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Abstract

Cranioplasty is surgical repair of a skull bone defect due to a previous surgery
or injury. Cranioplasty is most often performed with autologous bone flap, i.e
the patient’s own saved bone from previous surgery if this is available. If au-
tologous bone is not available then custom procedure is to manually mould an
implant using bone cement from the plastic polymethyl methacrylate (PMMA).
Manually moulding implants during surgery has, albeit being a clinical routine,
disadvantages and therefore Skåne University Hospital have developed a tech-
nique to 3D print patient-specific cranioplasty moulds based on a computed
tomography (CT) scan of the skull bone. The shape of the mould is created
by a combination of manual design process, mirroring and interpolation. This
partly limits the technique to unilateral defects and the method can be tricky
and time consuming for complicated cases.

The purpose of the thesis was to develop a method based on a neural net-
work to reconstruct missing parts of the skull bone and overcome the limitations
with the current mirroring method when designing implants or moulds for cran-
ioplasty.

The process included developing a method to extract data from CT images
for training of the neural networks. During the process numerous neural network
structures and models were developed and evaluated with the best performing
network being a convolutional autoencoder with skip connections. The network
was trained with data from a total of 240 patients with simulated defects. The
results of the network shows that it is able to handle both unilateral and bilateral
defects with a mean error of 1.07mm. In comparison to the currently used
method it performed as well or even better in some cases. Overall the developed
method showed good enough results for it to be implemented as clinical routine.
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1 Introduction
Cranioplasty is surgical repair of a skull bone defect due to a previous surgery or
injury. There are a multitude of causes for skull defects or deformities. Examples
of causes include the result of a trauma, tumor, infection, bone disease, or
decompress surgery [1]. Cranioplasty can be traced far back in history as plates
of gold and silver that have been found near the dead are believed to have
been used as skull implants [2]. Nowadays cranioplasty is most often performed
with autologous bone flaps i.e patient’s own saved bone from previous surgery
if this is available. If autologous bone is not available then, one could either
use patient-specific implants in titan or other biocompatible materials such as
hydroxyhepatite [3], or in the majority of cases an implant is moulded from
bone cement and put in place during surgery. The bone cement is provided
as a two-component material consisting of Polymethyl Methacrylate (PMMA)
powder and a liquid that are mixed together before moulding. The casting of
the bone cement during surgery is performed by placing a wet cloth on the
exposed dura or arachnoid and applying the bone cement on top of the cloth
and then manually moulding or shaping this to fit the void during the curation
time which is approximately 10 minutes. This method has several drawbacks:

• The hardening process is exothermic and generates intensive heat that
could damage surrounding tissue. Therefore it requires cooling which is
done with sterile water.

• The hardening bone cement evaporates strong smells which affects the
personal and can cause headaches.

• It may be difficult for the surgeon to get a good fit before the material
hardens.

• If the implant has a sub optimal fit the cranioplasty flap needs to be
grinded, spreading small dust particles in the operating theatre. As the
PMMA bone cement is infused with the antibacterial substance gentamyecin,
this becomes a work environment problem for the surgeon and the rest of
the staff since the particles should not be inhaled.

Furthermore, up to 40% of all cranioplasties needs to be removed due to
bleedings, infections or wound dehiscences [4].To address these problems a project
was started last year at Skåne University Hospital [4]. The purpose of the project
is to develop a method to create patient specific moulds for the implant based
on a computed tomography (CT) scan. A CT scan is a medical imaging tech-
nique that reconstructs a volume from a set of X-ray projections. The different
measurements are processed to produce cross-sectional images, so called slices
of the object which makes it possible to visualize the inside of the skull. The
signal from the X-ray is proportional to the tissue X-ray attenuation and is
expressed in Hounsfield units (HU). It is a dimensionless unit that is obtained
from a linear transformation of the measurements from the X-rays. It scales
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from -1000 HU for air to over 3000 HU for metals where 0 HU is the value for
water [5]. This makes it possible to differentiate between different tissues in the
CT image. The proposed method has a number of advantages compared to the
old method:

• The casting of the implant can be done away from the patient instead of
directly on the skull and in a location of the operating theatre with better
ventilation.

• The surgery time can be shortened since one surgeon can work on the
skull while another one is moulding the implant.

• The result can be done aesthetically better since the mould is created
beforehand to a patient-specific shape ensuring a superior shape and less
fine-tune grinding is required by the surgeon.

Currently the patient-specific mould design is based on mirroring shape from
the non defect side to the defect side. In this process several manual correc-
tions and adjustments are usually needed. After mirroring the healthy side to
the defect side a number of points are placed around the inside and outside of
the skull. Using interpolation between these points a template of the shape of
the skull is created and from the template an implant is designed by filling the
void of the hole between the inside and the outside surface at the defect area.
A mould for the implant can then be designed from the template. The whole
process is done with the software Segment 3DPrint[6] in Matlab[7]. Some of the
steps for mirroring and creating the implant template can be seen in Fig. 1. The
mould is 3D-printed on a Form3 3D printer (Formlabs Inc, MA, USA) using the
Surgical Guide resin. Thereafter, the mould is sterilized in a clinical autoclave
at 134◦C. Since the skull is not perfectly symmetric the mirroring of the skull
and the placement of the points for the template often requires manual correc-
tions. Most importantly, the method can not handle defects that are bilateral,
affecting both sides of the skull, i.e. when the defect is in the front or the back
of the head as shown in Fig. 2.
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Figure 1: Steps for creating an implant. Left: Segmentation of the CT image.
Middle: Mirrored and smoothed segmentation of the inside surface of the skull.
Right: Design of implant by mirroring the outside of the skull and filling the
void of the hole between the outside and inside surface. The mould is then
designed by using the negative space of the implant.

Figure 2: Subject with a large bilateral defect in the back of the head. This
is an example where the current method of mirroring the defect does not work
since the defect extends over the midline.
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2 Aim
The aim of this master thesis project is to investigate the possibility to, instead
of using the mirroring method currently used, use a neural network in the process
to design implant moulds by using data from pre-operative CT images. Different
network structures will be developed, evaluated and tested in the process to find
a suitable network for the described problem. The network will be trained with
data extracted from pre-operative CT images. The images will be pre-processed
and a method to extract the data from the images will be developed. The data
should be in a similar form as for the current method, i.e. points around the
skull. For the training of the network the data will be manipulated to simulate
defects in the skull. The aim for the network is then to be able to reconstruct the
data as close to the original data before the defect was simulated and overcome
the limitations with the current method.
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3 Theory

3.1 Artificial Neural Networks
The artificial neural network (ANN) is loosely based on the biological neural
network that can be found in the human brain. In a similar way as its biological
counterpart the ANN is built up by neurons but in the artificial case they are
called nodes. A neuron can simply be described as a switch. The switch receives
inputs via connections, so called synapses, from other neurons and if a certain
threshold of stimuli is reached the switch is activated. After the activation the
neuron will in turn send out a pulse to other neurons [8]. A group of these
neurons connected together is what makes up a neural network. The same
design is found in the artificial nodes, as can be seen in Fig. 3. The nodes
have inputs, an activation function and an output. A group of nodes that are
connected together with links, corresponding to the biological synapses, creates
an ANN. An ANN can then be trained to produce a desired output. The inputs
to a node are either the outputs from previous nodes or, as in the case for the
first layer of nodes, simply the inputs to the ANN. Each link has a different
weight factor for the corresponding input which determines the effect the input
has on the node and the node itself has a bias added as a scalar value. Both
these parameters, the weight and bias, will continuously be updated during the
training of the network to adjust the effect they will have on the final output and
in that way minimize the error compared to the desired output. The node sums
up the weighted inputs with the bias and the result is put into an activation
function and depending on the result an output is sent out in a similar way as
for the biological case when a neuron is activated and sends out a pulse. The
output y from a single node is given by

y = f

(
n∑

i=1

wixi + b

)
(1)

where f is the activation function, xi the inputs, wi the weights and b the bias.

3.1.1 Perceptron

To easier understand the principles of an ANN let’s look at one of the most basic
one. It consists of only one node and is called a perceptron [9], the layout can
be seen in Fig. 4. It is a binary classifier that, depending on if the sum of the
weighted input and the bias is greater or less than 0, outputs 0 or 1. Following
Eq. 1 the output y of the perceptron is then defined as

y =

{
0 if

∑n
i=1 wixi + b ≤ 0

1 if
∑n

i=1 wixi + b > 0
(2)

where xi are the inputs, wi the weight corresponding to each input, b the bias
for the node. The activation function in this case is simply a step function.
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Figure 3: Visual comparison of a biological neuron and an artificial node.

Let’s for example say the perceptron is used to decide how the weather is.
If y = 1 the weather is good and if y = 0 the weather is bad. For inputs lets
say that x1 = 1 if the sun is out and x1 = 0 if it is cloudy. Furthermore x2 = 1
if it does not rain and x2 = 0 if it rains. And last x3 = 1 if it is windless and
x3 = 0 if it is windy. Now lets say that if it is sunny or not is not that important
so w1 = 2. However the rain and the wind plays a big part in deciding if the
weather is good or bad so w2 = 5 and w3 = 5 i.e. more weight is put on these
parameters compared to the one for the sun. Lastly the threshold for good
weather is fairly high so b = −7. All these factors are summed up and passed
to the activation function that in this case is activating depending on if the sum
is greater or less than 0. The problem can be defined as in Eq. 2. If the sum is
greater than 0 it is decided that the weather is good and vice versa. In this case
it needs to be both windless and no rain for it to be considered good weather,
the sun will not matter. By varying the weights and the bias different results
can then be reached to find the model that best represents the desired criteria
for good weather.

3.2 Activation functions
In the case with the perceptron the activation function used was the step func-
tion. This gives a binary result, the weather is either good or bad. Let’s instead
say that the value of how good the weather is should be on a scale from 0 to 1,
then a sigmoid activation function can be used instead. It is defined as

σ(z) =
1

1 + e−z
(3)
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Figure 4: A schematic overview of a single node making up the basic percep-
tron.[9]

where z ∈ R and if we apply this to a node like in Eq. 1 we get the output from
the sigmoid node as

y =
1

1 + e−
∑n

i=1 wixi+b
(4)

where y now, instead of being 0 or 1, takes a value between 0 and 1. So if we
get a high value from our node we get e−z ≈ 0 so σ(z) ≈ 1 meaning in the case
of the weather classifier that the weather is very good.

There are a lot of different activation functions that are useful for different
situations. Lets say instead that the node should output an intensity value for
a pixel. Since the sigmoid function is limited to outputs between 0 and 1 it can
not be used. Instead a commonly used activation function for such cases is the
rectified linear unit (ReLU). It is defined as f(z) = max(0, z) which for a node
gives the output

y =

{
0 if

∑n
i=1 wixi + b ≤ 0∑n

i=1 wixi + b if
∑n

i=1 wixi + b > 0
(5)

3.3 Layers
The perceptron is the most basic model of a neural network. While it is not
capable of doing complex tasks it gives an illustration on how a node works by
weighing the inputs to produce an output. To be able to do more complex tasks
multiple nodes are connected together to make up a network as can be seen in
Fig. 5.
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Figure 5: A schematic overview of multiple nodes making up an ANN.

Nodes that are lined up next to each other in a column are called a layer, e.g.
in Fig. 5 there are 4 such columns representing 4 different layers. Nodes in a
layer are not directly connected to each other and thus do not directly influence
one another. They can however take in inputs from the same previous nodes
and send out outputs to the same succeeding nodes. The first layer of a network
is called the input layer and this is where the raw inputs enter the network. The
last layer of the network is called the output layer and this is where the result
of the entire network is output. In between the input and the output there are
a number of layers called hidden layers. They are called "hidden" since they
are neither input or output layers and thus not "visible" from outside of the
network. Connecting multiple layers together creates an ANN and there are a
lot of different layers with different properties that can be used depending on
the purpose of the network. Some of those layers will be covered in the following
sections.

3.3.1 Input Layer

The input layer is the first layer in an ANN and this is where the raw input
data enters the network. The layer will be of the same size as the input data
e.g. for an image of width 32, height 32 and 3 color channels the layer will be
of size [32x32x3]. It is also common that the input data is normalized in this
layer. Normalization of the data helps to speed up the training time by putting
the input values roughly around the same range allowing for a faster learning
rate[10]. A common normalization is the zero-center normalization where the
values of the average image in the data set is subtracted from the image entering
the network.[11]
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3.3.2 Batch Normalization Layer

In the same way as it can be beneficial to normalize the input it can be beneficial
to normalize the outputs from the activation layers before the data is passed
on as inputs to the next layers. This makes it possible to use a higher learning
rate and it reduces overfitting[12]. The normalization is done in the batch
normalization layer by normalizing each input channel over a mini-batch of the
data set. First the mini-batch mean, µB is calculated as

µB =
1

m

m∑
i=1

xi (6)

where m is the number of inputs and xi are the actual inputs. Then the mini-
batch variance σB is calculated with the mean µB from Eq. 6 as

σB =
1

m

m∑
i=1

(xi − µB)
2 (7)

Finally the normalized activations x̂i are calculated with the mean µB from
Eq. 6 and the variance σB from Eq. 7 as

x̂i =
xi − µB√
σ2
B + ε

(8)

where ε is a constant added to the mini-batch variance to improve the numerical
stability. This can however effect what the following layer represent[12] so to
avoid this the batch normalization layer scales and shift the normalized value
x̂i from Eq. 8 as

yi = γx̂i + β (9)

where the offset β and the scale factor γ are parameters that are learned by
the network during training. The batch normalization layer is often used right
before a convolutional layer.[11]

3.3.3 Convolutional Layer

The convolutional layers main task in a network is to extract features from
local and spatial dependencies in the input. In early layers of the network this
could for example be edges or shapes and in the deeper layers of the network
the features become more complex. The layer finds the features by applying
sliding convolutional filters to the input and maps the result to a feature map.
Convolution of two functions f and g is defined as

f ∗ g =

∫
f(τ)g(t− τ)dτ (10)

In a discrete case of two dimensions, like for an image, and with a bias added
this translates into

Y (i, j) = (I ∗K)ij = B +

m∑
k=1

n∑
l=1

K(k, l)I(i+ k − 1, j + l − 1) (11)
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where Y is the output, K the filter, I the input and B the bias. The indices i
and j are related to the output while m and n are related to the filter. In short
the input is convolved by moving the filter horizontally and vertically over the
image and computing the dot product of the input and the filter weights and
then adding a bias. Each filter in a layer has its own weights and its own bias
that is tuned during the training of the network. For the exact definition the
filter is flipped along both axes before being applied, but this is irrelevant when
it comes to the ANN. An example of how it can look is seen in Fig. 6.

Figure 6: An example of a convolution filter being applied. I is the input image,
K i the convolutional filter and I*K is the output feature map.[13]

In Fig. 6 we can see how the fourth entry in the first row of the output is
calculated as Y (1, 4) = 1 ·1+0 ·0+0 ·1+1 ·0+1 ·1+0 ·0+1 ·1+1 ·0+1 ·1 = 4·.
The size of the filter is somewhat dependent on the size of the input. If the
input is of size m1 × n1 with d1 channels the filter must have the same number
of channels i.e.it must be of size m2 × n2 × d1 where m2 and n2 can be selected
independently of the input size. The size of the input together with the size of
the filter decides the size of the output together with what is called the stride
and the amount of zero-padding. The stride is what determines how the filter
moves, i.e. with a stride of 2 instead of 1 the filter will move 2 steps over the
image between each convolution instead of 1. An example of this can be seen in
Fig. 7. Zero-padding is when zeros are added both horizontally and vertically
at the borders of the input. In that way the output size can be controlled. An
example of this can be seen in Fig. 8.

The output size of a filter can be calculated as Out = (W − F + 2P )/S + 1
where W is the input volume size, F the filter size, S the stride and P the
amount of zero-padding. For example as in Fig. 8 where there is an input of
size 5 × 5, filter size of 3 × 3, stride 1 and 1 line of zero-padding added, both
vertically and horizontally, the output from a layer with 64 different filters is
calculated as Out = ((5−3+2)/1+1)×((5−3+2)/1+1)×(64) = 5×5×64.[11]
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Figure 7: Filter with a stride of 2. The blue squares are the input, the dark
blue area is where the filter is applied. The green squares are the output where
the dark green square is the specific result from the convolution over the dark
blue area. The result is a 2x2 output instead of a 3x3 as for stride 1.[14]

Figure 8: Input with one line zero-padding added around the borders. The blue
squares are the input, the white squares are the zeros and the darker area is
where the filter is applied. The green squares are the output where the dark
green square is the specific result from the convolution over the dark area. This
zero-padding increases the output size from 3x3 to 5x5, i.e. same size as the
original input.[14]

3.3.4 Rectified Linear Unit Layer

The ReLU layer simply acts as an activation layer as it performs a threshold
operation on the input. Each element of the input is run through an activation
function similar to the one in Eq. 5. Any value less than zero is set to zero as

f(x) =

{
0 if x ≤ 0

x if x > 0
(12)

The ReLU layer is positioned after the convolutional and the batch normaliza-
tion layer. It does not affect the size of the data and has no learnable parame-
ters.[11]
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3.3.5 Max Pooling Layer

A max pooling layer consists of a filter that compares the values from an area
of the input and outputs the max value from that specific area. Usually the
main purpose of the max pooling layer is to down-sample the input and thus
reduce the size of the data. In the same way as for the convolutional filter the
max pooling filter slides both horizontally and vertically over the input and
then outputs the max value of each region. The filter itself has no learnable
parameters but depending on the filter size, the stride and the padding different
output sizes can be achieved. The output size is calculated in the same way as
for the convolutional layer. So for an input of size W , filter size of F , stride S
and padding P the output size is given by Out = (W − F + 2P )/S + 1. An
example of max pooling can be seen in Fig. 9.[11]

Figure 9: Max pooling filter of size 2x2 applied with stride 2 to input of size
4x4 resulting in a 2x2 output. The filter compares the values from each of the
coloured areas and then outputs the largest value for each specific area.[15]

3.3.6 Transposed Convolutional Layer

The transposed convolutional layer is mainly used to upsample the input data
of the layer. In a simplified way it can be described as a reversed convolutional
layer. So instead of concatenating the information from the input the filter
expands it, as in Fig. 10. A single value from the input is "expanded" and
distributed to an area of the output.

The value from the input is multiplied with the weights of the filter and
placed at the corresponding spots in the output. Just as for the convolutional
layer the padding and the stride decides the size of the output, however the
stride in the transposed convolutional layer is connected to the output instead
of the input since every single value of the input should be run through the filter.
Overlapping values in the output will then be added together, for there to be
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no overlap the stride must be equal to or larger than the size of the filter. An
example of how the output is calculated and added up can be seen in Fig. 11.
The output size can be calculated as Out = (W − 1)S− 2P +(F − 1)+1 where
W is the input volume size, F the filter size, S the stride and P the amount of
zero-padding on the edges. The filters in the layer have learnable parameters
in the form of weights and biases. The values for the parameters are learned
during the training of the network.[11]

Figure 10: A 3x3 transposed convolutional filter applied to a 2x2 input with a
stride of 2 resulting in a 5x5 output. The blue squares are the input with the
darker one being the current value ran through the filter. White squares are the
output where the green ones in the black frame are the output from the current
input value. [16]

Figure 11: Example of how the output is calculated and summed up in the
output. A kernel of a 3x3 transposed convolutional filter applied to a 4x4 input
with a stride of 1 resulting in a 6x6 output.[16]

3.3.7 Regression Layer

The regression layer is used as an output layer for regression problems i.e. when
the output variable is a real or continuous value. It computes the half-mean-
squared-error loss for each input to the layer compared to the target output.
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For each output y from the network and the target output t the loss of the
regression layer is calculated as

loss =
1

2

HWC∑
p=1

(tp − yp)2 (13)

where H is the height,W the width and C the number of channels of the output,
and p is the index for each element, i.e. pixel for an image-to-image regression
network.[11]

3.4 Convolutional Neural Network
One of the most common types of ANN is the Convolutional Neural Network
(CNN). The CNN is mostly used for computer vision and image analysis prob-
lems but also for any similar problems that have input data that have spatial
or temporal dependencies. Usually the problems are some sort of classification
or reconstruction/prediction problem. Just as the name indicates, the main
feature of a CNN is the convolution. A CNN is simply an ANN with at least
one convolutional layer. It consists of an input and an output layer and in be-
tween these there are a number of hidden layers usually consisting of a series
of convolutional, activation (e.g. ReLU), pooling and normalization layers. In
a way it can be said that the convolutional layer is used to find features and
connections between the input data, the activation layer to decide which of the
features are worth keeping, the pooling layer to downsample and enhance the
features and the normalization layer to make the network more stable. Exactly
what structure to use when it comes to specific layers, size of layers, number of
layers etc. is dependent on what problem to solve. Usually there are a lot of
different ways to go when it comes to the design that could all give satisfactory
results. When it comes to data reconstruction a common type of CNN that is
used is one called a convolutional autoencoder.

3.4.1 Convolutional Autoencoder

A convolutional autoencoder is a specific type of CNN where the input is first
compressed and encoded and then reconstructed from the compressed represen-
tation to fit a desired output. In principle an autoencoder consists of 3 com-
ponents: encoder, code and decoder. The encoder downsamples and encodes
the data into the code in a bottleneck type of structure and the decoder then
reconstructs the code to fit the desired output. In a convolutional autoencoder
the encoding is often done with a combination of convolutional and maxpool-
ing layers while the decoding is done with transposed convolutional layers. A
typical structure of an encoder can be seen in Fig. 12.
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Figure 12: Typical structure of an encoder where the green bars represent a
number of hidden layers.[17]

3.5 Training of a Network
Once the structure of the network is set the next step is to train the network
for it to learn the optimal parameters i.e. the weights and biases for each
different layer. Generally there are two types of learning when it comes to
training a network, supervised and unsupervised. The difference between the
two types of learning is that the supervised learning is done with a ground
truth provided i.e. the network has knowledge on what the output should be.
In that way the network can learn the optimal parameters to make the input
match the desired output as good as possible by minimizing the loss. Supervised
learning is typically used when it comes to classification and regression problems.
Unsupervised learning on the other hand is done without any ground truth at
all. It only uses the input to find structures within the data. The unsupervised
learning is mostly used for clustering and dimensionality reduction.

3.5.1 Data sets

For the training and evaluation of the network the data set is often divided into
three subsets: Training data, validation data and test data. The training data
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is typically the largest of the sets and is used during the training for the network
to learn from and update its parameters. The validation data is used during
training to validate the results from the training. It is not used for the training
per say but to, during the training, keep track on how well the network performs
on data that have not been used to update the parameters with. Thus it gives
an unbiased evaluation of the network’s performance which can be used to avoid
overfitting. This is important since a common issue during training is for the
network to become biased towards the training data by "memorising" it instead
of learning general features and structures. The validation is done continuously
during training in intervals for a set number of iterations. By comparing the loss
of the training set to the loss of the validation set it can be assumed that the
network is overfitting if the validation loss is diverging from the training loss.
An example of this can be seen in Fig. 13. When the training of the networks
is concluded the different results from the validation loss is used to select the
network that performs the best. Even though the validation set is not directly
used during the training, the result on the validation set is used when evaluating
what network structure performs the best and to tune the hyper parameters.
So as a final test for the selected network it is instead evaluated on the third
subset, the test data. This set is completely unseen by the network and can
give an unbiased result on the network’s performance.

Figure 13: Visualization of overfitting during training of a network. The red
dotted line shows the point of where the overfitting starts. This is where the
loss of the validation data is starting to diverge from the loss of the training
data. [18]
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3.5.2 Hyper Parameters

Apart from all the parameter values that are learned during the training of the
network, such as the weights and biases for the layers, there are also parameters
that are set before the training. These parameters are called hyper parameters
and will affect the structure of the network as well as how it behaves and learns.
How to decide what hyper parameters to use when it comes to solvers, layers
etc. is dependent on the problem, the data and the network. Even though
there are some general guidelines on what to choose there are typically no clear
answers to what the most optimal parameters are for specific cases. Instead it is
common to do hyper parameter tuning to optimize the hyper parameters. The
tuning could be done manually by trial and error where different parameters are
tested and the results are observed. Another more sophisticated way to conduct
the tuning is by doing what is called a grid search. Multiple values of each hyper
parameter are lined up and all the different combinations of the parameters are
systematically tested during the training to see which combination of parameters
that yields the best result.

Hyper Parameters related to the Network
Once the general structure of the network is set there are a number of hyper
parameters concerning the network structure that needs to be decided on. Pri-
marily these are: How many filters there should be in each layer, what size the
filters should have and also some parameters concerning the weights and biases
that can be manually set for each layer. It is common to initialize the weights
with independent samples from a uniform distribution. When it comes to de-
ciding the size of the filters in the layers it depends on the structure of the data
and where in the network the layers in question are placed. For an autoencoder
it is common to have a larger sized convolutional filter in the early and late
stage of the network and a smaller size in the middle. Typically the filter size
varies between 3x3, 5x5 and 7x7 when it comes to images. For the pooling layer
the most common size to use is 2x2 with stride 2, in that way the dimension of
the data is reduced by a factor of 2 for each pooling layer.

When it comes to choosing the depth of the layers i.e. how many filters per
layer, it depends on the complexity of the data and the problem that the network
should solve. Too few layers will lead to the network not being able to find
enough features and patterns in the data to solve the problem in a satisfactory
way. And too many layers will lead to unnecessarily heavy computations and
the possibility of overfitting which leads to bad generalization when it comes to
different data.

Hyper Parameters related to the training
When it comes to the training of the network there are a few choices to be made
and parameters to be set. The first choice is to decide what solver to use. The
solver uses an optimization algorithm, typically gradient descent, which updates
the network parameters by taking small steps in the direction of the negative
gradient of the loss function and thereby minimising the loss. A variant of the
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algorithm is called the stochastic gradient descent algorithm. Instead of using
the entire training set at once to evaluate the gradients of the loss function,
the stochastic gradient descent algorithm evaluates and updates the parameters
using a subset of the training data. The subset is called a mini-batch and
for each iteration of the algorithm a different mini-batch is used. The update
of the parameters, i.e. the weights and biases, is done by backpropagation.
For every iteration the gradients of the loss function are used to calculate the
gradients of each layer using the chain rule, starting from the last layer and
moving backwards in the network to the first layer. When all the training data
have been used in different mini-batches the network have done what is called
one epoch of training. Both the size of the mini-batches and maximum number
of epochs to be used for training can be specified. The maximum number of
epochs to be used depends on how quickly the network converges. By using
too many epochs there is a risk of overfitting, while using too few may cause
the network to not converge. An example of overfitting that occurred during
hyper parameter tuning for a network can be seen in Fig. 14. The optimal size
of the mini-batch depends on the data and has to be evaluated during training.
Common choices of sizes are multiples of 32.

Figure 14: Example of overfitting during hyper parameter tuning of the mini
batch size for the AES-CNN. It can be seen that the training with a mini batch
size of 128 is overfitting since the validation root mean square error (RMSE,
yellow line) is diverging from the training RMSE(purple line).

Another parameter that is important when it comes to training the network
is the learning rate. The learning rate decides at what magnitude the network
updates its parameters i.e. it specifies the step size of the gradient descent
optimizer. Since the purpose of the optimizer is to minimize the loss of the
network, it is searching for a global minimum and by having a too small learning
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rate the optimizer can get stuck in a local minimum or take too long to converge.
While having a too large learning rate may result in missing the global minimum
completely and the risk of not converging at all. An example of this can be seen
in Fig. 15. A good alternative is to use a decaying learning rate so that after each
epoch the learning rate is reduced by some factor. In that way the optimizer
can start with a larger step size and then decrease the size as the network starts
to converge to a minimum, this will hopefully speed up the convergence while
keeping the accuracy.

Figure 15: Visualization of the effect from different learning rates for gradient
descent. On the left a too high learning rate causing the optimizer to take too
large steps, missing the minimum and diverging. On the right a low learning
rate, converging towards the minimum albeit a little slow. [19]

A common version of the stochastic gradient descent optimizer is the adap-
tive moment estimation (Adam) optimizer. It uses momentum in the algorithm
and thus updating the weights more aggressively for steeper gradients. This
increases the speed and accuracy of the optimizer and since it in that way reg-
ulates the learning rate by itself there is typically no need to manually set a
learning rate decay.[20]
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4 Material and Methods

4.1 Data
Since there were not a lot of cases of patients with skull defects that had CT
scans of their healthy skulls it was hard to get enough data with good ground
truths from real cases. The data was instead made up of CT images of none-
defect skulls and the defects were manually created. In that way there were non
defect versions of the skulls that could be used as ground truths and versions
of the same skulls with simulated defects that could be used for training. The
data for training the network was extracted from a set of CT scans with a total
of 300 skulls. The CT scans were obtained from the routine clinical workflow
at Skåne University Hospital in Lund. All CT scans were visually screened
by a radiologist to exclude cases with cranial pathologies (e.g. bone diseases)
or abnormalities (e.g. cases with large skull deformations). It consisted of 150
female and 150 male patients with birth years ranging from 1920 to 1999. Other
than this there was no information available about the patients as the data
was purposely and completely anonymized. All of the patients were considered
healthy and had no major defects in their skulls. The images came in the
form of DICOMs (Digital Imaging and Communications in Medicine) which is a
standard format for medical imaging information and related data. Each patient
scan consisted of around 330-430 slices of size 512x512 in the transverse plane.

Around the bottom of the orbita, i.e. under the eyes, the bone structure
starts to become too complicated to produce an implant mould with an au-
tomated method like this. Furthermore, around the orbital region there are
several surgical constraints that need to be taken into account for the implant
design. It was therefore decided to limit the region of interest for the skulls in
the project to the top of the skull down to the bottom of the orbita. In Fig. 16
the region of interest can be seen as well as the point where the bone structure
is starting to become too complicated.

In order to get the data for the training of the network in the desired form
each skull was loaded into Segment 3DPrint, resampled to be isotropic and then
manually rotated to be in a strict axial orientation. The image stacks were then
saved down to .mat files to be processed in Matlab.

4.1.1 Pre-processing

The image slices were represented in Matlab as stacks of 515x512 images with
pixel values in HU. In order to segment the bone the images were thresholded
to values above 150 HU, this removed all the soft tissues and left a segmented
binary image. Since there were some components of the CT scanner visible in
some of the images only the largest component, i.e. the skull, was kept in each
image. The segmented binary images were then processed with a morphological
operation, consisting of a dilation followed by an erosion. This smoothened the
surface of the skull and removed protruding pixels. An example of a processed
image is seen in Fig. 17. It somewhat distorted the area around the face but
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Figure 16: To the left: The region of interest in the sagittal plane is seen in
between the red lines. To the right: The corresponding slice of the bottom red
line seen in the transverse plane. Here we can see how complicated the bone
structure starts to become.

since that is an area which the moulds are not intended for, it will have no
effect on the final results. The morphological operation ensured that the data
points could be placed around the skull without any outliers. It also ensured
that holes around the orbita area were "closed". This was important because
these holes were used to decide the region of interest since it was discovered that
the structure started to become too complex around the point at where there
were 4 of these holes. In that way the region of interest could automatically be
set for each skull. This can be seen in Fig. 17.

4.1.2 Data points

From each morphological processed image the center of the skull was calculated
and from the center 40 equally distributed lines were drawn, i.e. with an equal
angle between all the lines. For each line all the skull pixels that were crossed
were listed and the pixel furthest from the center point was selected as in Fig. 18.
In that way 40 points around the outer edge of the segmented skull were selected
with the first one being straight down from the center, i.e. starting in the neck
and then moving clockwise around the skull. The Cartesian coordinates for
these points were then saved in 2x40 matrices where the first row represented
the X-coordinates of the points and the second row the Y-coordinates. These
matrices were the raw data that was used to train the networks. In average
there were 229 slices in the region of interest for each skull making up the total
data set of 68625 slices.
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Figure 17: To the left: Example of segmented binary image that has been
thresholded. To the right: The same image after morphological processing.
The smooth surface enables good data point placements and the resulting 4
holes were used to automatically decide the region of interest.

Figure 18: Two examples of how the data points of the skulls were extracted
from the images.

4.1.3 Simulated defects

To simulate defects on the skulls in the data, a patch of consecutive points
were removed to create artificial holes. The size of the holes were randomly
assigned to between 1-20 points for each slice. Points were ’removed’ by setting
the coordinates to zero and in 1/10 of the holes there were also a small patch of
points added since not all defects for real cases can be represented with convex
hulls. It was avoided to make holes extending over the entire face since the
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method is not meant to be used for that area. Examples of the artificial holes
can be seen in Fig. 19. The data from the skulls with the holes were used as
input and the data from the skulls without holes was used as the ground truth
when training the networks.

Figure 19: Examples of cases where the artificial holes were made by removing
patches of data points. The points are plotted over the real skulls to show the
unaltered shapes.

4.1.4 Data sets

Since the first point was geometrically close to the last point there was a circular
dependency in the data. Because of this it was also tested to pad the start of
the data with the last 20 data points and the end of the data with the 20 first
data points. This resulted in a second data set with 2x80 matrices whose results
from the network would be compared to those of the 2x40. For the 2x80 data
set the network was trained with the 2x80 matrices and the result was then
evaluated with the networks estimation of only the 40 original points.

The data sets were split up into three parts. A training set of 240 skulls with
a total of 54668 slices used during the training of the network. A validation set
of 30 skulls with a total of 6987 slices used during the training to validate the
training process. And a test set of 30 skulls with a total of 6970 slices used to
evaluate the trained network. There was no patient overlap between the sets.
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4.2 Neural Network design and training
During the project numerous different network structures have been tested and
evaluated. Since no previous work on this exact problem formulation could
be found the structures were gradually developed and evaluated from scratch
with inspiration from commonly used structures in other similar problems. In
addition to the final network this report will briefly look at 2 of the networks
that were tried out on the path to the final design to show the progress along
the way. The networks were optimized using half mean squared error loss with
the Adam solver. Pre-processing and training was performed in Matlab, and
the network was trained on a local compute-server with a 22-core 2.37GHz Intel
Xeon Gold 6152 and dual NVIDIA Titan RTX graphics cards.

4.2.1 5C-CNN: Basic CNN

Even though the data did not consist of images, the structure of the data was
similar to images in the way that the matrix entries have spatial dependencies
since the coordinates next to each other in the matrix represents data points
close to each other in the image slice. This made a CNN a good starting
structure since it is a commonly used network when it comes to image analysis.
One of the earliest structures that was tested was a simple CNN, named 5C-
CNN. The structure consisted of 5 convolutional layers of sizes 2x7, 2x5 and
2x3. The sizes were based on the size of the input data being 2x80 or 2x40
and the dimensions of the data was kept the same apart from the depth which
was increased by a factor of 2 for each layer. The convolutional layers were
applied with stride 1 and with added padding to keep the dimensions. The
exact size and depth of the layers were tuned by trial and error. Following
each of the convolutional layers there was an ReLU activation layer and a batch
normalization layer. There was no structured hyper parameter tuning, only
trial and error since the network did not perform good enough. The structure
of the network can be seen in Fig. 20. The version of the network that gave best
results was trained for 400 epochs with mini batch size 256 and initial learn rate
0.01. An extract of the training progress can be seen in Fig. 21. The network
was first trained on the 2x40 set but after evaluation of the results the 2x80 set
was created. Due to the enhanced performance of the 2x80 set this was the only
network that was trained on both of the sets, the other ones were only trained
on the 2x80.

4.2.2 AE-CNN: Convolutional autoencoder

Moving on from the 5C-CNN it was clear that a more complex structure was
needed. A commonly used structure when it comes to image reconstruction and
de-noising is the autoencoder structure. By encoding the data the network puts
more focus on the overall structures which could be beneficial when it comes
to reconstruction of data. The network was named AE-CNN and the structure
consisted of an encoder with 3 blocks of convolutional, batch normalization,
ReLU and maxpooling layers that downsampled the data. Following the encoder
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Figure 20: Structure of the 5C-CNN.

Figure 21: Training progress for the 5C-CNN on the 2x80 data set, the initial
loss was so high that the first iterations were excluded from the plot to show
the convergence better.

there was a decoder that consisted of 3 blocks with transposed convolutional,
batch normalization and ReLU layers that upsampled the data. At the end of
the network there was one last convolutional layer to adjust the data to the
correct output dimension. The convolutional layers varied between 2x7, 2x5
and 2x3 with the larger ones in the beginning of the network and the smaller
ones in the middle. They were applied with stride 1 and added padding to keep
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the dimensions of the data. Each convolutional layer increased the depth of the
data by a factor of 2. The maxpooling layers were of size 2x2 and were applied
with stride 2 and added padding to not reduce the first dimension of the data
but to reduced the second dimension of the data by a factor of two i.e. for the
2x80 data set in to 2x40, 2x20, 2x10. The transposed convolutional layers also
varied between 2x7, 2x5 and 2x3 with the smaller ones in the middle of the
network and the larger ones in the end. They were applied with a stride of [1
2] and cropping to not change the first dimension of the data but to upsample
the second dimension of the data with a factor of 2 i.e. from 2x10 to 2x20,
2x40 and 2x80. After each transposed convolutional layer the depth of the data
was reduced by a factor of 2. Even though the Adam solver somewhat adjusts
the learning rate it was found out during the evaluations of the training that
a drop factor of the learn rate made the convergence of the network smoother.
Furthermore the depth of the layers and the size of the mini batch were tuned
with a grid search for mini batch size [64 128 256] and initial filter depth [8 16
32 64]. The final structure of the AE-CNN can be seen in Fig. 22. The best
version of the network was trained with initial learn rate 0.01 and a drop factor
of 0.9925 ending in a learn rate of 0.001 for 300 epochs, mini batch size of 128
and initial filter depth of 32. An extract of the training progress can be seen in
Fig. 23.

Figure 22: Structure of the AE-CNN.
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Figure 23: Training progress for the AE-CNN, the initial loss was so high that
the first iterations were excluded from the plot to show the convergence better.

4.2.3 AES-CNN: Convolutional autoencoder with skip connections

Building on the structure of the AE-CNN the next significant change was to add
skip connections between the encoder and the decoder. The idea was inspired
by a well known network called the UNET[21] and builds upon feed forwarding
a copy of the data before each downsample in the encoder to the corresponding
place in the decoder. In that way any important structure and information is
passed on and not lost during the downsample. The new network was named
AES-CNN and had in a similar way as the AE-CNN blocks with convolutional,
batch normalization and ReLU layers followed by downsampling with a max-
pooling layer in the encoder. Then 3 blocks of transposed convolution, batch
normalization and ReLU layers to upsample the data in the decoder. In this
structure each transposed convolutional block was also followed by a convo-
lutional block and the network also ended with one last convolutional layer to
adjust the data to the correct output dimension. The convolutional layers varied
between 2x7, 2x5 and 2x3 with the larger ones in the beginning of the network
and the smaller ones in the middle. They were applied with stride 1 and added
padding to keep the dimensions of the data apart from the depth of the data
that was increased by a factor of 2 for each layer in the encoder. The maxpool-
ing layers were of size 2x2 and were applied with stride 2 and added padding to
only reduce the second dimension of the data by a factor of two, just as in the
AE-CNN. The transposed convolutional layers varied between 2x7, 2x5 and 2x3
with the smaller ones in the middle of the network and the larger ones in the
end. They were applied with a stride of [1 2] and cropping to only upsample the
second dimension of the data with a factor of 2, also just as for the AE-CNN.
Each transposed convolutional layer also reduced the depth of the data by a
factor of 2. The final structure of the AES-CNN can be seen in Fig. 24. The
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mini batch sizes [64 128 256] and the learning rate drop factors [0.99 0.9925
0.995] were tuned with a grid search. Also the number of epochs was tuned to
avoid problems with overfitting. The best version of the network was trained
with initial learn rate 0.01 and a drop factor of 0.9925 for 500 epochs, mini batch
size of 64 and initial filter depth of 32. An extract of the training progress can
be seen in Fig. 25.

Figure 24: Structure of the AES-CNN.

Figure 25: Training progress for the AES-CNN, the initial loss was so high that
the first iterations were excluded from the plot to show the convergence better.
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4.3 Evaluation
During the development of the networks the training loss was not the only re-
sult being taken into consideration. In order to understand how the networks
actually performed at estimating the missing points and what problems they
had there were evaluations done on the validation set. The evaluations included
measuring the error between estimated and real points and visually investigat-
ing bad results. Since the data set was padded and the training was done by
minimizing each matrix entry, i.e. each x and y coordinate and not the spatial
distance between each point, it was hard to draw any conclusions on only the
loss during training. The loss was calculated for all the points while the only
points that really mattered were the missing ones. So after training the networks
they were used on the validation set slice by slice for the 30 skulls, in total 6874
slices. The estimations of the missing points were visualised on top of the CT
scans to investigate the results. The euclidean distance between the estimated
points and the actual points from the ground truth were calculated and used
for the evaluation. All the results presented will be based on the estimation of
the missing points.

In order to see how the network performed in comparison to the current
mirroring and interpolation method a few "real" cases were artificially created
from a non defect skull in Segment 3DPrint in Matlab. In that way there were
cases that could be mirrored by an operator at the hospital by the standards
currently set and then the results could be compared to those from the network.
The "real" cases can be seen in Fig. 34. The first case is with a hole on the front
of the skull, second case a hole on the back of the skull and the third case a hole
on the side of the skull. Since the current method with mirroring is not possible
to use in case 1 and 2 the operator manually had to create the reconstructions
with the help of subjective design and interpolation.

Figure 26: Artificial holes made in Segment 3DPrint on a non defect skull to
simulate real cases. In the top left corner a view of the original skull, the
numbers on the other skulls represents the case numbers.
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5 Results

5.1 Data set comparison
As discussed previously the only network that was trained on both the 2x40 and
2x80 set was the 5C-CNN. The reason to include the result of this is to simply
highlight the reasoning behind only using the 2x80 set for the other networks.
The networks were trained on the two different data sets and then evaluated on
the validation set. In Table 1 the result on the two different sets is presented and
in Fig. 27 a representation of the result for each point. It can be seen that both
networks perform bad with the 2x80 set being slightly better. In particular in
Fig. 27 the 2x80 performs a lot better then the 2x40 when it comes to the first
and last points. In Fig. 28 an example of the result from the 5C-CNN trained
on the 2x40 set compared to the one trained on the 2x80 set highlighting the
difference in performance that was seen in Fig. 27.

Table 1: Percentages of the missing points that were estimated with less than 2
and 4mm as well as the mean error distance of the missing points. Results are
from the validation part of both the data sets on the 5C-CNN.

Data set comparison <2mm <4mm Mean error
2x40 42.4% 72.3% 3.66mm
2x80 48.0% 79.0% 2.85mm

Figure 27: Total mean and median error for all the estimations of the missing
points in the two different validation sets. Point numbers 1-40 represents the
different locations of the skull from where the points were taken. It can be seen
how the 2x40 set has significantly larger errors at the first and last points.
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Figure 28: Example of the difference in result from the 5C-CNN trained on the
2x40 and the 2x80 data set. Blue dots are the original points used as input,
green dots are the simulated hole, i.e. the missing points, and the red dots are
the networks estimation for the missing points.
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5.2 Network comparison
The best versions of each network structure was compared to each other. All the
networks were evaluated on the validation set of the 2x80 data. It can be seen in
Fig. 29 how they compared during training. The AE-CNN and the AES-CNN
converged to around the same loss for the validation set while the training loss
was lower for AES-CNN. They both had lower losses compared to the 5C-CNN
in general. In Table 1 it can be seen how they all performed when estimating
all the missing points for the validation set. Fig. 30 shows the mean of the total
errors for each point around the skull for all three networks. Both the AE-CNN
and the AES-CNN performed better than the 5C-CNN. The difference between
the AE-CNN and the AES-CNN was small but the AES-CNN performed slightly
better overall. A visualized example of an estimation of a large hole for each of
the three networks is shown in Fig. 31.

Figure 29: Training progress for the three different network structures shown as
mean of the RMSE from Fig. 21, Fig. 23 and Fig. 25. The means are normal-
ized over a certain number of validations for each network to make it easier to
overview and compare.
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Table 2: Percentages of the missing points that were estimated with less than
2 and 4mm as well as the mean error distance of all the missing points. Results
are from the validation data in the 2x80 set.

Network comparison <2mm <4mm Mean error
5C-CNN 48.0% 79.0% 2.85mm
AE-CNN 86.8% 98.5% 1.12mm
AES-CNN 87.1% 98.5% 1.07mm

Figure 30: Total mean and median error for all the estimations of the missing
points in the 2x80 validation set for all the three networks. Point numbers 1-40
represents the different locations of the skull from where the points were taken.

Figure 31: A visualized example from the validation set of estimation of missing
points for the different networks on a slice with a large patch of missing points.
Blue dots are the original points used as input, green dots are the simulated
hole i.e. the missing points and the red dots are the networks estimation for the
missing points.
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5.3 Evaluation on test set for AES-CNN
Since the AES-CNN showed the best performance out of all the networks eval-
uated on the validation set it was in the end also evaluated on the test set.
Fig. 32 shows a few random typical examples of how the reconstructions looked
like. As can be seen in Table 3 the performance on the test set more or less
matched the one on the validation set seen in Table 2. In Fig. 33 the mean and
median errors for each specific location of the estimated points are shown. The
plot shows that the errors of the points located on the "corners" of the skull are
a bit higher than the points located at the posterio-lateral aspects of the skull.
In the Table 4 the difference in performance when it comes to the size of the
hole for the missing points. Smaller holes are estimated with a smaller error
compared to the large ones. Furthermore, the total mean error per point when
it comes to each slice can be seen in Table 5 showing that a very high percent
of slices have a small mean error. The slices with the largest mean errors per
estimated points can be seen in Fig. 34.

Figure 32: Typical random examples of estimations of missing points for the
AES-CNN on the 2x80 test set. Blue dots are the original points used as input,
green dots are the missing points and red dots are the networks estimation.
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Table 3: Percentages of the missing points that were estimated with less than 2
and 4mm as well as the mean error distance of the missing points. Results are
from the test data in the 2x80 set.

Test set <2mm <4mm Mean error
AES-CNN 86.79% 98.58% 1.07mm

Figure 33: Total mean and median error for all the estimations of the missing
points in the 2x80 test set. Point numbers 1-40 represents the different locations
of the skull from where the points were taken. It can be seen how the errors are
higher on the "corners" of the skull and lower on the sides, front and back.
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Table 4: Percentages of the missing points that were estimated with less than
2mm error and the mean error for different sizes of missing points. Results are
from the test data in the 2x80 set.

Size of hole 1-5 points 6-10 points 11-15 points 15-20 points
Mean error mm 0.80 0.98 1.08 1.16
Percent <2mm 95.01% 89.68% 86.57% 84.08%
Percent <4mm 99.73% 99.19% 98.64% 98.09%

Figure 34: The slices with the highest mean error per point estimated.

Table 5: Percentages of slices in the test set with mean error per point less than
2 respectively 4 mm. Results are from the 6875 slices in the 2x80 test set.

Mean error per slice <2mm <4mm
AES-CNN 94.76% 99.96%
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5.4 Comparison to current mirroring method
The results from case 1 are listed in Table 6 and an example of reconstructions
of a slice can be seen in Fig. 35. The network had a lower mean error and
also a higher number of total points with error <2mm. Neither of the methods
had any errors >4mm. The results from case 2 can be seen in Table 7 and
an example of reconstructions of a slice can be seen in Fig. 36. The network
had a slightly higher mean error and a lower number of total points with error
<2mm. Neither of the methods had any errors >4mm. Finally the results from
case 3 are seen in Table 8 and an example of reconstructions of a slice from the
case can be seen in Fig. 37. The network had a significantly lower mean error
and a higher number of total points with error <2mm. However neither of the
methods had any errors >4mm.

Figure 35: Example of reconstruction with the network compared to the current
method. To the left the original whole skull, in the middle the networks esti-
mation of missing points and to the right the points from the current method.
Blue dots are the original points, green dots are the missing points and red dots
are the estimations.

Table 6: Percentages of the missing points that were estimated with less than 2
and 4mm as well as the mean error distance of the missing points. The results
are from the first artificial case with a hole on the front of the head which covers
33 slices in total. The slice with the largest hole was missing 9 points.

Case 1 <2mm <4mm Mean error
AES-CNN 66.67% 100% 1.69mm
Mirroring 45.24% 100% 2.06mm
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Figure 36: Example of reconstruction with the network compared to the current
method. To the left the original whole skull, in the middle the networks esti-
mation of missing points and to the right the points from the current method.
Blue dots are the original points, green dots are the missing points and red dots
are the estimations.

Table 7: Percentages of the missing points that were estimated with less than 2
and 4mm as well as the mean error distance of the missing points. The results
are from the second artificial case with a hole on the back of the head which
covers 51 slices in total. The slice with the largest hole was missing 9 points.

Case 2 <2mm <4mm Mean error
AES-CNN 87.10% 100% 1.16mm
Mirroring 93.43% 100% 0.92mm
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Figure 37: Example of reconstruction with the network compared to the current
method. To the left the original whole skull, in the middle the networks esti-
mation of missing points and to the right the points from the current method.
Blue dots are the original points, green dots are the missing points and red dots
are the estimations.

Table 8: Percentages of the missing points that were estimated with less than 2
and 4mm as well as the mean error distance of the missing points. The results
are from the third artificial case with a hole on the side of the head which covers
81 slices in total. The slice with the largest hole was missing 12 points.

Case 3 <2mm <4mm Mean error
AES-CNN 90.25% 100% 1.16mm
Mirroring 25.62% 100% 2.35mm
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6 Discussion
The presented work is a proof-of-concept for using neural networks for skull
reconstruction and design of cranioplasty moulds and implants. It was shown
that the network had overall good results as it could handle varying defects all
around the skull with relatively small errors.

Data set
Looking at the results of the two different data sets, 2x40 and 2x80, it was
shown that it was beneficial to in some way capture the circular dependency of
the data originating from the input being the coordinates of points around the
skull. The 2x80 set had much better results compared to the 2x40 set as seen in
Fig. 27 and Fig. 28. In particular around the back of the head where the data
extraction started and ended for each slice. The padding of the start and end of
the data made sure that the circular structure was somewhat represented. Since
this method immediately gave good results no other methods were explored but
there were ideas to instead link the end of the data to the start. This would
however be a lot more complicated to execute when it comes to the training.
It would also be possible to represent the points as only the distance from the
center instead of the specific coordinates since they were evenly sampled radially
around the skull. I.e. each point was placed on a line out from the centre so
the only parameter needed would be the distance from the centre. The reason
to not use that method was to in the future have the possibility to reconstruct
more complex structures with cavities etc. and to only represent points with
distances would make that more difficult. Finding another method that can
extract a certain number of points equally spread out is hard when the data
representation must be consistent in order to be used for training a network.
It can also be noted that since the same amount of points (40) is used for all
the slices the spatial distance between the points varies for each different slice
i.e. slices with smaller areas have the points spatially closer to each other.
This could potentially mean that a certain error could have a larger effect when
the points are sampled closer together, e.g. for slices at the top of the head,
compared to when they are further apart.

Neural Networks
When it comes to the network structure it was clear from Table 2 that the
convolutional autoencoder with the skip-connections, the AES-CNN, was the
best performing one. However, the difference between the AES-CNN and the
AE-CNN was not major and making the AES-CNN deeper with more layers did
close to nothing with the results. This could indicate that a peak was reached
when it comes to the complexity of the network structure. What could be
explored more is instead the different possibilities when it comes to the training.
The hyper parameter tuning did increase the performance, as in Fig. 14, but
there are still some parameters that could be explored such as different solvers,
activation functions etc. It would also be a possibility to customize the loss
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function since currently the loss is calculated for each separate entry, i.e. x and
y coordinate. However, what matters the most is the actual euclidean distance
between the estimation and the real points. Since the featured training loop
for networks in Matlab ends up choosing the network parameters of the last
iteration, and not the one actually performing the best during training, it could
be an idea to customize the training loop to save the best performing parameters
during training. There is however no such feature in the 2019a Matlab version
which was used for this project. The only option would be to save the network
for every n:th iteration.

AES-CNN
The evaluation on the test set for the best performing network, the AES-CNN
seen in Table 3 and Fig. 33, showed about the same results as for the validation
set with a low mean error of 1.07mm. This shows that the network has good
generalisation over different data. In Table 3, Table 4 and Table 5 it can be seen
that the network performed better for smaller holes but also that the 94.76% of
slices with a mean point error of < 2mm is higher compared to the total 86.79%
of points with mean error of < 2mm. This indicates that there are a few slices
with large holes that increase the mean error. Looking at the slices with the
highest mean errors in Fig. 34 it can be seen that there were typically 3 cases of
large mean errors: A large hole in the back of the head, a single point "missing"
the protruding bone of the orbita or a slice just at the top of the head making
the structure irregular. For the first case it is clear that the information to the
network is not sufficient. The hole is of such a size that the network can not
estimate the points accurately. The second case is hard to evaluate since the
distance to the point is large but the distance to the protruding bone is small.
This gives an unjustly large error measurement. The third case comes from the
irregular shape that occurs at the top of the head. For cases like this, instead of
reconstructing the head in a strict axial orientation the head should be slightly
tilted, this eliminates the problem with irregular shapes of the top slices. How
large of an error that would be considered acceptable is an aesthetic question as
regardless if the points are incorrectly placed from the intended skull surface,
the implant will still fit since the moulds edges are based on the pre-operative
CT. Since the skull is not perfectly symmetric the margin for the error would
have to be considered from case to case. It could be argued that as long as the
reconstructed part fits smoothly and the asymmetry in the implants is smaller
than the skulls asymmetry, the fit would be acceptable.

Case tests
The cases in section 5.4 were created in order to get an idea of how the network
performed compared to what is acceptable, with the currently used mirroring
and interpolation method. The evaluation showed that the method gave as good
or in some cases even better results compared to the current method. The size of
the errors are somewhat misrepresented for the network compared to the current
method since a point from the network with an error could still be on the bone
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i.e. the error could be parallel to the skull surface. But for the current method
all errors are radially from the center. An example of this can be seen in Fig. 38.
A more fair error measurement could be measuring the distance to any part of
the skull instead of a certain point. It can also be seen that if the mirroring is
slightly off it will likely affect all of the points. This will create a systematic
error for the implant that will result in a larger or smaller skull at the affected
area compared to the original. Even though the size of the test cases was small
it did show the potential of the network. One notable thing when inspecting the
results of the test cases was that since the network is only trained on single slices
it does not give any consideration to the slices above and below who are also
affected by the hole. This could create irregularities moving from slice to slice.
The potential problem could be fixed by interpolating the estimated points for
all the slices once they are estimated. Another option to investigate would be
to increase the depth of the data set for the network i.e. include more than one
slice per hole of a skull. So instead of 2x80 data there could for example be three
consecutive slices making up 2x80x3 data or 6x80 data depending on how they
are represented. In that way the network would have to take the surrounding
slices into consideration as well. This could potentially also help to reduce the
errors of the estimations on the large holes in the back of the head discussed
in the previous paragraph since more information about the shape of the skull
would be available for the network.

Figure 38: Zoomed-in example of estimated points that gave approximately the
same error but where the estimations of the network would result in a better
fitting mould compared to the current method since the estimated points are
still on the skull surface. Blue dots are the original points, green dots are the
missing points and red dots are the estimations.

49



6.1 Future work
Even though the developed method already is showing results good enough for
it to be implemented for clinical routine there are several future ideas of possible
improvements that could be explored.

• The data set consisted of points from single slices. It should be explored
to increase the depth of the data set and include more slices per input.
In that way there is more information for the network for it to be able to
estimate large holes and to get more consistent results over a number of
consecutive slices when it comes to real cases.

• Results could possibly be improved by exploring untuned network parame-
ters such as solver and activation function but more importantly a custom
loss function during training, to minimize the euclidean distance between
the points instead of the coordinates, should be evaluated.

• When evaluating the networks the error measure should be calculated
as the distance from the estimated point to the surface of the real skull
instead of the distance from the estimated point to the specific point lo-
cation.

• Points around the orbita are inconsistent and should either be excluded
or a higher number of points should be extracted to make sure it is repre-
sented consistently.

• Use a more extensive size of "real" cases to compare the network to the
current method and evaluate the results produced.

• Implement the method with the network in Segment 3DPrint software and
create an algorithm that interpolate between the estimated slices to make
the structure of the mould more smooth.
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7 Conclusion
In conclusion, a method based on a neural network to reconstruct missing parts
of the skull was successfully developed. A method to extract the points for the
training of the networks in a suitable way was created and during the process
numerous network structures have been tested and evaluated. The method
overcomes the limitations with the current mirroring method in creation of
implants or moulds for cranioplasty. The results overall and from the comparison
to the current method shows that it is possible to use a neural network in the
process to design implant moulds by using data from pre-operative CT images.
The results were deemed good enough for the method to be implemented as
clinical routine at the hospital. An example of an implant for a real case created
with the method developed in this project can be seen in Fig. 39.

Figure 39: Implant created with the method developed in this project.
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