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Abstract

This thesis considers the problem of applying exploratory factor analysis to data obtained
though the Likert scale. It is often the case that this sort of data is treated as an interval
level of measurement and used in analyses that require continuous variables, although
given the categorization and nature of the scale, it should rather be treated as of ordinal
level. Exploratory factor analysis is a prevailing technique for studying the construct va-
lidity of data, a method that relies on the correlation matrix of the data to obtain factor
solutions. Previous research recommend the use of polychoric correlations as opposed to
the common Pearson correlation method when attempting to apply factor analysis to or-
dinal data. Preceding research is complemented with further consideration of asymmetry
in the data. The results, obtained through simulation studies, show that the polychoric
correlations provide a more accurate reproduction of the theoretical model used to gen-
erate the data in three cases of item skewness.

Keywords ·Exploratory factor analysis ·Polychoric correlation ·Pearson correlation
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Introduction

Likert scale is a commonly used psychometric tool in numerous scientific fields of study,
specifically within psychology, education and social science. It is considered in this study
because of the prevalent usage of factor analysis on Likert scale items for dimensionality
reduction and construct validity. Researchers aiming to use this type of model on a set
of Likert scale items generally face a difficulty with the statistical assumptions that are
prevalent for estimation of correlation coefficients. The aim of this thesis is therefore to
illustrate the possible advantages and disadvantages of utilizing two types of correlation
matrices, the Pearson and the polychoric, for exploratory factor analysis.

The general goal of a factor analysis is to take a number of observable interrelatedmanifest
variables and infer one or many latent variables, also called factors. There may be an
underlying explanation when a group of variables has considerable interrelatedness, that
they in fact are measurements of a latent factor. How much these variables are related
could be quantified through correlation. If one, for example, measures the length of each
finger from a group of people and correlate the observations, one could expect to find an
association between measurements. This association constitutes a factor, underlying the
observed measurements. In this example the underlying factor is most likely related to
the size of the hand.

The Likert scale is in some ways the mean to a difficult end, aiming to measure and
quantify an attitude, a perception or opinion. These attitudes are by nature qualitative
and researchers need to be careful if aiming to transform them into something quantitative.
The Likert scale was introduced in 1932 as a possible solution to the issue of quantifying
the subjective preferential attitude in a scientifically accepted and validated manner (Joshi
et al. 2015).

A long lasting debate ensued from differing aspects of the scale and how to properly
analyze responses. A common issue is if the scale should be symmetrical, in addition if
and where a "neutral" or "don’t know" option could be positioned within the continuum.
Another issue is the length of the scale and how the differences between using, for example,
a 5 point scale performs compared to a 7 or even a 10 point scale. When analyzing the
scale, the most frequent and in many regards fundamental issue a researcher faces is
which level of measurement the Likert scale is. There are differing schools of thoughts
- some consider the Likert scale as measured at ordinal level, while others as measured
on interval level, the latter school treating the measurement as continuous. It logically
becomes a question about whether the points on an item are equivalent or equidistant.
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They generally cannot be considered equidistant, although applied researchers sometimes
makes this assumption (Joshi et al. 2015; Lantz 2013).

Variables of ordinal level are in essence categorical variables whose values can be ordered.
In terms of a Likert scale, for example, we know someone who responds "4. Agree" to a
given statement has rated their attitude towards the statement lower than someone who
responds "5. Strongly agree". It is apparent that there exists an underlying continuum
of opinion and researchers ask respondents to rate where on this continuum they position
themselves, given a number of alternatives. It is however uncertain what the distance
between "4. Agree" and "5. Strongly Agree" is in relation of the underlying opinion.
Moreover, it is unclear if that distance is equal to the distance between for instance "1.
Strongly Disagree" and "2. Disagree". The consequence of this ordering of categorical
variables without specifically defined distances between each point of the discrete scale
makes it so that these variables cannot be added or multiplied. It is therefore not par-
ticularly interesting to consider for example the mean or the covariance of a number of
observations from a Likert scale. For the mean to actually make sense, the distances of
measurement need to be continuous. Instead statisticians usually view pairs of ordinal
variables in contingency tables where the rows and columns represents each ordinal vari-
able. The corresponding frequencies of observation are presented in the cells. Consider
the Inheritance of Eye-colour in Man data presented in Table 1.1 as an example. Pearson
used this type of data in his development of what is now called the polychoric correlation
coefficient in his article On the Correlation of Characters not Quantitatively Measurable
(Pearson 1900).

Table 1.1: Karl Pearson’s table of eye-color between maternal grandmothers and their
granddaughters

Tint Granddaughter
Maternal grandmother

Totals
Gray or lighter Dark gray or darker

Gray or lighter 254 136 390
Dark gray or darker 156 193 349

Totals 410 329 739

Source: See page 39 in K. Pearson. “Mathematical contributions to the theory of evolution.
VII. On the correlation of characters not quantitatively measurable.” In: Philos. Trans. R. Soc.
Lond. Ser. A Math. Phys. Eng. Sci. 195. (1900)

There are comparative studies of the two correlation coefficients, studied in this thesis,
when dealing with ordinal data (Choi, Peters, and Mueller 2010). In addition, the coef-
ficients has been compared in terms of method of estimation when used in confirmatory
factor analysis (Angeles Morata-Ramirez and F. P. Holgado-Tello 2013). This thesis com-
plement the research of F. Holgado-Tello et al. (2010), by comparing the accuracy of
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Pearson and polychoric correlation in the case of exploratory factor analysis with a more
extensive consideration of asymmetry in the data.

1.1 Two types of factor analysis
There are two basic types of factor analysis available to researchers depending on the
purpose of constructing the models. DeCoster (1998) outlines the differences and criteria
in a proper way. Exploratory factor analysis attempts to discover latent constructs that
influence the set of responses, while confirmatory factor analysis is used to test whether
a specified set of constructs is influencing responses in a predicted manner.

1.1.1 Confirmatory factor analysis

The primary objective of confirmatory factor analysis is to determine the ability of a
predefined factor model to fit an observed set of data. It is commonly used to:

• Establish the validity of a single factor model.

• Compare the ability of two different model to account for the same set of data.

• Test the significance of a specific factor loading.

• Test the relationship between two or more factor loadings.

• Test whether a set of factors are correlated or uncorrelated.

• Assess the convergent and discriminant validity of a set of measures.

DeCoster (ibid.) points out six important steps to a confirmatory model:

1. Define the factor model. This sort of model builds on an already proposed
theoretical basis, making it necessary to already have a defined model that one
wishes to test. This includes the number of factors selected and the nature of
the loadings between factors and measures. The factor loadings can be allowed to
vary freely, to be fixed at a specific constant or to be able to vary under specified
constraints. For models analyzing multiple factors simultaneously, cross-loadings
are typically fixed at zero, meaning that observations where there are no theoretical
grounds for a relationship with a specific factor have their loadings fixed.

2. Collect measurements. Variables should be measured on the same (or matched)
experimental units.

3. Obtain the correlation matrix. Obtain the correlations (or covariances) between
each of the variables.

4. Fit the model to the data. A method to obtain estimates of factor loadings if
they were free to vary must be considered. The most common method is maximum
likelihood estimation. It has been shown to be fairly robust against departures
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from multivariate normality (Finney and DiStefano 2014). If the observed vari-
ables, however, seriously lack multivariate normality, asymptotically distribution
free estimation is an option.

5. Evaluate model adequacy. When the factor model is fit to the data, the factor
loadings are chosen to minimize the discrepency between the correlation matrix
implied by the model and the actual observed matrix. The amount of discrepency
after the best parameters are chosen can be used as a measure of how consistent the
model is with the data. The model adequacy can be tested through χ2 goodness-of-fit
test.

6. Compare with other models. To compare a reduced model with the initial
model one can perform a likelihood ratio test utilizing the difference of χ2 statistics
of the two models. This difference also follows a χ2 distribution. If comparing two
models where one is not a reduced version of the other, the Root mean square error
of approximation (RMSEA) statistic can be used.

1.1.2 Exploratory factor analysis

The primary objective of exploratory factor analysis is to determine the number of com-
mon factors influencing a set of measures. In addition, researchers also need to determine
the strength of the relationship between each factor and each observed measure.

• Identify the nature of the constructs underlying responses in a specific content area.

• Determine which sets of items that are related to each other in for example a ques-
tionnaire.

• Demonstrate the dimensionality of a measurement scale.

• Determine what features are most important when classifying a group of items.

• Generate "factor scores" representing values of the underlying constructs for use in
other analyses.

DeCoster (1998) points out seven important steps to an exploratory model:

1. Collect measurements. Variables should be measured on the same (or matched)
experimental units.

2. Obtain the correlation matrix. Obtain the correlations (or covariances) between
each of the variables.

3. Select the number of factors for inclusion. This step needs some consideration.
It could be the case that a researcher has a specific hypothesis that will determine
the number of factors to extract. While at other times it is a question of choosing
the number of factors that account for as much of the covariance in the data, with as
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few factors as possible. The Kaiser criterion states that one should use the number
of factors that is equal to the number of eigenvalues of the correlation matrix that
are greater than one. Another approach is to plot the eigenvalues of the correlation
matrix in descending order and then use the number of factors equal to the number
of eigenvalues that occurs prior to the last major drop in the magnitude of the
eigenvalues.

4. Extract initial set of factors. Submit correlation or covariance matrices to a
computer program to extract factors. In this thesis I use R 4.0.3 (R Core Team
2020). There are a few options for extraction methods here, such as maximum
likelihood, principal component and principal axis extraction.

5. Rotate factors to a final solution. For any given set of correlations and number
of factors there is an infinite number of ways that the factors can be defined and
still account for the same account of covariance in the measurements. Some of these
definitions are however easier to interpret theoretically than others. It is therefore
important to rotate factors in an attempt to find a more interpretable factor solution
and it is still equal to that obtained in the initial extraction. For a comprehensive
overview of rotations see Abdi (2004).

6. Interpret factor structure. In these analyses each measure has a linear rela-
tionship with each of the factors. The strength of this relationship is contained in
the factor loading, produced by the rotation. The loading is similar to that of a
standardized regression coefficient, regressing the factor on the measures.

7. Construct factor scores for further analysis. If the obtained model is to be
used for further analysis using the factors as variables in, for example, a multiple
regression analysis, one would need to estimate factor scores. There are estimates
of the factor given the model. They are a linear combination of all of the measures,
weighted by the corresponding factor loading.

It is important to note that exploratory factor analysis is more than just a dimensionality
reduction tool, such as principal component analysis. Principal component analysis is used
for data reduction, where researchers does not want to use all of the original measures,
but instead wants to work with information they contain. Exploratory factor analysis on
the other hand is to be used when researchers are interested in making statements about
the factors that are responsible for a set of observed responses (DeCoster 1998). The con-
firmatory and exploratory approach is mathematically not very different. It mainly comes
down to whether factor loadings are fixed at some value. In the exploratory case, loadings
are always allowed to vary freely while cross-loadings, without theoretical grounding, are
typically set at zero in the confirmatory case (Fabrigar and Wegener 2014).



Definitions and literature review

2.1 Ordinal data for factor analysis
As mentioned in the introduction, Likert scale items should be considered to be of ordinal
level. For these sort of variables, we assume that an item is designed in order to measure
a theoretical concept and the observed item responses are realizations of a small number
of categories. Again, the distances between categories are unknown and in most cases
unmeasureable. If we, however, use Muthén’s view on the connection between ordinal
and continuous variables for this type of data, then it is possible to estimate threshold
parameters that can be used to estimate probabilities of two observed values on two
ordinal variables (B. Muthén 1983).

There is assumed to exist a continuous variable, xi∗, that underlies the ordinal variable
xi, i = 1, 2, ..., p. The continuous variable is assumed to be the true measure for a given
attitude, underlying the ordered responses of xi and it has a domain from −∞ to∞. For
an ordinal variable, xi with mi categories, the relationship between the ordinal variable
xi and the underlying continuous variable xi∗ is

xi = c ⇐⇒ τ
(i)
c−1 < xi

∗ < τ c
(i), c = 1, 2, . . . ,mi , (2.1)

where
τ
(i)
0 = −∞, τ (i)1 < τ

(i)
2 < ... < τmi−1

(i), τmi

(i) =∞, (2.2)

For the observed ordinal variable xi, there are mi − 1 strictly increasing threshold pa-
rameters τ 1(i), τ 2(i), ..., τmi−1

(i). Since only ordinal information about xi is measured, the
distribution of xi∗ is determined only by a monotonic transformation. If one assumes a
standard normal distribution for xi∗, with density function φ(•) and distribution function
Φ(•), the probability πc(i) of a response in category c on variable xi, is

πc
(i) = Pr[xi = c] = Pr[τ c−1

(i) < xi
∗ < τ c

(i)] =

ˆ τc(i)

τc−1
(i)

φ(u)du = Φ(τ c
(i))− Φ(τ c−1

(i))

(2.3)
for c = 1, 2, . . . ,mi − 1 so that

τ c
(i) = Φ−1(π1

(i) + π2
(i) + · · ·+ πc

(i)) (2.4)

Φ−1 is the inverse standard Gaussian distribution function and the quantity (π1
(i)+π2

(i)+

... + πc
(i)) is the probability of a response in category c or lower. The probabilities πc(i)
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are unknown population quantities but can be estimated consistently by a corresponding
percentage pc(i) of responses in category c on variable xi. Estimates of the thresholds can
therefore be obtained as

τ̂ c
(i) = Φ−1(p1

(i) + p2
(i) + ...+ pc

(i)), c = 1, . . . ,mi − 1 (2.5)

The quantity (p1
(i) + p2

(i) + ...+ pc
(i)) is the proportion of cases in the sample responding

in category c or lower on variable xi

2.2 Pearson correlation
Pearson correlation, also called the Pearson product-moment correlation coefficient, mea-
sures a linear correlation between two variables X and Y and is defined over the interval
I ∈ [−1, 1]. It is simply the covariance of the random variables X and Y divided by their
standard deviations.

ρX ,Y =
Cov(X, Y )

σXσY
(2.6)

It is based upon a number of assumptions and has been shown to have nonrobust proper-
ties with respect to outliers (Devlin, Gnanadesikan, and Kettenring 1975). The assump-
tions are (I) the two correlated variables are continuous, (II) the relationship between the
two variables is rectilinear, (III) the joint distribution of the scores is a bivariate normal
distribution and (IV) the scores have been obtained in independent pairs, where each
pair is not connected to other pairs (Havlicek and Peterson 1976). In the case where
data is of ordinal level of measurement, the first methodological issue with using Pearson
correlations for factor analysis is the first assumption of continuous variables.

2.3 Polychoric correlation
Polychoric correlation is a coefficient that measures the association for ordinal variables,
and was proposed by Karl Pearson in the early 1900. Suppose we have two ordinal
variables xi and xj with mi and mj categories, respectively. Suppose also that underlying
xi and xj there exists some latent variable ξ and η, which are bivariate normally distributed
with E[ξ] = E[η] = 0 and unit variances. The marginal distribution in the sample is
represented by a contingency table


n
(ij)
11 n

(ij)
12 · · · n

(ij)
1mj

n
(ij)
21 n

(ij)
22 · · · n

(ij)
2mj

...
...

...
...

...

n
(ij)
mi1

n
(ij)
mi2

· · · n
(ij)
mimj

 (2.7)
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where nijab is the number of cases in the sample in category a on variable xi and in category b
on variable xj. The correlation between ξ and η, ρij, is the polychoric correlation. We can
estimate this correlation by maximizing the log-likelihood of the multinomial distribution
(Olsson 1979).

We do this in a two-step procedure. First thresholds are estimated from the univariate
marginal distributions in Equation (2.5). Second the polychoric correlations are esti-
mated from the bivariate marginal distributions by maximizing the log-likelihood for
given thresholds.

If C is a constant then the likelihood function of the sample is:

L = C ·
mi∏
i

mj∏
j

π
n
(ij)
ab

ij

Taking the natural logarithms,

l = ln L = lnC +

mi∑
a=1

mj∑
b=1

n
(ij)
ab lnπ

(ij)
ab (2.8)

where

π
(ij)
ab = Pr[xi = a, xj = b] =

ˆ τa(i)

τa−1
(i)

ˆ τb
(j)

τb−1
(j)

φ2(u, v)dudv

and
φ2(u, v) =

1

2π
√

1− ρ2
e
− 1

2(1−ρ2
ij

)
(u2−2ρuv+v2)

is the standard bivariate normal density with correlation ρij. Maximizing lnL gives the
sample polychoric correlation, rij. In theory it is necessary to test the assumption of
bivariate normality before calculating the polychoric correlation. To test the model the
likelihood ratio (LR) test statistic can be used (Jöreskog 2005). Let p(ij)ab = n

(ij)
ab /N be the

sample proportions, then the LR-test statistic can be expressed as:

χ2
LR = 2

mi∑
a=1

mj∑
b=1

n
(ij)
ab ln

(
p
(ij)
ab

π̂
(ij)
ab

)
(2.9)

However, the polychoric correlation coefficient has been shown to be fairly robust to
violations of the bivariate normality assumption (Coenders, Satorra, and Saris 1997).
Although the normality assumption will not be evaluated by hypothesis testing in this
thesis, the robustness of violations will be explored in comparison to the robustness of the
bivariate normality assumption also present when performing Pearson correlations.
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2.4 The mathematics of factor analysis
Confirmatory factor analysis is a common method within the larger research field of
structural equation modeling. The mathematics of this type of model is briefly outlined
here because of the mathematical similarity to the exploratory model. The model assumes
a linear relationship between manifest variables and the underlying factor. Given the logic
of manifest and factor variables outlined in the introduction, consider x1, x2, . . . , xp to be
observed manifest variables and ξ1, ξ2, . . . , ξm to be underlying factors, where m < p. The
underlying factors account for the inner correlation of the observed manifest variables.

x = Λξ+ δ (2.10)

where x is a p×1 vector and Λp×m is the factor loadings matrix. ξ is the m×1 vector
of latent factors and δ is a p×1 vector of measurement errors. The measurement errors
are assumed to be uncorrelated and corresponds to each of the p observed manifest vari-
ables. Based on Equation 2.10, we can formulate covariance matrices. Let Φm×m be the
covariance matrix of ξ and Θp×p be the covariance matrix of δ. Since we are assum-
ing measurement error to be uncorrelated, the Θp×p covariance matrix is diagonal. The
covariance matrix for x is subsequently

Σ(Λ,Θ) = ΛΦΛ′ + Θ (2.11)

where Σ is the covariance matrix of the manifest variables and is a function of the free
parameters in Λ and Θ. The basic idea in estimating confirmatory models is to minimize
the differences between the sample covariance matrix and the model implied covariance
matrix. Regard a typical confirmatory model with five manifest variables and two factors
in matrix form. The model can be understood as shown in the path diagram in Figure
2.1. 

x1

x2

x3

x4

x5


=



λ11 0

λ21 0

λ31 0

0 λ42

0 λ52


(
ξ1

ξ2

)
+



δ1

δ2

δ3

δ4

δ5


(2.12)
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Figure 2.1: Path Diagram of a confirmatory factor analysis model with five manifest
variables and two factors

If we are to use the polychoric correlation instead of Pearson correlation for the model
we need to adapt Equation (2.11). Instead consider that we are modeling the underlying
continuous variable x∗, as described in Section 2.1. The model function would be

x∗ = Λξ+ δ (2.13)

As by assumptions stated in Section 2.3 the underlying variables now have unit variance
and Θ can be expressed as

Θ = I − diag(ΛΦΛ′) (2.14)

where Φ now is a correlation matrix. If we substitute in Equation (2.13) into Equa-
tion (2.11) we get the appropriate model using polychoric correlations for the underlying
continuous data.

Σ∗(Λ,Θ) = ΛΦΛ′ + I − diag(ΛΦΛ′) (2.15)

We are aiming to find a model where parameters can make Σ∗(Λ,Θ) as close as possible
to the sample-implied polychoric correlation matrix. To find the maximum likelihood fit
function, let R be the polychoric correlation matrix and Σ∗ be the function defined in
Equation (2.15). The fit function can then be defined as

FML(R,Λ,Φ) = ln(|Σ∗|) + tr(RΣ∗
−1

)− ln(|R|)− p (2.16)
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which is then minimized to the free elements in Λ and Φ (Yang-Wallentin, Jöreskog, and
Luo 2010). The principle of ML estimation in this case is to find the model parameter
estimates that maximize the probability of observing the available data if the data are
collected from the same population again. Namely, to maximize the likelihood of the pa-
rameters, given the data. This is an iterative process, where the used computer program1

begins with an initial set of parameter estimates and repeatedly refines these estimates
in an attempt to reduce the value of FML. In the polychoric case this implies finding
model parameter estimates that minimize the difference between Σ∗ and R. Convergence
is reached when the iteration cannot reduce the difference further (Brown 2006).

If the theoretically implied basis for the zero relation between for example x1 and ξ2 is
doubtful, there may be an issue with the confirmatory approach, apparent by Figure 2.1.
Then an exploratory approach may be more accurate. In other words, the theory and prior
analysis that the confirmatory model is based on must be so that it can fix a number of
factor loadings at zero to reflect the hypothesis that only certain factors influence certain
manifest variables. If apriori substantive knowledge is lacking, fixing cross-loadings at
zero may force a researcher to specify a more parsimonious model than is suitable for
the data. Also, the misspecification of zero loadings tend to give distorted factors, and
overestimated factor correlations, subsequently leading to distorted structural relations
(Asparouhov and Bengt Muthén 2009). The mathematical difference in the exploratory
approach is that no loadings are fixed at zero, rather all measures can potentially load
on all factors, making the approach better for identifying latent structures where the
researcher lacks theoretical basis (Fabrigar and Wegener 2014). Now consider instead
how the two factor model and path diagram in Figure 2.1 would look if the model instead
was an exploratory model. As can be seen, there are more defined λij coefficients and
the factors ξ1 and ξ2 have a potential relationship with all observed manifest variables.
These new λij, if the confirmatory model is correct, would likely be estimated close to
zero. 

x1

x2

x3

x4

x5


=



λ11 λ12

λ21 λ22

λ31 λ32

λ41 λ42

λ51 λ52


(
ξ1

ξ2

)
+



δ1

δ2

δ3

δ4

δ5


(2.17)

1In this thesis R 4.0.3 is used. See R Core Team (2020).
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Figure 2.2: Path Diagram of an exploratory factor analysis model with five manifest
variables and two factors



Simulation study

3.1 Data generation and categorization
First assume a normal distribution N(0, 1) and generate data for a three, four and five
factors model on 1000 subjects to 12 items following a theoretical model.1 Second the
observations are categorized on a five-point scale so that (a) the distribution of the answers
to all items, except one, are symmetric, (b) moderate skewness is introduced to the
items and (c) severe skewness is introduced to the items. See figure 3.1 for a graphical
representation of the symmetrical categorization. Figures over the distributions following
categorization can be found in Appendix A: Figure A.1.

Figure 3.1: Graphical representation of the symmetric categorization of items based on a
standard normal distribution.

Let z be a simulated observation from the standard normal distribution.

(1) In the symmetric categorization:

If z ≤ −1.8 z is codified as 1
If −1.8 < z ≤ −0.6 z is codified as 2
If −0.6 < z ≤ 0.6 z is codified as 3
If 0.6 < z ≤ 1.8 z is codified as 4

If 1.8 < z z is codified as 5
1For the data generating algorithm see Schneider (2020) and corresponding paper Schneider (2013).
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(2) In the moderate negative asymmetric categorization:

If z ≤ 0 z is codified as 1
If 0 < z ≤ 0.6 z is codified as 2

If 0.6 < z ≤ 1.2 z is codified as 3
If 1.2 < z ≤ 1.8 z is codified as 4

If 1.8 < z z is codified as 5

(3) In the moderate positive asymmetric categorization:

If z ≤ −1.8 z is codified as 1
If −1.8 < z ≤ −1.2 z is codified as 2
If −1.2 < z ≤ −0.6 z is codified as 3

If −0.6 < z ≤ 0 z is codified as 4
If 0 < z z is codified as 5

(4) In the severe negative asymmetric categorization:

If z ≤ 1 z is codified as 1
If 1 < z ≤ 1.5 z is codified as 2
If 1.5 < z ≤ 2 z is codified as 3
If 2 < z ≤ 2.5 z is codified as 4

If 2.5 < z z is codified as 5

(5) In the severe positive asymmetric categorization:

If z ≤ −2.5 z is codified as 1
If −2.5 < z ≤ −2 z is codified as 2
If −2 < z ≤ −1.5 z is codified as 3
If −1.5 < z ≤ 1 z is codified as 4

If 1 < z z is codified as 5

Third, an exploratory factor analysis is carried out from the matrices of both Pearson
and polychoric correlations. This is done in order to compare the estimated coefficients in
the model against the theoretical model used to generate the data. Parameters are esti-
mated through maximum likelihood method and an oblique rotation, specifically oblimin,
was performed on the loadings. This procedure is replicated 1000 times. For each of
the models, the assumption is made that the number of factors for inclusion is already
established and this corresponds to the theoretical number of factors. Theoretical models
are inspired by F. Holgado-Tello et al. (2010) but some adjustments have been made in
terms of theoretical factor saturation. Particularly the saturation for items saturated on
multiple factors have been gradually decreased when number of factors increase, in order
to consider a more difficult model to estimate accurately.
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3.2 Three factors model
The resulting matrix Λ defines the factor saturation for the generation of data following
a three factor theoretical model, as well as the Φ matrix representing the correlation
between latent factors:

Λ =



.7 0 0

.6 0 0

.5 0 0

.4 0 0

0 .7 0

0 .6 0

0 .5 0

0 .4 0

0 0 .7

0 0 .6

0 0 .5

.4 .4 .4



and Φ =


1

.456 1

.673 .309 1



The presented results are (a) a model with symmetric categorization for all items except
one and (b) a model with moderate asymmetric categorization for all items and (c) a model
with severe asymmetric categorization for all items. As can be seen in the saturation
matrix above the 12th item is saturated on all three factors. This is also the item that
has asymmetry in the models based on (a). For the three factor model this 12th item
has moderate positive asymmetry in (a) and (b) while severe positive asymmetry in (c).
In the models, where all items are asymmetric, the distributions are alternating between
positive and negative asymmetry on items 1 to 11 while the 12th item keeps the positive
asymmetry.

In a comparison of estimated correlation matrices and the theoretical correlation matrix
(See Table A.1 in Appendix A), both methods perform well in the case where all items are
symmetrical except one, see Table 3.1. The polychoric coefficients (above the diagonal
dash) perform better than the Pearson coefficients (below the diagonal dash) but the
differences are not large.
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Table 3.1: Matrix Pearson (below) and polychoric (above) correlations for the three factors
model with one item skewness.

1 2 3 4 5 6 7 8 9 10 11 12

1 - .441 .355 .311 .259 .198 .150 .117 .331 .289 .224 .588
2 .393 - .308 .218 .237 .188 .170 .106 .288 .263 .210 .507
3 .315 .276 - .224 .173 .122 .143 .030 .304 .200 .204 .469
4 .277 .194 .199 - .128 .096 .161 .066 .212 .154 .139 .361
5 .230 .210 .155 .114 - .440 .355 .268 .216 .257 .162 .545
6 .176 .168 .110 .086 .391 - .273 .200 .153 .243 .069 .429
7 .132 .151 .127 .144 .316 .243 - .202 .182 .160 .035 .398
8 .104 .094 .027 .059 .238 .178 .179 - .108 .184 .098 .273
9 .293 .257 .270 .188 .193 .137 .161 .096 - .404 .320 .595
10 .256 .233 .178 .138 .229 .217 .142 .163 .359 - .286 .552
11 .198 .187 .182 .123 .145 .062 .031 .087 .283 .255 - .383
12 .490 .429 .392 .298 .454 .355 .332 .227 .493 .462 .325 -

In the case where items are moderate asymmetrical, see Table 3.2, the polychoric coeffi-
cients produces similar results as in the symmetrical case, while the Pearson coefficients
show a clear drop in accuracy.

Table 3.2: Matrix of Pearson (below) and polychoric (above) correlations for the three
factors model with all moderate item skewness.

1 2 3 4 5 6 7 8 9 10 11 12

1 - .402 .337 .305 .288 .235 .144 .152 .325 .269 .220 .598
2 .288 - .320 .198 .207 .194 .144 .137 .283 .263 .264 .492
3 .274 .237 - .215 .190 .154 .132 .045 .285 .208 .180 .468
4 .224 .163 .155 - .117 .116 .137 .038 .188 .181 .200 .361
5 .245 .152 .149 .098 - .444 .351 .233 .220 .262 .196 .547
6 .180 .157 .117 .098 .319 - .285 .233 .199 .255 .047 .451
7 .117 .113 .125 .114 .309 .215 - .205 .164 .138 .037 .383
8 .118 .099 .039 .031 .176 .188 .151 - .131 .137 .102 .26
9 .277 .216 .235 .141 .174 .146 .140 .102 - .421 .313 .587
10 .198 .217 .153 .154 .198 .195 .114 .105 .311 - .348 .543
11 .174 .190 .138 .154 .166 .025 .026 .083 .268 .258 - .396
12 .514 .355 .394 .270 .469 .326 .328 .200 .512 .388 .340 -

In Table 3.3, results are shown when asymmetry gets more extreme. The Pearson coef-
ficients continue to produce even less accurate results. The polychoric correlation does
show a slight drop in accuracy but still manages to estimate most of the correlation from
the theoretical model.
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Table 3.3: Matrix of Pearson (below) and polychoric (above) correlations for the three
factors model with all severe item skewness.

1 2 3 4 5 6 7 8 9 10 11 12

1 - .326 .332 .327 .243 .244 .121 .161 .319 .272 .241 .582
2 .161 - .285 .253 .244 .165 .217 .105 .302 .239 .190 .498
3 .214 .136 - .210 .149 .164 .206 .064 .213 .221 .209 .419
4 .158 .154 .115 - .082 .090 .060 -.022 .177 .199 .213 .370
5 .127 .129 .078 .036 - .497 .408 .333 .160 .171 .137 .498
6 .117 .091 .073 .037 .247 - .269 .244 .255 .109 .021 .428
7 .054 .105 .103 .028 .244 .132 - .138 .208 .126 .035 .411
8 .073 .057 .028 -.030 .157 .119 .067 - .256 .100 .177 .330
9 .193 .152 .139 .095 .089 .125 .120 .114 - .394 .277 .606
10 .126 .141 .111 .106 .078 .049 .069 .063 .189 - .311 .487
11 .169 .092 .115 .111 .091 .014 .023 .080 .160 .146 - .396
12 .357 .248 .263 .189 .294 .206 .251 .152 .385 .240 .243 -

In regards to loadings from the fitted exploratory model, the Pearson based models pro-
duce adequate results when only one item has skewness, see Table 3.4. Over replications,
the Pearson based models have issue closely estimating the loading that theoretically is
saturated on multiple factors. When moderate asymmetry is introduced it produces low
loadings on the 12th item, that was saturated on multiple factors. Both models do how-
ever produce fairly accurate results when moderate asymmetry is introduced, with the
polychoric based models generally being closer to the theoretical model.

Table 3.4: Lambda matrix, (Λ), for the three factors model with one item skewness using
exploratory factor analysis (and all moderate item skewness in brackets).

Item Pearson correlations Polychoric correlations

F1 F2 F3 F1 F2 F3

1 .692(.660) -.003(.001) -.031(-.050) .739(.707) -.009(.025) -.037(-.060)
2 .533(.352) .035(-.015) .013(.117) .566(.513) .034(-.024) .002(.070)
3 .455(.505) -.060(-.054) .103(.009) .484(.556) -.069(-.049) .120(.012)
4 .401(.304) -.012(-.033) .002(.063) .429(.437) -.019(-.060) .010(.022)
5 .005(-.011) .679(.649) -.003(.014) .005(.004) .721(.688) -.010(.017)
6 -.012(.011) .579(.499) -.026(-.037) -.016(-.022) .621(.633) -.035(-.017)
7 .041(.018) .458(.506) -.021(-.072) .025(.038) .490(.534) .000(-.078)
8 -.105(-.068) .351(.309) .095(.058) -.112(-.043) .375(.354) .093(.040)
9 .053(.139) -.069(-.029) .633(.527) .032(.143) -.081(-.031) .707(.576)
10 -.079(-.075) .098(.095) .579(.515) -.081(-.093) .107(.064) .606(.693)
11 .019(-.024) -.093(-.078) .479(.543) .029(.078) -.095(-.131) .486(.517)
12 .313(.451) .298(.294) .412(.303) .342(.475) .341(.329) .469(.340)

In bold, factor loadings higher than 0.3.
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See Table 3.5 for the factor loading when data is subject to severe asymmetry. The
Pearson based model has issues accurately estimating the higher loadings (0.7 and 0.6)
and generally produces less accurate recreation of the theoretical model.

Table 3.5: Lambda matrix, (Λ), for the three factors model with all severe item skewness
using exploratory factor analysis.

Item Pearson correlations Polychoric correlations

F1 F2 F3 F1 F2 F3

1 .472 .010 .035 .597 .051 .036
2 .303 .073 .030 .448 .087 .066
3 .385 -.003 .004 .495 .015 -.022
4 .451 -.081 -.107 .618 -.114 -.116
5 .001 .687 -.055 .018 .858 -.086
6 -.023 .346 .092 -.013 .561 .098
7 -.016 .339 .111 .072 .440 .069
8 -.120 .207 .209 .176 .347 .321
9 .006 -.047 .610 .030 -.048 .765
10 .185 -.023 .202 .267 -.050 .358
11 .256 -.029 .124 .296 -.068 .228
12 .371 .205 .353 .531 .277 .376

In bold, factor loadings higher than 0.3.

Table 3.6: Phi matrix, (Φ), for three factors model one item skewness using exploratory
factor analysis (all moderate item skewness in brackets).

Dimension F1 F2 F3

F1 - .514(.554) .710(.680)
F2 .500(.585) - .527(.520)
F3 .702(.692) .520(.505) -

Pearson (below diagonal) and Polychoric (above).

Table 3.7: Phi matrix, (Φ), for three factors model all severe item skewness using ex-
ploratory factor analysis.

Dimension 1 2 3

1 - .415 .594
2 .400 - .394
3 .629 .372 -

Pearson (below diagonal) and Polychoric (above).
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3.3 Four factors model
The resulting matrix Λ defines the factor saturation for the generation of data following
a four factors theoretical model, as well as the Φ matrix representing the correlation
between latent factors:

Λ =



.7 0 0 0

.6 0 0 0

.5 0 0 0

0 .7 0 0

0 .6 0 0

0 .5 0 0

0 0 .7 0

0 0 .6 0

0 0 .5 0

0 0 0 .7

0 0 0 .6

.34 .34 .34 .34



and Φ =


1

.353 1

.510 .177 1

.628 .223 .321 1



In terms of symmetry and asymmetry the presented results are similar to that of the three
factors model. As can be seen in the saturation matrix above the 12th item is saturated
on all four factors. This is also the item that has asymmetry in the models based on
(a). For this model the 12th item has moderate negative asymmetry in (a) and (b), while
severe negative asymmetry in (c). In the model, where all items are asymmetric, the
distributions are alternating between positive and negative asymmetry and the 12th item
keeps the negative asymmetry.
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Table 3.8: Matrix Pearson (below) and polychoric (above) correlations for the four factors
model with one item skewness.

1 2 3 4 5 6 7 8 9 10 11 12

1 - .426 .330 .153 .190 .121 .203 .167 .143 .342 .288 .610
2 .380 - .279 .171 .193 .131 .189 .166 .146 .223 .254 .527
3 .294 .247 - .090 .054 .102 .095 .155 .129 .178 .203 .407
4 .137 .152 .078 - .453 .336 .113 .069 .102 .056 .085 .408
5 .170 .170 .046 .401 - .342 .079 .128 .120 .088 .049 .404
6 .108 .115 .091 .298 .302 - .035 .098 .031 .110 .087 .346
7 .181 .169 .083 .100 .069 .031 - .404 .326 .084 .112 .408
8 .149 .148 .138 .062 .113 .086 .357 - .326 .089 .139 .388
9 .128 .130 .115 .090 .107 .027 .288 .291 - .109 .105 .393
10 .306 .197 .158 .048 .078 .098 .076 .079 .097 - .431 .476
11 .256 .225 .181 .076 .043 .077 .099 .123 .093 .383 - .455
12 .516 .444 .338 .334 .329 .281 .335 .330 .327 .398 0.382 -

Table 3.9: Matrix of Pearson (below) and polychoric (above) correlations for the four
factors model with all moderate item skewness.

1 2 3 4 5 6 7 8 9 10 11 12

1 - .428 .330 .155 .190 .102 .203 .156 .143 .324 .288 .610
2 .361 - .264 .141 .185 .098 .208 .153 .139 .250 .244 .514
3 .294 .223 - .106 .054 .084 .095 .130 .129 .208 .203 .407
4 .137 .124 .084 - .466 .314 .088 .065 .101 .030 .073 .388
5 .170 .160 .046 .390 - .312 .079 .117 .120 .072 .049 .404
6 .088 .072 .065 .267 .264 - .038 .089 .044 .105 .069 .322
7 .181 .173 .083 .074 .069 .025 - .433 .326 .096 .112 .408
8 .140 .131 .118 .054 .104 .076 .358 - .325 .092 .114 .394
9 .128 .116 .115 .088 .107 .027 .288 .277 - .130 .105 .393
10 .274 .195 .173 .018 .051 .098 .079 .072 .104 - .401 .488
11 .256 .211 .181 .059 .043 .058 .099 .097 .093 .340 - .455
12 .516 .448 .338 .325 .329 .258 .335 .340 .327 .412 .382 -

Table 3.8 shows the correlation matrices when data has symmetrical distributions in all
items except one. Table 3.9 when moderate asymmetry is introduced to all items. The
results show the same trend as in the three factors models, where Pearson correlation gen-
erally underestimates coefficients and the polychoric correlation are able to approximately
recreate the theoretical matrix.
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Table 3.10: Matrix of Pearson (below) and polychoric (above) correlations for the four
factors model with all severe item skewness.

1 2 3 4 5 6 7 8 9 10 11 12

1 - .474 .354 .246 .144 .084 .172 .240 .052 .312 .300 .657
2 .234 - .302 .177 .085 -.010 .202 .189 .134 .201 .264 .543
3 .208 .165 - .061 .099 .035 .136 .278 .136 .199 .234 .403
4 .122 .095 .048 - .451 .392 .114 .102 .081 -.003 .097 .369
5 .075 .053 .073 .220 - .325 .078 .102 .061 -.006 .098 .312
6 .062 .010 .020 .271 .159 - -.012 .123 .006 .231 .058 .274
7 .105 .108 .070 .046 .046 .004 - .500 .354 .032 .121 .358
8 .133 .090 .145 .038 .063 .066 .243 - .449 .020 .191 .430
9 .022 .068 .074 .041 .040 -.007 .207 .212 - .014 .103 .277
10 .144 .108 .094 .003 .002 .112 .016 .020 .009 - .464 .494
11 .157 .135 .134 .058 .055 .034 .100 .088 .073 .222 - .512
12 .338 .356 .198 .243 .162 .206 .167 .256 .136 .321 .246 -

In Table 3.10 correlation estimates are presented, where items have severe asymmetry.
The trend continues with the Pearson method showing poorer results as asymmetry gets
more extreme and the polychoric method still managing to capture most of the theoretical
correlation.

See Table 3.11 for the factor loadings for the exploratory model in the case where data
is symmetrical (all items except one) and moderately asymmetrical. The Pearson and
Polychoric methods produce acceptable results, with the Pearson based models generally
estimating the loading of the 12th item low.

In Table 3.12, loading when items are subject to severe asymmetry is presented. Similarly
to the three factors model, the Pearson based model has difficulties with estimating the
higher factor loadings (0.7 and 0.6). Both models lack in their accuracy for estimating
the 12th item loading, that are saturated on all factors. The polychoric based model still
produces more accurate results.
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Table 3.12: Lambda matrix, (Λ), for the four factors model with all severe item skewness
using exploratory factor analysis.

Item Pearson correlations Polychoric correlations

F1 F2 F3 F4 F1 F2 F3 F4

1 .487 .007 -.009 .007 .727 .028 -.039 .052
2 .591 -.078 -.043 -.052 .690 -.072 -.005 -.041
3 .303 -.053 .087 .006 .365 -.071 .157 .068
4 .087 .553 -.038 -.102 .187 .678 -.047 -.166
5 .042 .338 .038 -.066 .097 .595 -.002 -.120
6 -.102 .529 .007 .085 -.227 .639 .052 .245
7 .019 -.045 .453 -.029 .069 -.043 .601 -.050
8 .024 .000 .538 -.034 -.003 -.003 .808 -.043
9 -.068 -.026 .452 -.010 -.060 -.024 .600 -.015
10 .005 -.012 -.013 .871 .053 -.027 -.049 .904
11 .215 -.020 .089 .179 .283 -.024 .094 .391
12 .503 .199 .148 .162 .622 .215 .235 .249

In bold, factor loadings higher than 0.3.

Table 3.13: Phi matrix, (Φ), for four factors model one item skewness using exploratory
factor analysis (all moderate item skewness in brackets).

Dimension F1 F2 F3 F4

F1 - .453(.410) .515(.460) .655(.663)
F2 .438(.419) - .338(.308) .279(.288)
F3 .503(.492) .318(.303) - .337(.364)
F4 .639(.627) .253(.244) .314(.329) -

Pearson (below diagonal) and Polychoric (above).

Table 3.14: Phi matrix, (Φ), for four factors model all severe item skewness using ex-
ploratory factor analysis.

Dimension F1 F2 F3 F4

F1 - .290 .418 .368
F2 .361 - .207 .161
F3 .456 .218 - .125
F4 .332 .160 .114 -

Pearson (below diagonal) and Polychoric (above).
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3.4 Five factors model
The resulting matrix Λ defines the factor saturation for the generation of data following a
five factors theoretical model, as well as the Φ matrix representing the correlation between
latent factors:

Λ =



.7 0 0 0 0

.6 0 0 0 0

.25 .25 .25 .25 .25

0 .7 0 0 0

0 .6 0 0 0

0 .5 0 0 0

0 0 .7 0 0

0 0 .6 0 0

0 0 0 .7 0

0 0 0 .6 0

0 0 0 0 .7

0 0 0 0 .6



and Φ =



1

.367 1

.501 .171 1

.627 .231 .324 1

.662 .254 .319 .405 1



The same approach in terms of symmetry and asymmetry, is used here as in the three
factors model. This time however the 3rd item is saturated fairly low on all factors,
making it a particularly difficult model to estimate correctly. This is also the item that
has moderate positive asymmetry in the models based on (a) and (b) while severe positive
asymmetry in (c). In the model, where all items are asymmetric, the distributions are
alternating between positive and negative asymmetry, as it did in the three factors model,
and the 3rd item keeps the positive asymmetry.
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Table 3.15: Matrix Pearson (below) and polychoric (above) correlations for the five factors
model with one item skewness.

1 2 3 4 5 6 7 8 9 10 11 12

1 - .368 .549 .171 .135 .159 .207 .207 .263 .293 .348 .276
2 .327 - .446 .107 .126 .142 .262 .199 .216 .247 .305 .240
3 .461 .374 - .357 .262 .222 .382 .315 .435 .364 .516 .395
4 .150 .095 .295 - .443 .388 .016 .039 .140 .074 .156 .102
5 .120 .114 .222 .395 - .315 -.016 .046 .082 .124 .103 .070
6 .139 .127 .181 .343 .281 - .034 .007 .057 .069 .110 .093
7 .182 .233 .322 .012 -.015 .030 - .440 .152 .052 .203 .157
8 .184 .176 .267 .033 .040 .006 .389 - .093 .103 .161 .123
9 .234 .190 .362 .123 .072 .052 .137 .083 - .366 .197 .175
10 .258 .218 .307 .065 .109 .061 .047 .091 .323 - .217 .171
11 .310 .271 .428 .137 .091 .098 .179 .143 .175 .192 - .417
12 .245 .215 .335 .092 .063 .083 .140 .109 .157 .152 .369 -

Table 3.16: Matrix of Pearson (below) and polychoric (above) correlations for the five
factors model with all moderate item skewness.

1 2 3 4 5 6 7 8 9 10 11 12

1 - .412 .540 .204 .101 .157 .216 .193 .292 .253 .330 .256
2 .302 - .431 .127 .114 .140 .230 .180 .191 .194 .319 .223
3 .466 .314 - .345 .245 .186 .390 .290 .430 .346 .511 .391
4 .150 .092 .255 - .434 .368 -.023 .015 .170 .097 .126 .127
5 .076 .094 .203 .319 - .286 -.025 .021 .047 .099 .054 .075
6 .117 .131 .137 .316 .210 - .038 .015 .062 .095 .135 .080
7 .193 .169 .332 -.016 -.019 .022 - .482 .100 .074 .188 .159
8 .145 .141 .223 .005 .022 .009 .355 - .092 .077 .123 .118
9 .251 .147 .364 .134 .040 .052 .081 .062 - .403 .202 .125
10 .187 .163 .254 .072 .068 .071 .055 .074 .296 - .221 .145
11 .289 .237 .442 .108 .046 .106 .157 .106 .171 .179 - .436
12 .187 .176 .289 .095 .054 .072 .114 .099 .098 .120 .316 -

The polychoric correlation coefficients are again more accurate compared to the Pearson
coefficients in recreating the theoretical matrix. As can be seen in Table 3.15 and 3.16,
the Pearson correlation gets less accurate as moderate asymmetry is introduced and the
polychoric coefficients stays similar in most estimates.
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Table 3.17: Matrix of Pearson (below) and polychoric (above) correlations for the five
factors model with all severe item skewness.

1 2 3 4 5 6 7 8 9 10 11 12

1 - .411 .493 .176 .188 .200 .200 .247 .284 .258 .302 .239
2 .201 - .370 .039 .081 .146 .249 .178 .212 .188 .267 .203
3 .307 .194 - .367 .249 .229 .410 .337 .459 .348 .481 .334
4 .089 .007 .183 - .406 .464 .023 -.006 .071 .062 .156 .105
5 .115 .042 .152 .208 - .321 .047 .037 .095 .074 .111 .083
6 .115 .067 .122 .296 .192 - .010 .060 .099 .039 .055 .145
7 .131 .120 .228 -.002 .037 .005 - .447 .253 .021 .159 .127
8 .132 .088 .180 -.003 .026 .044 .229 - .143 .052 .158 .194
9 .172 .111 .295 .042 .063 .049 .127 .077 - .389 .191 .205
10 .128 .120 .163 .035 .038 .032 -.018 .044 .189 - .209 .130
11 .184 .135 .324 .069 .077 .038 .091 .090 .100 .103 - .380
12 .108 .095 .150 .062 .044 .065 .053 .081 .119 .058 .182 -

The trend of the Pearson coefficients becoming less accurate as even more asymmetry is
introduced is prevalent in the five factors model as well. The polychoric estimate is still
accurate to a certain extent with severe asymmetry, as can be seen in Table 3.17.

As more factors are introduced both methods of correlation become worse at recreating the
theoretical model. Both models tend to overestimate the theoretically higher loading of 0.7
in some cases. Still the polychoric models is better at estimating the item that is saturated
on all factors (item 3 in Table 3.11) compared to the Pearson based models.
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Table 3.19: Lambda matrix, (Λ), for the five factors model with all severe item skewness
using exploratory factor analysis.

Item Pearson correlations Polychoric correlations

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

1 .516 .028 .004 -.003 .004 .665 .026 -.008 .071 .027
2 .409 -.072 .021 -.025 .002 .520 -.090 .087 .007 .069
3 .305 .147 .134 .156 .209 .195 .254 .272 .355 .202
4 -.052 .647 -.004 -.001 .013 -.055 .907 -.005 -.001 .018
5 .084 .328 .011 .001 .005 .134 .436 -.014 .000 -.017
6 .109 .454 -.024 -.024 -.068 .262 .493 -.054 -.066 .104
7 -.006 -.006 .749 .002 -.007 -.024 -.009 .841 .009 -.009
8 .193 -.030 .249 -.029 .003 .203 -.060 .487 -.063 .015
9 -.006 -.005 .000 .824 -.008 -.005 -.011 .111 .664 -.046
10 .259 -.035 -.143 .157 .022 .055 -.042 -.176 .620 .031
11 -.004 -.008 -.008 -.011 .784 -.002 -.005 -.012 -.014 .955
12 .097 .041 .000 .068 .168 .177 .018 .034 .052 .301

In bold, factor loadings higher than 0.2.

As more severe asymmetry is introduced, results are consistent with previous identified
trends in loss of accuracy for the Pearson model, but here the polychoric based model
tend to overestimate the higher loading of 0.7 more frequently. The polychoric based
model shows remarkable accuracy in identifying the factor saturated on all factors (item
3), given the low theoretical value and severe item skewness.

Table 3.20: Phi matrix, (Φ), for five factors model one item skewness using exploratory
factor analysis (all moderate item skewness in brackets).

Dimension 1 2 3 4 5

1 - .341(.373) .354(.389) .412(.470) .661(.591)
2 .337(.338) - .058(.055) .171(.254) .287(.278)
3 .341(.453) .046(.003) - .165(.185) .336(.336)
4 .389(.591) .156(.220) .152(.185) - .288(.346)
5 .663(.523) .282(.232) .327(.341) .269(.373) -

Pearson (below diagonal) and Polychoric (above).
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Table 3.21: Phi matrix, (Φ), for five factors model all severe item skewness using ex-
ploratory factor analysis.

Dimension 1 2 3 4 5

1 - .280 .366 .513 .410
2 .302 - .068 .182 .195
3 .348 .037 - .301 .234
4 .414 .125 .213 - .361
5 .457 .172 .182 .189 -

Pearson (below diagonal) and Polychoric (above).

3.5 Results from replications
As mentioned previously, the simulation study was replicated 1000 times in order to assess
the accuracy of drawn conclusions. In this section, summarizing results of replications
are presented after a criterion is put on each of the loadings for a given factor model.
For the three factors model the criterion is set at 0.3, meaning that a model is deemed
to be correctly identified if factor loadings are higher than 0.3 for items with theoretical
λ > 0 and if loadings are lower than 0.3 for items with theoretical λ = 0. For the four
and five factors models the criterion is set at 0.25 and 0.2 respectively. It should be noted
that other assessments have been taken into consideration for the conclusions, such as the
deviance of loadings from theoretical Λ and cases where the estimated models only falsely
estimate one loading higher or lower than criterion.

Table 3.22: Proportion of replicated three factors models correctly identifying the theo-
retical model in three cases of item skewness

F1 F2 F3

Symmetrical* Pearson 0.701 0.832 0.783
Symmetrical* polychoric 0.843 0.963 0.931
Moderate asymmetrical Pearson 0.495 0.668 0.708
Moderate asymmetrical polychoric 0.802 0.954 0.901
Severe asymmetrical Pearson 0 0 0
Severe asymmetrical polychoric 0 0 0

* Symmetrical in all items except one.
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Table 3.23: Proportion of replicated four factors models correctly identifying the theoret-
ical model in three cases of item skewness.

F1 F2 F3 F4

Symmetrical* Pearson 0.745 0.823 0.832 0.756
Symmetrical* polychoric 0.869 0.969 0.961 0.891
Moderate asymmetrical Pearson 0.731 0.856 0.811 0.768
Moderate asymmetrical polychoric 0.876 0.973 0.969 0.872
Severe asymmetrical Pearson 0 0 0 0
Severe asymmetrical polychoric 0 0 0 0

* Symmetrical in all items except one.

Table 3.24: Proportion of replicated five factors models correctly identifying the theoret-
ical model in three cases of item skewness.

F1 F2 F3 F4 F5

Symmetrical* Pearson 0.259 0.662 0.641 0.546 0.473
Symmetrical* polychoric 0.302 0.807 0.752 0.658 0.540
Moderate asymmetrical Pearson 0.035 0.162 0.214 0.171 0.133
Moderate asymmetrical polychoric 0.188 0.777 0.699 0.554 0.474
Severe asymmetrical Pearson 0 0 0 0 0
Severe asymmetrical polychoric 0 0 0 0 0

* Symmetrical in all items except one.

As can be seen in Tables 3.22 - 3.24, the factor analysis models that were estimated by
polychoric correlations have a higher proportion of correctly identifying the theoretical
models compared with the models estimated by Pearson correlations. As items become
asymmetrical in distribution, the robustness feature of the polychoric coefficient is espe-
cially apparent. Also as factors increase, the polychoric based models show superiority in
identifying the theoretical model when asymmetry is present in the data. Although none
of the models are able to identify the theoretical model based on the criterion when items
are severely asymmetrical in distribution, the polychoric based models show a smaller
mean deviance from the theoretical Λ compared with the Pearson models.



Discussion and conclusions

This thesis aimed at examining which correlation matrix is most suitable to use when
attempting to create factor analytical solutions and in analyzing the results given an
ordinal level of measurement on observed variables. In social science and psychology
it is common to see Likert scale data, collected though surveys, to be analyzed though
interval-based measures. In relation to this, methodologists need to ensure that inferences
made from the obtained results are as rigorous as possible. Furthermore, in social science,
measurement often implies certain degrees of both random and systematic error. This
possible error may bias the estimates of the relation between variables measured. In turn,
this could lead to bias in substantive conclusions.

The replicated simulation study show that when ordinal data, obtained from Likert scales,
is analyzed the results show a better fit to the theoretical model when factorization is car-
ried out using the polychoric in comparison to the Pearson correlation matrix. Three
levels of asymmetry in the observed variable is also considered and the results show that
the polychoric method of estimating correlation is more robust to the violation of nor-
mality assumption and could be preferably used, compared to the Pearson correlation,
when data is not approximately normal and of ordinal level. In relation to number of
extracted factors, the Pearson correlation shows significant inaccuracy in the factor so-
lution as they increase, while the polychoric stays fairly consistent in reproducing the
measurement model. Results are comparable to results presented by F. Holgado-Tello
et al. (2010) in the case of symmetrical (in all items except one) and severe asymmetrical
items. This research was complemented by consideration of a less extreme item skewness,
in this thesis called moderate asymmetrical items, where the polychoric correlations also
outperform the Pearson correlation when used for exploratory factor analysis.

When analyzing construct validity, it is therefore clear that a polychoric correlation matrix
could be advantageously used to analyze factors of asymmetrical ordinal data. No empha-
sis has been put on the power and effectiveness of such solutions and consequently possible
drawn conclusions. It could still be deemed important, in terms of correct substantive
conclusions, that factor solutions are more in keeping with the original measurement
model.

There are many aspects of factor analytical solutions to ordinal levels of measurement
that can be subject to further study, for example identifying at which degree of skewness
factor solutions fail to reproduce the theoretical model or which correlation matrix is
preferable with higher order factors, more or fewer items and a smaller sample size.
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Tables

Table A.1: Theoretical correlation matrix three factors model

1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 0.420 0.350 0.280 0.596 0.223 0.192 0.160 0.128 0.330 0.283 0.236
2 0.420 1.000 0.300 0.240 0.511 0.192 0.164 0.137 0.109 0.283 0.242 0.202
3 0.350 0.300 1.000 0.200 0.426 0.160 0.137 0.114 0.091 0.236 0.202 0.168
4 0.280 0.240 0.200 1.000 0.341 0.128 0.109 0.091 0.073 0.188 0.162 0.135
12 0.596 0.511 0.426 0.341 1.000 0.517 0.443 0.369 0.295 0.578 0.495 0.413
5 0.223 0.192 0.160 0.128 0.517 1.000 0.420 0.350 0.280 0.191 0.164 0.136
6 0.192 0.164 0.137 0.109 0.443 0.420 1.000 0.300 0.240 0.164 0.140 0.117
7 0.160 0.137 0.114 0.091 0.369 0.350 0.300 1.000 0.200 0.136 0.117 0.098
8 0.128 0.109 0.091 0.073 0.295 0.280 0.240 0.200 1.000 0.109 0.094 0.078
9 0.330 0.283 0.236 0.188 0.578 0.191 0.164 0.136 0.109 1.000 0.420 0.350
10 0.283 0.242 0.202 0.162 0.495 0.164 0.140 0.117 0.094 0.420 1.000 0.300
11 0.236 0.202 0.168 0.135 0.413 0.136 0.117 0.098 0.078 0.350 0.300 1.000

Table A.2: Theoretical correlation matrix four factors model

1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 0.420 0.350 0.593 0.173 0.148 0.124 0.250 0.214 0.178 0.308 0.264
2 0.420 1.000 0.300 0.508 0.148 0.127 0.106 0.214 0.184 0.153 0.264 0.226
3 0.350 0.300 1.000 0.423 0.124 0.106 0.088 0.178 0.153 0.128 0.220 0.188
12 0.593 0.508 0.423 1.000 0.417 0.358 0.298 0.478 0.410 0.341 0.517 0.443
4 0.173 0.148 0.124 0.417 1.000 0.420 0.350 0.087 0.074 0.062 0.109 0.094
5 0.148 0.127 0.106 0.358 0.420 1.000 0.300 0.074 0.064 0.053 0.094 0.080
6 0.124 0.106 0.088 0.298 0.350 0.300 1.000 0.062 0.053 0.044 0.078 0.067
7 0.250 0.214 0.178 0.478 0.087 0.074 0.062 1.000 0.420 0.350 0.157 0.135
8 0.214 0.184 0.153 0.410 0.074 0.064 0.053 0.420 1.000 0.300 0.135 0.116
9 0.178 0.153 0.128 0.341 0.062 0.053 0.044 0.350 0.300 1.000 0.112 0.096
10 0.308 0.264 0.220 0.517 0.109 0.094 0.078 0.157 0.135 0.112 1.000 0.420
11 0.264 0.226 0.188 0.443 0.094 0.080 0.067 0.135 0.116 0.096 0.420 1.000
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Table A.3: Theoretical correlation matrix five factors model

1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 0.420 0.554 0.180 0.154 0.128 0.250 0.214 0.307 0.263 0.324 0.278
2 0.420 1.000 0.475 0.154 0.132 0.110 0.214 0.184 0.263 0.226 0.278 0.238
3 0.554 0.475 1.000 0.354 0.303 0.253 0.407 0.349 0.453 0.388 0.462 0.396
4 0.180 0.154 0.354 1.000 0.420 0.350 0.084 0.072 0.113 0.097 0.124 0.107
5 0.154 0.132 0.303 0.420 1.000 0.300 0.072 0.062 0.097 0.083 0.107 0.091
6 0.128 0.110 0.253 0.350 0.300 1.000 0.060 0.051 0.081 0.069 0.089 0.076
7 0.250 0.214 0.407 0.084 0.072 0.060 1.000 0.420 0.159 0.136 0.156 0.134
8 0.214 0.184 0.349 0.072 0.062 0.051 0.420 1.000 0.136 0.117 0.134 0.115
9 0.307 0.263 0.453 0.113 0.097 0.081 0.159 0.136 1.000 0.420 0.198 0.170
10 0.263 0.226 0.388 0.097 0.083 0.069 0.136 0.117 0.420 1.000 0.170 0.146
11 0.324 0.278 0.462 0.124 0.107 0.089 0.156 0.134 0.198 0.170 1.000 0.420
12 0.278 0.238 0.396 0.107 0.091 0.076 0.134 0.115 0.170 0.146 0.420 1.000



Figures

A.1 Categorizations

Figure A.1: Bar plots over categorizations.
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