
Analysis and Implementation of a
Method to Smooth Data Functions
An Adaptation of the Cubic Spline Method

Sarah Rohart
Master’s thesis
2020:E85

Centre for Mathematical Sciences
Mathematics

C
E

N
T

R
U

M
SC

IE
N

T
IA

R
U

M
M

A
T

H
E

M
A

T
IC

A
R

U
M

Abstract

The goal of the thesis is to create a method that can be used to smooth data functions so that they are
more easily readable and interpretable, through curve fitting. So as to do that, we adapt the smoothing
spline method, which uses discrete data, to continuous data. In the smoothing spline method, we solve the
variational problem of finding the minimizer of the following functional:

p

∫ X

0

y′′(x)2dx+ (1− p)
m∑
i=1

wi(y(xi)− yi)2 (1)

for all y in a suitable function space, with p the smoothing parameter controlling the relative importance of
the smoothness of the curve in relation to the importance of the closeness of the curve to the data points.
Those data points are the yi adjoined with wi weights letting us adjust the importance of a point according
to how reliable the data is. It is known [1], if p = 0, that y is a least squares straight line, and if p = 1,
that the minimizing function y is a third degree polynomial between the spline knots xi, and the coefficients
of the different polynomials have to match so that the curve is C2 on the whole interval [0, X] and satisfies
a jump condition in the third derivative. These conditions for the minimizer give rise to a linear system
involving an invertible matrix, and the problem is therefore solvable.

In this project we are not given discrete points as data points, but instead we are given a continuous function
f which is defined on subintervals of the interval [0, X]. It is then natural to replace the least square sum in
the variational problem for the smoothing spline by a least square integral, and so we minimize

p

∫ X

0

y′′(x)2dx+ (1− p)
∫ X

0

w(x)(y(x)− f(x))
2
dx (2)

among all y in a suitable function space. Here, the weight function w(x) is set to 0 in the intervals where
f is not defined, and then we can extend f to a continuous function on the whole interval. We will focus
on w(x) being piece-wise constant, typically taking values 0 or 1. The parameter p controls the importance
of the data in comparison to the smoothness of the function. The minimizer of the variational problem is
expected to satisfy a fourth order linear inhomogeneous ODE, and in the project this ODE will be derived
from the variational problem, and then it will be solved using ODE theory and numerical methods, using
MATLAB.

Acknowledgments

First of all, I especially want to thank Sara Maad Sasane who has been my supervisor and guided me. She
was a great help, reading and suggesting ways to improve it time after time, answering emails spontaneously
and not losing hope despite personal issues on my side which delayed this thesis’ publication, and thus this
paper could not have been done without her.

Secondly, I want to thank Claus Führer, who has been an inspiration to do this thesis in this area - most of
my Numerical Analysis background comes from lectures he’s given. He has also helped with the numerical
implementation, explaining some MATLAB algorithms.

Thirdly, I want to thank all my family, without whom my studying here in Lund wouldn’t have been
possible. Their support has been the basis without which this paper would have never seen the light of day.

Lastly, a special thanks to Mélanie Fournier, who has always been there for me during this process, and
deserves a mention for all the support she has given me time after time.

1

Contents

1 Introduction 3

2 Introduction to the Mathematical Concepts 4
2.1 Notation . 4
2.2 Smoothing splines . 4

3 Curve Fitting and Minimization 8
3.1 Finding the ODE . 8
3.2 Finding the solution to the ODE . 10
3.3 Boundary Conditions . 12

3.3.1 Fixed Boundary Conditions . 12
3.3.2 Free Boundary Conditions . 13
3.3.3 Periodic Boundary Conditions . 13
3.3.4 Fitting Subintervals . 14

4 Numerical Methods 16
4.1 Numerical Integration . 16

4.1.1 Trapezoidal Rule . 16
4.1.2 Simpson’s Rule . 18

4.2 Implementation . 18
4.3 Boundary Value Problem Solver . 26

5 Discussion and Future Work 30

2

Chapter 1

Introduction

One of the most commonly found mathematical problems in engineering and science is how to create a curve
using known data points. One approach at solving those problems is the spline, a word that has its roots in
East Anglian, referencing the devices used by wood-workers to create a smooth curve. The idea was that,
in shipbuilding, thanks to the elasticity of the wood, one could apply weights - then called ducks - in certain
points, called knots or control points, and the piece of wood would bend in such a way so that it used the
least energy to bend between the knots, hence being the ”smoothest” possible.
In the same manner, and with almost exactly the same idea, splines today are functions, defined piece-wise
by polynomials, such that, in the case of what is called interpolating curves, they go through all the knots.
This idea was first introduced by Isaac Jacob Schoenberg, during the Second World War, which saved the
need to measure thousands of points on planes, replacing it by a more efficient mathematical model. This
model was only mathematical, and Bézier and de Casteljau, respectively working for Renault and Citröen,
eventually created stable algorithms, using it numerically for the first time, for CAD purposes.
One issue that arises numerically is that some control points are less reliable than others, and data isn’t
always perfect - hence the use of what is called smoothing splines, where the curve is only required to go
near enough every data point, depending on how reliable the data is and how smooth the result is to be.
The goal of this thesis is to adapt the spline method, which is used with discrete data, to continuous data,
so that it is not an interpolation of a great quantity of different data points, but a smoothing of a given data
function.

3

Chapter 2

Introduction to the Mathematical
Concepts

2.1 Notation

We will first present the notations that shall be used in this thesis.
Cn is the space of continuous functions with continuous derivatives up to the order n, i.e. a C0 function
is continuous, a C1 function is continuous and so is its derivative, and so on and so forth, until C∞ which
means the function is smooth i.e. all its derivatives are continuous.
To elaborate on that notation, we will also use Cn(Ω,Rd) to denote the space of n-times continuously dif-
ferentiable vector-valued functions on some open set Ω in Rd.
We shall also use C∞0 (Ω) for the space of C∞ functions on Ω that vanish identically outside of some compact
K ⊂ Ω.

2.2 Smoothing splines

We shall first explain the concept of smoothing splines. Cubic smoothing splines can be written as minimizers
of the energy functional of the form:

J(y) = p

∫ X

0

y′′(x)2dx+ (1− p)
m∑
i=1

wi(y(xi)− yi)2 (2.1)

among all y that belong to C2([0, X]), with p the smoothing parameter controlling the relative importance
of the smoothness of the curve in relation to the importance of the closeness of the curve to the data points,
yi the data points and wi weights letting us adjust the importance of a point according to how reliable the
data is. When p is close to 1, the cubic smoothing spline minimizer converges toward a linear function, and
when p is close to 0, it resembles the least squares minimizer.

It can be proved that y the minimizing function is a third degree polynomial between the spline knots xi,
and the coefficients of the different polynomials have to match so that the curve is C2 on the whole inter-
val [0, X] and satisfies a jump condition in the third derivative [1]. These conditions for the minimizer give
rise to a linear system involving an invertible matrix, and the problem is therefore solvable with linear algebra.

Here, instead of discrete data points - the knots - which would have fit into the least square method, we
are given a function f defined on subintervals of [0, X], and hence it makes sense that we replace the least

4

square part by a least square integral, and find the minimizer of that functional:

p

∫ X

0

y′′(x)2dx+ (1− p)
∫ X

0

w(x)(y(x)− f(x))
2
dx (2.2)

among all y that belong to C2([0, X]). w(x) is a piece-wise continuous positive weight function on some
interval, which describes how reliable the given data is. The minimizer to this functional is the desired curve
smoothing f .
To that end we shall use calculus of variations and ODEs. Let us recall the Fundamental Lemma of Calculus
of Variations from [3]:

Lemma 2.2.1 (Fundamental Lemma of Calculus of Variations) If h ∈ C0((a, b),R) satisfies:∫ b

a

h(t) · φ(t)dt = 0 for all φ ∈ C∞0 ((a, b),R)

Then h ≡ 0 on (a, b).

Proof: If not, then, for some t0 ∈ (a, b), h(t0) 6= 0. Since h is continuous, there exists some δ > 0 with

a < t0 − δ < t0 + δ < b

and

|h(t)| > 1

2
|h(t0)| whenever |t0 − t| < δ.

We then choose φ ∈ C∞0 ((a, b),R) with

φ(t) = 0 if |t0 − t| ≥ δ

φ(t) > 0 if |t0 − t| < δ

For this choice of φ, however ∫ a

b

h(t) · φ(t)dt =

∫ t0+δ

t0−δ
h(t) · φ(t)dt 6= 0,

contradicting our assumption. Thus, necessarily h(t0) = 0 for all t0 ∈ (a, b).

�

We shall also state a similar lemma for higher derivatives - since that will be necessary later as we’re dealing
with second derivatives - from [4]:

Lemma 2.2.2 (Fundamental Lemma of Calculus of Variations) If h1, h2, ..., hn are continuous func-
tions that satisfy the equality∫ b

a

φ(t) · h0(t) + φ′(t) · h1(t) + · · ·+ φ(n) · hndt = 0 for all φ ∈ C∞0 ((a, b),R)

Then there exist continuously differentiable functions u0, u1, . . . , un−1 on (a, b) such that:

h0 = u′0, h1 = u0 + u′1, . . . , hn−1 = un−2 + u′n−1, hn = un−1

This lemma will allow us to find the desired ODE which we will then find the solution to so as to find the
wanted minimizer.

5

In order to find the solution to said ODE, we shall also use the method of Variation of Parameters from [2]:

The method of variation of parameters for determining a particular solution of the nonhomogeneous nth
order linear differential equation

L[y] = y(n) + p1(t)y(n−1) + ...+ pn−1(t)y′ + pn(t)y = g(t) (2.3)

is as follows:

It is first necessary to solve the corresponding homogeneous differential equation.
Suppose then that we know a fundamental set of solutions y1, y2, ..., yn of the homogeneous equation. Then
the general solution of the homogeneous equation is

yc(t) = c1y1(t) + c2y2(t) + ...+ cnyn(t). (2.4)

The method of variation of parameters for determining a particular solution of (2.3) rests on the possibility
of determining n functions u1, u2, ..., un such that Y (t) is of the form

Y (t) = u1(t)y1(t) + u2(t)y2(t) + ...+ un(t)yn(t). (2.5)

Since we have n functions to determine, we are free to specify n conditions. One of these should be clearly
that Y satisfies (2.3). The other n − 1 conditions are chosen so as to make the calculations as simple as
possible. Since we cannot expect a simplification in determining Y if we must solve high order differential
equations for u1, ..., un, it is natural to impose conditions to suppress the terms that lead to higher derivatives
of u1, ..., un. From (2.5) we obtain

Y ′ = (u1y
′
1 + u2y

′
2 + ...+ uny

′
n) + (u′1y1 + u′2y2 + ...+ u′nyn), (2.6)

where we have omitted the independent variable t on which each function in (2.6) depends. Thus the first
condition that we impose is that

u′1y1 + u′2y2 + ...+ u′nyn = 0. (2.7)

Continuing this process in a similar manner through n− 1 derivatives of Y gives

Y (m) = u1y
(m)
1 + u2y

(m)
2 + ...+ uny

(m)
n , m = 0, 1, 2, ..., n− 1, (2.8)

and the following n− 1 conditions on the functions u1, ..., un:

u′1y
(m−1)
1 + u′2y

(m−1)
2 + ...+ u′ny

(m−1)
n = 0, m = 1, 2, ..., n− 1. (2.9)

The nth derivative of Y is

Y (n) = (u1y
(n)
1 + ...+ uny

(n)
n) + (u′1y

(n−1)
1 + ...+ u′ny

(n−1)
n). (2.10)

Finally, we impose the condition that Y must be a solution of (2.3). On substituting for the derivatives of
y from (2.8) and (2.10), collecting terms, and making use of the fact that L[yi] = 0, i = 1, 2, ..., n, we obtain

u′1y
(n−1)
1 + u′2y

(n−1)
2 + ...+ u′ny

(n−1)
n = g. (2.11)

Equation (2.11), together with the n− 1 equations (2.9), gives us a linear system of algebraic equations for
u′1(t), u′2(t), ..., u′n(t):

y1u
′
1 + y2u

′
2 + ...+ ynu

′
n = 0

y′1u
′
1 + y′2u

′
2 + ...+ y′nu

′
n = 0

y′′1u
′
1 + y′′2u

′
2 + ...+ y′′nu

′
n = 0

...

y
(n−1)
1 u′1 + ...+ y

(n−1)
n u′n = g

(2.12)

6

The system (2.12) is a linear algebraic system for the unknown quantities u′1(t), ..., u′n(t). By solving this
system and then integrating the resulting expressions, we obtain the coefficients u1, ..., un. A sufficient con-
dition for the existence of the solution of the system of equations (2.12) is that the determinant of coefficients
is nonzero for each value of t. However, the determinant of coefficients is the Wronskian W (y1, y2, ..., yn) and
it is nowhere zero since y1, ..., yn are linearly independent solutions of the homogeneous equation. Hence it
is possible to determine u′1, ..., u

′
n. We then use Cramer’s rule [5]:

Theorem 2.2.3 (Cramer’s Rule) If the matrix of coefficients A is non-singular, then the unique solution
(x̄1, ..., x̄n) to the system

a11x1 + a12x2 + ...+ a1nxn = b1
...

an1x1 + an2x2 + ...+ annxn = bn

(2.13)

alternatively AX = B, is given by
x̄i = (det A)−1det (Ai) (2.14)

where Ai is the matrix obtained from A by replacing the i : th column of A by the column of constants B.

Proof: Let us use Jacobi’s proof. Fix an integer h in {1, 2, ..., n}. The i-th equation of (2.13) multiplied by
the cofactor Aih becomes

Aihai1x1 +Aihai2x2 + ...+Aihainxn = Aihbi (2.15)

Adding together the n different equations of type (2.15), we get∑
i

(Aihai1)x1 + ...+
∑
i

(Aihaih)xh + ...+
∑
i

(Aijhain)xn =
∑
i

(Aihbi). (2.16)

Let us then use the following theorem:

Theorem 2.2.4 Let k and l be integers in the set {1, 2, ..., n}.

n∑
i=1

ailAik =

n∑
j=1

aljAkj =

{
det A if l = k; (First Laplace Theorem)

0 if l 6= k; (Second Laplace Theorem).
(2.17)

Thus, the only non-zero coefficient on the left side of (2.16) is the l-th one, and is equal to det A. On the
right side we have the cofactor expansion of det(Al) along the l-th column. Hence (2.16) reads

(det A)xl = det(Al). (2.18)

�

Using Cramer’s rule, we find that the solution of the system of equations (2.12) is

u′m(t) =
g(t)Wm(t)

W (t)
, m = 1, 2, ..., n. (2.19)

Here W (t) = W (y1, y2, ..., yn)(t) and Wm is the determinant obtained from W by replacing the m-th column
by the column (0, 0, ..., 0, 1). With this notation a particular solution of Eq. (2.3) is given by

Y (t) =

n∑
m=1

ym(t)

∫ t

t0

g(s)Wm(s)

W (s)
ds. (2.20)

where t0 is arbitrary.

7

Chapter 3

Curve Fitting and Minimization

3.1 Finding the ODE

As a first step of solving the general problem described in Section 2, we seek to minimize the functional:

J [y] = p

∫ X

0

y′′(x)2dx+ (1− p)
∫ X

0

w(x)(y(x)− f(x))
2
dx, (2.2)

within the class of functions y that belong globally to C2([0, X]) and with w(x) ∈ R piece-wise continuous,
with f continuous on [0, X].
Let us first demonstrate that this functional has a unique minimizer [6].

The class of functions y belong globally to C2([0, X]) and f is continuous too on [0, X]. C2([0, X]) is a
linear function space and therefore convex.

We can study the convexity of the functional easily by studying the convexity of its two parts indepen-
dently. A function g : X 7→ R is convex if:

∀x1, x2 ∈ X, ∀t ∈ [0, 1] : g(tx1 + (1− t)x2) ≤ tg(x1) + (1− t)g(x2), (3.1)

and it is strictly convex if:

∀x1 6= x2 ∈ X, ∀t ∈ [0, 1] : g(tx1 + (1− t)x2) < tg(x1) + (1− t)g(x2). (3.2)

Let us first study the convexity of the first part:

p

∫ X

0

y′′(x)2dx,

where we know that x 7→ x2 is strictly convex. Therefore:

p

∫ X

0

(ty1
′′(x) + (1− t)y2′′(x))2dx ≤ p

∫ X

0

t(y1
′′(x))2 + (1− t)(y2′′(x))2dx

and thus this first part is clearly convex. It is not necessarily strictly convex, however, as equality, which
simplifies to y1

′′ = y2
′′, is possible even with y1 6= y2 (i.e. y1 = y2 +Ax+B for some A,B ∈ R.)

Let us now study the second part:

(1− p)
∫ X

0

w(x)(y(x)− f(x))
2
dx,

8

where, same as before, we know that x 7→ x2 is strictly convex. Therefore:

(1− p)
∫ X

0

w(x)
(
ty1(x) + (1− t)y2(x)− f(x)

)2
dx = (1− p)

∫ X

0

w(x)
(
t(y1(x)− f(x)) + (1− t)(y2(x)− f(x))

)2
dx

≤ (1− p)
∫ X

0

w(x)t(y1(x)− f(x))
2

+ w(x)(1− t)(y2(x)− f(x))
2
dx,

and this is therefore also convex. It is not, however, strictly convex, as w(x) = 0 clearly leads to an equality,
although it is indeed strictly convex on intervals where w(x) 6= 0, as equality, which simplifies to y1 = y2,
would imply the falsity of the initial hypothesis of y1 6= y2.
We therefore have that the functional J [y] is convex and strictly convex on intervals (here we only have one)
where w(x) 6= 0. From that, we can deduce that a minimizer always exists, and that it is unique when w(x)
is not identically 0.

�

We then assume y∗ is a minimum function for y. Let y(x) = y∗(x) + εη(x), ε ∈ R a constant and η an
arbitrary fixed C2 function defined on [0, X]. The term εη(x) forms the variation.

We replace y(x) with y∗(x) + εη(x) and rewrite (2.2) as a function of ε as:

I(ε) = p

∫ X

0

(y′′∗ (x) + εη′′(x))
2
dx+ (1− p)

∫ X

0

w(x)(y∗(x) + εη(x)− f(x))
2
dx, (3.3)

It is clear that I(ε) has minimum at ε = 0 as this gives y(x) = y∗(x), the minimum function; hence I ′(0) = 0.
By expanding the squares and differentiating with relation to ε we get:

I ′(0) =

∫ X

0

p y′′∗ (x)η′′(x) + (1− p)w(x)η(x)(y∗(x)− f(x)) dx = 0, (3.4)

which we can rewrite, so as to use the Fundamental Lemma of Calculus of Variations (2.2.2) for higher
derivatives, as:

I ′(0) =

∫ X

0

η′′(x)h2(x) + η(x)h0(x) dx = 0. (3.5)

We can then apply the Fundamental Lemma since η is a compactly supported smooth function on [0, X].
This gives us the following system:

h0(x) = (1− p)w(x)(y∗ − f(x)) = u′0(x)

h1(x) = 0 = u0(x) + u′1(x)

h2(x) = py′′∗ (x) = u1(x)

and the Fundamental Lemma of Calculus of Variations says those u0 and u1 are continuously differentiable.
This also implies u′1 is continuously differentiable since u′1(x) = −u0(x) and so we can write:

u′1(x) + u0(x) = 0 =⇒ u′′1(x) + u′0(x) = 0.

By replacing u0 and u1 we obtain the following ODE:

p y
(4)
∗ (x) + (1− p)w(x)(y∗(x)− f(x)) = 0, (3.6)

or alternatively written as:

y
(4)
∗ (x) +

(
1− p
p

)
w(x)y∗(x) =

(
1− p
p

)
w(x)f(x). (3.7)

This gives us, because of the conditions on u0 and u1 given to us by the Fundamental Lemma of Calculus
of Variations, that the class of functions y are C4. This fourth-order ODE gives us the minimizations of
the functional for w(x) constant on one interval - we shall study later what happens with different w(x) i.e.
different subintervals.

9

3.2 Finding the solution to the ODE

We assume that w(x) ∈ {0, 1} constant on an interval. We first solve the case when w(x) = 0, which gives
us a third degree polynomial:

y∗(x) = c1x
3 + c2x

2 + c3x+ c4 (3.8)

We will now study the ODE if w(x) = 1. (3.6) can be rewritten as:

p y
(4)
∗ (x) + (1− p)y∗(x) = (1− p)f(x) (3.9)

So as to solve the fourth degree ODE, we use the Variation of Parameters method we described in Chapter (2).

We first solve the ODE in the homogeneous case f(x) = 0, which gives us:

yh(x) = c1e
α(1+i)x + c2e

−α(1+i)x + c3e
α(1−i)x + c4e

−α(1−i)x, (3.10)

with α =

√
2 4
√

(1−p)
p

2 .
We can alternatively write this homogeneous solution as:

yh(x) = c1 cosh(αx) cos(αx) + c2 cosh(αx) sin(αx) + c3 sinh(αx) cos(αx) + c4 sinh(αx) sin(αx). (3.11)

To find a particular solution to the the nonhomogeneous equation we look for a solution of the form:

y∗ = u1y1 + u2y2 + u3y3 + u4y4 (3.12)

u1, u2, u3, u4 are unknown functions and
y1(x) = cosh(αx) cos(αx),

y2(x) = cosh(αx) sin(αx),

y3(x) = sinh(αx) cos(αx),

y4(x) = sinh(αx) sin(αx).

We take for n ∈ {1, 2, 3, 4}, un such that u′1y
m−1
1 + u′2y

m−1
2 + u′3y

m−1
3 + u′4y

m−1
4 = 0 for m ∈ {1, 2, 3}.

This gives us u′1y
′′′
1 + u′2y

′′′
2 + u′3y

′′′
3 + u′4y

′′′
4 = f and therefore the following system of equations:

u′1y1 + u′2y2 + u′3y3 + u′4y4 = 0

u′1y
′
1 + u′2y

′
2 + u′3y

′
3 + u′4y

′
4 = 0

u′1y
′′
1 + u′2y

′′
2 + u′3y

′′
3 + u′4y

′′
4 = 0

u′1y
′′′
1 + u′2y

′′′
2 + u′3y

′′′
3 + u′4y

′′′
4 = f.

(3.13)

By using Cramer’s Rule (2.2.3), this simplifies to:

y∗(x) =

(
1− p
p

) [
y1(x)

∫ x

0

f(χ)W1(χ)

W (χ)
dχ+ y2(x)

∫ x

0

f(χ)W2(χ)

W (χ)
dχ

+ y3(x)

∫ x

0

f(χ)W3(χ)

W (χ)
dχ+ y4(x)

∫ x

0

f(χ)W4(χ)

W (χ)
dχ

]
, (3.14)

where W is the determinant of the Wronskian for the system and Wi (i ∈ {1, 2, 3, 4}) is the determinant for
the same Wronskian with the i-th column replaced by (0, 0, 0, 1).

10

To obtain an explicit formula we need to compute the Wronskian of the fundamental system of solutions,
which shall then be used to find the W and Wi of the above equation:

W =

∣∣∣∣∣∣∣∣
y1 y2 y3 y4
y′1 y′2 y′3 y′4
y′′1 y′′2 y′′3 y′′4
y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣ (3.15)

where

y1(x) = cosh(αx) cos(αx)

y2(x) = cosh(αx) sin(αx)

y3(x) = sinh(αx) cos(αx)

y4(x) = sinh(αx) sin(αx)

The Wi are of the form:

W1 =

∣∣∣∣∣∣∣∣
0 y2 y3 y4
0 y′2 y′3 y′4
0 y′′2 y′′3 y′′4
1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣ W2 =

∣∣∣∣∣∣∣∣
y1 0 y3 y4
y′1 0 y′3 y′4
y′′1 0 y′′3 y′′4
y′′′1 1 y′′′3 y′′′4

∣∣∣∣∣∣∣∣ W3 =

∣∣∣∣∣∣∣∣
y1 y2 0 y4
y′1 y′2 0 y′4
y′′1 y′′2 0 y′′4
y′′′1 y′′′2 1 y′′′4

∣∣∣∣∣∣∣∣ W4 =

∣∣∣∣∣∣∣∣
y1 y2 y3 0
y′1 y′2 y′3 0
y′′1 y′′2 y′′3 0
y′′′1 y′′′2 y′′′3 1

∣∣∣∣∣∣∣∣
After heavy symbolic computations on MATLAB, we obtain the solutions to the nonhomogeneous system:

y∗(x) = yh(x) +

(
1− p
β p

) [
− cosh(αx) cos(αx)

∫ x

0

(cosh(αχ) sin(αχ)− sinh(αχ) cos(αχ))f(χ)dχ

+ cosh(αx) sin(αx)

∫ x

0

(cosh(αχ) cos(αχ) + sinh(αχ) sin(αχ))f(χ)dχ

− sinh(αx) cos(αx)

∫ x

0

(cosh(αχ) cos(αχ)− sinh(αχ) sin(αχ))f(χ)dχ

− sinh(αx) sin(αx)

∫ x

0

(cosh(αχ) sin(αχ) + sinh(αχ) cos(αχ))f(χ)dχ

]
, (3.16)

where yh(x) = c1 cosh(αx) cos(αx) + c2 cosh(αx) sin(αx) + c3 sinh(αx) cos(αx) + c4 sinh(αx) sin(αx),

α =

√
2 4
√

(1−p)
p

2 and β =
√

2
(

1−p
p

)(3/4)
.

We alternatively, for convenience, write this equation as:

y∗(x) = yh(x) + yp(x) (3.17)

if w(x) = 1 and
y∗(x) = c1x

3 + c2x
2 + c3x+ c4 (3.18)

if w(x) = 0, which, in the case of different subintervals in the future, will lead to different c1, c2, c3 and c4
for every subinterval and different w(x).

We now stop assuming that w(x) is constant on the entire interval, but only piece-wise constant, such that
we have subintervals with different values of w(x). We therefore need to study what happens at boundaries.

11

3.3 Boundary Conditions

We have studied what happens for the minimizer symbolically generally, but we need, so as to find the
coefficients of the minimizer and therefore the minimizer of the variational problem

J [y] = p

∫ X

0

y′′(x)2dx+ (1− p)
∫ X

0

w(x)(y(x)− f(x))
2
dx, (2.2)

to have some boundary conditions on the interval [0, X] with w(x) constant on the interval. With a given
data function we will have some boundary conditions (depending on the context) and we need to find ways
to link them to our variational problem. We first study this problem again, so as to find boundary conditions
belonging to this minimization problem.
We know, from the Fundamental Lemma of Calculus of Variations that we used to find the fourth-order
ODE, that y∗ is C4 on [0, X]. We can now use that knowledge to compute the constraints on the boundaries

stemming from the integral. First off, we integrate
∫X
0

2 p y′′∗ (x)η′′(x)dx by parts and we get:

I ′(0) =

∫ X

0

η(x)
(
p y

(4)
∗ (x)+w(x)(1−p)(y∗(x)−f(x))

)
dx+p

([
y′′∗ (x)η′(x)

]X
0
−
[
y′′′∗ (x)η(x)

]X
0

)
= 0, (3.19)

and let Θ = p
([
y′′∗ (x)η′(x)

]X
0
−
[
y′′′∗ (x)η(x)

]X
0

)
.

If we take η(x) such that it and its derivative vanish at the boundaries, then Θ = 0 and we can then apply
the Fundamental Lemma of Calculus of Variations (2.2.1), which tells us that, since all η are smooth and
compact on [0, X], the rest is equivalently equal to 0, which gives us the same fourth-order ODE as before.

We shall then investigate for different boundary conditions.

3.3.1 Fixed Boundary Conditions

For fixed boundary conditions:
y∗(0) = a

y∗(X) = b

y′∗(0) = 0

y′∗(X) = 0.

(3.20)

This gives (c1, c2, c3, c4) = (2
a− b
X3

, 3
b− a
X2

, 0, a) for w(x) = 0.

The minimizer then is:

y∗(x) = 2
a− b
X3

x3 + 3
b− a
X2

x2 + a. (3.21)

For w(x) = 1 we have:
y∗(0) = yh(0) + yp(0) = c1 + c3 = a

y∗(X) = yh(X) + yp(X) = b

y′∗(0) = y′h(0) + y′p(0) = α
2 (c1 + c2 − c3 + c4) = 0

y′∗(X) = y′h(X) + y′p(X) = 0,

(3.22)

where computations give yp(0) = y′p(0) = 0.
(The minimizer given is too long to be written here.)

12

3.3.2 Free Boundary Conditions

For free boundary conditions, that is if we have an unconstrained variational problem, we need to find
conditions depending directly on the ODE, i.e. on Θ here. We first fix different η and relate it to Θ:
We take η(0) = η(X) = η′(0) = η′(X) = 0 except at one of those boundaries at a time:

Θ = 2p
([
y′′∗ (x)η′(x)

]X
0
−
[
y′′′∗ (x)η(x)

]X
0

)
=

2p y′′′∗ (0) = 0 for η(0) = 1

−2p y′′′∗ (X) = 0 for η(X) = 1

−2p y′′∗ (0) = 0 for η′(0) = 1

2p y′′∗ (X) = 0 for η′(X) = 1,

(3.23)

which gives the system corresponding to free boundary conditions
y′′′∗ (X) = 0

y′′′∗ (0) = 0

y′′∗ (X) = 0

y′′∗ (0) = 0,

(3.24)

which, with w(x) = 0, gives c1 = c2 = 0 with c3 and c4 free, that is:

y∗(x) = c3x+ c4. (3.25)

We therefore don’t have uniqueness of the minimizer.
The system for w(x) = 1 is too complicated to write down here.

3.3.3 Periodic Boundary Conditions

For periodic boundary conditions (that is, y∗
(m)(0) = y∗

(m)(X) for m ∈ {0, 1, 2, 3}), we get:
y∗(0) = y∗(X)

y′∗(0) = y′∗(X)

y′′∗ (0) = y′′∗ (X)

y′′′∗ (0) = y′′′∗ (X)

(3.26)

which, in the case w(x) = 0, gives c1 = c2 = c3 = 0, with c4 free (i.e. y∗ is a constant function.) We therefore
don’t have uniqueness of the minimizer.
The system for w(x) = 1 is too complicated to write down here.

13

3.3.4 Fitting Subintervals

We can now start looking at cases where the weight function varies on different intervals. We know, from
the lemma of calculus of variations, that on any subinterval where w(x) is constant, y∗ satisfies the ODE.
For some boundary conditions, we study Θ for the general case with n + 1 subintervals [xi, xi+1], with
w(x)[xi,xi+1] 6= w(x)[xi+1,xi+2]:

2

∫ X

0

η(x)
(
p y

(4)
∗ (x) + w(x)(1− p)(y∗(x)− f(x))

)
dx+ Θ = 0

thus, equivalently, for n+ 1 subintervals, this gives:
n∑
i=0

2

∫ xi+1

xi

η(x)
(
p y

(4)
∗ (x) + w(x)(1− p)(y∗(x)− f(x))

)
dx+ Θ[xi,xi+1] = 0

then, for any i ∈ N between 1 and n− 1, this gives:

2

∫ xi

xi−1

η(x)
(
p y

(4)
∗ (x) + w(x)(1− p)(y∗(x)− f(x))

)
dx+

2

∫ xi+1

xi

η(x)
(
p y

(4)
∗ (x) + w(x)(1− p)(y∗(x)− f(x))

)
dx+ Θ[xi−1,xi] + Θ[xi,xi+1] = 0 (3.27)

where Θ[xi−1,x1] + Θ[xi,xi+1] = 0 which gives

y∗
′′(xi−)η′(xi−)− y∗′′′(xi−)η(xi−) = y∗

′′(xi+)η′(xi+)− y∗′′′(xi+)η(xi+)

where xi− is the neighbourhood of xi below, and xi+ is the neighbourhood of xi above.
We also want the function to be continuous and differentiable, as y belongs to C2[0, X], hence y∗(xi−) =
y∗(xi+) and y∗

′(xi−) = y∗
′(xi+). This gives us the system:

y∗(xi−) = y∗(xi+)

y∗
′(xi−) = y∗

′(xi+)

y∗
′′(xi−) = y∗

′′(xi+)

y∗
′′′(xi−) = y∗

′′′(xi+)

(3.28)

which can then be repeated for every neighbourhood for every two adjacent subintervals.

So, with a known amount n of subintervals, we can write the system so as to find the n different
parameters. We first start off with the choice of fixed, free or periodic boundaries, and to this we append
the internal systems between each subinterval, xi being the n− 1 values where two subintervals meet:

y∗(x1−) = y∗(x1+)

y∗
′(x1−) = y∗

′(x1+)

y∗
′′(x1−) = y∗

′′(x1+)

y∗
′′′(x1−) = y∗

′′′(x1+)

y∗(x2−) = y∗(x2+)

y∗
′(x2−) = y∗

′(x2+)

y∗
′′(x2−) = y∗

′′(x2+)

y∗
′′′(x2−) = y∗

′′′(x2+)
...

y∗(xn−1−) = y∗(xn−1+)

y∗
′(xn−1−) = y∗

′(xn−1+)

y∗
′′(xn−1−) = y∗

′′(xn−1+)

y∗
′′′(xn−1−) = y∗

′′′(xn−1+)

(3.29)

14

Solving this system with its corresponding boundary conditions system appended will in turn give us the
matrix of all n coefficients of the form:

c11 c12 c13 c14
c21 c22 c23 c24
...

...
...

...
cn1 cn2 cn3 cn4.

 (3.30)

We therefore have an approach so as to compute the minimizer, we now have to figure out how to approach
this numerically.

15

Chapter 4

Numerical Methods

Now that we have the theory behind computing the minimizer, we need to find numerical methods to compute
it, keeping in mind both efficiency and accuracy.
There are two ways to go about to doing this: one way would be to solve the ODE numerically directly,
another, which we shall do below, is to implement the results we obtained from solving the ODE symbolically
above.
The equation (3.16), the solution when w(x) = 1, contains four integrals, to which the primitives are
indefinite, which is explained by the fact we will not use an actual function f(x), contrary to what we
assumed until now, but instead an array of data points sufficiently close so that they might be considered
continuous, as this is how data is, most often, stored. We must thus first find a way to compute those
numerically [7].

4.1 Numerical Integration

4.1.1 Trapezoidal Rule

The first method that makes sense to use, as it is a very simple and fast one, is the trapezoidal rule,
alternatively the first degree Newton-Cotes formula.
The trapezoidal rule is a method to evaluate the definite integral∫ b

a

f(x)dx.

It works by approximating regions under the integral as the area of trapezoids from a point (a, f(a)) to
another (b, f(b)), i.e., for a single area:∫ b

a

f(x)dx ≈ (b− a)
f(a) + f(b)

2
.

It makes sense then to use a uniform grid with n points to approximate the integral and, the smaller the
step ∆x = b−a

n , the more accurate the approximation:∫ b

a

f(x)dx ≈ ∆x

2

n∑
i=1

(f(xi−1) + f(xi)). (4.1)

The error induced by the approximation is the difference between the integral and its approximation by the
trapezoidal rule

error =

∫ b

a

f(x)dx−∆x

[
f(a) + f(b)

2
+

n−1∑
i=1

f(a+ i∆x)

]
. (4.2)

16

Theorem 4.1.1 Assuming f is C2, then there exists a number ξ between a and b such that

error = − (b− a)3

12n2
f ′′(ξ). (4.3)

Proof: First suppose that h = b−a
n , ak = a+ (k − 1)h, and let gk(t) = 1

2 t[f(ak) + f(ak + t)]−
∫ ak+t
ak

f(x)dx

be the function such that |gk(h)| is the error of the trapezoidal rule on one of the intervals [ak, ak+h].
Then:

dgk
dt

=
1

2
[f(ak) + f(ak + t)] +

1

2
tf ′(ak + t)− f(ak + t),

d2gk
dt2

=
1

2
tf ′′(ak + t).

Suppose that |f ′′(x)| ≤ f ′′(ξ), so that:

|f ′′(ak + t)| ≤ f ′′(ξ), −f ′′(ξ) ≤ f ′′(ak + t) ≤ f ′′(ξ),

−f
′′(ξ)t

2
≤ g′′k (t) ≤ f ′′(ξ)t

2
.

Since g′k(0) = 0 and gk(0) = 0, we have ∫ t

0

g′′k (x)dx = g′k(t)∫ t

0

g′k(x)dx = gk(t),

so that:

− f ′′(ξ)t2

4
≤ g′k(t) ≤ f ′′(ξ)t2

4

− f ′′(ξ)t3

12
≤ gk(t) ≤ f ′′(ξ)t3

12

We then replace t by h:

−f
′′(ξ)h3

12
≤ gk(h) ≤ f ′′(ξ)h3

12
.

And
n∑
k=1

gk(h) =
b− a
n

[f(a) + f(b)

2
+

n−1∑
k=1

f(a+ k
b− a
n

)
]
−
∫ b

a

f(x)dx,

n∑
k=1

f ′′(ξ)h3

12
=
f ′′(ξ)h3n

12
.

So:

−f
′′(ξ)h3n

12
≤ b− a

n

[f(a) + f(b)

2
+

n−1∑
k=1

f(a+ k
b− a
n

)
]
−
∫ b

a

f(x)dx ≤ f ′′(ξ)h3n

12
,

error =

∫ b

a

f(x)dx− b− a
n

[f(a) + f(b)

2
+

n−1∑
k=1

f(a+ k
b− a
n

]
=
f ′′(ξ)h3n

12
=
f ′′(ξ)(b− a)3

12n2
.

�

We also deduce that the trapezoidal rule is O(h2).
We can easily implement this method in MATLAB so as to compute the four integrals needed to get the
minimizer.
Since the trapezoidal rule is a second-order method for numerical integration, it is not the most accurate
and thus the error can lead to issues in the long run. Other methods exist and can be implemented, such as
Simpson’s rule.

17

4.1.2 Simpson’s Rule

The Simpson’s rule, alternatively the second degree Newton-Cotes formula, is a method for numerical in-
tegration which uses quadratic interpolation. It replaces the integrand f(x) with a quadratic interpolating
polynomial p2(f) on [a, b]. We take c = (a+ b)/2 and get∫ b

a

f(x)dx ≈
∫ b

a

[(x− c)(x− b)
(a− c)(a− b)

f(a) +
(x− a)(x− b)
(c− a)(c− b)

f(c) +
(x− a)(x− c)
(b− a)(b− c)

f(b)
]
dx.

Integrating this, we obtain∫ b

a

f(x)dx ≈ h

3

[
f(a) + 4f

(a+ b

2

)
+ f(b)

]
, h =

b− a
2

. (4.4)

The error induced by the method, with a number ξ between a and b, is

error = −h
5

90
f (4)(ξ). (4.5)

4.2 Implementation

We now have several ways to compute the integrals of

y∗(x) = yh(x) +

(
1− p
β p

) [
− cosh(αx) cos(αx)

∫ x

0

(cosh(αχ) sin(αχ)− sinh(αχ) cos(αχ))f(χ)dχ

+ cosh(αx) sin(αx)

∫ x

0

(cosh(αχ) cos(αχ) + sinh(αχ) sin(αχ))f(χ)dχ

− sinh(αx) cos(αx)

∫ x

0

(cosh(αχ) cos(αχ)− sinh(αχ) sin(αχ))f(χ)dχ

− sinh(αx) sin(αx)

∫ x

0

(cosh(αχ) sin(αχ) + sinh(αχ) cos(αχ))f(χ)dχ

]
. (3.16)

We now wish to create a method that solves the minimization problem, such that it can use several subin-
tervals where w(x) = 1 - inducing the above solution - and subintervals where w(x) = 0, inducing

y∗(x) = c1x
3 + c2x

2 + c3x+ c4. (3.8)

18

In order to do that we implement the system of equations we put forward before in (3.29), and let us adjoin
it, for example, free boundary conditions (3.20):

y′′∗ (0) = 0

y′′′∗ (0) = 0

y∗(x1−) = y∗(x1+)

y∗
′(x1−) = y∗

′(x1+)

y∗
′′(x1−) = y∗

′′(x1+)

y∗
′′′(x1−) = y∗

′′′(x1+)

y∗(x2−) = y∗(x2+)

y∗
′(x2−) = y∗

′(x2+)

y∗
′′(x2−) = y∗

′′(x2+)

y∗
′′′(x2−) = y∗

′′′(x2+)
...

y∗(xn−1−) = y∗(xn−1+)

y∗
′(xn−1−) = y∗

′(xn−1+)

y∗
′′(xn−1−) = y∗

′′(xn−1+)

y∗
′′′(xn−1−) = y∗

′′′(xn−1+)

y′′∗ (X) = 0

y′′′∗ (X) = 0.

(4.6)

19

We implement this system of equations above symbolically, and we then find solutions numerically to
this system, using the integrals we computed with the trapezoidal rule. We can then compute the minimizer.
So as to give an example we will need a data set. We can easily do a first try with a simple smooth function
such as sin(x) with free boundary conditions:

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Smoothing with p=1/100

y = sin(x)

y = y*(x)

Where we can clearly see the two curves being close to each other, with the minimizer following closely, on
the set of a 1000 data points from 0 to 3 uniformously distributed.
Let us use now use, for a more concrete and relevant example, with a non-smooth data function,the WESAD
[10] data set as an example. Here we will take the measurements of outside body temperature at the wrist
of a man. The first thousand points of data are such:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

31.05

31.1

31.15

31.2

31.25

31.3

31.35

31.4

31.45

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Where clearly smoothing would be useful.

20

We can then execute our algorithm, with say, the smoothing parameter p = 1/100 and using the trape-
zoidal rule:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

31.05

31.1

31.15

31.2

31.25

31.3

31.35

31.4

31.45

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/100

Which clearly smoothes the data and thus illustrates that the method does what it is supposed to do.

21

We can then try by imagining we don’t know the data between two points, so that it would be an interval
with w(x) = 0, say between the 300th and 600th point (i.e. between ≈ 1.25 minutes and ≈ 2.5 minutes):

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

30.8

30.9

31

31.1

31.2

31.3

31.4

31.5

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/100

We can also show it easily keeps the result smooth even for more than two subintervals, say we don’t know
the data between the 150th and 200th point, the 300th and the 350th point, and the 750th and 800th point
(respectively ≈ 0.62 minutes, ≈ 0.82 minutes, ≈ 1.25 minutes, ≈ 1.45 minutes, ≈ 3.12 minutes, and ≈ 3.32
minutes):

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

30.9

31

31.1

31.2

31.3

31.4

31.5

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/100

22

There are, however, issues with this method, which are due to the integrals of 3.16 containing exponential
functions of αx, hence, for an αx high enough (if we increase x and/or lower p), the solution starts to diverge
and completely, after a while, becomes too big to be even computed by MATLAB.
If we were to take, for the same interval, p = 1/1000 (and w(x) = 1 on the entire interval):

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

30.5

30.6

30.7

30.8

30.9

31

31.1

31.2

31.3

31.4

31.5

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/1000

Which clearly diverges at the end due to an αx too high. For even smaller p we get:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

-2

-1

0

1

2

3

4

5

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

1010 Smoothing with p=1/10000

The reason why we limited the dataset to the first 1000 points is actually because, even for p = 1/100,
which smoothes a bit too much, as shown on a previous graph, the divergence stems quickly from the
increasing x.

23

The entire dataset looks like this:

0 20 40 60 80 100 120 140

minutes

30

30.5

31

31.5

32

32.5

33

33.5

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

And the algorithm with p = 1/100 gives:

0 20 40 60 80 100 120 140

minutes

-8

-6

-4

-2

0

2

4

6

8

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

10233 Smoothing with p=1/100

24

Or, alternatively, with a logarithmic scale:

0 20 40 60 80 100 120 140

minutes

10-50

100

1050

10100

10150

10200

10250

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/100 with a logarithmic graph

Which clearly shows the exponential growth induced by the method.
So, although the algorithm might work nicely on such large intervals with symbolically computed integrals,
here, with numerical data, we need to find another method so as to get a result that doesn’t diverge.

25

4.3 Boundary Value Problem Solver

MATLAB gives us a method to solve boundary value problems directly, giving it boundary conditions and
interpolating from both sides so as to stop the solution from diverging, detailed in [11].
This algorithm solves first order systems of ODEs

y′ = f(x, y, p), a ≤ x ≤ b, (4.7)

subject to two-point boundary conditions

g(y(a), y(b), p) = 0. (4.8)

Which depends on a vector p of unknown parameters.
We assume f(x, y, p) and g(u, v, p) are as smooth as necessary, with in particular f being continuous and
satisfying a Lipschitz condition in y. The method implemented is equivalent to the Simpson method, adjoined
with a way to control for residuals, which is what should stop the result from diverging as much as before.
Applying this method gives us good results, which we can first show for a smooth function such as sin(x):

0 5 10 15 20 25 30 35 40 45
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Smoothing with p=1/1000

y = sin(x)

y = y*(x)

26

We can now apply this method to our data, with the same 1000 first data points as before:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

31.05

31.1

31.15

31.2

31.25

31.3

31.35

31.4

31.45

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/1000

which is quite clearly way more stable than the former method, which gave us this result:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

30.5

30.6

30.7

30.8

30.9

31

31.1

31.2

31.3

31.4

31.5

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/1000

27

We can now increase the smoothing by decreasing p as wanted:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

31.05

31.1

31.15

31.2

31.25

31.3

31.35

31.4

31.45

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/10000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

minutes

31.05

31.1

31.15

31.2

31.25

31.3

31.35

31.4

31.45

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/100000

28

We can also easily apply the algorithm to the entire interval on the dataset:

0 20 40 60 80 100 120 140

minutes

30

30.5

31

31.5

32

32.5

33

33.5

te
m

p
e
ra

tu
re

 (
d
e
g
re

e
s
 C

e
ls

iu
s
)

Smoothing with p=1/100000

29

Chapter 5

Discussion and Future Work

We managed to find that there’s a way to use continuous data in smoothing methods, and that it works
as expected. The algorithm implementation is flawed, however, due to a tendency to diverge. The next
step to take would be to apply the method the solver bvp4c integrated to MATLAB uses to stop it from
diverging as much, as the boundary conditions are enforced at several points throughout the interval - other
solvers in MATLAB did not fare better than our implementation - and thus we would be able to apply the
implementation to several intervals as intended.
Another thing to investigate would be, if one could find data that is already given as a function and not
numerical data that has to be interpreted as such, how the method behaves solving the smoothing problem
symbolically - but that is not something that would happen with the current knowledge we have.

30

Bibliography

[1] Magnus Egerstedt and Clyde Martin. Control Theoretic Splines. Princeton University Press, 2010.

[2] William E. Boyce and Richard C. DiPrima. Elementary Differential Equations and Boundary Value
Problems. John Wiley & Sons, Inc., 2001.

[3] Jürgen Jost and Xianqing Li-Jost. Calculus of Variations. Cambridge University Press, 1998.

[4] Magnus R. Hestenes. Calculus of Variations and Optimal Control Theory John Wiley & Sons, Inc., 1966.

[5] Maurizio Brunetti. Old and New Proofs of Cramer’s Rule HIKARI Ltd, 2014.

[6] Bernard Dacorogna. Introduction to the Calculus of Variations Imperial College Press, 2004.

[7] Kendall E. Atkinson. An Introduction to Numerical Analysis John Wiley & Sons, Inc., 1989.

[8] R. Courant and D. Hilbert. Methods of Mathematical Physics John Wiley & Sons, Inc., 1989.

[9] Markus Grasmair. Basic Properties of Convex Functions Department of Mathematics, Norwegian Uni-
versity of Science and Technology.
https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf

[10] Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger and Kristof Van Laerhoven.
Introducing WESAD, a multimodal dataset for Wearable Stress and Affect Detection
ICMI ’18 Proceedings of the 20th ACM International Conference on Multimodal Interaction, 2018.

[11] Jacek Kierzenka & Lawrence F. Shampine.
A BVP Solver Based on Residual Control and the MATLAB PSE
ACM Transactions on Mathematical Software, Vol. 27, No. 3, September 2001.

31

https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf

Master’s Theses in Mathematical Sciences 2020:E85
ISSN 1404-6342

LUNFMA-3122-2020
Mathematics

Centre for Mathematical Sciences
Lund University

Box 118, SE-221 00 Lund, Sweden
http://www.maths.lth.se/

	Introduction
	Introduction to the Mathematical Concepts
	Notation
	Smoothing splines

	Curve Fitting and Minimization
	Finding the ODE
	Finding the solution to the ODE
	Boundary Conditions
	Fixed Boundary Conditions
	Free Boundary Conditions
	Periodic Boundary Conditions
	Fitting Subintervals

	Numerical Methods
	Numerical Integration
	Trapezoidal Rule
	Simpson's Rule

	Implementation
	Boundary Value Problem Solver

	Discussion and Future Work

