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Abstract

In the manufacturing process of Tetra Pak® packages, holes are cut out of the paperboard
for straws and caps. The left-over paperboard clippings, called confetti, need to be evacu-
ated from the machine. However, this evacuation process has proven to cause problems
due to jams arising as the confetti get stuck in joints and along the pipe walls. This study
investigates how the confetti behave, deform and interact with each other, the flow and
the pipe walls, to get a better understanding of how and why these jams occur.

Fluid structure interaction (FSI), which is a class of multi-physics and deals with the inter-
action between fluid flow and deformable structures, is employed to model the confetti in
a pipe flow. An FSI-simulation model is developed, by using the software STAR-CCM+
and Abaqus/Standard, and is validated against experimental data.

It is found that the confetti mainly lose kinetic energy, thus evacuation speed, when facing
the flow with a small cross-sectional area or getting too close to the pipe wall, decelerating
due to the near wall, low velocity flow. Colliding with other confetti or the wall does
not affect the evacuation speed negatively. However, the initial position of the confetti
influences its initial movement, thus the evacuation speed. A negative initial angle is
found to be preferable compared to a positive inclination angle, since this decreases the
risk for the confetti getting stuck in the near wall, low velocity flow.

The FSI-simulations coincide well with the experiments, capturing the trajectory of the
confetti through the pipe adequately. The simulation model over-predicts the evacuation
speed, indicating that some of the losses arising in the experiments are not fully captured
by the model. However, the model is considered to capture the course of events to a
satisfying extent and can be used for future research and development at Tetra Pak®.

Keywords: Fluid-structure interaction, paperboard material modeling, transient pipe
flow, overset mesh, image analysis
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Chapter 1

Introduction

In the pursuit of constantly increasing performance and optimizing products, most larger
companies see the importance of research and development. With an ever-increasing
availability and size of computational resources at the disposal to engineers and re-
searchers, multi-physics simulations are becoming more present than ever before. Es-
pecially, fluid-structure interaction (FSI), a class of multi-physics problems, has gained
much attention. Modeling the interaction between fluids and deformable structures, FSI
finds application in the broadest range of fields. Solving problems within engineering,
life science, aerodynamics and modeling blood flow through vessels, it is a powerful tool
for solving complex problems. [1]

1.1 Background

Tetra Pak® is a company that supplies complete systems for processing, packaging and
distribution of liquid food and beverages. The packaging material is manufactured in
converting factories. A roll with paperboard enters the converting machine where it is
printed with the correct print design, fold creases are prepared, and holes for straws
or screw caps are cut out. Afterwards, the paperboard is laminated with plastic and
aluminum foil to create a dense and strong packaging material and is rolled onto smaller
rolls for delivery to the packaging machine. In the packaging machine, the packaging
material is folded into packages along the prepared folding creases, sterilized, filled with
liquid food or beverages and finally sealed off, as depicted in Fig. 1.1. The finished
product exits the machine, ready to be distributed. [2]

Figure 1.1: A conceptual sketch of a packaging machine.

As the holes are cut out of the paperboard, small paperboard discs are produced as waste.
These paperboard discs are the subject of interest in this project. They are called confetti
and can have different shapes, depending on the package shape and volume and what
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it will contain, as shown in Fig. 1.2. Since the confetti are not a part of the final pack-
age, they must be removed from the converting machine through a confetti evacuation
system.

Figure 1.2: The most common confetti shapes that occur; rectangular, square and round.

The holes are cut out of the paperboard by knives, placed in one of the rollers in the
cutting unit of the converting machine through which the paperboard is fed, as shown
in Fig. 1.3a. As the holes are cut, the confetti that is formed is sucked into the roller via
tubes. These tubes connect the knife at the surface of the roller to a central main pipe,
that runs coaxial in the roller, Fig. 1.3b. Fans are connected to the main pipe, to suck
the confetti out, thus the confetti is removed from the main pipe and ultimately from the
converting machine.

(a) Rollers through which a sheet of paper-
board is fed, where the lower one is equipped
with knives.

(b) Transparent view of the lower roller, show-
ing the knives, from which the confetti are to
be removed.

Figure 1.3: A sketch of the geometry of the system.

It was observed that the confetti tend to get stuck in gaps and joints, and sediment to the
wall of the main pipe. Problems with confetti entering one knife and exiting through the
opposite one also occurs. Fig. 1.4 displays these problematic behaviors of the confetti
that are observed.

(a) Normal flow (b) Sticking to joints (c) Sticking to wall (d) Exiting through
opposite knife

Figure 1.4: Illustrations of the different kinds of problems observed when evacuating
confetti from the main pipe.

Previously, different variations of the geometry of the knife roller has been investigated.
However, the deformation of and the interaction between the confetti as they are evacu-
ated and how they affect the airflow inside the roller has not been studied. As a starting

2



point, Tetra Pak® created a simple FSI-model of one confetti flying through a straight
pipe, in order to fully catch the behavior and deformation of the confetti in a correct way.
It is this numerical model that this project is based upon, and is therefore referred to as
the Pre-existing model, pictured in Fig. 1.5a. The aim of this project is to enhance this Pre-
existing model to the domain pictured in Fig. 1.5b, including two confetti and capturing
their behavior, deformation and interaction. This will provide a base for future devel-
opment of the model to include the entire geometry, pictured in Fig. 1.5c, and including
several confetti. This would enable a more realistic simulation of what happens inside
the knife roller and give insight on how the confetti behave and interact with each other.
Since it is not possible to film the course of events inside the machine, this could provide
insight on how and why the jams occur. However, due to time limitations, this part of
the development is beyond the scope of this project.

(a) Pre-existing model (b) Model of this project (c) Goal geometry

Figure 1.5: An illustration of the domain that is going to be evaluated in this project.

1.2 Project motivation

This unstable confetti evacuation is of interest for Tetra Pak® since it causes the perfor-
mance to drop during production. Reducing the number of occasions when these prob-
lems arise, or preventing it completely, would entail longer run times for the machines
and with it a larger production capacity and a more robust manufacturing process of the
packaging material.

To date there is no complete simulation model for this process; where several confetti are
being evacuated and that includes the deformation and interaction between the confetti.
In this Master Thesis the previously developed model from Tetra Pak®, is to be expanded
to include a geometry closer to reality and to include two confetti, to give insight on
how the confetti behave, deform and interact in the pipe flow. The challenge lies in
the deformation of and the interaction between two confetti and achieving a set-up that
models this interaction realistically, that is numerically stable and computational efficient,
to capture the course of events accurately.

1.3 Objective

The goal is to develop an FSI-model that can describe the interaction between two con-
fetti and how this interaction causes deformations and affects the displacements of the
confetti. Further, this model should be numerically stable to simulate the complete course
of events, i.e. the two confetti entering, colliding, interacting and finally exiting the pipe.
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The goal is also to complement the simulations with physical experiments to obtain ex-
perimental data to validate the results obtained from the numerical model. The results
will be compared using image analysis.

1.4 Limitations

To be able to finish this project within the time frame at hand, some limitations had to
be made. It was chosen to only look at two confetti simultaneously, at most and the final
geometry was limited to a T-junction pipe. These limitations made it possible to make
physical experiments to verify and validate the numerical simulations and use an image
analysis program to analyze the results from the physical experiments.

Within the project, it was chosen to only analyze one kind of confetti shape, namely the
rectangular one. Since it is easy to change the shape of the confetti in the simulation
model, this is not as important as the physics and numerics in the FSI-model. Once the
model works, Tetra Pak® can change the shape to make further analyses on other confetti
shapes.

1.5 Outline of report

In this thesis, relevant theory will first be covered. Sections 2 and 3 give an outline of
the solid and fluid mechanics used in an FSI-problem, to give the reader a fundamental
understanding of the physics applied in this project. Numerical aspects, such as how
the governing equations are solved numerically, are also highlighted. Secondly, the pre-
vious work done within this application will be introduced in Section 4, followed by
Section 5 explaining how the previous work is used to further develop a model to simu-
late several confetti in a T-junction pipe. The experimental set-up employed to validate
the simulation results, is also covered here, and followed by the results and discussion in
Section 6. Here, the results are assessed, and the numerical and experimental results are
compared. Lastly, in Section 7, the conclusion are presented and the paper is closed by
future research and development.
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Chapter 2

Solid Mechanics

The Finite Element Method (FEM) is a commonly used method for solving problems
within structural analysis and is a numerical method for solving partial differential equa-
tions. The approach used to solve these kinds of problems is to subdivide a large system
into smaller, simpler parts called finite elements, which is achieved by using a space dis-
cretization implemented by a mesh. The equations that model these finite elements are
then assembled into a larger system of equations that models the entire problem.

In this section, the FE-formulation for a structural analysis will be derived and the con-
stitutive material model for paperboard will be explained.

2.1 FE-formulation

The Finite Element formulation provides a discretized approximation of the equation of
motion for a solid body. For a comprehensive treatment of the FE-formulation the reader
is referred to [3], from which the theory described in this chapter is derived.

The FE-formulation is derived by integrating the equation of motion, Newtons second
law, over the body.

F = ma ⇒
∫

S
ti dS +

∫
V

bi dV =
∫

V
ρüi dV

Here, the total force, F, is split into a traction (surface) force, ti, acting on a body with the
surface S and a body force, bi, acting on the body volume denoted by V. The acceleration,
defined as the second time derivative of the displacement u, is denoted ü, ρ is the density
and the index i = x, y, z denotes the component of the vector in the respective coordinate
system. Rewriting the traction vector as ti = σijnj, where σij is the stress, nj is the normal
to the surface and the index j = x, y, z, and using the divergence theorem, the volume
integral can be omitted and the strong form of the problem is obtained, Eq. 2.1.

∫
V

∂σij

∂xj
dV +

∫
V

bi dV =
∫

V
ρüi dV ⇒

∂σij

∂xj
+ bi dV = ρüi (2.1)
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Multiplying the strong form with an arbitrary weight function, vi, and integrating over
the body volume V once again, the following equation is obtained.

∫
V

vi
∂σij

∂xj
dV +

∫
V

vibi dV =
∫

V
viρüi dV (2.2)

Using partial integration and the divergence theorem, the first term in Eq. 2.2 can be
rewritten as

∫
V

vi
∂σij

∂xj
dV =

∫
v

∂(viσij)

∂xj
−
∫

V

∂vi

∂xj
σij dV =

∫
S

viti dS−
∫

V

∂vi

∂xj
σij dV (2.3)

Here, the partial derivative of the weight function in Eq. 2.3 can be expressed, using the
strains, as follows

∂vi

∂xj
=

1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
+

1
2

(
∂vi

∂xj
−

∂vj

∂xi

)
= εv

ij + 0 (2.4)

Inserting Eq. 2.4 into 2.3, and inserting the result into the first term of Eq. 2.2, the final
expression for the weak form is obtained as stated in Eq. 2.5 below.

∫
V

viρüi dV +
∫

V
εv

ijσij dV =
∫

S
viti dS +

∫
V

vibi dV (2.5)

Eq. 2.5 gives the weak formulation of the equations of motion, which is needed to dis-
cretize the equation, i.e. derive the complete FE-formulation in matrix notation.

Using the approximation u = Na ⇒ ü = Nä where u gives the global displacements, N
are the global shape functions and a are the nodal displacements, the finite element for-
mulation can be determined. The double dot-notation denotes a second time derivative.
The kinematics relation, defined in Eq. 2.6, is used to derive the FE-formulation. It gives
a relation for the strains and displacements in matrix-notation and is employed to choose
a weight function.

ε = ∇̃u (2.6)

Here, ∇̃ represents a matrix differential operator. To derive the FE-formulation, a weight
function is needed. For this purpose, the Galerkin method is chosen since it is efficient,
and when combined with the weak form, it gives symmetric coefficient matrices which
is of advantage in numerical calculations. In the Galerkin method the weight function is
chosen, such that it is similar to the global displacements, which gives

v = Nc ⇒ εv = ∇̃Nc = Bc, where B = ∇̃N (2.7)
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where c is an arbitrary column vector. Inserting the formulations from Eq. 2.7 into the
weak form given in Eq. 2.5 and changing to matrix notation we obtain

∫
V

cTNTρNä dV +
∫

V
cTBTσ dV =

∫
S

cTNTt dS +
∫

V
cTNTb dV

Since c is arbitrary, the final expression for the FE-formulation is given by Eq. 2.8.

(∫
V

NTρN dV
)

ä+
∫

V
BTσ dV =

∫
S

NTt dS+
∫

V
NTb dV ⇔ Mä+ fint = fext (2.8)

Here, the internal forces, fint, are unknown. To determine them, an expression for the
stresses, σ, is needed, which is given by a constitutive relation. Eq. 2.8 provides a dis-
cretized approximation of the equation of motion, which converges towards the exact
solution with decreasing element size. [3]

2.2 Constitutive Modeling

A constitutive model describes the relation between the stress, σ, and the strain, ε, in a
material, which together with the kinematics relation, Eq. 2.6, and the FE-formulation,
Eq. 2.8, provides a closed system of equations and the state of the body can be determined
[3]. In this section, the constitutive model for paperboard will be described.

Assuming small deformations, the total strain can be divided into an elastic and a plastic
part, ε = εe + εp. In the elastic region, the body will recover to its original shape when
unloaded. However, when loaded past the yield stress, σy, the plastic region is entered
and permanent deformation arises, thus, the body will not return to its original shape [4].

In this project the paperboard material will be treated as an in-plane orthotropic elasto-
plastic material with symmetric material response in tension and compression. However,
for a more general description about the paperboard material mechanics and a more
advance constitutive material model the reader is referred to [5].

2.2.1 Elasticity

During loading in the elastic region, i.e. σ < σy, the stress-strain relation is considered to
be linear. For the purpose of describing this linear elasticity of paperboard, an orthotropic
model is used, which entails three orthogonal planes of symmetry, due to the alignment
of the fibers in the material, cf. Fig. 2.1b [6]. The constitutive relation is given by Hooke’s
law σ = Eε ⇔ ε = 1

E σ, where E is Young’s modulus, representing the stiffness of the
material. Considering an orthotropic material, Hooke’s law takes the following form in
matrix notation
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εe = Cσ ⇔



εe
11

εe
22

εe
33

2εe
12

2εe
13

2εe
23


=



1
E1

− ν21
E2
− ν31

E3
0 0 0

− ν12
E1

1
E2

− ν32
E3

0 0 0

− ν13
E1
− ν23

E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23





σ11

σ22

σ33

σ12

σ13

σ23


(2.9)

Here, C is the linear elastic compliance or flexibility tensor, νij are the Poisson’s ratios and
Gij are the shear moduli. The index i, j = 1, 2, 3 denote the main directions in the material
and for this particular case 1, 2, 3 refer to the Machine direction (MD), Cross-machine
direction (CD) and Out-of-plane direction (ZD) respectively, as pictured in Fig. 2.1 [6].

(a) Main directions of paperboard (b) Simplified sketch of the fiber alignment in
paperboard

Figure 2.1: The orientation of the three main material axes in paperboard in correlation
to the fiber alignment of the material.

Since thin sheets of paperboard are considered, plane stress conditions can be adopted,
which means that the out-of-plane stress components σ33 = σ13 = σ23 = 0 resulting in
ν13 = ν23 = 0 and εe

33 = 0. Thus, Eq. 2.9 can be reduced to the following

εe = Cσ ⇔


εe

11

εe
22

2εe
12

 =


1

E1
− ν21

E2
0

− ν12
E1

1
E2

0

0 0 1
G12




σ11

σ22

σ12

 (2.10)

Inverting the flexibility matrix in Eq. 2.10 provides the stiffness matrix, D, and the gen-
eralized Hooke’s law can be written as

σ = Dεe, where D = C−1 =
1

1− ν12ν21


E1 ν21E1 0

ν12E2 E2 0

0 0 G12(1− ν12ν21)

 (2.11)

We now have a complete model for the in-plane elastic properties of paperboard valid
for σ < σy. [4]
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2.2.2 Plasticity

During loading in the plastic region, i.e. σ > σy, the stress-strain relation is no longer lin-
ear due to the plastic strains that form in the body, thus no obvious relation between the
stress and strain can be assumed. Paperboard is considered as an elasto-plastic material,
which behavior is described in Fig. 2.2 [6]. The material is elastic with stiffness E until
the initial yield stress, σy0, is reached, after that, plastic strains develop. Unloading from
point 1, the material responds elastically with stiffness E such that at complete unloading
at point 2, the residual strain corresponds to the plastic strain, εp, developed at point 1.
Loading again, from point 2, the material behaves elastically until the stress reaches the
new yield stress at point 1. The value σy is therefore the current yield stress which, in
general, is not equal to the initial yield stress. [4]

Figure 2.2: A stress-strain curve for an elasto-plastic material, such as paperboard.

Thus, the body will recover to its original shape when loaded such that σ < σy0 but
return to a deformed shape when loaded with σ > σy0. Once the body is loaded with σ >
σy0, the yield stress will increase to a new value σy. This material behavior, depicted in
Fig. 2.2, is assumed to be time-independent, implying that the same response is obtained
independent of the loading rate.

How the state of the body alters during plastic loading is modeled using a yield surface,
which is defined by a yield function, describing the stresses in the material in the stress
space, i.e. a coordinate system where the axis are given by σ1, σ2 and σ3. So called hard-
ening rules are then adopted, to properly model how the current yield stresses change
due to plastic loading beyond σy0. [4]

Plasticity theory

A yield function, that describes the yield surface, is defined as f = f (σ, Kα) where
Kα = Kα(κβ) for α, β = 1, 2, 3... Here Kα are the hardening, or yield strength, parame-
ters that describe the evolution of the yield surface, and κβ are internal state variables
representing the plasticity history, thus σy = σy0 + Kα(κβ). A stress state located inside
the yield surface is elastic and for a stress state located on the surface, the yield point is
reached and is therefore plastic. As the material keeps deforming the stress state remains
on the yield surface, which is allowed to deform during loading. This deformation of
the yield surface is described by the hardening parameters defined by a hardening rule.
Stress states outside the yield surface are not allowed for time-independent models. [4]
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Since the material behavior for paperboard is considered to be time-independent, the
yield function has to fulfill the consistency relation ḟ = 0, in addition to f = 0, as shown
in Eq. 2.12.

ḟ =
∂ f
∂σ

: σ̇ +
∂ f

∂Kα
K̇α = 0, where K̇α =

∂Kα

∂κβ
κ̇β (2.12)

As mentioned previously, the parameters κβ describe the plasticity history and are there-
fore initially equal to zero and κ̇β = 0 yields during elastic loading. For the constitutive
model of paperboard, the isotropic hardening rule is adopted for the yield surface, which
gives Kα(κβ) = K(κ).

An expression for the plastic strain rate, ε̇p, is needed. Using the potential function ap-
proach the following definition is introduced

ε̇p = λ̇
∂g
∂σ

(2.13)

where λ̇ is the plastic multiplier, and the dot notation denotes change of property rather
than a time derivative [6], and g = g(σ, K) is an arbitrary potential function which here
is chosen as g = f for a simpler evaluation and ensuring that the thermodynamic con-
siderations are met. Eq. 2.13 can be interpreted as an evolution law describing how the
yield surface progresses in the stress space.

An evolution law for κ̇ can now be defined, using the plastic multiplier

κ̇ = λ̇k(σ, K)

where k(σ, K) = 1 is chosen, and the expression can be simplified to κ̇ = λ̇. Using this,
the consistency relation, stated in Eq. 2.12, can now be rewritten as

∂ f
∂σ

: σ̇ − Hλ̇ = 0, where H = − ∂ f
∂Kα

∂Kα

∂κβ
(2.14)

Here, H represents the plastic modulus. To further describe the material behavior of
paper, a suitable yield function must be determined. [4]

Hill’s yield criterion

For this particular case, Hill’s yield criterion is used to describe the yield surface, using
the yield function

f (σ, K) = (σ2
y0s : P : s)

1
2 − σy(K) = 0 (2.15)

where s = σ − tr[σ]I are the deviatoric stresses, P is a fourth order tensor, σy0 and σy(K)
represent the initial yield stress and current yield stress respectively. P is defined as
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P =

[
P̃ 0
0 Q̃

]
, with P̃ =

F + G −F −G
−F F + H −H
−G −H G + H

 , Q̃ =

2L 0 0
0 2M 0
0 0 2N


where F, G, H, L, M and N are parameters characterizing orthotropic material defined as

F = 1
2

(
1

R2
22
+ 1

R2
33
− 1

R2
11

)
G = 1

2

(
1

R2
11
+ 1

R2
33
− 1

R2
22

)
F = 1

2

(
1

R2
11
+ 1

R2
22
− 1

R2
33

) ,

L = 3
2R2

23

M = 3
2R2

13

N = 3
2R2

112

Here Rij for i = 1, 2, 3 and j = 1, 2, 3 are the anisotropic yield stress ratios.

Combining Hill’s yield criterion with the isotropic hardening rule, it follows that the
position and shape of the yield surface remains fixed, whereas the size of the yield surface
changes. An image of an arbitrary yield curve for Hill’s criterion with isotropic hardening
can be seen in Fig. 2.3. The dotted line in Fig. 2.3 represents the deformed yield curve
after further loading beyond the initial yield stress. From the symmetry of the yield curve
in respect to each coordinate axis, it can be observed that the Hill’s yield criterion does
not distinguish tension from compression.

Figure 2.3: A yield curve in the stress space for Hill’s criterion with isotropic hardening.
The dotted line represents the deformed yield curve after further loading beyond the
initial yield stress.

As the yield surface is now established, the plastic strain rate from Eq. 2.13 and the
plastic modulus from Eq. 2.14 can be computed by deriving the yield function provided
by Hill’s yield criterion in Eq. 2.15.

ε̇p = λ̇
∂ f
∂σ

= λ̇
σ2

y0

σy
P : s

∂ f
∂K

= −1 ⇒ H =
∂K
∂κ

=
dσy(ε

p
e f f )

dε
p
e f f

(2.16)
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Here ε
p
e f f is the effective plastic strain.

Finally, the elasto-plastic stiffness tensor can be determined. Recalling that ε = εe + εp

which gives the strain rates ε̇ = ε̇e + ε̇p, the linear elastic stress rate can be expressed
using Hooke’s law as σ̇ = D : (ε̇− ε̇p). By combining this with the consistency relation
in Eq. 2.14 and the quantities in Eq. 2.16 and with some rearranging of terms, the elasto-
plastic relation between the stress rate and the total strain rate can be determined, i.e.
σ̇ = Dep : ε̇ providing the elasto-plastic stiffness tensor as

Dep = D− 1
A

(
σ2

y0

σy

)2

(D : (P : s))⊗ ((P : s) : D) , where (2.17)

A = H +

(
σ2

y0

σy

)2

(P : s) : (D : (P : s))

We have now obtained the constitutive material model for the elastic and plastic proper-
ties of paperboard, valid for all σ which can be used to solve for the internal forces, fint,
in the FE-formulation, Eq. 2.8. [4]

2.3 Numerical methods

In this project the FE-software Abaqus/Standard version 2017 and 2020, is employed for
modeling the structural part of the FSI-problem. In the following subsections, some of
the modeling tools provided by Abaqus/Standard are explained as well as some brief
numeric theory applied by the software.

2.3.1 Meshing

Rigid bodies

When modeling a rigid body in Abaqus/Standard, a so-called discrete mesh can be used.
This is applied when the deformation of the part at hand can be considered negligible
compared to other deformable parts in the domain. The relative positions of the nodes
and elements that are part of the rigid body remain constant throughout a simulation.
This saves computational power, since element-level calculations, such as the element
stiffness, are not performed for rigid parts. A rigid body can only undergo rigid body
movement, which is equally computational expensive as for a deformable body. Thus,
a rigid body takes a passive role in the simulation, only modeling contact conditions
between itself and other, moving parts in the domain. One can choose between several
element types, when modeling a 3D rigid body. In this project, the two element types
used are the R3D4 and R3D3, pictured in Fig. 2.4a-b. The R3D4 element type, is a 4-node
3D bilinear rigid quadrilateral element and R3D3 is a 3-node 3D rigid triangular facet.
The elements are 2D but can model a 3D geometry. [7]
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(a) R3D3 (b) R3D4 (c) C3D8R/C3D8I

Figure 2.4: The three element types used in this project to mesh the domain in
Abaqus/Standard. R3D3 and R3D4 are 3- and 4-node rigid body elements respectively,
and C3D8R and C3D8I are 8-node, deformable body elements.

Deformable bodies

For a deformable body, element-level calculations are performed at every time step and
nodes are allowed to move relative to each other. There is a wide range of different el-
ement types for deformable bodies in Abaqus/Standard that allow for several kinds of
physics and deformations, offering different numerical methodologies. In this project,
the element types C3D8R and C3D8I were mainly used, pictured in Fig. 2.4c. Both el-
ement types are 8-node linear, i.e. first-order, hexahedral elements, where the C3D8R-
element uses reduced integration whereas the C3D8I uses full integration and incompat-
ible modes, for calculating the element properties.[7]

When computing the element-level properties, such as the deformation and stiffness,
integration is required to obtain the FE equations, i.e. numerical integration. Gauss in-
tegration is used for this purpose in Abaqus/Standard. In numerical integration, the
following approximation is made

I =
∫ b

a
f (ξ)dξ '

n

∑
i=1

f (ξi)Hi

where I is the quantity to determine, f (ξ) is an arbitrary function, ξ are integration points
and Hi are weights. For Gauss integration these integration points and weights are deter-
mined and optimized such that a given polynomial is integrated exactly. From this, the
positions of the integration points, called Gauss points, are known before the numerical
integration is conducted, thus the Gauss integration provides an exact integration of a
polynomial of the order 2n− 1, for n integration points. [3]

In reduced integration only one Gauss point is used, which can give rise to zero strains
causing uncontrolled distortion of the mesh called "Hourglassing". In Abaqus/Standard,
this is managed by a function called Hourglass control which adds an additional artifi-
cial stiffness to the elements. Since only one integration point is used, the computational
time is reduced compared to full integration. In full integration several Gauss points
are used for the numerical integration providing higher accuracy and avoiding Hour-
glassing. How the integration points are located in 2D elements for reduced and full
integration can be seen in Fig. 2.5, the same distribution of the Gauss points apply to the
faces of 3D elements. [7]

In addition to the full integration, C3D8I also uses Incompatible modes, which are inter-
nally added degrees of freedom. If the elements have approximately rectangular shape,
the incompatible mode elements, perform almost as well second-order elements. [7]
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(a) Reduced integration (b) Full integration

Figure 2.5: The location of the Gauss points in reduced and full integration. The same
principle applies to the faces of 3D elements.

2.3.2 Contact definitions

In Abaqus/Standard, the surface-to-surface mechanical contact property model is called
pressure-overclosure relationship. This relation is defined in terms of the distance be-
tween the two surfaces versus the contact pressure. The distance is measured perpendic-
ular to the master surface (defined by the user) and is called overclosure, or clearance,
depending on if the distance between the surfaces is smaller, or greater, than a specified
tolerance. The pressure-overclosure relation specifies that no contact pressure is trans-
mitted unless the surfaces are closer than the specified tolerance distance and, when in
contact, there is no limit to the magnitude of the contact pressure transmitted. [7]

In this project, only so-called "soft" contact is employed, thus the pressure-overclosure re-
lationship follows a curve, which is defined by the user. In contrast, for the "hard" contact,
the pressure-overclosure follows the Dirac delta function. Here, linear and exponential
pressure-overclosure will be used.

(a) Linear (b) Exponential

Figure 2.6: The pressure-overclosure relationships for defining contact between surfaces
in Abaqus/Standard.

For a linear relationship, the surfaces transmit contact pressure when the overclosure
between them is greater than zero and increasing linearly as the overclosure increases.
For the linear pressure-overclosure relationship, the curve describing this behavior is
defined by the first point, which by default is at the origin and the user-defined slope
k, as pictured in Fig. 2.6a. As for the exponential version, contact pressure is introduced
when the clearance between the surfaces reduces to c0. The contact pressure increases
exponentially as the distance continues to decrease, cf. Fig. 2.6b. The exponential curve,
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describing this behavior, is defined by the two parameters: c0 and p0 which are the contact
tolerance and contact pressure for zero clearance, defined by the user.

In this kind of contact models, Abaqus/Standard assumes per default frictionless contact.
However, a friction model can be included by the user. [7]

2.3.3 Numerical solver

In Abaqus/Standard, the Newton method is used to solve the non-linear equations. To
solve the equations, the solver divides the solution into increments called time steps,
which in turn are subdivided into smaller time steps. The solver moves on to the next
time step, when the previous one has converged.

Take the example pictured in Fig. 2.7. The solver is currently at a load fn yielding a dis-
placement an and the goal is to calculate the displacement, an+1, in the next time step, as
the load increases to fn+1. Starting at an, the tangent is calculated and used to predict a1,
by calculating the residual fn+1 − f (a1). Starting now from a1, the tangent and the resid-
ual is once again calculated and a2 is determined. In this fashion, the solver iterates until
the residual is small enough. As the residual is smaller than the tolerance value, equi-
librium is considered to be reached and an+1 = a3 is adopted [4]. In Abaqus/Standard,
the solver also checks that the last displacement correction ares = a3 − a2 is small com-
pared to the total displacement increment a3 − an. If ares is too large, another small time
step is performed. Both convergence checks need to be fulfilled in order to claim full
convergence for the current time step [7].

Figure 2.7: The principle of how the Newton solution scheme works.
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Chapter 3

Fluid Mechanics

Fluid mechanics is the field within physics describing the behavior of a fluid flow. As
a subclass of mechanics, continuity and balance equations are used to solve problems
within blood flow, turbines, airplanes and engines to name a few. By subdividing the
flow domain in sufficiently small volumes, or cells, for which the equations are solved
and then assembling these into larger systems, the final solution is obtained. The space
discretization is, as for a structural problem, handled by a mesh and using Computational
Fluid Dynamics, CFD, the equations are discretized and solved. This is a powerful tool,
for analyzing problems with strong non-linearities and large systems of equations.

3.1 Fundamental fluid mechanics

The governing equations that describe a fluid flow are the conservation laws of physics,
ensuring conservation of mass, momentum and energy within the fluid. [8]

Figure 3.1: A sketch of a fluid element for deriving the conservation laws.

The fluid will be regarded as a continuum and the behavior of the fluid will be described
in terms of properties averaged over a suitable large number of molecules. A small fluid
element, as shown in Fig. 3.1, with the sides δx, δy and δz, whose macroscopic properties
are not effected by single molecules, will be used in the following derivations. [9]
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3.1.1 Mass conservation

The equation describing the conservation of mass, states that the rate of increase of mass
in a fluid element is equal to the net rate of flow of mass into the fluid element. The
mass flow rate across the face of the element is given by the product of area, density, and
the velocity component normal to the face. Taking account for the sign of each compo-
nent, depending on if the flow enters or exits the element, the continuity equation can be
written as stated in Eq. 3.1 below.

∂ρ

∂t
+∇ · (ρu) = 0 (3.1)

Here ρ is the density of the fluid and u is the velocity vector with the components u =
(u, v, w). Eq. 3.1 is the unsteady, three-dimensional mass conservation equation, the so-
called continuity equation, for a compressible fluid.

For an incompressible fluid the density is assumed to be constant and Eq. 3.1 can be
simplified, taking the new form given by Eq. 3.2. [9]

∇ · u = 0 (3.2)

3.1.2 Momentum equation

The momentum equation states that the rate of change of momentum of a fluid element
is equal to the sum of the forces acting on the element (Newton’s second law). The forces
are divided into body forces and surface forces, where the body forces are included as
source terms in the equations. The surface forces are highlighted as separate terms and
derived from the surface stresses in terms of viscous stresses and pressure (normal to the
surface), multiplied by the area of the fluid element. Thus, the momentum equations take
the following form:

ρ
Du
Dt

=
∂(−p + τxx)

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ SMx (3.3)

ρ
Dv
Dt

=
∂(τxy)

∂x
+

∂(−p + τyy)

∂y
+

∂τzy

∂z
+ SMy (3.4)

ρ
Dw
Dt

=
∂(τxz)

∂x
+

∂τyz

∂y
+

∂(−p + τzz)

∂z
+ SMz (3.5)

τij denotes the viscous stress tensor, where i represents the direction along which the
stress component acts. The body forces, SMi, are given as source terms of momentum
per unit volume per unit time. Here, D•

Dt is equal to ∂•
∂t +∇ · (•u) and denotes the total

derivative. Eq. 3.3-3.5 ensure the conservation of momentum for each component in a
three dimensional flow and is valid for any fluid in any general motion. [9]

Assuming an isotropic fluid were the viscous stresses are proportional to the rate of de-
formation is called a Newtonian fluid. Using this approximation, τ can be simplified
using the velocity gradients and constants of proportionality. After some rearrangement,

18



Eq. 3.3-3.5 take a new form Eq. 3.6-3.8, called the Navier-Stokes equations which are key
equations within the field of fluid dynamics. Here, incompressibility is again assumed.

ρ
Du
Dt

= −∂p
∂x

+∇ · (µ∇u) + S′Mx (3.6)

ρ
Dv
Dt

= −∂p
∂y

+∇ · (µ∇v) + S′My (3.7)

ρ
Dw
Dt

= −∂p
∂z

+∇ · (µ∇w) + S′Mz (3.8)

Here µ is the dynamic viscosity and S′M are modified momentum sources, defined as
the sum of the previous source terms and the smaller contributions to the viscous stress
terms.

Using the Reynolds number, these equations can be made dimensionless. The Reynolds
number gives the ratio of inertial to viscous forces, indicating whether the flow is laminar
or turbulent. [9]

3.1.3 Energy equation

Using the first law of thermodynamics, the energy conservation equation can be derived,
which states that the rate of change of energy of a fluid element is equal to the rate of
change of heat addition plus the rate of work performed on the fluid element. The rate
of work performed by surface forces is expressed using the product of the force and
velocity component in the direction of the force, adding the work exerted by surface
stresses, yields the total rate of work. The net rate of heat transfer, in each direction, to
the fluid element is given by the difference of heat flow into one face of the element and
the heat loss across the opposite face. Using Fourier’s law of heat conduction, the heat
flux is related to the local temperature gradient, ∇T, and the conductivity, k. Defining
the total energy, E, of the fluid element as the sum of internal (thermal) energy and the
kinetic energy, the energy equation is obtained as stated in Eq. 3.9 below. The potential
energy is regarded as a gravitational force, thus included as a source term, SE.

ρ
DE
Dt

= −∇ · (pu) +∇ · (τ · u) +∇ · (k∇T) + SE (3.9)

In conclusion, this provides a set of five partial differential equations, that describe the
motion of the fluid in three dimensions by determining the velocity field and pressure
and temperature distribution of the fluid for a given set of boundary conditions and
initial conditions.

Among the unknowns, in these five equations, are the thermodynamic variables ρ, p and
T, which require a sixth equation linking them together. This equation, based on ther-
modynamic equilibrium, is called the equation of state and can be differently formulated
depending on the case and assumptions that can be made. E.g. for a perfect gas, the
equation of state is the ideal gas law, Eq. 3.10.

p = ρRT (3.10)

Here, R is the ideal gas constant. [9]
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3.2 Numerical methods

In this project, the CFD software used to solve the fluid part of the FSI-problem is STAR-
CCM+, version 15.04 and 15.06. In the following subsections some numeric theory and
modeling tools, provided by STAR-CCM+, will be explained.

3.2.1 Modeling turbulence

Consider the continuity and momentum equations, 3.1 and 3.3-3.5, which describe the
instantaneous behavior of the flow. Taking the time average of the turbulent behavior,
can give insight on the general behavior of the flow and reducing the sensitivity to small
alterations of the initial conditions. Introducing a separation of the velocity, u with the
components u, v and w, and pressure, p, into a fluctuating, u′, v′, w′ and p′, and mean
part, U, V, W and P, as

u = U + u’ u = U + u′ v = V + v′ w = W + w′ p = P + p′

Applying the rules of time-averaging, the continuity and momentum equations can be
rewritten as shown in Eq. 3.11-3.13, and are called the Reynolds-averaged Navier-Stokes
equations, or RANS for short.

ρ
DU
Dt

= −∂P
∂x

+∇ · (µ∇U)−
(

∂(ρu′2)
∂x

+
∂(ρu′v′)

∂y
+

∂(ρu′w′)
∂z

)
(3.11)

ρ
DV
Dt

= −∂P
∂y

+∇ · (µ∇V)−
(

∂(ρu′v′)
∂x

+
∂(ρv′2)

∂y
+

∂(ρv′w′)
∂z

)
(3.12)

ρ
DW
Dt

= −∂P
∂z

+∇ · (µ∇W)−
(

∂(ρu′w′)
∂x

+
∂(ρv′w′)

∂y
+

∂(ρw′2)
∂z

)
(3.13)

The over-bar denotes the mean value over time. The procedure of time-averaging intro-
duces new terms involving products of fluctuating velocities associated with convective
momentum transfer, representing turbulent stresses, and are called the Reynolds-stresses.
When trying to determine these, several new unknowns need to be introduced, hence
not solving the problem of trying to reduce the number of unknowns in the system of
equations. Thus, different turbulence models have been established over time, to model
the Reynolds stresses. One of the most commonly used is explained below. [9]

The k-ε model

The k-ε model is a two-equation model, entailing that two transport equations are uti-
lized to solve for the turbulent quantities: the turbulent kinetic energy, k, and the dissi-
pation rate of the turbulent kinetic energy, ε. Using these two quantities, the turbulent
viscosity, µt is determined, making it possible to compute the Reynolds stresses using the
Boussinesq hypothesis. [9]
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The transport equation for the turbulent kinetic energy is derived by multiplying each
of the Navier–Stokes equations, Eq. 3.6-3.8, by the corresponding fluctuating velocity
component, i.e. the x-component equation is multiplied by u′ etc., and adding the three
results. Repeating this procedure for the RANS equations, Eq. 3.11-3.13, and subtracting
this result from the one obtained by the Navier-Stokes equations, one obtains the equa-
tion for turbulent kinetic energy k, stated in Eq. 3.14. In a similar manner the transport
model equation for ε can be deducted, as shown in Eq. 3.15. However, the model equa-
tion for ε is best viewed as entirely empirical, since ε is not a physical property in the
classical sense. [10]

D(ρk)
Dt

= ∇ ·
(

µt

σk
∇k
)
+ 2µtSij · Sij − ρε (3.14)

D(ρε)

Dt
= ∇ ·

(
µt

σε
∇ε

)
+ 2C1ε

ε

k
µtSij · Sij − C2ερ

ε2

k
(3.15)

Here, Sij is the mean rate of deformation, defined as Sij = 1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
and µt is the

turbulent viscosity, determined by the turbulent viscosity theory, specifying µt = ρCµ
k2

ε .
Cµ, σk, σε, C1ε and C2ε are the five dimensionless model constants, determining the k-ε
model.

Finally the system is closed by using the Boussinesq relation, Eq. 3.16, to determine the
Reynolds stresses.

−ρu′iu
′
j = 2µtSij −

2
3

ρkδij (3.16)

Where δij is the Kronecker delta.

By introducing wall-damping functions, and including molecular viscosity, to the origi-
nal Eq. 3.14 and Eq. 3.15, the k-ε model copes better with low Reynolds number flows
and captures near-wall effects more accurately. This version of the k-ε model is called the
realizable k-ε model. [9]

3.2.2 The boundary layer and wall treatment

Boundary layer theory

Close to the wall, the flow is influenced by viscous effects and does not depend on free
stream parameters. This region is called the boundary layer and requires extra attention
when modeling the flow. The velocity profile in the boundary layer is described using
the dimensionless length scale y+ (wall units) and the dimensionless velocity u+, defined
in Eq. 3.17.

y+ =
uτy

ν
, u+ =

U
uτ

(3.17)

Here, U is the mean flow velocity, ν is the kinematic viscosity, uτ is the friction velocity
defined as

√
τw/ρ, with τw representing the wall shear stress.
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The boundary layer is sub-divided into three different regions, in terms of y+. Values
y+ < 5 correspond to the viscous sub-layer and y+ > 30 define the log-law region. The
region 5 < y+ < 30 is called the buffer layer, as seen in Fig. 3.2.

Figure 3.2: The velocity profile in the boundary layer, accompanied by the corresponding
numeric approximations.

In the region closest to the wall, the viscous sub-layer, the velocity can be approximated
using the linear relation

u+ = y+

For the log-law region, it has been empirically shown that relation between u+ and y+

can be described using the logarithmic relationship

u+ =
1
κ

ln(y+) + B

where κ and B are constants which are determined by measurements and vary with the
smoothness of the wall. [9]

The buffer layer, between the viscous sub-layer and the log-law region, is the transi-
tion region between the viscosity-dominated and the turbulence-dominated part of the
boundary layer. Here, no obvious relation between y+ and u+ exists, making it harder to
model the behavior of the velocity in this part of the flow. [10]

Wall treatment functions in STAR-CCM+

Smaller mesh cells near the wall are necessary, to properly resolve the behavior of the
velocity profile explained above. Prism cells allow for this necessary refinement in the
direction perpendicular to the wall, while keeping the cell size parallel to the surface
large enough to avoid excessive cell count. The first cell of the prism layer, i.e. the cell
closest to the wall, should correspond to the y+ value for best accuracy and resolution of
the flow. The total thickness of the prism layer should correspond to the thickness of the
boundary layer.
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STAR-CCM+ provides different kinds of wall treatment that model the velocity profile
and various parameters for the turbulence such as production and dissipation, near the
wall, which is necessary when dealing with turbulent flows. Depending on the y+ value
of the problem, different choices of wall treatment can be made. For y+ > 30, High Y+
Wall Treatment, i.e. a coarse mesh, is optimal and for y+ < 5, i.e. a fine mesh, Low
Y+ Wall Treatment is recommended. A third option, All Y+ Wall Treatment, is a hybrid
approach that emulates the Low Y+ Wall Treatment for fine meshes, and the High Y+
Wall Treatment for coarse meshes on a cell-to-cell basis.

3.2.3 Modeling the mesh morphing

The movement or deformation of the mesh, or mesh morphing, is accounted for by using
a set of control points, which are superimposed onto the mesh vertices. Each of these
control points are defined using the coordinates of vertices that lie on mesh boundaries
and are associated with a displacement vector that defines the displacement of the point
within each time-step. Using these control points and their known displacements, the
morpher function generates an interpolation field which is applied to all mesh vertices in
the region. This procedure allows the morpher to adapt the original mesh in accordance
with the movement of the boundaries. In STAR-CCM+, there are two different interpo-
lation methods that can be used to morph the mesh, the RBF method and the B-spline
method.

The RBF (Radial Basis Functions) method uses multi-quadratic radial B-splines, which
belong to the family of polynomial interpolation functions. The interpolation field is
formed using the control points and their displacements, to determine the final mesh
deformation. By default, one control point per mesh vertex is created. To achieve an
optimal number of control points, a "thin-out" procedure is adopted to reduce the number
of points and lower the run-time, by using an estimated deformation of the mesh, while
maintaining an acceptable mesh quality.

The B-spline method utilizes an adaptive interpolation algorithm, using multi-level cubic
B-splines. Starting from a coarse control-point grid and propagating down to finer grids,
until the residual error is within the limits of the user-specified morpher tolerance, the B-
spline method achieves an accurate interpolation field from which the mesh deformation
is then determined. Since a hierarchical refinement approach is adopted, the number of
control points used is automatically optimized, hence the run-time is kept to a minimum.
The B-spline method scales better than the default RBF method in many circumstances
and it can also better preserve meshes that contain prism layers [11].

3.2.4 Overset method

When dealing with a geometry containing parts that move relative to each other, over-
lapping grid techniques, also called overset mesh methods, are very useful to discretize
the computational domain. This methodology allows different parts to be meshed indi-
vidually, avoiding issues that arise when one continuous grid for the whole domain is
used, which would require re-meshing and extreme mesh morphing for larger relative
movement between parts in the domain. When using overlapping methods, there will
always be a background region, which is the static part of the domain, enclosing smaller
regions of interest, which move relative to the background and each other, meshed by
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the overset mesh. The component meshes can exchange flow field information from one
mesh to the other through the overlap region. [12]

(a) Square meshed
with overset method

(b) Cell types for the
overset mesh

(c) Cell types for the
background mesh

(d) The full domain

Figure 3.3: A visualization of how the different cell types in an overset methodology can
be distributed. Light orange are active cells, dark orange represent acceptor cells and
blue answer to the passive cells.

There are three different types of cells involved in the overset method: active, passive
and acceptor cells. As an example, consider a square moving across a simple domain,
meshed using the overset method, Fig. 3.3a. The active cells, colored light orange in
Fig. 3.3b-d, are the cells where the flow equations are solved and are located both in the
background mesh and in the overset region. Thus, one part of the domain will be solved
in the background region and one part will be solved in the overset region. The passive
cells, colored blue in Fig. 3.3c-d, are the ones in the background region, overlapped by the
overset, where no flow equations need to be solved. However, the passive cells become
active once the overset region moves. The acceptor cells, colored dark orange in Fig. 3.3b-
d, separate the active and passive cells. These cells make the exchange of information
between the meshes, in both directions, possible. The process which determines the type
of the cells in the domain is called the "Hole-cutting" process. [12]

The data transfer

The data transfer occurs at the boundary of the overlapping region, using the acceptor
cells. To solve the flow equations the value of each cell centroid is needed, which is
calculated using the fluxes through the cell faces. However, for the acceptor cells, one
flux is undetermined, since it has no neighboring cell at the boundary, Fig. 3.4a. This
is solved by introducing a set of ghost cells, that form an outer layer, surrounding the
overset boundary, Fig. 3.4b. The missing neighbor for the acceptor cells is created. The
centroid of the ghost cell is determined by using the value of three active cell centroids
of the background mesh. These cells are called donor cells and are selected such that
the triangle formed by their centroids encloses the ghost cell centroid, Fig. 3.4c. Using
a distance weighted average, the ghost cell centroid is determined, yielding the last flux
for the acceptor cells and a set of closed system of equations, Fig. 3.4d. For this type of
data transfer being able to work, matching cell sizes between the component meshes, is
required. If the mesh cell sizes differ too much, problem with finding donor cells can
arise and interpolating the data between the meshes may become inaccurate. [11]
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(a) The acceptor cells (b) The ghost cells (c) Determining
centroid of ghost cell

(d) Determining flux
to acceptor cell

Figure 3.4: The figure shows how data transfer is performed between the background
mesh (white) and the overset mesh (orange) using ghost cells (gray). The yellow arrows
represent the cell face fluxes and the circular dots answer to the cell centroids.

3.2.5 Contact definition

When defining contact conditions between bodies and overset regions, one approach pro-
vided by STAR-CCM+ is called ZeroGap interface. This type of interface automatically
creates a ZeroGap wall boundary for each region. During the simulation, the overset
hole-cutting process will use these ZeroGap wall boundaries to define contact. When the
distance between two of these boundaries is less than the user defined limit (in terms of
cell layers), the cells in this gap are inactivated and treated as a wall, thus temporarily
preventing the flow between the surfaces and the gap effectively closes. Isolated cell is-
lands surrounded only by ZeroGap boundaries are detected automatically by the solver
and inactivated. This approach yields an effective procedure for treating small gaps and
direct contact between bodies, since gaps are closed and opened continuously during the
simulation as the bodies in the domain are moving relative to each other. [11]

3.2.6 Solution interpolation

When dealing with moving and deforming parts in the domain it is sometimes necessary
to update or replace the old mesh with a new one, which requires an interpolation tech-
nique for mapping the data between the old and the new mesh. In STAR-CCM+ there are
mainly two methods for this kind of data mapping: Nearest neighbor and Higher-order
stencil.

The nearest neighbor interpolation option maps the data from the old mesh to the new
one, by comparing the cell centroids. The cell centroid of the new mesh obtains the solu-
tion data retrieved from the old cell centroid closest to the new one. This method is fast;
however, it does not provide a smooth interpolation of the results.

The higher-order stencil maps the solution data from the old mesh to the new one by
enforcing a stencil, a set of cells and faces. This method uses a distance-weighted, least-
square interpolation, yielding a smooth interpolation of the solution data and is therefor
recommended for transient analyses. [11]

3.2.7 Numerical solver

To solve the equations of motion for the flow domain at hand, and handling the strong
non-linearities, an iterative approach is required. For the set-ups described in this project,
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the "Segregated Flow" solver is employed in STAR-CCM+. This formulation uses a collo-
cated variable grid to discretize the domain and conservation equations Eq. 3.1, 3.3-3.5,
where the convection fluxes are approximated by a second order upwind scheme [11].
Since a collocated grid is used, the values for the pressure and velocity components, used
for solving the discretized transport equations, are stored in the center of each cell face,
as opposed to a staggered grid where the velocity components are stored around the cell
faces instead [9]. To prevent unphysical checkerboarding of the pressure, i.e. obtaining
zero pressure gradients due to linear interpolation of the velocities from the cell center to
the cell face, the Rhie-Chow pressure-velocity coupling is applied [11].

The SIMPLE algorithm is invoked for solving the discretized momentum equations and
calculating the pressure and velocity components [11]. Initially the momentum equations
are solved using an arbitrarily guessed pressure field, obtaining the velocity components.
A pressure correction equation is used to obtain the correct pressure and the momentum
equations are solved again, to update the velocity component values. In this iterative,
predictor-corrector approach, the transport equations are solved, and the correct pressure
and velocity field is obtained. [9]

To ensure convergence and a numerically stable solution, the Gauss-Seidel relaxation
scheme is employed [11]. This iteration method uses information from both the current
and previous time step to determine the values for the pressure and velocity in the current
time step, ensuring a faster convergence. [9]

3.3 Fluid-Structure Interaction

Fluid-Structure Interaction, FSI, is a multi-physics coupling between the laws of fluid dy-
namics and structural mechanics. It describes the coupled problem where a fluid flow
introduces a stress state along the surface of a structural body, causing deformations that
in turn affects the flow, thus describing the interaction between a fluid flow and a de-
formable structural body. To describe these physical phenomena correctly, highly ad-
vanced solution procedures are required to account for the strong non-linearities and the
full behavior of the two-field interactions. [13]

Two different methods can be applied to solve the equations of motion: monolithic or
partitioned solution schemes. Both methods aim to solve the same set of equations with
respect to the boundary conditions at hand but do so in opposite fashions. A monolithic
solution scheme solves all equations simultaneously with one solver, while a partitioned
solution scheme uses two separate solvers. This entails that the flow field does not change
while the solution of the structural equations is determined and vice versa. Since the
monolithic approach solves all equations simultaneously, a mathematically more accu-
rate solution is obtained. However, solving these kinds of system of equations is a hard
task to conduct, which is why partitioned schemes are usually adopted when solving FSI
problems. Since two separate solvers are used, it is easier to individually update each
software making sure state-of-the-art solvers are employed. [14]

Partitioned solution schemes are further divided into two groups: explicit schemes and
implicit schemes. Schematic flow charts of the principle of these couplings can be seen in
Fig. 3.5. The explicit partitioned schemes, sometimes called weak coupling, solve the
FSI problem in a staggered manner without convergence checks on a domain level, while
the implicit (strong coupled) partitioned schemes iterate in each time step, making sure
convergence is reached across the domain. However, convergence checks are preformed
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within the fluid and solid solver in both approaches. [1]

(a) Explicit method (b) Implicit method

Figure 3.5: Simplified flow charts for how an (a) explicit and an (b) implicit coupling
works in principle.

As mentioned previously, in this project the software STAR-CCM+ is used to solve the
flow and for the structural part, Abaqus/Standard is employed. The coupling is strong,
and an implicit partitioned scheme is used. Based on the pressure and wall shear stress
exported by STAR-CCM+, Abaqus/Standard determines the deformation of the solid
body. The deformation is imported to STAR-CCM+, which is used to adapt and update
the flow. This exchange of data is repeated several times in each time step.
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Chapter 4

Previous work

To solve the problem of jams arising while evacuating the confetti, several simulations
have previously been performed at Tetra Pak®. In these simulations, different variations
of the geometry for the knife roller were evaluated, to test if these variations could pre-
vent some of the problems that occur when the confetti are evacuated from the machine.
Some of the different geometry variations are illustrated in Fig. 4.1. The geometries
that were tested are a 1D offset of the knife tubes, to prevent the confetti from exiting
through the opposite knife. Ripples and bumps on the inside surface of the main pipe
were also introduced, to see if the sticking can be prevented. These different geometries
were mainly simulated as steady-state simulations, to analyze the air flow alone. Some
of the cases were also run as transient simulations, without the confetti, to analyze how
the rotation of the knife roller affects the air flow. Only one of the geometries were run
with a confetti as an FSI-simulation.

(a) Original design (b) 1D offset (c) Ripples

Figure 4.1: An illustration of the different geometries of the knife roller, previously tested
at Tetra Pak®. The illustrations show the knife roller from the front to display the angle
of the knifes. The ripples are introduced along the inside surface of the main pipe.

Since most of these simulations are performed without confetti, it is of interest to inves-
tigate how the confetti change the airflow and how they are transported and deformed.
Understanding how the confetti behave, could give insight on how the jams arise. There-
fore, the Pre-existing model was developed. Using a simple domain, error sources due
to geometry can be avoided, making it easier to develop a model for the behavior of the
confetti and its deformation in the airflow.
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4.1 The Pre-existing Model

(a) The pipe with the confetti to the left. (b) Close up of the confetti at the inlet
of the pipe.

Figure 4.2: The geometrical set-up of the Pre-existing model

The Pre-existing model, developed and provided by Tetra Pak®, is set up accordingly:
it models one single confetti in a straight pipe, as pictured in Fig. 4.2. The confetti
is of rectangular shape and consists of paperboard with the dimensions 35x12.1 mm
and is 0.35 mm thick. The pipe is 1.01 m long and has a radius of 21 mm. Using
Abaqus/Standard, the geometries are defined, and the domain is set up, which is then
imported in STAR-CCM+.

(a) Mesh of pipe and confetti (b) Mesh of confetti

(c) Cross-section of the domain (d) The overset mesh

Figure 4.3: The mesh of the Pre-existing model

The two parts are meshed using a trimmed cell mesher with a base cell size of 0.4 mm
generating 26 000 000 cells for the pipe, see Fig. 4.3. An overset region, inflated 1.0 mm
in respect to the confetti surface, is created for the confetti, enabling the confetti to have
its own mesh and travel through the mesh of the flow domain. The overset mesh has the
same cell size and type as the rest of the domain resulting in 44 000 cells for the confetti
including the overset mesh. The same mesh element size is applied for all parts, to reduce
error while interpolating the solution between the two meshes, see Fig. 4.3. Prism layers
are only introduced along the boundaries of the confetti, but not along the pipe wall.

The following boundary conditions are imposed: The pipe wall and confetti surface are
set to no-slip surfaces. The inlet velocity is evenly distributed across the inlet surface of
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the pipe and set to 5.0 m/s. A zero pressure outlet is applied to the far end of the pipe.
Initially the confetti is non-deformed and is placed in the center of the pipe at the inlet,
parallel to the pipe wall. All contacts are set to frictional contacts with surface-to-surface
properties applied.

To model the flow, ideal gas properties are assumed for the air and laminar flow condi-
tions are applied. The Segregated flow solver is used, and an implicit unsteady solver
of 1st order is adopted for the temporal discretization to model the physical time and to
control the time-step size. An adaptive time-step size is chosen with the minimum step
size set to 1e-4 s. A mesh morpher is activated, using the RBF method, to handle the
deformation of the mesh of the confetti during the simulations.

For the structural part of the simulation, Abaqus/Standard uses the Newton method to
solve the non-linear equations for the deformation, based on the pressure and wall shear
stress provided by STAR-CCM+. The same time-step sizes are applied for this part of the
solver, as set in STAR-CCM+.

Figure 4.4: The figures show the velocity contour plot in a cutting plane, provided by the
Pre-existing model. One can see how the confetti deforms and travels through the pipe.

This set-up provides a model that captures the behavior of the confetti and that is numer-
ically stable to simulate the deformation of the confetti, its movement through the pipe
and its contact with the pipe wall, as well as the air flow itself. Fig. 4.4 shows the ve-
locity contour plot of the beginning of the simulation in a cutting plane. One can clearly
see how the confetti is deformed by the flow and its contact to the pipe wall, and how
it travels through the pipe. It can also be observed how the air flow is affected mainly
downstream of the confetti.
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Chapter 5

Computational set-up

5.1 Developing the Final Model

In the process of developing an FSI-model that simulates two confetti in the final T-
junction pipe geometry, the Pre-existing model is expanded by the author by means of
several smaller sub-steps, described below. An overview of all the FSI-models created,
in the process to obtain the Final model, can be seen in Fig. 5.1. Each model is described
further in the following subsections.

Figure 5.1: Overview of the development process.

5.1.1 The Modified Model

First, the Pre-existing model is investigated, making sure that the optimal settings for the
flow case are chosen for this kind of simulation, without changing the geometry of the
domain. A few alterations are made, resulting in the Modified model.

The changes entail activating the function "Close proximity". This allows more active
cells in the overset mesh between the moving body and the boundary and helps to pre-
vent mesh intersector failure when the overset region overlaps the physical boundaries of
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the background [11]. The solver interpolation method is changed from "Nearest Neigh-
bor" to "Higher-Order Stencil" and the mesh morpher method is changed from RBF to
the B-Spline method. A morpher tolerance of 1e-8 is used to avoid negative volume cells
and "Linear Fitter" is activated, enabling the model to simulate both displacement and
deformation. The Reynolds number for this flow case is given by:

Re =
ρuD

µ
=

1.204 kg/m3 · 5.000 m/s · 0.042 m
1.855 · 10−5 Ns/m2 ≈ 14 000

Since it exceeds 2300, which is the critical Reynolds number for a pipe flow [8], a turbu-
lence model is activated. The k-ε model is chosen since it performs well for simple pipe
flows [10], using the default settings for the k-ε model provided by STAR-CCM+.

Furthermore, the frictional constant is changed from 0.4 to 0.2, which according to prac-
tical experience, is a more realistic value for paperboard interacting with metal. The
element type, used to mesh the confetti in Abaqus/Standard, is altered from a C3D8R
element type to a C3D8I element type. This allows higher accuracy since the C3D8I uses
full integration, instead of reduced integration as C3D8R does.

Figure 5.2: The figures show the velocity contour plot provided by the Modified Model.

Fig. 5.2 shows the velocity contour plot in a cutting plane of the Modified Model. One
can see how the confetti deforms less, which coincides better with what is expected, due
to the new element type used to mesh the confetti in Abaqus/Standard. It can also be
observed how there are less turbulent vortices in the flow downstream of the confetti,
compared to the initial case, due to the time averaging the k-ε model imposes on the
flow. Based on the Reynolds number, the pipe flow is undoubtedly turbulent, indicating
the flow behavior observed in the Pre-existing model to be inaccurate.

The model to simulate one single confetti in a straight pipe, is now substantially im-
proved, since the more accurate B-spline morphing method now can be used without
the simulation crashing and the new contact conditions are considered as more realistic.
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Also, the new element type employed in Abaqus/Standard, ensures higher accuracy of
the deformation of the confetti. Therefore, this model is used as a base for future steps in
the development process.

5.1.2 Introducing two confetti

Two non-deformable confetti

(a) The domain (b) Mesh of the pipe and the confetti

(c) Cross-section of the domain (d) The overset mesh

Figure 5.3: The set-up for two paperboard confetti in a straight pipe.

Using the Modified model, focus is now directed to the number of active FSI-surfaces.
A second confetti, thus a second part for the co-simulation, is introduced to the model.
The thickness of both confetti is increased, and the material is changed to steel to en-
sure rigid body movement, to reduce potential problems regarding deformation. Images
of the mesh and the geometric set-up can be seen in Fig. 5.3. Using the same initial
and boundary conditions as for the case with one confetti established in the Modified
Model, a numerically stable model that can handle two non-deformable confetti is ob-
tained. Fig. 5.4 shows the velocity contour plot of this simulation.

Due the heavy material applied to the confetti, the inlet velocity, and thus the flow, is
too slow to affect the confetti. They simply drop to the bottom of the pipe and bounce off
each other a few times. The model obtained can handle two active co-simulation surfaces
and is considered good enough to describe the interaction between two confetti to move
forward to the next step in the development process.

Here, the contact conditions were assessed. Initially, in the Pre-exiting and Modified
model, a linear pressure-overclosure contact condition, with the slope k = 1e8 was set.
However, to see if the contact could be modeled more realistically, different values for
the slopes were tested and an exponential pressure-overclosure contact was also investi-
gated. In the end, a linear pressure-overclosure relation with k = 1e9 performed the best,
in terms of numerical stability and realistically capturing of the behavior of and contact
between the confetti. Data from the contact analysis can be found in appendix A.
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Figure 5.4: The velocity contour plot for two non-deformable confetti in a straight pipe,
side view.

Two deformable confetti

The set-up with two co-simulation surfaces, is now used to take the next step. The ini-
tial thickness is chosen, in Abaqus/Standard, for both confetti and the material is set to
paperboard, the geometry of this model can be seen in Fig. 5.5a. The same settings for
the flow and solid solver are used as previously and the same type of mesh is applied as
well, as shown in Fig. 5.5b-c. Thus, a model that simulates two deformable confetti of
paperboard, in a straight pipe is obtained.

(a) The domain (b) Mesh of the pipe and the confetti

(c) Cross-section of the domain (d) The overset mesh

Figure 5.5: The set-up for two paperboard confetti in a straight pipe.

The interaction between the confetti seems to be captured well. Fig. 5.6 shows the ve-
locity contour plot in a cutting plane of this simulation case. One can see how the upper
confetti is efficiently transported by the flow, while the lower confetti initially gets stuck
to the wall of the pipe.
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Figure 5.6: The velocity contour plot for two deformable paperboard confetti in a straight
pipe.

5.1.3 Mesh sensitivity analysis

To ensure a solution that is mesh-independent and not too computational expensive, a
mesh sensitivity analysis is conducted. The mesh analysis is performed on the Modified
Model since it is the simplest of cases run. To ensure that the cases with the different
meshes are comparable, and that differences are a result of the mesh and not the move-
ment of the confetti, steady state simulations were conducted with the confetti placed to
be static, in the middle of the pipe. A set of five different meshes were tested for two
different orientations of the confetti, as pictured in Fig. 5.7. The meshes included in the
study can be seen in Table 5.1. Here, Mesh 4 is the mesh that has previously been used in
the Pre-existing model.

Table 5.1: An overview of the mesh sensitivity analysis.

Base cell size Number of cells per diameter Total number of cells
Mesh 1 1.6 mm 28.3 370 000
Mesh 2 0.8 mm 56.6 2 800 000
Mesh 3 0.6 mm 75.5 6 600 000
Mesh 4 0.4 mm 113 22 000 000
Mesh 5 0.2 mm 227 176 000 000

(a) Confetti at 45° in middle of pipe (b) Confetti at 90° in middle of pipe

Figure 5.7: The two geometries used for the, steady state, mesh sensitivity analysis.

The coarsest and the finest mesh, Mesh 1 and Mesh 5, can be seen in Fig. 5.8 and 5.9.
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(a) Confetti at 45° (b) Confetti at 45°

(c) Confetti at 90° (d) Confetti at 90°

Figure 5.8: Images of the coarsest mesh tested, Mesh 1, for the two different confetti
orientations.

(a) Confetti at 45° (b) Confetti at 45°

(c) Confetti at 90° (d) Confetti at 90°

Figure 5.9: Images of the finest mesh tested, Mesh 5, for the two different confetti orien-
tations.

For the study, the velocity was tracked along two different lines, one placed upstream and
one placed downstream of the confetti, as shown in Fig. 5.10a-b. The pressure and wall
shear stress were averaged over the top and bottom surface of the confetti, as defined
in Fig. 5.10c. Since, the pressure and wall shear stress are the parameters exported to
Abaqus/Standard, it is of interest to ensure mesh independence for these parameters.
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(a) Probe lines, confetti at 45° (b) Probe lines, confetti at 90° (c) Definition of top and
bottom surface

Figure 5.10: The figures show the line probes along which the velocity was measured and
how the top and bottom surface of the confetti is defined for measuring the pressure and
wall shear stress in the mesh sensitivity analysis.

The results from the mesh sensitivity analysis are gathered in Fig. 5.11-5.14.

(a) Velocity profile upstream (b) Velocity profile downstream

(c) Line probe in velocity contour plot

Figure 5.11: The velocity profile given by the line probes, displayed in (c), for the confetti
at 45°.

The velocity, measured up- and downstream of the confetti, can be seen in Fig. 5.11 and
5.12, where the velocity profiles are plotted alongside the velocity contour plot. In both
cases, it is clearly visible that Mesh 1 and Mesh 2 are not sufficient to resolve the full
velocity profile, compared to Mesh 4 and Mesh 5.

39



(a) Velocity profile upstream (b) Velocity profile downstream

(c) Line probe in velocity contour plot

Figure 5.12: The velocity profile given by the line probes, displayed in (c), for the confetti
at 90°.

In Fig. 5.13 the average pressure, measured across the bottom and top surfaces of the
confetti can be seen for each case. The graphs are normalized against the value provided
by Mesh 5. Compared to Mesh 5, Mesh 1 deviates the most in all cases.

In Fig. 5.14 the average wall shear stress, measured across the bottom and top surfaces
of the confetti can be seen for each case. The graphs are normalized against the value
provided by Mesh 5. As for the pressure, Mesh 1 generally deviates most from Mesh 5.
For the wall shear stress on the bottom surface for the confetti at 90° we see deviations of
as much as 50 %. However, for the other three cases, all meshes provide about the same
value, while Mesh 1 deviates with less than 10 %.
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(a) Pressure, top surface at 45° (b) Pressure, bottom surface at 45°

(c) Pressure, top surface at 90° (d) Pressure, bottom surface at 90°

Figure 5.13: The graphs depict the average pressure on the top and bottom surface for
each confetti configuration and mesh size. The values are normalized against Mesh 5.
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(a) Wall shear stress, top surface at 45° (b) Wall shear stress, bottom surface at 45°

(c) Wall shear stress, top surface at 90° (d) Wall shear stress, bottom surface at 90°

Figure 5.14: The graphs depict the average wall shear stress on the top and bottom surface
for each confetti configuration and mesh size. The values are normalized against Mesh 5.
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(a) Computational time (b) Iterations until converged

Figure 5.15: The graph shows the computational time and the total number of iterations
until convergence is reached for each mesh included in the sensitivity study.

The computational time and the number of iterations until convergence is reached dif-
fered significantly between the meshes, which can be seen in Fig. 5.15. Here, the compu-
tational time per iteration was determined by calculating the number of iterations per-
formed in one minute and convergence is said to be reached when the residuals change
less than 1 %.

Mesh 3 capture the same overall behavior as Mesh 5, see Fig. 5.11-5.14. It yields values
that deviate by 0.4-6 % from Mesh 5 (except the bottom wall shear stress for the confetti
at 90°, that deviates with 50 %). Even though Mesh 4 delivers results in the same range
as Mesh 3, Mesh 3 is 247 % faster than Mesh 4, and 2760 % faster than Mesh 5. Mesh 2 is
50 % faster than Mesh 3, however, it deviates with 1-8 % from the values obtained from
Mesh 5, thus is not as accurate as Mesh 3.

Considering this, Mesh 3 seems to be the optimal option, it saves computational time
without losing too much accuracy. Since only the overall behavior of the confetti is of
interest, this small loss in accuracy due to a coarser mesh, is considered to be negligible.

The result of the mesh sensitivity analysis is considered applicable for the final case, as
the main feature of the flow that is to be resolved occurs downstream of the confetti which
is the same in both cases, since the diameter of the pipes and dimensions of the confetti
are the same.

5.1.4 The Final Model

Now that the correct model of the behavior of the flow and the confetti, as well as the
interaction between them, is achieved, the Final model can be finalized. The geometry of
the pipe is changed to include a T-junction, in Abaqus/Standard. One confetti is set at
each inlet, oriented horizontally and aligned with the center line of the pipe, as shown in
Fig. 5.16.
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Figure 5.16: The Final model.

Geometry

The pipe diameter is consistently 45.2 mm throughout the pipe. The total length of it is
1.9 m and the junction is placed such that both shorter ends of the pipe are 0.4 m long,
cf. Fig. 5.17. The dimensions of the confetti are as previously 35x12.1 mm. However, the
thickness is set to 0.2675 mm, to match the thickness used in the physical tests. An overset
region, inflated 2.5 mm in respect to the surface of the confetti in each direction, for both
confetti is applied. The overset region is now bigger compared to the previous cases.
Since the mesh used is coarser compared to the previous models, the overset region needs
to be bigger to ensure enough active cells within the overset mesh. Too few active cells
can cause unrealistic deformation of the confetti as a result of inadequately resolution of
the flow parameters, such as the pressure, near the confetti.

(a) The T-junction pipe (b) The confetti (c) The overset

Figure 5.17: The dimensions of the domain used in the Final model.

Material

The fluid flow is modeled as air, using an ideal gas approximation with isothermal con-
ditions. Due to the high Re-number, the k-ε model is applied to model the turbulence.

The confetti are modeled using an anisotropic elasto-plastic material, using Hill’s yield
criterion with isotropic hardening. The constitutive material model presented in Section 2
assumes orthotropic material behavior. However, to fully capture the anisotropic behav-
ior of paperboard, the yield stress ratios Rij are altered in Abaqus/Standard, allowing
different material behavior in the in-plane material directions. This constitutive material
model is used, due to its accuracy. Physical tensile tests performed by [15], show that this
material model coincides well with the data provided by the tests, cf. Fig. 5.18.
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Figure 5.18: The validation of the constitutive model, provided by tensile tests on pa-
perboard. Here, the green, blue and red curves represent the tensile tests in the three
different material directions and the dashed line is the constitutive material model [15].

To save some computational time, the plasticity of the constitutive material model is
omitted. Since no plastic deformation is expected, it is assumed that the results obtained
are still close enough to reality. However, for comparison, one case was run with the
plasticity included.

Mesh

The fluid and the overset region for the confetti are meshed using the automated mesh
controls provided by STAR-CCM+. With a base cell size for the mesh elements of 0.6
mm (in accordance with the mesh sensitivity analysis) the confetti and pipe are meshed.
The mesh for the confetti can be seen in Fig. 5.19. The same cell size is adopted in the
entire domain, except for the prism cells, to ensure accurate interpolation between the
background mesh and the overset mesh. Prism cells are applied around the confetti, to
properly resolve the pressure and wall shear stress at the confetti surface. Five layers of
prism cells, with a 1.5 prism layer stretching are used, see Fig. 5.20a-b. In order to resolve
the near wall effects and the viscous sublayer, prism cells, using the same technique as for
the confetti, are introduced along the pipe wall, see Fig. 5.20c-d. This resulted in a final
cell count of the pipe of 21 000 000 cells and 30 000 for the confetti, including the overset
mesh. The function "All Y+ Wall Treatment" is invoked, to ensure a good resolution of
the flow in the boundary layer.

(a) Confetti, top view (b) Confetti, side view

Figure 5.19: The mesh in STAR-CCM+ of the confetti. The same mesh conditions are
applied to both meshes, thus only one of the confetti is displayed.
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(a) Circular cross-section of pipe with confetti
and overset.

(b) Circular cross-section of pipe with confetti
and overset, zoomed in.

(c) Cross-section of pipe and confetti (d) Prism layers along wall

Figure 5.20: The mesh in STAR-CCM+ of the T-junction pipe.

In Abaqus/Standard, solid, 8-node elements of the type C3D8I are used to mesh the
confetti. Modeling contact between bodies is easier using solid elements, rather than shell
elements, since these only occupy a theoretical space. Thus, solid elements are chosen to
discretize the confetti, see Fig. 5.21a-b.

(a) The confetti (b) The confetti, side view

(c) The T-junction pipe (d) The T-junction pipe

Figure 5.21: The mesh in Abaqus/Standard.

Due to the small thickness of the confetti, only one layer of elements is required to com-
pletely model its volume. This puts harder requirements on the accuracy of the elements.
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Hence, C3D8I elements are used, since they employ full integration and incorporate in-
compatible modes, they ensure good accuracy when computing the displacement of the
nodes, as mentioned in Section 2. The pipe is meshed using both quadrilateral and tri-
angular facet cells, of the types R3D3 and R3D4, see Fig 5.21c-d. Since the pipe does
not move, it is modeled using a discrete mesh with these rigid body elements, to save
computational power. The final cell count for the pipe is 8500 and 600 for each confetti.

Boundary and initial conditions

Initially the confetti are non-deformed and placed in each inlet of the pipe. The inlet
velocity is set to 5.1 m/s at the inlet to the straight pipe and 5.3 m/s at inlet to the upper
pipe, and a zero pressure outlet condition is imposed, see Fig. 5.22. These boundary
conditions were set, even though suction conditions, resembling the flow conditions in
a vacuum cleaner, apply to the pipe. It was tried to impose an outlet velocity and zero
pressure inlets. However, this kind of set-up is ill-posed, thus unable to converge, it was
decided to impose inlet velocities and a pressure outlet. All walls of the pipe, and the
surfaces of the confetti, are set to no-slip conditions. As the simulations were performed,
the first iterations were run using steady state conditions to obtain a fully developed flow.
After 500 iterations transient conditions were re-applied and the co-simulation is started.

Figure 5.22: The boundary conditions applied in the Final model.

Surface-to-surface contact conditions are applied in Abaqus/Standard for all contacts
between the three bodies. A soft contact, with a linear pressure-overclosure relation, is
employed with the inclination constant set to k = 1e9. This kind of contact was chosen
based on the contact analysis performed as the Two confetti model was developed.

In STAR-CCM+, a ZeroGap interface was chosen for all contact pairs with close proximity
activated as in the Modified Model.

Solvers

To solve the governing equations of this FSI problem, Newtons method is employed for
the structural part with a minimum step size of 1e-4 s. For the fluid part the segregated
flow solver, using the SIMPLE algorithm, is applied with a constant time-step size of 1e-4
s, as set in Abaqus/Standard. In the previous models an adaptive time step was applied.
However, the controls for the adaptive time-step differ between Abaqus/Standard and
STAR-CCM+, resulting in a mismatch in the physical time during the simulation and
ultimately caused the simulations to crash. It was tried to control this procedure, but all
attempts failed. Thus, the adaptive time-step was omitted, and a constant time-step was
set. The total maximum physical time is set to 5.0 s.

To ensure convergence and a numerical stable solver, the pressure and the turbulent vis-
cosity are under-relaxed. The under-relaxation parameter for the pressure was changed
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from 0.2 to 0.1, and from 1.0 to 0.6 for the turbulent viscosity.

The simulation was run on 224 processors in parallel and the resulting average computa-
tional time for the simulation is computed to be 0.034 minutes per iteration. In total, this
simulation took 5 days to complete.

5.2 Experimental set-up

To be able to validate the simulation results, physical experiments are conducted. Using
a transparent PVC pipe, with the same size as used in the set-up of the simulations, con-
nected to a vacuum cleaner the simulations could be reenacted. Images of the complete
set-up can be seen in Fig. 5.23. The videos are mainly shot from above, providing a good
view of how the confetti are transported through the pipe. However, some videos are
also shot from the side, to create footage to see how the confetti are affected by gravity.

Figure 5.23: The set-up used for the experiments.

The vacuum cleaner is mounted onto the pipe and secured with duct tape. Using an
anemometer, the correct vacuum setting, that gives 5 m/s for the air flow velocity at both
inlets of the pipe, is established. The anemometer used, is a Testo 416, which is a measur-
ing device for measuring flow speeds by means of a low-friction telescopic impeller. A
dark blue backdrop is used to provide a good contrast to the white confetti and LED light
heads, mounted on telescope arms, ensure good lighting for the high-speed camera. To
reduce light reflections due to the glossy surface of the pipe, the LED lights are covered
with parchment paper, resulting in a more diffuse lighting.

The high-speed camera used is an Olypmus i-SPEED 3 with 1000 fps and a resolution of
1280x1024. The confetti are hold by hand, centered in each opening of the pipe, and re-
leased simultaneously. To ensure the same material behavior as in the simulation model,
confetti produced in the test plant at Tetra Pak® are used.
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Chapter 6

Results and discussion

A total of 18 experiments were conducted, where 14 are filmed using a top view, i.e. the
complete T-junction is visible, and 4 were filmed using a side view, where only the first
part of the straight pipe is visible from the side, cf. Fig. 6.1. Out of the 14 experiments
filmed from a top view, 3 collisions of the two confetti were captured. The top view was
used to observe the trajectories of and the interaction between the two confetti, while the
side view was employed to assess the influence of the gravity and initial position of the
confetti.

Figure 6.1: Camera angels used during experiments.

Since two different camera angles were employed during the experiments, all simula-
tions are observed from the same two angles. In total, five simulations were run on the
T-junction case: four cases with the confetti at different initial inclinations (without plas-
ticity included in the material model) and a fifth simulation, with the plasticity included.
A compilation of the simulations conducted can be seen in Table 6.1. Simulations, with
different initial inclinations of the confetti applied, were run to investigate what influence
the initial position has on the trajectory and the evacuation speed of the confetti. A sketch
of the initial positions of the confetti can be seen in Fig. 6.2.

Figure 6.2: Sketch of the initial inclination of the confetti in the different simulations run.
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Table 6.1: An overview of the numerical simulations conducted on the T-junction case.

Simulation case Plasticity included Inclination of confetti
1 No +10°
2 No 0°
3 No -5°
4 No -10°
5 Yes 0°

Using image analysis, the centroid of the confetti are tracked, to be able to compare the
trajectories of the confetti in the numerical simulations and the physical experiments. The
software Tracker [16], which is a free and open source video analysis and modeling tool,
is used since it offers manual tracking. Due to the reflections in the pipe in the videos
and the high number of rotations in the movement pattern of the confetti, automatic
tracking-software were not able to track the confetti in all frames. Therefore, the tracking
is performed manually.

6.1 Side view

6.1.1 Numerical results

In Fig. 6.3 the full trajectory of the confetti with the initial inclination of -5° can be seen.
Using the tracking tool, the centroid of the confetti is tracked. Employing a snapshot-
function, several frames from the simulation are depicted in one image. It can be seen
how the confetti moves through the pipe by bouncing against the walls in a rotating
fashion.

Figure 6.3: Trajectory of confetti in simulation with -5° initial inclination, side view.

In Fig. 6.4, the velocity distribution is depicted in a contour plot of a cutting plane. One
can see how the flow is mainly affected downstream by the confetti. From the velocity
distribution it can be noted that the bulk flow has a velocity of about 5 m/s and that it
is zero along the walls, as expected. Downstream of the confetti, a wake is created, with
recirculating flow.
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Figure 6.4: The velocity distribution, side view of the simulation case with -5°.
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The trajectory data from all simulations are compiled in Fig. 6.5, where the trajectories
and the x-coordinate as a function of time can be seen.

(a) Trajectory of confetti (b) x-coordinate against time

Figure 6.5: All data from simulations, side view

Fig. 6.5 shows that the confetti with the initial angle of +10° is the slowest confetti to
reach the end of the pipe. At the start, the confetti moves towards the bottom, where it
loses kinetic energy partially due to the impact against the wall and partially due to the
low velocity flow near the wall. In the other three simulations, the confetti seems to have
similar speed through the pipe.

In Fig. 6.5a one can see that the confetti with zero or positive initial inclination have a
tenancy to move downward, while the confetti with a negative initial inclination angle
move upward. This behavior is due to the pressure and velocity distribution on the top
and bottom of the confetti.

Figure 6.6: Initial velocity and pressure distribution around confetti, with the initial in-
clination angles -10° and +10° compared.

52



As pictured in Fig. 6.6, it can be observed that the confetti inclined +10° has a lower
velocity on the top surface compared to the bottom surface. This implies that the pressure
is higher on the top surface, compared to the bottom surface as seen in Fig. 6.6, thus
forcing the confetti downward. The opposite behavior applies to the confetti with the
negative initial inclination.

The initial inclination of the confetti governs its initial movement, and thus the final evac-
uation time. From these simulations it can be seen that a positive initial inclination is not
preferable, cf. Fig. 6.5b, since it increases the risk of the confetti getting stuck at the
wall. With a negative inclination angle, the confetti moves upward and due to gravity,
the risk is lower that the confetti will get stuck in the low speed flow near the wall and
loose kinetic energy. However, this might be too little data to make statistically accurate
conclusions applying generally to the behavior of all confetti.

6.1.2 Experimental results

In Fig. 6.7 the full trajectory of the confetti can be seen. Using the tracking tool, the
centroid of the confetti is tracked. One can see how the confetti moves through the pipe
by bouncing against the walls and rotating around its own axes.

Figure 6.7: Snapshots from experiment, side view.

The trajectories of the confetti, for all videos from the experiments using the side view,
can be seen in Fig. 6.8a and the x-coordinate of the confetti, as a function time, is depicted
in Fig. 6.8b. Note that due to a slightly tilted frame while filming the experiments, the
pipe wall in Fig. 6.8a appears to be tilted as well. The pipe used has a constant diameter
throughout.
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(a) Trajectory of confetti (b) x-coordinate against time

Figure 6.8: All data from experiments, side view

From Fig. 6.8b one can see that the confetti in Experiment 1 is considerably slower than
the confetti in the other experiments. At the start, this confetti bounces against the bot-
tom wall of the pipe, lying flat against the surface. Since, the flow is slower along the
wall of the pipe, as observed in the velocity contour plot in Fig. 6.4, the confetti loses a
considerably amount of kinetic energy, thus slowing down. A similar behavior can be
observed for the confetti in Experiment 4. This confetti initially moves upward, and is
caught by the low speed flow near the wall. However, due to gravity it is picked up by
the main flow considerably faster than the confetti in Experiment 1.

6.1.3 Comparison

In Fig. 6.9a and 6.9b the trajectories and the x-coordinate against time, from the experi-
ments and FSI-simulations, for the side view are compared.

Looking further at Fig. 6.9a, one can clearly see the stochastic behavior of the confetti.
The strong dependence of the initial conditions plays a large role, especially in the phys-
ical experiments, making it hard to draw some kind of conclusion regarding the general
behavior of the trajectory. For this, more physical experiments would be required.

Comparing the evacuation speed of the confetti in the simulations with the physical ex-
periments one can generally say that the evacuation speed is faster in the simulations
than in the experiments, cf. Fig. 6.9b. In both the simulation and the experiments, one
confetti dropped to the bottom of the pipe and lost some kinetic energy, thus slowing
down. Also this course of events is faster in the simulations compared to the physical
experiments. This could, however, be the cause of the naturally stochastic behavior of
the trajectory of the confetti.

Using linear interpolation, the absolute value of the x-component of the velocity is calcu-
lated and displayed in Fig. 6.9c. The absolute velocity of the confetti calculated from the
individual experiments and simulations are compared. The average value is calculated
using the velocities measured from the experiments only.
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(a) Trajectory of confetti

(b) x-coordinate against time (c) Absolute velocity, x-direction

Figure 6.9: All data from simulations and experiments compared, side view. The average
is calculated using the experimental values only.

Here, it is confirmed, that the simulations generally predict a higher evacuation speed.
This could be the result of losses, that the confetti experiences in the physical experi-
ments, that are not captured by the simulations. These kinds of losses could possibly be
due to a slight static electrical charge on the PVC-pipe, used in the experiment, which
could have a decelerating effect on the confetti. However, the differences could also be
the result of different release times of the confetti or due to different flow velocities inside
the pipe due to fluctuations in the pressure exerted by the vacuum cleaner.

6.2 Top view

6.2.1 Numerical results

In Fig. 6.10 the velocity distribution can be seen for key time stamps from the simulation.
The main flow has a velocity of about 5 m/s in the smaller branches of the pipe and 13
m/s in the long part of the pipe. A recirculation area is located just downstream of the
junction, bordered by a high velocity part of the flow.
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Figure 6.10: The velocity distribution, top view of the simulation case with -5°.

The trajectories, displaying the full movement of both confetti are depicted in Fig. 6.11.
Here, the red and green line represent Confetti 1, coming from the left, and Confetti 2,
coming from the top, respectively.

Figure 6.11: Trajectory of both confetti in simulation, top view.

All trajectory data, obtained from the simulations, are compiled in Fig. 6.12, where the
trajectories of both confetti can be seen.
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(a) Trajectory of Confetti 1 (b) Trajectory of Confetti 2

Figure 6.12: The trajectories of the two confetti in all simulations, top view.

As for Confetti 1, cf. Fig. 6.12a, it seems to follow a similar path, regardless of initial
inclination. It can clearly be seen how they are guided around the recirculation area,
by the high speed flow, downstream of the junction, at about 0.05-0.15 m on the x-axis.
The same applies for Confetti 2, coming from the top, cf. Fig. 6.12b. After passing the
junction, the confetti hits the bottom wall, bounces and is picked up by the bulk flow. It
can be noted that in all simulation cases Confetti 2 seems to cross the same point, at y =
0.14, despite the stochastic behavior of the trajectory.

(a) x-coordinate against time, Confetti 1

(b) x-coordinate against time, Confetti 2 (c) y-coordinate against time, Confetti 2

Figure 6.13: The position against time for the two confetti in all simulations, top view.
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The trajectory data, against time, is to be seen in Fig. 6.13. It can be noted that the slope
of the curves in the plot of Fig. 6.13a increases for larger values of x, indicating that the
evacuation speed of Confetti 1 increases as it moves through the pipe. Despite bouncing
against the walls, the velocity increases, mainly due to the higher velocity bulk flow in
the long part of the straight pipe. A similar behavior can be noted for Confetti 2, cf. Fig.
6.13c, displaying the position against time when still in the upper pipe. The inclination of
the curves, increases as time increases, indicating acceleration. As observed previously,
the confetti starting at +10°, is the slowest one. For the second part of the curves, only
small variation can be seen due to the limited space of movement in the y-direction in the
part of the pipe after the junction.

In Fig. 6.13b the x-coordinate as a function of time for Confetti 2 is depicted. For the
first part, only small changes are observed, due to the limited space for movement in
x-direction in the upper branch. As Confetti 2 moves past the junction, an increase of
x-position is seen. Since the confetti has covered quite a large distance at this point, the
different evacuation velocities are merely an effect due to its movement pattern, rather
than its initial inclination angle.

Figure 6.14: The orientation of confetti after passing junction. Confetti 2, coming from
the top, is marked with a red circle. The contour plot shows the velocity distribution.

After passing the junction, Confetti 2 ends up with different orientations, thus exposing
itself to the flow with different cross-sectional areas, resulting in different evacuation
velocities. Fig. 6.14 shows the orientation of the two confetti for the cases +10° and -10°,
shortly after having passed the junction. Confetti 2 is here marked with a red circle. One
can see that Confetti 2, in the first case faces the flow with a larger cross-sectional area,
compared to the -10° case, where the confetti is oriented in a vertical fashion, in a low-
velocity flow area. Thus, the confetti loses speed while the confetti in the +10° case gains
a higher speed, as seen in Fig. 6.13b.

6.2.2 Experimental results

Snapshots from the physical experiments, using the top view, are depicted in Fig. 6.15. It
can be seen how the two confetti come from each direction, collide at the junction, and
exit the pipe. The confetti travel through the pipe, in a rotating and bouncing manner.
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Figure 6.15: Snapshots from experiment, top view.

In Fig. 6.16 the trajectories of the two confetti can be seen. The green and red line repre-
sent Confetti 1 coming from the left and Confetti 2 coming from the top, respectively.

Figure 6.16: Trajectory of both confetti in experiment, top view.

The trajectories for both confetti from all experiments are compiled in Fig. 6.17, where
once again Confetti 1, entering from the left, is marked with green and Confetti 2, coming
from the top, is marked with red. Due to a slightly tilted frame in the videos from the
experiments, the pipe wall in the graphs of Fig. 6.17 appears to be tilted, however, the
pipe diameter is constant throughout.

As observed in the side view cases, the confetti covers quite a large range of the pipe
diameter due to its random behavior. In spite of this, it can be noted how Confetti 1 is
guided by the flow, around the recirculation area after the junction, cf. Fig. 6.17a. In
most experiments, Confetti 1 avoids the recirculation area due to the adjacent high speed
flow, bounces against the top wall, and enters the bulk flow where its movement becomes
random again. For Confetti 2, a similar behavior can be seen, Fig. 6.17b. After exiting the
upper pipe, it bounces against the bottom wall of the straight pipe and, governed by the
high speed flow adjacent to the recirculation area, it hits the top wall. The guidance by
the high speed flow adjacent to the recirculation area, is especially visible in Fig. 6.17c.
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(a) Trajectory of Confetti 1 (b) Trajectory of Confetti 2

(c) Trajectory of both confetti

Figure 6.17: The trajectories of the two confetti in all experiments, top view.

In Fig. 6.18 the x- and y-coordinate as a function of time for both confetti are depicted.
The three lines marked with a blue color represent the experiments where the confetti
collided in the T-junction. It should be noted that the large range of exiting times it most
definitely a result of different release times of the confetti, due to the human factor. Thus,
it should not be focused on the absolute times rather than the slope of the curves since
these are comparable in respect to the absolute values of the time.

Similarly to the numerical result, we see the same overall behavior. In Fig. 6.18a the
inclination of the curves becomes steeper as the time increases. The T-junction is located
at about x = 0.05, thus, for some of the curves a bump can be observed here. In some
cases, the junction causes an altered behavior of the confetti due to an impact with the
wall or with the other confetti. In one of the cases with collision, a great deceleration of
the velocity can be seen.

Albeit one might expect the confetti to loose kinetic energy due to bouncing, Confetti 2
proves the opposite when exiting the upper pipe, cf. Fig. 6.18b. For most cases, Confetti
2 gains speed which it can keep throughout the rest of the pipe. Only in a few cases, a
deceleration can be observed at the junction, see the two curves to the right in the plot
of Fig. 6.18b. Confetti 2 is not slowed down by the junction most definitely due to it
entering a 13 m/s flow downstream of the junction, in respect to the 5 m/s flow where
it started from. This helps it gaining kinetic energy and recover from the impact to the
wall.
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(a) x-coordinate against time, Confetti 1

(b) x-coordinate against time, Confetti 2 (c) y-coordinate against time, Confetti 2

Figure 6.18: The position against time for the two confetti in all experiments, top view.
The three lines marked with blue, represent those cases where the confetti collided.

The same kind of behavior can be seen when observing the y-coordinate for Confetti 2. In
Fig. 6.18c, one can see, that in especially two of the cases that the velocity of the confetti
increases after having passed about half of the pipe. In these cases, the confetti bounces
against the wall, thus changing orientation and suddenly exposing itself to the flow with
a larger area, hence gaining speed.

6.2.3 Comparison

In Fig. 6.19 the trajectories from the experiments and simulations, using the top view are
compared. The simulation results coincide well with the experiments, in the sense that
the trajectories follow the same statistical pattern.

A comparison of the time dependence of the position of the confetti, confirm that the sim-
ulations capture the behavior of and interaction between the confetti well, see Fig. 6.20.
Regarding the x-position of Confetti 1, Fig. 6.20a, similar slopes of the curves can be ob-
served between simulation and experimental results. However, none of the simulation
cases show a bump in the curve at the T-junction. This behavior might be captured if
more simulations would be performed.
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(a) Trajectory of Confetti 1 (b) Trajectory of Confetti 2

Figure 6.19: The trajectories of the two confetti in all simulations and experiments com-
pared, top view.

(a) x-coordinate against time, Confetti 1

(b) x-coordinate against time, Confetti 2 (c) y-coordinate against time, Confetti 2

Figure 6.20: The position against time for the two confetti in all simulations and experi-
ments compared, top view.

The same applies regarding the x-coordinate of Confetti 2, see Fig. 6.20b. As for the y-
coordinate for Confetti 2, the offset at the y-axis is due to different frame sizes of the
images processed. In the videos from the experiments, a quite limited view of the pipe
is provided due to a restricting angle of view in the camera lens used, while the full pipe
can be observed in the simulations.
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(a) Velocity, x-direction for Confetti 1

(b) Velocity, x-direction for Confetti 2 (c) Velocity, y-direction for Confetti 2

Figure 6.21: The absolute velocities of the two confetti in all simulations, top view.
Data points marked with a blue dot represent cases where the confetti collided at the
T-junction. The average is calculated using the experimental values only.

As for the side view, linear interpolation is used once again to obtain the absolute value of
the x- and y-component of the velocity, which can be seen in Fig. 6.21. Data points marked
with a blue dot represent the cases where the two confetti collided at the T-junction. Here,
the absolute velocity of both confetti, calculated from the individual experiments and
simulations, are compared. The average value is calculated using the velocities measured
from the experiments only. Yet again, we see a quite large range of velocities and that the
simulations are deviating more than expected. The cases where the confetti collided, are
not the ones with the lowest velocity, indicating that the collision between the confetti
does not affect them as expected. The average values in all cases apply mainly to the
part of the pipe after the junction, where the bulk flow velocity is 13 m/s, however, the x-
velocity for both confetti are in the range of 4-6 m/s, cf. Fig. 6.21a and 6.21b. At this point
the confetti have traveled about 0.2-0.4 m in the pipe, after the junction, which might be
too little to accelerate to higher velocities. In comparison, Confetti 2, while remaining in
the upper part of the pipe, has a velocity in the range 1-3 m/s compared to the bulk flow
velocity of 5 m/s, which is not as a large difference as after the junction, see Fig. 6.21c.
From this one can conclude that the junction does slow the confetti down, and that a
longer pipe is needed for the confetti to accelerate properly and reach higher velocities.
However, a longer pipe could also increase the risk of a bad collision with the wall, thus
resulting in the confetti getting stuck in the low velocity flow near the wall.
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6.3 Plasticity vs pure Elasticity

In Fig. 6.22-6.24 the results from the material sensitivity analysis is depicted. The simu-
lation where the confetti is modeled using an elasto-plastic material model (called with
plasticity) is compared to the case where the confetti is modeled with a purely elastic
material model (called pure elasticity). Both cases have the same boundary and initial
conditions, and the confetti have the same initial positions with an inclination angle of
0°, with only the material model differing.

(a) Trajectory of confetti (b) x-coordinate against time

Figure 6.22: Plasticity vs pure elasticity, side view.

(a) Trajectory of Confetti 1 (b) Trajectory of Confetti 2

Figure 6.23: The trajectories of the two confetti comparing plasticity and pure elasticity,
top view.
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(a) x-coordinate against time, Confetti 1

(b) x-coordinate against time, Confetti 2 (c) y-coordinate against time, Confetti 2

Figure 6.24: The position against time for the two confetti comparing plasticity and pure
elasticity, top view.

The conclusion that can be made after assessing these graphs, is that the plasticity has
next to no effect on the position and velocity of the confetti. This coincides well with what
is observed in the experiments, where the confetti did not deform considerably. However,
this conclusion can only be made for these low flow velocities. For higher velocity flow,
an impact with the other confetti or a wall could result in plastic deformation since the
confetti would have higher momentum.

6.4 Sources of error

Regarding the numerics, several approximations are made in the FSI-model. Ideal gas
is assumed and the k-ε model is used for the turbulence, which time averages the flow.
The prism layers in the mesh along the walls could be increased, to resolve the boundary
layer and near wall effects better. However, this would heavily increase the cell count
thus increasing the simulation time even more. An adaptive mesh refinement would be
optimal in this case, allowing a fine mesh to surround the confetti while keeping a coarser
mesh in the rest of the pipe. Unfortunately, this is a meshing method not yet available for
FSI when using STAR-CCM+ and Abaqus/Standard.

There are some deviations in the experiments, due to the human factor. The release time
is not the exact same and since the confetti were held and released by hand, the initial
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position deviated slightly between runs, which needs to be taken into consideration. Sec-
ondly, a PVC pipe was used in the physical experiments to be able to film through it, even
though the knife roller is made of steel. This changes the contact conditions between the
confetti and the pipe and potential problems with static electricity could arise, such as
decelerating the paperboard confetti. As the physical experiments were set up, the air
flow velocities were measured at the inlets of the pipe. However, there is an error margin
of ±0.2 m/s in the measurement device used, thus resulting in an error margin for the
boundary conditions applied in the simulation model. This corresponds to about 4 % of
the inlet velocities chosen, which should not result in drastic changes of the fully devel-
oped flow. Furthermore, since the tracking of the centroid of the confetti was performed
manually, some margin of error might arise, because the center of mass was not marked
on the confetti thus had to be guessed in each frame.

Thirdly, it should be noted that it was intended to run a case with the confetti at +5°,
however the simulation crashed, despite heavy under-relaxation. This indicates that the
process simulated is sensitive to initial conditions and the ultimate trajectory of the con-
fetti.

Finally, one should keep in mind that a stochastic behavior is modeled in these simula-
tions, which requires a large amount of data to make statistically valid conclusions. In
this project, four simulation cases are compared which is too little to make general as-
sumptions about the complete process. These simulations only indicate how the confetti
might behave in different situations.
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Chapter 7

Conclusions

In summary, it was found that the confetti mainly loses kinetic energy, thus speed, when
facing the flow with a small cross-sectional area, especially if it is located near a wall.
Colliding with the other confetti or with walls in general, does not affect the final evac-
uations speed as much as expected, since a collision with a wall or confetti could result
in a preferable angle in respect to the bulk flow, thus easier gaining speed. It can be
concluded that mainly the orientation of the confetti affects its evacuation speed, while a
collision between two confetti does not affect the evacuation time. By increasing the pipe
diameter, the risk of the confetti getting stuck in the near wall low velocity flow could be
decreased, hence obtaining a more efficient evacuation process.

Secondly, the results show that the initial angle of the confetti affects its initial move-
ment, which in turn can affect the evacuation time. For positive initial inclinations, the
confetti has a tendency to move downward increasing the risk of decelerating by the slow
near wall flow. However, for negative inclination angles the confetti will move upward,
making it easier to be caught by the main flow since gravity prevents the confetti of get-
ting stuck along the upper pipe wall. Thus, for a more efficient evacuation process, the
confetti should enter the pipe with a negative inclination angle.

Thirdly, it was observed that the simulations generally over-predict the evacuation speed
compared to the physical experiments, indicating that not all losses are captured by the
FSI-model. This could be the result of a slight static electrical charge on the PVC pipe,
decelerating the paperboard confetti more than a steel pipe would have. It could also be
a result of the variation in initial and flow conditions between experiments due to the
human factor. To make proper statistically correct conclusions more data is needed, since
stochastically random processes are simulated, which are highly dependent on the initial
conditions.

Furthermore, it was shown that it is not necessary to include plastic deformation in the
material model. One might even consider modeling the confetti as a rigid body in fu-
ture simulations to save computational time. However, this assumption is only valid for
low bulk flow velocities. If the flow velocities were to be increased, larger deformations
would be expected, due to higher momentum of the confetti.

Finally, it can be concluded that the simulations capture the trajectory, the behavior of and
the interaction between the confetti well, although the confetti velocity is over-predicted.
One can say the simulation model is validated and captures the course of event good
enough. Since it is numerically stable, the model is suitable for future research and de-
velopment.
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7.1 Future research and development

Now that we have gained some insight on how the confetti behave, interact and deform
in the airflow, we are also one step closer to answer the question on why and how the
problems during the evacuation process occur. The Final model is numerically stable
enough to be suitable for future research and development, such as optimizing the design
of the knife roller to obtain an efficient evacuation process.

For further understanding for the FSI-model, a sensitivity analysis of the turbulence
model could be performed. This would give a better comprehension of how the tur-
bulence model affects the flow, thus the trajectory and behavior of the confetti in the pipe
flow. It would also be interesting to change the wall treatment, by choosing the Low
Y+ Wall Treatment instead. For the mesh applied in this model, this could result in a
better resolution of the flow properties near the wall, such as the pressure, which might
influence how the confetti moves and deforms.

For future development of this model, to finally reproduce what happens inside the knife
roller of the converting machines, it would be interesting to expand the geometry further
and including more branches to the sides. It would be interesting to see how this would
change the flow inside the pipe and thus the trajectory of the confetti.

A second aspect to investigate, would be how the confetti behave if more than two con-
fetti were to be included in the T-junction pipe. In this fashion, the simulations would
come closer to reality, while still maintaining a simple domain. However, this would also
increase the simulation time considerably. The Modified model took about one day to run
and the model with two paper confetti included required three days. Including three or
even more confetti, could result in large run times, since every additional co-simulation
surface requires more computational resources.

Since the flow velocity within the knife roller is considerably higher than applied in this
project, it would be of interest to increase the flow velocity to investigate the changes
compared to the results presented here. However, a higher flow velocity would require
a smaller time-step to resolve the movement of the flow, thus the confetti, properly. This
would in turn result in even higher simulation times. However, one might consider run-
ning the model, using the Mesh 2 from the mesh sensitivity analysis. This is about 2 %
less accurate but is 50 % faster compared to the current mesh, Mesh 3. This would most
definitely yield results close enough to reality, while improving the computational time.
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Appendix A

Contact analysis

In Fig. A.1-A.5 the results from the contact analysis can be seen: the contour plot of the
velocity displaying the contact between the bottom confetti and the pipe wall and a plot
displaying the volume average x-position of the two confetti as a function of time.

Fig. A.1 shows the result when k = 1e6 is used for the linear pressure-overclosure. The
confetti penetrates the wall and the confetti even go through each other. Clearly, this
contact condition does not model the contact realistically.

Figure A.1: Contact analysis, pressure-overclosure with 1e6. The plot shows the volume
average x-position of the two confetti against time.

In Fig. A.2 and Fig. A.3 the results for k = 1e8 and k = 1e10 can be seen. Both cases seem
to model the contact realistically. The bottom confetti does not penetrate the wall.

Figure A.2: Contact analysis, pressure-overclosure with 1e8. The plot shows the volume
average x-position of the two confetti against time.
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Figure A.3: Contact analysis, pressure-overclosure with 1e10. The plot shows the volume
average x-position of the two confetti against time.

The results for the contact condition k = 1e12 is to be seen in Fig. A.4. Here the confetti
never comes into physical contact with the wall, here we obtain the opposite problem
compared to the k = 1e6 case.

Figure A.4: Contact analysis, pressure-overclosure with 1e12. The plot shows the volume
average x-position of the two confetti against time.

The case with an exponential pressure-overclosure, Fig. A.5, models the contact realisti-
cally. However, it is not as numerically stable as the linear pressure-overclosure contacts.

Figure A.5: Contact analysis, exponential pressure-overclosure. The plot shows the vol-
ume average x-position of the two confetti against time.

In conclusion, the only contact conditions that model the contact realistically, and is nu-
merically stable, are the ones with a linear pressure-overclosure condition using k = 1e8
and k = 1e10. Thus, the value in between, k = 1e9, is used for the simulations.
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