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Abstract

In this master thesis we consider some phenomenological aspects of two-Higgs-doublet
models, both elementary and composite ones. The emphasis is on calculating and under-
standing first order phase transitions in such models, constrained to be in agreement with
existing collider data on the Higgs sector. We also consider the contribution to the gravi-
tational wave background of the universe that would originate from such phase transitions,
in order to investigate whether the models could be probed through the LISA, BBO and
DECIGO gravitational wave detectors that are being planned. As a proof of concept, we
find that we can generate model realizations with such first order phase transitions in both
elementary and composite models. In the elementary case, we find at least a few bench-
mark points that would be in the observable range of LISA. However, more data would
be needed to properly investigate correlations between the gravitational wave signals and
other aspects of the models, such as the collider phenomenology.

Populärvetenskaplig beskrivning

Att föremål har massa är inte n̊agonting vi ifr̊agasätter i det vardagliga livet. Att först̊a
varför materiens minsta byggstenar, elementarpartiklarna, har massa är däremot inte s̊a
enkelt. I standardmodellen, som utgör den fysikaliska beskrivningen för naturens allra
minsta best̊andsdelar, spelar den s̊a kallade Higgsmekanismen en avgörande roll för att
förklara hur elementarpartiklar f̊ar massa. Higgsmekanismen i standardmodellen förutsäger
existensten av en ny partikel, den s̊a kallade Higgsbosonen. Genom dess upptäckt år 2012
i partikelacceleratorn LHC (Large Hadron Collider) i CERN var standardmodellen i n̊agon
mening fullbordad.

Samtidigt lämnar standardmodellen många fr̊agor obesvarade, till exempel den om
varför universum inneh̊aller s̊a ohyggligt mycket mer materia än antimateria. En annan
fr̊aga rör massan hos Higgsbosonen själv. Enligt teoretiska argument borde denna massa
vara betydligt större än vad experimentella mätningar visar. Dessa problem, och flertalet
andra, kan angripas genom att införa ytterligare, nya slags Higgsbosoner i beskrivningen
av naturen. En annan infallsvinkel är att beskriva Higgsbosonen eller Higgsbosonerna
som sammansatta partiklar, istället för elementarpartiklar. Därigenom kan man p̊a ett
naturligt sätt förklara varför den p̊avisade Higgsbosonen är s̊a lätt.

En intressant aspekt hos s̊adana utvidgade Higgsmodeller är att de, under vissa förut-
sättningar, förutsäger en s̊a kallad första ordningens fasöverg̊ang i ett mycket tidigt skede av
universums början. Denna fasöverg̊ang kan liknas vid kokning av vatten, där sm̊a bubblor
slumpmässigt uppst̊ar, expanderar och kolliderar med varandra. En s̊adan fasöverg̊ang i det
tidiga universum skulle vara en viktig pusselbit i att förklara det ovannämnda problemet
gällande överskottet av materia jämfört med antimateria i universum. Vad som är särskilt
spännande är att en s̊adan fasöverg̊ang, genom bubblornas expansion i det omgivande
mediet, skulle kunna ge upphov till s̊a kallade gravitationsv̊agor. S̊adana v̊agor kan, om de
är tillräckligt kraftiga, uppmätas av framtida gravitationsv̊agsdetektorer. Det föreliggande
arbetet syftar till att studera dessa fenomen hos utvidgade Higgsmodeller, och koppla dem
till signaler som kanske kan uppmätas i framtida partikelacceleratorexperiment.
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1 Introduction

The Standard Model (SM) of particle physics is a fundamental theory which describes the
known elementary particles and their interactions through the electromagnetic, weak, and
strong forces [1, 2, 3]. A crucial part of the SM is the Higgs mechanism [4], which explains
how the quarks and the charged leptons, as well as the W± and Z0 bosons, acquire mass
through interactions with the Higgs field. Following the discovery of the top quark in 1995
[5, 6], the Higgs boson remained the last missing piece of the SM. With the discovery of
the Higgs boson at LHC in 2012 [7, 8], the SM was thus complete.

Still, there are strong indications that the SM cannot, ultimately, be the correct fun-
damental description of nature. For example, an important issue is to explain the nature
of dark matter, for whose existence there is ample evidence from cosmology [9]. Moreover,
the SM cannot explain the observed baryon asymmetry in the universe, i.e. why there is
more matter than anti-matter [10, 11]. Aside from these, there are also issues which are
possibly more of an aesthetic nature. These concern the large number of parameters in the
SM [1, 3], the unnatural fine-tuning necessary to explain the smallness of the mass of the
Higgs boson compared to the Planck mass, and the related hierarchy problem, which refers
to the enormous difference in scale between the electroweak force and the gravitational
force [3, 12]. Specifically, quantum corrections to the Higgs mass, mainly from top quark
loops, would drive the mass of the Higgs boson to the Planck scale, unless the corrections
are cancelled by a very large and fine-tuned bare Higgs mass. Several of these issues can
be addressed by extending the original Higgs sector.

There are various ways to extend the SM in such a way that the well-tested low-
energy predictions of the SM are retained, while addressing some of the issues discussed
above. One approach is to introduce another Higgs doublet, yielding the (elementary)
two Higgs doublet models (E)2HDM [12, 13]. The addition of a new Higgs doublet leads
to a larger number of Higgs bosons, namely the neutral h, H and A, of which h can be
interpreted as the SM Higgs boson, as well as the charged H±. The 2HDM is motivated
by the fact it appears in the minimal supersymmetric (SUSY) extension (MSSM) of the
SM [14]. The stop quark, i.e. the spin-1 superpartner of the top quark in SUSY, cancels
the quantum corrections to the Higgs mass from the top quark, and thereby solves the fine
tuning problem mentioned above. While the LHC has so far not found any evidence for
supersymmetry [15], the E2HDM is still a worthwhile subject of study. For example, it
can address the baryon asymmetry problem [16].

An alternative solution to the fine-tuning problem is offered by composite Higgs models
(CHMs) [17, 18] and, in particular, by composite two Higgs doublet models (C2HDM)
[19]. In these models, the Higgs bosons are no longer elementary particles, but rather
bound states of a new type of strong interaction. In a particular setting of the composite
Higgs models, the Higgs bosons are realized as pseudo Goldstone bosons (pGBs) by the
spontaneous breaking of a global symmetry. Unlike in the SM, this global symmetry is
not exact but explicitly broken, which is needed in order for the Goldstone modes to be
massive. Through this mechanism, the mass of lightest Higgs boson can be kept small
without invoking fine-tuning, thus solving the fine-tuning problem of the Higgs mass [19].
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As was mentioned above, one of the shortcomings of the SM is its failure to explain the
overwhelming abundance of matter (baryons) versus antimatter (antibaryons). This con-
stitutes the so-called baryon asymmetry problem, and the process in the early universe
that produced the observed baryon asymmetry is referred to as baryogenesis [10]. In 1967,
Sakharov [20] formulated the following three necessary conditions for baryogenesis to take
place

1. Baryon number violation

2. Violation of C and CP-symmetry

3. Strong departure from thermal equilibirum

One way to realize the third Sakharov condition is through a strongly first order electroweak
phase transition (SFOEWPT) in the early universe. As it turns out, however, the SM does
not allow, with the observed Higgs mass, a strong enough phase transition to explain
the observed baryon asymmetry [10, 11]. Thus, in order to solve the baryon asymmetry
problem, we are interested in models which exhibit a strongly first order phase transition.

An interesting feature of a strongly first order phase transition in the early universe
is the production of gravitational waves (GW), caused by interactions of the expanding
bubbles of the new vacuum phase with the cosmic medium. If strong enough, such grav-
itational waves could be observed as part of the gravitational wave background (GWB)
in the universe. The ongoing development of gravitational wave detectors, notably LISA
[21], BBO [22] and DECIGO [23] which are capable of measuring the GWB of the uni-
verse, motivates the exploration of particle physics models that can explain the origin of
the GWB. Conversely, future measurements of the GWB by such detectors would provide
valuable constraints on these models.

In this thesis we investigate some phenomenological aspects of the elementary 2HDM
and a particular composite 2HDM, presented in [19] 1. The philosophy has been to explore
different model realizations, i.e. different points in the parameter space, and then apply
existing experimental collider constraints to filter out those realizations which are not
currently excluded by the available data. Admissible points have then been analyzed with
respect to the phase transitions and the resultant gravitational wave signals.

The structure of the thesis is as follows: In section 2, we briefly review the Higgs mech-
anism in the SM, and then discuss the elementary and composite 2HDM, respectively.
Next we discuss phase transitions driven by scalar fields. We first present the effective
potential, which is needed to describe the phase transition, and then illustrate the formal-
ism by considering a simplified version of the effective potential in the SM. Thereafter we
discuss the dynamics of strongly first order phase transitions, and finally the gravitational
wave generation due to this dynamics. In section 3, we discuss the implementation of the
models for the numerical investigations that have been performed. In section 4 we present
the results of these investigations, and conclude in section 5. Various details which are not
covered in the main text are presented in the appendices.

1There are different composite 2HDMs, with different symmetry breaking patterns [18].
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2 Background

2.1 The Higgs mechanism in the SM

The purpose of this section is to briefly recall the Higgs mechanism [4] in the SM, and to
serve as an introduction to the extended Higgs models to be considered below. The Higgs
sector in the SM has the form

LHiggs = (DµΦ)†(DµΦ)− VHiggs(Φ), (2.1)

where Φ is the complex SU(2) Higgs doublet, Dµ is the gauge covariant derivative, given
by

Dµ = ∂µ − ig
τa
2
W a
µ − ig′

Y

2
Bµ, (2.2)

and VHiggs is the Higgs potential, given by

VHiggs(Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (2.3)

By construction, the Higgs Lagrangian in equation 2.1 has a SU(2) × U(1)Y symmetry.
The SU(2) gauge fields are the W a

µ fields, which along, with the SU(2) generators τa and
the coupling g, were introduced in equation 2.2. Similarly, Bµ is the U(1)Y gauge field, Y
is the U(1)Y generator and g′ the associated coupling.

In the Higgs potential, we require that the parameter λ satisfy λ > 0 in order for
the potential to be bounded from below. If the parameter µ2 satisfies µ2 < 0, the Higgs
potential has a non-trivial degenerate global minimum given by Φ†Φ = −µ2/(2λ). The
minimum is degenerate in the sense that if Φ0 minimizes the potential, then so does Φ′0 for
any Φ′0 obtained by an SU(2)× U(1)Y transformation of Φ0. The physical vacuum state,
however, corresponds to one particular value of Φ0. The vacuum state, therefore, breaks
the SU(2)×U(1)Y symmetry, while the Lagrangian itself respects the symmetry; this is an
example of spontaneous symmetry breaking. Because Φ†Φ = −µ2/(2λ) 6= 0 in the vacuum
state, the Higgs field is then said to have acquired a (nonzero) vacuum expectation value
(vev) v, given by v =

√
−µ2/λ.

Let us explicitly write the vacuum Φ0 in the form Φ0 = (0, v)T/
√

2, which simply
amounts to a choice of basis. In this basis, let us consider the charge operator Q = τ3/2 +
Y/2. By assigning the U(1) hypercharge YH = 1 to the Higgs field, we see that QΦ0 = 0,
corresponding to charge conservation of the vacuum. Thus, even though the vacuum breaks
the SU(2)×U(1)Y symmetry, it is still invariant under a U(1) symmetry corresponding to
the charge operator Q. We can identify this U(1) symmetry with the U(1)EM gauge group,
and therefore say that the orignal SU(2)×U(1)Y symmetry is spontaneously broken down
to U(1)EM.

The spectrum of the model can be investigated by expanding around the vacuum value
Φ0 of the Higgs field. Let us write this expansion as

Φ =
1√
2

( √
2G+

v + h+ iG0

)
, (2.4)
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where G+ is a complex scalar field (with Hermitean conjugate G−) and where h and G0

are real fields. If we insert this expansion in equation 2.1 and extract the quadratic part
of the h, G0 and G± fields from the Lagrangian, we obtain

LHiggs,quad =
1

2
(∂µh)(∂µh) +

1

2
(∂µG

0)(∂µG0) + (∂µG
+)(∂µG−)

+

(
3

2
v2λ+

1

2
µ2

)
h2 + (v2λ+ µ2)

(
G+G− +

1

2
(G0)2

)
=

=
1

2
(∂µh)(∂µh) +

1

2
(∂µG

0)(∂µG0) + (∂µG
+)(∂µG−) + v2λh2, (2.5)

where, in the last step, we used µ2 = −v2λ. Thus, we see that the field h is massive, with
m2
h = 2v2λ, while the fields G± and G0 are massless. The latter fields are the Goldstone

bosons associated with the spontaneous symmetry breaking; by Goldstone’s theorem [24],
one such massless boson appears for each broken group generator.

By an SU(2) transformation (to so-called unitarity gauge), the expansion around the
vacuum can be parametrized as Φ = (0, v + h)T/

√
2, so that the Goldstone modes are

suppressed from the expansion. These degrees of freedom are hidden by the transformation
to unitary gauge, and appear as the longitudinal parts of the W± and Z0 bosons. With
the covariant derivative from equation 2.2 we can insert the expansion of Φ into 2.1, to
obtain

LHiggs =
1

4
v4λ+

1

2
(∂µh)(∂µh)− 1

2
m2
hh

2 − λvh3 − 1

4
λh4 (2.6)

+m2
WW

+
µ W

µ− +mWgW
+
µ W

µ−h+
1

4
g2W+

µ W
µ−h2

+
1

2
m2
ZZµZ

µ +
mZg

2 cos θW
ZµZ

µh+
g2

8 cos2 θW
ZµZ

µh2.

Here we have identified the the Weinberg angle, cos θW = g/
√
g2 + g′2, and the W± =

(−W 1± iW 2)/
√

2 and Z0 = cos θWW
0
µ − sin θWBµ bosons, along with their masses mW =

gv/2 and mZ =
√
g2 + g′2v/2 = gv/(2 cos θW ), respectively. Thus, we see that the masses

of the W± and the Z0 bosons derive from the vev v of the Higgs field.
We note that the Lagrangian 2.6 describes both cubic and quartic self-interactions of

the Higgs field h. We will later consider such interactions as relevant phenomenological
probes of BSM scenarios of the Higgs sector. For reference, we therefore note that the SM
values of the cubic and quartic couplings, λhhh and λhhhh, respectively, can be extracted as
follows

λhhh =
3m2

h

v
, λhhhh =

3m2
h

v2
, (2.7)

with m2
h = 2λv2.

2.2 Elementary two-Higgs doublet models

A natural way to extend the Higgs sector of the SM is to add additional Higgs doublets.
The most parsimonious such extension is the two-Higgs doublet model (2HDM), which
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features two complex SU(2) Higgs doublets Φ1 and Φ2. In this section we will describe the
main features of elementary two-Higgs doublet models (E2HDM). Such models have been
studied extensively; for reference, see the reviews [12, 13]. The scalar sector in 2HDM is
given by

L2HDM = (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2)− V2HDM(Φ1,Φ2). (2.8)

Here, the 2HDM potential V2HDM has the form

V2HDM = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c.] +

1

2
λ1(Φ†1Φ1)2 (2.9)

+
1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1

2
λ5(Φ†1Φ2)2 + [λ6(Φ†1Φ1) + λ7(Φ†2Φ2)](Φ†1Φ2) + h.c.

]
.

The reality of the potential requires that m2
11,m

2
22, λ1, λ2, λ3 and λ4 are real. In general,

λ5, λ6, λ7 and m2
12 may be complex. Unless a rephasing transformation can bring the

potential to a form where all parameter values are real, complex values of λ5, λ6, λ7 or
m2

12 induce CP-violation [25]. We will not consider CP-violating 2HDMs, and henceforth
we will assume that all parameters of the Higgs potential are real. Further constraints
apply to the potential parameters. For E2HDMs, we will only consider potentials which
are bounded from below. Perturbativity and unitarity constraints also impose conditions
on allowed values of the potential parameters, to be discussed below.

Like its SM counterpart, the 2HDM Higgs potential can have a nontrivial global min-
imum. This occurs if the mass matrix [m2

ij] is not positive definite. Charge and CP -
conserving stationary points of the potential have the form

〈Φ1〉 =
1√
2

(
0
v1

)
=

v√
2

(
0
cβ

)
, 〈Φ2〉 =

1√
2

(
0
v2

)
=

v√
2

(
0
sβ

)
, (2.10)

where v1 and v2 denote the vev of Φ1 and Φ2 respectively, and where we introduced the basis
angle β via tan β = v2/v1. By a rephasing transformation m2

12 → −m2
12, λ6 → −λ6, λ7 →

−λ7 [25], one ensures that β ∈ [0, π/2], following the convention in 2HDMC [26].
By setting the first order derivatives of V2HDM with respect to v1 and v2 to zero, one

obtains the following so-called tadpole conditions
m2

11 = m2
12tβ −

1

2
v2
(
λ1c

2
β + λ345s

2
β + 3λ6sβcβ + λ7s

2
βtβ
)

m2
22 = m2

12t
−1
β −

1

2
v2
(
λ2s

2
β + λ345c

2
β + λ6c

2
βt
−1
β + 3λ7sβcβ

) , (2.11)

with sβ ≡ sin β, cβ ≡ cos β, tβ ≡ tan β and λ345 ≡ λ3 + λ4 + λ5.
Through the tadpole conditions, V2HDM is completely specified by the eight parameters

m2
12 and λ1, ..., λ7, for a given value of tβ and the vev v. While the vev v is a physical

parameter, which in E2HDM will be fixed to the SM value v = vSM = 246.22 GeV, tβ is
in general not a physical parameter, unless the 2HDM has special features that somehow
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distinguish Φ1 from Φ2; so far, subindices 1 and 2 have just been arbitrary labels. As
discussed in [27, 28], without such features, 2HDM observables must be invariant under a
global Higgs-flavor U(2) transformation of the form Φa → Φ′a = UabΦb, where U ∈ U(2).
If the potential V2HDM is written in terms of the transformed fields Φ′a to have the same
form as in equation 2.9, we see that the potential parameters also change, according to
m2

11 → (m2
11)′ etc., while tβ changes through equation 2.10. In this sense, β can be regarded

as a basis angle, though its value does not uniquely determine the basis in terms of the
Higgs-flavor U(2) transformation [27]. When no restrictions are placed on the value of tβ,
the basis is referred to as the general basis. An important choice of basis, that will be used
below, where tβ is restricted, is the so-called Higgs basis, in which β = 0. In this basis,
only Φ1 gets a vev, i.e. v1 = v and v2 = 0.

For a given minimum of the potential, we can expand the doublets around their respec-
tive vev in terms of the scalar fields ϕ±1,2, η1,2 and χ1,2, according to [12]

Φ1 =
1√
2

( √
2ϕ+

1

vcβ + η1 + iχ1

)
=

1√
2

( √
2(G+cβ −H+sβ)

vcβ − hsα +Hcα + i(G0cβ − Asβ)

)
Φ2 =

1√
2

( √
2ϕ+

2

vsβ + η2 + iχ2

)
=

1√
2

( √
2(G+sβ +H+cβ)

vsβ + hcα +Hsα + i(G0sβ + Acβ)

) (2.12)

Here G0 = cβχ1 + sβχ2 and G± = cβϕ
±
1 + sβϕ

±
2 denote the Goldstone bosons associated

with the spontaneous symmetry breaking. The fields h,H,A and H± are massive Higgs
bosons, where, by convention, mh ≤ mH and we identify h with the SM Higgs boson. The
bosons h,H and A are all neutral, with h and H being CP-even, and A being CP -odd,
whereas H± are charged. We have H± = −sβϕ±1 + cβϕ

±
2 and 2 A = −sβχ1 + cβχ2, while

h and H are given by h = −sαη1 + cαη2 and H = cαη1 + sαη2. The angle α is a mixing
angle that diagonalizes the mass matrix for the η1,2 fields, to yield the mass eigenstates h
and H; we assume the convention β − α ∈ [−π/2, π/2], consistent with 2HDMC [26].

With these definitions in place and with the field expansion in 2.12, we can work out
the masses. Explicitly, we have [29]

m2
A =

m2
12

sβcβ
− 1

2
v2(2λ5 + λ6t

−1
β + λ7tβ)

m2
H± = m2

A +
1

2
v2(λ5 − λ4)

(2.13)

while the masses of h and H satisfy(
m2
H 0

0 m2
h

)
= R(α)M2RT (α), R(α) =

(
cα sα
−sα cα

)
, (2.14)

2Assuming a CP-conserving 2HDM.
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where M2 denotes the mass matrix

M2 = m2
A

(
s2
β −sβcβ

−sβcβ c2
β

)
+ v2

(
λ1c

2
β + 2λ6sβcβ + λ5s

2
β (λ3 + λ4)sβcβ + λ6c

2
βλ7s

2
β

(λ3 + λ4)sβcβ + λ6c
2
βλ7s

2
β λ2s

2
β + 2λ7sβcβ + λ5c

2
β

)
. (2.15)

Let us now consider interactions in the 2HDM. First, we consider the interactions between
vector bosons and Higgs bosons. The kinetic part of the Lagrangian is given by

Lkin = (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2), (2.16)

with the gauge covariant derivative Dµ given by equation 2.2. Using the expansions in
equation 2.12, the kinetic Lagrangian takes the form

Lkin = Lder + Lmass + LVVH + LVHH + LVVHH, (2.17)

where V generically stands for a vector boson and H for a Higgs field. The details are
provided in appendix A.1. The corresponding trilinear couplings (VVH and VHH) are
given in table 1 and the quartic couplings (VVHH) are given in table 2 . The operator
←→
∂ µ used in the expressions in these tables is defined by X

←→
∂ µY = X(∂µY ) − Y (∂µX).

Note that the trilinear couplings for the W+
µ W

µ−h and ZµZ
µh vertices are modified by the

factor sin(β−α) relative to the SM couplings, c.f. equation 2.6. In the so-called alignment
limit β − α→ π/2, we recover the SM values of these couplings.

Table 1: Trilinear couplings between gauge and Higgs bosons in the elementary 2HDM

Vertex Coupling Vertex Coupling

W+
µ W

µ−h gmW sβ−α W µ−H+←→∂ µH − ig
2
sβ−α

W+
µ W

µ−H gmW cβ−α W µ±H∓
←→
∂ µA

g
2

ZµZ
µh gmZ

cW
sβ−α ZµA

←→
∂ µh − g

2cW
cβ−α

ZµZ
µH gmZ

cW
cβ−α ZµA

←→
∂ µH

g
2cW

sβ−α

W µ+H−
←→
∂ µh − ig

2
cβ−α ZµH−

←→
∂ µH

+ igc2W
2cW

W µ−H+←→∂ µh
ig
2
cβ−α AµH−

←→
∂ µH

+ ie

W µ+H−
←→
∂ µH

ig
2
sβ−α
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Table 2: Quartic couplings between gauge and Higgs bosons in the elementary 2HDM

Vertex Coupling Vertex Coupling

W+
µ W

µ−hh g2

2
ZµZ

µH+H−
g2c22W
2c2W

W+
µ W

µ−HH g2

2
W±
µ Z

µhH∓
g2s2W
2cW

cβ−α

W+
µ W

µ−AA g2

2
W±
µ Z

µHH∓ −g2s2W
2cW

sβ−α

W+
µ W

µ−H+H− g2

4
W±
µ A

µhH∓ −ge
2
cβ−α

ZµZ
µhh g2

2c2W
W±
µ A

µHH∓ ge
2
sβ−α

ZµA
µH+H− ZµZ

µHH g2

2c2W

gec2W
cW

ZµZ
µAA g2

2c2W
AµA

µH+H− 2e2

Next, we consider the Higgs self interactions, which are obtained by substituting the field
expansions in equation 2.12 into the 2HDM potential V2HDM in equation 2.9. If we label
the Higgs fields by (h1, h2, h3, h4, h5) = (h,H,A,H+, H−) the cubic and quartic Higgs self
couplings, λhihjhk and λhihjhkhl respectively, are given by

λhihjhk =
∂3V2HDM

∂hi∂hj∂hk
, λhihjhkhl =

∂4V2HDM

∂hi∂hj∂hk∂hl
. (2.18)

We will not list all the self couplings here, but focus on those which are most relevant
phenomenologically. Expressions for all the couplings can be found in e.g. [28]. The self
couplings are most easily expressed in the Higgs basis, where the basis angle β = 0. The
quartic couplings in the Higgs basis corresponding to λ1, ..., λ7 are denoted by Λ1, ...,Λ7.
The relationship between these parameters can be found in e.g. [28]. The Higgs self
couplings that we will focus on are given in table 3 below. We write the vev as vSM in table
3, for later comparison to the composite case.

Table 3: Selected Higgs self couplings in the elementary 2HDM

Vertex Coupling

hhh −3vSM

[
(3Λ6 − Λ7)c3

β−α + (Λ1 − Λ345)c2
β−αsβ−α − 3Λ6cβ−α − Λ1sβ−α

]
hhH −vSM

[
3(Λ1 − Λ345)c3

β−α − 3(3Λ6 − Λ7)c2
β−α − (3Λ1 − 2Λ345)cβ−α + 3Λ6sβ−α

]
hHH vSM

[
3(3Λ6 − Λ7)c3

β−α + 3(Λ1 − Λ345)c2
β−αsβ−α− 3(2Λ6 − Λ7)cβ−α+ Λ345sβ−α

]
hAA vSM [Λ7cβ−α + (Λ3 + Λ4 − Λ5)sβ−α]

hH+H− vSM [Λ7cβ−α + Λ3sβ−α]

hhhh 3(Λ1 + Λ2 − 2Λ345)c4
β−α − 12(Λ6 − Λ7)c3

β−αsβ−α − 6(Λ1 − Λ345)c2
β−α

+12Λ6cβ−αsβ−α + 3Λ1

8



Finally, we consider the fermionic sector. The general expression for the Yukawa La-
grangian can be found in [28], and is given by

−LYukawa =
1√
2
D̄{κDsβ−α + ρDcβ−α}Dh+

1√
2
D̄{κDsβ−α − ρDcβ−α}DH +

i√
2
D̄γ5ρ

DDA

+
1√
2
Ū{κUsβ−α + ρUcβ−α}Uh+

1√
2
Ū{κUsβ−α − ρUcβ−α}UH −

i√
2
Ūγ5ρ

UUA

+
1√
2
L̄{κLsβ−α + ρLcβ−α}Lh+

1√
2
L̄{κLsβ−α − ρLcβ−α}LH +

i√
2
L̄γ5ρ

LLA

+ [Ū{VCKMρ
DPR − ρUVCKMPL}DH+ + ν̄ρLPRLH

+ + h.c.]. (2.19)

Here U = (u, c, t)T , D = (d, s, b)T , L = (e, µ, τ)T and ν = (νe, νµ, ντ )
T are fermion vectors in

flavor space for up-type quarks, down-type quarks, leptons and neutrinos, respectively. The
matrices κF are defined by κF =

√
2MF/v, where MF denotes the diagonal mass matrix for

the fermions (F = U,D,L) 3. The matrices ρF are, in principle, general matrices, though
in a CP-conserving model, they must be symmetric [28]. In order to limit flavor-changing
neutral currents (FCNCs) at tree-level, the off-diagonal elements of the ρF matrices cannot
be large. We will only consider the 2HDM with flavor alignment, i.e. where the fermionic
mass matrices and flavor matrices can be simultaneously diagonalized, which guarantees
the FCNCs are not present at tree-level. Under this assumption, the ρF matrices are
diagonal, and we will henceforth use ρf to denote the diagonal element of the appropriate
ρF matrix for the fermion flavor f ; in a similar spirit, we use κf to denote the diagonal
element of the appropriate κF matrix. Finally, in equation 2.19 VCKM denotes the CKM
matrix, and PR/L denote the projection operators PR/L = (1± γ5)/2.

2.3 Composite two-Higgs doublet models

In composite Higgs models (CHMs) [17], the Higgs boson (or bosons, in multi-Higgs models)
is, unlike in the SM, not an elementary state but rather a composite state of a new strong
interaction, with an associated global symmetry group G. Specifically, the Higgs boson is
interpreted as a composite state of a set of new (heavy) fermions associated with the new
strong interaction. Such a setup is similar to how the mesons of the SM are composite
states of SM fermions, governed by QCD.

In this construction, the Higgs boson arises as a Goldstone boson by the spontaneous
symmetry breaking 4 of G down to some subgroup H, with an associated compositeness
energy scale f ; in the orignal CHM [17], this breaking pattern is SU(5) → SO(5). If
the global symmetry were exact and the Higgs were truly a Goldstone boson, it would be
massless. Therefore some form of explicit symmetry breaking, to be specified below, must
be present, in order to give mass to the Higgs boson; the Higgs boson is then realized as
a pseudo Goldstone boson (pGB). In this sense, returning to the QCD analogy, the Higgs

3We assume neutrinos to be massless.
4Recall Goldstone’s theorem [24] as discussed in section 2.1: When a global symmetry is spontaneously

broken, there arises a massless Goldstone boson for each broken generator
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boson would be similar to pions. Indeed, these are composites of SM fermions and can
be regarded as pGBs associated with chiral symmetry breaking in QCD, with the explicit
symmetry breaking provided by the nonzero quark masses. Since the mass of the Higgs
boson, if realized as a pGB in a CHM, is naturally kept lower than the compositeness scale
f , CHMs can solve the fine tuning problem, as discussed in the introduction.

In this thesis, we are interested in composite 2HDMs (C2HDMs), which are treated in
[18]. As discussed in [18], C2HDMs can be realized by different spontaneous symmetry
breaking patterns G → H, but there are phenomenological constraints that restrict the
breaking patterns which would give rise to models that can be matched to available collider
phenomenology. Specifically, the oblique T -parameter [30], to be further discussed in
section 3.3.2, must be kept small, by ensuring that the subgroupH has a so-called custodial
SO(4) symmetry. One breaking pattern allowed by this requirement is SO(6)→ SO(4)×
SO(2), which provides 6× 5/2− (4× 3/2 + 2× 1/2) = 8 (pseudo) Goldstone bosons which
can be identified with the eight Higgs fields in 2HDMs. The explicit breaking of G will be
realized through the so-called partial compositeness paradigm [31], by interactions between
the elementary fields and the fields (resonances) of the new strong sector.

This brief introduction provides the background for the particular C2HDM considered
in [19]. We will not provide a full description of all aspects of the model, but try to
capture the most important features. The group structure is based on the pattern SO(6)→
SO(4)× SO(2) discussed above, and is given by

G
H

=
SU(3)C × SO(6)× U(1)X

SU(3)C × SO(4)× SO(2)× U(1)X
, (2.20)

where U(1)X is a gauge group. As discussed above, the explicit symmetry breaking is
realized through the partial compositeness paradigm, with a strong sector governed by
SO(6)×U(1)X and an elementary sector governed by SO(6)×U(1)X , containing the SM
electroweak gauge group SU(2)L × U(1)Y as a subgroup. Aside from the pGBs, realized
from the spontaneous breaking of SO(6)×U(1)X → SO(4)×SO(2)×U(1)X and identified
with the eight Higgs fields, and the elementary SM fields, the model contains spin-1 and
spin-1/2 resonances associated with the strong sector.

As already mentioned, the eight pGBs associated with SO(6)→ SO(4)×SO(2) break-
ing can be associated with the eight scalar fields in 2HDM. The associated Higgs potential
has been calculated in [19] according to the Coleman-Weinberg [32] mechanism, and is
given at one-loop order by

iVC2HDM =
1

f 4

∫
d4k

(2π)4

[
3

2
VG(Φ1,Φ2)− 6VF (Φ1,Φ2)

]
+O

(
1

f 4

)
. (2.21)

In this equation, VG(Φ1,Φ2) and VF (Φ1,Φ2) are potentials with the same form as the 2HDM
potential in equation 2.9, and associated with the gauge and fermion sectors, respectively.

Taking only the leading contributions into account, from the top-quark spin-1/2 res-
onances and the spin-1 gauge resonances into account, the potential is defined by the
following parameters: f , gρ, Y

12
1 , Y 12

2 , ∆1
L, ∆2

R, M11
Ψ , M22

Ψ and M12
Ψ . Here, f is the com-

positeness scale, gρ the gauge coupling, ∆1
L and ∆2

R are mixing parameters between the

10



elementary and strong sectors, Y 12
1 and Y 12

2 are Yukawa couplings for the top resonances,
and M11

Ψ , M22
Ψ and M12

Ψ are mass parameters of the top resonances. The associated poten-
tial parameters are then given by

m2
ij =

−i
f 4

∫
d4k

(2π)4

[
3

2
(mG

ij)
2 − 6(mF

ij)
2

]
, λi =

−i
f 4

∫
d4k

(2π)4

[
3

2
λGi − 6λFi

]
. (2.22)

These can be calculated from the expression provided in [19]. We provide some further
details on this in appendix B.2. Note, in particular, that λ6 = λ7 and that λ6 = λ7 =
(5/3)m2

12.
Let us now discuss the phenomenology of the model. As already mentioned, there

are various phenomenological consequences of the new dynamics in the composite 2HDM
model, both compared to the case of an elementary 2HDM, but also, of course, compared to
the SM. As we have just seen, in the composite case, the potential parameters are calculated
from the underlying parameters of the composite model, which introduces correlations, that
are not present in the elementary case, between masses and couplings. The couplings also
get modified relative to their values in the elementary case, which we will now discuss.

One source of these modifications derives from the vev of the Higgs doublets in the
composite model. From the gauge sector Lagrangian, the following relation can be derived
[19]

v2
SM = f 2 sin2 v

f
, (2.23)

by demanding that the masses of the W± and Z0 bosons satisfy mW = gvSM/2 and
mZ = mW/ cos θW (see the paragraph below equation 2.6). Equation 2.23 relates the vev
vSM of the SM (which we also take to be the vev of the elementary 2HDM) to the vev
v =

√
v2

1 + v2
2, with v1,2 being the vevs of the two Higgs doublets. Equation 2.23 says that

for a given f and v, the SM vev is determined by equation 2.23. When implementing the
composite 2HDM, as discussed in section 3.5, we will require that the value vcalc

SM calculated
from equation 2.23 should agree with 246.22 GeV within a narrow range, taken to be 2%.
In this context, let us introduce the parameter ξ given by

ξ =
v2

SM

f 2
, (2.24)

which we will use to parametrize the deviations to various couplings in the composite
2HDM compared to the elementary 2HDM. By Taylor expansion of equation 2.23, we
obtain the approximate relationship

v = vSM

(
1 +

ξ

6
+O(ξ2)

)
, (2.25)

which is used to relate v to vSM at first order in ξ.
Further modifications to the couplings derive from the rescaling of the Higgs fields, to

make them canonically normalized [33]. In the Higgs basis, the two-derivative Lagrangian

11



of the field η2, which appears in the expansion of the Higgs doublets in equation 2.12, is
given by

L2−der,η2 =
1

2

(
1− 1

3
ξ +O(ξ2)

)
(∂µη2)(∂µη2). (2.26)

In order to make η2 canonically normalized, so that the mass eigenstates in the composite
model can be compared to those in the elementary case, the field has to be rescaled
according to

η2 →
(

1− ξ

3

)−1/2

η2 =

(
1 +

ξ

6
+O(ξ2)

)
η2. (2.27)

The total modifications have been calculated in [19], and we give the most important
ones here for reference. The trilinear couplings between gauge and Higgs bosons are given
in table 4 (c.f. table 1 for the elementary 2HDM). We do not give the full expressions for
the self couplings here, since they are quite lengthy. For example, the modified λhhh is
given by

λhhh =− 3vSM

[
(3Λ6 − Λ7)c3

β−α + (Λ1 − Λ345)c2
β−αsβ−α − 3Λ6cβ−α − Λ1sβ−α

]
− 3ξvSM

[(
Λ6 −

2

3
Λ7

)
c3
β−α +

1

6
(Λ1 − Λ345)c2

β−αsβ−α − Λ6cβ−α −
1

6
Λ1sβ−α

]
(2.28)

Table 4: Trilinear couplings between gauge and Higgs bosons in C2HDM [19].

Vertex Coupling Vertex Coupling

W+
µ W

µ−h gmW (1− ξ/2)sβ−α W µ−H+←→∂ µH − ig
2
sβ−α

W+
µ W

µ−H gmW (1− ξ/2)cβ−α W µ±H∓
←→
∂ µA

g
2

ZµZ
µh gmZ

cW
(1− ξ/2)sβ−α ZµA

←→
∂ µh − g

2cW
cβ−α

ZµZ
µH gmZ

cW
(1− ξ/2)cβ−α ZµA

←→
∂ µH

g
2cW

sβ−α

W µ±H∓∂µh ∓ ig
2

(1− 5ξ/6)cβ−α ZµH−
←→
∂ µH

+ igc2W
2cW

W µ±h∂µH
∓ ± ig

2
(1− ξ/6)cβ−α ZµH−

←→
∂ µH

+ igc2W
2cW

W µ−H+←→∂ µh
ig
2
cβ−α AµH−

←→
∂ µH

+ ie

W µ+H−
←→
∂ µH

ig
2
sβ−α
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Finally, the fermionic interactions in C2HDM are governed by a flavour aligned Yukawa
Lagrangian, given by [19]

−LYukawa =
∑
f

mf

vSM

[
ξfhh+ ξfHH − 2iIfξ

f
AAγ

5
]
f

+

√
2

vSM

[
Vudū

(
−ξuAmuPL + ξdAmdPR

)
dH+ + ξlAmlν̄PRlH

+ + h.c.
]
, (2.29)

where If = 1/2(−1/2) for f = u(d, l) and where we introduced the coefficients

ξfh = (1 + cfhξ)sβ−α − (ζf + cfhξ)cβ−α

ξfH = (1 + cfhξ)cβ−α + (ζf + cfhξ)sβ−α

ξfA = ζf + cfA

, (2.30)

with

cfh = −1

2

3 + ζ̄f tβ
1 + ζ̄f tβ

, cfH =
1

2

ζ̄f (1 + t2β)

(1 + ζ̄f tβ)2
, cfA = −1

2

tβ(1 + ζ̄f )
2

(1 + ζ̄f tβ)2

ζf =
ζ̄f − tβ
1 + ζ̄f tβ

, ζ̄f = −Y
f

1

Y f
2

. (2.31)

Note, then, that in C2HDM, the structure of the Yukawa Lagrangian differs at O(ξ) from
the elementary case, c.f. equation 2.50. Formally, we can make the following translations
of κf and ρf :

h,H : κf =

√
2mf

vSM

(1 + cfhξ), ρf = −
√

2mf

vSM

(ζf + chfξ)

A,H± : ρf =

√
2mf

vSM

(ζf + cfAξ)

(2.32)

2.4 Phase transitions

2.4.1 The effective potential

A phase transition is associated with the change in the ground state configuration of a
system as the temperature passes a critical value. To study this phenomenon, we must
consider the temperature dependent potential at finite temperature 5. At tree-level, the
potential, such as in equations 2.3 or 2.9, has no temperature dependence, so this de-
pendence necessarily enters as a loop effect. Consider a system with a set of nS scalar
fields φ1, ..., φnS

, that we write collectively in vector notation as φ = (φ1, ..., φnS
), and with

the tree-level potential Vtree. Let ω = (w1, ..., wnS
) denote the ground state configuration

(vacuum). Then the one-loop corrected potential V1(φ) at zero temperature has the form

V1(φ) = Vtree(φ) + VCW(φ) + VCT(φ), (2.33)

5In standard physics jargon, this refers to non-zero temperature, i.e. finite inverse temperature.
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where VCW is the Coleman-Weinberg potential [32] and VCT is the counterterm potential.
Here we write the argument of the potential as φ, but we emphasize that aside from
when we consider the counterterms in equation 2.35, the potential will be evaluated at the
background field ω.

The Coleman-Weinberg potential is the one-loop correction to the tree-level potential,
and is given by

VCW(φ) =
∑
i

± ni
64π2

m4
i (φ)

(
ln

[
m2
i (φ)

Q2

]
− ci

)
, (2.34)

where the sum runs over all fields in the theory and + applies for bosons, while − applies for
fermions. Note that the summation includes the Goldstone modes and the photon modes,
and that transverse (T) and longitudinal (L) modes are counted separately. The parameter
ni denotes the number of degrees of freedom of field i, and will be specified later when we
consider concrete models. Further, the coefficient cj is determined by the renormalization
scheme for the Coleman-Weinberg potential; in the modified minimal subtraction (MS)
scheme, cj is given by cj = 1/2 for transverse gauge boson polarizations and cj = 3/2 for
all other fields (fermions and longitudinal gauge boson polarizations). The renormalization
scale is denoted by Q, and will be set to the SM vev throughout, i.e. Q = 246.22 GeV.
Finally, m2

i (φ) denotes the squared field dependent tree-level mass (at zero temperature)
of field i. The field dependent masses m2

i (φ) are determined by diagonalization of the
Hessian H of Vtree, with components Hij = (1/2)∂2Vtree(φ)/∂φi∂φj. We emphasize that
aside from when we consider the counterterms in equation 2.35 below, the field dependent
masses are evaluated at ω, and are determined by the diagonalization of the Hessian with
components Hij = (1/2)∂2Vtree(φ)/∂φi∂φj|φ=ω .

The additional counterterm potential VCT has the same form as Vtree, and may be
introduced to enforce certain conditions on the loop-corrected potential V1. A reasonable
requirement is that the loop corrected potential Vtree + VCW + VCT (without the thermal
corrections) has the same minimum and the same masses at the minimum as Vtree, as done
e.g. in [34]. If we let v denote the ground state configuration of Vtree, these conditions can
be written as 

∂VCT(φ)

∂φi

∣∣∣∣
φ=v

= − ∂VCW(φ)

∂φi

∣∣∣∣
φ=v

, i = 1, ..., nS

∂2VCT(φ)

∂φiφj

∣∣∣∣
φ=v

= − ∂2VCW(φ)

∂φi∂φj

∣∣∣∣
φ=v

, i, j = 1, ..., nS

(2.35)

From equation 2.34, we see immediately that the second counterterm condition may be
problematic for the Goldstone modes in the Coleman-Weinberg potential. Indeed the
second derivatives of VCW will involve terms of the form (∂m2

k(φ)/∂φi)(∂m
2
k(φ)/∂φj)×

ln[m2
k(φ)/Q2], which may diverge when evaluated at φ = v for a Goldstone mode, since

these have m2
k(v) = 0. This may be addressed by simply removing the Goldstone modes

from the summation altogether in VCW, as done in e.g. [35]. In [36], it is instead argued that
the Goldstone modes should be included in the summation, but that when evaluating terms
of the form (∂m2

k(φ)/∂φi)(∂m
2
k(φ)/∂φj) ln[m2

k(φ)/Q2] for a Goldstone mode at φ = v,
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one should replace m2
k(φ)|φ=v = 0 by some nonzero cutoff value. We mention these issues

to highlight that it is not straightforward to correctly implement the counterterms. In
practice, in our investigations of 2HDMs, we will use a greatly simplified counterterm
potential on which we only impose the first counterterm condition in 2.35; see equations
2.52 and 2.53.

Above, we introduced the field dependent masses at zero temperature. At finite tem-
perature, the masses (aside from those corresponding to transverse polarization modes of
the gauge bosons) receive corrections of order T 2 [37, 38]; hence we introduce the notation
m2
i (ω, T ) for the field and temperature dependent mass of field i. These masses are given

by diagonalization of the matrix H+Π , where Π represents the leading order temperature
corrections. Explicit expression will be given later when we consider concrete models. The
origin of these temperature dependent corrections is the breakdown of the perturbative
expansion in terms of the couplings in Vtree at high temperature. A resummation has to
be performed (called a daisy resummation), which effectively leads to the addition of the
one-loop polarization tensor Π to the mass matrix [37, 38].

There are different ways in which these temperature dependent masses can be accom-
modated. In the ”Arnold-Espinosa method” (AE) [34, 39, 38], the thermal corrections to
the masses do not enter VCW or VCT. The one loop corrected thermal effective potential
V AE

eff (φ, T ) at temperature T is then given by

V AE
eff (ω, T ) = Vtree(ω) + VCW(ω) + VCT(ω) + ∆VT (ω, T ) + Vdaisy(ω, T ). (2.36)

Here ∆VT is a thermal correction term, which is given by [38]

∆VT (ω, T ) =
∑
i

± ni
2π2

T 4J±
(
m2
i (ω)/T 2

)
. (2.37)

Again, + applies for bosons while − applies for fermions, and the integrals J± are given
by

J±(x2) =

∫ ∞
0

ξ2 ln
[
1∓ exp(−

√
x2 + ξ2)

]
dξ. (2.38)

For small x2, corresponding to the high temperature limit, we have the following expansion
that we will need later on: [34, 38]

J+(x2) = −π
4

45
+
π2

12
x2 − π

6
x3 − 1

32
x4
(
lnx2 − ln ab

)
+O(x6)

J−(x2) =
7π4

360
− π2

24
x2 − 1

32
x4
(
lnx2 − ln af

)
+O(x6)

(2.39)

where ln ab = 2 ln π+ 4 ln 2 + 3
2
− 2γE ≈ 5.4076 and ln af = 2 ln π+ 3

2
− 2γE ≈ 2.6351, with

γE ≈ 0.57722 denoting the Euler-Mascheroni constant.
Meanwhile, the second term Vdaisy(ω, T ) in equation 2.36 is given by

Vdaisy(ω, T ) = − T

12π

∑
i,bosons

ni

([
m2
i (ω, T )

]3/2 − [m2
i (ω)

]3/2)
. (2.40)
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Note that the addition of Vdaisy(ω, T ) means that in the sum ∆VT (ω, T ) +Vdaisy(ω, T ), the
temperature dependent masses m2

i (ω, T ) effectively appear in the cubic term only in the
thermal integral J+ (see equation 2.39).

Let us comment on the physical meaning of the terms ∆VT . By construction, the
term ∆VT corresponds to the difference between the one-loop effective potential at finite
temperature and the one-loop effective potential at zero temperature. However, it can also
be given a very direct physical interpretation as the total free energy contribution from
each individual particle species in the ideal gas approximation [40]. That is,

∆VT (ω, T ) =
∑
i

fi(ω, T ) = −
∑
i

pi(ω, T ) (2.41)

where fi = −pi denotes the free energy contribution from particle species i, with pi denoting
the corresponding pressure.

In the ”Parwani method” (P) [41, 34], on the other hand, there is no term Vdaisy in
Veff . Meanwhile the temperature dependent masses m2

j(φ, T ) are used in VCW and in ∆VT .
If we introduce the notations V P

CW(ω, T ) and ∆V P
T (ω, T ) for the Coleman-Weinberg and

thermal correction potential, respectively, with the replacement m2
i (ω)→ m2

i (ω, T ) made,
the effective potential V P

eff(φ, T ) is given by

V P
eff(ω, T ) = Vtree(ω) + V P

CW(ω, T ) + VCT(ω) + ∆V P
T (ω, T ). (2.42)

Note that even though V P
CW depends on the temperature through the m2

i (ω, T ), VCT is not
temperature dependent, since the counterterm conditions in equation 2.35 are imposed at
T = 0. The physical interpretation of the different terms is similar to the interpretation
in the Arnold-Espinosa method, and we will not elaborate further on the differences. We
will use the Parwani method throughout, since this is the method which is implemented
in the CosmoTransitions package [42], to be described later.

A furher issue, aside from the question of how to correctly implement the temperature
corrections to the field dependent masses, has to do with gauge dependence of the effective
potential and the observables derived from it. The equations above are given in so-called
Landau gauge, which corresponds to the limit ξ → 0 for the gauge parameter ξ. Care is
required to make sure that observables are calculated in a way that gives gauge invariant
results. For a recent discussion about these issues and how to resolve them, see [43]. We
will not consider these issues, and note that doing so introduces an uncertainty to our
calculations.

2.4.2 Phase transitions in the SM

To be more concrete, let us now consider phase transitions in (a simplified version of) the
SM. If we neglect the temperature corrections to the masses and only take the W± and
Z0 bosons, as well as the top quark into account for the loop corrections, we obtain, in the
high temperature expansion of equation 2.39, an effective potential at finite temperature
given by [38]

Veff(ω, T ) = D(T 2 − T 2
0 )ω2 − ETω3 +

1

4
λ(T )ω4, (2.43)
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where

D =
2m2

W +m2
Z + 2m2

t

8v2
, E =

2m3
W +m3

Z

4πv3
, T 2

0 =
m2
h − 3

8π2v2
(2m4

W +m4
Z − 4m4

t )

4D
,

λ(T ) = λ− 3

16π2v4

(
2m4

W ln
m2
W

ABT 2
+m4

Z ln
m2
Z

ABT 2
− 4m4

t ln
m2
t

AFT 2

)
, (2.44)

and where AB = 16π2 exp(−2γE) ≈ 49.780 and AF = π2 exp(−2γE) ≈ 3.111.
First of all, we see that the effective potential in equation 2.43 has received a temper-

ature correction to the ω2 term relative to the tree-level potential in equation 2.3. We
also see that there is a cubic term, which is obviously not present at all at tree-level,
and that the quartic coefficient has a weak temperature dependence. Let us for the mo-
ment neglect the term ETω3 and the temperature dependence of λ. We immediately
find that the stationary points of Vtree satisfy ω2 = 0 or ω2 = −2D(T 2 − T 2

0 )/λ. For
T > T0, the only solutions is ω2 = 0, which is just the ground state at high tempera-
ture. On the other hand, for T < T0, ω ≡ ωm =

√
−2D(T 2 − T 2

0 )/λ is also a solution.
We see that Veff(ωm, T ) = −D2(T 2 − T 2

0 )/λ < Veff(0, T ). Thus, ωm is the ground state
of the system, and we say that a phase transition has occurred at the critical tempera-
ture Tc = T0. If we let ω(T ) denote the temperature dependent groundstate, we see that
limT→T−

c
ω(T ) = limT→T+

c
ω(T ) = 0. Thus the phase transition is smooth, and is said to

be a second order phase transition. See figures 1a and 1b, which show Veff(ω, T ) and ω(T ),
respectively, near the phase transition. We see that the potential has no barrier between
ω and ωm at T = Tc and that ω(T ) goes smoothly to zero at T = Tc.

(a) Standard mW ,mZ (b) Standard mW ,mZ

Figure 1: Illustration of second order phase transition.

Let us now also consider the cubic term ETφ3 in the analysis (and less crucially the
temperature dependence of λ) (again referring to [38]). By considering the stationary
points of Veff , we find that for low enough temperature, a local minimum appears at
ω = ωm given by

ωm(T ) =
3ET

2λ(T )
+

1

2λ(T )

√
9E2T 2 − 8λ(T )D(T 2 − T 2

0 ). (2.45)
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We find that Veff(ωm, T = Tc) = 0 at the critical temperature T = Tc, which is implicitly
given by

T 2
c =

λ(Tc)DT
2
0

λ(Tc)D − E2
. (2.46)

By solving equation 2.46 numerically, we can investigate the phase transition. In figures
2a and 2b we consider the phase transition for ”standard” values of mW and mZ , i.e. the
experimental values mW = 80.4 GeV and mZ = 91.2 GeV. We also use mh = 125.2 GeV,
v = 246.22 GeV and mt = 172.8 GeV. Figure 2b clearly shows that ω(T ) behaves very
differently at T = Tc compared to 1b. There is a discontinuity at T = Tc of size ∆vc/Tc ≈
0.17, where ∆vc/Tc denotes the order parameter

∆vc
Tc

=
1

Tc

(
lim
T→T−

c

ω(T )− lim
T→T+

c

ω(T )

)
(2.47)

We call such a phase transition a first order phase transition (FOPT).

(a) V vs. φ (b) ω vs. T

Figure 2: Electroweak phase transition in the SM, as calculated from equation
2.43 with standard values of mW ,mZ , i.e. mW = 80.4 GeV and mZ = 91.2 GeV.

In figures 3a and and 3b we again consider the phase transition, but use ”modified” (i.e.
non-experimental) values of mW and mZ , given by mW = mZ = 250 GeV. Referring to
equation 2.44, we see that such a change increases the value of E relative to λ(T ), so we
should expect to see a stronger transition, i.e. one which is more discontinuous. Indeed,
this is what we see. Figure 3a clearly shows that at T = Tc there is a potential barrier
between the degenerate minima at φ = 0 and φ = ωm (something which is difficult to
see in 2a). The discontinuity in ω(T ) is much more pronounced. The order parameter is
found to be ∆vc/Tc ≈ 2.0; a first order phase transition with ∆vc/Tc & 1 is referred to
as a strongly first order phase transition (SFOPT). For a strongly first order electroweak
phase transition, we use the acronym SFOEWPT.

18



(a) V vs. φ (b) ω vs. T

Figure 3: Electroweak phase transition in the SM, as calculated from equation
2.43 with modified values of mW ,mZ , with mW = mZ = 250 GeV.

While somewhat simplified, the above analysis highlights the fact that a SFOEWPT is
not possible in the SM [10, 11]. Thus, as mentioned already in the introduction, the SM
cannot explain the baryon asymmetry, since the departure from thermal equilibrium is not
strong enough (c.f. the Sakharov conditions in the introduction).

2.4.3 Phase transitions in 2HDMs

Let us now turn two phase transitions in 2HDMs. As already mentioned in the introduction,
strong enough FOPTs can be realized in 2HDMs to satisfy the third Sakharov condition
[16, 44], in contrast to the SM as illustrated in section 2.4.2. Phase transitions in 2HDMs
have been studied in the literature, see e.g. [16, 36, 44]. We will not extensively review
these works in this section, but rather present the setup for our calculations.

Thus, we consider a system with a tree-level potential given by equation 2.9, where the
doublets Φ1,Φ2 are given in terms of the eight real scalar fields φ1, ..., φ8 by

Φ1 =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, Φ2 =

1√
2

(
φ5 + iφ6

φ7 + iφ8

)
. (2.48)

We shall only consider CP and charge conserving vacua, which means that the background
field ω has the form ω = (0, 0, ω3, 0, 0, 0, ω7, 0). At tree-level, ω = v ≡ (0, 0, v1, 0, 0, 0, v2, 0),
where the vevs v1 and v2 have been defined in equation 2.10.

In analogy with the SM case, we can define an order parameter associated with the
phase transitions. We can define such a parameter for a critical temperature (c) as well
as for a nucleation temperature (n), the latter of which will be defined in equation 2.60.
Thus, the order parameter ∆vc,n/Tc,n is given by

∆vc,n
Tc,n

=
1

Tc,n

(
lim

T→T−
c,n

√
ω2

3(T ) + ω2
7(T )− lim

T→T+
c,n

√
ω2

3(T ) + ω2
7(T )

)
(2.49)
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We treat the effective potential according to the Parwani method in equation 2.42. The
bosonic modes that are summed over in V P

CW and ∆V P
T are the following: h, H, A, G0, H±

and G±, as well as the longitudinal gauge boson modes WL, ZL and γL and the transverse
gauge bosons modes WT and ZT . In the fermionic sector, we restrict ourselves to the third
generation of quarks and leptons, since these are the heaviest and therefore have the largest
influence on the effective potential. Thus we consider only t, b and τ and assume a Yukawa
Lagrangian of the form

−LYukawa =

(
t̄L
b̄L

)
[abΦ1 + bbΦ2]bR +

(
t̄L
b̄L

)
[atΦ̃1 + btΦ̃2]tR

+

(
ν̄τL
τ̄L

)
[aτΦ1 + bτΦ2]τR,+ h.c. (2.50)

where Φ̃i = iσ2Φ∗i , i = 1, 2, denotes the charge conjugated field and where the coefficients af
and bf are related to the corresponding coefficients κf and ρf in equation 2.19 (f = t, b, τ)
according to

af = cβκ
f − sβρf , bf = sβκ

f + cβρ
f . (2.51)

In the composite case, the Yukawa Lagrangian does not quite have the form in equation
2.50, due to the compositeness corrections, as described in equation 2.32. However, for
simplicity we neglect this issue when calculating the phase transitions in C2HDM, as the
phase transition does not depend very strongly on the fermion masses 6.

The degrees of freedom ni which appear in V P
CW and ∆V P

T are given by
nh = 1, nH = 1, nA = 1, nG0 = 1, nH± = 2, nG± = 2

nWL
= 2, nZL

= 1, nγL = 1, nWT
= 4, nZT

= 2

nt = 12, nb = 12, nτ = 4.

For nt, nb and nτ , there are four degrees of freedom due to the spin projections and due to
counting both particles and anti-particles. For nt and nb, there is an additional factor of
three due to the color degree of freedom. As for the renormalization constants, we recall
that in the MS scheme, ci = 1/2 for the transverse modes and ci = 3/2 for fermionic modes
and longitudinal bosonic modes.

Finally, in order to calculate the effective potential we need the field and temperature
dependent squared masses m2

i (ω, T ). These have been calculated from the general expres-
sions in [34], and are presented in appendix C. As for the counterterms, the most general
counterterm potential in 2HDM has the same form as in equation 2.9, with the parameters
m2
ij → δm2

ij and λi → δλi. As discussed in section 2.4.1, issues arise when imposing the
second counterterm condition in equation 2.35 due to the Goldstone modes. Another, more
practical issue, is that in order to correctly implement the counterterm conditions in equa-
tion 2.35 in all directions in field space, we would need to know the field dependent masses

6Recall that the fermionic integral J−, unlike the bosonic one J+, does not have a cubic term (see
equation 2.39).
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m2
i (φ, T ) not just for φ = ω but also for φ 6= ω. In the latter case, the diagonalization

cannot be done by hand. Because of these issues, we will use a simplified counterterm
potential of the form

VCT(ω) =
1

2
δm2

11ω
2
3 +

1

2
δm2

22ω
2
7. (2.52)

We only impose the first of the counterterm conditions in equation 2.35 on this potential,
and we will only impose the condition in those directions in field space that get a vev, i.e.
φ3 and φ7. This yields the following equations form the parameters δm2

11 and δm2
22, which

can be evaluated using m2
i (ω, T ) rather than the general m2

i (φ, T )
δm2

11 = − 1

v1

∂VCW

∂ω3

∣∣∣∣
ω=v

if v1 6= 0, δm2
11 = 0 if v1 = 0,

δm2
22 = − 1

v2

∂VCW

∂ω7

∣∣∣∣
ω=v

if v2 6= 0, δm2
22 = 0 if v2 = 0.

(2.53)

2.4.4 Dynamics of cosmological first order phase transition

Thus far, we have characterized phase transitions in terms of the critical temperature.
However, we have said nothing about the dynamics of the transition from the old (initial,
false) to the new (final, true) vacuum. In this section, we briefy describe the dynamics of
a first order cosmological phase transition.

As we have seen, for a first order phase transition there is a potential barrier separating
the false vacuum and the true vacuum. As the temperature drops below the critical
temperature, the false vacuum becomes metastable. The transition from the false vacuum
to the true vacuum takes place through thermal jumps and quantum tunneling across the
barrier [45, 46, 47]. Because these processes are of a random nature, the transition does
not happen homogeneously throughout space, but appears as the nucleation of ”bubbles”
of the true vacuum; this is schematically illustrated in figure 4 below.

R > Rc

R < Rc

R > Rc

Figure 4: Illustration of the bubble nucleation in a first order cosmological phase
transition. Lightgray represents the true vacuum and the white background rep-
resents the false vacuum. R denotes the bubble radius and Rc denotes the critical
bubble radius.

Let us first gain a qualitative understanding of the bubble dynamics by considering the so-
called thin-wall approximation [46]. This approximation applies when the energy difference
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∆Veff = Veff(ωi) − Veff(ωf ) > 0 between the initial and the final vacuum, ωi and ωf
respectively, is small. In the thin-wall approximation, the scalar field φ changes on a
small lengthscale, say d, from the initial vacuum inside the bubble to the final vacuum far
away from the bubble. Under these conditions, the ”bubble” really is a bubble, with a
well-defined radius R (in the limit ∆Veff → 0) and a wall of thickness d << R. In this
approximation, the free energy of the bubble can be attributed to two terms: a volume
term and a surface term. The volume term simply corresponds to the free energy of the
inside (true vaccum) of the bubble relative to the outside (false vacuum), and is given by
−(4π/3)R3∆Veff . Meanwhile, the surface term is due the change in free energy between
the inside and outside of the bubble over the lengthscale d at the surface of the bubble.
Because d << R, the description of this term as a surface term is sensible, and it can be
written in the form 4πR2µ, where µ denotes the surface tension (which can be calculated
from Veff in the thin-wall approximation ∆Veff → 0). Hence the free energy F of the bubble,
in the thin-wall approximation, has the form (see also [47, 40])

F = −4π

3
R3∆Veff + 4πR2µ. (2.54)

If R is large enough the volume term dominates and the bubble will grow, while if R is
below a certain critical 7 value Rc the surface term dominates and the bubble collapses.
From equation 2.54, solving ∂F/∂R = 0 for R, we immediately obtain

Rc =
2µ

∆Veff

. (2.55)

In general, i.e. not necessarily in the thin-wall approximation, the critical bubble is deter-
mined [45, 46] by extremizing the Euclidean action 8 SE, given by 9,

SE =


S4 = 2π2

∫
r3dr

[
1

2

(
dφ

dr

)2

+ Veff(φ, 0)

]
, T = 0,

S3 = 4π

∫
r2dr

[
1

2

(
dφ

dr

)2

+ Veff(φ, T )

]
, T > 0.

(2.56)

In S3, the r coordinate is simply given by r = |x|, where x denotes the vector of spatial
coordinates, whereas in S4, the r coordinate is given by r =

√
t2 + |x|2. In practice, our

calculations will be done in the finite temperature regime, so that S3 is the appropriate
Euclidean action.

The corresponding equations of motion from the Euclidean action are [46]
d2φ

dr2
+

3

r

dφ

dr
= ∇Veff(φ, 0), T = 0,

d2φ

dr2
+

2

r

dφ

dr
= ∇Veff(φ, T ), T > 0,

(2.57)

7This is unrelated to critical in the sense of the critical temperature.
8We simply use SE as a symbol to denote either S4 or S3, according to whether T = 0 or T 6= 0.
9We assume spherical symmetry for the bubble.
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subject to the boundary conditions φ → 0 as r → ∞ and dφ/dr|r=0 = 0. Solving the
appropriate equation of motion in the respective temperature regime and substituting into
equation 2.56, the Euclidean action of the extremal solution is obtained.

For the Euclidean action of the extremal solution, the critical bubble action Sc is then
given by

Sc =

{
S4, T = 0,

S3/T, T > 0.
(2.58)

With these definitions in place, the nucleation rate per unit volume Γ/V of bubbles above
the critical size is given by [46, 47, 48]

Γ/V = Ae−Sc . (2.59)

The coefficient A can be calculated [49, 46], but it is quite difficult to do so. On dimensional
grounds, A ∼ T 4 and for the electroweak phase transition, A ≈ e−14T 4 [50, 47].

We have previously defined the critical temperature. However, this does not necessarily
adequately describe the temperature at which the cosmological phase transition takes place
due to i) the dynamics of the bubble nucleation and ii) the expansion of the universe.
Instead, the onset of the cosmological phase transition occurs at the nucleation temperature
Tn [48, 50], which is defined by the condition that there is approximately one bubble
nucleated per horizon volume. This translates to the approximate condition [48, 50]

Sc(T = Tn) ≈ 140, (2.60)

which implicitly determines the nucleation temperature. Henceforth we will use the nucle-
ation temperature to characterize the temperature at which the cosmological phase transi-
tion takes place. This should be adequate unless the transition exhibits strong supercooling,
in which case the so-called percolation temperature is more adequate; see [48, 50].

Aside from the nucleation temperature, the key parameters that characterize the phase
transition are the strength parameter α and the inverse duration of the phase transition per
Hubble time, β/H 10. More precisely, α is given by (following the convention in [48, 50])
the ratio of the volume density of the energy released through the phase transition and
the radiation energy density ρrad of the plasma, and can be calculated from the effective
potential according to [51]

α =
1

ρrad

[
Vi − Vf −

T

4

(
∂Vi
∂T
− ∂Vf
∂T

)]∣∣∣∣
T=Tn

. (2.61)

Here, Vi,f is shorthand for T 7→ Veff(ωi,f , T ), i.e. the effective potential as a function of
temperature evaluated for the initial (false) and final (true) vacuum respectively. The
radiation energy density ρrad is given by

ρrad(T = Tn) = g∗
π2

30
T 4
n , (2.62)

10Thus β denotes the inverse duration, but we will always express this in terms of the Hubble time and
only work with the ratio β/H.
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where g∗ is the effective number of relativistic degrees of freedom around nucleation. With
a SM particle content, g∗ ≈ 106.75 at the relevant temperatures above the electroweak
temperature ∼ 100 GeV; we will use the value g∗ ≈ 106.75 throughout. For a discussion
about the effective number of relativistic degrees of freedom, see [52]. Meanwhile, the
parameter β/H can be calculated from the critical bubble action Sc = S3/T according to
[48]

β/H = Tn
∂(S3/T )

∂T

∣∣∣∣
T=Tn

. (2.63)

From α and β/H we can define two additional parameters, which will be useful later on,
namely the ratio K of kinetic energy in the plasma and the initial bubble energy, and
the mean bubble separation D at nucleation 11. First let us also introduce the parameter
vw, which denotes the bubble wall velocity. In principle this can be calculated (see e.g.
[53]), but such calculations are rather involved. In our numerical simulations, to be later
discussed, we will instead treat vw as a ”free” parameter and consider how it affects the
amplitude of the gravitational wave spectrum in two extreme cases. In terms of α and vw,
the kinetic energy fraction K is then given by [50] [54]

K =
κα

1 + α
, (2.64)

where κ is an efficiency factor [54] which depends on α and vw, and which is minimized
at vw = 1 and maximized at vw = vCJ, where vCJ denotes the so-called Chapman-Jouguet
speed. Finally, assuming that the bubbles expand as detonations 12, i.e. if vw > cs, with
cs = 1/

√
3 denoting the speed of sound of the plasma, the mean bubble separation D at

nucleation satisfies [50]

HD =
(8π)1/3

β/H
. (2.65)

Note that the velocities (vw, vCJ and cs) are given in natural units, i.e. normalized to the
speed of light. The value cs = 1/

√
3 for the speed of sound in the plasma, follows from the

radiation equation of state, p(ρ) = ρ/3, and the definition cs =
√
∂p/∂ρ. See e.g. [54] for

further details on the hydrodynamics of the phase transition.

2.5 Gravitational waves from cosmological phase transitions

As we have discussed in the previous section, a cosmological first order phase transition
proceeds through the nucleation of expanding bubbles of the true vacuum. The collisions
between such bubbles induce shear stresses in the cosmological plasma, leading to the
production of gravitational waves [48]. Because the bubble collisions sourcing the gravita-
tional waves occur randomly throughout the universe at the time of the phase transition,
the gravitational waves due to a cosmological phase transition would appear as a stochastic

11Typically this is denoted by R, but we have used this letter for the bubble radius.
12We will only consider the case of detonations.
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gravitational wave background, akin to the cosmic microwave background of photons from
the time of photon decoupling in the early universe. We will quantify this gravitational
wave background by the power spectrum of the gravitational wave density, denoted by
h2ΩGW(f) and defined by

h2ΩGW(f) = h2d(ρGW/ρc)

d ln f
, (2.66)

where f denotes the frequency, ρGW the gravitational wave energy density, ρc the critical
density today and where h is defined through H0 = 100h kms−1Mpc−1, with H0 denoting
the Hubble constant today 13. This is the notation used in e.g. [48, 50].

There are three main processes associated with the bubble dynamics that source the
gravitational waves [48], namely:

• Collisions of bubble walls.

• Sound waves in the plasma.

• Turbulence due to magnetohydrodynamic effects.

Consequently, the power spectrum can be decomposed as

h2ΩGW = h2ΩGW,coll + h2ΩGW,sw + h2ΩGW,turb, (2.67)

with h2ΩGW,coll, h
2ΩGW,sw and h2ΩGW,turb representing the collision, sound wave and tur-

bulence processes, respectively.
As argued in [50], unless the bubble wall velocity undergoes runaway acceleration,

corresponding to vw → 1, the collision contribution to the gravitational wave density will
not be very significant compared to the soundwave and turbulence contributions. In the
subsequent analysis, we therefore disregard the collision term. We will also disregard the
turbulunce term, due to the theoretical uncertainties in its contribution. As argued in [50]
the turbulence contribution cannot be larger than the sound wave contribution. Thus we
get a conservative, but not unreasonably so, estimate of the gravitational wave signal.

The state-of-the-art expressions for the soundwave contribution h2ΩGW,sw, subsequently
simply denoted by h2ΩGW, is given in [50]. The power spectrum has the form

h2ΩGW(f) = (h2ΩGW)peakC(f/fpeak), (2.68)

where C denotes the spectral shape function, given by

C(s) = s3

(
7

4 + 3s2

)7/4

, (2.69)

fpeak denotes the peak frequence given by

fpeak = 26

(
1

HD

)(
Tn

100 GeV

)( g∗
100

)1/6

µHz, (2.70)

13We will use the value h = 0.678 from the 2015 Planck data [55]
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and where (h2ΩGW)peak denotes the peak amplitude, given by

(h2ΩGW)peak =


2.453 · 10−7 ·

(
100

g∗

)1/3(
HD
√
cs

)2

K3/2, Hτsh < 1

2.453 · 10−7 ·
(

100

g∗

)1/3(
HD

cs

)
K2, Hτsh > 1,

(2.71)

where Hτsh = HD/
√
K denotes the shock formation timescale. In equations 2.70 and 2.71,

the parameters α and β/H, defined in equations 2.61 and 2.63 respectively, enter through
equations 2.64 and 2.65.

From equation 2.68 we can compute the power spectrum of a given model realization;
an example of such a power spectrum is given in figure 6 in the results section 4.1. An
important quantity to quantify whether the associated gravitational wave signal will be
observable by a given detector is the signal-to-noise-ratio (SNR), given by [48, 50]

SNR =

√
T
∫ fmin

fmin

df

[
h2ΩGW(f)

h2ΩSens(f)

]2

. (2.72)

Here, h2ΩSens is the power spectrum of the sensitivity function for a given detector, fmin

and fmax denote the endpoints of the frequency range of the detector, and T denotes
the duration of data collection. For the sensitivity curves, we refer to [56]. In the same
reference, the notions of peak-integrated sensitivity (PIS) and peak-integrated sensitivity
curve (PISC) are introduced. The PIS h2ΩPIS(fpeak; T ) approximately determines, as a
function of peak frequency fpeak and for a given duration T , the SNR according to

SNRPIS =
(h2ΩGW)peak

h2ΩPIS(fpeak; T )
. (2.73)

The associated PISC is then simply the graph of the map fpeak 7→ h2ΩPIS(fpeak; T ). We
will consider the PISCs of the LISA [21], BBO [22] and DECIGO [23] detectors.

3 Implementation

3.1 2HDMC

Our implementation of 2HDMs is based on 2HDMC [26] (two-Higgs-doublet model calcula-
tor), which is a C++ program that implements the CP-conserving E2HDM, using the basis
invariant formalism presented in [27, 28].

The program features different model parametrizations, notably the general basis, Higgs
basis, physical basis and hybrid basis. The former two were presented in section 2.2. The
physical basis [26] is defined by the parameters mh, mH , mA, m±H , sβ−α, λ6, λ7, m2

12 and tβ;
thus, conversion to the physical basis calculates the masses of the Higgs bosons. Finally,
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the hybrid basis [57] is defined by the parameters mh, mH , cβ−α, tβ as well as the quartic
couplings Z4, Z5 and Z7 in the Higgs basis 14. The convenience of this basis lies in the fact
that we can easily incorporate phenomenological constraints, by putting mh close to the
mass ≈ 125 GeV of the observed Higgs boson, and sβ−α close to 1, corresponding to the
alignment limit discussed in section 2.2.

Further, 2HDMC provides functionality to check stability, unitarity and perturbativity
of the potential (see section 3.3 below), calculates decay widths of Higgs bosons, and
calculates the oblique parameters S, T , U , V , W and X [58] (see section 3.3 below).

In order to implement the C2HDM, a slightly modified version of 2HDMC, C2HDMC, was
made. C2HDMC implements the compositeness modifications to the gauge and Higgs boson
couplings in table 4, the Higgs self couplings (see [19] and the example in equation 2.28)
as well as the Yukawa couplings in equation 2.29.

3.2 CosmoTransitions

CosmoTransitions [42] is a Python package for analyzing the phase structure of scalar
potentials. To implement a model, the tree-level potential Vtree along with a potential
counterterm VCT potential have to specified. In addition, the temperature and field depen-
dent masses m2

i (ω, T ) for bosons and fermions must be provided. The effective potential
Veff is calculated according to the Parwani method in equation 2.42.

At each temperature T , the program approximately solves the equations of motion
in equation 2.57, and thereby determines the Euclidean action in equation 2.56. From
equations 2.58 and 2.60 the nucleation temperature is determined for each transition that
is found for the given potential. There is also an option to calculate the critical temperature
for the transitions.

3.3 Constraints

3.3.1 Theoretical constraints

For a realization of 2HDM to be realistic, a reasonable requirement is that the vacuum
be stable. We call this constraint positivity/stability (of the potential). In the case of
an elementary 2HDM, this constraint requires that the potential be positive for arbitrary
large field values in all directions in field space. The conditions of this requirement have
been calculated in [59] and are implemented in 2HDMC. In the composite case, we also wish
to require stability of the vacuum. However, in the composite case we do not impose the
constraint that the calculated potential be positive at arbitrarily large field values. The
reason is that the potential has been calculated as an expansion in v/f , and when either
of the vevs v1, v2 tend to infinity, this expansion breaks down. Hence, in the composite
case, it would not make sense to impose the stability constraints on the parameters if the
potential that would be imposed in the elementary case. Indeed, as we will see in section

14For the hybrid basis, we use the notation Z4,5,7 rather than Λ4,5,7 for the quartic couplings in the
Higgs basis.
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4.2, in the composite case we often have λ1 < 0 or λ2 < 0; such values violate the stability
conditions imposed in the elementary case.

Another important theoretical constraint is the unitary of the scattering matrix, S. A
conservative requirement, appropriate in a weakly coupled theory, is that the scattering
matrix be unitary at tree-level. The corresponding conditions have been calculated in [60],
and are implemented in 2HDMC. Below, we will simply refer to this constraint as unitarity.

Finally, in order not to violate perturbativity, the condition |λhihjhkhl | ≤ 4π is imposed
on all quartic Higgs self couplings, as defined in equation 2.18 [26]. This constraint is also
implemented in 2HDMC.

3.3.2 Experimental constraints

HiggsBounds [61, 62, 63, 64, 65, 66] is a tool for testing the Higgs sectors of BSM models.
It compares Higgs masses, Higgs boson decay widths, branching ratios and production
cross sections calculated in such models to experimental data from LEP, the Tevatron and
LHC, in order to determine if a model realization is excluded at 95% confidence level (CL)
or not. Thus, we implement experimental constraints on the Higgs sector by demanding
that a given point in parameter space be allowed by HiggsBounds.

The related tool HiggsSignals [67, 68, 69] also confronts BSM Higgs sectors with
experimental data. It calculates a χ2 measure of how well the calculated Higgs masses
and signal rates fit with experimental data from the Tevatron and LHC. A p-value for
testing the null hypothesis that the calculated values agree with the experimental ones
is also calculated. Thus, we implement the experimental constraint from HiggsSignals

by saying that a point is not admissible if the calculated p-value is below some cutoff,
which we will take to be 0.05. In HiggsSignals one can specify so-called theoretical mass
uncertainties for the Higgs bosons. These parameters reflect uncertainties of the calculated
Higgs boson masses from a certain model. In the simulations, we set these uncertainties
to 5 GeV for all the Higgs bosons; the value of 5 GeV is chosen to be consistent with the
mass window that we allow for mh in C2HDM, as discussed in section 3.5.

In the following, we will often use the abbreviation HB/HS to refer to the constraints
from HiggsBounds and HiggsSignals, respectively.

3.3.3 Oblique parameters

In addition to the constraints from HiggsBounds and HiggsSignals, we constrain the
model experimentally through the so-called oblique parameters. The original oblique pa-
rameters are denoted S, T and U and are also referred to as the Peskin-Takeuchi parameters
[30]. In [58], the additional oblique parameters V , W and X are defined. The oblique pa-
rameters can be measured by probing the electroweak sector, and are defined in such a
way that they are equal to zero for the SM. In this sense, they quantify BSM physics in
the electroweak sector. On the other hand, for a particular model the oblique parameters
can be calculated; the calculation of the full set of oblique parameters is implemented in
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2HDMC. Thus, experimental data on the oblique parameters can be used as a constraint on
model realizations.

We have implemented the constraint from the oblique parameters by using the 90% CL
(approximate) ellipse in the ST -plane (setting U = 0), that is shown in figure 10.6 in [70].
This is the same approach as used in [71]. The equation for the approximate ellipse EST
has been extracted by measurements in the figure. Data points along the contour, kindly
provided by [72], are confirmed to fit well to this equation, given by

EST =

S, T ∈ R

∣∣∣∣∣∣1 =

(
S̃cθ + T̃ sθ

a

)2

+

(
−S̃sθ + T̃ cθ

b

)2
 , (3.1)

where S̃ = S − S0, T̃ = T − T0, S0 = 0.00, T0 = 0.005, θ = 0.595, a = 0.1458 and
b = 0.0437. The constraint due to the ST -ellipse EST is then that a model realization is
admissible if the point (S, T ) lies inside of EST , where S and T denote the values of the S
and T parameters calculated for the model realization in question.

3.4 Implementation of E2HDM

A Python program, E2HDM CT.py, was written to implement the E2HDM for the purpose of
studying its phase transitions. E2HDM CT.py subclasses the function genericpotential.py

in CosmoTransitions, and specifies the tree-level potential V2HDM and the field and tem-
perature dependent masses m2

i (ω, T ), as discussed in section 2.4.3 and appendix C. Using
the functionality supplied by CosmoTransitions, E2HDM CT.py calculates the transitions
of a particular realization of 2HDM, and records the nucleation temperature Tn, critical
temperature Tc as well as the phase discontinuities ∆vn and ∆vc for each transition. In
addition, the α and β/H parameters are calculated according to equations 2.61 and 2.63.

Further, a C++ program, ElRunCT, was written to implement a E2HDM in the hybrid
basis. The program generates model realizations by randomly picking parameter values
according to

mh/GeV ∈ (120, 130), mH/GeV ∈ (150, 800), sin(β − α) ∈ (0.95, 0.999),

ln tan(β) ∈ (− ln(10), ln(10)), Z4,5,7 ∈ (−3, 3), ρt ∈ (−1 · κt, 1 · κt),
ρb ∈ (−10 · κb, 10 · κb), ρτ ∈ (−10 · κτ , 10 · κτ ). (3.2)

These parameter ranges are selected to provide points which are likely to pass experimental
constraints. For the constraints in the Yukawa sector, we refer to [73].

A 2HDMC object is constructed with the given parameters in the hybrid basis, and
perturbativity, unitarity and positivity/stability constraints are imposed on the model, as
described in section 3.3. The masses of the Higgs bosons and the oblique parameters are
calculated through 2HDMC. For an admissible model, the HiggsBounds and Higgssignals

experimental constraints are imposed, with a limit of 0.05 used for the p-value for all
simulations. We also take the experimental constraint from the EST ellipsis into account.
However, we do not impose it during the simulations, but only afterwards during plotting.
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If a model passes both the theoretical and experimental constraints, the model is passed to
E2HDM CT.py to find the phase transitions and calculate the phase transition parameters.
The SNR value for the LISA detector is then calculated numerically according to equation
2.72 by numerical integration. Finally, the data is written to a simple textfile.

3.5 Implementation of C2HDM

Another Python program, C2HDM CT.py, was written to implement the C2HDM for the
purpose of studying its phase transitions. The program C2HDM CT.py is identical to the
program E2HDM CT.py, described above, aside from imposing the criterion that a phase is
discarded if the magnitude of ω at any point exceeds the composite energy scale parameter
f . This is to ensure that we do not analyze phases beyond the region where the expansion
in v/f , in which the C2HDM is formulated, remains valid.

Further, a C++ program, CompRunCT, was written to implement the C2HDM. The pro-
gram randomly generates model realizations by the picking the (scaled) compositeness
parameters uniformly according to

f/GeV ∈ (600, 3000), gρ ∈ (2, 10), X ∈ (0, 10), where

X = Y 12
1 /f, Y 12

2 /f, ∆1
L/f, ∆2

R/f, M
11
Ψ /f, M22

Ψ /f, M12
Ψ /f. (3.3)

These are the same ranges as those used in [19]. Then, the potential parameters m2
11,

m2
22, m2

12 and λ1, ..., λ7 are calculated according to equation 2.22. See appendix B.2 for
details on this calculation, which was implemented in a utility program CompUtil. Given
the potential parameters, the basis angle β and the vev v are implicitly determined by the
tadpole equations in 2.11. Eliminating v from the tadpole equations, we obtain a quartic
equation for tβ,

a4t
4
β + a3t

3
β + a2t

2
β + a1tβ + a0 = 0, (3.4)

where the parameters ai, i = 0, ..., 4 are given by

a0 = −λ1m
2
12/f

2 − λ6m
2
11/f

2

a1 = −λ345m
2
11/f

2 + λ1m
2
22/f

2 − 2λ6m
2
12/f

2

a3 = −3λ7m
2
12/f

2 + 3λ6m
2
22/f

2

a3 = −λ2m
2
12/f

2 + λ345m
2
22/f

2 + 2λ7m
2
12/f

2

a4 = λ7m
2
22/f

2 + λ2m
2
12/f

2

. (3.5)

The solution of the quartic equation 3.4 was implemented using Ferrari’s method [74].
Given tβ, the vev v is then determined from the tadpole equations in 2.11, both of which
determine v2. Taking the average of the two conditions, v is calculated according to

v2 =
m2

12tβ −m2
11

λ1c2
β + λ345s2

β + 3λ6sβcβ + λ7s2
βtβ

+
m2

12t
−1
β −m2

22

λ2s2
β + λ345c2

β + λ6c2
βt
−1
β + 3λ7sβcβ

. (3.6)

We check that both tadpole conditions are satisfied for this value of v within a narrow
tolerance.
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Having calculated v, the SM vev vSM is in principle determined by equation 2.23. However,
it may happen that the value vcalc

SM which is calculated from equation 2.23 in this way differs
from the experimental value vSM = 246.22 GeV. In the simulations, we allow these values
to differ by at most 2% of vSM. We also require that the vev v satisfy |v| < f , in order for
the expansion in v/f to be valid.

The C2HDM realization obtained through the calculations described above is then con-
structed as a C2HDMC object in the general basis, and the masses of the Higgs bosons are
calculated through C2HDMC. When doing so, we make sure that all squared masses are
positive, to ensure that values of tβ and v found above actually correspond to a (local)
minimum of the potential. Unlike the elementary case, we do not impose the positiv-
ity/stability constraint on the potential, as explained in section 3.3. Further, we check
that the mass mh satisfies mh/GeV ∈ (120, 130), i.e. approximately within 5 GeV of the
value 125 GeV for the mass of the observed Higgs boson. In a similar spirit, we check that
the top mass mt, as calculated from equation B.4, satisfies mt/GeV ∈ (165, 175).

As in the elementary case, we also impose the constraints due to HiggsBounds and
HiggsSignals, as well as the constraints on the oblique parameters from the EST ellipse.
If the model is admissible, it is passed to C2HDM CT.py in order to find the phase transitions
and calculate the phase transition parameters. The SNR value is calculated in the same
way as in the elementary case.

4 Results

4.1 E2HDM

First of all, we illustrate the impact of the experimental constraints described in section
3.3.2. Figure 5 below shows scatter plots in the ST -plane along with the ST -ellipse EST
and the SNR value in colour code for two cases: without HB/HS constraints (5a) and with
HB/HS constraints (5b). Let us first remark on the convention we use when plotting the
SNR value. Unless stated otherwise, it is computed conservatively for the LISA detector
by setting vw = 1 and with a duration T = 9.5 ·107 s (corresponding to 4 years with a 75%
duty cycle, as done in [50]). Points with SNR < 1 are shown in grey, while points with
SNR ≥ 1 are color coded according to the SNR value. We see that applying the HB/HS

constraints removes several points with high SNR (as well as several points with low SNR).
Further adding the constraint from the ST -ellipse removes most points overall, but does
leave four points with high SNR 15 Henceforth, unless stated otherwise, the experimental
constraints both from HB/HS and the ST -ellipse will be applied. The theoretical constraints
from positivity/stability, unitarity and perturbativity are always applied.

15In total, there were around 6.1 · 104 points. Of these, around 4.0 · 104 points passed the HB/HS

constraints, and around 1.3 · 104 points passed the constraints from HB/HS and the ST -ellipse.
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(a) Without HB/HS constraints. (b) With HB/HS constraints.

Figure 5: The oblique parameters S and T along with the ST ellipsis EST for
two cases: a) Without HB/HS constraints and b) With HB/HS constraints. SNR
computed at vw = 1.

While the statistics is not very high, we note in figure 5b that it is possible to find points
that satisfy all constraints and which would likely correspond to a detectable GW wave
signal in the LISA detector (by having an SNR significantly larger than 1). For example,
we can identify a benchmark point with an SNR of about 6.6, computed at vw = 1. As
discussed in section 2.5, the wall speed vw can in principle be calculated, but we treat it
as ”free” parameter for simplicity. Taking vw = 1 for the SNR calculation gives the most
conservative estimate, while taking vw = vCJ gives the most optimistic estimate. For the
benchmark point in question, the SNR value at vw = vCJ is around 21.6. Unless otherwise
stated, henceforth we will always calculate the SNR at vw = 1. In figure 6, we show the
GW power spectra (c.f. equation 2.68) for the benchmark point at vw = 1 and vw = vCJ,
respectively, along with the LISA sensitivity curve. The only difference between the spectra
at vw = 1 and vw = vCJ is the peak amplitude.

Figure 6: GW spectrum for a benchmark point.
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A nice way to illustrate the power spectra for many points is by plotting the peak amplitude
(h2ΩGW)peak vs. the peak frequency fpeak (as is done e.g. in [75]). This is done in figure 7
below, where we also include the PISCs (c.f. section 2.5) for the LISA, BBO and DECIGO
detectors, along with the SNR in color code. Note that the sensitivity curves are terminated
at the ends of the frequency range for the respective detector. In this plot, a point is
observable by a specific detector if it lies at or above the PISC of the detector. Indeed, the
four points with high SNR (as calculated for LISA) lie above the PISC for LISA; however,
they appear to be outside the frequency range of BBO and DECIGO.

Figure 7: GW peak amplitude (h2ΩGW)peak vs. peak frequency fpeak in E2HDM.

We are interested in understanding when a 2HDM would give rise to a SFOEWPT that
would be observable through the GWB. Let us therefore consider how the strength of the
GWB correlates with various parameters. First of all, let us consider how the strength
of the GWB correlates with the strength α, inverse duration β/H and order parameter
∆vn/Tn of the phase transition. Figure 8 shows the peak amplitude (h2ΩGW)peak vs. α,
β/H and ∆vn/Tn. We see that the peak amplitude correlates with large values of α and
small values of β/H. The correlation with ∆vn/Tn is not as clear, and α appears to be a
better indicator of the strength of the GW signal.

It would also interesting to see how the peak amplitude (h2ΩGW)peak correlates with
various parameters of the 2HDM. Figure 9 shows (h2ΩGW)peak vs. the Higgs boson masses
mh, mH , mA and mH± , sβ−α and tβ. From these figures, it is not possible to discern
any clear correlation between the peak amplitude and the parameters considered. More
statistics in the region of high (h2ΩGW)peak might reveal a different picture. Note that the
feature where points are absent near tβ = 1 in figure 9f is likely caused by issues with
numerical degeneracy in 2HDMC for this region [76].
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(a) α (b) β/H (c) ∆vn/Tn

Figure 8: GWB peak amplitude (h2ΩGW)peak vs. a) α, b) β/H and c) ∆vn/Tn in
E2HDM.

(a) mh (b) mH (c) mA

(d) mH± (e) sβ−α (f) tβ

Figure 9: GWB peak amplitude (h2ΩGW)peak vs. masses of the Higgs bosons,
sβ−α and tβ in E2HDM.

In a similar spirit, figure 10 shows the peak amplitude (h2ΩGW)peak vs. the normalized
Yukawa couplings ρf/κf , f = t, b, τ . Again, it is not possible to discern any clear correla-
tions.
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(a) ρt/κt (b) ρb/κb (c) ρτ/κτ

Figure 10: GWB peak amplitude (h2ΩGW)peak vs. normalized Yukawa couplings
in E2HDM.

An interesting phenomenological signal of the Higgs sector is the self interaction of the light
Higgs boson [77]. In figure 11 below we show the peak amplitude (h2ΩGW)peak vs. |λhhh|
and |λhhhh|, and in figure 12 we show α vs. |λhhh| and |λhhhh|. In the discussion of phase
transitions in the SM in 2.4.2 we saw, qualitatively, that for a (strongly) FOPT we cannot
have a large quartic coupling λ(T ) compared to the cubic coupling E (c.f. equation 2.43).
On the basis of this, we might have expected a negative correlation between (h2ΩGW)peak

and |λhhhh| in figure 11b, between α and |λhhhh| in figure 12b. However, such a correlation
is not present.

(a) |λhhh| (b) |λhhhh|

Figure 11: (h2ΩGW)peak vs. |λhhh| and |λhhhh| in E2HDM.
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(a) |λhhh| (b) |λhhhh|

Figure 12: α vs. |λhhh| and |λhhhh| in E2HDM.

To conclude this section, we have seen that it is possible to realize SFOPTs in the E2HDM.
For a few benchmark points, the phase transition is strong enough and of short enough
duration, to produce a GWB signal that would be observable by the LISA detector. This
shows that if LISA, or another future GW detector, does in fact detect a GWB signal that
can be attributed to a SFOPT in the early universe, the E2HDM would be a viable model
to explain such signals.

4.2 C2HDM

Since, in the C2HDM, the various 2HDM parameters are calculated from the composite
dynamics, it is natural to consider how they are distributed vs. the compositeness scale f .

In figure 13 below, we show the potential parameters vs. the compositeness scale
f . Note that, as mentioned in section 2.3, we have λ6 = λ7 = (5/3)m2

12. To highlight
the influence of the experimental constraints due to HB/HS and the ST -ellipse, we show
both the points with no constraints imposed (grey) and with the experimental constraints
imposed (green) 16. Notably, we get negative values of λ1 and λ2. As discussed in section
3.3.1, we would not accept such values in the elementary case due to the requirement
of positivity/stability of the potential. In figure 14 we show the Higgs vev v, as well as
the calculated SM value of the vev vcalc

SM that is implied from equation 2.23. Both v and
vcalc

SM are constrained by the condition that vcalc
SM differs by less than 2% from vSM, where

vSM = 246.22 GeV.

16In total, there were around 3.4 · 104 points. Of these, around 5.5 · 103 points passed the HB/HS

constraints, and around 3.7 · 104 points passed the constraints from HB/HS and the ST -ellipse.
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Figure 13: Parameters of the Higgs potential in C2HDM vs. the composite scale
parameter f . Grey: no experimental constraints imposed. Green: constraints
from HB/HS and the ST -ellipse imposed.

Figure 14: The vevs v and vcalc
SM in C2HDM. Grey: no experimental constraints

imposed. Green: constraints from HB/HS and the ST -ellipse imposed.

Further, in figure 15 we show the masses of the Higgs bosons, as well as tβ and sβ−α.
Notably, there is a band of missing points around tβ = 1 and, as discussed in section 4.1,
this likely has to do with issues of numerical degeneracy in 2HDMC in this region.
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Figure 15: Masses of the Higgs bosons, tβ as well as sβ−α in C2HDM. Grey:
no experimental constraints imposed. Green: constraints from HB/HS and the
ST -ellipse imposed.

As an illustration of the compositeness corrections, in figure 16 we show the Higgs self
couplings |λhhh| and |λhhhh| vs. the compositeness scale parameter f . The self couplings
receive compositeness corrections, and in the limit f → ∞ they approach the values in
E2HDM, according to table 3. Since the alignment limit | sin(β−α)| → 1 is approximately
realized, these values are fairly close to SM values according to equation 2.7.

Figure 16: The trilinear and quartic self Higgs couplings |λhhh| and |λhhhh| in
C2HDM. Green: constraints from HB/HS and the ST -ellipse imposed.

Finally, let us consider phase transitions in C2HDM. Figure 17 shows the GW peak am-
plitude (h2ΩGW)peak vs. peak frequency fpeak, along with the PISCs for LISA, BBO and
DECIGO. In figure 18, we consider the dependence of (h2ΩGW)peak, α, β/H and ∆vn/Tn
on the compositeness scale parameter f . Note, in these figures, that there is no SNR above
1. Despite this, we keep the colour code to keep the plots consistent with those in section

38



4.1. It appears that large values of (h2ΩGW)peak correlates with low values of f . Consistent
with this trend, large values of α and small values of β/H correlate with small values of
f . For the order parameter ∆vn/Tn, the correlation with f is not very clear.

Figure 17: GW peak amplitude (h2ΩGW)peak vs. peak frequency fpeak.

Figure 18: (h2ΩGW)peak, α, β/H and ∆vn/Tn vs. the compositeness scale f in
C2HDM.
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5 Conclusion

In this project, we have considered some phenomenological aspects of 2HDMs in two forms:
elementary and composite. Elementary and composite 2HDMs are natural extensions of
the minimal Higgs sector in the SM, and can potentially address some of the questions
which are unanswered by the SM. Our focus has been on aspects of the phase transition
connected with electroweak symmetry breaking in the early universe.

As is well known, in the SM this phase transition cannot be strong enough to explain
the observed baryon asymmetry of the universe. On the other hand, in 2HDMs, a strong
enough phase transition can be realized to address the problem of the baryon asymmetry.
An interesting signal of such a phase transition could appear in the form of a contribution
to the gravitational wave background of the universe, to be probed by future gravitational
wave detectors.

Our approach in this project has been to mainly use collider phenomenology as a
way to restrict the class of possible realizations of elementary and composite 2HDMs,
and to analyze admissible realizations with respect to the phase transition properties and
gravitational wave signals. We find that first order phase transitions can be realized in
both elementary and composite models, and that these transitions could potentially be
strong enough to generate an observable gravitational wave signal.

The investigation of phase transitions in the particular composite 2HDM considered
is, to the best knowledege of the author, new. One potentially interesting finding is an
apparent correlation between the strength of the phase transition and small values of
the compositeness energy scale. This suggests an avenue for further investigations into the
correlation between phase transition parameters and underlying properties of the composite
model.
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A Details on the elementary two-Higgs doublet model

A.1 Interactions between gauge bosons and Higgs bosons

In this appendix, we provide the derivation of the couplings between gauge and Higgs
bosons in E2HDM. The couplings are also given in tables 1 and 2 above. Let γ = β−α so
that α = β − γ, cosα = cos β cos γ + sin β sin γ and sinα = sin β cos γ − cos β sin γ. In the
Higgs basis, with β = 0, we have

Φ1 =
1√
2

( √
2G+

v + hsγ +Hcγ + iG0

)
, Φ2 =

1√
2

( √
2H+

hcγ −Hsγ + iA

)
Further, we can perform a gauge transformation to suppress the Goldstone modes, thus
going to unitarity gauge where we expand according to

Φ1 =
1√
2

(
0

v + hsγ +Hcγ

)
, Φ2 =

1√
2

( √
2H+

hcγ −Hsγ + iA

)
With Y1 = Y2 = 1, g′ = gtW , e = gsW , Bµ = cWAµ − sWZµ, W 3

µ = sWAµ + cWZµ and

W±
µ = (−W 1

µ ± iW 2
µ)/
√

2, where cW = cos θW , sW = sin θW and tW = tan θW , we get

DµΦ1 =
1√
2

 ig
√

2
2
W+
µ (v + hsγ +Hcγ)

∂µ(hsγ +Hcγ) + ig 1
2cW

Zµ(v + hsγ +Hcγ)


DµΦ2 =

1√
2

√2∂µH
+ − ig

√
2

2
c2W
cW
ZµH

+ − ie
√

2AµH
+ + ig

√
2

2
W+
µ (hcγ −Hsγ + iA)

∂µ(hcγ −Hsγ) + i∂µA+ igW−
µ H

+ + ig 1
2cW

Zµ(hcγ −Hsγ + iA)


In the kinetic Lagrangian the terms (gv

2
)2W+

µ W
µ− and 1

2
( gv

2cW
)2ZµZ

µ appear, from which
the masses mW = gv

2
and mZ = gv

2cW
can be identified. After some simplifications the

kinetic Lagrangian becomes

Lkin = Lder + Lmass + LVVH + LVHH + LVVHH,

where

Lder =
1

2
(∂µh)(∂µh) +

1

2
(∂µH)(∂µH) +

1

2
(∂µA)(∂µA) + (∂µH−)(∂µH

+)

Lmass = m2
WW

+
µ W

µ− +
1

2
m2
ZZµZ

µ

LVVH = gmW sγW
+
µ W

µ−h+ gmW cγW
+
µ W

µ−H +
1

2

gmZ

cW
sγZµZ

µh+
1

2

gmZ

cW
cγZµZ
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LVHH = −ig
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ig
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µ−H+←→∂ µh+
ig

2
sγW

µ+H−
←→
∂ µH

− ig

2
sγW

µ−H+←→∂ µH +
g

2
W µ±H∓

←→
∂ µA−

g

2cW
cγZ

µA
←→
∂ µh

+
g

2cW
sγZ

µA
←→
∂ µH +

igc2W

2cW
ZµH−

←→
∂ µH

+ + ieAµH−
←→
∂ µH

+

LVVHH =
1

2

g2

2
W+
µ W

µ−hh+
1

2

g2

2
W+
µ W

µ−HH +
1

2

g2

2
W+
µ W

µ−AA+
g2

4
W+
µ W

µ−H+H−

+
1

4

g2

2c2
W

ZµZ
µhh+

1

4

g2

2c2
W

ZµZ
µHH +

1

4

g2

2c2
W

ZµZ
µAA+

1

2

g2c2
2W

2c2
W

ZµZ
µH+H−

+
g2s2

W

2cW
cγW

±
µ Z

µhH∓ − g2s2
W

2cW
sγW

±
µ Z

µHH∓ − ge

2
cγW

±
µ A

µhH∓

+
ge

2
sγW

±
µ A

µHH∓ +
gec2W

cW
ZµA

µH+H− +
1

2
2e2AµA

µH+H−

The operator
←→
∂ µ is defined by X

←→
∂ µY = X(∂µY )− Y (∂µX).

B Details on the composite two-Higgs doublet model

B.1 Derivation of the expression for the top mass

As discussed in section 3.5, one of the constraints that is used for simulations in C2HDM
is to have a top mass in an acceptable range around the measured value. Below, we sketch
the derivation of the top mass in the composite model, since the full expression is not
explpicitly given in [19]. Consider the effective Lagrangian in equation 3.11 in [19], i.e.

Lfermion
Composite = (q̄6L)t/k[Π̃qt

0 (k2) + Π̃qt
1 (k2)Σ + Π̃qt

2 (k2)Σ2](q6R)t (B.1)

+ t̄6L/k[Π̃t
0(k2) + Π̃t

1(k2)Σ + Π̃t
2(k2)Σ2]t6R

+ (q̄6L)t[M̃
t
0(k2) + M̃ t

1(k2)Σ + M̃ t
2(k2)Σ2]t6R + (t→ b, τ) + h.c.

The Σ field is given by Σ = U1Σ2U
T
1 = U1U2Σ0U

T
2 U

T
1 . Following earlier calculations in the

gauge sector we can write down the expression for Σ to first order in the Higgs fields. We
find that

Σ =
√

2i

(
Ts +

i

f
[Π, Ts] + ...

)
=
√

2i

(
Ts +

i

f

√
2hâα[T̂ âα , Ts] + ...

)
.

For the term M̃ t
1(0)Σ the relevant term in the expression for Σ is

M̃ t
1(0)Σ : Σ→

√
2i
i

f

√
2hâα[T̂ âα , Ts] =

1

f

04×4 −h2 h1

hT2 0 0
−hT2 0 0

 , (B.2)
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where we introduced the notation hi = (h1
i , h

2
i , h

3
i , h

4
i )
T , i = 1, 2. For the term M̃ t

2(0)Σ2

the relevant term for Σ2 is

M̃ t
2(0)Σ2 : Σ2 → (

√
2i)2
√

2hâα
i

f

(
TS[T̂ âα , Ts] + [T̂ âα , Ts]TS

)
=

1

f

04×4 −h2 h1

hT2 0 0
−hT2 0 0

 . (B.3)

The relevant spurion vevs are given by (see equation 3.9 in [19])

〈Υt
L〉 =

1√
2

(
0 0 1 i 0 0
1 −i 0 0 0 0

)
, 〈Υt

R〉 =
1√
2

(
0 0 0 0 cos θt i sin θt.

)
However, CP-conservation requires that θt = 0, so we have

〈Υt
L〉 =

1√
2

(
0 0 1 i 0 0
1 −i 0 0 0 0

)
, 〈Υt

R〉 =
1√
2

(
0 0 0 0 1 0

)
.

To proceed, we note that the Higgs doublets are given by

1√
2

(
h2

1 + ih1
1

h4
1 − ih3

1

)
=

1√
2

( √
2ϕ+

1

v cos β + η1 + iχ1

)
1√
2

(
h2

2 + ih1
2

h4
2 − ih3

2

)
=

1√
2

( √
2ϕ+

2

v sin β + η2 + iχ2

)
We find that

〈Υt
L〉Σ〈Υt

R〉T =
1√
2f

(
−(h3

2 + ih4
2)

−(h1
2 − ih2

2)

)
=

1√
2f

(
−i(v sin β + η2) + χ2

i
√

2ϕ+
2

)
and similarly

〈Υt
L〉Σ2〈Υt

R〉T =
1√
2f

(
−(h3

1 + ih4
1)

−(h1
1 − ih2

1)

)
=

1√
2f

(
−i(v cos β + η1) + χ1

i
√

2ϕ+
1

)
The mass term is extracted from equation B.1 by keeping the terms with the vevs that go

with t̄LtR and dividing by −i
√

Π̃qt
0 (0)Π̃t

0(0) to get

v√
2f

[
sin βM t

1(0) + cos βM t
2(0)

]
t̄LtR

One has M t
1(0) = Y1M

t(0) and M t
2(0) = Y2M

t(0), where

M t(0) =
mΨ1mΨ2∆L∆R√

m2
Ψ1
m2

Ψ2
+ (m2

Ψ2
+m2

Ψ12
)∆2

L

√
m2

Ψ1
m2

Ψ2
+ (m2

Ψ1
+ Y 2)∆2

R

.

Thus, we get the following expression for the top mass:

mt =
v√
2

mΨ1mΨ2∆L∆R√
m2

Ψ1
m2

Ψ2
+ (m2

Ψ2
+m2

Ψ12
)∆2

L

√
m2

Ψ1
m2

Ψ2
+ (m2

Ψ1
+ Y 2)∆2

R

Y1sβ + Y2cβ
f

. (B.4)
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B.2 Calculation of the parameters of the Higgs potential

The expressions for the parameters of the Higgs potential in terms of the composite pa-
rameters are derived in [19]. All integrals to be computed have the form −i

∫
d4k

(2π)4
g(k2),

for some function g. By Wick rotation, we have −i
∫

d4k
(2π)4

g(k2) = f4

16π2

∫∞
0
xg(−f 2x)dx,

where f > 0 is a scale factor with dimension of energy, taken to be the compositeness scale
of the model. Following equation 4.2 in [19], the parameters of the potential are then given
by

m2
ij

f 2
=
−i
f 6

∫
d4k

(2π)4

[
3

2
(mG

ij)
2[k2]− 6(mF

ij)
2[k2]

]
=

=
1

16π2

∫ ∞
0

x

[
3

2

(mG
ij)

2[−f 2x]

f 2
− 6

(mF
ij)

2[−f 2x]

f 2

]
dx

λj =
−i
f 4

∫
d4k

(2π)4

[
3

2
λGj [k2]− 6λFj [k2]

]
=

=
1

16π2

∫ ∞
0

x

[
3

2
λGj [−f 2x]− 6λFj [−f 2x]

]
dx

These integrals can be computed from the expressions given in equations 4.3, 4.4 and
appendix B in [19]. We have done so and implemented the expressions in the utility
program CompUtil, as described in section 3.5. In the notation of [19], for the gauge part,
we need the following integrals

IW :=
−i
f 4

∫
d4k

(2π)4
Π̄W =

1

16π2

∫ ∞
0

xΠ̄W [−f 2x]dx

IB :=
−i
f 4

∫
d4k

(2π)4
Π̄B =

1

16π2

∫ ∞
0

xΠ̄B[−f 2x]dx

IWW :=
−i
f 2

∫
d4k

(2π)4
Π̄W =

1

16π2

∫ ∞
(µ/f)2

xΠ̄W [−f 2x]2dx

IWB :=
−i
f 4

∫
d4k

(2π)4
Π̄W =

1

16π2

∫ ∞
(µ/f)2

xΠ̄W [−f 2x]Π̄B[−f 2x]dx

IBB :=
−i
f 4

∫
d4k

(2π)4
Π̄W =

1

16π2

∫ ∞
(µ/f)2

xΠ̄B[−f 2x]2dx
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and for the fermionic part we need the following integrals

JΠ
qt
2

:=
−i
f 4

∫
d4k

(2π)4
Πqt

2 =
1

16π2

∫ ∞
0

xΠqt
2 [−f 2x]dx

J(Π
qt
2 )2 :=

−i
f 4

∫
d4k

(2π)4
(Πqt

2 )2 =
1

16π2

∫ ∞
0

x(Πqt
2 [−f 2x])2dx

JΠt
2

:=
−i
f 4

∫
d4k

(2π)4
Πt

2 =
1

16π2

∫ ∞
0

xΠt
2[−f 2x]dx

J(Πt
2)2 :=

−i
f 4

∫
d4k

(2π)4
(Πt

2)2 =
1

16π2

∫ ∞
0

x(Πt
2[−f 2x])2dx

J(Mt
1)2 :=

−i
f 4

∫
d4k

(2π)4

(M t
1)2

k2
= − 1

16π2

∫ ∞
0

(M t
1[−f 2x])2dx

JMt
1M

t
2

:=
−i
f 4

∫
d4k

(2π)4

M t
1M

t
2

k2
= − 1

16π2

∫ ∞
0

M t
1[−f 2x]M t

2[−f 2x]dx

J(Mt
2)2 :=

−i
f 4

∫
d4k

(2π)4

(M t
2)2

k2
= − 1

16π2

∫ ∞
0

(M t
2[−f 2x])2dx.

It is found that IWW , IWB and IBB are logarithmically divergent in the lower limit. We
introduce an infrared momentum cutoff to regulate this, and in the calculations, we put
µ = mW = 80 GeV.

C Thermal mass corrections in 2HDM

In this appendix we present the expressions for the temperature and field dependent masses
m2
i (ω, T ) in 2HDM, for the setup presented in section 2.4.3. The expressions have been

derived using the formulae in [34]. In the expressions below, we suppress the arguments ω
and T for simplicity.

First of all, from the Yukawa Lagrangian in equation 2.50, we read off the fermion
masses:

m2
f =

1

2
(afω3 + bfω7)2, f = t, b, τ (C.5)

Note that the fermion masses receive no temperature corrections.
Next, let us consider the Higgs modes. Introduce the coefficients

c1 =
1

48
(12λ1 + 8λ3 + 4λ4 + 3(3g2 + g′2))

c2 =
1

48
(12λ2 + 8λ3 + 4λ4 + 3(3g2 + g′2))

d1 =
1

12
(3a2

t + 3a2
b + a2

τ )

d2 =
1

12
(3atbt + 3abbb + aτbτ )

d3 =
1

12
(3b2

t + 3b2
b + b2

τ )

. (C.6)
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For the neutral Higgs modes, we get a mass matrix MN

MN =


αN 0 βN 0
0 γN 0 δN
βN 0 εN 0
0 δN 0 ζN

 , (C.7)

where the coefficients are given by

αN = m2
11 +

3

2
λ1ω

2
3 +

1

2
(λ3 + λ4 + λ5)ω2

7 + 3λ6ω3ω7 + (c1 + d1)T 2

βN = −m2
12 +

3

2
λ6ω

2
3 +

3

2
λ7ω

2
7 + λ345ω3ω7 + d2T

2

γN = m2
11 +

1

2
λ1ω

2
3 +

1

2
(λ3 + λ4 − λ5)ω2

7 + λ6ω3ω7 + (c1 + d1)T 2

δN = −m2
12 +

1

2
λ6ω

2
3 +

1

2
λ7ω

2
7 + λ5ω3ω7 + d2T

2

εN = m2
22 +

1

2
(λ3 + λ4 + λ5)ω2

3 +
3

2
λ2ω

2
7 + 3λ7ω3ω7 + (c2 + d3)T 2

ζN = m2
22 +

1

2
(λ3 + λ4 − λ5)ω2

3 +
1

2
λ2ω

2
7 + λ7ω3ω7 + (c2 + d3)T 2

. (C.8)

The matrix MN is readily diagonalized to yield the masses of the neutral Higgs modes:

m2
H =

1

2
(αN + εN) +

1

2

√
(αN − εN)2 + 4β2

N

m2
h =

1

2
(αN + εN)− 1

2

√
(αN − εN)2 + 4β2

N

m2
A =

1

2
(γN + ζN) +

1

2

√
(γN − ζN)2 + 4δ2

N

m2
G0 =

1

2
(γN + ζN)− 1

2

√
(γN − ζN)2 + 4δ2

N

(C.9)

Similarly, for the charged Higgs modes we get a mass matrix MC

MC =


αC 0 βC 0
0 αC 0 βC
βC 0 γC 0
0 βC 0 γC

 , (C.10)

where the coefficients are given by
αC = m2

11 +
1

2
λ1ω

2
3 +

1

2
λ3ω

2
7 + λ6ω3ω7 + (c1 + d1)T 2

βC = −m2
12 +

1

2
(λ4 + λ5)ω3ω7 +

1

2
λ6ω

2
3 +

1

2
λ7ω

2
7 + d2T

2

γC = m2
22 +

1

2
λ2ω

2
7 +

1

2
λ3ω

2
3 + λ7ω3ω7 + (c2 + d3)T 2

. (C.11)
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The matrixMC can be easily diagonlized to yield the masses of the charged Higgs modes:
m2
H± =

1

2
(αC + γC) +

1

2

√
(αC − γC)2 + 4β2

C

m2
G± =

1

2
(αC + γC)− 1

2

√
(αC − γC)2 + 4β2

C

. (C.12)

Note that while MC is a 4× 4 matrix we only get two distinct masses, since H± and G±

are degenerate.
Finally, for the gauge bosons, we get the mass matricesMGL

andMGT
, for longitudinal

and transverse modes, respectively, given by

MGL
=


αGL

0 0 0
0 αGL

0 0
0 0 αGL

γGL

0 0 γGL
βGL

 , MGT
=


αGT

0 0 0
0 αGT

0 0
0 0 αGT

γGT

0 0 γGT
βGT

 (C.13)

where the coefficients are given by
αGL

=
1

4
g2(ω2

3 + ω2
7) + 2g2T 2

βGL
=

1

4
g′2(ω2

3 + ω2
7) + 2g′2T 2

γGL
=

1

4
gg′(ω2

3 + ω2
7)

,


αGT

=
1

4
g2(ω2

3 + ω2
7)

βGT
=

1

4
g′2(ω2

3 + ω2
7)

γGT
=

1

4
gg′(ω2

3 + ω2
7)

(C.14)

The mass matrices are easily diagonalized, yielding
m2
WL

= αGL

m2
ZL

=
1

2
(αGL

+ βGL
) +

1

2

√
(αGL

− βGL
)2 + 4γ2

GL

m2
γ,L =

1

2
(αGL

+ βGL
)− 1

2

√
(αGL

− βGL
)2 + 4γ2

GL

,


m2
WT

=
1

4
g2(ω2

3 + ω2
7)

m2
ZT

=
1

4
(g2 + g′2)(ω2

3 + ω2
7)
.

(C.15)
Note that in the limit T → L, and putting ω2

3 + ω2
7 = v2, we recover the gauge boson

masses introduced in connection with equation 2.6.
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