal
can be approximated by the Fourier transform of the averaged diffusion propagator
(28, 36, 37, 38]:

S(q) = /P(x, tq) - e T dx (16)

where © := x; — xg, tg is the diffusion time and ¢ is the magnitude of an important
quantity called the g-vector, related to the gradient waveform through:

q= 2159 (17)
m

where ¢ is the pulse width as shown in Figure 2. In the case of free diffusion in homoge-
neous media, the average diffusion propagator is described by the Gaussian [36, 37, 38|
2

1 __a?
P(.T,td) = \/471_:% -e 1Pt (18)

Substituting equation 18 into equation 16 gives

S(q) = e~4ma*Pta (19)

where t; = A (the pulse spacing) assuming arbitrarily narrow gradient pulses. Stejskal and
Tanner [34] showed that, for any pulse duration, the diffusion time is given by t; = A—4/3.

Equation 19 can be written
S(b) = e™P (20)

where

b =4’ (A —§/3) (21)

is called the b-value and captures the amount of diffusion encoding performed by the
gradient g. Equation 20 is a highly important result.

Note that g has been treated as a constant in the formalism above, and this is only

true under the assumption of narrow gradient pulses. A more general definition of the
g-vector can be expressed [35]

=+ [ gr)dr (22)

and the corresponding general definition for b becomes

- / " 20t (23)
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where T is the total diffusion encoding time. The apparent diffusion coefficient, D, is
equal to the bulk diffusivity (Dy) in the case of free diffusion. Given a sample with a
distribution of diffusivities, denoted P(D), the signal attenuation can be written as the
average value

S(b) = / PP P(DVAD = (D) (24)

Diffusion in inhomogeneous media is not free and is more appropriately described by a
time-dependent diffusivity, D(t). Expressions for D(t) in specific time regimes for PGSE
experiments have been presented pedagogically elsewhere [12, 13, 28]. Worth highlighting
is that the problem of time-dependent diffusion has solutions for short time scales and
times approaching the tortuosity limit. The form of D() in the intermediate time regime
has at best been estimated via interpolation between the solutions in the two extremes. To
compound the challenge, there is no general solution for time-dependence with arbitrary
gradient waveforms on any time scale [28]. A common approach is to use the diffusion
spectrum introduced in Section 2.2.1 to arrive at the signal representation [14, 28, 30]:

L[~ 2
InS ~ —%/Oo D(w)|Q(w)|*dw (25)

where Q(w) is the Fourier transform of ¢(t):

Q) = / () et (26)

o0

2.4 Biophysical models and the cumulant expansion

The complexity of biological systems is projected onto any biophysical model that pur-
ports to capture the salient features of such systems. While suitable for forward modelling,
the resulting mathematical descriptions may not offer insights that are valuable for exper-
imental design. A remedy worth introducing is the mathematical instrument called the
cumulant expansion. Its objective is to approximate sophisticated model representations
with intuitive expressions whose terms bear fundamental physical significance. Although
liable to inaccuracy due to its approximative nature, the benefits entailed by the cumulant
expansion are considerable.

2.4.1 Principles of moments and cumulants

Given a random variable X with probability density function fx, the n-th moment of the
probability distribution of X, pu,, is given by

= (%) = [ o (27)

[e.e]
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where (-) denotes an expectation value. Evaluating moments using the integral in equation
27 poses a growing challenge as the order n increases. A common strategy is to introduce
the so-called moment-generating function which is defined by [39, 40]

Mo =) = [ o (a)da (28)

—o0
where ¢t is a dummy variable. The moment-generating function is considered to exist if
there exists a positive real number £ such that the integral in equation 28 converges for
all t € [—¢,¢]. Performing a Taylor series expansion of equation 28 yields

th'Q t3x3 [e¢) t2$2 t3$3
M(t):<1+tx+7+7+...>:/ (1+tx+7+7+.-.)fx(x)dﬂf (29)

Hence, the moment-generating function can be expressed as a polynomial of the moments
of the distribution of X [39, 40]:

—00

t2(2? 3 (23 12 t3
M(t) = (1) + t(z) + <2' ) + <3| ) +..= 1+m1+%+$+... (30)
The power of exploiting the moment-generating function is that, contrary to evaluating
the n-th order moment via the integral in equation 27, it is now given by the n-th derivative

of M(t) evaluated at t = 0. That is

d" M (t)

o =" |

The cumulant-generating function is defined as the logarithm of the moment-generating
function [39, 40]

(31)

t? t3
C(t):==InM(t) =1In <1+tu1+%+$+...> (32)
and can also be expressed as a polynomial in cumulants of the distribution of X, ¢,:
t? t3
o) :tc1+$+§+... (33)

Taylor-expanding equation 32 and comparing coefficients of ¢" with those in equation 33
yields relationships between the cumulants and moments of the distribution of X:

C1 =

C2 = M2 — M?
C3 = pig — 3papa + 2403

Cy = pug — 4 iz + 1203 p — 33 — 6y

(34)
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A general expression relating the n-th order cumulant to the moments has been provided
by Zheng [39] and Rodriguez and Tsallis [40].

2.4.2 Applications in diffusion MRI

The convenience brought by the cumulant expansion is made apparent by applying the
principles described above to the following signal representation

/S0 = (™) (35)

which describes the signal attenuation due to diffusion-induced spin dephasing averaged
over all contributing spins. In the absence of flow, the distribution of ¢ may be assumed
symmetric, implying that all moments of odd order are zero. To fourth order, equation

35 can be written ] 1
1D(S/S(]) =~ —502 + ﬂ&; (36)
Using the relations between cumulants and moments in 34, the following approximation

is obtained
In(S/50) &~ —3 (%) + 51 (6% — 3(6%?) (37)

Equivalently, the signal equation

S5(b)/So = (exp(—bD)) (38)
can be approximated with
In(S(0)/50) ~ b+ (D) + 5 - (%)~ (Y] (30)

which is linear in the mean and variance of the diffusivities.

2.5 Water exchange

The theory presented in preceding sections deals with a single pool or continua of spins.
Tissue models typically include two distinct compartments arbitrarily associated with the
names “intracellular” and “extracellular”. The Bloch-Torrey equation can be transformed
into a coupled system of differential equations representing the communication between
two pools of spins (labelled 1 and 2 below) [31]:

OM, (t M

;( ) _ Ry(My) = V(ML) — EyuM, + By M,

) (40)
OM,(t +

i( ) — RQ(M2) — VJ2<M2) E21M2 E12M1
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where F15 denotes the exchange rate from compartment 1 to 2, and similarly for Ey;. The
net magnetisation is given by the superposition of the individual magnetisations in the
two compartments:

M = M, + M, (41)

These equations lead to a prominent model of exchange within diffusion MRI: the Karger
model [41]. It assumes two well-mixed pools occupying the entire available voxel volume.
The two pools are associated with signal fractions f; and f satisfying f; + fo = 1.
Relaxation characteristics are assumed identical, allowing the Bloch terms in equation 40
to be neglected. Further, Gaussian diffusion is assumed in both pools, permitting constant
diffusivities. Exchange is represented by a constant rate matrix, implicitly implying that
the exchange probability is independent of time or position. In one dimension, the Karger

model is described by
0 (M, o1 [ M
— =|K-D 42
5 (0n) = - o (37 (42)

where K (the rate matrix) and D (a diagonal matrix of diffusivities) are given by

—Fki2 ko Dy 0
K = . D=
[ k12 —k21] ’ { 0 DJ

Note that ¢ in equation 42 is constant. Noteworthy derivatives of the Kérger model in-
clude FEXI (Filtered Exchange Imaging) and CG (constant gradient) [43], both of which
have demonstrated sensitivity to transcytolemmal water exchange (labelled k5 above).
It is vital to mention that all these exchange models do not account for the geometry of
restriction. Diffusion is assumed to be free everywhere - an assumption supported by the
finding that time-dependent diffusion dominates only at short time scales. In addition,
the models demand specific pulse sequences and make no room for arbitrary gradient
waveforms. The latter issue has been addressed by Ning et al. [44] using a cumulant ex-
pansion of the phase distribution which was introduced in section 2.4. Herein, the theory
developed by Ning et al. will be referred to as the Ning model.

The Ning model shares the same assumptions as the Karger model, with the exception of
the demands on the gradient waveform. Arbitrary gradient waveforms are accommodated
by the Ning model via the following generalisation of the Karger equations:

%(ﬁ;) — [K — Dq(t)?] (g;) (43

where S; and Sy are signals from pools 1 and 2, respectively, and ¢(¢) needs not be
constant. In cases where ¢(t) is constant (SDE with narrow pulses) or piecewise constant
(DDE with narrow pulses), analytical solutions to the system in equation 43 exist and
are given by

Sspp(q,T) = 1-exp([K — D*|T) - F (44)
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Sppe(q1,q2, A1, A, t,,) = 1 - exp([K — Dqg]Ag) -exp(Kty,) - exp([K — qu]Al) - F (45)

where 1 = [1 1], F = [f1 f2|', T is the total encoding time, the subscripts 1 and 2 on
q and A represent the first and second pair of pulses in a DDE sequence and t,, is the
mixing time. A closed-form solution of this kind does not exist when ¢(t) is a smooth
function of time (that is, for arbitrary gradients). Using a stochastic calculus approach,
Ning et al. evaluated the cumulants of the phase distribution in equation 37 and arrived
at the following signal representation

— 1
InS ~ —Db+ 5Var(D)h(-)b2 (46)
where h(-) is the exchange-weighting function given by
2 (T
b0 = [ Mo (47)
where
T
w(t) = / Pt + 1)ty (48)
0

and k = kio + Koy is the sum of the exchange rates between the two pools. If the product
kT is small enough to allow the approximation e * ~ 1 — kt, the Ning model can be
written

— 1
InS~—Db+ §Var(D)(1 — kF)b2 (49)
where
o [T
I'= & tqq(t)dt (50)
0

is the effective exchange weighting time that depends on the gradient waveform and the
diffusion time.

2.6 Restricted diffusion

Numerous techniques have been proposed for probing restricted diffusion. Early ap-
proaches computed the diffusion propagator by taking the inverse Fourier transform of
the measured signal in equation 16. An estimate of compartment diameter was obtained
as the FWHM of this propagator [45]. Note that this is valid assuming short gradient
pulses. In scenarios where the diffusion time is long, and diffusion is restricted by com-
partments of equal size, the function S(q) takes the form of a diffraction pattern from
which the compartment size can be estimated [45]. Other prominent models include
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IMPULSED (imaging microstructural parameters using spectrally edited diffusion), PO-
MACE (pulsed and oscillating gradient MRI for assessment of cell size and extracellular
space) and VERDICT (vascular, extracellular and restricted diffusion for cytometry in
tumours). IMPULSED and POMACE assume two compartments (intracellular and ex-
tracellular), while VERDICT assumes an additional vascular compartment. All three
models are based on multiple PGSE and/or OGSE acquisitions and have shown promis-
ing results in in vivo studies [12].

Nilsson et al. [46], exploiting the geometry information carried by the diffusion spec-
trum, derived the following signal representation for cylindrical geometries:

bVwcd‘l) (51)

S=exp|—
where d is the cylinder diameter, c is a geometry-dependent constant which has the value

7/1536 for cylinders, Dy is the bulk diffusivity and V,, is a gradient waveform-dependent
parameter with the definition

= = amp [ I (52

Equation 51 is valid for low frequencies where the diffusion spectrum can be approximated
by the second-order polynomial:

cd*w?
Dlw)~ =5 (53)
The theory above will be referred to as the Nilsson model. A notable strength of the
Nilsson model is its ability to accommodate arbitrary gradient waveforms: equation 52
places no restrictions on the shape of ¢(t) or ¢g(t). However, none of the restriction models
presented in this section take cell permeability (and therefore exchange) into account.

Cells are modelled as impermeable spheres (or cylinders in the case of the Nilsson model).

2.7 Unification of restriction and exchange theory

Previous chapters clarified the existence of two classes of models for measuring restriction
and exchange: one that describes exchange while disregarding restriction, and another
that captures restriction while neglecting exchange. Negative effects of this approach on
parameter estimation have been noted [11, 12, 13, 44]. The scarcity of literature on models
describing both restricted diffusion and water exchange is indicative of the non-triviality
of the problem.

In the short-time limit, Sen [47] provided an expression for time-dependent compart-
ment diffusivities incorporating compartment radius of curvature and permeability. In
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the long-time regime, an effective medium theory approach was proposed by Latour et
al. [48] describing the effects of permeability on diffusion in this time scale. An accurate
estimate of the permeability of yeast cells was obtained using this model. Models called
“empirical permeable plane/spheres” also exist. Rather than directly measuring perme-
ability, they account for its effect on the measured diffusivities using empirical formulae.
Also worth the mention is the random permeable barrier model (developed by Novikov et
al. [49]) which treats membranes as randomly oriented flat planes. This model has been
used to estimate cell size and permeability in vivo.

Recently, Nilsson et al. [15] united the Ning model of exchange with the Nilsson model
of restriction to arrive at a unified model capturing restriction and exchange effects to
second order:

1
lnSz—b-E+§b2-V-(1—kF) (54)
where the mean term F is given by
E=D+ %‘R (55)
where i
c
R=— 56
5 (50
and the variance term V' is defined
Ve /A%
V = Var(D) + ?COV(D, R) + 5 Var(R) (57)

where Cov(+) denotes covariance. The theory presented here will be referred to as the uni-
fied model. Monte-Carlo simulation-based validation by Nilsson et al. showed capacity to
disentangle size and exchange. Numerically optimised gradient waveforms proved supe-
rior to traditional pulsed-gradient sequences. Note must be made, nonetheless, that this
unified model is valid for moderate b-values since it is derived from a cumulant expansion.
This limitation is strictly a restriction on the size of the product bD, but will be referred
to simply as a restraint on b-value because this is the parameter that can be influenced
by experiment. Further, the unified model requires that the exchange rate scaled by the
total encoding time (k7") be small, because the approximation of the exchange-weighting
term as 1 — kI' is otherwise invalid. As noted for the b-value, this limitation will be
termed a restriction on time scale since T is the experimental parameter. As highlighted
earlier, the unified model is based on an approximation of the diffusion spectrum with a
second-order polynomial, which is well-grounded only at low frequencies. Eliminating all
these weaknesses constitutes the substance of later chapters.
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3 Theory

Theory developed during the thesis work is presented in this section. Its aim is to ad-
dress the two major limitations associated with the unified framework by Nilsson et al.
[15]: inaccuracy at high b-values and long time scales and invalidity at high frequencies
in the diffusion spectrum. The former is tackled by generalising the Karger model to
accommodate arbitrary gradient waveforms, and the latter by proposing the use of the
full diffusion spectrum as opposed to its low-frequency approximation. Aiming to derive
an approximative signal representation to aid the extraction of insights from the devel-
oped theory, the velocity autocorrelation function is employed to evaluate cumulants of
the phase distribution. The outcome is a signal equation capturing both restriction and
exchange effects to second order.

3.1 Generalising the Karger model

It is worth reiterating that, while the unified model describes the effects of exchange and
restriction for any gradient waveform, it veers off truth at high b-values due to its foun-
dation in cumulant space. Furthermore, the definition of the exchange weighting time
(I") introduces inaccuracy as the product kT grows. Both of these hurdles could be cir-
cumvented by using the closed-form solutions of the Karger equations for SDE and DDE
(equations 44 and 45) to describe exchange. However, while placing no restrictions on
the magnitude of b or T, these equations do demand that ¢(¢) be constant or piecewise
constant. Eliminating this last restriction to obtain an exchange representation valid for
any b-value, T" and ¢(t) was the objective of this section of the thesis work.

The premise is that a given gradient waveform may be divided into a series of impulses
of arbitrarily short duration. Let At denote the duration of a pair of such impulses. The
resulting g-vector becomes piece-wise constant, having a fixed value in every time interval
At as shown in Figure 3. Recall that the coupled Kérger differential equations (43) have
analytical solutions for constant ¢. Integrating these equations in every At leads to the
following generalised discretised solution.

S(¢,N)=[1 1] -ﬁexp ( {_k’f;? _k;;} At — [131 821 qu¢> : [ﬁ] (58)

where N = Alt is the number of discretisation points, k,,, is the exchange rate from pool
m to n and D,, and f,, are the diffusivities and signal fractions of pool m, respectively.
The b-value is defined through

N
b= gAt (59)
=1

19



(a) %108 (b)

100 10
8.
T 6
E
T 4+
27 \
4 \
-100 — : - 0 VA . \
0 50 100 150 200! 0 5/('{ 100 150 200‘
, time [ms] \ y time [ms] \
/ ' / '
\ 8 d \
100 — (c) _ 10 X107 (d) .
8.
50 ¢
E l < 6
= H S
0 A=
£, ' > 4l
()]
-50 ol
-100 0
166 At 167 166 At 167
time [ms] time [ms]

Figure 3: Generalisation of the Karger model of exchange. (a): An arbitrary gradient waveform.
The point highlighted in red lies at 166 ms and has a value of 50 mT/m. (b): The g-vector
corresponding to the gradient waveform in (a). The point marked in red is the integral of the
gradient waveform over [0 166] ms. (c): Theoretical treatment of the red point in (a) as a
pair of impulses of amplitude 50 mT/m and time interval At. (d): g-vector corresponding to
the impulses in (c). Note that the red point in (a) has been chosen arbitrarily. Following the
same procedure for every point on the waveform results in a g-vector that is piecewise constant,
having a constant value in every time-step At. This entails that a closed-form solution to the
Kérger equations (43) can be obtained in every At, yielding the expression in equation 58.

which is the discrete version of equation 23. The generality of equation 58 renders it
potentially useful for model fitting and parameter inference. Be that as it may, the