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Abstract 

The active layer thickness (ALT) is an indicator of permafrost thaw, which potentially leads to 

the release of large amounts of greenhouse gases under global warming, and thus could further 

amplify climate change. The thaw depth of the active layer also governs seasonal surface 

deformation, caused by the volume change between ice to water, which poses risks for slope 

stability and infrastructure foundations. Currently, the monitoring of the ALT is accomplished 

through modelling and field measurements. This thesis aims at testing a recently introduced 

remote sensing method for ALT monitoring by comparing the estimated ALT to ALT field 

measurements and environmental parameters. The method is based on remotely sensed seasonal 

ground subsidence, derived through the differential interferometric synthetic aperture radar 

technique (DInSAR). By estimating the ice content in the soil, the ground subsidence can be 

related to ALT development, which was used to determine the ALT throughout the thawing 

season 2017 at Zackenberg valley, Greenland. The ice content was derived by combining 

saturation fraction with porosity. The saturation fraction was determined based on a linear 

regression between the normalized soil moisture index and soil moisture measurements. The 

porosity was obtained through organic matter field measurements and a mineral soil database. 

The resulting ALT estimate was statistically similar to the ALT field measurements, both 

considering ALT maximum (p-value = 0.55) and temporal development (agreement to ideal fit: 

p-value = 0.33). The ALT distribution is plausible considering environmental factors (aspect, 

topography, vegetation). Yet, the method was found to perform best in water-saturated areas 

and showed more variable results in drier areas. For future applications it is recommended to 

incorporate modelling of the subsurface ice content, as the ALT result in drier soils is especially 

dependent on a correct estimate of the ice content. If this is accomplished, and if the subsidence 

retrieval considers 3D-ground displacement, the tested method is promising for the ALT 

monitoring at high spatial resolution during the snow-free season. 

 

Keywords: Active layer thickness, DInSAR, subsidence, Permafrost, Zackenberg, CALM 
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Popular Summary 

Permafrost covers 14 % of Earth’s land surface and is defined as soil which has been 

continuously frozen for at least two years. Due to global warming, permafrost soils experience 

thawing. This has to be monitored because the thawing could release greenhouse gases from 

previously frozen organic soil as well as affect ground stability and thereby infrastructure. 

Permafrost thaw is indicated by a deepening of the upper soil layer, which thaws during the 

summer. This so-called active layer and its thickness (ALT) can be monitored through 

modelling or field measurements. Yet, these methods are limited by data resolution and 

available labour.   

This thesis aimed at testing a new method presented by Liu et al. (2012) for ALT estimation. 

For this, the method was applied across Zackenberg valley in NE Greenland to estimate the 

ALT during the thaw season of 2017. Then, the result was evaluated through comparison with 

field measurements and relationships to environmental factors.  

The tested method is based on ground subsidence estimated through radar satellite imagery. As 

ground subsidence during the thawing season is a result of the volume change of water from 

ice to liquid in the soil, the ALT can be estimated if subsidence and ice content are known.   

In this study, the relationship between a satellite-based soil moisture index and soil moisture 

measurements was used to map the saturation across the study area. The porosity of the soil 

was estimated from field measurements and a soil database. By combining ground subsidence 

with ice content based on saturation and porosity, the ALT development and maximum ALT 

could be estimated.  

Both the resulting maximum estimated ALT and the temporal development were statistically 

similar to the field measurements. The estimated ALT was deepest on southern slopes, which 

aligns with more available energy for thawing due to more incoming solar radiation compared 

to other slope directions. Shallower ALT was found in wetlands, which thaw slower due to 

insulating peat layers and high ice content. The error in ALT estimate was largest in drier areas, 

shown by larger differences to field measurements. This was also supported by larger 

discrepancies of the ALT estimate in dry vegetation types to the expected values from literature. 

The error can be related to increased sensitivity of the method to accurate ice content estimates 

in drier soils.  

The method is promising for intermediate scale ALT mapping and can be applied in water-

saturated areas. For other areas, it is recommended to refine the method by including soil 

saturation modelling and to evaluate the estimate with more extensive field measurements.  
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1 Introduction  

 

Permafrost is defined as ground which has been continuously frozen for at least two years 

(Muller 1947; Permafrost Subcommittee 1988) and can thus be found both at high latitudes and 

in high elevations. Regions underlain by permafrost cover 14% of the global landmass and 24 

% of the landmass in the northern hemisphere (Zhang et al. 2008;  Gruber 2012). 

Permafrost regions are expected to store 1,330–1,580 Pg carbon in the upper 0 – 3 m of the soil 

column (Hugelius et al. 2014). This accounts for half of the global soil organic carbon and 

equals roughly two times the amount of carbon currently in the atmosphere (Gruber 2012;  

Hugelius et al. 2014). The stored carbon stock is not actively cycling, because decomposition 

is strongly inhibited by low temperatures in the frozen permafrost soils (Walz et al. 2017). New 

carbon stocks from permafrost soils become available to microbial decomposition when the 

permafrost thaws and thus, the active layer deepens. The active layer (AL) is defined as 

seasonally unfrozen upper soil layer (Permafrost Subcommittee 1988). The greenhouse gas 

emissions resulting from the microbial breakdown of the through thawing released carbon can 

further amplify climate change (Schuur et al. 2015). 

Besides the release of stored carbon, changes in active layer thickness (ALT) also affect local 

hydrology and ground stability (Nelson et al. 2002;  Hong 2014).  Due to the seasonal thawing 

of ground ice in the AL, subsidence is caused, which varies in magnitude depending on the 

ground ice contents in the soil and the thaw depth. The surface deformation endangers the 

stability of house foundations as well as other engineering structures (Hong 2014). Further, the 

thawing reduces the strength of ice-rich sediments on slopes, which poses the risk of slope 

destabilization and could increase slope failure and landslides (Akerman 2005;  Harris 2005;  

Niu et al. 2014). As the permafrost acts as drainage barrier, it also has a large influence on the 

local hydrology and increases in ALT affect water fluxes including soil moisture and ground 

water storage (Walvoord and Kurylyk 2016). 

Due to these impacts of permafrost thaw, it is of large importance to monitor the state of the 

active layer, for which increases in thickness in response to global warming have been observed 

across the entire permafrost region (Biskaborn et al. 2019). 

The main field methods for ALT monitoring are manual probing and interpolation of 

temperature measurements along a depth gradient. These observations are, however, limited, as 

they are labour and time intensive. Furthermore, the ALT can be estimated through modelling, 

using remotely sensed degree days of thaw or other factors (Sazonova and Romanovsky 2003;  

Zhang 2014). Modelling allows large-scale investigations, yet the spatial resolution is limited 

to km-scales and the result characterized by large uncertainties (Jia et al. 2017). 

Recent studies have applied a new method based on ground subsidence to estimate the ALT.  

Ground subsidence occurs during the seasonal thawing period, due to the phase transition from 

ice to water in the soil pores of the active layer and the resulting volume change (Liu et al. 

2012). The subsidence can be monitored remotely with the differential interferometric synthetic 

aperture radar technique (DInSAR). The technique is based on a SAR-image pair and uses the 

differences in the phase of the returning radio signal at the satellite sensor to map ground 

deformation between the image acquisition dates (Braun and Veci 2020). With the monitored 

ground subsidence, it is possible to derive the ALT change by considering the ice content in the 

soil pores. The ice content can be estimated through combining the soil saturation fraction 

(saturation of soil pores) with the soil porosity. Based on the volume change of ice to water it 

can be derived how much ice must have melted to water, to cause the monitored subsidence. 
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Knowing the ice content of the soil it can then be estimated how much the ALT changed over 

the monitored subsidence period. 

The application of this method through remote sensing approaches would benefit current 

permafrost monitoring by allowing observations of the ALT at high temporal and spatial 

resolution.  

 

 

1.1 Study aim 
   

The aim of this thesis is to evaluate the ability of the ground subsidence method to estimate the 

maximum ALT and ALT development in Zackenberg, NE Greenland for the year 2017. The 

evaluation is based on field measurement comparison and the analysis of the ALT distribution, 

taking environmental factors into consideration. 

 

 

1.2 Hypotheses 
   

1. The estimated ALT from the remotely sensed ground subsidence is statistically similar 

to measured ALT (Liu et al. 2012) 

2. Ground subsidence is largest in water-saturated areas and lowest in areas with low 

saturation fraction, due to the larger amount of ground ice in saturated upper soil layers 

(Daout et al. 2017;  Chen et al. 2020). 

3. The ALT will be largest on south-facing slopes, as the high insolation there enhances 

thawing (Liu et al. 2012;  Gao et al. 2016). 

4. The ALT will be smallest in Fens (peat-rich wetlands), where the peat layer allows large 

amounts of ground ice formation and insulates the ice from thawing, which significantly 

slows the thawing progress (Elberling et al. 2008;  Atchley et al. 2016;  Gao et al. 2016) 

5. ALT error will be largest in areas with low saturation fraction, as the result here is most 

sensitive to a precise estimation of soil moisture and subsidence (Liu et al. 2012). 
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2 Background 

 

2.1 Active layer dynamics  

The AL results from the heat and moisture 

exchange between atmosphere and 

permafrost. Whilst the permafrost remains 

at temperatures below 0 °C throughout the 

year, the air temperature at the surface 

varies strongly throughout the seasons and 

thereby the AL functions as a transition 

zone (Fig. 1). The uppermost permafrost 

marks the permafrost table and the 

uppermost frozen part of the active layer 

is the frost table. The depth difference 

between the frost table and soil surface is 

defined as active layer thickness, yet this 

thaw depth is also known as active layer 

depth (Zhao et al. 2000;  Woo 2012). 

The development of the active layer 

throughout the year can be divided in four 

stages (Boike et al. 1998;  Zhao et al. 

2000;  Wang et al. 2017): 

a) Summer thawing stage:  

After all snow has thawed, the AL is exposed to heating from the atmosphere and starts to 

thaw downwards. The heat flows are both conductive and nonconductive. In the upper 

thawed AL the moisture is evaporating, yet in the lower thawed AL the soil moisture is 

moving downwards to the freezing front. 

b) Autumn freezing stage:  

The period from maximum ALT to refrozen AL is often divided: first unidirectional 

freezing upwards from the permafrost table and then freezing from both the permafrost 

table upwards and from the surface downwards occurs. In both cases, soil moisture 

migrates from the thawed part towards the freezing front and thereby transfers heat in the 

AL. As a result, the temperature gradient decreases. 

c) Winter cooling stage:  

The AL is completely frozen and the temperature gradient across the AL reverses to colder 

temperatures at the soil surface with increasing temperatures towards the permafrost table. 

The temperature gradient is often steep, and conductive heat flows dominate the heat 

exchange. Snow cover can decrease the cooling of the AL, due to its insulating effect. 

d) Spring warming stage:  

With increasing air temperatures the temperature gradient in the AL reverses, as now the 

soil surface is warmer than the permafrost table. The main heat flow is conductive, yet 

moisture also migrates towards the warmer surface, where it evaporates. Snow can slow 

the warming of the AL, as it insulates the AL until the snow layer is thawed. 

Of these stages, the summer thawing stage is especially important to explain the AL dynamics 

during the investigated thawing period in this thesis. In addition, the autumn freezing and spring 

Figure 1: Permafrost soil schematic with soil 

temperature vs depth, showing summer (red line) 

and winter (blue line) temperature variations. 

Adapted from CEN (2020). 

 Increasing temperature 
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warming stages are of relevance due to the processes of moisture migration in the AL. This 

indicates varying ice content in the AL (Schuh et al. 2017;  Wang et al. 2017).  

The interannual ALT development has been found to strongly correlate with the mean annual 

air temperature (MAAT), snow depth and the seasonal thawing degree-day sums (Brown et al. 

2000;  Zhang 2005;  Jorgenson et al. 2010). 

Further, the active layer is significantly affected by local environmental factors and therefore 

varies on the scale of a few metres (Nelson et al. 1999;  Brown et al. 2000;  Wright et al. 2009). 

Important local factors are: 

a) Soil characteristics: 

The soil type governs the local ALT because soil texture and composition influence thermal 

conductivity and porosity. The porosity determines the maximum water content and thereby 

the ice content the soil can hold. The thermal conductivity of soil increases with volumetric 

water content, yet the higher the ice content, the more thermal energy is required to thaw 

the soil column (Jorgenson et al. 2010). An important aspect is further the depth of the 

organic layer, which acts as insulation and has a very high porosity and thereby slows the 

thawing progress (Brown et al. 2000;  Atchley et al. 2016). 

b) Topography: 

The topography influences the surface energy balance through the impact of aspect and 

slope on the amount of incoming radiation (insolation). Areas on north-facing slopes receive 

less insolation than south-facing slopes, which can decrease the ALT (Gao et al. 2016). 

Another factor is that north-facing slopes and depressions have, as a result of the decreased 

insolation, a prolonged snow cover into summer, which further insulates the AL from 

thawing due to the high albedo and low thermal conductivity of snow (Zhang 2005). Also, 

elevation influences summer and winter air temperatures with higher elevations being 

characterized by lower ALT (Jorgenson et al. 2010). Additionally, the topography controls 

the local hydrology and thereby affects the water content of the soil. 

c) Hydrology: 

The local hydrology is of importance because of the ability of water to transport heat. 

Thereby, local hydrology affects the depth of the permafrost table and the water content in 

the AL, with riverbeds and floodplains often showing very large ALT (Woo 2012). 

Furthermore, standing water in depressions can take up and store significant heat energy 

due to its low albedo (Jorgenson et al. 2010). 

d) Microclimate: 

Variations in MAAT, wind and insolation interact with the other local factors. Wind can 

redistribute snow and thereby cause exposure or insulation of the AL (Zhang 2005).  

e) Vegetation: 

The vegetation acts as insolating layer and it also influences the depth of the insolating 

organic layer. Absence of vegetation allows a stronger response of the AL to atmospheric 

conditions, which causes a stronger cool-down during winter and can allow faster thawing 

during summer (Woo 2012). 

Based on these dependencies of the ALT distribution to the environmental parameters, the 

estimated ALT in this study should align to the study hypothesis in order to prove the 

applicability of the ground subsidence method. By focusing on southern aspects and Fen areas 

in the hypothesis, the ALT estimate distribution will be tested for plausibility regarding the 

effect of the organic layer thickness, ice content and insolation received (Jorgenson et al. 2010; 

Atchley et al. 2016). 
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2.2 Ground subsidence and the DInSAR method 

To derive the ground subsidence, the differential interferometric synthetic-aperture radar 

(DInSAR) was applied. This radar-technique is used to map ground deformation by comparing 

two or more radar images.  

Radar remote sensing uses radio-waves and is an active remote sensing technique. Successive 

radar waves are emitted to illuminate the scene and the echo is recorded by the sensor. The 

sensor does not only record the intensity of the backscatter, but also the part of the wave (phase) 

that hits the sensor. The phase (Φ) describes the exact position within one wavelength and can 

therefore range from -π to π (Fig. 2).  

As the sensor records the phase, it is possible to compare the phase recorded in images at 

different times but the same location (repeat pass). Then, the difference in the recorded phase 

between the recordings can be derived if the topography is known (Fig. 2). If ground 

deformation occurred between the first and second pass the recorded phase for the individual 

pixel will not be the same, known as phase shift. The map showing the phase difference between 

the two acquisitions for each pixel is called interferogram and displays the phase difference 

within one radar wavelength from -π to π (Fig. 2). This method is called DInSAR (Moreira et 

al. 2013). 

 

 

Figure 2: Illustration of DInSAR method with two observations from different times and the 

recorded phase difference, adapted from Jaya et al. (2020).   
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To obtain an accurate interferogram of the phase difference caused by surface displacement, all 

other contributing factors to the phase difference have to be excluded: 

 Φ =  Φ𝐷𝐸𝑀 +  Φ𝑓𝑙𝑎𝑡 +  Φ𝑑𝑖𝑠𝑝 + Φ𝑎𝑡𝑚 +  Φ𝑛𝑜𝑖𝑠𝑒 (1) 

These other factors include the flat-earth phase  Φ𝑓𝑙𝑎𝑡 (caused by Earth’s curvature), the 

topographic phase Φ𝐷𝐸𝑀 (caused by local topography), changes in atmospheric conditions 

Φ𝑎𝑡𝑚 (e.g. pressure, temperature, humidity), as well as other noise contributions Φ𝑛𝑜𝑖𝑠𝑒 (e.g. 

change in surface properties altering signal scattering).   

The flat-earth phase can be removed with exact information on the orbit. Using a high-

resolution DEM, the topographic phase can also be removed. The noise and atmospheric 

contribution can be kept small by decreasing the distance (spatial baseline) between the satellite 

position on the first and second pass, but they are difficult to model and remove (Braun and 

Veci 2020).  

If these steps are considered, the resulting phase difference due to surface deformation can be 

evaluated for the quality of the phase information using a coherence estimate. The coherence 

shows how similar the phase information of the two compared images is and ranges from 0 – 

1. If the coherence is low, influence of temporal, geometric or volumetric decorrelation can be 

assumed. Therefore, coherence thresholds are commonly applied to assure valid deformation 

results (Abe et al. 2020;  Reinosch et al. 2020). 

The final interferogram shows the phase difference within the scale of -π to π (Fig. 2). The 

phase difference therefore has to be integrated between neighbouring pixels (unwrapping) to 

receive a continuous raster. This is commonly done using specific algorithms (Chen and Zebker 

2002).  

The unwrapped phase difference can then be calculated into a displacement using the 

wavelength of the radar signal. As the radar antenna is slightly right-facing (Sentinel-1), the 

displacement has to be corrected from Line-of-Sight displacement to vertical displacement by 

considering the incidence angle. The resulting formula is: 

 
𝐷𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =

(Φ𝑢𝑛𝑤𝑟𝑎𝑝𝑝𝑒𝑑 ∗  𝜆)

(−4 ∗  𝜋 ∗ cos(𝛼𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒))
 

(2) 

where 𝐷𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is the vertical displacement, Φ𝑢𝑛𝑤𝑟𝑎𝑝𝑝𝑒𝑑 is the unwrapped phase, 𝜆 is the 

wavelength of the radar signal and 𝛼𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 is the incidence angle of the radar signal on the 

ground in radians (Short et al. 2014). For this transformation, it is of importance that no 

horizontal displacement exists (Abe et al. 2020).  

The displacement map between the two images is then corrected for geometric SAR distortions 

caused by the topography. Thereby, errors caused by the interplay of incidence angle and local 

topography on the backscatter are corrected and the image is geocoded into a projected 

deformation map.   

Lastly, the projected deformation map has to be tied to at least one ground control point, for 

which either deformation measurements can be used or a stable ground control point (Liu et al. 

2012). 
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2.3 Previous studies 

The DInSAR method has been widely used for monitoring of ground subsidence related to 

earthquakes or landslides (Moreira et al. 2013). However, for monitoring of ALT the method 

was first applied in 2012 by Liu et al. and used to monitor seasonal and multi-seasonal ALT 

developments at the North slope in Alaska (Fig. 3). This area is characterized by saturated soil 

and the resulting ALT was within the range of the variability found at field measurement sites. 

The authors estimated that the method is most sensitive to errors in the subsidence estimate, yet 

that with decreasing soil moisture the sensitivity to the correct determination of the soil 

properties (porosity and saturation) becomes more important (Liu et al. 2012).  

The method was afterwards applied across several sites in the Qinghai-Tibet Plateau (Fig. 3). 

To estimate the ground ice content, the saturation fraction was either modelled (Wang 2018, 

Zhang 2020) or a constant value was used (Jia 2017). One study also estimated the ALT based 

on the time lag between maximum subsidence and maximum surface temperatures (Li 2015). 

In the context of these studies, it will be of interest to evaluate how the method performs in an 

area of varying soil conditions and to evaluate the result by also using environmental parameters 

besides field measurements. 

   

Figure 3: Previous studies conducted on ALT estimates from DInSAR (Liu et al. 2012;  Li et 

al. 2015;  Jia et al. 2017;  Wang et al. 2018;  Zhang et al. 2020) with study site Zackenberg. 

Permafrost distribution from Brown et al. (2002) as background, which is based on permafrost 

coverage (continuous = 90-100 %, discontinuous = 50-90 %, sporadic = 10-50 %, isolated = 

0-10 %). 
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3 Methodology 

3.1 Study site 

The ALT was estimated for Zackenberg valley, which is located in NE-Greenland (74º28' N, 

20º34' W) and lies within the region of continuous permafrost. The permafrost thickness is 

estimated to be 200 - 500 m across the valley (Christiansen et al. 2008). 

The climate is high Arctic with an average annual temperature of – 9 °C and a mean annual 

precipitation of 260 mm (reference period: 1996 – 2005). Precipitation falls to 90 % as snow, 

and therefore the spatial distribution of snow governs the soil moisture content during the snow-

free summer period (Hansen et al. 2008). 

The valley has a diverse geomorphology, with the western side of the Zackenberg river 

characterized by gneissic bedrock and the eastern side being of sedimentary origin (Elberling 

et al. 2008). 

About 65 % of the valley is vegetated by low-growing vegetation (Elberling et al. 2008). Barren 

areas result from exposed bedrock or wind erosion (Rasmussen et al. 2018). The drier parts of 

the valley are inhabited by heather species, such as Dryas (Dryas integrifolia) and Cassiope 

(Cassiope tetragona). Areas of long-lasting snow coverage are often vegetated by Salix (Salix 

arctica) and wetter areas are covered by Grassland (e.g. Arctagrostis latifolia) and Fen (e.g. 

Eriophorum scheuchzeri) vegetation (Elberling et al. 2008). 

The chosen study area extends over 46.84 km² and covers the main valley to an altitude of 200 

m (Fig. 4). Areas above this altitude were excluded to reduce the influence of slope movements 

on the subsidence result (Fuhrmann and Garthwaite 2019).  

 

Figure 4: Study area with field measurement points (manual = manual ALT probing;  

T = thermistor string measuring temperature with sensors in 0.25 m depth intervals). 
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3.2 Data and processing environment 

Sentinel-1 SAR scenes for the subsidence mapping were retrieved from the Copernicus Open 

Access Hub website (Table A1). The processing of the subsidence mapping was performed in 

SNAP Version 7 (Sentinel Application Platform, Version 7.0.4, ESA, Paris, France) with the 

use of the SNAPHU-Unwrapping plug-in (Chen and Zebker 2002).  

The data for the porosity and saturation fraction was obtained from varying sources (Table A1) 

and together with the subsidence results processed in ArcMap 10.5 (ESRI, Redlands, 

California). All layers were clipped to the extent of the defined study area (Fig. 4) and projected 

into the coordinate system WGS 1984 UTM 27.  

For further information on the data sources, see Table A1. 

Field measurement data was received through the Greenlandic Ecosystem Monitoring program 

from GeoBasis Zackenberg and ClimateBasis Zackenberg (GEM 2020a). The processing of 

these measurements was accomplished in Microsoft Excel 2010 (Microsoft Corporation, 

Redmond, Washington). 

The statistical evaluation of the results was conducted in MATLAB (Version 2017b, Natick, 

Massachusetts: The MathWorks Inc.) and a spatial autocorrelation test (Global Moran’s I) was 

performed using ArcPy in ArcMap 10.5 (ESRI, Redlands, California). 

 

 

3.3 Active layer thickness estimation 

In order to estimate the ALT based on the ground subsidence throughout the thawing season 

2017 several variables had to be derived (Fig. 5).  

 
Figure 5: Scheme of parameters used for the estimation of ALT change based on Liu et al. 

(2012). 

The ground subsidence was obtained with the DInSAR technique and by estimating soil 

porosity and soil saturation, the ice content was derived across the study area. With these 

variables, the ALT change during the subsidence period can then be calculated using: 

 𝛥𝐻 = 𝛿 
 𝜌𝑖𝑐𝑒

𝑃𝑆(𝜌𝑤𝑎𝑡𝑒𝑟− 𝜌𝑖𝑐𝑒)
, (3) 

where 𝛥𝐻 is the change in active layer thickness (in meters), 𝛿 is the subsidence (in meters) 

and  𝜌𝑖𝑐𝑒 and  𝜌𝑤𝑎𝑡𝑒𝑟 are the density of ice and water respectively (in kg/m³). P is the porosity 

(as decimal) and S the saturation fraction (as decimal). Together they represent the ice content 

of the frozen active layer (Liu et al. 2012).  

The derivation of these variables is explained in the following sections. 
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3.3.1 DInSAR subsidence  

 To determine which period was to be evaluated with the DInSAR method, the thawing period 

was extracted from field measurements of five thermistor strings (GeoPrecision GmbH, 

Ettlingen, Germany). These strings measure temperature in 0.25 m depth intervals. The thawing 

start was defined as the date where the mean daily 0 cm soil temperature had first reached 0.1 

°C. In this way, the time period at which the temperature levelled at 0 °C for the snow melt was 

excluded. The thawing end was defined as the point when the soil started to freeze upwards 

from the permafrost table (Zhao et al. 2000;  Wang et al. 2017). 

The thawing period determined by the thermistor evaluation spanned from 08-06-2017 to 31-

08-2017 (Fig. 6; Fig. A8).   

 

Figure 6: Daily mean soil temperatures at the Climate Station for May to November 2017 with 

red line showing 0 °C isotherm, white lines showing thawing period and green lines DInSAR 

period. 
 

Sentinel 1-Synthetic aperture radar images (SAR-images) for every 12th day during this period 

were acquired (Table A2). The SAR-images are available for every 6th day, but a 12-day interval 

was chosen to decrease the processing time, whilst still limiting coherence loss caused by 

temporal change of the scatterers (e.g. vegetation growth).    

The subsidence analysis was conducted between each successive image pair (e.g. 1st SAR-

image & 2nd SAR-image, 2nd SAR-image & 3rd SAR-image etc.). For the subsidence processing, 

a 5 m-DEM (Table A1) was used and the phase difference was unwrapped using the SNAPHU 

plugin (Chen and Zebker 2002). The resulting displacement was converted from Line-of-Sight 

displacement to vertical displacement using the cosine of the incidence angle (Equation 2). As 

the SAR-images used in this study were taken by the Sentinel-1A satellite, a wavelength of 

0.053 m (ESA 2020) was used. The resulting subsidence was filtered for a sufficient coherence 

threshold of 0.3 to decrease noise (Abe et al. 2020;  Reinosch et al. 2020).  

Due to insufficient coherence, the first SAR-image had to be excluded, as less than 50% of the 

calculated subsidence in the study area had a coherence above the chosen threshold. Therefore, 

the period with data on the subsidence changed to the time period 20-06-2017 to 31-08-2017. 

The subsidence was calibrated with a zero-subsidence point in the valley. This calibration point 

was chosen by finding the cell across the valley with the highest coherence over all image pairs 

(coherence = 0.93) (Liu et al. 2012). Each subsidence image was then interpolated for missing 

subsidence raster cells due to insufficient coherence by applying the Elevation-Void-Fill tool 

in ArcGIS, which applies inverse distance weighted interpolation. 

All subsidence images were summed up to derive the total subsidence (flow chart: Fig. A1). 
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3.3.2 Estimation of porosity 

The soil at Zackenberg is mineral soil with varying amounts of organic matter (Elberling et al. 

2008). The porosity was estimated for 0 – 1 m soil depth based on mineral soil porosity and 

organic soil porosity (for flow chart see Fig. A2).  

The porosity of the mineral soil part was estimated using the sand fraction, following an 

empirical formula from Cosby et al. (1984). The formula was derived through the analysis of 

over 1100 soil samples and relates mineral soil porosity to the sand fraction only:   

 𝑃𝑚𝑖𝑛𝑒𝑟𝑎𝑙 =  0.489 −  0.00126 ∗  𝑓𝑟𝑎𝑐𝑠𝑎𝑛𝑑 (4) 

The sand fraction was determined using sand weight per volume and bulk density at 250 m 

resolution (ISRIC 2020a). 

To estimate which fraction of the upper meter of soil is organic, field measurements of carbon 

density results from Palmtag et al. (2018) were evaluated for simplified geomorphological 

classes (Table A4; Cable et al. 2018). The carbon density was divided by the carbon density of 

peat, which is assumed to be 100 % organic matter. A peat carbon density of 140 kg/m3 was 

used (Liu et al. 2012). The resulting organic fraction was assigned the porosity 90 % based on 

the porosity of peat (Rezanezhad et al. 2016). 

To derive the overall porosity the organic and mineral porosity was combined using: 

 𝑃 =  ((1 −  𝑓𝑟𝑎𝑐𝑜𝑟𝑔)  ∗  𝑃𝑚𝑖𝑛𝑒𝑟𝑎𝑙) + (𝑓𝑟𝑎𝑐𝑜𝑟𝑔 ∗ 𝑃𝑜𝑟𝑔) (5) 

   

3.3.3 Estimation of saturation fraction 

The saturation fraction across the valley was estimated in order to approximate the ice volume 

in the soil during the thawing season of 2017. The estimate was based on the saturation at the 

end of the thawing season of the previous year, 2016, and derived by combining a soil moisture 

index and in-situ measurements (for flow chart see Fig. A2).  

Different soil moisture indices (Topographical Wetness Index, Normalized Difference Water 

Index, Normalized Soil Moisture Index) were tested for significant correlation to extensive soil 

moisture measurements from 2014 (Table A1). The indices were calculated based on the 5 m-

DEM or based on a Sentinel-2 image from the 12-08-2016 (Table A5). The date was chosen as 

a mean of the time of the soil moisture measurements (mid of July) and the start of the soil 

freeze-up (end of August) while considering cloud-free acquisition conditions.  

The soil moisture data was averaged for grid cells of the same resolution of the Sentinel-2 image 

(20 m), resulting in 358 grid cells with soil moisture data.   

The Normalized Soil Moisture Index (NSMI) showed the most significant result (p < 0.00001) 

(Table A3) and the following function with an r2 of 0.64 was used to relate the NSMI to soil 

moisture across the study area using a simple regression (Fig. 7):  

 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 = 185.83 ∗ 𝑁𝑆𝑀𝐼 −  8.2639 (6) 

The NSMI is calculated as (Haubrock et al. 2008): 

 𝑁𝑆𝑀𝐼 =  
𝑅 (1800 𝑛𝑚) − 𝑅(2119𝑛𝑚)

𝑅 (1800 𝑛𝑚) + 𝑅 (2119𝑛𝑚)
 =  

𝐵𝑎𝑛𝑑11 − 𝐵𝑎𝑛𝑑12

𝐵𝑎𝑛𝑑11+ 𝐵𝑎𝑛𝑑12
 (for Sentinel) (7) 
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The soil moisture calculated based on the NSMI was considered to represent the upper part of 

the soil, as the NSMI is based on the surface reflectance, which is influenced by the topsoil 

saturation (Haubrock et al. 2008). The soil moisture was converted to saturation fraction (%) 

by dividing the local soil moisture by the local porosity. This saturation fraction was assumed 

to represent the mean saturation fraction of the uppermost soil. As the permafrost table has been 

found by other studies to act like a drainage barrier, and thus creates saturated water conditions 

in the lower AL (Wang et al. 2017;  Wang et al. 2018), this had to be considered for the mean 

saturation fraction estimate across the AL. The permafrost table was assumed to be at 1 m depth, 

based on the majority of measured ALT being less than 1 m (Fig. 8). In addition, Christiansen 

et al. (2008) modelled the ALT across the valley and derived ALT in the range of 0.5 to 0.8 m. 

Nevertheless, the assumed constant permafrost table depth at 1 m depth is a strong 

simplification. To adjust the saturation fraction for the saturation at the permafrost table, all 

areas with a NSMI saturation fraction 𝑆𝑁𝑀𝑆𝐼 above 50% were adjusted to the mean of 0.5 m 

saturated soil and 0.5 m 𝑆𝑁𝑀𝑆𝐼 content: 

 𝑆 =  (100 ∗  0.5)  + (𝑆𝑁𝑀𝑆𝐼 ∗ 0.5) (8) 

Areas with an 𝑆𝑁𝑀𝑆𝐼below 50% were assumed to be less saturated also deeper down in the soil 

and therefore a linear function was applied, which increased the saturated fraction linear to the 

NSMI saturation fraction: 

 𝑆 = (𝑆𝑁𝑀𝑆𝐼) +  ((1 − 𝑆𝑁𝑀𝑆𝐼) ∗ 𝑆𝑁𝑀𝑆𝐼) (9) 

According to this, the saturation fraction was adjusted. The threshold chosen aligns with in-situ 

measurements of Hollesen et al. (2011) and Rasmussen et al. (2018), which showed saturated 

conditions below 0.5 m depth at the station Zerocalm-1 in Zackenberg valley.  

 

3.3.4 Active layer thickness calculation 

The ALT was calculated by combining the derived saturation fraction, soil porosity and 

subsidence through equation 3. 

The maximum ALT was obtained by using the total subsidence, and the progression throughout 

the thawing season was calculated by using the individual subsidence for each 12-day period. 

As the analysis period only included the subsidence starting from 20-06-2017, the measured 

ALT progression until then was added to the result for each station (for flow chart see Fig. A3). 

The estimated ALT will further be referred to as ES-ALT. 

Figure 7: NSMI vs. soil moisture measurement correlation. The linear trendline (red) with 95 

% confidence bounds describes the used NSMI-soil moisture relationship. 
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3.4 Field measurements of ALT 

3.4.1 Processing 
Field measurements for 2017 were available from nine sites (Fig. 4, Table 1).  

This included manual probing measurements of active layer depth from two sites connected to 

the Circumpolar Active Layer Monitoring Network (CALM): Zerocalm-1 (ZC1) and Zerocalm-

2 (ZC2). Additionally, data was available from two other manual probing sites (MM2 and AC). 

The manual probing is done by pressing a metal rod through the soil until the frost table is hit 

and measuring thereby the ALT. Further, temperature-depth measurements were available from 

five thermistor strings (GeoPrecision GmbH, Ettlingen, Germany) which were also used to 

investigate the thawing period (see section 3.3.1). These strings measure temperature at every 

0.25 m depth. 

Table 1: Field sites and main characteristics. Vegetation type and soil moisture regime based 

on Elberling et al. (2008) 

Site Measurement type Vegetation type  Moisture regime 

ZC1 Manual probing Cassiope with parts of Salix Drier 

ZC2 Manual probing 
Grassland with parts of Fen,  

Salix, Cassiope, Dryas  
Moist 

AC Manual probing Fen Wet 

MM2 Manual probing Fen Wet 

Runway Temperature Salix Intermediate 

Climate St. Temperature Salix Intermediate 

Triangle Temperature Barrens Very dry 

Grassland Temperature Salix Moist 

Fan Temperature Fen Wet 

 

The manual probing measurements at ZC1 included data from 121 measurement points, which 

are located at 10 m distance to each other in a 100 m x 100 m grid. For ZC2 the manual probing 

measurements consist of 208 points at 10 m distance to each other over a 120 m x 150 m grid. 

The manual probing at AC include 8 points within a 2 m x 5 m area. For MM2 5 points along 

a 2 m transect are manually probed (Skov 2020).   

For all manual probing sites, the point measurements were averaged for each site and date, with 

points covered by snow assumed to have 0 m ALT. If the measurements were not taken on a 

date that aligned with the analysed images, then the depth development was linearly 

interpolated to that date, based on the assumption of linear ALT increase. 

The data from the thermistor strings were also evaluated for the depth of the freezing front, 

which was assumed to be at 0 °C (Zhao et al. 2000). The data of the two depths which were 

closest to the freezing front were linearly interpolated to find the depth of the 0 °C isotherm 

(Frauenfeld 2004).  

The in-situ ALT based on the field measurements will in the following be referred to as M-

ALT. 
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3.4.2 Resulting field measurement data 
The maximum M-ALT at the manual probing Zerocalm sites in Zackenberg for the thawing 

season of 2017 was 0.83 m for Zerocalm-2 and 0.71 m for Zerocalm-1 (Fig. 8). The manual 

probing sites MM2 and AC, located in a Fen, recorded the lowest maximum M-ALT with 0.52 

m and 0.56 m. The values of the temperature strings at the drier sites Triangle and Runway 

show the deepest maximum M-ALT with 1.2 to 1.5 m. 

 

Figure 8: Temporal development of in-situ active layer thickness during thawing season 2017 

(Triangle markers indicate manual probing sites and circles indicate thermistor strings). 

 

3.5 Evaluation of estimated active layer thickness 

  In order to review the distribution of the used subsidence, the correlation between subsidence 

and NSMI-based soil moisture as well as the saturation fraction for 0-1 m soil depth was 

determined (hypothesis 2). 

To evaluate the ES-ALT the total and successive ES-ALT change was extracted at each station. 

The ES-ALT and M-ALT was then compared, considering both the temporal development and 

maximum thickness (hypothesis 1). The difference of the ES-ALT to M-ALT was also 

correlated with the local saturation fraction (hypothesis 5). 

The total ES-ALT distribution was further analysed for relationships to environmental 

parameters:  

• Vicinity to streams 

• Aspect (four major directions) (hypothesis 3) 

• Bare vs. vegetated areas 

• Vegetation type (hypothesis 4) 

• Depressions vs. flat areas vs. slopes 
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For this, a Euclidian distance raster to streams, a reclassified aspect raster based on a 5 m 

resolution DEM and a reclassified vegetation raster (Elberling et al. 2008) were used (Table 

A2, Table A3, Fig. A5, Fig. A6). The depression values were estimated by applying the ArcGIS 

Fill tool on the 5 m resolution DEM and subtracting the initial DEM from the result. Thereby, 

only the local depressions remained, which were filtered for an area size above 50 m2 to 

decrease noise potentially caused by DEM errors (Wechsler 2007). The depressions were then 

combined with a reclassed slope raster based on the DEM, where all slope values below 2° were 

assumed to be flat and all slope values above 2° were classed as slopes.    

For the evaluation of the relationship to the environmental parameters, the ES-ALT raster data 

was bilinear aggregated to 50 m resolution in order to decrease the number of data points (n = 

112000 vs. n = 18000). This was done to decrease possible exaggeration of the statistical 

significance of performed statistical tests as an effect of large sample sizes (Lantz 2013). 

Further, lakes and rivers based on Elberling et al. (2008) (Table A2, Fig. A5) were excluded. 

To statistically evaluate the results, all data were tested for being normally distributed by 

evaluating the kurtosis and skewness of each variable. As the data did not meet the criteria of 

normal distribution, only tests applicable for non-parametric data were used (Kanji 2006): 

• The one-sample Wilcoxon signed rank test was used to test if one sample belongs to a 

population with a known mean (Kanji 2006). 

• The Wilcoxon rank sum test was applied when two independent samples were tested for 

belonging to the same population (Kanji 2006).  

• The Kruskal-Wallis test was used to evaluate if several independent samples belong to 

the same population (Kanji 2006).  

• The Spearman's rank correlation coefficient was applied to test for relationships 

between two samples (Kanji 2006). 

• Regression analysis was used to relate one dependent variable to one or several 

independent variables (Kanji 2006). 

• The Nash-Sutcliffe efficiency statistic (NSE) was applied to evaluate the agreement 

between observed and estimated ALT. The test compares the relative magnitude of the 

residual variance to the measured variance using the formula: 

 
𝑁𝑆𝐸 = 1 − 

∑ (𝑄𝑒
𝑡 − 𝑄𝑜

𝑡)2𝑇
𝑡=1

∑ (𝑄𝑒
𝑡 − 𝑄𝑜)

2
𝑇
𝑡=1

 
(10) 

where 𝑄𝑜 is the observed value, 𝑄𝑒 is the estimated value, t is the value at time t and T 

is the end time. A perfect fit is indicated by a NSE of 1, while values below 0 indicate 

that the observed mean is a better predictor of the temporal ALT development than the 

estimate (Nash and Sutcliffe 1970). 

• The Global Moran’s I statistic was used to test for spatial randomness. Based on a matrix 

of correlation coefficients the test measures the spatial autocorrelation (tendency of 

areas close together having similar values). The Moran’s I index ranges between -1 and 

+1 and indicates the spatial dependency. The resulting p-value displays the likelihood 

of the data being randomly distributed and a z-score measures the dispersion / clustering 

compared to spatial randomness (Moran 1950). 

All tests produce a p-value ranging from 0 to 1, which indicates the probability of the null 

hypothesis H0 (no difference / relationship between the samples) being true. The p-values were 

evaluated for a significance level α of 0.05, below which H0 was rejected (flow chart: Fig. A4). 
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4 Results 
 

4.1 Derived soil moisture and porosity 
   

The soil moisture based on the NSMI varied from 0 to 72 % for the topsoil, which led to 

oversaturation in some areas. These were corrected to a saturation fraction of 1. The derived 

saturation fraction then ranged from 0 to 1 for the soil from 0 - 1 m depth (Fig. 9A). This value 

is assumed to represent the average saturation when the soil froze in 2016 and thus represents 

combined with the porosity the ice content.  

The derived organic fraction based on Palmtag et al. (2018) ranged from 0 to 23 % (Table A4). 

The mean carbon density used of 11.2 kg C /m² aligned to the range of 10 – 25 kg C / m² 

recorded by Hugelius et al. (2013). The calculated mean sand fraction of 43 % was within the 

range of fractions observed in other studies. Hollesen et al. (2011) determined a sand fraction 

around 80 % for 0 - 1 m depth at the Zerocalm-1 station, yet Morel et al. (2019) and Rasmussen 

et al. (2018) recorded lower values of 16.7 % (at AC station) and 30 % (at the Climate station) 

respectively. The calculated porosity ranged from 42 % to 58 % (Fig. 9B). 
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Figure 9: A = Estimated saturation fraction for 0-1 m depth, B = Estimated porosity for 0-1 m 

depth, C = Total subsidence from 20-06 to 31-08-2017 based on DInSAR analysis, D = 

Estimated active layer thickness (ES-ALT) change from 20-06 to 31-08-2017. 
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4.2 Evaluation of subsidence 
   

Both the NSMI-based soil moisture and saturation fraction for 0 – 1 m soil depth are 

significantly correlated to the subsidence based on the Spearman's rank correlation coefficient 

(Table 2, Fig. 10). The relationship indicates that subsidence is lowest in drier areas. From 

subsidence larger than 0.03 m the correlation begins to slightly level out (Fig. 10). Nevertheless, 

hypothesis 2 of larger subsidence in water-saturated areas is supported. 
 

Table 2: Correlation of subsidence to NSMI-based soil moisture and saturation fraction across 

entire study area using the Spearman’s rank correlation coefficient.  

Subsidence correlated to Rho  P-value Sample-size (n) 

NSMI-based soil moisture 0.69 ~ 0 18024 

Saturation fraction 0.68 ~ 0 18024 
 

 

Figure 10: Correlation of subsidence to NSMI-based soil moisture with Spearman correlation 

coefficient rho. 

 

 

4.3 Estimated active layer thickness  
   

The mean total ES-ALT change across the study area for the analysed period (20-06-2017 to 

31-08-2017) amounted to 0.63 m with a standard deviation of 0.28 m, indicating a large 

variability of the ALT.   

The ES-ALT development throughout the thawing season follows the overall trend of 

increasing ALT. However, some time intervals show no increase in subsidence at some stations 

and sudden jumps in the following ES-ALT progression can be seen (Fig. 11). 
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Figure 11: Temporal development of estimated active layer thickness at the field measurement 

stations during investigated period (20-06-2017 to 31-08-2017). 

 

4.4 Accuracy evaluation with field measurements 
   

The results for the maximum ES-ALT based on the DInSAR method are compared against the 

M-ALT at each field measurement site in Fig. 12. Based on a Wilcoxon rank sum test the two 

samples are statistically similar (p-value = 0.55), which supports hypothesis 1.  Nevertheless, 

it is clearly visible that the station ‘Runway’ is an outlier (the red bars in Fig. 12 show the 

differences between maximum ES-ALT and M-ALT), and the likelihood of similarity between 

M-ALT and ES-ALT increased to a p-value of 0.96 when the outlier was excluded. The mean 

absolute difference of the maximum ES-ALT compared to the M-ALT is 0.16 m (18 % of mean 

maximum M-ALT) and decreases to 0.07 m (9 % of mean maximum M-ALT) if the Runway 

station is excluded.  
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Figure 12: Comparison of maximum ES-ALT (blue bars) and M-ALT (grey bars) including 

error display (red bars) based on M-ALT minus ES-ALT. 

Over the study period, the ES-ALT for each station was not exactly following the respective 

M-ALT, which would have been indicated by zero difference in the temporal development of 

the ALT (Fig. 13). The period of greatest offset aligns with the 12-day period when the ES-

ALT progression had stagnated (14-07-2017 to 26-07-2017) (Fig. 11). Also, it is clearly visible 

that the ALT at the Runway station was strongly underestimated (Fig. 13). The mean offset of 

M-ALT minus ES-ALT over the entire period accounts to 0.13 m (0.07 m without the Runway), 

indicating that the ALT was under- rather than overestimated over time. 

 
Figure 13: Temporal development of difference between measured and estimated ALT during 

investigated period (20-06-2017 to 31-08-2017). The difference is based on M-ALT minus ES-

ALT.   

 

Increasing estimated saturation fraction 
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The temporal development of the ES-ALT vs. M-ALT was evaluated by comparing the slope 

of the linear trendline between M-ALT and ES-ALT over time with the ideal fit (slope = 1). 

This was done for each station (Table 3). Using a one-sample Wilcoxon signed rank test, the 

difference to the ideal fit of 1 was statistically not significant (p-value = 0.33), even though the 

Runway station also clearly stands out here as an outlier. This supports hypothesis 1 of the ES-

ALT being statistically similar to the M-ALT.  

Table 3: Station-wise comparison of estimated vs. measured ALT development over study 

period.  

Station n Difference of linear slope to ideal slope (= 1) NSE 

ZC-1  7 0.20 0.66 

ZC-2  7 -0.03 0.84 

AC 7 0.15 0.66 

MM2 7 -0.09 0.74 

Runway  7 0.62 -0.80 

Climate Station 7 -0.1 0.84 

Grassland  7 0.07 0.81 

Fan 7 0.04 0.94 

Triangle Excluded due to n = 2 

By applying the Nash-Sutcliffe efficiency statistic (NSE), it was tested if the ES-ALT at each 

time point had a better agreement to the respective M-ALT than the mean of the M-ALT. The 

result showed that all stations besides the Runway have a very high agreement, with 1 being 

the best possible fit (Table 3). The negative value of the NSE indicates that at the Runway 

station the mean of the M-ALT would have been a better predictor of the temporal development 

than the ES-ALT. Also this result supports hypothesis 1.  

The absolute difference of the maximum ES-ALT to the M-ALT was tested for correlation to 

the saturation fraction at the station using the Spearman's rank correlation coefficient, and the 

difference was significant (ρ = -0.73, p-value = 0.03). This indicates that hypothesis 5 is 

supported, so the ES-ALT error increases in drier areas.   

 

4.5 Accuracy evaluation with environmental parameters 
   

The ES-ALT showed no correlation trend for the distance to the closest stream using the 

Spearman's rank correlation coefficient (ρ = 0.09, p-value ~ 0). This evaluation was based on 

comparing the distance to the nearest stream with the respective ES-ALT value over the entire 

study area at 50 m raster resolution.  

Regarding the four major aspect directions, the ES-ALT differs significantly based on the 

Kruskal-Wallis test (p-value ~ 0) (Fig. 14). The largest ES-ALT with a mean of 0.67 m is found 

on south-facing slopes, whilst north-facing slopes have the smallest mean ES-ALT with 0.50 

m. Comparing the southern aspect class to the merged other aspects with a Wilcoxon rank sum 

test the result is statistically different as well (p-value ~ 0). This supports hypothesis 3, that 

southern aspects are characterized by the largest ES-ALT. 
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Figure 14: Estimated ALT vs. Aspect for the major four direction. Class median (red line), 25 

& 75 percentile (blue box), minimum & maximum (whiskers).  
 

When comparing the ES-ALT between depressions, flat terrain  (slope < 2°) and sloped terrain 

(slope >2°), the classes differ significantly (Kruskal-Wallis test, p-value ~ 0). Depressions have 

the lowest mean ES-ALT with 0.54 m, whilst flat and sloped terrain have larger ES-ALT. The 

difference between sloped and flat terrain is also significant (Wilcoxon rank sum test, p-value 

~ 0) with flat terrain having the largest mean ES-ALT of 0.68 m (Fig. 15).   

 
Figure 15: Terrain comparison with classes depression, flat and slope. Class median (red line), 

25 & 75 percentile (blue box), minimum & maximum (whiskers).  
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The ALT differs significantly (Wilcoxon rank sum test: p-value ~ 0) between vegetated and 

non-vegetated areas (Table A3, Fig. A5) with vegetated areas having a deeper mean ES-ALT 

(0.66 m vs. 0.55 m). However, the on average smaller ES-ALT in non-vegetated areas is 

characterized by a larger variability (Fig. 16).  

Also, the individual vegetation classes are statistically different (Kruskal-Wallis test: p-value ~ 

0) (Fig. 16). Both the vegetation classes adapted to the wettest (Fen) and driest (Dryas & 

Cassiope) conditions show the smallest ES-ALT and are statistically similar based on Wilcoxon 

rank sum tests (p-value = 0.78 for Fen & Dryas, p-value = 0.25 for Fen & Cassiope). This 

opposes the hypothesized smaller ES-ALT in Fen areas (hypothesis 4). Nevertheless, the lowest 

mean ES-ALT is located beneath Fen areas with 0.62 m and the largest ES-ALT is located 

beneath Salix vegetation with a mean of 0.72 m (Fig. 16). 

 

Figure 16: A = Estimated ALT vs. Vegetation presence, B = Estimated ALT vs. Vegetation 

classes with background box colour indicating soil water content (light = driest, dark = 

wettest). Box plots show median (red line), 25 & 75 percentile (blue box), minimum & maximum 

(whiskers).  
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5 Discussion  
 

5.1 Ability of method to estimate ALT 

The results of this study showed that the remotely sensed estimated ALT (ES-ALT) aligned 

well to the in situ measured ALT (M-ALT), with both the temporal development and the 

maximum of the ES-ALT being statistically similar to the M-ALT. However, one outlier was 

observed, with the ALT being strongly underestimated at the Runway station. 

The subsidence was larger in water saturated areas, where higher ice content in the upper soil 

layers induces a stronger volume change compared to areas with lower ice content. This 

supports hypothesis 2. The finding aligns with other studies, which had related water content 

field measurements to subsidence measurements. Chen et al. (2020) compared field 

measurements of soil water content to DInSAR subsidence measurements and found a 

significant positive relationship between ice content and subsidence. Also, Daout et al. (2017) 

found the ground oscillations caused by the freeze-thaw cycle to be smaller in drier soils. 

Even though the ES-ALT is, as hypothesized (1), statistically similar to the M-ALT, the 

evaluation of the ES-ALT is dominated by one outlier: the field measurements at the Runway 

station were underestimated strongly. Several factors could have caused this difference. Firstly, 

an imprecise location of the point might have caused this difference, as only 40 m north of the 

Runway station, an ALT of 1.5 m was estimated, which aligns with the M-ALT. Secondly, the 

soil moisture content might have been overestimated due to the deep AL just north of this point. 

If the sloped permafrost table caused water to flow northwards, the assumption of saturated 

conditions in the lower part of the soil column might have caused an error. The difference might 

have also been generated by the method underestimating enhanced thaw known to occur 

beneath thicker snow cover due to less winter cooling. The location is known to hold snow 

longer and as snow insulates the soil from winter cool down, faster thaw progression has been 

observed beneath thicker snow cover (Nowinski et al. 2010;  Johansson et al. 2013). Yet, other 

studies observed decreased ALT due to the delayed thaw (Seppala 2003; Hinkel and Hurd 

2006), which would not explain the outlier. Lastly, the field measurements at the Runway 

station might have been biased by water percolating down along the borehole of the thermistor 

string. This could have caused deeper recordings of the ALT than actually exists in the 

surrounding soil (Christiansen et al. 2008). 

The evaluation of the relationship between absolute ES-ALT difference to M-ALT at each 

station vs. the respective saturation fraction showed a significant trend towards a larger error in 

areas with a lower saturation fraction. This supports hypothesis 5. As none of the field 

measurement points is located solely in a dry vegetation type (Dryas or Cassiope) the 

significance of the error in drier areas could be larger or smaller than measured with the current 

error analysis. The analysis of the ALT regarding vegetation classes did show discrepancies for 

the drier vegetation classes Dryas and Cassiope. Based on Elberling et al. (2008) the drier 

vegetation types Dryas and Cassiope should have the largest ALT, followed in decreasing ALT 

by Salix, Grassland and Fen (wettest vegetation type). Thus, the saturation fraction and thereby 

vegetation type should be negatively correlated to ALT (Elberling et al. 2008). The expected 

distribution was not visible in the ES-ALT, which points also towards a less accurate ES-ALT 

in areas with drier soils. This is supported by Liu et al. (2012), who predicted that the sensitivity 

of the estimated result to the saturation fraction increases with drier soil conditions. 
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The ES-ALT distribution of Salix, Grassland and Fen aligns better with findings from Elberling 

et al. (2008). The overall ES-ALT is larger than that recorded for the vegetation types in 2005 

(Elberling et al. 2008). Considering the increase in ALT between 2005 and 2017 the ES-ALT 

appears more reasonable in these vegetation classes (Elberling et al. 2013; Strand et al. 2020). 

Fen areas were, as hypothesized (4), characterized by shallow ES-ALT, which can be explained 

both by the existing peat layer (Elberling et al. 2008) and the related high porosity and thereby 

ice content of the soil. ALT has a strong negative correlation to peat thickness because of the 

low thermal conductivity of peat as well as the large amount of energy needed to melt the ice 

in the very porous peat layer. It has been approximated that peat requires roughly 1.5 times the 

energy needed for mineral soils to thaw to a similar soil depth (Atchley et al. 2016). 

The ES-ALT was larger in vegetated areas than in non-vegetated areas, yet the ES-ALT varied 

more in non-vegetated areas. This variability might reflect the diverse conditions from abrasion 

plateaus to areas dominated by boulders. In general, these non-vegetated areas with mineral soil 

should have a deeper active layer, as mineral soil has a higher thermal conductivity and a lower 

porosity (Nelson 1997;  Atchley et al. 2016). Exposed rock has a high thermal conductivity and 

therefore should cause relatively large ALT (Elberling et al. 2008).  It is likely that the large 

amount of boulders in the non-vegetated areas decreased the signal of the thaw subsidence and 

that the ALT is therefore underestimated in these areas.   

The insignificant relationship of the ES-ALT to stream vicinity shows how complex ALT 

dynamics are, as it can be assumed that the insignificant result is caused by interference of other 

factors like the soil structure or topography the further away the closest stream is. Rivers have 

been found on regional scale to be positively correlated to ALT (Nelson 1997) and riverbeds 

are overall deeper thawed (thaw bulb), due to the heat transport of the water discharge (Hinkel 

2003;  Brosten et al. 2009). Yet, the extent of the thaw bulb is limited to the extent of the 

riverbed and could therefore have been interfered by other factors.  

Southern aspects were, as hypothesized (3), characterized by the deepest ES-ALT, resulting 

from the larger amount of incoming solar radiation received by the ground surface (Zhao et al. 

2000). This not only affects the thaw process itself, but also causes earlier snow melt and 

therefore an earlier thawing onset of the AL. Thus, deeper ALT on southern slopes has been 

found at many sites (Nelson 1997;  Gao et al. 2016;  Cao et al. 2017) and the aspect is often 

incorporated when modelling the ALT distribution (Christiansen et al. 2008;  Li et al. 2017).  

Depressions showed a significantly lower ES-ALT than sloped or flat areas, which could be 

related to prolonged snow cover (Christiansen et al. 2008) as well as high soil moisture content 

and ground ice (Gao et al. 2018), requiring more energy for thawing. This result aligns with 

field measurements from Gao et al. (2016). However, soil moisture in depressions can also 

cause deeper ALT, if the high thermal conductivity of water outweighs the energy needed to 

melt the large amount of ground ice (Nelson 1997;  Wright et al. 2009;  Guan et al. 2010;  

Gangodagamage et al. 2014). The largest ALT in flat terrain could be related to less ice content 

in the AL and an earlier thaw onset caused by shallower snow depths due to wind exposure 

(Woo 2012). The intermediate ALT on slopes could be the result of a combination of the 

different aspect angles and enhanced thawing due to the heat contribution of snow-meltwater 

runoff from higher elevations (Atchley et al. 2016;  Gao et al. 2016). 

Overall, both the comparison to field measurements and to the environmental parameters 

indicated a good performance of the method, especially in areas with a high saturation. The 

hypothesized larger subsidence in water-saturated areas was reflected in the subsidence result 

and the ES-ALT was larger on south-facing slopes and lower in peat-rich Fens. Nevertheless, 
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the results of the environmental parameter evaluation are characterized by high variability, 

which highlights complex interactions of the different factors contributing to the spatial ALT 

distribution. The larger difference to the in-situ ALT with decreasing saturation of the soil 

indicates the demand for further improvements of the ALT estimate. This could be 

accomplished by collecting soil moisture field data of the year previous to the subsidence 

analysis to receive a more accurate NSMI-soil moisture relationship, as well as by including a 

more detailed modelling of the saturation in the lower AL.  

 

5.2 Sources of error in study 

The evaluation based on the field measurements is limited by the amount and distribution of 

the field sites within the study area. The sample size of 9 sites is statistically not sufficient to 

draw robust conclusions. Also, the field measurements are unequally distributed regarding 

vegetation types and represent mostly Fen (n = 3), Salix (n = 3), Grassland (n = 1), Cassiope (n 

= 1) and Barrens (n = 1). Therefore, it is more uncertain how the ALT estimate performs in 

drier vegetation sites, as there is less data available for the dry vegetation sites (n = 2).  

The ALT estimate of this study is limited by the quality of the saturation fraction and porosity 

data, as well as the uncertainty of the subsidence observations. 

It is difficult to evaluate the subsidence observations because no field measurements on the 

seasonal subsidence exist for the study area. The observed seasonal subsidence ranges within a 

reasonable interval compared to other studies (Liu et al. 2012; Wang et al. 2018). However, as 

the relative subsidence has to be calibrated with a stable point in the area, it is likely that an 

error was introduced by the choice of the calibration point. The approach of using a point with 

very high coherence (e.g. no change between image pairs) has been previously applied (Liu et 

al. 2012), but the two 12-day intervals with no subsidence indicate that the calibration point 

was not always sufficient. This could be a result of the calibration point not being completely 

stable (coherence = 0.93 and not 1).   

Additionally, the subsidence could have been affected by the quality of the used DEM for the 

DInSAR processing. With the high spatial resolution (5 m) and an accuracy of 3-5 m the DEM 

was still more precise than other global DEM sources (NERI 2000;  EEA 2017), yet the 

accuracy could have affected the DInSAR phase difference retrieval (Yu et al. 2007).  

The subsidence result could also have been biased by assuming no horizontal movement. This 

condition is required to transfer the Line-of-Sight displacement into vertical displacement using 

trigonometric functions (Fuhrmann and Garthwaite 2019). The upper slopes in Zackenberg 

valley experience creep displacement and small solifluction sites can also be found in the lower 

valley, with movement rates at one site averaging 1.25 cm / year (Christiansen et al. 2008). It 

is therefore unsure if creep movement might have also affected the subsidence results in the 

lower valley.  

Another possible error source is the saturation fraction estimate, as only limited field data was 

available. The ice content in the thawing soil is dependent on the saturation of the soil at the 

end of the previous thawing season (e.g. 2016). To incorporate the spatial variability, the NSMI 

from mid-August 2016 was compared to the existing soil moisture dataset. However, these soil 

moisture measurements were from July in a different year with similar climatic conditions (Fig. 

A7). It is still assumed that the relative distribution in the upper soil layer is correct, yet it is 

uncertain how precise the saturation depth estimation was. In addition, the ice content could 
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have been increased during the spring warming stage by percolation and refreezing of snow 

melt water into unsaturated soil pores of the AL (Scherler et al. 2010).  

The porosity estimate used in this study could have been affected by using the average organic 

matter measurements based on 9 geomorphological classes. As the peat thickness is strongly 

influencing the ALT this could have further caused imprecise results (Atchley et al. 2016). 

Lastly, the evaluation could have been affected by the quality of the field measurements. The 

manual probing measurements can include a human bias, but more importantly it is 

questionable how reliable the thermistor measurements are. The thermistor string installation 

could alter the surrounding ALT by enabling percolation of water along the tube. The heat 

capacity of the water could enhance the thawing and thereby the ALT could be overestimated 

at thermistor sites (Christiansen et al. 2008).  

A limitation for the robustness of the statistical test results in this study is existing spatial 

autocorrelation. This tendency of areas close together having similar values is of importance, 

as it can bias the statistical data evaluation (Dale and Fortin 2014). When testing the ALT across 

the study area for spatial autocorrelation with the Global Moran’s I statistic the null hypothesis 

of spatial randomness had to be rejected (p-value ~ 0). The Moran’s Index of 0.88 and positive 

z-score (695) indicates that the ALT result is more spatially clustered than if no spatial 

autocorrelation would exist. This proves that the estimated ALT is not randomly distributed. 

However, the spatial autocorrelation increases the likelihood of wrongly rejecting the null 

hypothesis in statistical tests (Type 1 error), which should be considered when evaluating the 

robustness of the statistical tests performed in this study (Dale and Fortin 2014). 

 

5.3 Overall method evaluation and comparison 

5.3.1 Limitations of method  

The method is generally limited by the accuracy and spatial resolution of the input data. 

Soil moisture varies significantly throughout the seasons and thus the time of the estimation is 

critical. Further, the large soil moisture variations within very short spatial distances in 

permafrost areas requires high resolution data (Hinkel 2003). The saturation fraction might be 

derived for the topsoil through remote sensing, but the approach in this study using the NSMI 

only showed an intermediate coefficient of determination (r²) of 0.64 between the satellite index 

and the calibration measurements. It is additionally uncertain how precise the subsurface 

saturation fraction estimates are, which highlights that the precision of the method decreases, if 

the soil conditions are not uniformly saturated.  

To improve the saturation fraction estimate, it might be possible to incorporate ground water 

models, also to address permafrost table depth variations (Wang et al. 2018).  

Further, new surface soil moisture estimates using SAR-imagery have shown to deliver soil 

moisture estimates for the topsoil at high spatial resolution. However, also these products 

require calibration and are limited by interference of other factors on the signal returning to the 

satellite sensor (Kornelsen and Coulibaly 2013). Other current remotely sensed soil moisture 

products like SMAP combine SAR with passive microwave radiometer measurements and aim 

for high accuracies. Yet, they are limited in resolution (currently 9 km above 60° latitude for 

SMAP) (Entekhabi 2014; O'Neill 2020) and can therefore be expected to lead to inaccurate 

results, considering the high spatial variability of the ALT.  
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The estimation of the porosity is dependent on accurate soil texture and especially organic 

matter estimates. Datasets on soil carbon density, soil texture and other soil parameters exist 

(e.g. SoilGrids used for this study). Yet, they are based on upscaling methods of soil profile 

observations and thus limited in their accuracy (30 – 70 % data accuracy for SoilGrids products) 

(ISRIC 2020a). 

The subsidence estimate is limited by the DEM used for the DInSAR processing. High spatial 

resolution as well as accuracy of the DEM are of large benefit for precise retrievals of the phase 

difference and thereby the ground displacement (Yu et al. 2007; Walter and Bush 2012).  

Further, the sensitivity of the DInSAR subsidence estimate to horizontal displacement restricts 

the application of the DInSAR approach used in this study. If horizontal displacement exists 

more complex analysis is required in order to derive the vertical component of the derived 

surface displacement (Fuhrmann and Garthwaite 2019). As solifluction is common in 

permafrost regions and is predicted to increase with AL deepening, this limits the application 

of the DInSAR approach used in this study to flat areas (Akerman 2005;  Mithan 2018). 

The method is also constrained to applications within the snow-free part of the thawing season, 

as the subsidence measurement is more prone to errors (coherence loss) if snow or oversaturated 

soil covers a large part of the study area (Liu et al. 2010). If field measurements are available, 

these can be used as an indicator of the thawing start, yet without these it is difficult to derive 

the maximum active layer thickness. 

Of these limitations, the method can be expected to be most sensitive to the subsidence 

observations if the ALT is estimated for saturated conditions (Lui et al. 2012).  

Yet, with decreasing soil saturation the impact of the correct saturation fraction increases in 

importance. Changes in porosity have less of an impact. This is supported by accuracy 

evaluations of Liu et al. (2012) and can also be seen when evaluating the sensitivity of the ALT 

estimate formula (Equation 3) to varying subsidence, porosity or saturation fractions, whilst the 

remaining values remain constant (Fig. 17). The sensitivity to the subsidence is linear, yet the 

saturation fraction affects the estimate in a logarithmic manner. Until roughly 60 % saturation 

the saturation fraction acts nearly linearly, yet below this value the exact saturation becomes of 

larger importance, as inaccuracies have a higher impact on the ALT estimate (notice also scale 

of ALT from 0 – 12 m). Therefore, the ALT estimate is especially sensitive to the correct 

saturation fraction in drier areas, where small difference in the saturation fraction can cause 

large differences in the ALT estimate (Fig. 17). Porosity affects the ALT estimate to a smaller 

extent compared to the saturation fraction. 
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5.3.2 Comparison to other methods  

The two main other methods to derive ALT distribution are interpolation of field measurements 

and modelling.  

Interpolation of field measurements only allows reliable results if measurements are available 

at a very high spatial resolution (Hinkel 2003), which makes this method unsuitable for 

monitoring of ALT at a larger scale. 

For the modelling of the ALT different approaches exist. Most commonly they built up on the 

Stefan model, which relates the thawing to the accumulated ground surface degree-day total 

(Riseborough 2008). As the active layer is affected by a variety of factors which also interact 

with each other, ALT models are limited by the processes and factors explicitly considered in 

the model (e.g. heat transfer in soil, soil structure, vegetation, snow cover). Due to the scarcity 

of field measurements and the coarse spatial resolution of input data available for modelling 

(e.g. climate raster data like surface and air temperature, vegetation cover), it is difficult to 

precisely represent the high ALT variability know to occur at local scales (Streletskiy et al. 

2012). 

The estimation of the ALT through combining subsidence with porosity and saturation fraction 

has the advantage that the method does not require the modelling of the complex interplay of 

all the factors affecting the AL. The subsidence accounts for differences in insolation, 

topography and soil conditions as well as snow distribution. However, the determination of the 

ice content is critical, and the processing of the subsidence is sensitive to errors based on 

insufficient ground calibration and errors in retrieving the phase difference.  

Based on these characteristics of the different methods, field measurements can be seen as most 

appropriate for small-scale high resolution ALT inventories, whilst modelling is very useful for 

large-scale investigations with a lower spatial resolution. The ground subsidence method is 

suited for intermediate-scale mapping and to upscale field measurements to ALT estimates on 

km-scales.  

 

Figure 17: Sensitivity of ALT estimate to subsidence (A), saturation fraction (B) and porosity 

(C) values, if the other parameters are constant (subsidence = -0.02 m, porosity = 46 %, 

saturation. fraction = 76 %). Values of other parameters are based on mean result across study 

site.  
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6 Conclusion  
 

This thesis work aimed at evaluating the possibility to relate ground subsidence as estimated by 

the DInSAR method to seasonal ALT progression by considering the volume change induced 

by the phase transition from ice to water of the water content in the soil.  

The ground subsidence method performed overall well in estimating both the maximum ALT 

and the ALT development in the study region around Zackenberg, NE Greenland for 2017. The 

estimate across the valley is within the range of values found at the field measurement sites and 

both the development throughout the thawing season and the maximum ALT are statistically 

similar to the measurements.  

The hypothesized larger subsidence in water-saturated areas was reflected in the subsidence 

result and the estimated ALT follows a distribution which is plausible based on other 

environmental factors: larger ALT was found on south facing slopes and lower ALT in 

depressions and peat-rich vegetation systems.  

Yet, the overall accuracy of the estimated ALT is uncertain, as limited field measurements were 

available, especially from dry vegetation types and non-vegetated areas, for which the estimated 

ALT is likely too low. This was indicated by a significantly larger difference to the in-situ data 

at measurement stations with drier soil as well as a lower than expected ALT under dry 

vegetation types based on other studies. It points out the difficulties of applying the method in 

an area which is very heterogenous in soil porosity as well as soil saturation fraction.  

The method is promising to resolve ALT distribution with high spatial resolution (20 m in this 

study). However, the result is strongly dependent on correct subsidence observations as well as 

accurate estimations of the saturation fraction and porosity to derive the ice content. For drier 

soils, the sensitivity of the method to the correct saturation fraction estimate is increased. The 

method is further limited to snow-free conditions and due to the large spatial variability of the 

ALT, input data of high spatial resolution is required.  

As found in other studies, the method can be applied for ALT monitoring at water-saturated 

sites. It is however recommended to adapt the subsidence processing so that 3D-displacement 

is considered. For non-saturated areas, it is suggested that future studies incorporate modelling 

of the soil ice content, which could possibly be combined with topsoil saturation estimates 

based on the Normalised Soil Moisture Index. Further evaluation with more extensive field 

measurement points and over multiple sites and years is needed to evaluate the application of 

the method at sites with non-saturated soil conditions. 
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8 Appendix 

 

 
 

 

 

Figure A1: Flow chart of processing steps in SNAP to derive the subsidence from SAR-imagery. 

 

 

 

 

 

 

 

Subsidence processing 
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Figure A2: Flow chart of processing steps in ArcGIS to estimate the porosity from soil raster 

data and the saturation fraction from the NDWI-field measurement relationship (Table 1A).  

 

 

 

 

Porosity and Saturation fraction calculation  
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Figure A3: Flow chart of processing steps in ArcGIS to calculate the ALT from the subsidence, 

porosity, and saturation fraction estimate.  

 

 

 

 

 

 

 

 

 

 

ALT calculation 
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Figure A4: Flow chart of ALT evaluation in ArcGIS to evaluate the relationship of subsidence 

to saturation fraction as well as NSMI-based soil moisture, and to evaluate the ALT distribution 

regarding the environmental factors (stream distance, terrain, aspect, vegetation). 

 

Evaluation of ALT 
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Table A1: Overview of used data  

Variable Description Source 

DEM 2m resolution, aggregated to 5m. GEM 2000 

Satellite image Sentinel-2 from 12-08-2016 with bands 1 - 12. 

Bands 2,3,4 used for RGB and bands 11,12 used for 

NSMI. 

ESA 2020b 

SAR imagery Sentinel-1 IW SLC with HH polarization. ESA 2020b 

Vegetation map 12 classes based on remote sensing and field data 

from 2005. 

Elberling et al. 2008 

Rivers  GEM 2020b 

Temperature-depth 

measurements 

From thermistor strings at Climate Station, Runway, 

Triangle, Fan and Grassland. 

For 0 m, 0.25 m, 0.5 m, 0.75 m, 1 m, 1.25 m (except 

Runway) and 1.5 m soil depth. 

GEM 2020a 

ALT manual probe 

measurements 

From grids Zerocalm 1 (121 points) and Zerocalm 2 

(208 points), MM2 (5 points), AC (8 points). 

GEM 2020a 

Temperature data From the Climate station in Zackenberg. 

Measurements are 60 min average at 2 m height.  

GEM 2020a 

Precipitation data Accumulated precipitation over 60 min intervals 

from Climate station in Zackenberg. Data gaps filled 

with precipitation data from station MM2. 

GEM 2020a 

Soil moisture 

measurements 

4538 measurement points taken during 02-07-2017 

to 15-07-2014.  

Sobiech et al. 2017 

Sand weight 

fraction 

250m resolution with estimate for 0.3 – 0.6 m depth. ISRIC 2020b 

Bulk density 250m resolution with estimate for 0.3 – 0.6 m depth. ISRIC 2020b 

Geomorphological 

classes 

Based on Cable et al. 2018 and aggregated into 

major classes based on Palmtag et al. 2018. 

Palmtag et al. 2018 

Organic carbon 

density 

For major geomorphological classes over 0-1 m 

depth. 

Palmtag et al. 2018 
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Table A2: Processed Sentinel 1-SLC images obtained through ESA (2020b). 

Date Track Pass Satellite Remarks 

12-06-2017 74 Ascending Sentinel-1A  Excluded due to 

insufficient coherence 

20-06-2017 74 Ascending Sentinel-1A  

02-07-2017 74 Ascending Sentinel-1A  

14-07-2017 74 Ascending Sentinel-1A  

26-07-2017 74 Ascending Sentinel-1A  

07-08-2017 74 Ascending Sentinel-1A  

19-08-2017 74 Ascending Sentinel-1A  

31-08-2017 74 Ascending Sentinel-1A  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A5: Vegetation map (left) and map of geomorphological classes (right).  
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Table A3: Classification of vegetation map (Elberling et al. 2008) used for evaluation of 

estimated ALT. 

Vegetation type analysed Vegetation class from Elberling et al. (2008) 

No vegetation 
Barrens, Boulder field, Patchy boulder field, Abrasion 

plateau, Fell field 

Vegetation Dryas heath, Cassiope heath, Salix snow bed, Grassland, Fen 

Dryas Dryas heath 

Cassiope Cassiope heath 

Salix Salix snow bed 

Grassland Grassland 

Fen Fen 

 

Table A4: Soil organic matter based on carbon density measurements from Palmtag et al. 

(2018) for adjusted geomorphological classes (Cable et al. 2018). 

Geomorphological class Carbon density (kg C/m2) Soil organic matter fraction (%) 

Weathered material  0.3 0.2 

Solifluction sheets 1.7 1.2 

Lateral / end  moraines 2.1 1.5 

Ground moraine 15.9 11.4 

Alluvial fans  19.8 14.3 

Wetlands (alluvial fan) 29.8 21.3 

Fluvial stream bed (relict) 20.9 14.9 

Delta (raised, relict) 9.1 6.5 

Fluvial stream bed (recent) 1.0 0.7 
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Table A5: Linear regression between Grouped soil moisture measurements 2014 and 

Sentinel-2 band indexes or 5 m resolution DEM (Table A1). 

Index name 
Band / DEM 
combination 

R2 n Linear function Reference 

Topographical 
wetness index 
(TWI) 

ln
𝑎

tan 𝑏
  

where a = local upslope 
area and tan(b) = local 
slope 

0.09 358 
soil moisture=1.9164 
* TWI + 21.838 

Beven and 
Kirkby 
1979 

Normalized 
differential wetness 
index (NDWI) 

𝐵𝑎𝑛𝑑8 −  𝐵𝑎𝑛𝑑12

𝐵𝑎𝑛𝑑8 +  𝐵𝑎𝑛𝑑12

 0.41 358 
soil moisture=66.421 
* NDWI + 27.294 

Gao 1996 

Normalised soil 
moisture index 
(NSMI) 

𝐵𝑎𝑛𝑑11 −  𝐵𝑎𝑛𝑑12

𝐵𝑎𝑛𝑑11 +  𝐵𝑎𝑛𝑑12

 0.64 358 
soil moisture=185.83* 
NSMI - 8.2639 

Haubrock 
et al. 2008 

 

 

 
 

Figure A6: Environmental parameters. A = Terrain, B = Distance to Stream, C = Aspect 
 

 

 

Figure A7: Temperature and Precipitation for years 2013, 2014, 2016 and 2017 (GEM 

2020a). Based on the variables the soil moisture dataset from 2014 (and not the data from 

2013) was chosen to estimate the ice content at the end of the thawing season 2016. 

Over period 01.09. previous year until 31.08. year 

10-day average 
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Figure A8: Soil temperatures at thermistor string sites with red line showing 0 °C isotherm, 
white lines showing thawing period and green lines DInSAR period.      
F = Fan, G = Grassland, T = Triangle, R = Runway  


