
Design and implementation of testable
fault-tolerant RISC-V system

MATTIAS RODAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

M
A

TTIA
S R

O
D

A
N

D
esign and im

plem
entation of testable fault-tolerant R

ISC
-V

 system
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-803
http://www.eit.lth.se

Design and implementation of testable
fault-tolerant RISC-V system

Mattias Rodan
mattiasrodan@gmail.com

Department of Electrical and Information Technology
Lund University

Supervisor: Hemanth Prabhu, Xenergic
Hemanth.Prabhu@Xenergic.com

Supervisor: Steffen Malkowsky, Lund University
steffen.malkowsky@eit.lth.se

Examiner: Pietro Andreani, Lund University

December 17, 2020

© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

This thesis aims to investigate and implement a fault-tolerant energy-efficient
RISC-V based system on chip (SoC). Key features of the SoC is the testabil-
ity and reliability of the low power on-chip embedded memories. A built-in self-
test (BIST) for the on-chip memories has been designed and implemented to run
on-demand diagnostic tests to detect manufacturing errors in the memories. It
incorporates three different algorithms to test for common manufacturing memory
faults. Runtime soft errors are detected and corrected using an error correction
code unit (ECC), which can correct up to two errors. The ECC is integrated with
the RISC-V core and memories to increase the fault-tolerance of the SoC at low
voltages. The ECC components importance increases as the probability of soft
errors increase with lowering of the supply voltage. Power savings up to 46% for
the entire system was simulated when the supply voltage was decreased from 1.2V
down to 0.8V. The addition of the ECC components resulted in a 3.5% core area
increase. The integrated memory built-in self-test contributed to another 24.4%
area increase of the core.

i

Popular Science Summary

Improved semiconductor manufacturing processes and techniques have paved the
way for the development of more complex and power-efficient integrated circuits.
The higher achievable transistor density enables more functionality to be packed
into the same circuit die than before. These advanced computational circuits are
embedded in all handheld electronic devices and the internet of things that are
present in our day to day life. Higher transistor density combined with high con-
sumer demands on battery lifetime and functionality requirements creates difficult
challenges in the development phase of these circuits. As the complexity increases
the risk of manufacturing process variations is more likely to affect the system
functionality. Fault-tolerant and error detection techniques can be incorporated
into the system to counteract the effect of these potential manufacturing errors.

As the systems get more complex over time, the task of conducting tests and
diagnostic evaluation of the chips grow. Typically, specific circuits are developed
and integrated on-chip that can conduct tests when the chips are manufactured.
The data collected can be used to get statistical information about which parts of
the design that are most prone to failures.

In this thesis, a system has been implemented where fault-tolerant components
have been added to the interface between a 32-bit RISC-V core and its memory
subsystem. Because of the high memory usage, a memory built-in self-test has
been implemented and integrated to test and provide fault diagnosis. A built-
in self-test has also been developed to run diagnostic test of the fault-tolerant
components at the memory interfaces. The supply voltage was decreased lower
than the technology standard to decrease power usage. Voltage scaling provides
a trade-off between operational performance speed of the circuit and power. A
JTAG interface is used to control the system with configuration registers and to
perform memory operations such as inserting the program instruction that the
RISC-V core runs.

ii

Acronyms

ADF Address Decoder-Fault
AF Address Fault
BL Bit-line
BLB Bit-line Inverse
BIST Built-In Self-Test
BEF Byte Enable Faults
CMOS Complementary Metal Oxide Semiconductor
CF Coupling-Fault
ECC Error Correction Code
EX Execution
FSM Finite State Machine
GPIO General Purpose Input-Output
HDL Hardware Description Language
ID Instruction Decode
IF Instruction Fetch
ISA Instruction Set Architecture
IP Intellectual Property
JTAG Joint Tag Action Group
MBIST Memory Built-In Self-Test
MSB Most Significant Bit
PnR Place and route
RISC Reduced Instruction Set Computer
RTL Register Transfer Logic
SRAM Static Random Access Memory
SAF Stuck-At-Fault
SoC System-on-Chip
TF Transition-Fault
WL Word-line
WB Write Back
6-T 6 transistor

iii

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Project aim . 2
1.3 Thesis structure . 3

2 Theoretical background 4
2.1 Static random access memory . 4
2.2 Common memory faults . 5
2.3 Built-in self test and memory test algorithms 7
2.4 Error correction code . 8
2.5 Digital design power consumption 10
2.6 RISC-V instruction set architecture 12
2.7 JTAG . 13

3 JTAG interface 17
3.1 JTAG implementation . 17
3.2 JTAG burst implementation . 17

4 Built-in self-test and RISC-V implementation 22
4.1 BIST architecture . 22
4.2 ECC and BIST architecture . 31
4.3 RISC-V core integration . 33

5 Result and Verification 39
5.1 JTAG burst . 39
5.2 Memory BIST . 40
5.3 ECC BIST . 42
5.4 System area . 43
5.5 Frequency and power . 45

6 Conclusion 48

References 50

iv

List of Figures

2.1 Standard 6-T SRAM bitcell . 5
2.2 4x4 SRAM bitcells connected to build a larger memory bank 6
2.3 SRAM memory array connected with address decoder and other pe-

ripherals . 6
2.4 BIST architecture overview . 9
2.5 ECC parity code embedded with data 9
2.6 Seperate memory used to store ECC parity bits 10
2.7 Standard inverter to demonstrate different power consumption com-

ponents of circuits. 11
2.8 System level and fine grain level clock gating 12
2.9 JTAG tap state machine used to control JTAG operations 15
2.10 General simplified JTAG system overview 16

3.1 JTAG burst component integration with memory and JTAG controller. 20

4.1 BIST implementation architecture overview 23
4.2 Memory wrapper structure with memory instances connected to the

control logic . 25
4.3 Generation of comparison data with two layers of XOR gates when

byte enable is active low. 26
4.4 Circular buffer with read and write pointers 28
4.5 4 input priority encoder circuit . 29
4.6 Error logger overview . 29
4.7 Error logger overview . 30
4.8 ECC top level implementation architecture overview 32
4.9 ECC implementation architecture overview 32
4.10 Cv32e40p RISC-V core image from [1] 34
4.11 Cv32e40p RISC-V memory interface operation 37
4.12 System architecture overview . 38

5.1 BIST default generated memory signals from a run of MARCH MATS
algorithm on two addresses . 40

5.2 BIST default comparison of memory signals and reference data . . . 41

v

5.3 BIST default generated memory signals from a run of MARCH C
algorithm on three addresses . 41

5.4 BIST comparison of memory signals and reference data with an ad-
dress decoder fault . 41

5.5 ECC BIST test data generation . 42
5.6 ECC BIST test reference and data comparison 42
5.7 ECC BIST test reference and data comparison with an errors inserted 43
5.8 Top level gate count for the the complete SoC system. 44
5.9 Gate count for the important blocks within the BIST system. 44
5.10 Gate count for the important blocks within the SoC system. 45
5.11 System maximum frequency for different supply voltages 46

vi

List of Tables

2.1 Base Instruction set for 32-bit RISC-V ISA and common extensions . 13
2.2 Description of all the main pins used to implement the industry stan-

dard JTAG IEEE Std 1149.1 [2] . 14

3.1 JTAG configuration register 1 sub-field information 18
3.2 JTAG configuration register 2 sub-field information 19
3.3 JTAG data section information . 19

4.1 Implemented test algorithms stored in the algorithm bank and their
operation sequence . 24

4.2 Implemented test algorithms fault coverage and operation count. N
is the number of memory addresses 24

4.3 4 input priority encoder truth table. X is used to indicate neglected
do not care bits. Higher number in input indicates higher priority. . . 28

4.4 Error logger data sub-field . 30
4.5 RISC-V core memory interface signals 36

5.1 Comparison of burst memory operation and normal JTAG performance 39
5.2 Leakage and dynamic power numbers for different user cases 47
5.3 Power comparison between different supply voltage during a standard

BIST test . 47

vii

Chapter 1
Introduction

System-on-chip (SoC) with embedded processing units are commonly integrated
into devices used in the everyday life such as phones, cameras, and smartwatches.
The SoCs main task in these devices is to enable the data processing required for
the product to meet its application requirements. These handheld devices are of-
ten powered by a battery with limited energy budget before recharging is needed.
The data processing within the processing unit consumes energy which drains the
battery of its charge and is thus an important factor of the device battery life.

The design requirements of handheld products are a strict trade-off between bat-
tery life, performance, and size. An important approach to achieve a good trade-off
between the previously mentioned requirements is to improve the computational
energy efficiency. This is especially interesting in applications that require exten-
sive computations and where the processing accounts for a large part of the energy
consumption. It is therefore interesting to investigate the possible improvement of
the SoC that contains single and multi-core processors to attain higher computa-
tion efficiency while still meeting the performance requirements.

Other important problems is how the circuit functionality can be tested, verified
to reduce faults during its lifetime. Especially tests of memories are of interest
which often accounts for the majority of the total chip area. A common solution to
the problem is to develop additional circuit components that are embedded in the
chip that target the test of the circuit, called built-in self-test (BIST). A similar
approach is taken in order to increase the system fault-tolerance where additional
components are used to detect data errors and correct these during run time.

1.1 Background

Development of SoC is a complex and expensive process which most often does not
allow the organization to design all circuit components in-house. This is mainly
due to the extensive development process and increased time to market which is
considered as a very important. The drawback of complete in-house development
often forces organizations to use other companies intellectual property (IP) against
license payments which in turn also can be very costly. A solution to these expen-
sive fees is then to use a non-license open-source alternative.

1

Introduction 2

There has for a long time existed different open-source alternatives for processing
units. However, the open-source community has flourished over the past years and
there are many available alternatives. An instruction set architecture (ISA) for
embedded processing units that have gained popularity in the last year in both
academia and industry is RISC-V. This ISA is based on the well established re-
duced instruction set computer (RISC) concept. RISC-V originated from research
at Berkeley. Several open-source cores based on this ISA have been released to the
public. Performance of these cores, in many cases showed to be able to achieve
competitive performance compared to available licensed products [3].

The processor cores are usually well-integrated with a memory which it uses to
fetch instructions and store data during computations. The memory system can
be divided into two different sub-systems called program and data memory, which
fulfill these functions. The trend of memory utilization in typical SoC shows the
increasing importance of memory [4]. It is common that embedded memory occu-
pies a majority of SoC and the utilization is forecasted to reach levels up to 90%
[5]. Due to the high utilization of memory, it becomes further important to ensure
its functionality and increase its fault tolerance.

1.2 Project aim

This thesis main goal is to implement a minimal and fault-tolerant and energy-
efficient SoC based on a 32-bit open-source processor with compiler support. The
developed SoC aims to attain the best possible energy numbers per operation while
the test and fault-tolerance functionality still is embedded on the SoC.

The processor within the SoC should utilize the available open-source RISC-V
ISA. A testable fault-tolerant memory sub-system should be incorporated into the
SoC. A BIST and Error Correction Code (ECC) components will be used to obtain
a testable fault-tolerant memory sub-system.

The BIST is required to run several test sequences to increase the fault coverage
and the possibility to detect functionality problems that may arise in fabrication
and during its lifetime. In particular, the debug functionality error log mechanism
is of special importance. The error logger is a key component within the BIST.
Its main task is to debug the detected problem and make it accessible. The infor-
mation stored can be used to improve the understanding of the problem and ease
the process of improving the circuit in future iterations.

A common failure apart from fabrication errors are soft errors. Soft error are
data corruption errors that may arise randomly during run time and affect the
system functionality and must, therefore, be counteracted. ECC components are
used to detect and resolve the issue of potential data corruption. ECC consists of
a decoder and encoder and are placed at the write and read path of the memory.
These are used to implement different algorithm to express the data sequence in

Introduction 3

a certain manner. These algorithms embed information so the errors can be de-
tected and corrected. Xenergic will provide a version of an ECC component. The
challenge is, therefore, to integrate an existing version of the ECC component into
the SoC to maintain robust functionality.

The combination of BIST and ECC will be the major tasks, which are imple-
mented to achieve a testable and fault-tolerant SoC. To control these peripheral
circuits, a hardware controller needs to be designed and implemented. One feature
of the controller should be to detect if soft errors occur too often. If so, the BIST
should trigger again to run test sequences in pursuit to detect potential hard errors
in the memory.

1.3 Thesis structure

Chapter 1. Introduction This chapter will provide an introduction to the prob-
lem and why a fault-tolerant energy-efficient RISC-V system is of interest.

Chapter 2. Theoretical background In this chapter all required background
information regarding the problem and system are presented.

Chapter 3. JTAG interface Describes the JTAG interface implementation
and all its configurations registers used to control the system operations.

Chapter 4. Built-in self-test and RISC-V Implementation Describes the
implementation and architecture of the system. The system includes the designed
test components and RISC-V core.

Chapter 5. Result and verification Contains waveforms to display scenar-
ios of the test data sequences. Results regarding performance, power, and area are
also presented in this chapter.

Chapter 6. Conclusion Present final result analysis and final thoughts.

Chapter 2
Theoretical background

This chapter will introduce and explain related background knowledge to provide a
solid foundation needed for further discussions in this thesis. It will also contribute
to understanding the reason why a fault-tolerant and testable system is desired.

2.1 Static random access memory

Memories are commonly used by the processor cores to store instructions and
data during computations. The memory structure often consists of several lev-
els of embedded cache memory to decrease operation latency time and optimize
performance. A common factor for these embedded memories is that all of them
are volatile memories. Volatile memory forfeits the values stored when the supply
voltage is off. A very common version used in these embedded memories is static
random access memory (SRAM). The static version does not need to have its value
periodically updated as to its dynamic counterpart. It is also considered to be the
faster version and is thus placed close to the core for performance optimization.
A standard 6 transistor (6-T) bitcell version of an SRAM is shown in Figure 2.1.
The single-port bitcell displayed in Figure 2.1 is connected to three different in-
output ports called word-line (WL), bit-line(BL), and inverse bit-line(BLB). These
are used to perform the read and write data operations to the bitcell.

A write operation is initiated by setting the selected data value on BL and the
inverse value on BLB. However, transistor M5 and M6 currently prevent the value
from being written to the data storage Q and Q nodes. WL is then activated high
and the values on both bit-lines are latched into the data storage nodes and a
successful write has been performed. A read operation usually starts with a pre-
charge of both bit-lines to the supply voltage. The WL is then activated and the
values on the data nodes Q and Q will be connected to the bit-lines through tran-
sistor M5 and M6. This will result in a small voltage shift between BL and BLB
which can be detected and the read value can be determined by peripheral circuits.

The SRAM bitcell alone can only contain one-bit data which seldom is useful by
itself. Therefore, several bitcells are combined into array configuration as shown
in Figure 2.2. This is useful to increase the storage density. In the figure, it can
be seen that each added column adds one bitcell to the common shared WL and

4

Theoretical background 5

M5

M6

M1 M3

M2 M4

VDD

WL

Q

Q

BLB BL

Figure 2.1: Standard 6-T SRAM bitcell

each added row adds a bitcell to the shared BL and BLB. Instead of performing
read and write operations on single bitcells, the operations are applied to each row
at a time.

In order to target which of the common WL to be activated during operation, an
address decoder is used. It can be seen as a large multiplexer that only selects and
activates one of the rows at a time to avoid conflict between them. A simplified
overview of a memory bank can be seen in Figure 2.3.

2.2 Common memory faults

Two different but common error types that often emerge in these types of mem-
ories are soft errors and hard errors. Soft errors are data corruption that mainly
arises from random bit-state flip due to charged alpha particles [6]. These alpha
particles can induce a voltage at the data nodes Q and Q that can result in the
harmful bit-flips. The negative impact of alpha particles increases when scaling
down the voltage due to the increased risk of change of bit-state in low power
designs[7]-[8]. Hard errors are caused by real errors in the circuit which may arise
during fabrication due to design or process flaws. Hard errors will occur repeatedly
during operation while the soft errors are randomly distributed across the memory.

There are a few basic common hard errors that will be targeted while performing

Theoretical background 6

WL1

WL2

WL3

WL4

BL1BL1 BL2 BL3 BL4BL2 BL3 BL4
Figure 2.2: 4x4 SRAM bitcells connected to build a larger memory

bank

WL1

WL2

WL3

WL4

BL1BL1 BL2 BL3 BL4BL2 BL3 BL4
Peripherals

Peripherals
Data Out

A
d
d
re

ss
 D

ec
od

er

Data In

Bitcell Bitcell BitcellBitcell

Bitcell Bitcell BitcellBitcell

Bitcell Bitcell BitcellBitcell

Bitcell Bitcell BitcellBitcell

Figure 2.3: SRAM memory array connected with address decoder
and other peripherals

Theoretical background 7

the test sequence on the memory. These are the following, stuck at fault (SAF),
address decoder fault (ADF), transition fault (TF), and coupling fault (CF). All
these errors are mainly located in the memory banks of memory bitcells while
ADF is in the peripheral circuits.

SAF errors deals specifically with problems with the data value in SRAM bit-
cells. It may be that the value can not be modified and is stuck at a certain value
despite all other components work properly. This can be the case if either data
node Q and Q is shorted to a supply rail.

ADF concerns issues with the address decoder which selects and activates WL.
An example of potential problems is if different row addresses can not be selected
due to a short or any other malfunction in the large address multiplexer. This
causes incorrect behavior and affects the SoC functionality.

TF occurs when the SRAM bitcell fails to perform a transition in either direc-
tion. This will give a similar effect as in SAF errors and thus considered as a
special case of SAF. The problem mainly arises because the data node can not
be charged or discharged fast enough to meet the frequency requirement. This
might be a consequence of a faulty sized connection than designed in layout due
to fabrication errors. This can be fixed by lowering the timing requirements to
enable more time to discharge and charge the data nodes.

CF happens when operations carried out on targeted memory cells affects the
functionality of non-targeted memory cells. An example of CF could occur when
data written to a selected byte in a word might cause a bit-flip in the other non-
targeted part of the word due to capacitance coupling.

2.3 Built-in self test and memory test algorithms

There exist a large variety of different types of algorithms used to perform the
test and diagnose of embedded memory. Common algorithm types that are used
are the MARCH based test algorithms. These types of algorithms are easy to
implement and exist in different versions to achieve the requested fault coverage.
Another benefit of the algorithms is the linear dependency on memory size. This
behavior is especially desirable because of the increased memory trend.

The MARCH based test algorithms can be seen as an iterative process where se-
quences of write and read operations are performed in different patterns to detect
faults in the memory. A commonly used algorithm in the industry is MARCH-C.
The algorithms write and read sequences are demonstrated in algorithm 2.1. The
MARCH-C algorithm has gained popularity because of its large fault coverage of
the previously mentioned common memory faults and due to its low computa-
tional complexity. The arrows are the directions in the address space in which the
operations should be performed. The characters w0 and w1 correspond to a write
operation with values 0 and 1. Similar, r0 and r1 are read operations where the

Theoretical background 8

value represents the expected read value for correct functionality.

{l (w0); ↑ (r0, w1); ↑ (r1, w0); ↓ (r0, w1); ↓ (r1, w0); l (r0)} (2.1)

2.3.1 Detection of memory faults with MARCH algorithm

Different sections of the MARCH-C algorithms are added to target different er-
rors. SAF is detected by applying a write action to a target address with the
subsequent action being a read operation. To cover all SAF faults this procedure
must be performed with both values 1 and 0 for all address locations. A potential
write and read can be seen in algorithm 2.2.

{l (w0); l (r0, w1); l (r1)} (2.2)

The other fault requires more advanced algorithm since the detection of these
errors require more operations, and set higher requirement on the operations per-
formed in the address space. As an example, ADF is a special case of SAF, the
algorithm used to detect these errors involve detection of SAF errors as well. Al-
gorithm 2.3 cover all AF and SAF faults. The main difference between ADF and
SAF error technique is that the sequence direction of read and write is specified.

{l (w0); ↑ (r0, w1); ↓ (r1, w0)} (2.3)

2.3.2 Built-in self-test

BIST is an additional component added into integrated circuits (IC) with the main
purpose to ease the test procedure. The basic functionality of the BIST is to pro-
vide a test pattern to a device under test (DUT) and then analyze the output
from the DUT. The output is compared against the expected result that would be
generated from a device with correct functionality. A mismatch in the comparison
identifies incorrect functionality and an error event can be triggered. The BIST
contains a controller to handle the test generator and comparison units. A basic
overview of a simple BIST is displayed in Figure 2.4.

One of the advantages to include a BIST is that tests can be initiated by the
IC itself. The test diagnostics can be triggered during any phase of its lifetime to
verify its functionality and alert the system when errors have been found so coun-
teraction can be taken. It is therefore common to run periodical test sequences
during its lifetime to assure system functionality.

2.4 Error correction code

ECC utilises information encoding and decoding algorithms commonly used in sen-
sitive communication channels where faults due to interference should be counter-
acted. The interference can result in corrupt information which might be harmful
to the critical system functionality. The occurrence of corrupt information in-
creases as the supply voltage decreases [7],[8]. In memories, this interference can

Theoretical background 9

Input
OutputDevice Under

Test

BIST
Controller

Test Pattern
Generator

Test Response
Comparator

Error

Figure 2.4: BIST architecture overview

be the result of data bit-flip caused by the soft error alpha particles or capacitive
coupling. Hard errors can also be interpreted as permanent and constant interfer-
ence that corrupts the memory data.

The ECC algorithms require extra memory bits to store an ECC code parity bits
based on the memory data. This code is generated by an encoder that is placed
at the memory input path. The memory output is in a similar fashion connected
to a decoder which will analyze the data with corresponding ECC parity code ac-
cording to the implemented algorithm. The decoder can detect and correct errors
caused by interference with the help of the information stored in the additional
bits. However, in which degree it can resolve the errors depends heavily on the
selected and implemented encoding and decoding algorithm. Two different ECC
implementations can be seen in Figure 2.5 and 2.6. The data word is marked W
and parity bits (P) in the figures. In Figure 2.5 the extra parity bits have been
embedded into the data memory. The consequence of this may result in the use
of non-standard memory cuts with data width as an integer power of two. Figure
2.6 shows an ECC implementation where data is stored into one memory while its
corresponding ECC parity bits are stored into a different memory. This enables
the possibility to use two different standard memory cuts.

Encoder

Decoder

ECC Memory

Data in

Data out

RISC-V
Core

W

W

WP

WP

Figure 2.5: ECC parity code embedded with data

Theoretical background 10

Encoder

Decoder

ECC Memory

Data in

Data out

RISC-V
Core

W

W

P

P
Memory

Data in

Data out

WW

Figure 2.6: Seperate memory used to store ECC parity bits

2.5 Digital design power consumption

The power consumption of an integrated complementary metal-oxide-semiconductor
(CMOS) SoC is generally divided into three major categories. These three major
parts are the static, dynamic, and short-circuit and the sum of these components
adds up to the total power consumption as in equation 2.4.

Ptotal = Pstatic + Pdynamic + Pshort circuit (2.4)

The static power component is used to describe the energy consumed when there
is no transistor switching activity. This means that there is energy consumption
even when no operations are active. The transistors used in CMOS still have a
finite resistance despite being in their off state. This finite resistance between sup-
ply and ground results in a leakage current if they do not have the same potential.
A simple scenario where the path and direction of the current Istatic can be seen
in Figure 2.7. Static power consumption is calculated as in equation 2.5 when a
supply of Vdd is applied.

Pstatic = Istatic · Vdd (2.5)

Dynamic power consumption is the energy needed to charge and discharge the in-
ternal circuit capacitance and the load capacitance during transitions. The power
is based on the number of transitions per second which is determined from the
operation frequency f and the switching activity α. The equation for dynamic
power consumption is calculated as in 2.6. The simplified current path for the
dynamic part is shown in Figure 2.7.

Pdynamic = α · (Cload + Cinternal) · f · V 2
dd (2.6)

Short circuit power consumption is often combined with the dynamic because it

Theoretical background 11

occurs during switching activity in CMOS. During a portion in the transition of
the inverter in Figure 2.7 there is an occasion where both of the transistors are in
their non off state. The finite resistance between the supply and ground that is
caused by this will conduct a current that results in increased power consumption.
Equation 2.7 is used to calculate the short circuit power consumption, where tr
and tf is the rise and fall time of the transition.

Pshort circuit = (
tr + tf

2
) · f · Ipeak · V 2

dd (2.7)

VDD

Istatic + Ishort

 Iswitch

 Cload + Cinternal

Figure 2.7: Standard inverter to demonstrate different power con-
sumption components of circuits.

2.5.1 Voltage scaling

The total power consumption of the SoC is heavily dependent on the supply voltage
which is a factor in each of the power components displayed above. Especially the
dynamic power is more dependent on the supply voltage because of its quadratic
supply voltage factor. The supply voltage is therefore an important factor to con-
sider to achieve the low power requirements set on a system. Voltage scaling is an
effective tool to achieve low power consumption, this can be implemented either
in a dynamic or static manner. In the dynamic approach, the supply voltage can
be regulated by voltage control circuitry whereas in the static a fixed voltage is
selected. The selected supply voltage most often is a trade-off between the power,
speed, reliability, and functionality requirement.

2.5.2 Clock gating

Dynamic power consumption is dependent on the switching activity and frequency
as seen in equation 2.6. A common strategy to reduce dynamic power in a cir-
cuit is to control unnecessary switching transitions of the large capacitance load
that toggles in the clock network. This low power method is called clock gating,

Theoretical background 12

and it mainly targets sequential elements such as the flip-flops. Clock gating can
be implemented at different levels in the circuitry. A simple and effective imple-
mentation is on top system level where logic is added to either enable or disable
the clock input to a larger system component depending on control signals. The
method can be implemented on all levels down to the very fine grain where clock
gating is applied to each flip-flop. The different clock gating implementations can
be seen in Figure 2.8.

Control

Clock

Input OutputD Q

Clk

Sequential Component

Sequential Component

Clock Logic

Control

System Clock

Figure 2.8: System level and fine grain level clock gating

2.6 RISC-V instruction set architecture

RISC is based on the strategy to use a small set of simple but optimized instruc-
tions that can be executed within one clock cycle to perform its tasks. More
complex instructions are instead broken down into a sequence of several simple in-
structions. This simplification tends to result in cheaper design and development
process. RISC based architectures have increased in popularity and are commonly
used in portable low power devices. The RISC is not fundamentally more power-
efficient than its counterpart complex instruction set computers [9] but rather
optimized for different levels of performance.

RISC-V is a open-source instruction set architecture based on the RISC principles
with a licence that require no fee payments. The ISA consists of a base instruction
set with several different standard extensions available. The base and common ex-
tensions are displayed in Table 2.1. In addition to the available extensions, the
ISA enables the possibility to create custom extensions to support application-
specific requirements. The flexibility of the RISC-V ISA enables anyone to create
their in-house processor implementations. This has resulted in several open-source
processor implementations that can be used without license costs.

Theoretical background 13

Table 2.1: Base Instruction set for 32-bit RISC-V ISA and common
extensions

Name Description
Base

RVI32I Base Integer Instruction Set for 32-bit
Extensions

M Standard Extension for Integer
Multiplication and Division Instructions

A Standard Extension for Atomic Instructions

F Standard Extension for Single-Precision
Floating-Point Instructions

D Standard Extension for Double-Precision
Floating-Point Instructions

C Standard Extension for Compressed
Instructions

2.7 JTAG

Joint Test Action Group (JTAG) also known as boundary scan is a commonly
used industry-standard on-chip hardware interface. JTAG provides a solution to
serially communicate between the chip and external devices. It is commonly used
to program and debug on-chip components through a small number of test pins.
Basic JTAG implementation requires at least four different ports with one optional
pin. These pins and their functionality are explained in Table 2.2.

The TMS and TCK pin is used to control the state translations in the 16 state
JTAG test access port state-machine as shown in Figure 2.9. The state machine
main task is to control JTAG access to the instruction and data shift registers.
This is implemented through two similar control paths as shown in the Figure 2.9,
which is marked (IR) for instruction registers and (DR) for data registers. Access
of the registers involves scanning in data through TDI pin and to stream out data
via TDO pin. A general and simplified JTAG system overview of how the state
machine controller is interconnected with the registers are shown in Figure 2.10.

Theoretical background 14

Table 2.2: Description of all the main pins used to implement the
industry standard JTAG IEEE Std 1149.1 [2]

Pin Description

TCK (Test Clock Input)

TCK is an input pin used by an external
device to synchronize the serial data stream
at input and output pins with the JTAG

test access port state-machine.

TDI (Test Data Input)

TDI pin is used as an input for the external
devices to transfer a serial stream of data.
The test data is loaded at the rising edge of

TCK.

TMS (Test Mode Select)

TMS input is used to control the movement
in JTAG test access port state-machine.
TMS signal is loaded at the rising edge of

TCK.

TDO (Test Data output)
TDO is an output pin to a serial stream of
data to external test devices. Output data is

returned at the falling edge of TCK.

TRST (Test Reset)
TRST is an optional input pin used to

asynchronously reset the JTAG regardless of
the state of other signals.

Theoretical background 15

TMS=1

TMS=0

TMS=1

TMS=1 TMS=1
TMS=0

TMS=0

TMS=0

TMS=1

TMS=1

TMS=1

TMS=0

TMS=0

TMS=1

TMS=0

TMS=0

TMS=1

TMS=0

UPDATE DR

SELECT DR SCAN

EXIT 1 DR

EXIT 2 DR

TMS=1

TMS=1

TMS=0

TMS=0

TMS=1

TMS=1

TMS=1

TMS=0

TMS=0

TMS=0

TMS=0

UPDATE IR

SELECT IR SCAN

CAPTURE IR

EXIT 1 IR

EXIT 2 IR

TMS=1

TMS=1

TEST LOGIC RESET

RUN TEST IDLE

CAPTURE DR

PAUSE DR PAUSE IR

SHIFT DR SHIFT IR

Figure 2.9: JTAG tap state machine used to control JTAG opera-
tions

Theoretical background 16

DATA REGISTER

DATA REGISTER

BYPASS REGISTER

TAP CONTROLLER

TCK TMS SELECT

TDI TDO

INSTRUCTION REGISTER

Figure 2.10: General simplified JTAG system overview

Chapter 3
JTAG interface

Basics of the JTAG tap controller and register configuration was recently presented
in the background chapter. This chapter will go through the JTAG implementation
where these basic structures have been used to create an interface to configure the
system and perform memory operations.

3.1 JTAG implementation

The JTAG interface is used to externally configure the BIST system and perform
memory operations. The different configurations and operation options are shown
in the Table 3.1 and 3.2. The data register is shown in Table 3.3. These registers
are implemented similarly as in Figure 2.10 with a bypass register to circumvent
the JTAG overhead.

The JTAG registers and operations are controlled by the JTAG tap state ma-
chine implemented as in Figure 2.9. Registers include shift register where data are
inserted serially through the TDI pin, a trigger flag indicates when all data have
been inserted. This valid flag is high until either the registers have been reset or
altered. Data from the registers can be parallel loaded to the components that
use the data internally. However, the data is still loaded serially through the TDO
due to the pin restriction.

3.2 JTAG burst implementation

A JTAG burst component was developed to increase the speed of memory oper-
ation via JTAG. This is especially used when writing the compiled program data
to the instruction memory. The normal JTAG memory operations involve several
steps to perform a write operation to a selected address. Initially, the JTAG tap
state machine needs to get into the state where the instruction register is loaded
to perform with the correct values to target registers. It should thereafter return
to the initial idle state before the next step. The next step is once again to get the
state machine into the state where the selected data register can be loaded with
values. Tables 3.2 and 3.3 shows that these two data registers need to load values
before a valid JTAG memory operation can be done. Register in 3.3 contains either

17

JTAG interface 18

Table 3.1: JTAG configuration register 1 sub-field information

Configuration Register 1
Register
Section

Section
Length Section Description

ECC test 1 bit Bit used to start the ECC bist test
instead of the MBIST

Memory
margin

Custom for
memory size

Memory margin contains the
information used to configure internal

timing for memory components

End
address

Memory address
width

End address is used to specify the end
of a memory section which is targeted

by the test algorithm.

Start
address

Memory address
width

Start address is used to specify the
start of a memory section which is
targeted by the test algorithm.

Algorithm
select log2(Algorithms) Algorithm select is used to choose one

of the available test algorithms.

Overflow
enable 1 bit

Overflow enable toggles whether the
test should allow overflow of error
logger or not. The test is stopped
when overflow is detected and not

allowed
Pause 1 bit Used to pause running test.
Stop 1 bit Used to stop running test.
Start 1 bit Used to start selected test

JTAG interface 19

Table 3.2: JTAG configuration register 2 sub-field information

Configuration Register 2
Register
Section

Section
Length Section Description

Burst
enable 1 bit Used to enable the memory burst read

and write component

JTAG byte
enable

data width
8

JTAG byte enable is used when a
memory write operation is performed

through JTAG to write to selected bytes.
JTAG
write
enable

1 bit JTAG write enable is used to determine
memory write or read operation.

JTAG
address

Memory
address
width

JTAG address selects a memory address
where read or write operations is

performed.

Error log
address

Error log
address
width

Selects one address in error log where
read or write operation can be performed.

Error log
override 2 bit

Used to select error log operation between
three operations. Read error count, read
error information, and write operation.

JTAG
override 1 bit

Used by to override other components
and enable memory read and write

operations through JTAG.

Table 3.3: JTAG data section information

Data Register
Register
Section Section Length Section Description

JTAG data Max(Memory data,
error log data)

Register used to load data from
read and write operations through

JTAG. This is used both by
memory and error logger.

JTAG interface 20

data to be read or written to memory, while register in Table 3.2 selects operation
and address. This register and state machine operation procedure contains a large
amount of overhead.

JTAG Burst
Component

Memory Wrapper

Program
Memory

Data
Memory

GPIO

JTAG
Interface

Figure 3.1: JTAG burst component integration with memory and
JTAG controller.

The JTAG burst component targets the JTAG memory operation overhead, the
proposed architecture is displayed in Figure 3.1. The main idea is to exploit that
memory operations often are done in block sections. This enables that only a
start and an end address of this block and the operation to be carried out needs
to be specified once. This approach will eliminate the constant overhead work to
update register in Table 3.2 where the target address and operations information
are located. However, it still exists overhead operations to constantly update the
data register.

During writing operations, this overhead can be reduced by the assumption that
all data streamed in after the JTAG burst component has been configured to be
considered as valid data in a write operation. All valid data can then be shifted into
a register and then when it is full it can be written to memory. Read operations
overhead can be reduced in a similar reversed fashion. A memory read operations
can be performed to load the register directly. The data can thereafter be shifted
out each cycle without any JTAG register configurations. These processes will
be repeated until the selected operation has been applied to all addresses in the
specified block.

The expected performance gain is dependent on the burst length and number
of pins added to the design to input and output data. Other important factors
are the cycles needed to configure the JTAG registers in Table 3.1, Table 3.2 and
Table 3.3. The time required for normal JTAG mode to write data for different
configurations is shown in equation 3.1. Length variable accounts the number of
addresses in the burst length and the T variables represents the time needed to
configure each register in the Table 3.1 (T1), Table 3.2 (T2) and Table 3.3 (Tdata).

JTAG interface 21

Tnormal = length · (T2 + Tdata) (3.1)

Tburst = (T1 + T2) + length · ceil(32

pins
) (3.2)

In equation 3.1, the total time cost for normal JTAG memory operations increases
linear dependent on the length. Equation 3.2 shows a similar linear dependency on
the length and an initial cost of the register configurations. The main performance
difference when the length increases will be the factor that is repeated for every
address as the initial one time cost impact decreases. By default, Tdata is larger
than the length factor due to the cost to control JTAG registers and insert the
data. As the pins divider increases the performance differences increases.

Chapter 4
Built-in self-test and RISC-V

implementation

The required general background information was previously presented to under-
stand the memory problem components. This chapter will explain how the current
memory BIST architecture was implemented and what problems it mainly targets.

4.1 BIST architecture

The memory BIST was implemented to be configurable and flexible for extensions.
It should also be easy to use the BIST and tailor it to meet the requirements of
a system. This specifically includes the ability to update different memory test
algorithm to target certain memory faults. Important factors to consider are the
memory specifications. The BIST should be able to easily be connected to mem-
ory with an arbitrary data width and address width. Other memory proprieties
to consider is the operation delay of read and write. All these standard require-
ments are provided as a parameter to be configured according to the requirements.

Aspect to consider during architecture implementation is the critical paths. The
BIST should preferably not be the limiting factor of the system clock speed. This
is achieved by making sure that the combinational paths are kept as short as pos-
sible. Common techniques to achieve this is to use pipeline or to take advantage
of the fact that some calculations can be done in an later stage. The BIST system
overview can be seen in Figure 4.1.

4.1.1 Test controller

The test controller’s main purpose is to control the test runs according to the input
configuration provided through JTAG. This includes control signals such as start,
stop, and pause of the selected algorithm test run. An overview of the different
control signals can be seen in the Table 3.1. The start and end address of the
test can also be specified via JTAG. This enables the possibilities to run a full
memory test down to fine-grain specific memory address test. An advantage of
this approach is that every error that can be covered by the test algorithms can
be found and correctly stored in the error logger. If there exist more errors than

22

Built-in self-test and RISC-V implementation 23

Algorithm
Bank

Memory
Interface

Test
Controller

Memory

Error
Comparator

Error
Buffer

Error Logger
Memory

Error Logger Controller

Figure 4.1: BIST implementation architecture overview

error logger memory could store, the detailed information regarding these excess
errors would be lost due to memory overflow in the error logger memory. This is
solved by running the algorithms on targeted sections of the memory.

The controller also incorporates status signals from other BIST components such
as the error buffer and error logger controller. The Error buffer status signal in-
cludes the information regarding if the buffer is about to overflow or not. The test
controller then uses this information to toggle the pause and start of the test run
to avoid overflow and information loss. Signals between the test and error logger
controller are mostly used to execute operations on the error logger memory and
to configure the error logger.

4.1.2 Algorithm bank

An algorithm bank BIST architecture was presented and used in [10] with a de-
multiplexer to select between the generated memory sequences. This approach
enables an easy extension of BIST with additional algorithms as new algorithms
only have to be added to the bank and connected to the output demultiplexer and
input multiplexer which selects between algorithms. The algorithm bank contains
all the hardware of the implemented test algorithms. All implemented test algo-
rithms are displayed in the Table 4.1. The fault coverage and the operation count
of the algorithms are shown in Table 4.2. These algorithms were implemented due
to the fault coverage of the basic and common errors in memories discussed in the
theoretical background chapter. The algorithm bank can easily be extended with
parameter configuration and implementation of the algorithm. Additional hard-
ware costs beyond the implementation itself are the larger multiplexers used to
select between the algorithm signals passed onto the memory interface. This extra
deep multiplexers also add extra latency to a potential critical path to the memory

Built-in self-test and RISC-V implementation 24

input. Another potential but small hardware cost is the additional flip-flop in the
algorithm select register needed to select each algorithm.

In addition to the standard MARCH memory test algorithm, an enable test algo-
rithms were developed to mainly target the byte enable faults (BEF) in certain
memories. The byte enable test is based on the basic MATS algorithm with an
extended write and read sequence to test each byte. It will only write a particular
data set to an address where one byte is targeted at a time. The comparison stage
will then check if the other bits in the word have been altered even though they
were not targeted at a byte write. The byte read operation in Table 4.1 indicates
the expected value of the targeted byte section, while the other bits are expected
to have the opposite value.

Table 4.1: Implemented test algorithms stored in the algorithm bank
and their operation sequence

Algorithm Write and Read Sequence
MARCH MATS {l (w0); l (r0, w1); l (r1)}

MARCH C- {l (w0); ↑ (r0, w1); ↑ (r1, w0); ↓ (r0, w1); ↓
(r1, w0); l (r0)}

BYTE ENABLE
TEST

{l (w0); ↑ (r0, w1B0); ↑ (r1B0, w0B0, w1B1); ↑
(r1B1, w0B1, w1B2); ↑ (r1B2, w0B2, w1B3); ↑

(r1B3); l (w1); ↓ (r1, w0B0);
↓ (r0B0, w1B0, w0B1); ↓

(r0B1, w1B1, w0B2); ↓ (r0B2, w1B2, w0B3); ↓
(r0B3)}

Table 4.2: Implemented test algorithms fault coverage and operation
count. N is the number of memory addresses

Algorithm Fault Coverage Operation
Count

SAF AF TF CP BEF
MARCH
MATS X X 4n

MARCH C- X X X X 10n
BYTE

ENABLE
TEST

X X X 26n

Built-in self-test and RISC-V implementation 25

4.1.3 Memory interface

Memory interface components contain a combinational connection from the algo-
rithm block multiplexer directly towards the memory wrapper. Logic in this stage
is kept as small and fast as possible to have low delay to ease memory timing
closure. The only combinational logic in the data path is a small multiplexer to
enable memory operations through JTAG.

The component also includes a configurable delay chain that is used to pass on
values to the error comparator from the algorithm bank. Information passed on
to the error comparator are the data expected from the memory read operation,
address, and byte enable. If the memory has a read latency of 1 clock cycle, all
values need to be delayed by the same time.

4.1.4 Memory wrapper

Memory wrapper is implemented in a generic manner to ease the integration pro-
cess for different configurations. A single IP memory of arbitrary size can be
integrated into the wrapper and used as a standard block to create larger memo-
ries if required.

The wrapper structure consists of memory instances and the internal control logic.
Control logic component is bidirectionally connected to each of the memory in-
stances. This connection involves all the required signals to perform memory
operations. All memory instances added together create a larger memory to cover
the configured address space. The control logic will use a part of that address
space to determine which one of the memory instances to be selected and the
other part is used internally by the memory instance to select a word. Figure 4.2
shows an overview of the memory wrapper.

Memory
Instance

Memory
Instance

Memory
Instance

Memory
Instance

Address Delay Instance
Logic

Read Data
Memory Signals

Figure 4.2: Memory wrapper structure with memory instances con-
nected to the control logic

A sequential BIST architecture proposed in [11] and a parallel BIST architecture

Built-in self-test and RISC-V implementation 26

proposed was proposed in [12]. The parallel architecture has the main benefit
of testing multiple memory instances at once which improves testing time signifi-
cantly. This requires a more complex system with more hardware which results in
more area and power. The sequential architecture was proposed in [11] as the more
area-efficient architecture as the hardware could be shared between the instances.
As area and power are more of a concern the sequential approach was selected
instead of the high test time performance parallel architecture.

4.1.5 Error comparator

The error comparator is a pure combinational component with the main task to
identify if there exists an error in the memory read data. Its input used to perform
comparison are the memory read data and the algorithm generated expected data
at the targeted address. The algorithm generated data is reduced down to only
1 reference bit instead of its data width. This compression has some beneficial
consequences such as the reduced hardware and power usage in its data path.
Hardware savings such as fewer data wires, the smaller multiplexer in the algorithm
block, and fewer flip-flops in the memory interface delay chain. The cost of this
increases complexity in the error comparator where the complete data width has
to be generated. Generation of the data array is based on the byte enable and
reference data. This can be constructed in a basic structure as in Figure 4.3.
When byte enable is low it will set each bit in the byte to the reference data.
When byte enable is high it will set each bit in the byte to the inverse of reference
data. This approach adds a small stages of logic levels keeping the combinational
propagation delay as low as possible after the memory. The propagation delay of
this stage was of concern during implementation because of all the combinational
logic depth from the memory read path.

Memory
Data [MSB]

Reference
Data [MSB]

Byte
Enable

Comparison
Array [MSB]

Memory
Data [LSB]

Reference
Data [LSB]

Byte
Enable

Comparison
Array [LSB]

Figure 4.3: Generation of comparison data with two layers of XOR
gates when byte enable is active low.

These two data sets are then compared with another array of XOR gates that
will output a result array with the same width. The resulting array will only

Built-in self-test and RISC-V implementation 27

contain zeros if the two compared data sets are similar. Any non zero result array
indicates an error has been detected. As a result of the detected error, it will then
raise an error flag. The error flag will be sent to both the error buffer and as a
system output from the BIST. The error status flag will be used as a write enable
to the error buffer. The data array provided by the error comparator to the error
buffer will contain the memory address, an error code, and the comparison result.

4.1.6 Error buffer

All components previously mentioned in the BIST can operate at a speed of a
single clock cycle. However, the error logger controller performs multi-cycle eval-
uation of the detected errors. These two domains with different throughput speed
can operate smoothly if errors occur with at least the error logger latency apart.
However, if the errors occur faster than this latency, the system needs to pause and
wait for the error logger controller to finish its evaluation. The consequence of this
is a lower test speed. Another problem with this pause approach is that test opera-
tions are already in the pipeline about to execute. The information after the pause,
therefore, needs to be stored or to run at a lower speed not to lose any information.

The error buffer added to counteract the speed penalty related to detected er-
rors within the error logger controller latency. The implementation is based on
a circular buffer displayed in Figure 4.4, with its corresponding, read and write
buffer pointers. Initially both read and write pointer is located at the origin ad-
dress when the buffer is empty. When the write enable signals from the error
comparator have a rising edge the data will be stored at the write pointer loca-
tion. Write pointer buffer address will then be incremented to point at the next
address. The read pointer points at the address which is currently under evalu-
ation by the error logger controller. When the evaluation of the buffer data has
been finished, it will be incremented to point at the next address. A system pause
will only occur if the write pointer increases to fast and overflow to eventually
catch up with the read pointer. The pause signal will be active until the read
pointer increments. The buffer is considered to be empty when the read pointer
catches up with the write pointer and the error logger controller signals that the
data have proceeded.

The different data section width is configurable through parameters to ease in-
tegration in an arbitrary system. The size of the buffer itself is also configurable
as a parameter. A trade-off has to be made between the hardware cost of the
buffer size and the potential speedup possible.

4.1.7 Error logger controller

The error logger controller main tasks are to provide memory error information for
further analysis. Information to be extracted is the memory address, the position
of the most significant bit (MSB) error in the data array, the number of errors
and the error code. However, the controller will initially iterate through the used
space in the error memory to survey if the error address already have been stored.

Built-in self-test and RISC-V implementation 28

Buffer

Pointer LogicInsert
Fetch

Read Data OutWriteData In

Status

Figure 4.4: Circular buffer with read and write pointers

This is to avoid multiples of similar error information as the algorithm will write
and read to each address several times.

Error logger controller uses the data comparison array provided by the error buffer.
The initial step taken is the error count from the comparison. The previous XOR
comparison generates a value 1 at every bit where a detected miss-match occurred.
The number of errors in that memory read is therefore equal to the sum of bits
with the value 1. To calculate the sum of these bits, a chain of full adders is
used to perform an addition between all bits. The output of this chain is then a
log2(N) bit array with the sum. The next step in the error logger is to calculate
the position of the MSB 1 which is obtained with an integrated priority encoder.
The generated error code from earlier stages is passed onto the memory.

A priority encoder is a circuity that has an arbitrary N bit input array which
converts down to a log2(N) bit binary array. This array contains the position of
the leading 1 bit. When a high priority 1 bit in the input array is detected all
other input values are neglected. A truth table of a 4 input priority encoder is
displayed in Table 4.3. Only inputs arrays larger than 0 are considered as valid
inputs. Figure 4.5 contains the circuit of truth Table 4.3.

Table 4.3: 4 input priority encoder truth table. X is used to indicate
neglected do not care bits. Higher number in input indicates
higher priority.

I3 I2 I1 I0 O1 O0 Valid
0 0 0 0 X X 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1
0 1 X X 1 0 1
1 X X X 1 1 1

Built-in self-test and RISC-V implementation 29

Valid

O0

O1I3

I2

I1

I0

Figure 4.5: 4 input priority encoder circuit

The controller enables read and write operations via JTAG which is passed on
from the test controller. Two different read operations can be done, one to read
the total amount of errors registered and the other to read an address in the error
memory. The write operation is simplified to write either an array with only 0 or
1 bits.

The algorithm test will be stopped when the controller detects an overflow in
the error memory is about to occur as a default setting. The overflow of the error
memory can also be toggled through the controller to enable the possibility of
counting all the errors in the memory without stopping. This is done through the
JTAG configuration passed on from the main test controller. When all data in the
buffer have been processed it will send a done signal to the main test controller to
make it aware of the event. An overview of the error logger is seen in Figure 4.6.

FSM Controller

Error
Counter

Priority
Encoder

Error Buffer Error Logger

Status

JTAG
Registers

Figure 4.6: Error logger overview

Built-in self-test and RISC-V implementation 30

4.1.8 Error logger memory

The error logger memory contains configurable storage of the final error results.
It mainly consists of the error log register where each address contains the data
sections in Table 4.4. It also includes an error counter. This counter is only used
to keep track of the total number of errors found which is especially of interest
then error overflow is enabled via the control signals. An overview of the error
logger is seen in Figure 4.7

Table 4.4: Error logger data sub-field

Error log register
Register
Section

Sub-filed
Length Sub-field Description

Memory
address

Memory address
width

Contains the address information
where in the main memory where a

fault was detected

Error
position log2(Data width)

Information where the least
significant fault was detected target

address
Error
count log2(Data width) Sum of all errors detected on target

address

Error code log2(Algorithms) Contains information about the
algorithm used in the test

Data In
Error Memory

Control

Error Counter

Controller Data Out

Status

Figure 4.7: Error logger overview

Built-in self-test and RISC-V implementation 31

4.1.9 Memory error models

A memory error model was created during the verification of the BIST functional-
ity to detect and process the errors. These error models were implemented in the
memory hardware description language (HDL) as a configurable addition. The
first errors models implemented was the bit-cell transition failure. The result of
a transition failure is that the current value on a bit is stuck at the current value
and when a write operation is performed, it will remain the same.

The faulty coupling effect between the bit-cells was also modeled. The error model
is implemented in a way that during a write operation to a certain row it would
affect the value of another row. The interference between rows is fully configurable
and did always occur when one of the addresses were targeted. The implemen-
tation would equate as if the address decoder would target both rows during the
write operation.

Address decoder fault is also included in the error models. This error model maps
the input address to the address decoder to a different address in the memory
macro.

4.1.10 Memory test redundancy

The testability of the memory is considered a key feature of the SoC as mentioned
before. Therefore, different precautions was taken to counteract the effect of po-
tential manufacturing defects on this functionality.

A critical error would be if the JTAG were to fail. This would results in a non-
usable MBIST, because of the required configuration and control signals can not
be set. A set of default configurations are therefore hardcoded and a top-level
start pin added to enable the test. This would trigger a full memory test with the
MARCH-C algorithm. Detected errors would only be visible at an error pin and
thus all detailed error information is lost. Only the address of the detected errors
can be determined by the time between the start and the error found.

Another critical error would be if the MBIST itself would fail. A memory test
could then only be done through the JTAG or the JTAG burst interface. The test
time needed would increase and all read data processing has to be done externally.

4.2 ECC and BIST architecture

An ECC interface between the RISC-V core and the memory system is used to
increase the systems fault tolerance against potential memory errors. The ECC
component is responsible for correct decoding and encoding the data transmitted
for all memory operations. Correct functionality is vital for a properly working
system. A test component has therefore been developed to verify that basic ECC
functionality is fulfilled. The test system needs to override the processor core sig-

Built-in self-test and RISC-V implementation 32

nals to the ECC modules when test stream data are applied. A system view of
how the ECC tester shares the ECC modules with the RISC-V core is displayed in
Figure 4.8. ECC tester controls the muxing between the processor and test data
while active. The proposed internal architecture of the ECC bist component can
be seen in Figure 4.9.

Memory

ECC BIST

Memory
BIST

RISCV
Core

S
el

ec
to

r

ECC

BIST

Figure 4.8: ECC top level implementation architecture overview

Test
Controller

Data
Generator

Data
Comparator

Error
Memory

ECC
Modules Memory

Inject
Error

Figure 4.9: ECC implementation architecture overview

4.2.1 Test controller

The test controller is controlled through the JTAG registers similar to the MBIST
system. The control signals required are the start address, end address and the

Built-in self-test and RISC-V implementation 33

test enable. A control FSM will generate controls signals to the data generator,
error injector, data comparator, and finally the memory signals. There are three
different tests that will be used to make sure the ECC operates correctly. The
initial phase is to mimic normal operations where no faults are inserted. In the
second phase, it will insert an error to the initial bit. The last test inserts two
errors to the test data. This procedure is repeated on the entire memory section
which is selected through JTAG as mentioned before.

4.2.2 Data generator and error injection

Data generator stores a set of hard-coded default values that will be used as test
data. Each address increment from the test controller will select a new value to
be written. When all values in the data generator have been used it will loop
and start to use the first one again. The encoded data is then passed onto the
error injection component. The error injector uses a control signal from the test
controller to determine which test phase its in and then inject errors accordingly.

4.2.3 Data comparator and error memory

The data comparator main task is to make a comparison of the decoded data from
the ECC modules to match the expected data in the test and if not raise an error
flag. It has inputs from the test controller, data generator, and the ECC modules.
The test controller communicates which test phase is active. This signal includes
the expected error pattern injected. The data generator provides the data used as
the expected reference data. The ECC modules provide the decoded data to be
compared. It also generates a data width signal with a one-hot encoding of the
detected error positions. All these signals are then used to perform a compari-
son between the decoded data and expected data. A comparison of the decoded
and expected error position location is also made to verify functionality. An error
signal will turn high if any of these comparisons fail. This error signal is passed
on to the error memory as a write enable. The information stored in the error
memory is the test phase and which comparison failed. This information can then
be extracted through JTAG in a similar procedure as in the MBIST error memory.

4.3 RISC-V core integration

This section presents the RISC-V based processing unit of the system which will be
implemented in the core wrapper. The wrapper includes the embedded core and
its interface to the data memory, instruction memory, and the ECC component
multiplexer toggle for redundancy.

Built-in self-test and RISC-V implementation 34

4.3.1 RISC-V core

The RISC-V homepage displays available hardware [13] where several processor
cores and complete SoC platforms are displayed. Many of them are under com-
pany commercial licenses but there also exist several open-source cores. This list
was used to select a suitable core to be integrated into the system. Important
specifications that the core had to full-fill were a 32-bit core with an open-source
license that enables modifications and usage. The requirement for the RISC-V ISA
extensions was the use of the RV32I instruction base with the support of integer
multiplication and atom instructions. Other important factors for the selection
are silicon-proven design with a supported tool-chain as possible.

The selected core was the formerl RI5CY [14] which now goes under the new
name cv32e40p. RI5CY originated from the PULP platform where it has been
one of the standard base cores in several different architectures. The original core
has also been integrated and used in several tape-outs [15]. The supported in-
struction set is the RV32IM[F]C which covers the previously mentioned RISC-V
ISA requirements. The floating-point extension is optional as the hardware is con-
figurable to support it or not. The extensions and their supported functionality
description can be seen in Table 2.1. The processor core is made of a four-stage
pipeline which consists of the instruction fetch (IF), instruction decode (ID), ex-
ecution stage (EX), and the write back stage (WB). Pipeline forwarding is also
supported to decrease the pipeline stalls negative effect on the performance. The
core architecture and the most important component blocks can be seen in Figure
4.11.

Figure 4.10: Cv32e40p RISC-V core image from [1]

The core has two components which are connected to an external system. The
first stage primarily consists of the instruction fetch buffer whose main task is to
provide one instruction to the ID stage per clock cycle from the instruction mem-

Built-in self-test and RISC-V implementation 35

ory. A potential bottleneck might also be how fast the instruction interface can
provide the instructions. The other interface components are the load and store
unit which manages the access of the data memory. Access includes executions
results writes and data reads. Access can be configured to support 32-bit words,
half-words, and single bytes.

Both single- and multi-cycle instructions are supported by the core. The range of
allowed cycle instructions is between 1 and 32. Data hazards and load data hazard
will result in a single cycle penalty. The data hazard penalty occurs when a jump
register instruction depends on the result of an immediately preceding instruction.
The load data hazard penalty occurs when the instruction immediately follows a
load that used the result of that load.

The core incorporates several control and status registers (CSR). These also have
performance counters included and the location of these registers is in the execu-
tion stage CSR component. Performance counters will mainly be used to extract
executions times of the benchmarks. The utilized performance counter is called
mcycles which consists of two 32 bit register where the number of cycles are stored
since it was active. Time measurements can be conducted by an initial read of
mcycle when the timer starts. The program is finished by a final mcycle read
where the execution time is the difference between the values.

4.3.2 RISC-V core interface

Figure 4.11 displays memory interface used by the core. The instruction interface
is between the prefetch buffer and the instruction memory while the data interface
is between the load and store unit and data memory. The instruction interface is
limited to only perform read operations while the data interface can both execute
read and write operations. All signals used by the interface are visible in Table 4.5.
All signals used to perform write operations are not used by the prefetch buffer
because it only performs read operations. All these signals are not standard ports
used by the available standard IP and thus the handshake procedure between the
core interface and memory is embedded into the core wrapper. When a memory
operation from the core is instantiated it will be guaranteed direct access and con-
trol of the memory. Therefore, a constant clock cycle delay between the core and
memory operations can be used to control the handshake procedure where it is as-
sumed that the correct data will be in place at the correct timing. This handshake
procedure involves the signals data_req_o, data_rvalid_i, and data_gnt_i.

The waveforms timing diagram in Figure 4.11 shows how a memory transaction
and multiple back to back memory operations are executed via the load-store unit.
During operation, the core sets the signal output data_req_o to high when it re-
quests new data to be loaded or written. At the same time, it specifies the targeted
address, output data, byte enable, and write enable signals. The memory wrappers
will then set data_gnt_i to high when it is ready to serve the operation request.
When the request has been approved to be served new values for another memory
operations can be set without affecting the previous. When the memory has pro-

Built-in self-test and RISC-V implementation 36

Table 4.5: RISC-V core memory interface signals

Signal Name Port
Direction Signal Description

data_gnt_i Input Used by the other component to grant
memory operation request.

data_req_o Output
Single bit used to indicate valid request.
Stays high until data_gnt is high for one

cycle
data_addr_o Output Memory target address

data_we_o Output
Write enable high for write and low for

read operation. Combined with
data_req_o.

data_be_o Output Byte enable high during write and low
during read operations

data_wdata_o Output Data to be written to memory, sent
together with data_req_o

data_rdata_i Input Data retrieved from memory read
operation

data_rvalid_i Input Used to indicate if read data is valid.
High during one cycle per request.

Built-in self-test and RISC-V implementation 37

cessed the operation it will provide read data at signal data_rdata_i and flag that
the operation finished by setting data_rvalid_i to high. Signal data_rvalid_i is
also set to high to indicate a write operation have been executed as well.

Figure 4.11: Cv32e40p RISC-V memory interface operation

4.3.3 System overview

The system architecture overview with the integrated RISC-V core is seen in Fig-
ure 4.12. The thick grey lines represent the configuration signals from the JTAG
interface to the sub-modules. All selector components are configurable multiplex-
ers, there exist two modes, test mode and normal operation.

Built-in self-test and RISC-V implementation 38

JTAG

Memory
BIST

JTAG
Burst

RISCV
Core

ECC
BIST

Selector

Selector

GPIO

ECC Modules Memory

Selector

Figure 4.12: System architecture overview

Chapter 5
Result and Verification

This chapter presents post synthesis results and simulations if not stated otherwise
used to perform functionality verification and measurements regarding area, power
and frequency. Parts of the design has also been sent for fabrication. Memory and
digital logic are within the same power and clock domain. The corner used during
the results are typical typical under 25 degree temperature for standard threshold
voltage transistors.

5.1 JTAG burst

Table 5.1 display the performance comparison between the speed of performing
memory read or write operation for 100 memory addresses where the data width
was 48 bits. Memory operations performed through normal JTAG procedure re-
quired 16400 cycles on 100 different addresses. This number will be used to calcu-
late the performance improvement. The amount of clock cycles used to configure
the burst component required 117 cycles. This time cost is fixed for all burst op-
erations. The measurement was taken from the first cycle when the serial JTAG
data was shifted onto the input. The end of measurement was when the JTAG
tap returned to the idle state and done with the operation.

The addiditon of a single pin

Table 5.1: Comparison of burst memory operation and normal JTAG
performance

GPIO PINS Clock Cycles Speedup
1 4917 3.34
2 2517 6.52
3 1717 9.55
4 1317 12.45
5 1077 15.23
10 597 27.47

39

Result and Verification 40

5.2 Memory BIST

The MBIST system configuration used during this verification chapter is a 48 bit
memory wrapper constructed from a 32 bit and 16 bit memory. The total memory
address width is 16 bits including the instruction and data memory which shares
the MBIST.

Figure 5.1 show the basic MARCH MATS algorithm generated test data to the
memory over the address range 4 to 5. In the figure it can be seen that it initially
writes 0 to all targeted addresses. A write is performed when signal Write_Enable
is high and the data written is displayed in the Write_Data signal. A write re-
quires one clock cycle to be performed which can be seen at the internal memory
signals named Memory that latch the written value one cycle after each performed
write. The state machine generates the algorithm data signals when the entire
test procedure is done with the Test_End signal at the bottom of the waveform.

0000 0004 0005 0004 0005

000000000000 FFFFFFFFFFFF 000000000000

XXXXXXXXX 00000000 FFFFFFFF

XXXXXXXXX 00000000 FFFFFFFF

Start

Address

Write_Enable

Write_Data

Memory[5]

Clk

Test_End

Memory[4]

Figure 5.1: BIST default generated memory signals from a run of
MARCH MATS algorithm on two addresses

Figure 5.2 display the data comparison stage from the algorithm generated in Fig-
ure 5.1. No errors have been inserted during this test and thus it should not give
any error indications. The algorithm provides the comparator the expected data
which is generated from the signals Reference_Data and Bit_Enable. Low value
at signal Bit_Enable will make the corresponding data used in the comparison the
same as the Reference_Data. Value 1 will instead use the inverted value during
comparison. The comparison is only made when the Compare_Active signals is
high. As seen at the Error_Found signals, no errors are detected as expected in
this non faulty simulation. The spike at Error_Found is a combinational glitch
when Reference_Data changes value.

Figure 5.3 displays test data generated from the MARCH_C algorithm where it
targets address 4 to 6. However an address decoder error has been inserted into
this model. As seen the address decoder targets address 4 when the MBIST se-
lects both address 4 and 5 during memory operations. The write to address 5 will
therefore write to address 4 instead which can be seen in the figure where value 1

Result and Verification 41

000000000000

000000000000 FFFFFFFFFFFF

Clk

Bit_Enable

Compare_Active

Read_Data

Reference_Data

Error_Found

Figure 5.2: BIST default comparison of memory signals and refer-
ence data

is written to all bits at Memory[4]. This error results in that the Memory[5] value
remains unknown.

Start

0000 0004 0005 0006 0005 0004 0005 0006 0000Address

Write_Enable

XXXXXXXX 00000000 FFFFFFFFMemory[6]

XXXXXXXXMemory[5]

Test_End

XXXXXXXX 00000000 FFFFFFFFMemory[3]

Clk

Figure 5.3: BIST default generated memory signals from a run of
MARCH C algorithm on three addresses

Figure 5.4 show the data comparison where an error is found due to the inserted
error. As seen in the figure, the error is found during the last comparison of ad-
dress 4 where the algorithm expect value 0. However, when the algorithm wrote
values of 1 to address 5 it overwrote value 0 at address 4 due to the address decoder
error. When the algorithm then reads values of address 4 it will detect the error.

Clk

000000000000 FFFFFFFFFFFF //Read_Data

Reference_Data

000000000000Bit_Enable

Compare_Active

Error_Found

Figure 5.4: BIST comparison of memory signals and reference data
with an address decoder fault

Result and Verification 42

5.3 ECC BIST

The ECC BIST system configuration used in this verification is based on a 32 bit
system. It can correct up to two errors and require 42 bits to detect and correct
these errors. Figure 5.5 shows the test controller and the generated test data. In
a test there are three different test phases. These can be seen in the Inject_Error
signal under the active high Test_Active signal. The Data_In signal displays
the generate data that have been encoded by the ECC that is written to memory.
Signal Error_Data is the output from the error injector component. As seen during
phase 0 both Data_In and Error_Data both are the same. However during phase
1 the initial bit has been inverted and during the second phase the first two bits
has been inverted to inject errors.

Test_Active

0 1 2Inject_Error

// 08cb0be4329 24e727f8136 24e727f8136 024381c2608 024381c2608 // //Data_In

// 08cb0be4329 24e727f8136 24e727f8137 024381c2609 024381c260b // //Error_Data

Clk

Figure 5.5: ECC BIST test data generation

Figure 5.6 display the comparator unit when the ECC modules work as expected.
The reference inputs will be the expected data and error positions while the ECC
modules outputs will provided the decoded data and decoded error position. As
seen in the figure there are only glitches on the Error_Detected signal during the
comparsions and no fault is found as both data and error positions match during
the comparsion when Compare_Active is high.

Compare_Active

Clk

00000000

12345678

00000000

56789abc

00000000

12312312

//Decoded_Data

12345678 56789abc 12312312 //Expected_Data

00000000000 1 00000000000 3 //Detected_Error

00000000000 00000000001 00000000003Expected_Error

Error_Detected

Figure 5.6: ECC BIST test reference and data comparison

In Figure 5.7 faulty ECC modules has been inserted to test the functionality of
the ECC tester. In the phase 0 an error was inserted at the first bit. The ECC
managed to correct the data but fails to provided correct error position. During
the second phase it can be seen that the ECC provides correct decoded error

Result and Verification 43

position while the decoded data does not match the expected data. In the final
phase, it fails to correct two errors inserted to the data but still manages to provide
the error position. The signal Error_Detected goes active high and all errors are
stored into the error logger.

00000000

12345678

00000000

56789abd

00000000

12312312

//

12345678 56789abc 56789abc 12312313 //

00000000001 00000000003

00000000000 1 00000000000 3

Clk

Compare_Active

Decoded_Data

Expected_Data

Expected_Position

Error_Detected

Decoded_Position

Figure 5.7: ECC BIST test reference and data comparison with an
errors inserted

5.4 System area

The synthesis area results was used to calculate gate count of the entire system
and important sub-block components. Gate count metric is calculated from the
provided cell area of the target circuit divided by the area of the smallest NAND
gate in the standard cell library. The RISC-V core was implemented using latch
based register instead of flip flop based. This enabled area savings because of the
latch standard cell smaller layout than its counterpart flip flop.

Figure 5.8 shows the area for the top level system blocks excluding the mem-
ory. As seen the RISC-V core occupies the majority of the area as it stands for
over 70% of the total. The second largest block considering area is the MBIST
which occupies over 17% of the total area and the ECC bist and ECC modules
occupies just over 4%. The JTAG interface utilise just under 5% of the total area.

Figure 5.9 shows the area block distribution for the major blocks within the MBITS
component. As seen in the figure the two major area contributes are the circular
buffer and error memory which occupies over 60% if the MBIST area. These are
mainly small storage memories made out of flip-flops. The implemented circular
buffer depth is 8 and the error logger have a depth of 16. The data width of
each depth level in the error logger memory is determined as in Table 4.4. In this
implementation is has a data width of 28 Algorithm block is the third largest area
contributor with just over 16% .

The different processor pipeline stages area distribution are visible in Figure 5.10.
The trend here is not that the internal storage elements CS registers occupy the
largest area since its not implemented by standard cell flip flops but instead latches.

Result and Verification 44

BI
ST

JT
AG

Bu
rst

Ec
c B

IST GP
IO

Clk
ga
te

RI
SC
-V
co
re

0

2

4

·104

12,411

3,494
750

2,829
20 14

50,917

G
at

e
C
ou

nt

Figure 5.8: Top level gate count for the the complete SoC system.

Al
go
rit
hm

blo
ck

Sr
am

int
erf
ac
e

Da
ta
co
mp
ara
tor

Ci
rcu
lar

bu
ffe
r

Er
ror

log
ge
r

Er
ror

me
mo
ry

Gl
ue
log
ic

0

1,000

2,000

3,000

4,000

5,000

2,045

590
250

4,483

583

4,058

275

G
at

e
C
ou

nt

Figure 5.9: Gate count for the important blocks within the BIST
system.

Result and Verification 45

The two largest components here are the instruction decoder and the execution
block of the processor.

RI
SC
-V

co
re

ID
blo
ck

EX
blo
ck

CS
reg
ist
er

IF
sta
ge

LS
U

Sle
ep
un
it

0

2

4

·104

50,917

21,114
17,848

6,482 4,342
1,073 25

G
at

e
C
ou

nt

Figure 5.10: Gate count for the important blocks within the SoC
system.

5.5 Frequency and power

The maximum operational frequency of the system for different voltages are dis-
played in the Figure 5.11. The frequency have been normalized with the smallest
NAND gate propagation delay as reference at 1.0 V. The initial default supply
are 1.2 V where it manages to run at a frequency equivalent of 305 gate depth.
When the voltage supply is decreased with 200 mV the frequency drops by one
third which compares to a gate depth of 454.3. Another 200 mV decrease in supply
voltages decreases the frequency by another 50% to a gate depth of 940.3.

System critical path originate from the memory data outputs. From the out-
put its routed through memory wrapper instance multiplexer and then its routed
to the ECC modules. The decoded ECC data is then routed through another mul-

Result and Verification 46

tiplexer which select if the ECC BIST or processor core should receive the data.
The data is routed to the core where it first goes through the instruction decoder
unit and then is stored in a sequential unit.

Su
pp
ly
1.2
V

Su
pp
ly
1.0
V

Su
pp
ly
0.8
V

400

600

800

1,000

305.1

454.3

940.3

G
at

e
D

ep
th

Figure 5.11: System maximum frequency for different supply volt-
ages

In order to give a number on the BIST and ECC including the memory wrap-
per impact on the critical path of the RISC-V core a gate depth metric is used.
The memory instance delay has been excluded from the calculations. Gate depth
metric consist of the the number of gates placed in a chain that would result in
a similar propagation delay. The base delay used to calculate the result is the
propagation of the smallest NAND gate available in the pdk. The fastest time in
the cell timing table which is generated during the ideal conditions with the least
amount of load capacitance and fastest input slew rate was used. This resulted
in a gate depth of 42.3 gates depth. The memory wrapper data output selection
contributes with 12.5 gate depth and the ECC decoder with the 28.8 gate depth.

Table 5.2 display the leakage and the dynamic power of the two main block in
the system. The power numbers of the smallest NAND gate at 1.0 V have been
used to normalize the data. Power numbers are provided in the amount of equiva-
lent NAND gate in the system that would result in the same power consumption.
Leakage calculations use the NAND gate cell leakage and the dynamic calculations
use the average NAND gate transition power. The numbers are extracted during

Result and Verification 47

a normal MBIST check of 200 first addresses where the BIST does not find any
memory errors. During the BIST operation the core is put in to sleep mode where
the majority of the core is clock gated to lower dynamic power consumption. The
power numbers of the active RISC-V core are generated from the synthesis where
no specific program was executed to generate power numbers. The only non clock
gated components in the BIST are the combinational path from memories through
the ECC to the RISC-V core.

Table 5.2: Leakage and dynamic power numbers for different user
cases

Component Voltage Leakage Dynamic,
BIST active

Dynamic,
RISC active

BIST 0.8V 10831 721 Not Active
BIST 1.0V 17628 1097 Not Active
BIST 1.2V 34074 1354 Not Active
RISCV 0.8V 22439 7 12 630
RISCV 1.0V 31554 9 15 369
RISCV 1.2V 79878 16 30 995

The nomralaized power saving for executing the same BIST operations at dif-
ferent supply voltage are calculated by using the simulation time multiplied with
the above power numbers for leakage and dynamic added together. Numbers have
then been normalised with standard 1.2V supply as the reference 1. Results are
displayed in Table 5.3.

Table 5.3: Power comparison between different supply voltage dur-
ing a standard BIST test

Supply
Voltage 1.2V 1.0V 0.8V

1 0.78 0.54

Chapter 6
Conclusion

A fault-tolerant and energy-efficient RISC-V architecture has been proposed in
this project. Key features of the system targets are the test-ability of the sys-
tem and especially the memory instances. The system includes ECC components
on both instruction and data memory connections to increase the fault-tolerant
capabilities of the RISC-V core operations. An MBIST has been developed and
integrated with the RISC-V core to test the memory. The JTAG interface is used
to control the system and to perform memory operations. Recharacterization of
the standard cells in the pdk was performed for the voltage scaling to look into
the possible power savings that can be achieved.

The selected ECC managed to correct a maximum of 2 errors. It can indicate
the rest of the system that corrected errors have been found and corrected. Posi-
tions of the error in memory are also available from the ECC modules. An ECC
BIST has been developed and integrated to verify correct functionality. The ECC
has the consequence of increasing the number of data bits from the system 32 bit
to 42 bits. This cost results in increasing memory area and power that comes with
more bits. The 42 bit is not a standard power of two numbers that are common
for memory sizes. A 42 memory data width might not be available and force the
system to utilize two memories to accommodate for the extra bits as used in this
thesis where a 16-bit memory was added together with a 32-bit memory to ac-
commodate all bits. This created 6 bits in overhead which create an unnecessary
amount of power and area utilization from the memories.

The area impact of including the ECC modules and BIST can be seen in Fig-
ure 5.8. Compared to the integrated RISC-V core it increases the gate count by
just above 5.5% where the ECC modules stands for 3.5%. The cost of adding the
ECC compare was an addition of 28.8 gate depth to the current 12.5. This is an
increment of 2.3 times the memory wrapper instance multiplexer in the critical
path. The addition of the MBIST to test memories are another 24.4% of the core
size. However, the circular buffer and error memory occupies the majority of the
entire BIST area. These are mostly pure sequential storage units where the size
is based on user constraints and debug requirements. In order to reduce the area
impact these can be decreased, especially the circular buffer which can occupy 8
errors in this configuration. If it were to be reduced down to 2 errors it could
result in area savings up to 27% of the total MBIST part.

48

Conclusion 49

As mentioned previously testing of the memories is considered a key feature. In
case of potential manufacturing failure or design faults of different critical digital
components the memory should still be able to be tested in some basic manner.
Basic test in the meaning that it can detect if any errors are available in the mem-
ory. Therefore, different actions have been taken to increase the test-ability. In
normal operation the MBIST is configured to target a specified memory section
through JTAG with a selected algorithm. However, if the JTAG were to fail it
would result in that no memory test can be performed. To counter this an extra
pin was added to run default bist settings that target entire memory. Detected
errors will be displayed at the error pin. If the BIST were to be faulty memory
test can still be done through either normal JTAG operations or with the JTAG
burst component.

Voltage scaling resulted in a possible power saving up to 46% when supply was
reduced from 1.2 V to 0.8 V when the bist runs its normal test operations in Table
5.3. This comes at the cost of lower operation frequency, where the gate depth
in critical path increases with lower supply voltage. The lower supply in the final
implementation resulted in 3x slower operation frequency.

At the moment three test cases are included in the algorithm bank. Future work
could extend the number of available tests to increase the fault coverage of the
memory. A potential large extensions would also be to develop a BIST to test the
RISC-V core itself in order to diagnose the key components in the system and to
make sure that the system achieves correct functionality. Another topic of inter-
est to be investigated further is the supply voltage selected in the voltage scaling.
Mapping and characterization of memories and standard-cells with smaller voltage
steps could be used to find the most operation efficient voltage for the system in
the used technology.

References

[1] OpenHW group cv32e40p user manual. https://
core-v-docs-verif-strat.readthedocs.io/projects/cv32e40p_um/
en/latest/. Accessed: 2020-08-15.

[2] IEEE standard for test access port and boundary-scan architecture. IEEE
Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pages 1–444, 2013.

[3] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Fla-
mand, F. K. Gürkaynak, and L. Benini. Near-threshold RISC-V core with
DSP extensions for scalable iot endpoint devices. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 25(10):2700–2713, 2017.

[4] S. Kaushik andY. Zorian. Embedded memory test and repair optimizes SoC
yields. In Synopsys, Mountain View, CA, USA, Tech. Rep., Jul., 2012.

[5] Semiconductor industry association (SIA), "international technology
roadmap for semiconductors (ITRS)", 2003 edition.

[6] T. C. May and M. H. Woods. Alpha-particle-induced soft errors in dynamic
memories. IEEE Transactions on Electron Devices, 26(1):2–9, 1979.

[7] V. Chandra and R. Aitken. Impact of technology and voltage scaling on the
soft error susceptibility in nanoscale CMOS. pages 114–122, 2008.

[8] J. Tonfat, J. R. Azambuja, G. Nazar, P. Rech, C. Frost, F. L. Kastensmidt,
L. Carro, R. Reis, J. Benfica, F. Vargas, and E. Bezerra. Analyzing the
influence of voltage scaling for soft errors in SRAM-based FPGAs. In 2013
14th European Conference on Radiation and Its Effects on Components and
Systems (RADECS), pages 1–5, 2013.

[9] E. Blem, J. Menon, and K. Sankaralingam. Power struggles: Revisiting the
RISC vs. CISC debate on contemporary ARM and x86 architectures. In
2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), pages 1–12, 2013.

[10] T. Q. Bui, L. D. Pham, H. M. Nguyen, V. T. Nguyen, T. C. Le, and T. Hoang.
An effective architecture of memory built-in self-test for wide range of SRAM.
In 2016 International Conference on Advanced Computing and Applications
(ACOMP), pages 121–124, 2016.

50

References 51

[11] R. Silveira, Q. Qureshi, and R. Zeli. Flexible architecture of memory BISTs.
In 2018 IEEE 19th Latin-American Test Symposium (LATS), pages 1–6, 2018.

[12] Y. Huang, C. Chou, and J. Li. A low-cost built-in self-test scheme for an
array of memories. In 2010 15th IEEE European Test Symposium, pages
75–80, 2010.

[13] RISC-V homepage available hardware. https://riscv.org/risc-v-cores/.
Accessed: 2020-05-27.

[14] PULP platform homepage. https://pulp-platform.org/index.html. Ac-
cessed: 2020-05-27.

[15] PULP platform project page. http://iis-projects.ee.ethz.ch/index.
php/PULP. Accessed: 2020-05-27.

Design and implementation of testable
fault-tolerant RISC-V system

MATTIAS RODAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

M
A

TTIA
S R

O
D

A
N

D
esign and im

plem
entation of testable fault-tolerant R

ISC
-V

 system
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-803
http://www.eit.lth.se

