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Abstract

Fifteen million people lose their lives to stroke and cancer every year. This amounts to
one in every four deaths worldwide, making these among the deadliest diseases affecting
humankind. Fruitful attempts at containing stroke- and cancer-related mortality hinge on
early detection. Diffusion MRI (dMRI) is an imaging modality that is sensitive to tissue
microstructure, and therefore unveils tissue changes before they become visible on morpho-
logical images. Maps of the apparent diffusion coefficient (ADC) find routine clinical use
for cancer and stroke diagnosis. More detailed microstructural information is obtained by
time-dependent dMRI, which probes the diffusion of water restricted within cells and ex-
changing between cellular environments. Measurements of water restriction and exchange
yield estimates of cell size and permeability, respectively. Tracking these features may
be important for reliable tumour characterisation and evaluation of treatment response.
Estimating cell size and permeability is a challenge because the phenomena of restriction
and exchange have opposing effects on the diffusion-weighted signal. With increasing dif-
fusion time, restriction elevates the signal while exchange decreases it. Restriction and
exchange can therefore not be disentangled by solely varying the diffusion time in a dMRI
experiment. Typical models assume that restriction is prevalent at short time scales while
exchange is dominant at long time scales. Estimates of size and exchange are made inde-
pendently by doing experiments in different time regimes. Nevertheless, previous research
has highlighted that this approach may induce inaccuracy in estimated diffusion metrics.
In light of this, the objective of this thesis work was to develop a unified theoretical frame-
work and experimental approach for measuring restriction and exchange at all time scales.
Extending previous work, a commonly used model of exchange within dMRI - the Kärger
model - was generalised to accommodate arbitrary gradient waveforms. By incorporating
the restriction information contained in the diffusion spectrum, this thesis work derived a
general unified model of restriction and exchange that is valid for all time scales, gradient
waveforms and b-values. In other words, the proposed model is an exact solution to the
problem at hand. With the aim of deriving a complementary theory more informative for
experimental design, an alternative approach employing the relation between the parti-
cle velocity autocorrelation function and the diffusion spectrum was also explored. This
yielded a second-order signal representation applicable to any gradient waveform, all time
scales and moderate b-values. Monte-Carlo simulations were performed on a synthetic
structure to validate the developed theory. Excellent agreement between simulated and
estimated parameters was observed. Numerically optimised gradient waveforms improved
precision in parameter estimates by a factor of 2 in relation to standard pulsed-gradient
sequences. In a word, this thesis work presents a general, unified theoretical framework
describing the effects of restricted diffusion and water exchange on the diffusion-weighted
signal. The results pave the way for future research involving optimisation of experiments
to minimise scan times, which is a crucial step towards clinical implementation.



Popular abstract (Swedish)

Drygt femton miljoner människor avlider av cancer och stroke varje år, vilket gör dem
till n̊agra av de sv̊araste sjukdomarna som vi drabbas av. Dödligheten hos dessa sjukdo-
mar p̊averkas främst av när dem upptäcks. Ju tidigare sjukdomen diagnostiseras, desto
högre blir sannolikheten för att den botas. Tidig upptäckt kräver känsliga diagnostiska
metoder, särskilt de som kan detektera förändringar i vävnaden innan de visas p̊a vanliga
anatomiska bilder. Diffusions MR (dMRI) är en bildgivande metod som är känslig mot
vävnadens mikroskopiska struktur och funktion. dMRI kan s̊aledes detektera förändringar
innan de syns p̊a konventionella medicinska bilder. Mätningar av diffusionshastigheten
hos vattenmolekyler används rutinmässigt inom kliniken för att diagnostisera cancer och
stroke. Mer information om vävnadens mikrostruktur utöver diffusionshastigheten kan
bidra till diagnos och karakterisering av tumörer, samt utvärdering av respons p̊a be-
handling. S̊adan information kan erh̊allas med hjälp av s̊a kallad tidsberoende dMRI,
vilket möjliggör mätning av cellernas storlek och genomsläpplighet. Dessa cellegenskaper
är dock sv̊ara att mäta p̊a grund av att de har motsatta effekter p̊a den insamlade MR
signalen. En minskning av signalen kan antingen bero p̊a att cellen har blivit större
eller att genomsläppligheten har ökat, vilket gör det sv̊art att särskilja de tv̊a effekterna.
Befintliga modeller inom dMRI antar att cellstorleken är viktig endast vid korta tidskalor,
och genomsläpplighet är relevant endast vid l̊anga tidskalor. Genom att utföra experiment
p̊a olika tidskalor kan man erh̊alla uppskattningar av cellstorlek och genomsläpplighet.
Det har dock visats att denna metod kan införa osäkerheter i de uppmätta egenskaperna.
Syftet med detta examenarbete var därmed att utveckla en teori och experimentell metod
för att kunna mäta cellstorlek och genomsläpplighet utan att göra de ovan beskrivna an-
taganden. Detta gjordes genom att generalisera och kombinera befintliga teorier som
beskriver effekterna av cellstorlek och genomsläpplighet p̊a MR-signalen. Den generalis-
erade teorin gör det möjligt att designa, optimera och utföra experiment som ger p̊alitliga
mätningar av cellstorlek och genomsläpplighet. Datorsimuleringar utfördes för att validera
den utvecklade teorin. Teorin visade god överensstämmelse med simuleringarna. Detta
arbete utgör ett viktigt tillägg i forskningsomr̊adet dMRI. Resultaten kan användas som
utg̊angspunkt för framtida forskning inom optimering av experiment för att minimera
undersökningstider. P̊a s̊a sätt kan metoden eventuellt implementeras i kliniken.
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dMRI Diffusion Magnetic Resonance Imaging
ADC Apparent Diffusion Coefficient
VA Velocity Autocorrelation

1



Contents

1 Introduction 3

2 Background 4
2.1 Principles of MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Principles of diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 On the diffusion spectrum . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Principles of diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Biophysical models and the cumulant expansion . . . . . . . . . . . . . . . 12

2.4.1 Principles of moments and cumulants . . . . . . . . . . . . . . . . . 12
2.4.2 Applications in diffusion MRI . . . . . . . . . . . . . . . . . . . . . 14

2.5 Water exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Restricted diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Unification of restriction and exchange theory . . . . . . . . . . . . . . . . 17

3 Theory 19
3.1 Generalising the Kärger model . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Cumulant expansion of the generalised exchange model . . . . . . . . . . . 21
3.3 Generalising the unified model . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Velocity autocorrelations towards restriction and exchange . . . . . . . . . 24

4 Methods 34
4.1 Gradient waveform optimisation . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 One pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Two exchanging Gaussian pools . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Two compartments: restricted diffusion and exchange . . . . . . . . . . . . 38

5 Results and Discussion 42
5.1 One pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Two exchanging Gaussian pools . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Two compartments: restricted diffusion and exchange . . . . . . . . . . . . 48

6 Outlook 55

A Appendix: Generalising the Kärger model 61

B Appendix: Deriving the VA model 74

2



1 Introduction

Cancer and stroke remain among the leading causes of death worldwide [1]. In 2018
alone, cancer single-handedly claimed just shy of ten million lives. Stroke affects fifteen
million people every year, killing five million and permanently crippling just as many [1].
Notwithstanding recent surges in medicine towards battling these diseases, they pose a
dire threat to human health. Innovation of more sensitive diagnostic tools lies at the heart
of successfully alleviating cancer- and stroke-related mortality.

The prognosis of any disorder is greatly improved by early detection. As regards can-
cer and stroke, magnetic resonance imaging (MRI) has proved a vastly potent instrument
in the arsenal of modern imaging techniques. MRI owes its success to the ability to de-
liver high resolution diagnostic data without exposing the patient to ionising radiation.
The ample quantity of water and the delicate transport of its molecules in the body are
exploited instead. Conventional MRI provides morphological images that are invaluable
for the diagnosis and treatment planning of brain tumours [2]. However, a greater head
start is offered by a diagnostic tool capable of revealing tissue alterations before they
manifest on anatomical images. This demands an imaging modality that is sensitive to
tissue micro-architecture and molecular function. Diffusion MRI (dMRI), by virtue of
its immaculate sensitivity to the random displacement of water molecules, provides a
non-invasive marker of tissue microstructure [3, 4, 5, 6]. Indeed, diffusion-weighted im-
ages show an elevated signal, and correspondingly reduced apparent diffusion coefficient
(ADC), in ischaemic tissue almost immediately after onset. T2-weighted images, by com-
parison, only show the corresponding tissue change hours following onset [3, 7].

Prospects of early detection and eventual eradication of pathology increase with the
amount of information that can be reliably inferred from registered images. The ADC - al-
though highly sensitive - does not communicate microstructural features such as cell sizes
and membrane permeability [4, 8]. Capturing the temporal dynamics of these quantities
enables non-invasive tumour characterisation and assessment of treatment response [9].
Alterations in cell size are indicative of cell proliferation or therapy-induced cell death,
while permeability is a direct reflection of membrane integrity [10, 11]. In the same breath,
explicitly treating cells as objects of finite size bounded by permeable membranes gives
more accurate estimates of ADC [11, 12]. The need for knowledge of cell sizes and perme-
ability necessitates time-dependent diffusion MRI. Water molecules restricted within cells
demonstrate time-dependent rates of diffusion that are characteristic of the geometry of
confinement [12, 13, 14]. The rate of exchange of water molecules between cellular envi-
ronments is proportional to membrane permeability [12]. Hence, probing restriction and
exchange using time-dependent dMRI provides estimates of cell size and permeability.
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Measuring restriction and exchange is rendered a non-trivial challenge by the conflict-
ing influences that the two phenomena have on the diffusion-weighted signal. As the
diffusion time increases, the effect of exchange is to deplete the registered signal, while
restriction acts to the contrary by raising it [15]. Consequently, any dMRI experiment
that endeavours to probe time-dependence by varying the diffusion time fails to disentan-
gle the two effects. Exchange estimates are invariably confounded by restriction, and the
converse is true of size estimates.

To date, restriction and exchange are measured via the assumption that the two effects
prevail in distinct time regimes. Particularly, cells are treated as impermeable enclosures
at short time scales, enabling a size estimation while neglecting exchange. On the op-
posite end of the spectrum - long time scales - exchange is inferred by regarding cells as
components devoid of geometry [12]. It goes without saying that a just reflection of real-
ity would be a theory encompassing both restriction and exchange phenomena at all time
scales. This presents a research gap in the field of dMRI and an attempt at addressing the
void was the central aim of this thesis work. The project builds on the work of Nilsson
et al. [15], who developed a unified model of restriction and exchange that is applicable
to systems with slow exchange, short time scales and moderate b-values. Nilsson demon-
strated the superiority of numerically optimised gradient waveforms over conventional
pulsed-gradient spin-echo (PGSE) sequences. The present work aimed at addressing the
shortcomings of the unified model and building a general and robust theory of restriction
and exchange. Flexibility of experimental design was maintained by ensuring that the
theory could accommodate arbitrary gradient waveforms.

2 Background

The discovery of the nuclear magnetic resonance phenomenon dates back to 1938 when
Isidor Isaac Rabi observed the emission of radio waves at well-defined frequencies from
a beam of molecules traversing a magnetic field [16]. His work earned him the 1944
Nobel Prize in Physics. Felix Bloch and Edward Mills Purcell later demonstrated the
phenomenon in solids and liquids, providing the first experimental description in 1946
[17, 18, 19] and receiving the 1952 Nobel Prize in Physics. Already in 1971, Raymond
Damadian highlighted the potential of differences in relaxation rates for differentiating
between healthy and cancerous tissue [20]. Paul C Lauterbar [21] showed in 1973 that
nuclear magnetic resonance could be used to generate an anatomical image, receiving the
2003 Nobel Prize in Physiology or Medicine together with Sir Peter Mansfield [16]. These
pioneering breakthroughs saw the dawn of a cascade of research and clinical applications of
magnetic resonance. This section provides a succinct review of the fundamental principles
of MRI, the physics of diffusion and the foundation of diffusion MRI. In addition, models
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used to describe restricted diffusion and water exchange in the field of dMRI are briefly
discussed.

2.1 Principles of MRI

Hydrogen nuclei bear a non-zero net spin and therefore possess a net magnetic moment
[22]. Unperturbed, the spin vectors exhibit random orientations in matter, giving rise to
zero net magnetisation. Exertion of a strong static magnetic field induces spin precession
about the direction of the field. The precession frequency - directly proportional to the
field strength - is called the Larmor frequency and is a physical quantity of paramount
importance. In the presence of the field, a measurement of the magnetisation of an indi-
vidual proton would yield one of two results: spin-up (parallel to the field) or spin-down
(anti-parallel) [23]. However, an MRI experiment registers signal from ensembles of in-
teracting spins, leading to a largely isotropic distribution of spin orientations. There is,
nevertheless, a slight skewing of the distribution in the direction of the field, giving rise
to a net magnetisation vector. In equilibrium, this vector is stationary, but otherwise
precesses about the static magnetic field at the Larmor frequency [23].

The energy difference between the spin-up and spin-down states corresponds to the energy
of electromagnetic radiation in the radio-frequency (RF) regime. Radio waves can thus
be utilised to influence the magnetisation vector. Indeed, as perceived from a rotating
frame of reference, the effect of an RF pulse in resonance with the precession is to rotate
the magnetisation vector into a plane perpendicular to the static field. In this plane, the
precession of the magnetisation vector becomes rotational motion. This produces a time-
varying magnetic field capable of inducing a current in a conducting coil. The induced
current is the MR signal [17, 22].

Exposure of the magnetisation to an RF pulse perpendicular to the static field is called
excitation. Once the excitation pulse is terminated, relaxation commences forthwith to
return the system to equilibrium. Longitudinal restoration of the magnetisation occurs
due to energy loss to the lattice and is characterised by the time-constant T1. Transverse
relaxation is driven by spin dephasing either due to interaction with neighbouring spins or
inhomogeneities in the static field (time constant T2 or T ∗

2 , respectively). The transverse
net magnetisation thus decays over time and so does the registered MR signal [17, 22].

All the phenomena described above can be encapsulated into the Bloch equation [18],
which reads

dM

dt
= γM ×B − Mx +My

T2

− Mz −M0

T1

(1)
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where M = (Mx My Mz)
T is the magnetisation vector, γ is the gyromagnetic constant,

B is the external magnetic field, M0 is the equilibrium magnetisation and T1 and T2 are
time constants for longitudinal and transverse relaxation, respectively. The gist of equa-
tion 1 is that the magnetisation is given rise to by the magnetic field B and dissipated
both longitudinally and transversely. A solution of equation 1 provides a description of
the time-evolution of the MR signal as a function of T1 and T2. Note that equation 1 (and
all experimental designs based on it) assumes that spins are stationary.

An MRI experiment involves - in addition to the static magnetic field and the RF - a
combination of spatially varying magnetic fields (gradients) whose purpose is to localise
the registered MR signal to a given voxel [17, 22]. The blend of gradients consists of a
frequency-encoding (Gx), phase-encoding (Gy) and slice-selection (Gz) component. An
elucidative illustration of the function of these components is the basic spin-echo experi-
ment shown in Figure 1. Excitation is done by the 90◦ pulse while the 180◦ is a refocusing

Figure 1: Spin-echo experiment. The 90◦ excitation RF pulse is followed by the 180◦ refo-
cusing pulse. Slice-selection gradients restrict the effect of the RF pulses to a specific slice.
The phase-encoding and frequency-encoding gradients localise signal vertically and horizontally,
respectively. All gradients save the phase-encoding are balanced to eliminate undesired signal
loss. The FID (Free Induction Decay) is the signal directly preceded by the 90◦ pulse. The echo
used for image generation is registered at the echo-time (TE). The experiment is repeated after
a repetition time (TR).
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pulse that eliminates the effects of inhomogeneities in the static field. The slice-selection
gradient localises the excitation (and refocusing) to a desired slice of the imaged volume.
The negative gradient shown in black serves to reverse the spin dephasing (and conse-
quent signal loss) caused by the section of Gz shaded black. Signal localisation in the
vertical axis (y) is enabled by the phase-encoding gradient which is applied in that di-
rection. While on, the gradient changes both the precession frequency and phase of the
spins, but the frequency is restored when the gradient is switched off. On the contrary,
the induced position-dependent phase changes persist until the signal is registered at the
echo time (TE). The frequency-encoding gradient is applied along the horizontal (x) axis
and localises the signal in this direction based on the induced position-dependent pre-
cession frequencies. A preparation pulse shown in black in the time interval [0 TE/2]
reverses spin dephasing due to the section of Gx leading up to TE. Note that the axes x, y
and z are used here to indicate the relative orientations of the gradients, but their actual
directions in the imaged volume can be chosen arbitrarily. Signal arising directly after
the 90◦ pulse is termed the free induction decay (FID) and the signal used to generate
the MR image is the echo. The time taken to repeat the experiment in Figure 1 is called
the repetition time (TR).

2.2 Principles of diffusion

Brownian motion was first observed in 1827 by Robert Brown, who noticed the incessant
oscillation of pollen grains suspended in water [24]. Adolf Fick hypothesised in 1855
that the flux through a boundary is proportional to the concentration gradient across it,
arriving at what is now recognised as Fick’s first law of diffusion [25]:

J = −D · ∇C (2)

where J is the flux, C is the concentration and D is the diffusion coefficient. Note that
equation 2 is valid in isotropic media. If this condition is not met, D becomes a tensor
that may be represented by the matrix [26]:

D =





Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz



 (3)

The continuity equation for C dictates that the rate of change of particle concentration
in a given volume must be equal to the net flux across the boundaries. Assuming that
there is no source inside the volume, this relation can be expressed

∂C

∂t
= −∇ · J (4)
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Combining equations 2 and 4 provides Fick’s second law of diffusion:

∂C

∂t
= D∇2C (5)

Fick’s laws predict a zero net flux in the absence of a concentration gradient, disregarding
diffusion driven by thermal fluctuations (so-called self-diffusion). Einstein introduced a
probabilistic interpretation of Fick’s laws and arrived at an expression for the mean-
square-displacement of a diffusing particle from its starting position [27]:

〈[r(t)− r(0)]2〉 = 2nDt (6)

where n is the number of spatial dimensions and r is the particle position vector. Equation
6 can also be interpreted as the variance of the individual step lengths taken by the
particle, with time t being replaced by the duration of steps (∆t). Self-diffusion can thus
be described by a propagator (P (x1|x0, t)), which is a probability density function that
gives the probability of finding the particle at position x1 given that it started at x0 and
diffused for a time t [14, 28]. An expression for the propagator may be obtained by solving
Fick’s second law and replacing the concentration C with probability density P to obtain:

P (x1|x0, t) =
1√

2π · 2Dt
· e−

(x1−x0)
2

2·2Dt (7)

which is a Gaussian distribution with variance equal to the right-hand-side of equation 6.
The generalisation of equation 7 to higher spatial dimensions is straightforward.

2.2.1 On the diffusion spectrum

The motion of a particle diffusing in a confinement can be resolved into frequency compo-
nents, giving rise to a spectrum of diffusivities [29]. A heuristic but useful interpretation
is that a confinement renders the particle displacement perfectly sinusoidal in time. The
maximum amplitude of the oscillations is dictated by the size of the confinement. A
constraint on displacement at a given frequency translates to a restraint on the velocity
at that frequency. Motion at high frequency may attain the maximum possible particle
velocity (the intrinsic value). On the contrary, the velocity at low frequency is determined
by the confinement size. The result is a diffusion spectrum whose shape is characteristic
of the geometry of confinement. This interpretation holds even in a more realistic scenario
where restricted diffusion is not oscillatory [29].

Generally, the diffusion spectrum is defined as the Fourier transform of the velocity au-
tocorrelation function [14, 29, 30]:

D(ω) =

∫ ∞

−∞

〈v(0)v(t)〉e−iωtdt (8)
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Stepisnik [14] derived D(ω) for parallel planes, cylinders and spherical geometries. For
ease of reference, the result for cylinders is given below

D(ω) =
∑

n

Bn ·
anD0ω

2

a2nD
2
0 + ω2

(9)

where D0 is the intrinsic diffusivity and

Bn =
2(R/µn)

2

µ2
n − 1

(10)

and

an =

(

µn

R

)2

(11)

where µn are the roots of J ′
1(µ) = 0 and J ′

1 is a Bessel function of the first order and kind.
R is the radius of the cylinder.

2.3 Principles of diffusion MRI

As earlier alluded to, the Bloch equation describing the MRI experiment makes no provi-
sion for spin transport. Rather, water molecules are assumed to be fully in situ. Motion
may be incorporated into the Bloch equation by considering the continuity equation for
the magnetisation M [31]:

∂M

∂t
= R(t)−∇ · J(M ) (12)

where R(t) represents a source-sink process (the right-hand-side of the Bloch equation)
and J(M ) is a flux term denoting an arbitrary mode of spin transport (such as diffusion
or flow). The solution of equation 12 depends on the choice of the flux term J . In
fact, different choices of J yield distinct MRI techniques. J = 0 gives T1/T2-weighted
imaging [31]. Torrey [32] defined J according to Fick’s first law (equation 2) arriving at
the renowned Bloch-Torrey equation:

∂M

∂t
= γM ×B − Mx +My

T2

− Mz −M0

T1

−∇ · (D∇M ) (13)

Diffusional motion can be encoded into the MR signal by the introduction of additional
gradient pulses into the spin-echo experiment (Figure 1). A pedagogical illustration is the
Stejskal-Tanner experiment, shown schematically in Figure 2 [33, 34].
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Figure 2: The Stejskal-Tanner experiment (single diffusion encoding). Two gradient pulses are
added to the spin-echo sequence of Figure 1, on either side of the 180◦ pulse. In the absence
of incoherent spin motion, the gradients cause no net dephasing and have no effect. Incoherent
motion such as diffusion leads to phase dispersion and consequent signal loss. δ, ∆ and g

represent the pulse duration, interval and amplitude, respectively.

This sequence is also referred to as Single Diffusion Encoding, stemming from the fact
that a single pair of gradient pulses are used to probe diffusion. One gradient pulse
is applied following the excitation RF-pulse, and another after the refocusing RF-pulse.
What transpires between the cessation of the first pulse and the onset of the second is
the backbone of diffusion MRI. The essence of the experiment is that, in the absence of
incoherent motion between the two pulses, the spin dephasing due to the first pulse is
exactly reversed by the second pulse. Consequently, the diffusion-encoding gradients have
no influence on the MR signal and a T2-weighted image is obtained. Nevertheless, should
spins migrate incoherently (as by diffusion), the second pulse does not fully eliminate the
dephasing due to the first pulse. A phase dispersion ensues and manifests itself as an
attenuation of the MR signal [34, 35]. The phase change following exposure to a magnetic
field gradient g(t) = [gx(t) gy(t) gz(t)] for a time T is given by

φ(T ) = γ

∫ T

0

g(t) · r(t)dt (14)

where r(t) is the particle position vector [14]. Note that the functional form of g(t) is
referred to as the gradient waveform. Let fφ denote the probability density function of
the phase φ. The signal attenuation due to phase dispersion can then be described by

S =

∫ ∞

−∞

e−iφfφdφ ≡ 〈e−iφ〉 (15)

where the average is taken over all contributing spins. An intuitive interpretation of equa-
tion 15 is that there is no signal attenuation when there is no spin dephasing, and for
arbitrarily large phase changes, the signal vanishes.
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An alternative signal representation employs the propagator formalism introduced in
equation 7. Assuming gradient pulses of short duration, the diffusion-weighted signal
can be approximated by the Fourier transform of the averaged diffusion propagator
[28, 36, 37, 38]:

S(q) =

∫

P (x, td) · e−iq·xdx (16)

where x := x1 − x0, td is the diffusion time and q is the magnitude of an important
quantity called the q-vector, related to the gradient waveform through:

q =
γ

2π
δg (17)

where δ is the pulse width as shown in Figure 2. In the case of free diffusion in homoge-
neous media, the average diffusion propagator is described by the Gaussian [36, 37, 38]

P (x, td) =
1√

4πDtd
· e−

x2

4Dtd (18)

Substituting equation 18 into equation 16 gives

S(q) = e−4π2q2Dtd (19)

where td = ∆ (the pulse spacing) assuming arbitrarily narrow gradient pulses. Stejskal and
Tanner [34] showed that, for any pulse duration, the diffusion time is given by td = ∆−δ/3.
Equation 19 can be written

S(b) = e−bD (20)

where
b = 4π2q2 · (∆− δ/3) (21)

is called the b-value and captures the amount of diffusion encoding performed by the
gradient g. Equation 20 is a highly important result.

Note that q has been treated as a constant in the formalism above, and this is only
true under the assumption of narrow gradient pulses. A more general definition of the
q-vector can be expressed [35]

q(t) = γ

∫ t

0

g(τ)dτ (22)

and the corresponding general definition for b becomes

b =

∫ T

0

q2(t)dt (23)
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where T is the total diffusion encoding time. The apparent diffusion coefficient, D, is
equal to the bulk diffusivity (D0) in the case of free diffusion. Given a sample with a
distribution of diffusivities, denoted P (D), the signal attenuation can be written as the
average value

S(b) =

∫

e−bDP (D)dD ≡ 〈e−bD〉 (24)

Diffusion in inhomogeneous media is not free and is more appropriately described by a
time-dependent diffusivity, D(t). Expressions for D(t) in specific time regimes for PGSE
experiments have been presented pedagogically elsewhere [12, 13, 28]. Worth highlighting
is that the problem of time-dependent diffusion has solutions for short time scales and
times approaching the tortuosity limit. The form of D(t) in the intermediate time regime
has at best been estimated via interpolation between the solutions in the two extremes. To
compound the challenge, there is no general solution for time-dependence with arbitrary
gradient waveforms on any time scale [28]. A common approach is to use the diffusion
spectrum introduced in Section 2.2.1 to arrive at the signal representation [14, 28, 30]:

lnS ≈ − 1

2π

∫ ∞

−∞

D(ω)|Q(ω)|2dω (25)

where Q(ω) is the Fourier transform of q(t):

Q(ω) =

∫ ∞

−∞

q(t) · e−iwtdt (26)

2.4 Biophysical models and the cumulant expansion

The complexity of biological systems is projected onto any biophysical model that pur-
ports to capture the salient features of such systems. While suitable for forward modelling,
the resulting mathematical descriptions may not offer insights that are valuable for exper-
imental design. A remedy worth introducing is the mathematical instrument called the
cumulant expansion. Its objective is to approximate sophisticated model representations
with intuitive expressions whose terms bear fundamental physical significance. Although
liable to inaccuracy due to its approximative nature, the benefits entailed by the cumulant
expansion are considerable.

2.4.1 Principles of moments and cumulants

Given a random variable X with probability density function fX , the n-th moment of the
probability distribution of X, µn, is given by

µn = 〈Xn〉 =
∫ ∞

−∞

xnfX(x)dx (27)
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where 〈·〉 denotes an expectation value. Evaluating moments using the integral in equation
27 poses a growing challenge as the order n increases. A common strategy is to introduce
the so-called moment-generating function which is defined by [39, 40]

M(t) = 〈etx〉 =
∫ ∞

−∞

etxfX(x)dx (28)

where t is a dummy variable. The moment-generating function is considered to exist if
there exists a positive real number ξ such that the integral in equation 28 converges for
all t ∈ [−ξ, ξ]. Performing a Taylor series expansion of equation 28 yields

M(t) =

〈

1 + tx+
t2x2

2!
+

t3x3

3!
+ ...

〉

=

∫ ∞

−∞

(

1 + tx+
t2x2

2!
+

t3x3

3!
+ ...

)

fX(x)dx (29)

Hence, the moment-generating function can be expressed as a polynomial of the moments
of the distribution of X [39, 40]:

M(t) = 〈1〉+ t〈x〉+ t2〈x2〉
2!

+
t3〈x3〉
3!

+ ... = 1 + tµ1 +
t2µ2

2!
+

t3µ3

3!
+ ... (30)

The power of exploiting the moment-generating function is that, contrary to evaluating
the n-th order moment via the integral in equation 27, it is now given by the n-th derivative
of M(t) evaluated at t = 0. That is

µn =
dnM(t)

dtn

∣

∣

∣

∣

t=0

(31)

The cumulant-generating function is defined as the logarithm of the moment-generating
function [39, 40]

C(t) := lnM(t) = ln

(

1 + tµ1 +
t2µ2

2!
+

t3µ3

3!
+ ...

)

(32)

and can also be expressed as a polynomial in cumulants of the distribution of X, cn:

C(t) = tc1 +
t2c2
2!

+
t3c3
3!

+ ... (33)

Taylor-expanding equation 32 and comparing coefficients of tn with those in equation 33
yields relationships between the cumulants and moments of the distribution of X:

c1 = µ1

c2 = µ2 − µ2
1

c3 = µ3 − 3µ1µ2 + 2µ3
1

c4 = µ4 − 4µ1µ3 + 12µ2
1µ2 − 3µ2

2 − 6µ4
1

...
... (34)
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A general expression relating the n-th order cumulant to the moments has been provided
by Zheng [39] and Rodriguez and Tsallis [40].

2.4.2 Applications in diffusion MRI

The convenience brought by the cumulant expansion is made apparent by applying the
principles described above to the following signal representation

S/S0 = 〈e−iφ〉 (35)

which describes the signal attenuation due to diffusion-induced spin dephasing averaged
over all contributing spins. In the absence of flow, the distribution of φ may be assumed
symmetric, implying that all moments of odd order are zero. To fourth order, equation
35 can be written

ln(S/S0) ≈ −1

2
c2 +

1

24
c4 (36)

Using the relations between cumulants and moments in 34, the following approximation
is obtained

ln(S/S0) ≈ −1

2
〈φ2〉+ 1

24
(〈φ4〉 − 3〈φ2〉2) (37)

Equivalently, the signal equation

S(b)/S0 = 〈exp(−bD)〉 (38)

can be approximated with

ln(S(b)/S0) ≈ −b · 〈D〉+ b2

2
·
[

〈D2〉 − 〈D〉2
]

(39)

which is linear in the mean and variance of the diffusivities.

2.5 Water exchange

The theory presented in preceding sections deals with a single pool or continua of spins.
Tissue models typically include two distinct compartments arbitrarily associated with the
names “intracellular” and “extracellular”. The Bloch-Torrey equation can be transformed
into a coupled system of differential equations representing the communication between
two pools of spins (labelled 1 and 2 below) [31]:

∂M1(t)

∂t
= R1(M1)−∇J1(M1)− E12M1 + E21M2

∂M2(t)

∂t
= R2(M2)−∇J2(M2)− E21M2 + E12M1

(40)
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where E12 denotes the exchange rate from compartment 1 to 2, and similarly for E21. The
net magnetisation is given by the superposition of the individual magnetisations in the
two compartments:

M = M1 +M2 (41)

These equations lead to a prominent model of exchange within diffusion MRI: the Kärger
model [41]. It assumes two well-mixed pools occupying the entire available voxel volume.
The two pools are associated with signal fractions f1 and f2 satisfying f1 + f2 = 1.
Relaxation characteristics are assumed identical, allowing the Bloch terms in equation 40
to be neglected. Further, Gaussian diffusion is assumed in both pools, permitting constant
diffusivities. Exchange is represented by a constant rate matrix, implicitly implying that
the exchange probability is independent of time or position. In one dimension, the Kärger
model is described by

∂

∂t

(

M1

M2

)

= [K −Dq2]

(

M1

M2

)

(42)

where K (the rate matrix) and D (a diagonal matrix of diffusivities) are given by

K =

[

−k12 k21
k12 −k21

]

; D =

[

D1 0
0 D2

]

Note that q in equation 42 is constant. Noteworthy derivatives of the Kärger model in-
clude FEXI (Filtered Exchange Imaging) and CG (constant gradient) [43], both of which
have demonstrated sensitivity to transcytolemmal water exchange (labelled k12 above).
It is vital to mention that all these exchange models do not account for the geometry of
restriction. Diffusion is assumed to be free everywhere - an assumption supported by the
finding that time-dependent diffusion dominates only at short time scales. In addition,
the models demand specific pulse sequences and make no room for arbitrary gradient
waveforms. The latter issue has been addressed by Ning et al. [44] using a cumulant ex-
pansion of the phase distribution which was introduced in section 2.4. Herein, the theory
developed by Ning et al. will be referred to as the Ning model.

The Ning model shares the same assumptions as the Kärger model, with the exception of
the demands on the gradient waveform. Arbitrary gradient waveforms are accommodated
by the Ning model via the following generalisation of the Kärger equations:

∂

∂t

(

S1

S2

)

= [K −Dq(t)2]

(

S1

S2

)

(43)

where S1 and S2 are signals from pools 1 and 2, respectively, and q(t) needs not be
constant. In cases where q(t) is constant (SDE with narrow pulses) or piecewise constant
(DDE with narrow pulses), analytical solutions to the system in equation 43 exist and
are given by

SSDE(q, T ) = ✶ · exp([K −Dq2]T ) · F (44)
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SDDE(q1, q2,∆1,∆2, tm) = ✶ · exp([K −Dq22]∆2) · exp(Ktm) · exp([K −Dq21]∆1) · F (45)

where ✶ = [1 1], F = [f1 f2]
′, T is the total encoding time, the subscripts 1 and 2 on

q and ∆ represent the first and second pair of pulses in a DDE sequence and tm is the
mixing time. A closed-form solution of this kind does not exist when q(t) is a smooth
function of time (that is, for arbitrary gradients). Using a stochastic calculus approach,
Ning et al. evaluated the cumulants of the phase distribution in equation 37 and arrived
at the following signal representation

lnS ≈ −Db+
1

2
Var(D)h(·)b2 (46)

where h(·) is the exchange-weighting function given by

h(·) = 2

b2

∫ T

0

e−ktq4(t)dt (47)

where

q4(t) =

∫ T

0

q2(t1)q
2(t1 + t)dt1 (48)

and k = k12 + k21 is the sum of the exchange rates between the two pools. If the product
kT is small enough to allow the approximation e−kt ≈ 1 − kt, the Ning model can be
written

lnS ≈ −Db+
1

2
Var(D)(1− kΓ)b2 (49)

where

Γ =
2

b2

∫ T

0

tq4(t)dt (50)

is the effective exchange weighting time that depends on the gradient waveform and the
diffusion time.

2.6 Restricted diffusion

Numerous techniques have been proposed for probing restricted diffusion. Early ap-
proaches computed the diffusion propagator by taking the inverse Fourier transform of
the measured signal in equation 16. An estimate of compartment diameter was obtained
as the FWHM of this propagator [45]. Note that this is valid assuming short gradient
pulses. In scenarios where the diffusion time is long, and diffusion is restricted by com-
partments of equal size, the function S(q) takes the form of a diffraction pattern from
which the compartment size can be estimated [45]. Other prominent models include
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IMPULSED (imaging microstructural parameters using spectrally edited diffusion), PO-
MACE (pulsed and oscillating gradient MRI for assessment of cell size and extracellular
space) and VERDICT (vascular, extracellular and restricted diffusion for cytometry in
tumours). IMPULSED and POMACE assume two compartments (intracellular and ex-
tracellular), while VERDICT assumes an additional vascular compartment. All three
models are based on multiple PGSE and/or OGSE acquisitions and have shown promis-
ing results in in vivo studies [12].

Nilsson et al. [46], exploiting the geometry information carried by the diffusion spec-
trum, derived the following signal representation for cylindrical geometries:

S ≈ exp

(

−bVωcd
4

D0

)

(51)

where d is the cylinder diameter, c is a geometry-dependent constant which has the value
7/1536 for cylinders, D0 is the bulk diffusivity and Vw is a gradient waveform-dependent
parameter with the definition

Vω =

∫

g2(t)dt
∫

q2(t)dt
=

1

2πb

∫

ω2|Q(ω)|2dω (52)

Equation 51 is valid for low frequencies where the diffusion spectrum can be approximated
by the second-order polynomial:

D(ω) ≈ cd4ω2

D0

(53)

The theory above will be referred to as the Nilsson model. A notable strength of the
Nilsson model is its ability to accommodate arbitrary gradient waveforms: equation 52
places no restrictions on the shape of q(t) or g(t). However, none of the restriction models
presented in this section take cell permeability (and therefore exchange) into account.
Cells are modelled as impermeable spheres (or cylinders in the case of the Nilsson model).

2.7 Unification of restriction and exchange theory

Previous chapters clarified the existence of two classes of models for measuring restriction
and exchange: one that describes exchange while disregarding restriction, and another
that captures restriction while neglecting exchange. Negative effects of this approach on
parameter estimation have been noted [11, 12, 13, 44]. The scarcity of literature on models
describing both restricted diffusion and water exchange is indicative of the non-triviality
of the problem.

In the short-time limit, Sen [47] provided an expression for time-dependent compart-
ment diffusivities incorporating compartment radius of curvature and permeability. In
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the long-time regime, an effective medium theory approach was proposed by Latour et
al. [48] describing the effects of permeability on diffusion in this time scale. An accurate
estimate of the permeability of yeast cells was obtained using this model. Models called
“empirical permeable plane/spheres” also exist. Rather than directly measuring perme-
ability, they account for its effect on the measured diffusivities using empirical formulae.
Also worth the mention is the random permeable barrier model (developed by Novikov et
al. [49]) which treats membranes as randomly oriented flat planes. This model has been
used to estimate cell size and permeability in vivo.

Recently, Nilsson et al. [15] united the Ning model of exchange with the Nilsson model
of restriction to arrive at a unified model capturing restriction and exchange effects to
second order:

lnS ≈ −b · E +
1

2
b2 · V · (1− kΓ) (54)

where the mean term E is given by

E = D +
Vω

b
R (55)

where

R =
cd4

D0

(56)

and the variance term V is defined

V = Var(D) +
Vω

b
Cov(D,R) +

(

Vω

b

)2

Var(R) (57)

where Cov(·) denotes covariance. The theory presented here will be referred to as the uni-
fied model. Monte-Carlo simulation-based validation by Nilsson et al. showed capacity to
disentangle size and exchange. Numerically optimised gradient waveforms proved supe-
rior to traditional pulsed-gradient sequences. Note must be made, nonetheless, that this
unified model is valid for moderate b-values since it is derived from a cumulant expansion.
This limitation is strictly a restriction on the size of the product bD, but will be referred
to simply as a restraint on b-value because this is the parameter that can be influenced
by experiment. Further, the unified model requires that the exchange rate scaled by the
total encoding time (kT ) be small, because the approximation of the exchange-weighting
term as 1 − kΓ is otherwise invalid. As noted for the b-value, this limitation will be
termed a restriction on time scale since T is the experimental parameter. As highlighted
earlier, the unified model is based on an approximation of the diffusion spectrum with a
second-order polynomial, which is well-grounded only at low frequencies. Eliminating all
these weaknesses constitutes the substance of later chapters.
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3 Theory

Theory developed during the thesis work is presented in this section. Its aim is to ad-
dress the two major limitations associated with the unified framework by Nilsson et al.
[15]: inaccuracy at high b-values and long time scales and invalidity at high frequencies
in the diffusion spectrum. The former is tackled by generalising the Kärger model to
accommodate arbitrary gradient waveforms, and the latter by proposing the use of the
full diffusion spectrum as opposed to its low-frequency approximation. Aiming to derive
an approximative signal representation to aid the extraction of insights from the devel-
oped theory, the velocity autocorrelation function is employed to evaluate cumulants of
the phase distribution. The outcome is a signal equation capturing both restriction and
exchange effects to second order.

3.1 Generalising the Kärger model

It is worth reiterating that, while the unified model describes the effects of exchange and
restriction for any gradient waveform, it veers off truth at high b-values due to its foun-
dation in cumulant space. Furthermore, the definition of the exchange weighting time
(Γ) introduces inaccuracy as the product kT grows. Both of these hurdles could be cir-
cumvented by using the closed-form solutions of the Kärger equations for SDE and DDE
(equations 44 and 45) to describe exchange. However, while placing no restrictions on
the magnitude of b or T , these equations do demand that q(t) be constant or piecewise
constant. Eliminating this last restriction to obtain an exchange representation valid for
any b-value, T and q(t) was the objective of this section of the thesis work.

The premise is that a given gradient waveform may be divided into a series of impulses
of arbitrarily short duration. Let ∆t denote the duration of a pair of such impulses. The
resulting q-vector becomes piece-wise constant, having a fixed value in every time interval
∆t as shown in Figure 3. Recall that the coupled Kärger differential equations (43) have
analytical solutions for constant q. Integrating these equations in every ∆t leads to the
following generalised discretised solution.

S(q,N) =
[

1 1
]

·
N
∏

i=1

exp

([

−k12 k21
k12 −k21

]

∆t−
[

D1 0
0 D2

]

q2i∆t

)

·
[

f1
f2

]

(58)

where N = T
∆t

is the number of discretisation points, kmn is the exchange rate from pool
m to n and Dm and fm are the diffusivities and signal fractions of pool m, respectively.
The b-value is defined through

b =
N
∑

i=1

q2i∆t (59)
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Figure 3: Generalisation of the Kärger model of exchange. (a): An arbitrary gradient waveform.
The point highlighted in red lies at 166 ms and has a value of 50 mT/m. (b): The q-vector
corresponding to the gradient waveform in (a). The point marked in red is the integral of the
gradient waveform over [0 166] ms. (c): Theoretical treatment of the red point in (a) as a
pair of impulses of amplitude 50 mT/m and time interval ∆t. (d): q-vector corresponding to
the impulses in (c). Note that the red point in (a) has been chosen arbitrarily. Following the
same procedure for every point on the waveform results in a q-vector that is piecewise constant,
having a constant value in every time-step ∆t. This entails that a closed-form solution to the
Kärger equations (43) can be obtained in every ∆t, yielding the expression in equation 58.

which is the discrete version of equation 23. The generality of equation 58 renders it
potentially useful for model fitting and parameter inference. Be that as it may, the
equation is a product of a possibly large number of matrix exponentials, which depletes its
informative capacity towards experimental design. Alleviating this limitation by providing
an enlightening approximate formulation of the generalised exchange model is the subject
matter of the following section.
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3.2 Cumulant expansion of the generalised exchange model

Section 2.4 accentuated the critical role played by the cumulant expansion in unveiling
insights within biophysical model representations that may appear a contraption at first
glance. Needless to say, the cumulant expansion is an apt tool for analysing the generalised
exchange model in equation 58. Approximate but readable expressions are provided in this
section with two-fold intent: extracting insights from the signal equation and comparing
it to the Ning model. To this end, a fourth-order multivariate Taylor series expansion of
the logarithm of equation 58 was taken around qi = 0 , i = 1, 2, 3, ..., N . The expansion
was performed for a few values of N and then generalised to the following:

ln(S) ≈ −
( N
∑

i=1

q2i∆t

)

·D+

Var(D)

k2
·
[

N
∑

j=1

(

e−j·k∆t

(N−(j−1)
∑

i=1

q2i q
2
i+(j−1) − 2

N−j
∑

i=1

q2i q
2
i+j +

N−(j+1)
∑

i=1

q2i q
2
i+(j+1)

))

− (1− k∆t) ·
N
∑

i=1

q4i +
N−1
∑

i=1

q2i q
2
i+1

]

(60)

where D = f1D1 + f2D2 is the mean diffusivity, Var(D) = f1f2(D1 −D2)
2 is the variance

of diffusivities and k = k12 + k21 is the sum of the exchange rates between the two pools.
The full derivation of equation 60 is provided in Appendices A1 and A2. Tedious algebraic
manipulations were executed in Maple [50]. A compact representation of equation 60 may
be written

ln(S) ≈ −Db+
1

2
Var(D)h(·)b2 (61)

where

h(·) = 2

b2 · k2
·
[

N
∑

j=1

(

e−j·k∆t

(N−(j−1)
∑

i=1

q2i q
2
i+(j−1) − 2

N−j
∑

i=1

q2i q
2
i+j+

+

N−(j+1)
∑

i=1

q2i q
2
i+(j+1)

))

− (1− k∆t) ·
N
∑

i=1

q4i +
N−1
∑

i=1

q2i q
2
i+1

]

(62)

The stark contrast between equations 61 and 58 illustrates the remarkable utility of the
cumulant expansion. Exchange in equation 61 is controlled by the function h(·), which is
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reminiscent of equation 47 from Ning et al. [44]. It is relevant to note that, for the case
of single-diffusion encoding where q(t) is constant in time, h(·) takes the form

h(·) = 2 · (e
−kT − (1− kT ))

(kT )2
(63)

which has the following intuitive limiting behaviour:

h(·) =
{

0 T → ∞
1 T → 0

(64)

The derivation of equation 63 can be found in Appendix A4. In the more general case
where q(t) is smooth in time (equation 62), the functional form of h(·) is not easily inter-
preted. This necessitates an approximate form of equation 62 in which the exponential
terms are expanded to third order. That is, where

e−jk∆t ≈ 1− jk∆t+
j2k2∆t2

2
− j3k3∆t3

6
; j = 1, 2, 3, ...N (65)

The choice of order 3 in equation 65 is not arbitrary; expansion to second order would
result in h(·) = 1 and first order would yield h(·) = 0. These facts can be readily
inferred from equation 63. Furthermore, it is not necessary to choose an order higher
than 3 because, in all relevant cases, ∆t is small. Equipped with equation 65, the signal
representation becomes (consult Appendices A1 and A3 for derivation):

ln(S) ≈ −b ·D+
Var(D)

6
·
[

3b2−k ·
[

N
∑

i=1

(q4i∆t2)∆t+
N−1
∑

j=1

(

6j ·
N−j
∑

i=1

q2i q
2
i+j∆t2

)

∆t

]]

(66)

which can be reformulated

ln(S) ≈ −Db+
1

2
Var(D)

[

1− k ·
(

Q4

3b2

)]

b2 (67)

where

Q4 :=
N
∑

i=1

(q4i∆t2)∆t+
N−1
∑

j=1

(

6j ·
N−j
∑

i=1

q2i q
2
i+j∆t2

)

∆t (68)

At this juncture, a generalised exchange-weighting time (Γ) can now be defined in a
fashion similar to the work by Ning et al. [44] :

Γ :=
Q4

3b2
(69)
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This allows the signal representation in equation 67 to be rewritten as

ln(S) ≈ −Db+
1

2
Var(D)(1− kΓ)b2 (70)

which corresponds to equation 61 with the exchange-weighting function approximated by

h(·) = 1− kΓ (71)

It is worth noting that, in the SDE case with infinitely short pulses (where q is constant),
the exchange-weighting time, Γ, is given by

ΓSDE =
T

3
(72)

which is also the result by Ning et al. Appendix A5 contains the derivation of the result
above.

This section has demonstrated that the proposed generalisation of the Kärger model
can be brought to intuitive forms consistent with the results of Ning et al. [44]. It is key
to stress that the formulae derived in this section serve as a guide towards conceptual
understanding. They must not be regarded as a tool for forward modelling, since this
would defeat the purpose of the generalised exchange model in equation 58. That said, it
is at this point appropriate to reiterate the objective of this thesis work: develop a unified
framework for modelling and measuring exchange and restriction. It can be submitted to
the reader that the exchange part has been dealt with in a comprehensive manner. Fusing
the exchange theory with restriction forms the substance of the next chapter.

3.3 Generalising the unified model

Although affording flexibility in terms of gradient waveform choice, the generalised ex-
change model (equation 58) is still grounded on the fundamental assumptions of the
Kärger model. Particularly, there exists two infinite well-mixed spin-carrying exchanging
pools within which Gaussian diffusion takes place. In other words, the underlying geom-
etry is neglected. Herein - following the work of Nilsson et al. [15] - restriction-induced
time-dependent diffusion is introduced into the generalised exchange model by way of the
diffusion spectrum. The goal is to arrive at a generalisation of the unified model that
addresses all the weaknesses discussed in Section 2.7.

Equations 20 and 25, which represent a stationary and time-dependent signal description,
can be used to formulate appropriate expressions for the diffusivities in the generalised
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model. The attenuation factors in these equations are juxtaposed here for clarity.

bD(·) = 1

2π

∫ ∞

−∞

D(ω)|Q(ω)|2dw (73)

where the diffusivity D(·) is now defined as a function of compartment geometry as a
generalisation of the derivation by Nilsson (2017) for cylinders [46]. Equation 73 permits
the definition

D(·) = 1

2πb

∫ ∞

−∞

D(ω)|Q(ω)|2dw (74)

Incorporating equation 74 into the generalised exchange model yields the expression

S(q,N) =
[

1 1
]

·
N
∏

i=1

exp

([

−k12 k21
k12 −k21

]

∆t−
[

D1(·) 0
0 D2(·)

]

q2i∆t

)

·
[

f1
f2

]

(75)

where D1(·) and D2(·) are given by equation 74. While not a prerequisite for the model
presented here, it is routine practice to assume Gaussian diffusion in the extracellular
space. That is, D2(·) := D2. Equation 75 proposes a theory potentially capable of cap-
turing size and exchange phenomena at all time scales, for any range of b-values and with
any gradient waveform. Note that this theory will be referred to as simply the generalised
model.

It must, nonetheless, be emphasised that equation 75, although free of the weaknesses
of the original unified model, is not as easily interpreted. The expression is a product of
a large number of matrix exponentials embedding the experimental parameter qi. It is a
real challenge to use equation 75 to determine how to design qi to influence an experi-
ment towards a desired outcome. A possible solution is to take the cumulant expansion
of equation 75 in the same manner as was done for the case of exchange without restric-
tion (equation 60). However, the derivation involves discouragingly tedious algebra. An
alternative approach employing the particle velocity autocorrelation function is explored
in the coming section. An added advantage of this method is that it innately involves
both restriction and exchange, thus obviating the need for the post-combination of a
restriction-neglecting exchange theory and an exchange-neglecting restriction theory.

3.4 Velocity autocorrelations towards restriction and exchange

A generalised, unified theoretical framework describing both restriction and water ex-
change was presented in the preceding chapters. This section derives a signal represen-
tation that is easier to interpret than the generalised model, and therefore offers more
insights towards experimental design. The generalised model was arrived at by way of
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generalising, modifying and uniting independent restriction and exchange theories. Al-
though this does not in itself constitute a weakness, the approach proposed in this section
demonstrates that it is possible to build a theory whose foundation needs not consist
of two complementary pillars: one disregarding restriction and the other overlooking ex-
change. Notwithstanding these advantages, it must be noted that the theory developed
in this section is an approximate signal representation valid within a limited range of
b-values. The approach is based on the velocity autocorrelation function. The motivation
is that this function can be related to the diffusion spectrum, which in turn provides a
link to the underlying geometry. Cumulants of the phase distribution are evaluated using
these velocity autocorrelations, yielding a theory describing both exchange and restriction.

The definition of phase change (φ(T )) in terms of the product of the gradient waveform
and spin position (equation 14) can be reformulated to include particle velocity using
integration by parts. Define

ξ := r(t) =⇒ dξ = dr(t) = v(t)dt

and

dσ := γg(t)dt =⇒ σ = γ
∫ t

0
g(τ)dτ = q(t)

where the last equality follows from the definition of the q-vector. The above gives

φ(T ) = γ

∫ T

0

g(t) · r(t)dt = ξ · σ −
∫

σdξ =

[

r(t)γ

∫

g(t)dt

]T

0

−
∫ T

0

q(t) · v(t)dt (76)

The spin-echo condition imposes
∫ T

0
g(t)dt = 0, which brings equation 76 to the form

φ(T ) = −
∫ T

0

q(t) · v(t)dt (77)

which has also been presented by Stepisnik [14]. As discussed in earlier sections, the
second order signal approximation in equation 37 demands the evaluation of the second-
and fourth-order moments of the phase distribution. Given equation 77, these moments
take the forms

〈φ(T )2〉 =
∫ T

0

∫ T

0

q(t1)q(t2)〈v(t1)v(t2)〉dt1dt2 (78)

and

〈φ(T )4〉 =
∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)〈v(t1)v(t2)v(t3)v(t4)〉dt1dt2dt3dt4 (79)
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It is worth reiterating that the velocity autocorrelation function is defined formally as the
inverse Fourier transform of the diffusion spectrum [14, 28, 30, 51]:

〈v(t1)v(t2)〉 =
1

π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω (80)

where D(ω) is a tensor whose elements represent the Fourier transforms of the corre-
lations between the velocity components. In three dimensions, D(ω) has the matrix
representation

D(ω) =





Dxx(ω) Dxy(ω) Dxz(ω)
Dyx(ω) Dyy(ω) Dyz(ω)
Dzx(ω) Dzy(ω) Dzz(ω)



 (81)

Note that, for time scales much greater than the correlation times between the velocities,
the velocity autocorrelation function reduces to

〈v(t1)v(t2)〉 = 2D(0) · 1

2π

∫ ∞

−∞

1 · eiω(t2−t1)dω = 2D(0) · δ(t2 − t1) (82)

where δ(·) denotes the Dirac delta function. Equation 82 is also the result by Stepisnik
[14]. For simplicity, and without loss of generality, all derivations presented in this section
will be performed in one dimension.

It has been shown elsewhere [52, 53, 54, 55] that, when the particle velocities follow
a Gaussian distribution, the fourth-order autocorrelation can be generalised as

〈v(t1)v(t2)v(t3)v(t4)〉 = 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉+ 〈v(t1)v(t3)〉 · 〈v(t2)v(t4)〉+
〈v(t1)v(t4)〉 · 〈v(t2)v(t3)〉 (83)

which is here approximated

〈v(t1)v(t2)v(t3)v(t4)〉 ≈ 3 · 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉 (84)

This approximation, while not necessary, immensely simplifies the algebra. It is an appro-
priate simplification in this context and its validity is discussed in Appendix B4. Particu-
larly, the discussion demonstrates that the above approximation equates to the assumption
that any two time-points in the set {t1, t2, t3, t4} are approximately equal.

Consider a tissue model consisting of two compartments that may by convention be la-
belled intracellular and extracellular spaces. These will be associated with the subscripts
in and ex, respectively. Following the work by Ning et al. [44], a particle at a given
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time-point is associated with a vector describing the probability of being in either of the
two compartments:

p(t) =

[

pin(t)
pex(t)

]

(85)

The exchange-driven time-evolution of the probability vector obeys the rate equation

dp(t)

dt
= K · p(t) (86)

where the rate matrix is given by

K =

[

−kin→ex kex→in

kin→ex −kex→in

]

(87)

Equation 86 has the solution

p(t) =

[

pin→in(t)
pin→ex(t)

]

=

[

fin + fexe
−kt

fex(1− e−kt)

]

(88)

for particles initially in the intracellular compartment, and

p(t) =

[

pex→in(t)
pex→ex(t)

]

=

[

fin(1− e−kt)
fex + fine

−kt

]

(89)

for particles initially in the extracellular compartment. fY denotes the signal fraction for
compartment Y, which is the fraction of the total number of spins that will be present
in this compartment at infinite times. k = kin + kex is the sum of the exchange rates
between the two compartments. The parameters f and k are required to satisfy the
equilibrium condition: fin · kin→ex = fex · kex→in. Further, all particles are assumed to
only exist in either the intra- or extracellular compartment, which demands: fin+fex = 1.

Confidence in the derivations presented in this section may be enhanced by showing
consistence with the theory developed by Ning et al. under the assumption of Gaussian
diffusion. To this end, both the intra- and extracellular diffusivities are set constant. That
is, the velocity autocorrelation function is defined

〈v(t1)v(t2)〉 =
{

2Dinδ(t2 − t1) ; if intracellular

2Dexδ(t2 − t1) ; if extracellular
(90)

The second-order moment in equation 78 is concerned with the events in the time inter-
vals [0 t1] and (t1 t2]. Computing the velocity autocorrelation function thus demands
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taking into account the possible states of a given spin in these time periods. Note that
“state” here refers to the current behaviour of the particle: either moving within the
same compartment or migrating to another. For a particle starting in the intracellular
compartment (and either lingering or leaving), the velocity autocorrelation becomes

〈v(t1)v(t2)〉in =
[

pin→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1)+

pin→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1)+

pin→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1)+

pin→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1)
]

(91)

In words, equation 91 is a description of all possible states of a particle that is in the
intracellular compartment at time t = 0. This particle could stay in the intracellu-
lar compartment in the time interval [0 t1] and either stay in this compartment dur-
ing (t1 t2] or transition to the extracellular compartment. Alternatively, the particle
could migrate to the extracellular space during [0 t1] and either stay in this state dur-
ing (t1 t2] or return to the intracellular compartment. The transition probabilities
pin→in(t), pin→ex(t), pex→in(t) and pex→ex(t) are provided by equations 88 and 89. Note
that the argument t in these definitions is substituted by the time differences (t1 − 0)
and (t2 − t1) in equation 91. For example, pin→in(t2 − t1) = fin + fexe

−k(t2−t1). Following
this procedure for all the terms in equation 91, the velocity autocorrelation function for
a particle initially in the intracellular space becomes:

〈v(t1)v(t2)〉in = 2 · δ(t2 − t1) · (fex · (Din −Dex)e
−kt2 + finDin + fexDex) (92)

The equivalent of equation 91 for a particle starting in the extracellular compartment is

〈v(t1)v(t2)〉ex =
[

pex→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1)+

pex→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1)+

pex→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1)+

pex→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1)
]

(93)

which, after substituting the definitions of the transition probabilities in equations 88 and
89, evaluates to

〈v(t1)v(t2)〉ex = 2 · δ(t2 − t1) · (fin · (Dex −Din)e
−kt2 + finDin + fexDex) (94)
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Having assumed that particles can only be in either of the two compartments above, the
mean velocity autocorrelation function can be written

〈v(t1)v(t2)〉 = fin〈v(t1)v(t2)〉in + fex〈v(t1)v(t2)〉ex = 2δ(t2 − t1)(finDin + fexDex) (95)

That is
〈v(t1)v(t2)〉 = 2δ(t2 − t1)D (96)

where D is the mean diffusivity defined here as D := finDin + fexDex. The second-order
moment of the phase distribution can now be evaluated:

〈φ(T )2〉 =
∫ T

0

∫ T

0

q(t1)q(t2) · 2δ(t2 − t1)Ddt1dt2

= 2D ·
∫ T

0

q(t1)

∫ ∞

−∞

q(t2) · δ(t2 − t1)dt1dt2

= 2D ·
∫ T

0

q(t1)q(t1)dt1

= 2Db (97)

where the equality
∫ T

0
q(t)dt =

∫∞

−∞
q(t)dt is motivated by the assumption that q(t) =

0 ∀ t /∈ [0 T ].

The fourth-order moment can be derived in a similar manner, with the key difference
that the time intervals of interest are [0 t1], (t1 t2], (t2 t3] and (t3 t4]. To obtain
the fourth-order velocity autocorrelation function, the factorisation into two second-order
correlations given in equation 84 will be exploited. Since the two second-order correlations
are functions of the time differences (t2− t1) and (t4− t3), the fourth-order correlation will
be a combination of all possible particle events leading up to the time intervals (t1 t2]
and (t3 t4]. The full expressions equivalent to equations 91 and 93 for the fourth-order
case can be found in Appendix B2, which, together with Appendix B1, contains the full
derivation of the exchange theory presented in this section. The velocity autocorrelation
functions for particles initially in the intra- and extracellular spaces are in this scenario
given by

〈v(t1)v(t2)v(t3)v(t4)〉in = 3 · 4 · δ(t4 − t3) · (finfex(Din −Dex)
2 · e−k(t4−t2)+

fex(Din −Dex)(finDin + fexDex) · e−kt2 + fex(Din −Dex) · (fexDin + finDex) · e−kt4+

(finDin + fexDex)
2 · δ(t2 − t1))
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and

〈v(t1)v(t2)v(t3)v(t4)〉ex = 3 · 4 · δ(t4 − t3) · (finfex(Din −Dex)
2 · e−k(t4−t2)−

fin(Din −Dex)(finDin + fexDex) · e−kt2 − fin(Din −Dex) · (fexDin + finDex) · e−kt4+

(finDin + fexDex)
2 · δ(t2 − t1))

respectively. Again, the assumption of all particles being in either of the two compart-
ments allows the mean fourth-order velocity autocorrelation function to be expressed:

〈v(t1)v(t2)v(t3)v(t4)〉 = fin〈v(t1)v(t2)v(t3)v(t4)〉in + fex〈v(t1)v(t2)v(t3)v(t4)〉ex
= 3
[

4 · finfex(Din −Dex)
2 · δ(t2 − t1)δ(t4 − t3)e

−k(t4−t2)+

4 · (finDin + fexDex)
2 · δ(t2 − t1)δ(t4 − t3)

]

(98)

Defining the variance of the diffusivities in the two compartments as Var(D) := finfex(Din−
Dex)

2 and recalling the definition of the mean diffusivity: D = finDin + fexDex, equation
99 becomes

〈v(t1)v(t2)v(t3)v(t4)〉 = 12 ·Var(D) ·δ(t2−t1)δ(t4−t3)e
−k(t4−t2)+12 ·D2 ·δ(t2−t1)δ(t4−t3)

(99)
Equation 99 allows the straightforward evaluation of the fourth-order moment of the phase
distribution:

〈φ(T )4〉 =
∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)[12 · Var(D) · δ(t2 − t1)δ(t4 − t3)e
−k(t4−t2)+

12 ·D2 · δ(t2 − t1)δ(t4 − t3)]dt1dt2dt3dt4

= 12 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4 + 12 ·D2b2 (100)

Defining t := t4 − t2, t ∈ [−T, T ], the above expression simplifies to

〈φ(T )4〉 = 12 · Var(D)

∫ T

−T

e−kt

∫ T

0

q(t2)
2q(t2 + t)2dt2dt+ 12 ·D2 · b2

= 12 · Var(D)

∫ T

−T

e−ktq4(t)dt+ 12 ·D2 · b2 (101)

where q4(t) =
∫ T

0
q(t2)

2q(t2 + t)2dt2 is the fourth-order autocorrelation function of q(t).
Exchange-induced signal attenuation occurring in the time interval [−T 0) can be han-
dled by imposing
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〈φ(T )4〉 = 12 · Var(D)

∫ T

−T

e−k|t|q4(|t|)dt+ 12 ·D2 · b2

= 12 · Var(D) · 2
∫ T

0

e−ktq4(t)dt+ 12 ·D2 · b2 (102)

It is at this instance relevant to note that the expressions derived in this section are in
complete agreement with the results of Ning et al. [44]. When inserted into equation 37,
they yield the following second-order signal representation:

ln(S) ≈ −1

2
〈φ2〉+ 1

24
(〈φ4〉 − 3〈φ2〉2)

= −Db+
1

24

[

12 · Var(D) · 2
∫ T

0

e−ktq4(t)dt+ 12 ·D2 · b2 − 3 · (2Db)2
]

= −Db+
1

2
Var(D) · 2

∫ T

0

e−ktq4(t)dt (103)

That is

ln(S) ≈ −Db+
1

2
Var(D)h(·)b2 (104)

where h(·) = 2
b2

∫ T

0
e−ktq4(t)dt.

It is instructive to emphasise that equation 104 is the long-time-limit of the exchange-
restriction theory to be elaborated in the following. The purpose of the work presented
heretofore was to verify the veracity of the theoretical basis by demonstrating that it
reduces to the results by Ning et al. in the long-time limit (where the velocity autocor-
relation is defined by a Dirac delta function). What follows is the general derivation of
the exchange-restriction theory that is expected to be valid at all time scales. The work
adheres to the same methodology as applied to the long-time scenario, but entails substan-
tially more involved arithmetic. In fact, for the sake of elegance and comprehensibility,
progress is made by assuming Gaussian diffusion in the extracellular space. Henceforth,
the velocity autocorrelation function will be given by

〈v(t1)v(t2)〉 =











1
π

∫∞

−∞
D(ω)eiω(t2−t1)dω ; if intracellular

2Dexδ(t2 − t1) ; if extracellular

(105)

Note, however, that no aspect of the theory developed here demands the assumption
above. The second-order velocity autocorrelation for particles starting in the intracellular
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compartment is obtained by merging equation 105 with equations 91 and 93 to obtain

〈v(t1)v(t2)〉in =
[

pin→in(t1 − 0) · pin→in(t2 − t1) · 2 ·
1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω+

pin→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1)+

pin→ex(t1 − 0) · pex→in(t2 − t1) · 2 ·
1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω+

pin→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1)
]

(106)

and similarly for particles initially in the extracellular space. Appendices B1 and B3
provide the full derivation of the restriction-exchange theory elaborated in this section.
The second-order mean velocity autocorrelation function becomes

〈v(t1)v(t2)〉 = fin〈v(t1)v(t2)〉in + fex〈v(t1)v(t2)〉ex

= 2 · fin
2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω + 2 · fexDexδ(t2 − t1) (107)

The result above enables the derivation of the second-order moment:

〈φ(T )2〉 =
∫ T

0

∫ T

0

q(t1)q(t2) ·
[

2 · fin
2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω + 2δ(t2 − t1)Dex

]

dt1dt2

That is

〈φ(T )2〉 = 2 · fin
2π

(
∫ ∞

−∞

D(ω)|Q(ω)|2dω
)

+ 2 · fexDexb (108)

It is worth noting that equation 108 comprises terms commonly used to describe the
signal attenuation in diffusion MRI: one capturing time-dependent effects and the other
describing stationary effects.

The fourth-order counterparts of equations 106 and 107 have been deemed too tedious to
present here and can be found in Appendix B3. The fourth-order moment of the phase
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distribution is in this case given by:

〈φ(T )4〉 = 12finfex

∫ ∞

−∞

e−kt

[

1

4π2

∫ ∞

−∞

∫ ∞

−∞

D(ω)D(ω1)Q(ω)Q(ω1)Q2(t, ω, ω1)dωdω1

−2Dex

1

2π

∫ ∞

−∞

D(ω)Q(ω)Q3(t, ω)dω +D2
exQ4(t)

]

dt+

12

[

finfin
4π2

∫ ∞

−∞

D(ω)|Q(ω)|2dω
∫ ∞

−∞

D(ω1)|Q(ω1)|2dω1+

2
finfex
2π

· b ·
∫ ∞

−∞

D(ω)|Q(ω)|2dω + fexfexD
2
ex · b2

]

(109)
where the correlation terms Q2, Q3 and Q4 are given by

Q2(t, ω, ω1) =

∫ ∞

−∞

q(t2)e
iω1t2 · q(t2 + t)eiω(t2+t)dt2 (110)

Q3(t, ω) =

∫ ∞

−∞

q(t2)
2 · q(t2 + t)eiω(t2+t)dt2 (111)

Q4(t) =

∫ ∞

−∞

q(t2)
2q(t2 + t)2dt2 (112)

The above equations mark the herald of a unified signal representation capturing exchange
and restriction phenomena to second order:

ln(S) ≈ −1

2
c2 +

1

24
c4 (113)

where

c2 = 2 · fin
2π

(
∫ ∞

−∞

D(ω)|Q(ω)|2dω
)

+ 2 · fexDexb (114)

and

c4 = 12finfex

∫ ∞

−∞

e−kt

[

1

4π2

∫ ∞

−∞

∫ ∞

−∞

D(ω)D(ω1)Q(ω)Q(ω1)Q2(t, ω, ω1)dωdω1

−2Dex

1

2π

∫ ∞

−∞

D(ω)Q(ω)Q3(t, ω)dω +D2
exQ4(t)

]

dt

(115)

The theory presented in this section will be referred to as the VA (velocity-autocorrelations)
model. Note that, despite the different paths taken in their derivation, the generalised
model and the VA fundamentally describe the same physics. The VA model is to be
perceived neither as a counterpart nor a replacement of the generalised model, but rather
as its complement.
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4 Methods

Numerical validation of all theory proposed in this thesis work was the goal of this section.
The evaluation procedure aimed to investigate both accuracy and precision of parameter
estimates when the developed theory is fitted to simulated data. With the intention of
demonstrating the value of optimising gradient waveforms, a comparison of two distinct
experimental protocols was performed. One set consisted of standard SDE waveforms
with different exchange- and restriction weightings, adapted from Nilsson et al. [15].
The other protocol comprised a set of waveforms numerically optimised to minimise the
variance in estimated parameters. This was done using the Cramer-Rao Lower Bound
(CRLB) approach, described briefly in the following and extensively by Alexander [56].

A Monte-Carlo method was used to simulate random walkers in three distinct environ-
ments: single Gaussian pool, two exchanging Gaussian pools and a 2D substrate with
restricted diffusion and exchange. All algorithms used were written during the course of
this thesis work. The simulation framework - implemented in MATLAB➞ - is described
in this section.

4.1 Gradient waveform optimisation

The goal of gradient waveform optimisation was to seek a set of waveforms that - when
used to probe exchange and restriction - would yield the least variance in the estimated
parameters. To this end, the CRLB and Fisher information matrix were employed. The
optimisation was done in MATLAB➞ using the non-linear least squares solver lsqnonlin.

A set of nine SDE waveforms with different combinations of pulse durations (δ) and
time intervals (∆) was used to initialise the optimisation. These two parameters (δ and
∆) were kept fixed for each waveform and the amplitude at each time-point was varied.
Temporal resolution of the waveforms was kept at a fixed 1 ms. Following the work of
Alexander [56], the objective function computed the sum of the coefficients of variation
of the parameters of the model in question:

F̃ =
M
∑

i=1

σ2
i

θ2i
(116)

where θi, i = 1, 2, ...M denotes the model parameters and σi is the standard deviation
in θi. In the case of exchange without restriction, the model in question refers to the
generalised exchange model (equation 58). For exchange with restriction, the generalised
model (equation 75) was used to evaluate the objective function. Note that this entails
that the resulting optimised gradient waveforms are model-dependent. The parameters
θi can assume different values, demanding the integration of F̃ over prior distributions
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of all θi. For simplicity, the parameters were assumed to come from δ-function prior
distributions centred at

{D1, D2, f1, f2, k} = {0.1 µm2/ms, 0.3 µm2/ms, 0.7, 0.3, 10 s−1}

for free diffusion with exchange and at

{Din, Dex, fin, fex, k, d} = {1.2 µm2/ms, 1.2 µm2/ms, 0.7, 0.3, 10 s−1, 20 µm}

for restricted diffusion with exchange.

Waveform optimisation takes place prior to data acquisition, which implies that the pa-
rameter variances σ2

i are unknown. As is customary within the field of dMRI, the variances
were represented by the corresponding CRLBs to obtain

F =
M
∑

i=1

(J−1)ii
θ2i

(117)

where (J−1)ii is the CRLB for parameter θi. This means that (J−1)ii is a lower bound on
the variance of any unbiased estimator of the physical quantity represented by θi. The
terms (J−1)ii were extracted from the diagonal of the inverse of the Fisher information
matrix defined generally by

Jij =

〈

∂2 ln(p(x; θ))

∂θi∂θj

〉

(118)

where p(x; θ) is the likelihood of the data (x) given the model parameters (θ). The Fisher
information is thus dependent on the selected noise model. A Gaussian distribution
was chosen following previous work [57, 58]. It must be emphasised, however, that a
more robust optimisation procedure would have used the Rician noise distribution that
is better suited to MRI measurements. That said, in a simulation context, the problem
is circumvented by using a high SNR [59, 60]. The assumption of Gaussian noise allowed
the Fisher information to be evaluated using

Jij =
1

σ2

N
∑

n=1

∂S[n]

∂θi

∂S[n]

∂θj
(119)

where n denotes the n-th combination of the parameters δ and ∆ and N = 9. S is the
signal generated using the model and the gradient waveform with the n-th combination of
δ and ∆. σ is the noise level in the measurements (that is, the standard deviation of the
assumed Gaussian noise distribution). Closed-form expressions for the derivatives of the
generalised model with respect to its input parameters are a challenge to derive. In the
implementation used in this work, the derivatives were numerically approximated. The
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resulting matrix in equation 119 was then inverted and its diagonal elements extracted to
obtain the CRLBs, (J−1)ii, required to evaluate the objective function in equation 117.

The solver sought the set of waveforms that minimised the parameter variances subject
to the following constraints adapted from Middione et al. [61]:

g(t) ≤ gmax (120)
∣

∣

∣

∣

dg(t)

dt

∣

∣

∣

∣

≤ smax (121)

∫ T

0

g(t)dt = 0 (122)

where gmax = 80 mT/m is the maximum gradient amplitude and smax = 70 T/(m · s) is
the maximum slew rate. These limits were chosen to reflect typical protocols on clinical
scanners. Constraint 122 is the spin-echo condition which demands that the gradient
waveform be balanced. The output from the optimiser was a set of nine waveforms
designed for precision in estimates of exchange rate and compartment sizes. It is important
to note that the problem of gradient waveform optimisation is riddled with multiple local
minima. A more robust optimiser would employ a stochastic global solver such as SOMA
(Self-Organising Migrating Algorithm) [56, 62].

4.2 One pool

A single pool of freely diffusing particles was simulated with the purpose of verifying the
soundness of the simulation framework. One hundred thousand spins were allowed to
make steps of fixed lengths but random directions in the Cartesian plane. That is, for a
particle at position r(t) at time t, its new position at time t+∆t was

r(t+∆t) = r(t) + ∆r · n (123)

where n is a unit vector in an arbitrary direction and ∆r is the step length given by

∆r =
√

2 · n ·D0 ·∆t (124)

where n = 2 is the number of spatial dimensions and D0 is the bulk diffusivity which was
here set to 1.2 µm2/ms. The time-step was set to ∆t = 10 µs. Particle positions were
recorded for a time T = 160 ms after which the net phase changes were computed using
the discrete version of equation 14:

φn(T ) = γ

N
∑

i=1

g(i) · rn(i) ·∆t (125)
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where N = T/∆t and the subscript n denotes the n-th particle (n = 1, 2, 3, ..., 105). The
signal was calculated from the phases using equation 15 in its discrete form:

S =
1

Np

Np
∑

n=1

e−iφn(T ) (126)

where Np = 105 is the total number of particles. This was done for different amplitudes
of g(t), resulting in different b-values in the range [0 2] ms/µm2. Equation 20 was fitted
to the resulting S(b) data, allowing an estimation of the apparent diffusion coefficient.
The fitting was done using the non-linear least squares solver lsqnonlin implemented in
MATLAB➞.

4.3 Two exchanging Gaussian pools

The one-pool environment was extended into two well-mixed exchanging pools of freely
diffusing particles. The objective of this section was to validate the proposed generalisa-
tion of the Kärger model (equation 58).

Initial populations in the two pools (labelled 1 and 2 for convenience), were selected
to match the equilibrium conditions:

N1 = f1 ·Np ; N2 = f2 ·Np (127)

where f1 and f2 are the signal fractions and Np = 105 is the total number of particles.
Exchange rates between the two pools, k12 and k21, were varied to give the total exchange
rates:

k = [0 2 4 6 8 10] s−1

ensuring that they invariably satisfied the equilibrium condition:

f1 · k12 = f2 · k21 (128)

All other parameters were kept constant at the values f1 = 0.7, f2 = 0.3, D1 = 0.1
µm2/ms and D2 = 0.3 µm2/ms. The random walk mechanism was the same as described
for the one-pool scenario. Exchange probabilities between the two pools were defined
according to the work by Ning et al. [44]:

p12 = f2 · (1− e−k∆t) ≈ f2 · k ·∆t

p21 = f1 · (1− e−k∆t) ≈ f1 · k ·∆t
(129)

The exchange mechanism was implemented by generating for each particle at every time-
step a random number uniformly distributed between 0 and 1. Only those particles
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for which this random number was less than the transition probability were allowed to
complete the transition to the other pool. In pseudocode, this may be summarised:

transition =

{

yes ; if rand(0, 1) < p

no ; else

Simulations were run for 240 ms at a resolution of 10 µs. Signal at different b-values was
generated in the same way described by equations 125 and 126. An SDE protocol with
pulse width fixed at δ = 3 ms and varying total encoding times T = 120, 160, 200 and 240
ms was used. A maximum b-value of 10 ms/µm2 arrived at in 6 steps yielded 24 signal
samples for each simulated exchange rate. The Ning model and the generalised exchange
model were fitted to the data using the same optimisation method as in the one-pool case.
Both models had four free parameters: f1, D1, D2 and k. A precision study was done by
adding 100 realisations of Rice-distributed noise to the simulated signal at a fixed exchange
rate of 10 s−1 and an SNR of 200. The mean and standard deviation of the estimated
exchange rates for both the Ning and generalised exchange models were extracted. At the
same exchange rate and SNR, signal was generated using gradient waveforms numerically
optimised for minimal variance in exchange rate. A fit of the generalised model was
performed to allow comparison between the two experimental protocols. For proof of
concept, the effect of using CRLB-optimised waveforms on the accuracy of exchange rates
estimated with the generalised exchange model was also investigated.

4.4 Two compartments: restricted diffusion and exchange

This section presents the most important step in the validation process. Its purpose was
to evaluate the generalised model as well as the velocity autocorrelation-based approach.
The two-pool framework was extended to a more realistic tissue model consisting of an in-
tracellular and extracellular compartment. The tissue model was a 2D substrate consisting
of circular, uniformly arranged intracellular compartments representing the cross-section
of a cylindrical geometry. A section of the substrate is shown in Figure 4.

Compartments were initialised with populations corresponding to equilibrium conditions,
with a total particle count of 105. Bulk diffusivities were set to Din = 1.2 µm2/ms and
Dex = 1.2 µm2/ms for the intracellular and extracellular spaces, respectively. Signal frac-
tions were fin = 0.7 and fex = 0.3. Exchange rates and compartment diameter were varied
as described in the following. The random walk mechanism mimicked the single-pool and
two-pool cases (fixed steps in random directions). Particles incident on the cell membrane
were allowed to cross it with a certain probability (discussed in detail below). Transmitted
particle trajectories were rescaled to account for possibly changing diffusivity in the new
medium. For instance, for transmission from the intracellular to the extracellular
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Figure 4: Part of the synthetic structure used in simulations of restricted diffusion with ex-
change. The substrate represents a cross-section through a cylindrical geometry shown here
with a diameter of 10 µm. Black regions represent the intracellular compartment, while the
extracellular space is shown in white.

compartment, the transmitted position was given by

rtransmitted(t+∆t) = rexit +
Dex

Din

· |r(t+∆t)− rexit| · n (130)

where rexit is the position at which the particle crossed the membrane, r(t + ∆t) is the
position it would have been at had it continued in the same compartment and n is a
unit vector along the direction of incidence. Reflected particle positions were calculated
by determining the remaining section of the particle trajectory upon impact with the
membrane, and reflecting this section back along the direction of incidence. To illustrate,
the new position following reflection from the intracellular compartment was given by

rreflected(t+∆t) = rexit − |r(t+∆t)− rexit| · n (131)

The exchange probability was defined in terms of membrane permeability according to
Szafer et al. [63]. For exchange from the intracellular to the extracellular compartment:

pin→ex = 4 · κ

vin
(132)

where κ is the membrane permeability and vin is the particle velocity in the intracellular
compartment, given by

vin =

√

2nDin

∆t
(133)

where n = 2 is the number of spatial dimensions. The corresponding probability of
exchange from the extracellular to the intracellular compartment is obtained by inter-
changing the subscripts in and ex. A relationship between the input permeability and
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the simulated exchange rate was obtained by running a simulation with only intracellular
particles and allowing transitions out of but not into this compartment. The exchange rate
was obtained by fitting the following equation to the time-evolution of the intracellular
population:

Nin(t) = Nin(0) · e−kin→ext (134)

This procedure was repeated for different values of the permeability, κ, and a general
relationship between κ and kin→ex was obtained by fitting the following equation adapted
from Tian X [43]:

kin→ex =
X

d
·
(

1

κ
+

d

Y ·Din

)−1

(135)

where d is the cylinder diameter and X and Y were allowed to be free parameters. Figure
5 illustrates the fit for d = 20 µm.

Figure 5: Fitting the input permeability to the observed exchange rate for a cylinder diameter
of 20 µm. The measurements were done by recording the time-evolution of the intracellular
population Nin for different permeabilities, kin→ex 6= 0 and kex→in = 0 and fitting equation 134.
The intrinsic diffusivity was fixed at 1.2 µm2/ms. The fitted curve corresponds to equation 135
with X and Y as free parameters.

Simulations were run for a total time T = 160 ms at a resolution of ∆t = 10 µs, with mean
particle positions being saved every 1 ms. The coarser time-grid was chosen to minimise
computational expense and to match the temporal resolution used for gradient waveform
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optimisation. Signals were determined using equation 126. With a fixed compartment
diameter of 20 µm, the permeability was varied to yield the exchange rates

k = [1 3.3 5 8.3 10] s−1

While keeping the exchange rate fixed at k = 10 s−1, the compartment diameter was
varied to the values

d = [4 8 12 16 20] µm

There were five free parameters to optimise: fin, Din, Dex, k and d. Both of the forward
models used for estimating these parameters (generalised and VA) do not explicitly contain
the diameter d in their closed-form expressions. Rather, the diameter is embedded in the
diffusion spectrum, D(ω), as defined in equation 9 for cylinders. For clarity, the full
expression for D(ω) showing the relation to the cylinder diameter is given by

D(ω) =
∑

n

2(R/µn)
2

µ2
n − 1

·
(

µn

R

)2
D0ω

2

(

µn

R

)4
D2

0 + ω2
(136)

which, after inserting d = 2R, simplifies to

D(ω) =
∞
∑

n=1

2

(µ2
n − 1)

· Dinω
2d4

(16µ4
nD

2
in + ω2d4)

(137)

Recall that µn is the n-th zero of the Bessel function of the first order and kind. The
summation in equation 137 was truncated at n = 200, a limit that is sufficient to provide
an accurate representation of D(ω). The dependence of D(ω) on d for the values of d
used in the simulations is depicted in Figure 6. To obtain the diameter from the diffusion
spectrum, the fitting algorithm accepted an initial guess for the parameter d and used
it to evaluate D(ω) according to equation 137. The resulting spectrum was then used
together with the initial guesses for the other parameters (fin, Din, Dex and k) to calcu-
late predicted signals using equations 75 (generalised model) and 113 (VA). A comparison
between the predicted and simulated signals was performed by the fitting algorithm, fol-
lowed by an iterative adjustment of all five parameters. The solution to the problem was
the set {fin, Din, Dex, k, d} that gave the best agreement between model prediction and
simulated data.

The above simulations were done at an infinite SNR to evaluate accuracy of fit. Sig-
nals were generated using a set of pulsed gradient waveforms adapted from Nilsson et al.
[15]. Nine waveforms and a maximum b-value of 10 ms/µm2 achieved in 10 steps resulted
in 90 signal samples for each simulated diameter and exchange rate. The generalised
model was fitted to the data using lsqnonlin. A similar procedure but with a maximum
b-value of 5 ms/µm2 was followed for the velocity-autocorrelation (VA) approach.
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Figure 6: Diffusion spectra for different radii of a cylindrical geometry. These curves were
generated using equation 137 with Din = 1 µm2/ms and an upper limit n = 200 for µn.

Rice-distributed noise at a generous SNR of 200 was then added to signals generated at
k = 10 s−1 and d = 20 µm, giving 100 samples. Both the generalised and VA models
were fitted to the resulting data, with the aim of studying the precision of parameter
estimates. Noise was also added to signals generated with gradient waveforms optimised
for precision in the estimated diameter and exchange rate. The generalised model was
fitted to the resulting data for comparison with the SDE protocol.

5 Results and Discussion

Results from the numerical validation of the theory developed in this thesis work are
presented in this section. The findings pertain to the three simulation environments
explored: a single pool, two exchanging pools and a two-compartment system.

5.1 One pool

The simulated signal from a single pool of freely diffusing particles is shown in Figure 7a,
together with the mono-exponential fit. Excellent agreement is evident between simulation
and theory, as was also demonstrated by the correctly estimated mean diffusivity of 1.2001
µm2/ms. The SDE waveform used to generate the signal is shown in Figure 7b. These
results provide a confirmation that the simulation framework used in this thesis work was
sound.
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(a) (b)

Figure 7: (a): Mono-exponential fit to signal from one Gaussian pool with an intrinsic diffusivity
of 1.2 µm2/s (b): Gradient waveform used to generate the signal in (a). The different b-values
were obtained by scaling this waveform while maintaining its timing fixed.

5.2 Two exchanging Gaussian pools

SDE waveforms used to measure exchange in the two-pool setting are shown in Figure 8a.
Signal differences due to exchange as induced by these waveforms are shown in Figure 8b.

(a) (b)

Figure 8: (a): The set of gradient waveforms used to measure exchange between two well-mixed
pools. All four waveforms have a fixed width of δ = 3 ms and different total encoding times of
T = 120, 160, 200 and 240 ms. (b): Signals generated using the gradient waveforms in (a). Each
curve is shown in the same colour as its corresponding gradient waveform. The exchange rate
was 10 s−1 and the pool diffusivities were 0.1 µm2/ms and 0.3 µm2/ms. The divergence in the
curves seen at high b-values is due to exchange.
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The curves in Figure 8b were plotted for a fixed exchange rate of 10 s−1. High b-values
were required to probe exchange in this experiment due to the low intrinsic diffusivities
assigned to the particle pools.

Fits of the Ning model and the generalised exchange model are shown in Figure 9 for
a maximum b-value of 10 ms/µm2 (9a) and 40 ms/µm2 (9b). The Ning model shows
fitting error at high b-values due to its truncation of high order terms in b. Excellent
agreement is apparent between the generalised exchange model and simulated data at all
b-values. This is an expected result since one of the motivations behind the derivation of
this model was to eliminate the restriction on b-value.

(a) (b)

Figure 9: (a): Fit of the Ning model and the generalised exchange model to signals from two
pools, for a maximum b-value of 10 ms/µm2. The simulated data shown was generated using
the waveform with T = 240 ms, an exchange rate of 10 s−1 and pool diffusivities of 0.1 µm2/ms
and 0.3 µm2/ms. (b): Same fit as described in (a) but with a maximum b-value of 40 ms/µm2.

The trends shown in Figure 9 are also reflected in the accuracy of parameter estimates.
Figure 10 presents the accuracy of the Ning model versus the generalised exchange model
in estimating the exchange rate. Note the superb coherence between simulated and es-
timated exchange rates observed with the generalised exchange model. The Ning model
tends to underestimate high exchange rates and overestimate low rates. This is a mani-
festation of the combined effects of high b-values and long total encoding times, both of
which void the assumptions of this model. Consider Figure 11 which shows the estimated
exchange rates at different b-values and encoding times. Exchange rates measured with
the Ning model decrease with the encoding time and increase with b-value. The gener-
alised exchange model provides stable estimates at the longest simulated encoding time
and all b-values. This result is in harmony with theoretical expectations: the generalised
exchange model places no restrictions on either b-value or total encoding time.
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Figure 10: Comparison between the Ning and the generalised exchange models in accuracy of
estimated exchange rates between two Gaussian pools. The diagonal shown in black is the line
of equality representing complete agreement between estimated and simulated exchange rate. A
maximum b-value of 10 ms/µm2 was used in the simulations. The generalised exchange model
gives accurate exchange rates at all simulated values, while the Ning model overestimates low
rates and underestimates high ones.

Figure 11: Dependence of exchange rates estimated by the Ning model on maximum b-value
and total encoding time in an SDE experiment. For comparison, estimates by the generalised
exchange model are shown for the longest simulated encoding time (240 ms). Simulations were
performed in a two-pool environment with free diffusion and exchange. The true exchange rate
was 10 s−1. The acquisition protocol was a set of SDE waveforms with fixed width δ = 3 ms (as
shown in Figure 8a) and different total encoding times (T = 120, 180 and 240 ms). Exchange
estimates by the Ning model vary with both b-value and T , which is not seen with the generalised
exchange model even at the longest simulated encoding time.
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Figure 12 shows a comparison of the precision in estimated exchange rates between the
Ning and the generalised exchange models. A more accurate but less precise result is
obtained with the generalised exchange model (mean 10.1 s−1 and standard deviation 1.3
s−1). The Ning model provides a more precise but less accurate result (mean 6.4 s−1 and
standard deviation 0.5 s−1).

Figure 12: Comparison of precision in estimated exchange rate between the generalised exchange
model and the Ning model. Simulations were performed in a two-pool setting modelling free
diffusion and exchange. The true exchange rate was 10 s−1. Signals were generated using the
gradient waveforms shown in Figure 8a with a maximum b-value of 10 ms/µm2. The histograms
show results from fits to 100 signal curves obtained by adding Rician noise at an SNR of 200. The
symbols µ and σ denote mean and standard deviation, respectively. Estimates by the generalised
exchange model are more accurate but less precise than estimates by the Ning model.

Gradient waveforms optimised for precision in estimates of the exchange rate are shown
in Figure 13. The waveforms are non-trivial functions of time, but do share some charac-
teristics. In particular, there is a common tendency to switch sign more than once during
the first half of the total encoding time. All four waveforms exhibit a few relatively sharp
peaks. However, these seemingly rapid switches need not pose a challenge, provided all
hardware and physiological constraints are met. The impact of the optimised waveforms
on accuracy and precision is shown in Figure 14. As anticipated, the waveforms have no
effect on accuracy - a result which demonstrates the compatibility of the generalised ex-
change model with arbitrary gradient waveforms. Precision is, however, notably improved
(mean 9.6 s−1, standard deviation 0.7 s−1, precision increase 200%).
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Figure 13: Gradient waveforms optimised for minimum variance in exchange rates between two
Gaussian pools, estimated using the generalised exchange model. The waveforms were obtained
using the Cramer-Rao Lower Bound (CRLB)-approach, initialised with different SDE waveforms
at a temporal resolution of 1 ms. Timing parameters (pulse width, δ and time interval, ∆) were
kept fixed and the gradient amplitude at every time-point was allowed to vary.

Figure 14: Left: accuracy in exchange rates estimated with the generalised exchange model.
The black diagonal is the line of equality indicating complete agreement between estimated and
simulated exchange rates. Simulations modelled exchange between two Gaussian pools, and
signals were generated using the optimised waveforms in Figure 13 with a maximum b-value of
10 ms/µm2. There is good agreement between estimated and simulated exchange rates. Right:
precision in estimated exchange rates with the generalised exchange model and the optimised
waveforms in Figure 13. The true exchange rate was 10 s−1. One hundred signal curves were
generated by adding Rice-distributed noise at an SNR of 200. The standard deviation in the
figure is about half the value reported for the generalised exchange model in Figure12.
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5.3 Two compartments: restricted diffusion and exchange

Figure 15 shows the set of SDE waveforms used for measuring compartment diameters
and exchange rates in a two-compartment substrate. Waveforms in the same column have
equal pulse width (δ) and those in the same row have equal time intervals (∆). The blend
of different values of these timing parameters is meant to yield different exchange and
restriction weightings at different time scales.

Figure 15: Pulsed-gradient waveforms used to probe restricted diffusion and exchange. Wave-
forms in each column have the same duration (δ) while those in the same row have equal time
intervals (∆). Different combinations of δ and ∆ are used to obtain different exchange and
restriction weightings. The waveforms in this protocol have a maximum amplitude of 80 mT/m
and a maximum slew rate of 70 T/(m·s).

The signal differences due to exchange and restriction under the influence of these wave-
forms are shown in Figure 16a. Every signal curve is plotted in the same colour as the
gradient waveform that generated it. Contrary to the two-pool scenario, a relatively low
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(a) (b)

Figure 16: (a): Signals generated using the SDE waveforms in Figure 15 in a two-compartment
setup modelling restricted diffusion and exchange. The signal curves are plotted in the same
colour as the gradient waveform that generated them. An exchange rate of 10 s−1 and a com-
partment diameter of 20 µm were used to obtain the data shown. The divergence of the signal
curves with growing b-value is a result of restricted diffusion and exchange. (b): Fit of the
generalised model to the simulated signal curves. For clarity, the fit is shown for only the three
curves with least, intermediate and most attenuation (green, violet and orange, respectively).
The generalised model fits the simulated data well.

b-value of 2 ms/µm2 would enable probing of restriction and exchange in this experiment.
Regardless, considerably higher b-values were simulated to demonstrate the versatility
of the developed theory. Note the uneven separation of the signal curves in Figure 16a:
three distinct curves and six in a group. Figure 16b shows that the generalised model fits
the simulated data well up to the maximum b-value of 10 ms/µm2. For clarity, the fit is
depicted only for the signal curves with most, intermediate and least attenuation. This
corresponds to the curves plotted in orange, violet and green, respectively.

As is evident in Figure 17, the generalised model provides accurate estimates of exchange
rate and compartment diameter over a wide range of values of these parameters. Some
degree of bias can be noted for diameters around 4 µm and an exchange rate of 1 s−1.
Since no aspect of the generalised model can be used to explain the observed bias, it
can be attributed to the simulation framework. It is likely that the discrepancy may be
eliminated by increasing the number of random walkers in the simulations.

Results of the study of precision in the estimated diameter and exchange rate with SDE
waveforms are presented in Figure 18. There is a slight tendency of the generalised model
to overestimate exchange (mean 10.7 s−1, standard deviation 1.3 s−1) and underestimate
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(a) (b)

Figure 17: (a): Accuracy of the generalised model in estimating the exchange rate between
two compartments in a cylindrical geometry. The diagonal on the correlation plot represents
complete coherence between model and simulation. Exchange rates shown in the figure were
estimated from signals generated using the SDE gradient waveforms in Figure 15 with a maxi-
mum b-value of 10 ms/µm2. The compartment diameter was fixed at 20 µm. (b): Accuracy of
estimated compartment diameter with the generalised model. The same acquisition protocol as
described in (a) was used, with the exchange rate being kept fixed at 10 s−1.

Figure 18: Precision of the generalised model in estimating the exchange rate between two
compartments (left) and the compartment diameter (right) in a cylindrical substrate. The
true exchange rate and diameter were 10 s−1 and 20 µm, respectively. Signals from which the
exchange rate and diameter were estimated were generated using the SDE protocol in Figure 15
with a maximum b-value of 10 ms/µm2. Rice-distributed noise was added to obtain 100 signal
curves at an SNR of 200. The mean and standard deviation of the distributions are denoted by
µ and σ, respectively.
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the diameter (mean 19.5 µm, standard deviation 0.2 µm). However, the estimated pa-
rameters are in remarkable agreement with the underlying values.

Free waveforms optimised for precision in diameter and exchange rate estimates are shown
in Figure 19. The resulting shape of each waveform is determined by the time settings of
the initial SDE guess (pulse width and spacing). Note that “pulse spacing” in the discus-
sion below is referring to the time interval between the end of the first pulse and the start
of the second one. This is to be distinguished from the waveform parameter ∆, which is
the difference between the start times of the two pulses. It is apparent from Figure 19
that the pulse spacing is more influential than pulse width in deciding the output shape.
Waveforms with short spacings (blue, red, light red and magenta) have a characteristic

Figure 19: A set of gradient waveforms optimised for precision in exchange rate and com-
partment diameter estimated with the generalised model. Optimisation was done using the
Cramer-Rao Lower Bound (CRLB) method at a temporal resolution of 1 ms. SDE waveforms
with different combinations of durations (δ) and time intervals (∆) were used as initial guesses.
The optimiser kept these timing parameters fixed and varied the amplitude of the waveform
in every time-point. Maximum amplitude and slew rate were constrained to 80 mT/m and 70
T/(m·s), respectively.
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shape and so do waveforms with long spacings (green, light blue and grey). Shapes of
waveforms with intermediate spacings (black and orange) are not as easily characterised.

Signal differences driven by restriction and exchange as determined by the optimised
waveforms are shown in Figure 20a. The signals are plotted in the same colours as the
gradient waveform that generated them. Note that nearly all the waveforms in the op-
timised protocol produce distinct signal curves, which is in contrast to Figure 16a for
the SDE protocol. The fit of the generalised model to the signals generated by the opti-
mised waveforms is shown in Figure 20b for the gray, orange and light red signal curves
(corresponding to least, intermediate and most attenuation, respectively). It is worth
highlighting that the result in Figure 20b illustrates the versatility of the generalised
model in terms of gradient waveform design.

(a) (b)

Figure 20: (a): Signals acquired from a two-compartment substrate simulating restricted dif-
fusion and exchange. The exchange rate and compartment diameter were 10 s−1 and 20 µm,
respectively. Gradient waveforms shown in Figure 19 were used to generate the signal curves.
Each curve is plotted in the same colour as its corresponding gradient waveform. Restricted dif-
fusion and exchange induce the separation of the curves with increasing b-value. (b): Fit of the
generalised model to the simulated signals, shown for signal curves with least, intermediate and
most attenuation (gray, orange and light red, respectively). There is good agreement between
the simulated data and the generalised model.

The impact of the optimised waveforms on parameter estimates is displayed in Figure 21.
The effect on precision in exchange rate is negligible (mean 11 s−1, standard deviation
1.2 s−1, precision increase 8%), while the improvement in diameter estimates is notable
(mean 20.5 µm, standard deviation 0.1 µm, precision increase 200 %). These results may
be improved by addressing the shortcomings of the waveform optimisation as outlined in
Section 4.1.
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Figure 21: Effect of numerically optimised waveforms on the precision of estimated exchange
rate (left) and compartment diameter (right) in a cylindrical confinement. The true exchange
rate and diameter were 10 s−1 and 20 µm, respectively. Signals used to estimate the parameters
were generated using the optimised gradient waveforms in Figure 19 with a maximum b-value
of 10 ms/µm2. Rice-distributed noise was added to obtain 100 signal curves at an SNR of 200.
The standard deviation in the diameter is half the value provided in Figure 18.

Results of fitting the VA signal representation are shown in Figure 22. Note that these

(a) (b)

Figure 22: (a): Accuracy of the VA model in estimating the exchange rate between two com-
partments on a cylindrical substrate. The diagonal in black represents full agreement between
estimated and simulated exchange rates. Simulated data from which the exchange rates were
estimated was obtained using the SDE gradient waveforms in Figure 15 with a maximum b-value
of 5 ms/µm2. A fixed compartment diameter of 20 µm was used while the exchange rate was
varied. (b): Accuracy of estimated compartment diameter with the VA model. Simulated data
was obtained in the same way as described in (a), except with varying diameters and a fixed
exchange rate of 10 s−1.
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results correspond to simulations with SDE waveforms. The VA model gives accurate es-
timates of moderate exchange rates. Low rates are slightly overestimated while high rates
are somewhat underestimated. This behaviour is reminiscent of the Ning model at high
b-values and long encoding times. In the case of the VA model, this bias can be attributed
to its truncation of higher order terms in b. A possible solution is to use an acquisition
protocol with a maximum b-value that is lower than 5 ms/µm2. The VA underestimates
the smallest simulated diameter (4 µm). Good agreement with simulations is evident for
larger diameters. The underestimation of small compartment sizes was also observed,
albeit to a lesser degree, with the generalised model. As noted for the generalised model,
increasing the number of random walkers may alleviate this weakness.

Figure 23 shows estimated exchange rates and diameters from SDE signals using the
VA model. The parameter estimates are close to the ground truth: mean exchange rate
of 9.7 s−1 with a standard deviation of 0.9 s−1 and mean diameter of 20 µm with a stan-
dard deviation of 0.2 µm. These results indicate that the precision of the VA at an SNR
of 200 parallels that of the generalised model.

Figure 23: Precision of the VA model in estimating the exchange rate (left) and compartment
diameter (right) in a two-compartment substrate modelling restricted diffusion and exchange.
The true exchange rate and diameter were 10 s−1 and 20 µm, respectively. Signals used to
estimate exchange rate and diameter were generated using the SDE protocol shown in Figure
15 with a maximum b-value of 5 ms/µm2. One hundred signals were generated as a result of
adding Rician noise at an SNR of 200.
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6 Outlook

This thesis work has developed a robust generalisation of the exchange theory in diffusion
MRI that accommodates arbitrary gradient waveforms and is valid for all b-values and all
time scales. A second-order expansion of the developed theory was shown to concur with
the signal representation derived by Ning et al. [44]. Monte Carlo simulations saw the
generalised theory developed here providing superior exchange estimates when compared
with the Ning model. Numerically optimised waveforms with the generalised exchange
model improved precision in exchange rates by a factor of 2 compared to SDE waveforms.
This highlights the benefit of choosing free waveforms over standard sequences.

The present work has also demonstrated that the generalised exchange model can be
successfully combined with restriction theory, yielding a unified framework describing the
effects of restricted diffusion and exchange at all time scales. Excellent coherence with
simulations was observed. A drastic improvement in precision of the estimated compart-
ment diameter was obtained with optimised gradient waveforms (200% relative to SDE
sequences). Precision in exchange rate was largely unaffected and a possible remedy is an
optimisation technique that varies the timing of the waveforms in addition to their am-
plitude. There is ample room for improvement of the waveform optimisation framework
by using a more appropriate noise model together with a global solver.

With the objective of deriving a restriction-exchange signal equation easier to interpret
than the generalised model, an alternative angle was also explored. The relationship be-
tween the particle velocity autocorrelation function and restricted diffusion was exploited
to derive a second-order signal representation valid for moderate b-values, all time scales
and arbitrary gradient waveforms. Numerical validation of this approach gave promising
results. That said, this theory is to be perceived as an instrument for gaining insights
about the generalised model and providing conceptual understanding towards the design
of experiments to probe exchange and restriction. For forward modelling and parameter
estimation, the generalised model is the more appropriate choice.

The outcome of this work serves as a stepping stone for future research towards opti-
mising experiments to provide reliable parameter estimates while minimising scan times.
Such research will be central to the ultimate clinical implementation of the approach
presented in this thesis work.
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Appendix A1

GENERALISING THE KÄRGER MODEL:

This is a Maple script that generates terms of the second-order series expansion of the 
generalised Kärger model, in both exact (S9) and approximate (S12) forms.

   Exchange rates

Diffusivities

Signal fractions

We will begin with a few values of N and then generalise to any N

Take multivariate Taylor expansion of ln(S) around q_i = 0

Simplify the results by making some substitutions

Exchange rates are positive

Signal fractions must add up to 1

                  Condition of equilibrium

Condition of equilibrium

A Appendix: Generalising the Kärger model
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  Definition of variance

Now expand the exponentials in S9 to third order
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DERIVING THE SECOND-ORDER EXPANSION OF THE GENERALISED KÄRGER MODEL: 

EXACT FORM

Now we will gather the results for a few values of N:
We start with the full expression where the exponential terms are not approximated with 
polynomials
We will gather the expressions for S9 above for N = 1 up to N = 7

Appendix A2
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When we have an expression for S9_N, we are done. 
We will do the generalisation of the above expressions in chunks.

We start with the coefficient of D1
2
. We group the terms below to make pattern identification easier: 

There is a 1/k in front of every term, but we temporarily omit it in the steps below.
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We can see that the coefficient of D1
2
 for any N is given by

Now we will generalise the coefficient of VarD:
We group the coefficients below for N = 2, .., 5:

The terms above can all be written as sums of the terms:

which we easily generalise to:
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Now we can generalise the entire expansion (S9) as:

Where

We have written instead of just VarD to allow the simplifications below:

That is

That is

This is the second-order expansion of the generalised Kärger model. Done.

68



DERIVING THE SECOND-ORDER EXPANSION OF THE GENERALISED KÄRGER MODEL: 

APPROXIMATE  FORM

Now we will also generalise the approximate form of the expansion: 
We start by gathering the signal expressions (S12)  for a few values of N:

N=2

:

N=3:

N = 4:

N = 5:

N = 6:

N = 7:

Appendix A3
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Here, we can immediately see that all the expressions above can be written:

Where

We have:

Equivalently:

This last equation is the approximate form of the second-order series expansion of the generalised 
Kärger model.

70



DERIVING THE EXCHANGE TERM FOR THE GENERALISED KÄRGER MODEL WITH 
CONSTANT q

The exchange term is given by

which we can express:

For a constant q, we have

where q  is the constant q-value. Insertion in  gives:

Since the terms under summation are independent of the summation index, we can write:

Appendix A4
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Inserting  provides

That is

     

Done.
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DERIVING THE EXCHANGE-WEIGHTING TIME FOR THE GENERALISED KÄRGER MODEL 
WITH CONSTANT q

 

For a constant q, we have

where q  is the constant q-value. Insertion in 

 

 

 

Using the relations:    and   , we have

Substituting  with  gives

That is,    

Appendix A5
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Appendix B1

Maple script for evaluating the mean second- and fourth-order velocity autocorrelation functions

Define transition probabilities between compartments
1 denotes intracellular
2 denotes extracellular

Define velocity autocorrelation function

Intracellular under Gaussian assumption

Intracellular non-Gaussian

Extracellular, Gaussian diffusion

Evaluate mean second-order velocity autocorrelation function

Evaluate mean fourth-order velocity autocorrelation function

B Appendix: Deriving the VA model
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Appendix B2: Long-time limit of the VA model

This appendix presents the derivation of the VA model in the case of free diffusion with
exchange.

The dMRI signal attenuation equation can be expressed:

S/S0 = 〈e−iφ〉 (B.1)

where φ is the spin phase defined by

φ(T ) = γ

∫ T

0

g(t)r(t)dt (B.2)

The signal attenuation can be approximated with its cumulant expansion:

ln(S/S0) ≈ −1

2
〈φ2〉+ 1

24
(〈φ4〉 − 3〈φ2〉2) (B.3)

The second- and fourth-order moments of the phase distribution can be obtained by
expressing the phase in terms of particle velocities. Integration by parts gives

φ(T ) = −
∫ T

0

q(t)v(t)dt (B.4)

The moments are then given by

〈φ(T )2〉 =
∫ T

0

∫ T

0

q(t1)q(t2)〈v(t1)v(t2)〉dt1dt2 (B.5)

and

〈φ(T )4〉 =
∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)〈v(t1)v(t2)v(t3)v(t4)〉dt1dt2dt3dt4 (B.6)

The velocity-autocorrelation function is defined as the inverse Fourier transform of the
diffusion spectrum:

〈v(t1)v(t2)〉 =
1

π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω (B.7)

For measurement times much larger than the correlation times between the velocities:

〈v(t1)v(t2)〉 = 2D(0) · δ(t2 − t1) (B.8)
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Two-compartment formalism

Consider a two-compartment system consisting of intracellular and extracellular spaces,
denoted by the subscripts in and ex, respectively. Associate each particle with a proba-
bility vector given by

p(t) =

[

pin(t)
pex(t)

]

(B.9)

that has a time-dependence obeying:

dp(t)

dt
= K · p(t) (B.10)

where K is the rate matrix:

K =

[

−kin→ex kex→in

kin→ex −kex→in

]

(B.11)

which has the solution

p(t) =































[

pin→in(t)

pin→ex(t)

]

=

[

fin + fexe
−kt

fex(1− e−kt)

]

; if

[

pin(t)

pex(t)

]

=

[

1

0

]

[

pex→in(t)

pex→ex(t)

]

=

[

fin(1− e−kt)

fex + fine
−kt

]

; if

[

pin(t)

pex(t)

]

=

[

0

1

]

(B.12)

where k = kin + kex and the signal fractions fin and fex satisfy fin + fex = 1. Further,
equilibrium demands fin · kin→ex = fex · kex→in.

Evaluating the mean second-order velocity autocorrelation function

The second-order velocity autocorrelation (VA) function is given by

〈v(t1)v(t2)〉 =
{

2Dinδ(t2 − t1) ; if intracellular

2Dexδ(t2 − t1) ; if extracellular
(B.13)

Evaluating the mean VA requires considering all possible particle states in
[

0 t1
]

and
(t1 t2]:
For

[

pin(0) pex(0)
]

=
[

1 0
]

(particles initially intracellular):
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〈v(t1)v(t2)〉in =
[

pin→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1)+

pin→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1)+

pin→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1)+

pin→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1)
]

(B.14)

Inserting

pin→in(t) = fin + fexe
−kt

pin→ex(t) = fex(1− e−kt)

pex→in(t) = fin(1− e−kt)

pex→ex(t) = fex + fine
−kt (B.15)

gives:

〈v(t1)v(t2)〉in = 2 · δ(t2 − t1) · (fex · (Din −Dex)e
−kt2 + finDin + fexDex) (B.16)

For
[

pin(0) pex(0)
]

=
[

0 1
]

(particles initially extracellular):

〈v(t1)v(t2)〉ex =
[

pex→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1)+

pex→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1)+

pex→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1)+

pex→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1)
]

(B.17)

Inserting the probability definitions in equation B.15 gives:

〈v(t1)v(t2)〉ex = 2 · δ(t2 − t1) · (fin · (Din −Dex)e
−kt2 + finDin + fexDex) (B.18)

The mean second-order VA function becomes:

〈v(t1)v(t2)〉 = fin〈v(t1)v(t2)〉in + fex〈v(t1)v(t2)〉ex
= fin · 2 · δ(t2 − t1) · (fex · (Din −Dex)e

−kt2+

finDin + fexDex) + fex · 2 · δ(t2 − t1) · (fin · (Din −Dex)e
−kt2 + finDin + fexDex)
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= 2δ(t2 − t1)(finDin + fexDex) (B.19)

Defining the mean diffusivity as: D := finDin + fexDex yields:

〈v(t1)v(t2)〉 = 2δ(t2 − t1)D (B.20)

Evaluating the second-order moment of the phase distribution

〈φ(T )2〉 =
∫ T

0

∫ T

0

q(t1)q(t2)〈v(t1)v(t2)〉dt1dt2

=

∫ T

0

∫ T

0

q(t1)q(t2) · 2δ(t2 − t1)Ddt1dt2

= 2D ·
∫ T

0

q(t1)

∫ ∞

−∞

q(t2) · δ(t2 − t1)dt1dt2

= 2D ·
∫ T

0

q(t1)q(t1)dt1

= 2D ·
∫ T

0

q2(t1)dt1

= 2Db (B.21)

where
∫ T

0
q(t)dt =

∫∞

−∞
q(t)dt because q(t) = 0 ∀ t /∈ [0 T ].

Evaluating the mean fourth-order velocity autocorrelation function

The fourth-order VA function is here generalised:

〈v(t1)v(t2)v(t3)v(t4)〉 = 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉+ 〈v(t1)v(t3)〉 · 〈v(t2)v(t4)〉+
〈v(t1)v(t4)〉 · 〈v(t2)v(t3)〉
≈ 3 · 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉 (B.22)

The second-order component 〈v(t1)v(t2)〉 is as defined earlier and 〈v(t3)v(t4)〉 is similarly
defined:

〈v(t3)v(t4)〉 =
{

2Dinδ(t4 − t3) ; if intracellular

2Dexδ(t4 − t3) ; if extracellular
(B.23)
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To evaluate the mean fourth-order VA, all possible particle states in [0 t1], (t1 t2],
(t2 t3] and (t3 t4] must be considered.
For

[

pin(0) pex(0)
]

=
[

1 0
]

(particles initially intracellular):

〈v(t1)v(t2)v(t3)v(t4)〉in = 3·
[

pin→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→in(t3 − t2) · pin→in(t4 − t3) · 2Dinδ(t4 − t3)+

pin→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→in(t3 − t2) · pin→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pin→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→ex(t3 − t2) · pex→in(t4 − t3) · 2Dinδ(t4 − t3)+

pin→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→ex(t3 − t2) · pex→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pin→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→in(t3 − t2) · pin→in(t4 − t3) · 2Dinδ(t4 − t3)+

pin→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→in(t3 − t2) · pin→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pin→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→ex(t3 − t2) · pex→in(t4 − t3) · 2Dinδ(t4 − t3)+

pin→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→ex(t3 − t2) · pex→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pin→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→in(t3 − t2) · pin→in(t4 − t3) · 2Dinδ(t4 − t3)+

pin→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→in(t3 − t2) · pin→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pin→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→ex(t3 − t2) · pex→in(t4 − t3) · 2Dinδ(t4 − t3)+

pin→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→ex(t3 − t2) · pex→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pin→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→in(t3 − t2) · pin→in(t4 − t3) · 2Dinδ(t4 − t3)+

pin→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→in(t3 − t2) · pin→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pin→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→ex(t3 − t2) · pex→in(t4 − t3) · 2Dinδ(t4 − t3)+

pin→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→ex(t3 − t2) · pex→ex(t4 − t3) · 2Dexδ(t4 − t3)]
(B.24)

The right-hand-side of equation B.24 is the probabilistic representation of the product
3 · 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉 = 3 · 2Dδ(t2 − t1) · 2Dδ(t4 − t3) where D is either Din or Dex

depending on the state of the particle in the time intervals (t1 t2] and (t3 t4].

Inserting the definitions of transition probabilities in equation B.15 yields:

〈v(t1)v(t2)v(t3)v(t4)〉in = 3 · 4 · δ(t4 − t3) · (finfex(Din −Dex)
2 · e−k(t4−t2)+

fex(Din −Dex)(finDin + fexDex) · e−kt2 + fex(Din −Dex) · (fexDin + finDex) · e−kt4+

(finDin + fexDex)
2 · δ(t2 − t1))
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For
[

pin(0) pex(0)
]

=
[

0 1
]

(particles initially extracellular):

〈v(t1)v(t2)v(t3)v(t4)〉ex = 3·
[

pex→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→in(t3 − t2) · pin→in(t4 − t3) · 2Dinδ(t4 − t3)+

pex→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→in(t3 − t2) · pin→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pex→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→ex(t3 − t2) · pex→in(t4 − t3) · 2Dinδ(t4 − t3)+

pex→in(t1 − 0) · pin→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→ex(t3 − t2) · pex→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pex→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→in(t3 − t2) · pin→in(t4 − t3) · 2Dinδ(t4 − t3)+

pex→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→in(t3 − t2) · pin→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pex→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→ex(t3 − t2) · pex→in(t4 − t3) · 2Dinδ(t4 − t3)+

pex→in(t1 − 0) · pin→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→ex(t3 − t2) · pex→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pex→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→in(t3 − t2) · pin→in(t4 − t3) · 2Dinδ(t4 − t3)+

pex→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→in(t3 − t2) · pin→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pex→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→ex(t3 − t2) · pex→in(t4 − t3) · 2Dinδ(t4 − t3)+

pex→ex(t1 − 0) · pex→in(t2 − t1) · 2Dinδ(t2 − t1) · pin→ex(t3 − t2) · pex→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pex→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→in(t3 − t2) · pin→in(t4 − t3) · 2Dinδ(t4 − t3)+

pex→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→in(t3 − t2) · pin→ex(t4 − t3) · 2Dexδ(t4 − t3)+

pex→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→ex(t3 − t2) · pex→in(t4 − t3) · 2Dinδ(t4 − t3)+

pex→ex(t1 − 0) · pex→ex(t2 − t1) · 2Dexδ(t2 − t1) · pex→ex(t3 − t2) · pex→ex(t4 − t3) · 2Dexδ(t4 − t3)]
(B.25)

Similarly, inserting B.15 provides:

〈v(t1)v(t2)v(t3)v(t4)〉ex = 3 · 4 · δ(t4 − t3) · (finfex(Din −Dex)
2 · e−k(t4−t2)−

fin(Din −Dex)(finDin + fexDex) · e−kt2 − fin(Din −Dex) · (fexDin + finDex) · e−kt4+

(finDin + fexDex)
2 · δ(t2 − t1))
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The mean fourth-order VA function becomes:

〈v(t1)v(t2)v(t3)v(t4)〉 = fin〈v(t1)v(t2)v(t3)v(t4)〉in + fex〈v(t1)v(t2)v(t3)v(t4)〉ex
= fin · 3 · 4 · δ(t4 − t3) · (finfex(Din −Dex)

2 · e−k(t4−t2)+

fex(Din −Dex)(finDin + fexDex) · e−kt2 + fex(Din −Dex) · (fexDin + finDex) · e−kt4+

(finDin + fexDex)
2 · δ(t2 − t1))+

fex · 3 · 4 · δ(t4 − t3) · (finfex(Din −Dex)
2 · e−k(t4−t2)−

fin(Din −Dex)(finDin + fexDex) · e−kt2 − fin(Din −Dex) · (fexDin + finDex) · e−kt4+

(finDin + fexDex)
2 · δ(t2 − t1))

= 3
[

4 · finfex(Din −Dex)
2 · δ(t2 − t1)δ(t4 − t3)e

−k(t4−t2)+

4 · (finDin + fexDex)
2 · δ(t2 − t1)δ(t4 − t3)

]

(B.26)

Define the variance of compartment diffusivities as Var(D) := finfex(Din − Dex)
2 and

recall the definition of the mean diffusivity: D = finDin+fexDex. The mean VA can then
be written

〈v(t1)v(t2)v(t3)v(t4)〉 = 12 ·Var(D) ·δ(t2−t1)δ(t4−t3)e
−k(t4−t2)+12 ·D2 ·δ(t2−t1)δ(t4−t3)

(B.27)

Evaluating the fourth-order moment of the phase distribution

〈φ(T )4〉 =
∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)〈v(t1)v(t2)v(t3)v(t4)〉dt1dt2dt3dt4

=

∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)[12 · Var(D) · δ(t2 − t1)δ(t4 − t3)e
−k(t4−t2)+

12 ·D2 · δ(t2 − t1)δ(t4 − t3)]dt1dt2dt3dt4

= 12·Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)q(t4)

∫ ∞

−∞

q(t1)δ(t2−t1)dt1

∫ ∞

−∞

q(t3)δ(t4−t3)dt3dt2dt4

+ 12 ·D2

∫ T

0

q(t2)

∫ T

0

q(t4)

∫ ∞

−∞

q(t1)δ(t2 − t1)dt1

∫ ∞

−∞

q(t3)δ(t4 − t3)dt3dt2dt4

= 12 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4 + 12 ·D2

∫ T

0

q(t2)
2dt2

∫ T

0

q(t4)
2dt4
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= 12 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4 + 12 ·D2b2

(B.28)

where
∫ T

0
q(t)dt =

∫∞

−∞
q(t)dt because q(t) = 0 ∀ t /∈ [0 T ]. Define t := t4 − t2, t ∈

[−T, T ], then

〈φ(T )4〉 = 12 · Var(D)

∫ T

−T

e−kt

∫ T

0

q(t2)
2q(t2 + t)2dt2dt+ 12 ·D2 · b2

= 12 · Var(D)

∫ T

−T

e−ktq4(t)dt+ 12 ·D2 · b2 (B.29)

where q4(t) =
∫ T

0
q(t2)

2q(t2 + t)2dt2 is the fourth-order autocorrelation function of q(t).
The fourth order moment of the phase distribution can be expressed:

〈φ(T )4〉 = 12 · Var(D)

∫ T

−T

e−k|t|q4(|t|)dt+ 12 ·D2 · b2

= 12 · Var(D) · 2
∫ T

0

e−ktq4(t)dt+ 12 ·D2 · b2 (B.30)

Final signal representation

The final signal equation is now given by

ln(S) ≈ −1

2
〈φ2〉+ 1

24
(〈φ4〉 − 3〈φ2〉2)

= −1

2
· 2Db+

1

24

[

12 · Var(D) · 2
∫ T

0

e−ktq4(t)dt+ 12 ·D2 · b2 − 3 · (2Db)2
]

= −Db+
1

2
Var(D) · 2

∫ T

0

e−ktq4(t)dt

(B.31)

In other words,

ln(S) ≈ −Db+
1

2
Var(D)h(·)b2 (B.32)

where

h(·) = 2

b2

∫ T

0

e−ktq4(t)dt (B.33)

is the exchange-weighting term.

Done.
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Appendix B3: General exchange-restriction theory

The derivations in this section are an extension (generalisation) of the theory presented
in Appendix B2.

Definition of the velocity-autocorrelation function:

〈v(t1)v(t2)〉 =











1
π

∫∞

−∞
D(ω)eiω(t2−t1)dω ; if intracellular

2Dexδ(t2 − t1) ; if extracellular

(B.34)

Evaluating the second-order moment of the phase distribution

〈φ(T )2〉 =
∫ T

0

∫ T

0

q(t1)q(t2)〈v(t1)v(t2)〉dt1dt2 (B.35)

Since q(t) = 0 ∀ t /∈ [0 T ],
∫ T

0
q(t)dt =

∫∞

−∞
q(t)dt. This allows the reformulation:

〈φ(T )2〉 =
∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)〈v(t1)v(t2)〉dt1dt2 (B.36)

The mean second-order velocity autocorrelation function obtained from the Maple script
in Appendix B1 is:

〈v(t1)v(t2)〉 =
(

2 · fin ·
1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

+ 2 · fex ·Dexδ(t2 − t1) (B.37)

The second-order moment of the phase distribution then becomes

〈φ(T )2〉 =
∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)

[(

2fin ·
1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

+ 2 · fex ·Dexδ(t2 − t1)

]

dt1dt2

= 2 · fin ·
∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)

(

1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

dt1dt2+

2 · fex ·Dex ·
∫ ∞

−∞

∫ −∞

−∞

q(t1)q(t2) · δ(t2 − t1)dt1dt2

= 2 · fin ·
(

1

2π

∫ ∞

−∞

D(ω)

[
∫ ∞

−∞

q(t1)e
−iωt1dt1

] [
∫ ∞

−∞

q(t2)e
iωt2dt2

])

+
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2 · fex ·Dex ·
∫ ∞

−∞

q(t1) ·
[
∫ ∞

−∞

q(t2)δ(t2 − t1)dt2

]

dt1

= 2 · fin ·
(

1

2π

∫ ∞

−∞

D(ω)[Q(ω)] · [Q∗(ω)]dw

)

+ 2 · fex ·Dex ·
∫ T

0

q(t1)[q(t1)]dt1

= 2 · fin ·
(

1

2π

∫ ∞

−∞

D(ω) ·Q(ω) ·Q∗(ω)dω

)

+ 2 · fex ·Dex ·
∫ T

0

q(t1)
2dt1

where Q(ω) is the Fourier transform of q(t) and * denotes complex conjugate.
The second-order moment of the phase distribution can now be written:

〈φ(T )2〉 = 2

(

fin
2π

∫ ∞

−∞

D(ω) · |Q(ω)|2dω + fex ·Dex · b
)

(B.38)

Evaluating the fourth-order moment of the phase distribution

〈φ(T )4〉 =
∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)〈v(t1)v(t2)v(t3)v(t4)〉dt1dt2dt3dt4 (B.39)

Since q(t) = 0 ∀ t /∈ [0 T ],
∫ T

0
q(t)dt =

∫∞

−∞
q(t)dt, an equivalent expression of the

fourth-order moment is

〈φ(T )4〉 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4)〈v(t1)v(t2)v(t3)v(t4)〉dt1dt2dt3dt4
(B.40)

Similar to the long-time limit case, the fourth-order velocity autocorrelation function is
factorised into two second-order terms:

〈v(t1)v(t2)v(t3)v(t4)〉 = 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉+ 〈v(t1)v(t3)〉 · 〈v(t2)v(t4)〉+
〈v(t1)v(t4)〉 · 〈v(t2)v(t3)〉
≈ 3 · 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉

The mean fourth-order velocity autocorrelation function obtained from the Maple script
in Appendix B1 is

〈v(t1)v(t2)v(t3)v(t4)〉 = 4 ·
[

finfex
4π2

(
∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

·
(
∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

− finfex ·Dexδ(t4 − t3) ·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)
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− finfex ·Dexδ(t2 − t1) ·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

+ finfex ·Dexδ(t4 − t3) · δ(t2 − t1)

]

· e−k(t4−t2) + 4 ·
[

finfin
4π2

(
∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

·
(
∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

+ finfex ·Dexδ(t4 − t3) ·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

+

finfex ·Dexδ(t2 − t1) ·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

+ fexfex ·Dex · δ(t4 − t3) ·Dexδ(t2 − t1)

]

(B.41)

The colour-coding above is meant to enhance readability. Its meaning is provided below.
The fourth-order moment of the phase distribution is now given by:

〈φ(T )4〉 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4)〈v(t1)v(t2)v(t3)v(t4)〉dt1dt2dt3dt4

= 12 ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4)

(

[

finfex
4π2

(
∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

·
(
∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

− finfex ·Dexδ(t4 − t3) ·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

− finfex ·Dexδ(t2 − t1) ·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

+ finfex ·Dexδ(t4 − t3) · δ(t2 − t1)

]

· e−k(t4−t2) +

[

finfin
4π2

(
∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

·
(
∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

+ finfex ·Dexδ(t4 − t3) ·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

+

finfex ·Dexδ(t2 − t1) ·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

+

fexfex ·Dex · δ(t4 − t3) ·Dexδ(t2 − t1)

]

)

dt1dt2dt3dt4 (B.42)

Above, the blue, green and red expressions are the variance terms and violet expressions
are the mean terms. All these terms will be handled one at a time below. The terms are
labelled below for ease of reference:

〈φ(T )4〉 = V1 + V2 + V3 + V4 +M1 +M2 +M3 +M4 (B.43)
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where V and M denote variance and mean, respectively. The colour-coding presented
above will be maintained throughout the derivations in this section.

Evaluating V1 :

V1= 12 ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[(

finfex
4π2

(
∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

·
(
∫ ∞

−∞

D(ω)eiω(t2−t1)dω

))

· e−k(t4−t2)

]

dt1dt2dt3dt4

= 12 · finfex
4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) · e−k(t4−t2)

∫ ∞

−∞

D(ω)e−iω(t4−t3)dω

·
∫ ∞

−∞

D(ω1)e
−iω1(t2−t1)dω1dt1dt2dt3dt4

= 12 · finfex
4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) · e−k(t4−t2)

∫ ∞

−∞

D(ω) ·D(ω1)e
iωt4e−iωt3 ·

·eiω1t2e−iω1t1dωdω1dt1dt2dt3dt4

= 12 · finfex
4π2

∫ ∞

−∞

∫ ∞

−∞

q(t2)q(t4) · e−k(t4−t2)

∫ ∞

−∞

∫ ∞

−∞

D(ω) ·D(ω1)

[
∫ ∞

−∞

q(t3)e
−iωt3dt3

]

·

·
[
∫ ∞

−∞

q(t1)e
−iω1t1dt1

]

· eiωt4 · eiω1t2dωdω1dt2dt4

= 12 · finfex
4π2

∫ ∞

−∞

e−k(t4−t2)

∫ ∞

−∞

∫ ∞

−∞

D(ω) ·D(ω1)[Q(ω)] · [Q(ω1)] ·
[
∫ ∞

−∞

q(t2)q(t4) · eiω1t2 ·

eiωt4
]

dωdω1dt2dt4

where Q(ω) is the Fourier transform of q(t). Now let t := t4 − t2, t ∈ [−T T ]. Then

V1= 12 · finfex
4π2

∫ ∞

−∞

e−kt

∫ ∞

−∞

∫ ∞

−∞

D(ω) ·D(ω1)Q(ω) ·Q(ω1) ·
[
∫ ∞

−∞

q(t2)q(t2 + t) · eiω1t2 ·

eiω(t2+t)dt2

]

dωdω1dt

Final expression for V1 :

V1 = 12 · finfex
4π2

∫ ∞

−∞

e−kt

∫ ∞

−∞

∫ ∞

−∞

D(ω) ·D(ω1)Q(ω) ·Q(ω1) ·Q2(t, ω, ω1)dωdω1dt

(B.44)
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where Q2(t, ω, ω1) is the correlation:

Q2(t, ω, ω1) :=

∫ ∞

−∞

q(t2) · q(t2 + t) · eiω1t2 · eiω(t2+t)dt2

Evaluating V2:

V2= 12 ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[(

− finfex ·Dexδ(t4 − t3)·

1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

· e−k(t4−t2)

]

dt1dt2dt3dt4

= −12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) · e−k(t4−t2)·

·
(

δ(t4 − t3) ·
∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)

dt1dt2dt3dt4

= −12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

q(t2)q(t4) · e−k(t4−t2)

[
∫ ∞

−∞

q(t3)δ(t4 − t3)dt3

]

·

·
∫ ∞

−∞

D(ω)

[
∫ ∞

−∞

q(t1)e
−iωt1dt1

]

· eiωt2dωdt2dt4

= −12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

q(t2)q(t4) · e−k(t4−t2) [q(t4)] ·
∫ ∞

−∞

D(ω)[Q(ω)] · eiωt2dωdt2dt4

Defining t := t4 − t2, t ∈ [−T T ] gives:

V2= −12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

q(t2)q(t2 + t)2 · e−k(t) ·
∫ ∞

−∞

D(ω)Q(ω) · eiωt2dωdt2dt

= −12 · finfexDex

2π

∫ ∞

−∞

e−kt

∫ ∞

−∞

D(ω)Q(ω)

∫ ∞

−∞

q(t2) · q(t2 + t)2 · eiωt2dt2dωdt

Final expression for V2 :

V2 = −12 · finfexDex

2π

∫ ∞

−∞

e−kt

∫ ∞

−∞

D(ω) ·Q(ω) ·Q3(t, ω)dωdt (B.45)

where Q3(t, ω) is given by the correlation
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Q3(t, ω) :=

∫ ∞

−∞

q(t2) · q(t2 + t)2 · eiωt2dt2

Evaluating V3 :

V3= 12 ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[(

− finfex ·Dexδ(t2 − t1)·

1

2π

∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

· e−k(t4−t2)

]

dt1dt2dt3dt4

= −12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) · e−k(t4−t2)·

·
(

δ(t2 − t1) ·
∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

dt1dt2dt3dt4

= −12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

q(t2)q(t4) · e−k(t4−t2)

[
∫ ∞

−∞

q(t1)δ(t2 − t1)dt1

]

·

·
∫ ∞

−∞

D(ω)

[
∫ ∞

−∞

q(t3)e
−iωt3dt3

]

· eiωt4dωdt2dt4

= −12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

q(t2)q(t4) · e−k(t4−t2) [q(t2)] ·
∫ ∞

−∞

D(ω)[Q(ω)] · eiωt4dωdt2dt4

Defining t := t4 − t2, t ∈ [−T T ] gives:

V3= −12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

q(t2)q(t2 + t)2 · e−k(t) ·
∫ ∞

−∞

D(ω)Q(ω) · eiω(t2+t))dωdt2dt

= −12 · finfexDex

2π

∫ ∞

−∞

e−kt

∫ ∞

−∞

D(ω)Q(ω)

∫ ∞

−∞

q(t2)
2 · q(t2 + t) · eiω(t2+t)dt2dωdt

Final expression for V3 :

V3 = −12 · finfexDex

2π

∫ ∞

−∞

e−kt

∫ ∞

−∞

D(ω) ·Q(ω) ·Q3(t, ω)dωdt (B.46)

where Q3(t, ω) is given by the correlation

Q3(t, ω) :=

∫ ∞

−∞

q(t2)
2 · q(t2 + t) · eiω(t2+t)dt
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and corresponds to the same Q3 defined for V2.

Evaluating V4 :

V4= 12 ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[

finfex ·Dexδ(t4 − t3) ·Dexδ(t2 − t1)·

·e−k(t4−t2)
]

dt1dt2dt3dt4

= 12 · finfexD2
ex ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[

δ(t4 − t3) · δ(t2 − t1)·

·e−k(t4−t2)
]

dt1dt2dt3dt4

= 12 · finfexD2
ex ·
∫ ∞

−∞

∫ ∞

−∞

e−k(t4−t2) · q(t2)q(t4) ·
[
∫ ∞

−∞

q(t3)δ(t4 − t3)dt3

]

·

·
[
∫ ∞

−∞

q(t1)δ(t2 − t1)dt1

]

dt2dt4

= 12 · finfexD2
ex ·
∫ ∞

−∞

∫ ∞

−∞

e−k(t4−t2) · q(t2)q(t4) · [q(t4)][q(t2)]dt2dt4

= 12 · finfexD2
ex ·
∫ ∞

−∞

∫ ∞

−∞

e−k(t4−t2) · q(t2)2q(t4)2dt2dt4

Defining t := t4 − t2, t ∈ [−T T ] gives:

V4 = 12 · finfexD2
ex ·
∫ ∞

−∞

∫ ∞

−∞

e−k(t) · q(t2)2q(t2 + t)2dt2dt

Final expression for V4 :

V4 = 12 · finfexD2
ex ·
∫ ∞

−∞

e−ktQ4(t)dt (B.47)

where Q4(t) is the correlation

Q4(t) :=

∫ ∞

−∞

q(t2)
2q(t2 + t)2dt2

It is instructive to collect the derived variance terms before proceeding to the mean terms.
Recall the decomposition:

〈φ(T )4〉 = V1 + V2 + V3 + V4 +M1 +M2 +M3 +M4 (B.48)
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The work presented so far has shown that

V1 + V2 + V3 + V4 = 12 · finfex
4π2

∫ ∞

−∞

e−kt

∫ ∞

−∞

∫ ∞

−∞

D(ω) ·D(ω1)Q(ω) ·Q(ω1)·

·Q2(t, ω, ω1)dωdω1dt+−12 · finfexDex

2π

∫ ∞

−∞

e−kt

∫ ∞

−∞

D(ω)·

·Q(ω) ·Q3(t, ω)dωdt+−12 · finfexDex

2π

∫ ∞

−∞

e−kt

∫ ∞

−∞

D(ω)·

·Q(ω) ·Q3(t, ω)dωdt+ 12 · finfexD2
ex ·
∫ ∞

−∞

e−ktQ4(t)dt

That is

V1 + V2 + V3 + V4 = 12 · finfex
∫ ∞

−∞

e−kt

[

1

4π2

∫ ∞

−∞

∫ ∞

−∞

D(ω) ·D(ω1)Q(ω) ·Q(ω1)·

·Q2(t, ω, ω1)dωdω1−2 ·Dex ·
1

2π

∫ ∞

−∞

D(ω)·Q(ω) ·Q3(t, ω)dω+

D2
ex ·Q4(t)

]

dt

where

Q2(t, ω, ω1):=

∫ ∞

−∞

q(t2) · q(t2 + t) · eiω1t2 · eiω(t2+t)dt2

Q3(t, ω):=

∫ ∞

−∞

q(t2) · q(t2 + t)2 · eiωt2dt2

Q4(t):=

∫ ∞

−∞

q(t2)
2q(t2 + t)2dt2

The next step is to evaluate the mean terms M1,M2,M3 and M4.

Evaluating M1 :

M1= 12 ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[

finfin
4π2

(
∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

·

·
(
∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)]

dt1dt2dt3dt4
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= 12 · f
2
in

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[(
∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)

·

·
(
∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)]

dt1dt2dt3dt4

= 12 · f
2
in

4π2

∫ ∞

−∞

D(ω)

[
∫ ∞

−∞

q(t1)e
−iωt1dt1

] [
∫ ∞

−∞

q(t2)e
iωt2dt2

]

dω·

·
∫ ∞

−∞

D(ω)

[
∫ ∞

−∞

q(t3)e
−iωt3dt3

] [
∫ ∞

−∞

q(t4)e
iωt4dt4

]

dω

= 12 · f
2
in

4π2

∫ ∞

−∞

D(ω)[Q(ω)][Q∗(ω)]dω ·
∫ ∞

−∞

D(ω1)[Q(ω1)][Q
∗(ω1)]dω1

Final expression for M1 :

M1 = 12 · f
2
in

4π2

∫ ∞

−∞

D(ω)|Q(ω)|2dω ·
∫ ∞

−∞

D(ω1)|Q(ω1)|2dω1 (B.49)

Evaluating M2 :

M2= 12 ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[

finfex ·Dexδ(t4 − t3)·

·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)]

dt1dt2dt3dt4

= 12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[

δ(t4 − t3)·

·
(
∫ ∞

−∞

D(ω)eiω(t2−t1)dω

)]

dt1dt2dt3dt4

= 12 · finfexDex

2π

∫ ∞

−∞

q(t3) ·
[
∫ ∞

−∞

q(t4)δ(t4 − t3)dt4

]
∫ ∞

−∞

D(ω)·

·
[
∫ ∞

−∞

q(t1)e
−iωt1dt1

]

·
[
∫ ∞

−∞

q(t2)e
iωt2dt2

]

dωdt3

= 12 · finfexDex

2π

∫ ∞

−∞

q(t3) · [q(t3)]
∫ ∞

−∞

D(ω)·[Q(ω)] · [Q∗(ω)] dωdt3
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= 12 · finfexDex

2π

∫ ∞

−∞

q(t3)
2dt3 ·

∫ ∞

−∞

D(ω)|Q(ω)|2dω

Final expression for M2 :

M2 = 12 · finfexDex

2π
· b ·

∫ ∞

−∞

D(ω)|Q(ω)|2dω (B.50)

Evaluating M3 :

M3= 12 ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[

finfex ·Dexδ(t2 − t1)·

·
(

1

2π

∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)]

dt1dt2dt3dt4

= 12 · finfexDex

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) ·
[

δ(t2 − t1)·

·
(
∫ ∞

−∞

D(ω)eiω(t4−t3)dω

)]

dt1dt2dt3dt4

= 12 · finfexDex

2π

∫ ∞

−∞

q(t2) ·
[
∫ ∞

−∞

q(t1)δ(t2 − t1)dt1

]
∫ ∞

−∞

D(ω)·

·
[
∫ ∞

−∞

q(t3)e
−iωt3dt3

]

·
[
∫ ∞

−∞

q(t4)e
iωt4dt4

]

dωdt2

= 12 · finfexDex

2π

∫ ∞

−∞

q(t2) · [q(t2)]
∫ ∞

−∞

D(ω)·[Q(ω)] · [Q∗(ω)] dωdt2

= 12 · finfexDex

2π

∫ ∞

−∞

q(t2)
2dt2 ·

∫ ∞

−∞

D(ω)|Q(ω)|2dω

Final expression for M3 :

M3 = 12 · finfexDex

2π
· b ·

∫ ∞

−∞

D(ω)|Q(ω)|2dω (B.51)
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Evaluating M4 :

M4= 12 ·
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) · [fexfexDexδ(t4 − t3)·

·Dexδ(t2 − t1)]dt1dt2dt3dt4

= 12 · f 2
exD

2
ex

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

q(t1)q(t2)q(t3)q(t4) · [δ(t4 − t3)·

·δ(t2 − t1)]dt1dt2dt3dt4

= 12 · f 2
exD

2
ex

∫ ∞

−∞

q(t1)

[
∫ ∞

−∞

q(t2)δ(t2 − t1)dt2

]

dt1·
∫ ∞

−∞

q(t3)

[
∫ ∞

−∞

q(t4)δ(t4 − t3)dt4

]

dt3

= 12 · f 2
exD

2
ex

∫ ∞

−∞

q(t1) [q(t1)] dt1·
∫ ∞

−∞

q(t3) [q(t3)] dt3

= 12 · f 2
exD

2
ex

∫ ∞

−∞

q(t1)
2dt1·

∫ ∞

−∞

q(t3)
2dt3

Final expression for M4 :
M4 = 12 · f 2

exD
2
ex · b2 (B.52)

The mean terms will be gathered here before presenting a final signal representation.
Recall

〈φ(T )4〉 = V1 + V2 + V3 + V4 +M1 +M2 +M3 +M4

where the mean terms are now given by

M1 +M2 +M3 +M4 = 12 · f
2
in

4π2

∫ ∞

−∞

D(ω)|Q(ω)|2dω ·
∫ ∞

−∞

D(ω1)|Q(ω1)|2dω1

+ 12 · finfexDex

2π
· b ·

∫ ∞

−∞

D(ω)|Q(ω)|2dω

+ 12 · finfexDex

2π
· b ·

∫ ∞

−∞

D(ω)|Q(ω)|2dω

+ 12 · f 2
exD

2
ex · b2

It is important to notice that the expression above can also be written

M1 +M2 +M3 +M4 = 3 ·
[

2 ·
(

fin
2π

∫ ∞

−∞

D(ω)|Q(ω)|2dω + fexDex · b
)]2

(B.53)
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In other words
M1 +M2 +M3 +M4 = 3 · 〈φ(T )2〉2 (B.54)

The second- and fourth-order cumulants of the phase distribution (c2 = 〈φ(T )2〉 and
c4 = 〈φ(T )4〉 − 3 · 〈φ(T )2〉2, respectively) can now be evaluated to arrive at the final
signal equation describing exchange and restriction. c2 has already been evaluated since
it is equal to the second-order moment of the phase distribution. c4 can be obtained by
considering that

c4 = 〈φ(T )4〉 − 3 · 〈φ(T )2〉2

= [V1 + V2 + V3 + V4 +M1 +M2 +M3 +M4]− 3 · 〈φ(T )2〉2

= V1 + V2 + V3 + V4

where the last equality comes from the finding that M1 +M2 +M3 +M4 = 3 · 〈φ(T )2〉2.

Final signal representation

The final signal equation can now be expressed:

ln(S/S0) ≈ −1

2
c2 +

1

24
c4 (B.55)

where

c2 = 2

(

fin
2π

∫ ∞

−∞

D(ω) · |Q(ω)|2dω + fex ·Dex · b
)

and

c4 = 12 · finfex
∫ ∞

−∞

e−kt

[

1

4π2

∫ ∞

−∞

∫ ∞

−∞

D(ω) ·D(ω1)Q(ω) ·Q(ω1)·

·Q2(t, ω, ω1)dωdω1−2 ·Dex ·
1

2π

∫ ∞

−∞

D(ω)·Q(ω) ·Q3(t, ω)dω+

D2
ex ·Q4(t)

]

dt

where

Q2(t, ω, ω1):=

∫ ∞

−∞

q(t2) · q(t2 + t) · eiω1t2 · eiω(t2+t)dt2

Q3(t, ω):=

∫ ∞

−∞

q(t2) · q(t2 + t)2 · eiωt2dt2

Q4(t):=

∫ ∞

−∞

q(t2)
2q(t2 + t)2dt2

We are done.
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Appendix B4: On the validity of 〈v(t1)v(t2)v(t3)v(t4)〉 ≈ 3 · 〈v(t1)v(t2)〉 ·
〈v(t3)v(t4)〉

This section evaluates the validity of the approximation:

〈v(t1)v(t2)v(t3)v(t4)〉 = 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉+ 〈v(t1)v(t3)〉 · 〈v(t2)v(t4)〉+
〈v(t1)v(t4)〉 · 〈v(t2)v(t3)〉
≈ 3 · 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉 (B.56)

by comparing the fourth-order phase moment (〈φ(T )4〉) evaluated using

〈v(t1)v(t2)v(t3)v(t4)〉 ≈ 3 · 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉

to that obtained using the full expression:

〈v(t1)v(t2)v(t3)v(t4)〉 =〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉+ 〈v(t1)v(t3)〉 · 〈v(t2)v(t4)〉+
〈v(t1)v(t4)〉 · 〈v(t2)v(t3)〉

This is done for the long-time limit where there is exchange and Gaussian diffusion.
The Maple script in Appendix B1 gives segments of the mean velocity autocorrelation
function corresponding to the factors 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉, 〈v(t1)v(t3)〉 · 〈v(t2)v(t4)〉
and 〈v(t1)v(t4)〉 · 〈v(t2)v(t3)〉 as

〈v(t1)v(t2)v(t3)v(t4)〉a = 4 · finfex(Dex −Din)
2 · δ(t2 − t1)δ(t4 − t3)e

−k(t4−t2)+

4 · (finDin + fexDex)
2 · δ(t2 − t1)δ(t4 − t3), (B.57)

〈v(t1)v(t2)v(t3)v(t4)〉b = 4 · finfex(Dex −Din)
2 · δ(t3 − t1)δ(t4 − t2)e

−k(t4−t2)+

4 · (finDin + fexDex)
2 · δ(t3 − t1)δ(t4 − t2) (B.58)

and

〈v(t1)v(t2)v(t3)v(t4)〉c = 4 · finfex(Dex −Din)
2 · δ(t3 − t2)δ(t4 − t1)e

−k(t4−t2)+

4 · (finDin + fexDex)
2 · δ(t3 − t2)δ(t4 − t1) (B.59)

respectively. Note the similarity between all three terms. The subscripts a, b, c are meant
to indicate that the three terms above are components of the mean fourth-order veloc-
ity autocorrelation function, such that 〈v(t1)v(t2)v(t3)v(t4)〉 = 〈v(t1)v(t2)v(t3)v(t4)〉a +
〈v(t1)v(t2)v(t3)v(t4)〉b + 〈v(t1)v(t2)v(t3)v(t4)〉c. Components of the fourth-order phase
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moment can now be evaluated for all three terms above.

Deriving 〈φ(T )4〉a

Component a was derived in Appendix B2 and is provided below for ease of compari-
son:

〈φ(T )4〉a = 4 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4 + 4 ·D2b2

Deriving 〈φ(T )4〉b

〈φ(T )4〉b =
∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)〈v(t1)v(t2)v(t3)v(t4)〉dt1dt2dt3dt4

=

∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)[4 · Var(D) · δ(t3 − t1)δ(t4 − t2)e
−k(t4−t2)+

4 ·D2 · δ(t3 − t1)δ(t4 − t2)]dt1dt2dt3dt4

= 4 ·Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)q(t3)

∫ ∞

−∞

q(t1)δ(t3− t1)dt1

∫ ∞

−∞

q(t4)δ(t4− t2)dt4dt2dt3

+ 4 ·D2

∫ T

0

q(t2)

∫ T

0

q(t3)

∫ ∞

−∞

q(t1)δ(t3 − t1)dt1

∫ ∞

−∞

q(t4)δ(t4 − t2)dt4dt2dt3

= 4 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t3)

2dt3dt2 + 4 ·D2

∫ T

0

q(t2)
2dt2

∫ T

0

q(t3)
2dt3

= 4 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t3)

2dt3dt2 + 4 ·D2b2

Deriving 〈φ(T )4〉c

〈φ(T )4〉c =
∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)〈v(t1)v(t2)v(t3)v(t4)〉dt1dt2dt3dt4

=

∫ T

0

∫ T

0

∫ T

0

∫ T

0

q(t1)q(t2)q(t3)q(t4)[4 · Var(D) · δ(t4 − t1)δ(t3 − t2)e
−k(t4−t2)+

4 ·D2 · δ(t4 − t1)δ(t3 − t2)]dt1dt2dt3dt4

= 4 ·Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)q(t4)

∫ ∞

−∞

q(t1)δ(t4− t1)dt1

∫ ∞

−∞

q(t3)δ(t3− t2)dt3dt2dt4
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+ 4 ·D2

∫ T

0

q(t2)

∫ T

0

q(t4)

∫ ∞

−∞

q(t1)δ(t3 − t1)dt1

∫ ∞

−∞

q(t3)δ(t3 − t2)dt3dt2dt4

= 4 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4 + 4 ·D2

∫ T

0

q(t2)
2dt2

∫ T

0

q(t4)
2dt4

= 4 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4 + 4 ·D2b2

The fourth-order moment is given by 〈φ(T )4〉 = 〈φ(T )4〉a + 〈φ(T )4〉b + 〈φ(T )4〉c:

〈φ(T )4〉 =4 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4 + 4 ·D2b2+

4 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t3)

2dt3dt2 + 4 ·D2b2+

4 · Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4 + 4 ·D2b2 (B.60)

The simplification

〈v(t1)v(t2)v(t3)v(t4)〉 ≈ 3 · 〈v(t1)v(t2)〉 · 〈v(t3)v(t4)〉
is equivalent to assuming

〈φ(T )4〉 ≈ 3 · 〈φ(T )4〉a
That is, assuming that the components 〈φ(T )4〉b and 〈φ(T )4〉c are both equal to 〈φ(T )4〉a.
Note that 〈φ(T )4〉a and 〈φ(T )4〉c are identical in every respect, but exhibit a slight dis-
crepancy from 〈φ(T )4〉b in the terms in q. Thus, the assumption above is equivalent to
assuming:

4·Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t3)

2dt3dt2 ≈ 4·Var(D)

∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4

which reduces to
∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t3)

2dt3dt2 ≈
∫ T

0

e−k(t4−t2)

∫ T

0

q(t2)
2q(t4)

2dt2dt4

or:
∫ T

0

q(t2)
2q(t3)

2dt3 ≈
∫ T

0

q(t2)
2q(t4)

2dt4

Equivalently:
t3 ≈ t4

The approximation in equation B.56 becomes an equality when the time points t3 and t4
are equal. A simple rearrangement of the integrals in q(t) shows that the same is true
when any two time points in the set {t1, t2, t3, t4} are equal.
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