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ABSTRACT 
 
The profile of “trees worthy of trees worthy of protection” (in Swedish “särskilt 

skyddsvärda träd”) sketched by field biologists shows that they usually have an age 

over 100 years, belong to certain species (usually oak) and present favourable 

intrinsic conditions for developing a micro fauna. Because of the high diversity of 

species hosted, “trees worthy of protection” are a vital element for maintaining the 

biodiversity of Sweden, which has been the aim of the Green Infrastructure project, 

conjoining some Swedish public authorities. Finding these tree specimens through 

fieldwork has proven to be a lengthy and costly work. Therefore conceiving a semi-

automated procedure to help locating and extracting these tree specimens through 

remote sensing techniques has been a recurrent discussion topic for scientists and 

practitioners. This thesis attempts to find an adequate methodology to resolve the 

issue of locating “trees worthy of protection” (TWP) by using segmentation 

algorithms present in the eCognition software, applied to surface elevation data 

processed from airborne LiDAR and optical NIR data (aerial photographs) for an area 

located in Scania County, Southern Sweden. Thirteen experiments based on the multi-

resolution segmentation procedure available in the eCognition software show how 

changes in the algorithm settings have effects on the performance of deciduous tree 

recognition. Each experiment’s detection accuracy has been assessed and it was 

concluded that tests which include additional segmentations than multiresolution 

segmentation yield more accurate results.  The outcomes from the tests show that 

additional optical data and possibly forest competition modelling are necessary to  

ameliorate the detection of trees worthy of protection. Recommendations for future 

research are given at the end of the thesis. 

    

Keywords: segmentation, individual tree crown recognition, eCognition, Scania 
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1. INTRODUCTION 
 
The Green Infrastructure Project, coined by the Swedish Environmental Protection Agency 
(in Swedish: Naturvårdsverket) intends to create a network of natural corridors that would 
enable species to spread and move in the landscape (Länsstyrelsen 2020;  Naturvårdsverket 
2020a). The project work consists of actions aimed to protect, keep and restore important 
ecosystems in the country. The creation of natural corridors would enable ecosystems to 
enrich their number of species, have better post-disturbance recovery and improved 
responsiveness to environment modifications, such as climate change. In collaboration with 
actors such as regional county boards, municipalities, private companies, institutions and 
organisations, Naturvårdsverket intends to make the concept of green infrastructure more 
familiar and understandable and in the same time integrate it in the process of community 
planning. Among the participants, the Administrative County Board of Scania (in Swedish: 
Länsstyrelsen) with a coordinating role in the Green Infrastructure Project, has elaborated a 
field research procedure to identify ecosystems that might be included in the future Green 
Infrastructure networks and require protection. 
An ecosystem, understood as an area of interaction between biotic systems and their physical 
support (Chapin III et al. 2011), contains many living elements, which play an important role 
in preserving the ecological diversity. In the ecosystems of Scania, trees have been recognized 
as one of those elements, and Länsstyrelsen has begun assessing them for protection. 
Parameters such as species, age and the amount of distinct entomofauna that use them as 
shelter or source of nutrients have been used as references. 
 

1.1. Problem: how to identify the “trees worthy of protection”? 
 

The biologists working for Länsstyrelsen have initiated a region wide search in Scania using 
some pilot working areas and identified a number of possible candidate trees which they 
labelled as “tree worthy of protection (in Swedish: “särskilt skyddsvärda träd”). This picture 
of a tree worthy of protection (TWP) is sketched by Naturvårdsverket (Naturvårdsverket 
2020b), which classifies them in 3 distinct categories: “giant trees” (in Swedish “jätteträd”), 
“very old trees” (in Swedish “mycket gamla träd”) and “thick hollow trees” (in Swedish: 
“grova hålträd”). The first category includes living or dead trees that are thicker than 1 m in 
the narrowest part of their measured diameter at breast height (DBH). The second class 
consists of living or dead trees between 140-200 years old, depending on species. To be 
“worthy of protection” the species of oak, pine, spruce or beech must have an age of 
minimum 200 years, with much smaller values for other tree species (140 years). Field 
campaigns carried out by biologists from Scania were able to confirm and simultaneously 
bring in additional details to the earlier description from Naturvårdsverket. Their observations 
identified suitable individuals as usually being old oaks, with wide trunks, a crown developed 
more in width than in height, thus not located in the dominating (highest) forest layer and 
generally over 15 m. 
 
As regards their positioning within the ecosystem, the TWPs, are located either isolated on 
pastures and open meadows or in forests among other tree species. When such a candidate 
tree was found, a field research crew assigned by Länsstyrelsen registered the tree’s 
approximate positioning using a GPS (Global Positioning System) device. The obtained 
coordinate pairs were then exported to a GIS (Geographical Information System) database as 
a point object. However, considering the fact that candidate tree research for the Green 
Infrastructure project aims to extend to all of Scania (14.000 km2), this work would take a 
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high amount of time and require elevated costs. Therefore, the authorities felt the need of 
implementing a possibly quicker, computer-based solution to distinguish possible TWPs by 
crowns, and they requested help from Lund University. The research work was divided in 
such a way that the members of the assigned team would take a pilot plot in Scania, where the 
presence of potentially worthy trees has been confirmed and are used to test a semi-automatic 
recognition methodology.  
 

1.2. Research gaps 
 
Semi-automatic tree crown identification is a recurring problem in remote sensing and it 
creates difficulties for both the forestry practitioners and academics because of the high 
variability of the natural environments that host tree individuals. 
For example factors such as forest and terrain morphology have been indicated by several 
research teams (Kaartinen et al. 2012;  Zhen et al. 2016) as hinders for the discovery of a 
universal digital solution to discriminate individual trees. Their conclusion is echoed by other 
scholars who expand the list of possible obstacles in finding a global solution with features 
such as tree density (Oono et al. 2008), (Kaartinen et al. 2012;  Shataee 2013) and dominant 
species (Shataee 2013;  Zawawi et al. 2015). 
The lack of a “one size fits all” type of resolution has constrained scientists to adapt their 
research methodology to the environmental characteristics of each investigated region. The 
high diversity of forest environments on Earth and the limited amount of literature that treats 
trees located in different regions left quite a wide knowledge gap about effective ways for 
individual tree crown recognition throughout the world. Many successful attempts in semi-
automatic tree crown delineation have been probed on uniform conifer forests (Zhen et al. 
2016). The study of Hyyppä et al. (2001) used 3D LiDAR data managed to accurately 
recognize individual trees and measure the stem volume of a Finnish forest.  
One year later, a greater achievement is obtained in Sweden (in the region of Västra 

Götaland) by the study of Persson et al. (2002), which managed to detect individual trees 
from laser scanner data using the local extrema algorithm on forested areas, where the most 
common species were spruce and pine. Erikson (2004) implemented different region growing 
algorithms to recognize tree crowns in two Swedish test sites located in Västernorrland 
county (Huljen) and Västra Götaland (Remmingstorp), respectively. However, these plots are 
also dominated by conifer trees. A nearby location to Remmingstorp was also used by a new 
study by Holmgren and Lindberg (2019), who introduced a new tree crown delineation 
algorithm based on tree crown density,  which was applied on ALS  (Airborne Laser 
Scanning) data. According to Lundmark (1986), the national territory of Sweden is divided 
into 5 vegetation areas (figure 1).  
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Figure 1. The vegetation regions in Sweden. Adapted from Skogsmarkens ekologi, ståndortsanpassad 
skogsbruk. Del 1 -Grunder (p.20) by J.-E. Lundmark (1986), copyright 1986 by Skogsstyrelsen 

The first two categories, mountain region, the mountain birch region, can be geographically 
placed in the north-western parts of Sweden on the slopes of the Scandinavian Mountains. In 
a southerly and south-easterly direction, these vegetation associations are continued by the 
north and south conifer forest zones. The last one mentioned covers a vast area that starts in 
the historic region of Småland and up to the latitude of Stockholm and Uppsala. Lastly, the 
southern deciduous forest region follows a narrow stretch of land parallel to the country’s 
western coast, starting somewhere south of Strömstad in Bohuslän and covers the territorial 
extent of Scania. As discussed above, many of the crown delineation attempts have been 
tested at latitudes higher than the one of Scania, and therefore it can be concluded that there 
are few studies dealing specifically with tree crown identification in a deciduous forest 
context. As per the author’s knowledge, no studies attempting to identify tree crowns had the 
specifically the Scanian context in the spotlight. 
The experts working for the Administrative County Board of Scania reveal in their fieldwork 
a possible relation between the status of trees worthy of protection and parameters such as 
height and species. Because of the airborne LiDAR data’s high accuracy, when measuring 
elevations due to its advanced GNSS (Global Navigation Satellite System)-IMU (Inertial 
Measurement Unit) system and its continuously descending price, the technology has been 
more intensively put in practice by forest researchers in the modern times. The tendency is 
revealed by the comprehensive study conducted by Zhen et al. (2016), which analysed 212 
research papers written between 1990 and 2015 and underlined the ascending trend of using 
this kind of data alone or alongside optical data collected with the help of satellites or airborne 
platforms. As per the author’s knowledge, no forest studies involving LiDAR data have been 
conducted in Scania up to date (May 2020). This leaves a great research opportunity. 
 

1.3. Research objective and questions  
 
The aim of the current thesis is to test whether it is possible to accurately pinpoint the crowns 
of deciduous trees using LiDAR and aerial photography based segmentation in the chosen 
study area. The choice of the aim is grounded in the special conditions imposed by 
Länsstyrelsen that have to be fulfilled by the protection candidate trees and the scarcity of 
forestry studies concerning the zone allotted to the current research. A further motivation for 
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the purpose of thesis is the possibility of using semi-automatic recognition on deciduous trees, 
a less researched subject in the academia. 
As mentioned by Blaschke (2010), contemporary forest research trends tend to use the 
cconcept of GEOBIA - Geographical Object Based Image Analysis,  (Hay and Castilla 2008) 
based methods gravitating around the eCognition package and this paper aspires to keep up 
with the latest in technology. Included in the eCognition software are many segmentation 
algorithms that assist the end-user with object recognition. Among these, the multi-resolution 
segmentation is an iterative algorithm that uses weights applied to spatial (shape size) and 
optical (pixels) parameters to calculate the optimal solutions that has the lowest variance 
within the members of a segment and highest between segments. Multi-resolution 
segmentation has not been tested as segmentation method in a south Swedish context (May 
2020), despite its promising potential. 
 
In effect, the research question is which is the most effective multi-resolution segmentation-
based methodology to delimit trees worthy of protection crowns in the Dubbarp study area 
using LiDAR and optical data?  
To accurately answer this question, it is necessary to take a deeper look at the available 
datasets that describe the area as well as to evaluate the tools that are used to get the job done. 
This is achieved by conducting a number of experiments using different parameter values and 
rulesets that start with a Multi-resolution segmentation processing. 
 

1.4. Thesis structure 
 
This thesis is the result of the search for an adequate solution with the purpose of identifying 
candidate trees within the frame of the Green Infrastructure project (Naturvårdsverket 2020a). 
It starts with a short historical review of studies concerning methodologies related to tree 
crown identification in the science of forestry (II), describes in detail the study area, argues 
the choice of method, presents its main drawbacks (III), illustrates the research results (IV) 
and discusses the obtained outcome (V). The work concludes with a chapter which wraps up 
the current study and presents perspectives for future investigations (VI). 
 

 

 

 

 

 

 

 

 

 

 

 

 



  5 
 

2. BACKGROUND 
 

2.1. The beginnings: From manual work to satellite based remote 
sensing in forestry 

 
Historically, data collection aiming to assess tree characteristics such as diameter at breast 
height (DBH), age and species composition, crown height and width, or wood volume, has 
been carried out manually through field work executed by specialists (Kaartinen et al. 2012). 
This was a lengthy and cost-demanding process (Kaartinen et al. 2012). In some cases, in 
forests and where it was necessary to cover a greater area, teams equipped with instruments 
provided by different manufacturers were assigned to subtract forest parameters and the 
resulting output data required some sort of standardization. In other cases, accessibility was a 
factor that extended even more the time required to execute the fieldwork. The situations 
described above accelerated the need for developing higher accuracy tools and procedures. To 
respond to the recurrent time issue caused by manual work, researchers used photogrammetry 
to establish forest parameters. However, the number of early studies (prior to the late 1970s) 
is reduced because of technological limitations such as camera resolutions, low computer 
processing power and difficulty of accurately establishing flightpaths (see more in section 
2.2). The launch of the first satellite for civilian use, Landsat 1, in 1972, marked a new era in 
the field of remote sensing (Iverson et al. 1989). The possibility of satellite imagery to 
provide a constant high-resolution picture of Earth’s surface alongside with the bettering of 
existent computer systems lead to a new direction in forestry remote sensing science based on 
analysing such data. The comprehensive review of Holmgren and Thuresson (1998), with the 
objective of assessing satellite-based applications of remote sensing in forestry 25 years back 
from the publishing date of the study, classified two main directions of research - forest 
inventory and monitoring. The discipline of forest inventory was identified by Holmgren and 
Thuresson (1998) as having a significant cartographic loading, with many papers concentrated 
on discriminating land use-land cover categories based on satellite imagery. From a 
methodological standpoint, early research was dominated by the implementation of pixel-by-
pixel algorithms, using techniques such as supervised and unsupervised classification. From a 
technological perspective, satellite remote sensing was a step forward in providing forest 
managers and public servants with very precise data concerning the parameters of individual 
trees. Identified issues such as elevated costs for high resolution imagery, the uncertainty of 
data availability at regular time intervals (Chuvieco 2016) due to e.g. the presence of clouds 
(Holmgren and Thuresson 1998), necessity of atmospheric correction, the need for narrower 
bandwidths for processing smaller identifiable objects, as well as the requirement for 
additional data to calculate the underlying terrain elevations (Fleming and Hoffer 1979;  
Franklin 1986) made the scholars look for alternative solutions. 
 

2.2. A new tool becomes available: LiDAR  
 
The 1980s mark a bettering and a widespread usage of technologies such as Light Detection 
and Ranging (LiDAR). A simple LiDAR construction consists of a laser scanning instrument 
which can be located on the ground or airborne, which emits pulses of radiation located 
usually in the near-infrared spectrum. These pulses subsequently bounce off targets and then 
are read by a receiver, also part of the system (Nelson et al. 1984). Modern LiDAR airborne 
systems are provided with an Inertial Measuring Unit (IMU), Global Navigational Satellite 
System (GNSS), which help them produce data with higher geographic accuracy (Hyyppä et 
al. 2008). The outputs of a LiDAR system come in form of 3D point clouds. With early 
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prototypes and applications since the late 1960s, LiDAR was mainly used as a data collection 
utensil in projects connecting to land surveying, ice sheet and oil spill monitoring (Nelson 
2013). According to the same author, it was during a Russian scientific experiment conducted 
by Solodukhin near St. Petersburg in 1979 that LiDAR was recognized as a promising tool in 
forestry for automated forest canopy delineation and individual tree identification. A 
pioneering study (Nelson et al. 1984) used LiDAR technology to assess damage produced by 
the gypsy moth to a forest located in Pennsylvania and resulted in establishing that LiDAR 
data is very accurate for determining forest parameters such as tree height and canopy 
structure. However, the major drawback of the earlier setups (the one from the 1984 study 
included) consisted of not having a way to accurately monitor the location and direction of 
flight of the aircraft (Schreier et al. 1985). This limited the usability of the tool until the 
addition of GPS unit to the system. When the LiDAR usage, functionality and characteristics 
became more understood and the problem of accurately estimating the flight path, aircraft 
position at a certain point in time and elevation of the system bearing aircraft was solved, the 
science community turned its attention to putting this promising tool to work. A review 
conducted by Zhen et al. (2016) identifies from the 2000s an increasing interest of the forest 
scientists for using LiDAR technology in their pursuit of detecting individual tree crowns. 
However, in many studies such as the ones of Tiede and Hoffmann (2006), Maltamo et al. 
(2007), Heurich (2008), Oono et al. (2008), LiDAR data is used only as an ancillary source to 
produce elevation data. Scholars point out the necessity of combining elevation data with 
optical data from aerial surveys and satellites in order to capture parameters which contribute 
to more exact individual tree detection. These data sources have been processed using 
different segmentation algorithms to produce spatial objects that were subject to further 
analysis. More about the creation and analysis of these objects, known as object oriented 
classification in the next section. 
 

2.3. Object-oriented classification 
 

Object-oriented classification was developed in 1976 through the study of Kettig & 
Landgrebe. This new approach based on the statistical similarity between groups of pixels to 
produce homogenous elements showed more accurate results than the traditional pixel related 
techniques while classifying remote sensing imagery (Kettig and Landgrebe 1976). In spite of 
all its data processing advantages including an equal weighting of both the spatial and the 
spectral component leading to an increased geographic weighting, the object oriented 
classification system was not embraced by the majority of contemporary researchers 
(Holmgren and Thuresson 1998). Yet a new era in began in the 2000s when image 
segmentation analysis receives a broader attention from other fields of research such as 
remote sensing (Blaschke 2010;  Chen et al. 2018), considering that prior to 1976, 
segmentation techniques were only restricted to the field of computer science. With the 
galloping advancement of computer graphic memory storage and processing power (I), the 
availability of very high resolution imagery (II), creation of specific software encompassing 
object-based algorithms for remote sensing (III) and some inherent shortcomings of the 
classic pixel-based data processing such as the less weight given to the spatial component 
(Hay and Castilla 2008;  Blaschke 2010), segmentation analysis has quickly attracted the 
consideration of the academic community. The “explosion” of object-oriented studies in the 
discipline of remote sensing at the expense of the “classical” pixel based methodologies is 
reflected by the consistent study of Blaschke (2010), who reviews more than 1000 different 
papers on the subject. The same author mentions a possible naming dispute of the technology 
with OBIA (Object Based Image Analysis) and GEOBIA (Geographic Object Image 
Analysis) competing for the most accurate description. Considering that OBIA is more widely 
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used in disciplines such as computer vision and medicine (Blaschke 2010), this thesis 
supports the usage of the term GEOBIA (Hay and Castilla 2008) as a viable descriptor of 
segmentation techniques in a spatial context. 
In the field of forestry and more specifically in the researches connected to delineating 
individual tree crowns, the modern GEOBIA approach became quickly the new trend (Zhen et 
al. 2016) . Concomitantly with an ever growing literature covering the subject, increases the 
variety of used algorithms. Indeed, segmentation analysis can be done in different ways 
depending on the available data and type of study region. For example, the study of Bunting 
and Lucas (2006) uses the Multi-resolution segmentation algorithm to define forest areas and 
then calculates the local maxima from an elevation model to detect the possible treetops.  
From these tops, a region growing algorithm is applied to better distinguish the forest 
elements. The experiment resulted in recognizing the individual trees in the Australian forest 
with relative success (70% of the individual trees mapped). A methodology based on 
identification of the local maxima and applying a  region growing algorithm  have been also 
employed by Tiede and Hoffmann (2006) in their attempt to find individual tree crowns in a 
Bavarian forest composed of mixed coniferous and deciduous species. Nevertheless, the 
authors note, this algorithm fails to produce adequate results when the tree crown is not 
pointy, such as for the case of the coniferous trees. Two years later comes the research of 
Heurich (2008),  who was aiming to produce a detailed map of the individual trees in the 
Bavarian Forest National Park, as to be able to evaluate the wood volume. The author used 
the watershed delineation algorithm, which processes on the elevation model data. The 
elevation values of the model are inverted and thus a “digital negative landform” is obtained. 
This negative landform, which in practice is an identified tree, is subsequently “flooded”. 
Thereafter it is “dammed” by using special algorithms in order not to “spill the water” and 
reach other basins. The rationale behind the damming operation is to increase tree recognition 
accuracy. 
 
This classification produced good results; nonetheless problems such as the difficulty of 
correctly identifying the deciduous trees and an overestimation of the 5.4% of the number of 
trees could not be resolved. Unconvinced of the accuracy provided by the classical methods 
involving the calculation of a Digital Surface Model, a Japanese research team, led by Oono 
devised a new strategy.  
The Crown Shape Index was, according to the authors, a new way of identifying tree crowns 
based on calculating the Canopy Height Model. 
Its five step calculation method is presented below: 
 

a) Calculate a 0.5 m Canopy Elevation Model from the Triangular Irregular Network 
(TIN) obtained from the points of the LiDAR data. 

b) Calculate an angle (“phi 1”), known as the “upper open degree” (Oono, Numata et al.)  
between a vertical line and a line starting from each grid point and touching the crown 
surface 

c) Obtain an angle (“phi 2), with the name “lower open degree” (Oono, Numata et al.)  
d) Compute an angle “phi3” by halving the difference between “phi1” and “phi2”, thus 

obtaining such angles in all the 8 directions surrounding of the current cell 
e) The Crown Shape Index was estimated by averaging the resulting phi3 angles  

The object of identification was cedar trees belonging to the species Cryptomeria japonica. 
The results showed that in a low density forest, this method was able to identify up to 80-90% 
of the trees, and decreased up to 10-20% in higher density stands. 
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On Swedish land, notable are the studies of Persson et al. (2002), Erikson (2004) and 
Holmgren and Lindberg (2019). They worked mainly on stands dominated by conifer forests 
(see the Introduction chapter) and apply a wide variety of algorithms from the classical 
watershed segmentation to the innovative Brownian motion, random walk and fuzzy rule-
based (for more details see (Erikson 2004)). For the case of Erikson’s work, the results are 
displayed as a method comparison sequence, subject to several trials on the Remmingstorp 
test site. Segments that cover more than 50% of manually delineated tree are judged as a 
correct representation by the authors. Having this in mind,  shows that the applied 
methodologies (fuzzy logic, Brownian motion and random) yielded at least 80% of correct 
tree crown identifications. However, the percentage of identified trees is not treated species 
wise, so it is difficult to conclude whether the proposed methodologies would work the same 
for the case of a deciduous forest. Holmgren and Lindberg (2019) choose also Remmingstorp 
as a test location for their new automatic tree recognition algorithm. The algorithm is based 
on the watershed segmentation method applied on a density model resulting from 3D ALS 
(Airborne Laser Scanner) data. Results show an individual tree recognition percentage lying 
between 40-97% for a selection of 36 study plots chosen in the area. There is no exact species 
information about the tree species structure of the validation plots. All the information given 
in the beginning is that Remmingtorp is an area “dominated by Norway Spruce” (Holmgren 
and Lindberg 2019, p.1145). That makes it difficult to assess the success of the method for 
deciduous trees, specifically. 
To sum up, the work of the local (Swedish) research teams in the direction of accurately 
identifying tree crowns has recorded wonderful progress, but the issue of  focusing only on 
identifying deciduous tree crowns still remains a problem that requires further testing. 
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3. METHODOLOGY 
 
This chapter starts by providing a short geographical description of the study area. Next the 
reader shall be informed about the field data collection. Then information about the available 
digital data and the project workflow is presented.  
 

3.1. Study area  
 
The research area is located in southern Sweden, in the region of Scania, on the territory of 
Osby municipality, on the eastern shores of Lake Osby (in Swedish Osbysjön, nearby the 
hamlet of Dubbarp). It covers an area of 6.25 km2.The underlying terrain is partially hilly, 
with elevations that range between 65.7 and 106.8 m (based on RH2000 elevation system). 
The general orientation of the slopes is NE-SW, with the lower elevations oriented towards 
the shores of the lake and those of Helge river. The highest elevations correspond to the point 
called Klinten (Lantmäteriet 2020), located NE of the hamlet of Ebbarp. The local land cover 
includes forests of conifers and conifers mixed with deciduous trees. Isolated trees located 
next to farmland and neighbouring the main water body have been also identified. A 
patchwork of agricultural lands and pastures can be noted adjacent to farms and localities. 
(Figure 2). Considering the local conditions, the study area has been divided into 2 zones. The 
first zone is located towards the northern end and adjacent to Lake Osby (Ebbarp-Osbysjön). 
The second is located in the south, and covers among other the Näset nature reserve (Näset). 
While in the first area, trees are either isolated, easy to identify or adjacent to agricultural 
land, in the Näset zone, they are located in a dense forest covering a wetland. Based on earlier 
pilot field examination, the whole research zone has been described by Länsstyrelsen as a 
possible location for tree candidates that might be listed as protected. The brief terrain 
investigations undertaken by the same institution in collaboration with experts from the 
Swedish Agricultural Science University (SLU) revealed the presence of old deciduous trees 
higher than 15 m that host important elements of entomofauna and fit as protection 
candidates. Examples of some of the identified candidate trees are shown in figure 3.
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Figure 2. Overview map of the study area (Sweden’s outline and Osby municipality map ©Statistiska centralbyrån Digitala gränser + Background: Ortofoto färg  0.5 m (2010) © Lantmäteriet + © Openstreetmap contributors
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Figure 3. Collage of some field identified TWPs. All of them are oaks. Author’s  
picture 
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3.2.  Field observations and data processing 
 
In order to better establish what a tree worthy of protection is and discover potential candidate 
trees, it has been decided to undertake a field study together with experts from SLU and the 
Administrative County board. During this field study, all of the trees worthy of protection in 
the area have been identified and photographed with a phone that had GPS location enabled. 
Having location information turned on while photographing leads to saving of the geographic 
coordinates where the picture was taken. These coordinates can be retrieved from the 
metadata associated with a photograph. This metadata is known under the technical name of 
Exchangeable Image File Format (EXIF) data. For this research, the approximate coordinates 
of each tree trunk have been extracted using an EXIF data reader available online (Exif-
viewer.com 2020). Subsequently these coordinates were plotted on map in ArcGIS. The 
geographic locations as well as measuring the crown diameter and height of identified tree 
candidates were carried out during a later field visit. The measuring method employed for 
crown diameter determination consisted of calculating the distance between the widest and 
the narrowest diameters of the crown and then dividing them by 2. These distances were 
perpendicular and their metrics were obtained by placing a measuring tape on the ground at 
the point where the projection of the widest and narrowest crown points on the ground (figure 
4). 

 
 
 
 
 
 
 
 

Figure 4.The methodology 
used for measuring the 

average crown diameter of a 
single tree 

 
 
 
 
 
 
 
 

 
A SUUNTO® PM-5/360PC clinometer was used to determine the heights of the candidate 
trees (figure 5). Considering the low slope of the research area, all the trees were measured 
using the slope percentage method. This procedure consists of several steps. The first step 
was to find a position where the top of the tree to be measured could be clearly seen. 
Subsequently, the horizontal distance between the measurer’s position and the tree stem was 
measured (horizontal distance, HD). Thirdly, the clinometer was oriented towards the top of 
the tree and the slope percentage was read and noted on an agenda. This percentage was 
multiplied with HD to obtain the partial height (PH). The final step was to add the user’s 
eyeball height (measured as 1.65 m) to the resulting PH as to obtain the final tree height 
(Suunto 2020). 
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Figure 5. Approximating tree heights with 
the slope percentage method (own drawing) 

Each candidate tree was photographed 
and its approximate position was 
registered using a GPS device. 
Diameter data and height has been also 
attached to the GIS point layer 
depicting the tree location of tree 
crowns. For evaluation purposes (see 
more in the “Post-processing” section, 
a buffer based on the tree diameter 
values was applied on the point’s 
layer. 
 
 
 

 
3.3. GIS data 

 
For the segmentation trials, the following spatial data has been made available: 

• A LiDAR point cloud provided by Lantmäteriet. Details about its technical 
attributes are given in table 1. 
                          

Table 1. Technical aspects of the LiDAR data 

Parameter Value 

Date of acquisition 03.04.2010 

Sensor Leica ALS60 

Laser pulse rate 104100 Hz 

Field of view 40° 

Scan altitude 2248 m 

Average point density 0.56 points/ m2 

 

The LiDAR point cloud is already filtered and it registers up to 7 returns of each pulse 
(Lantmäteriet 2019). 
Simply put, a return is defined as a reading from an emitted laser signal that is bouncing off a 
surface. The number of returns is associated with the amount of reflective surfaces the laser 
pulse is bouncing off until reaching the LiDAR system’s reading unit. 
The first return depicts the highest objects encountered by the sensor. Such point data is used 
to generate the Digital Surface Model.  
In its path from the aircraft to the ground, the laser pulse hits natural features and artificial 
structures. The process of data filtration is necessary in order to make a clear distinction 
between e.g. vegetation, man-made structures and ground (Liu 2008). Filtration is carried out 
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using different algorithms. The fact that the data from Lantmäteriet is filtered can be 
translated as that it is already classified into different subgroups. For the current research, the 
point data that is described as “ground” is the cornerstone for constructing the Digital 
Elevation Model. 
 

• Near-infrared (NIR) aerial imagery composites of the research area, collected in 
two different years (2010 and 2018). These composites consist of 3 bands: Red, Green 
and NIR. The spatial resolution of the NIR imagery is 0.25 m. The oldest NIR 
photographs have been collected on the 2nd of June 2010, while the newest batch was 
collected on the 11th of April 2018. From a phenological standpoint, the photographs 
taken in April correspond to the “leaf-on” period of vegetation, while the winter 
photographs illustrate the “leaf-off” sequence. Using this advantage, an index called 
Near Infrared Difference (NIRDIF), which attempts to segregate between conifers and 
deciduous trees, has been crafted. The formula for calculating the index is displayed 
below: 
 

NIRDIF=NIR (Jun) – NIR (Apr) 

 
        
Table 2 describes some of the characteristics of the 2010 NIR imagery. 
 

 
Table 2. Image parameters for the "leaf-on" subset (NIR, 2010) 

Parameter Value 

Collection date 2.6.2010 13:17 – 14:56 

Camera Vexcel Ultra Cam XP 

Flight altitude 4.200 m 

Overlap between flight paths 60 % / 30% sideways 

Vertical error 0.30 m 

Error in plan 0.06 m 

 

Table 3 illustrates the values for the later 2018 NIR image set, based on the metadata 
provided by Swedish Land Survey Agency (Lantmäteriet). 
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Table 3. Image parameters for the "leaf-off" subset (NIR, 2018) 

Parameter Value 

Collection date 11.04.2018 

Camera Vexcel UCE-97 

Flight altitude 3.700 m 

Sun elevation 36.39 degrees 

Sun azimuth 218.81 degrees 

NIR wavelength 0.69 – 1.2 µm  

 

 

• A vector feature layer that includes the previously detected candidate trees available 
from earlier field work conducted by Länsstyrelsen. 
 

• Ancillary data such as municipal borders and the outline of Sweden, downloaded 
from The Swedish Statistics Office (SCB 2020). This data was mainly used as 
background information for the produced maps. 
 

3.4. Software used 
 
ArcMap 10.5 (ESRI, 2016) and eCognition Developer 9 (Trimble, 2019) was used for the 
current research. 

3.4.1. ArcMap 10.5 

One of the proprietary GIS software includes modules that can process vector and raster data, 
extract spatial statistics. 

3.4.2. eCognition Developer 9 

 
Trimble eCognition is software used to conduct object-oriented image analysis with 
applications in radiology and remote sensing (Schmidt et al. 2007) and it is built on the basis 
of Cognition Network Technology (CNT). Invented in 1996 by a German Nobel Physics Prize 
laureate, Gerd Binnig, CNT emulates “human cognition processes using knowledge based and 
context dependent processing”, (Schmidt, Hosrsch et al., p. 282), the rationale behind 
choosing the upper mentioned software its powerful ability to process spatial data using a 
wide variety of algorithms. Included in the package are, among other algorithms, multi-
resolution segmentation, local maxima, grow region and watershed segmentation, which were 
shown in the previous section of this thesis that have provided promising results in the 
attempts of isolating individual tree crowns. 
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3.5. Workflow 

3.5.1. Overview 

 
Encouraged by the positive results obtained by Erikson (2004), Holmgren and Lindberg 
(2019) on Swedish ground and the modern research trend of using GEOBIA (Chen et al. 
2018), this thesis also on using LiDAR data and image segmentation as focal employed 
technologies. The reason behind this choice is anchored in the fact that (a) previous research 
(Heurich 2008;  Kaartinen et al. 2012;  Holmgren and Lindberg 2019) have demonstrated that 
LiDAR point clouds are very accurate elevation indicators when measuring the canopy height 
and (b) the many algorithms included in the eCognition package offer an almost endless 
opportunity to compute solutions that might help with a correct identification of the trees 
worthy of protection that the Länsstyrelsen is looking to identify. 
 
The workflow consists of experiments that follow a simple two-step sequence, after a pre-
processing operation (figure 6). The first step is to pre-process the raw data. The second step 
is to produce the segmentation using methods and parameters that might differ from test to 
test. Note that in the following diagram the NIR values corresponding the leaf-on (June) and 
leaf-off (April)  phenological periods have been noted as Lon and Loff. Finally, the 
segmentation results are imported in ArcGIS for final post processing. Each of the steps is 
described in the following sections. 

 

Figure 6. Description of the main moments in data processing (thesis workflow) 

3.5.2. Raw data processing 

 
Considering the available datasets and the technical requirements for the project, the raw data 
processing consists of two different steps that were executed exclusively in ArcMap. 
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Based on theoretical support from previous research works (see for example Heurich (2008)), 
the first step is to process the LiDAR point cloud and obtain the CHM (Canopy Height 
Model), which shall serve as a segmentation element. 
Firstly, the LiDAR data is imported into ArcGIS using the built-in point cloud processing 
tools.  Subsequently it was projected using the SWEREF99 TM (EPSG: 3006) and RH2000 
for the z (elevation) values. Further, the points that were filtered firstly by return number and 
subsequently by category resulting in two distinct features. The first feature included only 
points classified as first return, while the latter’s constituents were points classified as 
“ground” by the data provider. Both of the resulting features were rasterized. The raster 
corresponding to the “first return” (thus the highest reflecting features) was used to compute 
the Digital Surface Model (DSM). The raster corresponding to the “ground” features was used 
to compute the Digital Elevation Model (DEM). 
 
In order to fill in for the missing values in the rasters, the Natural Neighbor interpolation 
method was used (Sibson 1981). This method, coined by Sibson in the early  1980s relies on 
constructing Voronoi polygons around all the points around the missing value. Then, a similar 
Voronoi polygon is constructed around the point that has the missing value and confronted 
with the previously created network of polygons.  
The influences of the neighbouring values on the value to be calculated are obtained by 
calculating weights based on the percentage of overlapping between the previously displayed 
Voronoi surfaces. The final value of the missing point shall be given by the weighted average 
of the values of the surrounding points. More detailed information about the method’s 
functionality can be found in Sibson (1981). After the interpolation operation was complete, 
the DSM and DEM rasters were resampled to a resolution of 0.5 m/pixel. The Canopy 
Surface Model (CHM) raster was obtained by subtracting the “ground” raster  (DEM) values 
from the digital surface model (DSM) raster. Values from this grid were subsequently used in 
the segmentation procedure.  
 
The second step is to produce an index that might help with species discrimination (NIRDIF). 
This assumption is enforced by studied literature, among others, Nagendra (2001), who 
suggests that the near-infrared radiation is a good species discriminator, and Axelsson et al. 
(2018)Axelsson et al. (2018) whose research points out that deciduous trees usually have a 
higher reflected near-infrared value than conifers.Before attempting to create the NIRDIF 
index, some preparation work was needed to be made. Processing of the infrared false colour 
composite imagery began with separation of the bands representing the NIR bandwidth. The 
operation was completed in ArcCatalog. 
 
The NIRDIF index was calculated by the difference between the “leaf-on” and the “leaf-off” 
digital numbers. The scientific support behind this mathematical operation is that during the 
cold (“leaf-off”) season the quantity of reflected NIR is lower in hardwood (deciduous) 
species compared to the summer “leaf-on” season.This happens because the absence of green 
leaves in the cold season, and thus due to lower water quantities in the leaves caused by the 
loss of leaves during the cold season (Axelsson 1993). Conifers maintain their foliage all year 
around and therefore greater differences in this index should be expected for the deciduous 
trees. NIRDIF values corresponding to conifers were considered the ones below 60. The 
NIRDIF layer was resampled from 0.25 m/pixel to 0.5 m/pixel to match with the CHM. 
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3.5.3. Segmentation  

 
The software chosen to operate the segmentation analysis was eCognition. The plan to find 
the best solution for identifying the TWPs through experiments based on variations of the 
multi-resolution segmentation algorithm parametrizations. The multi-resolution segmentation 
is a bottom-up approach algorithm included in the eCognition software. It starts by initially 
dividing the whole working area into one-pixel sized segments. Based on homogeneity rules 
defined by the user, the initial one-pixel segments gradually extend to include their 
neighbours, thus resulting in customized multi-pixel units. For the creation of the segments, 
the user can assign weights to the spatial or optical components that contribute to defining the 
homogeneity rule. The higher the value of the weight, the more importance the algorithm 
would give to a certain component. Furthermore, the user can also set the values for other 
characteristics that govern the segment formation such as Scale, Compactness/Smoothness 
and Shape/Color. 
 
The Scale parameter decides the size of the resulting segments. For example, a higher scale 
parameter value would result in a lower number of segments in the working area, in 
comparison with lower scale value, which would have the exact opposite effect in dividing the 
working area into segments. 
 
The values of the Compactness/Smoothness parameter work together in such a way that the 
sum of their weights equals 1. Modifying a value of the first one, would automatically 
influence the other. This parameter refers most probably to the intrinsic homogeneity of a 
segment. 
 
The values of the Shape/Color parameter work in tandem, similarly to the above described 
parameters. The greater the Shape parameter is, the less importance the algorithm would give 
to the Color value. The Shape parameter regulates the spatial homogeneity of the segments 
while Color governs the optical one. 
 
In the attempt to find the best solution for identifying deciduous trees, 14 experiments have 
been conducted. They were conceived to include a wide variety of multi-resolution 
segmentation algorithm parametrizations, aiming to best fit the processing requirements. The 
functionality of this procedure is described by Bar Massada et al. (2012): “[eCognition] uses a 
heuristic optimization procedure that locally minimizes the average heterogeneity of newly 
defined image objects for a given resolution” (Bar Massada et al. 2012, p.347). Multi-
resolution segmentation uses a weighing system for the input image datasets. In the 
experiments in this thesis (Table 3) different weight values have been applied to the 
segmentation components with the purpose of testing the effects of several variables on the 
object creation procedure. One experiment, T9 (see Table 4 for a detailed information on 
parameters used), is based on contrast split and watershed delineation segmentation 
techniques. This was done intentionally as to have a reference point, as per contrast split 
segmentation is a straight forward segmentation technique that considers only one parameter 
(the contrast difference - optical) between analysis objects. However, the multiresolution 
segmentation technique is based, as shown above, on several parameter values. 
 
Considering the available digital data and the targets of interest, creating objects that would 
satisfy the spatial (CHM) and radiometric (DN of near-infrared) conditions for these trees 
would become the rule of thumb. Similar experiments, showing the importance of elevation 
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and near-infrared reflectance in tree crown determination were conducted by several scholars 
(Kaartinen et al. 2012;  Axelsson et al. 2018). 
 
Usually the Multi-resolution segmentation results are assigned to classes based on their 
average CHM value. In the attempt of incorporating as many tree parts as possible, even the 
ones that are located in a lower canopy level (lower pixel values in the CHM raster), a 
reference height of 9 m has been chosen as the decisive threshold between “lower objects” in 
the forest and “possible trees of interest”. The reference height of 9 m was chosen after 
several trial and error attempts. This height was shown to include the upper canopy of the 
local forest and it was higher than any man made feature in the area. After running some 
segmentation experiments (see Table 2 for more details), it was necessary to develop a special 
“high pixels” feature layer because the results were not satisfactory enough. Hence a mask 
delineating areas of interest (“high pixels”) was created through composing a binary layer 
from the existing CHM (CHM_binary). The values greater than 9 m were reclassified as “1” 
while the lower elevations received “0” as value. 
 
Experiments T7A, T8 and T9 combine Multi-resolution with contrast split segmentation or 
watershed segmentation. The contrast split segmentation method uses the differentiation in 
spectral contrast between objects to classify them in “Dark” and “Bright” based on a 
“threshold value that maximizes the contrast between them” (Trimble, 2019). The threshold 
values chosen for the experiments were based on trial and error. This procedure was used in 
the attempt of adding subsequent forest pixels that were excluded by the Multi-resolution 
algorithm (1) and remove elevation holes (objects with elevations lower than 9m) from the 
already determined objects (2). As regards to watershed segmentation, the main rationale 
behind using this was to improve/refine the existing object creation, inspired by the fruitful 
test of Heurich (2008), who used this technique to highlight the crown form of different tree 
species.  
 
Some of the experiments have the same structure as the previous ones with only some of the 
parameter values changed based on the achieved result. The nomenclature of the experiments 
consists of the letter “T” (deriving from “test”) and an incrementing control number that starts 
at 1. Experiments that derive from previous ones without major structural changes (the same 
sequence but different parametrical values) have an adjacent letter in their denominations (e.g. 
T1A, for a parametrical rehash of a test that is morphologically based on T1). Table 4 
includes information about each carried experiment and gives a brief motivation for the 
choice of a method. Each experiment alongside its employed algorithms has been colour 
coded to ease the table readability. 
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Table 4.Technical description of the carried experiments presented step by step 

Experi-

ment 

Steps Parameters for each step Justification 

 

 

 

 

 

 

T1 

 

 

 

 

 

 

Multi-resolution 

segmentation 

 
NIRDIF:7, CHM:10, 

Scale: 30, 
Shape:0.5,Compactness:0.5 

The usage of Multi-resolution 
segmentation creates objects 
that are based on a statistical 
weighing of the given 
parameters 

 

Assign class “Possible 

trees” 

 
 
 
 

CHM > 9 

Deciduous trees have a broad 
extension in width. By 
choosing this elevation value 
it is hoped that some of the 
lower branches of the trees 
are also taken in 
consideration. At the same 
time, the eventuality of 
“fishing” other objects such 
as houses or a building is 
low. 

 

 

 

Grow region 

(expanding the seed 

object with 

neighbouring objects 

satisfying user defined 

criteria) 

 
 

CHM relative border to bright 
objects >10 on the “unclassified” 

category 

 
 
 
 
 
Trying to include as many 
other parts as possible from 
the trees as to be able to 
include as much tree 
information as possible 

 

T2 

Multi-resolution 
segmentation 

 
NIRDIF: 10 (weight), 

CHM: 7 (weight), 
Scale: 50, 
Shape:0.5, 

Compactness:0.5 
 

 
 
Reducing the influence of the 
height parameter in the 
statistical test and increasing 
the object size 

Assign class “possible 
trees” 

CHM > 9  

 
Grow region 

CHM relative border to bright 
objects >10 on the “unclassified” 
category (user defined condition) 
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T3A 
 

 

 

 

 
Multi-resolution 

segmentation 

 
NIRDIF: 7, 
CHM: 10, 
Scale: 70, 
Shape:0.5, 

Compactness:0.5 

Increased the size of the 
objects based on the obtained 

results. For more details 
please relate to the “Results” 

section. 

Assign class “possible 
trees” 

CHM >9  

 
Grow region 

CHM relative border to bright 
objects CHM >10 

(candidates: “unclassified”) 
 

 

 

 

T3BA 

 

Multi-resolution 
segmentation 

NIRDIF:10, 
CHM:7, 
Scale:30, 

Shape:0.5, 
Compactness:0.5 

Increased the weight of the 
near-infrared difference index 

as to increase the chance of 
capturing deciduous trees  

Assign class “possible 
trees” 

CHM >9 Assign class “possible trees” 

Grow region (candidates: “unclassified”)  

 

T3BB 

 

 

Multi-resolution 
segmentation 

NIRDIF:3, 
CHM:10, 
Scale:40, 

Shape:0.5, 
Compactness:0.5 

 

Based on the results of the 
previous test, the decision 

was taken to reduce the effect 
of the near-infrared index. 

Assign class “possible 
trees” 

CHM >9  

Grow region border to bright objects CHM >10 
(candidates: “unclassified”) 

Grow region 

T4 

 
Multi-resolution 

segmentation 

NIRDIF:10, 
CHM: 10, 
Scale: 40, 

Shape: 0.7, 
Compactness:0.3 

 

Assign class “possible 
trees” 

CHM >9  

T5 

 
Multi-resolution 

segmentation 

NIRDIF:10, 
CHM: 0, 
Scale:40, 

Shape:0.7, 
Compactness:0.3 

 

Assign class “possible 
trees” 

CHM >9  



22 
 

T6 

 
Multi-resolution 

segmentation 

NIRDIF:5, 
CHM_bin:10, 

CHM:10, 
Scale:40, 

Shape: 0.7, 
Compactness:0.3 

 

Assign class “possible 
trees” 

CHM >9  

 

T7 

 

Multi-resolution 
segmentation 

NIRDIF:5, 
CHM_bin:10, 

Scale:30, 
Shape:0.7, 

Compactness:0.3 

 

Assign class “possible 
trees” 

CHM >9  

 

 

 

 

T7A 

The initial logical 
sequence follows the 

exactly the 
parametrization 

described in the T7 
test (see T7) 

  

 
 

Contrast split 
segmentation  

 
 
 

Class: “possible trees”, 
Min: 0, 

Max: 255, 
Stepping :add, 

Layer: CHM_bin, 
Bright objects: “refined trees” 

 

Contrast split 
segmentation 

Dark objects: “Trash”, 
Contrast mode: edge ratio, 
Minimum object size:20 

Eliminate holes in the canopy 
and produce a more accurate 

tree segmentation 

 

 

T8 

(continues 

below ) 

 
 

Multi-resolution 
segmentation 

NIRDIF:5, 
CHM:10, 

CHM_bin:7, 
Scale: 30, 
Shape:0.6, 

Compactness:0.4 

 

Assign class “potential 
trees” 

CHM >9  
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T8 

 

 

 

 
Contrast split 
segmentation 

Class: “potential trees” 
Min:0, 

max:255, 
step:add, 

layer:CHM_bin, 
Bright objects: Trees, 
Dark objects: Holes, 

Contrast: object difference, 
Object size min: 20, 
Minimum contrast:5 

 

 
 
 
Trying to define objects that 
are finer, and adjust borders 

Watershed 
segmentation 

CHM based 
The layer was inverted 

Neighborhood: 8 

Previous research (see the 
Background chapter) shows 
that watershed segmentation 
based on elevation can be a 
good way to separate tree 

crowns. 
 

 

 

 

T9* 

(non Multi-

resolution 

segmentati

on based) 

 

 

 
 

Contrast split 
segmentation 

 
 
 

Layer: CHM_binary, 
Dark objects: Trash 

Bright objects: Possible trees 
Contrast mode: Object difference, 

Smallest object:20, 
Min contrast:5 

 

 

 

 

 

An attempt to firstly detach 
all of the holes in the layer 

from all of the canopy 
elements. 

 

 
 

Contrast split 
segmentation 

Layer: CHM 
Dark objects: Cr_parts, 

Bright objects: Tree tops, 
Contrast mode: edge 

Smallest object:1, 
Min contrast:5 

An additional contrast split 
segmentation based on CHM 
in order to possibly identify 

tree tops. 

 Watershed 
segmentation  
(intended but 
subsequently 

discarded) 

  
This step was intended but 
discarded at a later stage 

because of the poor results 
obtained during a pre-testing 

attempt 
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T10 

 
Based on the 

processing in T9 and 
assigning a class of 

“high objects” based 
on a processing where 

the CHM is greater 
than 9 

  
 

See the previous experiment 
for the data processing 

sequence 

 

Multi-resolution 
segmentation 

Layer: “high objects” 
CHM_bin: 0, 
NIRDIF:5, 
CHM: 10, 
Shape: 0.6, 

Compactness:0.4, 
Scale:30 

 
A try to segment the objects 
in the hoping to find the true 

shapes of the tree crowns 

T11 

Based on the results of 
T10 

  

Merge region 

Conditions: 
Border to high_trees >15px and 

Border to high_trees<30px 

This pixel values were 
chosen as a result of several 

trial and error attempts to 
find good values to merge the 

segments which were 
visually evaluated as 

belonging to the same tree. 
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3.5.4. Post-processing and evaluation 

 
The results of the eCognition segmentation were vector files depicting segmentation results. 
They were imported in ArcMap. From the visual interpretation of the objects results, some of 
the candidate trees (an alternative denomination for the “protection worthy trees”) in Dubbarp 
were identified and their centre was mapped using GPS coordinates (see the “Pre-processing” 
chapter).  
 
Each GPS point representing a tree recognized in the field was then buffered by a value 
corresponding to half the diameter calculated during the field measurements.  
The value of half of the diameter was chosen because of a technicality in ArcGIS. In detail, 
the “Buffer” algorithm embedded in the software was used and this procedure takes as “buffer 
distance” input a value corresponding to the radius of the circle surrounding the input point. 
Choosing the field calculated diameter as a buffer distance would result in trees with double 
width. Then, the buffered points depicting the trees were evaluated against the segments 
produced in eCognition. 
 
A visual analysis from overlaying the segments with the existing trees worthy of protection in 
the study zone (buffered points) has been produced for all the experiments as to test each 
one’s tree recognition accuracy. The procedure is described below.The method is reproduced 
from Erikson (2004), who tests segmentation results by evaluating their coverage against 
digitally measured tree crowns in a table. The table measures the amount of segments that 
cover a tree crown. This is summarized in a proportion having the form A:B (Erikson 2004), 
where “A” represents the crown and “B” the number of segments covering it.  The evaluation 
rejects segments that cover less than 50% of the identified trees and adds these results to a 
“missing” variable. The “missing” variable increases also when “a segment covers two or 
more reference segments” (Erikson 2004, p.31) -sic, in our case, reference segments depicts 
tree crowns. Correctly identified trees are counted when a segment is covering either more 
than 50% of the crown and less than 25% of another crown. 
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4. RESULTS 
 
The field observations carried out in Dubbarp identified a number of 32 trees worthy of 
protection, out of which 25 are oak; two are pine and one beech, birch and willow (described 
in detail in table 5). For exemplification, figure 7 shows tree #28.   From a position 
perspective, these trees can be found either isolated, adjacent to buildings, on pastures or 
farmland or in vegetal associations such as groves or forests. Two areas with a predominance 
of trees worthy of protection have been identified. The first one is located in the northern part 
of the study area, on a line oriented W-E, from the shores of the Osby lake towards the eastern 
edge of Ebbarp village and Ebbarps by nature reserve (named by the author Osbysjön-

Ebbarp). Here is where the most individuals have been identified. The second area is located 
towards the southern part of the study zone, adjacent to the Näset nature reserve.  
 

 
 

 

 

Figure 7. Protection worthy tree 
(Oak from the Näset subzone, 
crown diameter: 12.6 m). Own 

photo 

 
The disposition of the trees in 
the field is shown in figure 8. 
Elevation wise, the candidate 
trees have been approximated 
to have a height over 10 m.  
In denser vegetation 
associations, they are more 
difficult to observe because 
they have been overtaken by 
faster growing species. 
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Table 5 shows among other parameters, the values of tree areas calculated using the buffer 
procedure explained in the “Methodology” section. 
 

Table 5. Parameters obtained for the 32 identified candidate trees 

Tree #  Species Crown 
area (m2) 

Crown 
diameter 

(m) 

Height 
(m) 

Location 

#1 Oak 44.1 7.5 11.4 Forest 
#2 Oak 86.5 10.5 13.6 Forest 
#3 Oak 221.6 16.8 19.6 Forest 
#4 Oak 99.4 11.25 17.8 Forest 
#5 Oak 74.6 9.75 17.7 Forest 
#6 Oak 70.8 9.5 17.2 Forest 
#7 Oak 44.1 7.5 20.7 Forest 
#8 Willow 63.6 9 19.6 Forest 
#9 Oak 63.6 9 17.2 Forest 

#10 Oak 82.5 10.25 23.8 Isolated 
#11 Oak 56.7 8.5 21.1 Isolated 
#12 Oak 41.2 7.25 21.2 Isolated 
#13 Oak 60.1 8.75 26.6 Forest 
#14 Oak 49.0 7.9 22.9 Forest 
#15 
#16 
#17 
#18 
#19  
#20 
#21 
#22 
#23 
#24 
#25 
#26 
#27 
#28 
#29 
#30 
#31 
#32 

 

Pine 
Oak 
Oak 
Pine 
Oak 

Birch 
Oak 
Oak 
Oak 
Oak 
Oak 
Oak 
Oak 
Oak 

Beech 
Oak 
Oak 
Oak 

52.1 
50.2 
124.6 
63.6 
92.4 
20.0 
43.0 
60.8 
74.6 
66.4 
50.2 
87.4 
52.8 
94.1 
124.6 
33.1 
36.3 
76.2 

8.15 
8 

12.6 
9 

10.85 
5.05 
7.4 
8.8 

9.75 
9.2 
8 

10.55 
8.2 

10.95 
12.6 
6.5 
6.8 

9.85 

19.5 
18 

16.7 
15.2 
23.8  
17.8 
27.5 
18.2 
22.8 
20.2 
18.7 
20 

17.1 
17.6 
17.7 
12.2 
13.2 
16.1 

 

Isolated 
  Isolated 

Isolated 
Isolated 
Isolated 
Isolated 
Forest 
Forest 
Forest 
Forest 
Forest 
Forest 
Forest 
Forest 
Forest 
Forest 
Forest 
Forest 
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Figure 8. The identified trees worthy of protection near Dubbarp (Background:  Ortofoto färg  0.5 m (2010) © Lantmäteriet)
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Table 6 shows how many trees are represented by 1, 2, 3, 4 or “n” segments. The greater the 
amount of segments representing a tree, the higher the fragmentation. Tests T8 and T3AB 
have the highest fragmentation rates, with 17 and 10 tree crowns covered by more than 5 
segments, respectively. At the other end, T3A and T2 have more compact segments. The 
accuracy metric, defined as the ratio between crown and number of segments that cover it, 
shows which percentage of the trees from the total amount has been precisely determined. 
With precisely determined it is meant that the tree crown has been represented by only one 
dominant segment.  
 
Table 6. Segmentation accuracy for each test based on how much a tree is covered by a segment (T1-T11) 

 
 

Experiment# 

 
 
1:1 

 
 
1:2 

 
 
1:3 

 
 
1:4 
 

 
1:n 
(covering 
more 
than one 
segment) 

 
1:0  
(totally 
missed 
trees) 

 
Accuracy 
(% of non-
missed trees 
represented) 

T1 2 5 5 6 7 7 15.6% 
T2 8 8 8 - - 8 25% 
T3A 7 4 4 1 - 16 28.1% 
T3AB 2 3 3 7 10 7 9.3% 
T3BB  6 10 7 1 - 8 31.2% 
T4 5 9 3 1 4 10 25% 
T5 7 6 4 2 6 7 18.75% 
T6 5 8 4 1 - 14 21.8% 
T7 7 4 5 4 2 10 25% 
T7A 8 5 5 3 1 10 6.25% 
T8 3 - - 1 17 11 0% 
T10 3 6 6 11 6 - 25% 
T11 3 6 7 10 6 - 28.1% 

 
Generally, the conducted experiments show that tree crown representation accuracies ranges 
from 0 to 31.2%.  
 
Out of the 32 selected candidate trees, the crown of tree #6 (an Oak with a crown diameter of 
9.5 m and 17.2 m tall) has been accurately (1 dominant segment covering most of the crown’s 
surface) recognized 11 times. On the second place comes the tree crown of candidate #2 (an 
Oak with a crown diameter of 10.5 m and 13.6 m tall) which was successfully detected in 10 
experiments. Then follow three crowns #4, #7 and #14 (Oak trees with crown diameters 
ranging from 7.5 to 11.25 and heights ranging from 17.8 -22.9 m) which were identified in 9 
experiments each. Tree crown #13 (an Oak with a crown diameter of 8.75 m and 26.6 m tall) 
was successfully accounted for in 8 tests, followed by the crown of #12 (an Oak with a crown 
diameter of 7.25 m and 21.2 m tall) which was found 7 times. Fifteen trees worthy of 
protection crowns were found between 1-5 times. Tree crowns #15 and #29 were only 
recognized only during T7, while 5 crowns (#9, #19, #22, #23 and #24) could be separated 
only during experiment T9. Eleven crowns (#10, #11, #16, #17, #18, #21, #28, #30, #31 and 
#32) could not have been accurately depicted in any of the carried tests. Figure 8 shows the 
trees which have been accurately represented more than 5 times. 
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Figure 9. Experiment segmentation accuracy for individual trees  

In terms of geographical distribution, the trees that were identified the most times are located 
in the Osbysjön-Ebbarp research area, while the least successful attempts regard the test zone 
located adjacent to the parking lot in the vicinity of Näset nature reserve. Species wise, the 
most detected trees (8-11 times) are with no exception oaks. In the case of the non-detected 
trees, oaks also dominate. The identified trees belonging to the species pine and beech 
considered also as suitable candidates for protection could not be detected by the conducted 
tests. In terms of height, the trees with most detections range between 13.6 -26.6 m with an 
average of 19.8 m. As regards the crown diameters, the trees identified the most have crowns 
ranging from 7.5 – 11.25 m. The next section presents the results of the most successful and 
failed experiments, concentrating on the particularities of each. 
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Experiment 1 
 
This experiment identified correctly five trees (dominant segment covering the surface of a 
buffered point) out of the total 32 candidates (success rate 15%). Region wise, the majority of 
the trees in the area Osbysjön-Ebbarp have 
been spotted and some of the trees located on 
Näset. A general tendency of fragmentation is 
noted (figure 10); seven tree crowns occupied 
by more than 5 segments. Trees that are 
described by several segments are usually the 
ones having the widest crowns. Area wise, it is 
difficult to distinguish which of the segments 
really represent the tree worthy of protection, 
except for the cases of trees #2, #6, #7, #12 and 
#14. In these cases, a greater, dominant 
segment covers more than 51% of the tree’s 
circular model. Added to that there is no clear 
division between species, with the 
segmentation resulting in both deciduous and 
conifers. The mean NIRDIF values for the 
dominant segments that cover the tree sketch 
range from 26.1 (#7) to 92.1 (T14). The 
dominant segment in T12 has also a high 
NIRDIF value (78.1). The mean height values 
in the same domain range from 15.9 m (#12) to 
19.4 (#6). 
 
Figure 10. Experiment 1 segmentation (Background: 

Ortofoto färg  0.5 m (2010) © Lantmäteriet) 

The preponderance of lower NIRDIF values is reported in the forest, while the higher index 
values dominate the more isolated trees. 
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Experiment 2 
 
Overall, the effect of using the NIRDIF index with the highest weights and a wider scale 
parameter in the Multi-resolution 
segmentation procedure is that the segments 
are more compact, with three being the 
highest number of parts covering an 
identified crown. Eight trees from the total of 
32 have been totally missed, with no 
segments inside the tree shape. The 
discovered trees are composed of several big 
segments which leads to an exaggeration of 
the crown surface (figure 11), where 
segments encompass a wider forest area.  
Species delineation between conifers and 
hardwood trees is still not present; however 
tree #18 which belongs to the genus Pinus 
was not recognized. For the identified trees, 
the NIRDIF index ranges from -19 to 90.7. 
Three trees (#1, #6 and #26) have been 
accurately identified (figure 11). Their crown 
consists of only one segment, which stretches 
well beyond the delineated tree shapes. The 
average NIRDIF values for the most 
representative segments (#1, #6, #26) range 
to -22.7 (#26) to 50.8 (#6). 
 
 
 
 
 
 

Figure 11.Exaggeration produced by over-segmentation (Background: Ortofoto färg  0.5 m 
(2010) © Lantmäteriet (2010)) 
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Experiment 3A 
 
The increased scale factor applied to this experiment resulted in compact segments. These big 
segments encompass entirely or partially trees worthy of protection. A number of 9 crowns 
have been identified, raising the accuracy for this test to 28%. On the negative side, half (16) 
of the trees have been totally missed. Trees 
#1, #5, #6 and #25 are composed of a unique 
dominant segment covering the crown 
surface in percentages ranging from 66.6 % 
to 100%. These dominant segments stretch 
well beyond the surfaces of the given trees, 
encompassing crowns belonging to 
neighbouring tree elements. Tree 6 was better 
isolated than in the previous two experiments 
(figure 12). Another five trees are composed 
of amalgams of 2-3 segments of similar size. 
For the rest of the elements, the segments 
were not wide enough to cover a significant 
part of the tree construct. The NIRDIF values 
for the single segmented trees stretch from 
6.8 (tree #1) to 50.6 (tree #6). 
 

Figure 12. Experiment 3A. Better isolation of tree 
#6 (Background: Ortofoto färg  0.5 m (2010) © 

Lantmäteriet) 
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Experiment 3BB 
 
Overall, the structure of the segments is very fragmented with 10 correctly detected trees 
(31.25% accuracy) and 8 that do not have any segments within their sketched crowns (see 
figure 13). From the detected trees three (#2, 
#5, #8) are covered by a unique segment, 
while the rest are covered by an association 
of 2-4 segments, with one that has a 
dominant coverage. This is the first 
experiment where segmentation analysis 
identifies a tree that is not an oak - #8, 
willow. Usually the great segments 
encompass neighbouring areas to the 
identified trees. The coverages (for unique 
segments) range from 77 – 80.2 %. In two 
cases (trees #7 and #10), the segmentation 
recorded “near misses”, meaning that the 
dominant segment had a 40-45% coverage 
the candidate tree buffer zone. The NIRDIF 
values for the one-segmented trees range 
between 15.5 (#8, willow) and 44.4 (tree #5). 
 
 

Figure 13. Experiment T3BB. Willow tree #8 
(Background: Ortofoto färg  0.5 m (2010) © 
Lantmäteriet) 

 

 

 

 

Experiment 4 
 
In what regards segmentation, no breakthroughs have been obtained by running this 
experiment. As in the previous test, there is no clear distinction between deciduous and 
conifers and several tree surfaces are covered by several segments, although tree #18, a pine is 
not covered by any segment. Eight tree crowns have been accurately detected. None of them 
consist of a unique segment, but from amalgams of 2-5 parts (greater fragmentation) with one 
dominating segment that covers more than 50% of the identified tree’s crown area. Even in 
this experiment, the willow tree (#8) has been identified, with the largest fragment covering 
53% of the crown surface. Trees #1, #9, #10, #11 are “near misses”, with the greatest 
segments covering areas between 42.5 and 45.4% of the crown areas. In the case of tree #9, 
the near miss is covered by a single segment. 
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Experiment 8 
 
Overall, this experiment yields the poorest accuracy, with no digital identification of the 
measured in field trees (0%). This segmentation 
produces very small fragmented objects. In the 
case of the tree worthy of protection trees worthy 
of protection, each estimated crown is covered by 
at least two objects, where none covering the 
crown surface with more than 50% (figure 14). 
Nine trees did not include any kind of segment. 
This experiment was thought to be included in this 
research as a negative didactic example showing 
the effects of over segmentation. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Oversegmentation and missing trees in Näset (Background: Ortofoto färg 0.5 m (2010) © 
Lantmäteriet) 

 
Experiment 10 
 
This is the first experiment in which neither of the candidate trees for protection is devoid of 
segments. The total number of accurately identified trees is 8, out of which only one (#20) is 
described by only one segment, which covers 63% of the tree’s calculated crown surface of 
20.0 m2. The rest are composed of agglomerations of 2-6 segments, out of which one of it 
dominates the tree model in percentages ranging from 51% (tree #4) to 81.8% (tree #12).  
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Experiment 11 
 
Experiment 11 takes advantage of the two contrast split segmentations tested in experiment 9 
and produces a more visually overall accurate picture of the study zone than experiment 10.  
In detail, the fragmentation is reduced, with more compact segments occupying the identified 
trees crowns. Like in the previous experiment, 
none of the field identified trees have been 
omitted. Nine trees have been accurately 
identified. Out of these, tree #20 is represented by 
only one big segment which covers a surface of 
63% of the calculated crown. Alongside 
experiment 10, this experiment is the best at 
detecting patterns in the southern part of the 
research area, Näset (figure 15). 
 

Figure 15. Segmentation on the western side of 
Näset.(Background: Ortofoto färg  0.5 m (2010) © 
Lantmäteriet) 

 
 
 
To summarize, the best results were obtained by 
experiment T3BB, where it employed a Multi-
resolution segmentation followed by a Grow 
region procedure. The accuracy of this method 
stands out to be 31.2%. The multi-resolution 
segmentation algorithm was fed with a “Scale” 
parameter of 40 and the values for Shape and 
Compactness were 0.5 each. The weights 
assigned were 10 for the CHM raster and 3 for the NIRDIF. The Grow region procedure 
perfected the already created segments with adding additional objects higher than 9m for a 
realistic depiction of the crown shapes.    
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5. DISCUSSION 
 
The current thesis has focused on finding an adequate automatic segment-based solution to 
map the trees worthy of protection in a study area located near Dubbarp, Sweden, through 
several experiments. The structure of the chapter is twofold, with the first part dedicated to 
interpreting the findings and the following presenting some limitations connected to the 
applied methodology. This part is also where suggestions for further research are given. 
 

5.1. Findings 
 
Typically, all the 13 experiments were dependent on the local environmental conditions, with 
some of them performing better in the Osbysjön-Ebbarp area, while others adding value to the 
research by being able to recognize some trees in the zone around Näset. These findings are in 
line with what the literature has many times concluded, namely that each forest type requires 
a different parametrization of study for individual tree crown identification (Kaartinen et al. 
2012;  Zhen et al. 2016).  
 
Moreover, the test results indicate that the identification of individual tree crowns is easier for 
the case of isolated trees than in the forest. This is the case for tree #7, which is located 
adjacent to a low field and has been represented by big dominant segments 9 times. Tree 
spacing and overlapping crowns in the forest can be the difference between the success and 
failure of a valid detection. This statement echoes the results of Erikson (2004), Oono et al. 
(2008), Shataee (2013), which take in consideration tree density as an important factor for a 
successful segmentation. In the case of the current research, many tests fail to fill the crowns 
located on Näset with distinctively big segments. An explanation for this failure is the 
presence of the trees worthy of protection in a dense canopy, among individuals with a more 
developed branch system, which reflect chaotically the laser pulses. The success of tests #11 
and #12 in Näset is attributed mainly to the contrast split segmentation procedures that better 
filtered out the holes in the canopy (objects with lower height value) thus better controlling 
the responses from the LiDAR laser pulses.  
 
An innovative perspective is given by the application of the NIRDIF index. Although the 
importance of the reflected NIR radiation is commented and demonstrated in the literature 
(see for example the study of Nagendra (2001) in the “Background” section), up until the 
creation of this thesis (2020), to the author’s knowledge there was no study that used the NIR 
difference index (“leaf-on”- “leaf-off”) imagery in an attempt to differentiate tree species as a 
parameter in a segmentation context. However, although the index was in the case of three 
experiments a good explanatory variable, in many cases the mean values of the NIRDIF layer 
exceeded 50 (some dominant segments covering trees #12 and #14 in tests #10 and #11). In 
some cases, for example in experiment T2, the segment covering more than 80% of tree #1 
has a NIRDIF index value of only 6.9 (parameter range from -247 to 218). This situation is 
explained by the bulky form of the segment, which includes also other trees and empty spaces 
between them. Consequently, an increase in the scale parameter of the Multi-resolution 
segmentation analysis, the one that determines the segment sizes, has a negative influence on 
the value of NIRDIF. 
 
This happens on one hand because of a forest containing several tree types, and reflections 
from different individuals belonging to separate tree species alter the signals received by the 
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NIR sensor. The willow tree (#8), successfully identified by experiment T3BB, and had a 
mean NIRDIF value of 15.5.In the upper case, ground hits and tree shadows, inherent to the 
imagery; lower the values of the NIRDIF index. The problem of detecting and eliminating the 
spaces between trees can possibly be resolved by carefully choosing a parametrization 
adequate to the task. In line with earlier discoveries (Kaartinen et al. 2012), the CHM value 
proves to be a good tree descriptor, however in this thesis, tests T1, T4 and T5 show that 
emphasis on this parameter’s values help in identifying the trees but to a limited extent, being 
subject to under- or over determination of the segments. The addition of the earlier described 
CHM_binary layer (see section 2.5.3), which supresses all the elevations below 9 m, narrows 
down the search for the trees worthy of protection by eliminating lower-lying CHM elements 
and focusing only on high crowns. On the negative side, the binary CHM layer limits the 
search threshold, excluding possible tree parts located at lower altitudes, and such would not 
be an accurate description of the individual tree crown. The second part highlights the main 
obstacles that might have affected the experiments and their results. 

 

5.2. Dataset and methodological limitations 

5.2.1. Translating the term “protected worthy trees” into a technical language 

 
From a semantic standpoint, the concept of “protected worthy tree” would be easy to grasp 
considering the definitions provided by the organizations that curate the Green Infrastructure 
project. Nevertheless, from a technical perspective, the situation is not easy to describe and 
put in practice. Although the experts from the Administrative County Board identify in the 
field mainly oaks as the dominant species belonging to this category, and necessarily to be 
protected, during the field study it has been shown that other species can also become 
candidates.  
 
Moreover, observations in the field have demonstrated that “trees worthy of protection” can 
have a wide range of maximum heights and in some cases are in competition with faster 
growing species for light. The current project relied on experimenting, high dominating 
deciduous trees and did not consider this aspect.  
 
The researchers working with Länsstyrelsen have also pointed out that that usually trees 
worthy of protection are located in areas that historically (at least 100-150 years) used to 
be open land (such as pastures, terrains used for agriculture, etc.) which subsequently 
changed its cover to forests. Older Swedish map data, starting from the 17th century is 
available in digital format from institutions such as Lantmäteriet and Riksarkivet (Swedish 
National Archives). This cartographic material is a snapshot into the past and can be used as a 
segmentation variable for forthcoming studies. On one hand, they can be useful for the 
creation of a binary raster, showing land where historical changes occurred or as a vector file, 
which would hinder data processing in the areas in which land cover has not been altered.   
Even with the best technologies used for data collection and processing, it is prone to inherent 
imprecisions. The next topic discusses possible data flaws that might have altered the 
correctness of the obtained results. 
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5.3. Issues connected to the available data 

5.3.1. LiDAR data 

 
LiDAR point clouds were used to construct the terrain and surface models. This type of data 
has two inherent limitations in what regards resolution and classification. It is well known 
that the accuracy of the construction of the underlying height layers is related to the amount of 
points per square meter that the scanning was conducted with (Dong 2017). While the 
provided data had a resolution of 0.56 points/square meters, an increase in the working 
resolution would be interesting to test as basis for further research. More detailed data would 
yield a better description of the terrain and possibly improve the point classification (see a 
more detailed analysis in section 5.4.1). A simple explanation for this fact is that, for the case 
of a dense forest, a higher number of LiDAR points, would better describe the study zone and 
even in denser forests, might highlight spaces between the trees. Both the studies of Oono et 
al. (2008) and Holmgren and Lindberg (2019) use datasets with higher resolution. A 
workaround this problem would be the usage of a higher number of points per square meter 
(higher resolution scanning). Because of its reduced flight altitude compared with traditional 
flying vehicles and higher accuracy (Balsi et al. 2018), the new LiDAR UAV technology 
(Balsi et al. 2018;  DJI 2020) can be put to test in the area. Nonetheless, this would result in 
higher data collection costs. On the negative side, collecting the data at higher resolution 
would reveal an even more complicated forest structure, which would possibly require a 
different segmentation approach. 
The classification issue stems from the fact that the original dataset was delivered already 
filtered by Lantmäteriet. A filtered LiDAR point cloud means in technical terms that only 
some received signals have been processed using computer based algorithms to achieve the 
classification between ground and non-ground data (Meng et al. 2010). Using another 
algorithm to filter the data or even full wave – unprocessed LiDAR, might reveal important 
forest parameters that can help in possibly improving the existing segmentation results (Balsi 
et al. 2018).  

5.3.2.  Orthophotos and the NIRDIF index  

 
The methodology section explained how NIRDIF index that was used in the attempt of 
species was produced. Although it was able to successfully illustrate this difference between 
conifers and deciduous trees in some parts of the study area, some technical limitations are 
worth to be noted. On one hand, the input data comes from different types of cameras (see the 
Methodology chapter). Data providers do not give information about the camera sensor 
parameters at the moment of the flight (gain, bias) so in this case the reflectance values could 
not be calculated. Although both of the flights were conducted from fairly low altitudes (3700 
and 4200 m, respectively), it is still expected to have atmospheric absorption mainly due to 
the existence of water vapour and the presence of low clouds. Not calculating the reflectance 
values contrast the recommendation of Haest et al. (2009), who strongly suggests computing 
reflectance when processing remote sensing data originating from different systems. To 
complicate things even more, there is no calibration available between the sets produced by 
the two cameras and that seriously affects the segmentation since there is no knowledge about 
how the DN values of the two camera setups correspond to each other. On the other hand, 
there is a slight difference in the flying altitude (4200 m vs 3700 m), which gives more detail 
to the lower flight. Different flight altitudes and lens types (see the Methodology chapter for 
technical data) usually determine distinct levels of detail in the imagery. While the higher 
flight can grasp a wider area and catch less detail, the lower flight surprises a smaller area to a 
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higher detail. Although the results do not reveal big differences between the two sets, it is 
ideal for this type of study to have similar flight altitudes, since the scope of the research is 
concentrating on detailed elements (tree crowns). Subsequent studies can use the advantage of 
extended image capture periods and create spatial indexes from materials produced by the 
same camera at similar flight altitudes. 
 

5.4. Limitations of the employed technologies 

5.4.1. Surface and terrain model generation 

 
One of the ingredients necessary to calculate the normalized digital surface model, is the 
DEM values based on the last returns of the LiDAR scanner and interpolate them to obtain the 
elevation values for the ground under the forest canopy. Even so, there is no absolute 
guarantee that the last return corresponds to the actual ground level, even if classified as such 
by the data provider. Fisher and Tate (2006) identified some causes that lead to elevation data 
inaccuracies. For example, in all of the experiments described in this thesis, it has been 
considered that the values connected to the “last return” of the LiDAR scanner identify the 
ground. However, as Fisher and Tate (2006) demonstrate, the notion of “ground” is 
superfluous. They consider that the notion of ground should be considered the upper part of 
the soil, which comes in direct contact with the lower layers of the atmosphere. Wolf, Dewitt 
& Wilkinson (2014) reveal that generally a terrain model produced by evaluating the last 
return of the LiDAR has other inherent issues such as the uncertainty that the last return really 
depicts the “ground” layer. This adds to the complexity of the situation even more in forested 
areas where objects such as lower lying branches or vegetation understory, grass, small 
animals, rocks, fallen twigs or leaves, patches of fur or feathers can interfere with the LiDAR 
scanning and thus return an exaggerated image of the reality (Lantmäteriet 2019). 
Lantmäteriet uses an automatic system to classify laser data. Nevertheless, the terrain model 
in areas with dense vegetation and rugged terrain is usually prone to estimation errors, 
because of a lower number of point reaching the true ground surface (Lantmäteriet 2019). The 
same institution gives an example from a densely forested area, where the difference between 
the point clouds deduced and measured terrain elevations was more than 2 m. The same 
situation can successfully explain the low accuracy of hits in Näset, area which is covered by 
a thick young forest. 
 
These inaccuracies are hard if not impossible to detect and in most cases they are used for 
interpolation. In relation to interpolation, research indicates that the quality of the digital 
elevation model and indirectly the derived CHM are related to the chosen interpolation 
method (Aguilar et al. 2005). For the purpose of this thesis, only the Nearest Neighbour 
interpolation method (available in ArcMap) was applied. Lloyd and Atkinson (2002) evaluate 
several DEM interpolating procedures and reaches the conclusion that Ordinary Kriging (OK) 
and Kriging with trending surface (KT) are the best ways to “fill in the gaps” of an area where 
the overlaying zone has been removed. To sum up, other interpolation methods and their 
effects on the DEM layer and subsequently on the tree segmentation might be useful to test in 
future research. 

5.4.2. Segmentation methods 

 
Probably one of the most obvious issues that arise from the results is the fact that 
segmentation technology is still a new tool and relies a lot on the principle of trial and error. 
Even in the software tutorials, available on Trimble eCognition’s official YouTube channel, 
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the company’s engineers encourage the users to “try themselves up” until reaching an 
adequate result. The algorithms included in the eCognition package tend to be complex and 
although the user interface is fairly straight forward, the underlying processes are complex 
and difficult to explain in a simple manner. In the case of the Multi-resolution segmentation, 
where the statistical processing is based on a mix between the spatial and optical data, the 
changes operated to of the “Scale” parameter can be easily traced in some of the experiments. 
Here, modifying this parameter determines the segment size of the resulting segmentation. 
This is the case of the “bulky” results in T2 (scale: 50) and T3A (scale: 70). Nonetheless, the 
mathematical relation between this parameter value and the size of the resulting segments is 
hard to estimate otherwise than visually.  Another limitation of the upper mentioned method 
is the fact that as per the author’s knowledge, there is no documentation stipulating the range 
of values that are accepted as weights for the various variables that are included in the 
computation of the segmentation analysis. As for the Scale factor example, the winning 
strategy in this case is through continuous “trial and error” attempts. Other possible ways to 
research the optimum solution would be employing eCognition algorithms other than Multi-
resolution segmentation. Experiment T9, which was used only as a comparison factor, 
revealed a good separation between tree and non-tree elements. In case the optimal solution 
for finding the trees worthy of protection is found, there is the possibility of employing 
eCognition based Machine Learning algorithms (Convolutional Neural Networks), which 
would speed up and improve the identification process.  
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6. CONCLUSIONS 
 
This study aimed to develop a way to semi-automatically recognize tree crowns that 
correspond to conditions established by the local nature protection authority as to get the 
“protected status”. In this endeavour, eCognition based segmentation methods from inputs 
such as LiDAR; airborne imagery was put on trial through 14 experiments, which detected 
tree crowns with different degrees of accuracy. Based on the obtained outcomes, Multi-
resolution segmentation based object creation has proven to be a useful tool in an operation to 
accurately represent tree crowns. The usage of the leaf-off/leaf-on near-infrared difference 
index (NIRDIF) showed promising results when detecting isolated tree individuals compared 
to the denser forest. Nonetheless, to test its efficiency more tests involving this method in 
different ecosystem settings need to be run. Experimental for this kind of research is also the 
usage of a sequence of two segmentation algorithms (Multi-resolution and contrast split) in 
the same test, which resulted in a better separation of the trees and canopy voids and 
improved crown detection. This thesis however did not resolve the problem of species 
identification between deciduous and conifers. Among the identified possible causes for the 
issue were: the heterogeneity of the study zone, characterized by locations with different tree 
densities, optical imagery with low radiometric resolution and LiDAR data processing. This 
issue of a heterogeneous forest can be resolved through implementing separate procedures for 
identification of hard- and softwood trees. Uncertainty issues can also be resolved by 
forthcoming studies where employing other eCognition based methodologies alongside 
evolved data such as UAV LiDAR point clouds and hyperspectral higher resolution imagery 
taken preferably from lower altitude which can better identify individual trees and reduce as 
much as possible atmospheric interference.  
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