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Abstract

Cellular automata are a set of discrete computational models whose evolution is defined
by neighbourhood rules and are used to simulate many complex systems in physics and
science. In this work, statistical mechanics and thermodynamics in and out of equilibrium
are used to develop a five-class classification scheme for two-dimensional cellular automata.
Thermodynamical variables and potentials will be derived and computed according to three
different approaches to determine if a cellular automaton rule is representing a system akin
to the ideal gas, in or out of the thermodynamical equilibrium.
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1 Introduction

1.1 Cellular Automata

A cellular automaton is a computational system which comprises of a set of cells defined
on a lattice. Each cell has a state at any given discrete time. The state is updated
according to some rules which, depending on the state of the cell’s neighbourhood, give
the configuration at the next time. Given this simple definition, cellular automata have
demonstrated a surprising complexity and range of applications. In fact cellular automata
are a typical example of the emergence of complex patterns and behaviours from a simple
set of rules.

Most literature focuses on binary cellular automata of one and two dimensions, (with
binary we mean that each cell can take one of two values, sometimes also referred to as
Boolean). However, in general, the number of available states k does not necessarily need
to be k = 2. Higher dimensions are very unstable, therefore the fraction of trivial rule
outcomes is much higher, they require much higher computational power and have a much
larger number of possible rules. As a consequence, higher dimensional cellular automata
would require very extensive and expensive studies that are beyond the scope of this thesis.
Similarly, the study of non-local cellular automata would massively extend the scope of
this thesis.

There has been research on different neighbourhoods definitions for different lattice di-
mensions [1]. In the last few decades there has also been much research to evaluate the
complexity levels of cellular automata, in both qualitative and quantitative ways. Among
the qualitative evaluation of complexity emerging from different rules, it is worth men-
tioning Stephen Wolfram’s four-class classification [1] and the six class classification by
Li, Packard and Langton [2]. Quantitatively, complexity has been tackled starting from
many different assumptions. Most approaches make use of entropy as a measure of com-
plexity [1–3, 6]. Other works use concepts such as mutual information, causal entropic
forces, self-organized criticality and 1/f noise, compression length as well as the definition
of completely new quantities [3–7]. It is important to distinguish between the different
uses of entropy as a measure of complexity, since the many definitions coming from both
Physics and Information theory can yield different results [2, 3].

Cellular automata have been applied in several contexts [8,9]. This includes disease spread-
ing, which is a very relevant topic these days, and any system that iterates over local rules.
Therefore, the finding of simple reliable metrics for cellular automata can be very benefi-
cial in accelerating the development of these applications. Here metrics is intended as a
standard of measurement or evaluation.

Cellular automata have also been studied in relation to statistical mechanics, mainly for
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the investigation of phase transition [2] and the Ising model [10]. In a sense, these studies
are very straight-forward, since cellular automata offer a lattice grid with two values, which
can easily correspond to spin up and spin down. Overall, cellular automata have been used
to model physical systems rather than the other way around.

A distinction is usually made between reversible and irreversible rules and between additive
and non-additive rules (sometimes also referred to as totalistic/non-totalistic). A rule is
reversible if there is a one-to-one mapping between the initial and the final state of the
automaton, irreversible if different initial states produce the same final state [1]. A rule is
said to be additive if the superposition principle applies, namely if the update is the result
of the sum of the neighbourhood instead of the specific values at each neighbourhood
site [1]. In this work, it is also relevant to look for a distinction between conservative and
non-conservative rules. A rule is said to be conservative if the total energy of the system
doesn’t change or fluctuates around a stationary value and non-conservative otherwise.
Conservation of energy is one of the most universal conservation laws in physics which
does not universally hold for cellular automata.

This work studies the problem of the thermodynamics of cellular automata from different
perspectives. Different metrics from statistical mechanics and classical thermodynamics are
tested to find a way to quantitatively describe the behaviour of different configurations.

The originality and novelty of this approach lies in the premise of using the most basic
approaches possible to study the problem of the thermodynamics of cellular automata
and in deriving a classification scheme that is quantitative, as opposed to the most used
ones to date which are qualitative. Furthermore, the statistical mechanics ’top-down’
approach distinguishes itself from the typical approach, which instead derives theorems
and statements about cellular automata by inspecting the system at each step in more of
a ’bottom-up’ fashion, which would include the investigation of the configuration matrix
at each step. The former might lack the detail of the latter, but has the great advantage of
processing a large number of cellular automata rules in an automated way. The ’top-down’
approach is not intended as a substitute for rigorous mathematical analyses of the systems
but rather as a complementary approach. The classification obtained can serve as a pre-
selection of ’interesting rules’ for a more thorough mathematical ’bottom-up’ treatment.

1.2 Statistical Mechanics

Statistical mechanics studies the behaviour of large systems by considering the behaviour
of the individual components in relation to each other and deriving the global statistical
properties of the system from there. Two fundamental concepts are that of microstate,
which maps the configuration of the individual components of the system, and that of
macrostate, which are the properties of the system as a whole, such as temperature and
energy. Statistical mechanics has been successful in the study of the thermodynamics of
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mechanical systems such as gases, for which it is fundamentally impossible to solve the
equations of motion for every particle involved.

For the case of cellular automata, it is possible to study the state of every single cell at
any step. However, an approach based on statistical mechanics can simplify the study
of the behaviour of large cellular automata in the same way it simplifies the study of
gases and other physical systems. There has been some work in this direction [11,12], but
no comprehensive study of how to directly translate thermodynamical macrostates to the
framework of cellular automata.

This thesis covers various aspects of statistical mechanics applied to cellular automata.
Therefore, a review of the use of these same concepts in thermodynamics is useful. Note
that in this work the Boltzmann constant is kept implicit. The reason behind this choice is
that the interest of this thesis lies in the relation between the thermodynamical variables in
cellular automata, which are not defined by a natural physical scale such as the Boltzmann
constant.

Entropy S is a quantitative measure of the uncertainty or lack of information in a system
[13] and it is at the core of many first principle definitions in thermodynamics, thus being
of fundamental importance in evaluating thermodynamical metrics for cellular automata.
One of the definitions of entropy used in statistical mechanics is the so called Gibbs Entropy
S, which is the negative of the expected value of the logarithm of the probability Ps that
a system is in the microstate s [13],

S = −
∑
s

Ps logPs. (1.1)

Then, temperature can be defined as the partial derivative of the energy E with respect
to entropy S,

T =

(
∂E

∂S

)
Ñ

, (1.2)

where the other state variables Ñ (such as the volume and particle number) are kept
constant [13].

For a system in thermal equilibrium with a heat bath (or reservoir), the total energy of
the system and the reservoir is U0, the energy of the system is Es and the energy of the
reservoir is the difference U0−Es. The probability that the system is in state s with energy
Es is given, for a very large reservoir in thermodynamical equilibrium, by [13]

P (Es) =
e−Es/T

Z
, (1.3)

with
Z = Z(T ) =

∑
s

e−Es/T , (1.4)
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where Z is called the partition function of the system. Z is very useful in defining the ther-
modynamical properties of a system. Through the partition function, one can derive the
average energy, the Helmholtz free energy and in turn the pressure, the energy fluctuations
and the heat capacity of the system at equilibrium.

1.3 Notation, neighbourhoods and boundaries

This work analyses the behaviour of additive rules, so rules that depend only on the total
of the values of the cells in a neighborhood. The total number of possible additive rules,
which considers the possibility of leaving the cell in its previous state is 3n+1 where n is
the number of cells in the neighbourhood. The base is three because each configuration
of the n cells of the neighbourhood can lead to three outputs, dead, alive or unchanged.
The exponent is n + 1 because the possibility of zero active neighbours is counted too.
The notation to distinguish between the different rules is birth-death, which indicates the
number of active sites needed for the activation and the deactivation of a cell. The numbers
that are not included in the notation are the ones that leave the cell in its previous state.
For example, if a cell is activated at 1 and 2 active neighbours and deactivated at 7 and 8,
the rule will be described by 12-78. Recall that these numbers represent the total number
of active neighbours and are independent of the position of the cells as long as they are in
the neighbourhood. Specifically, using the notation of (1.5) below, 1 and 2 would belong to
B, while 7 and 8 would belong to D. The reason why only additive rules are studied is that
this selection restricts the study enough for a comprehensive analysis that fits the temporal
scope of this thesis. Ideally, given enough time, one would be interested in analysing every
kind of cellular automata rules.

Formally, if w and h are the width and the height of the cellular automata (i.e. the number
of cells per side) and t is the generation or time, the cellular automata at t + 1 can be
described as a function of the cellular automata at t as the following w × h matrix

Ct+1 = Ex,y,t+1, x ∈ {1, 2, ..., w}, y ∈ {1, 2, ..., h}

If B is the set of the number of sites that lead to the activation of the cell and D is the set
of number of sites needed for the death of a cell, satisfying the requirement

B,D ⊂ {0, 1, ..., 8} : B ∩D = {∅},

then Ex,y,t+1 is defined case wise as follows, with corrections for the boundary cells which
depend on the boundary condition:

Ex,y,t+1 =


1, if

∑
i=−1,0,1

∑
j=−1,0,1

Ex+i,y+j,t − Ex,y,t ∈ B

0, if
∑

i=−1,0,1

∑
j=−1,0,1

Ex+i,y+j,t − Ex,y,t ∈ D

Ex,y,t otherwise

(1.5)
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In this work, the focus is mainly in the reduced Moore neighbourhood, corresponding to all
cells next to the central cell, including the diagonal and excluding the central cell. The rea-
son behind this is that the Moore neighbourhood is a very common neighbourhood choice,
and the limited scope of the work doesn’t allow for the testing of several neighbourhoods.
With this kind of neighbourhood, the number of rules is 39 = 19683. We now exclude the
rules that do not lead to any new birth or any new death, which have a trivial outcome of
full population or full starvation, and the number combinations that do not produce any
rule, that is both birth and death are empty. Considering these corrections, the number
of non-trivial rules is 18150 since the number of rules taken away is 3

∑9
i=1

(
9
i

)
= 1533.

The way the cellular automata is implemented is through the convolution of a neighbour-
hood matrix along the cellular automata state matrix. In Python this is done as follows
for closed boundary conditions:

from s c ipy import s i g n a l
import numpy as np
NEWmatrix = np . z e r o s ( (w, h ) , dtype=int )
k e rne l = np . ones ( ( 3 , 3 ) , dtype=np . in t8 ) #Neighourhood
ke rne l [ 1 , 1 ] = 0 #Reduced moore neighbourhood
k=s i g n a l . convolve ( StateMatrix , kerne l , mode=’ same ’ )
for i in range (w) :

for j in range (h ) :
n = k [ i , j ]
i f n in B:

NEWmatrix [ i ] [ j ] = 1 #b i r t h
e l i f n in D:

NEWmatrix [ i ] [ j ] = 0 #death
else :

NEWmatrix [ i ] [ j ] = StateMatr ix [ i ] [ j ] #u n a f f e c t e d

This implementation is significantly faster than other algorithms.

Two kinds of boundary conditions are studied, closed and periodic. Periodic boundary
conditions lead to the state of a cell at a boundary influencing the state of the cells at
the opposite boundary (i.e. a flat torus). Closed boundary conditions do not put value
constraints on the cells at the boundaries, but limit their neighbourhood. That is, for a
reduced Moore neighbourhood, a cell at the side will have five neighbours and a cell at a
corner will only have three.
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2 Method

The way the project is carried out is divided into different stages.

• The translation of thermodynamical variables to the cellular automata framework
and the effective redefinition of these variables

• The implementation of different rules on different boundary conditions to study, if
any, emergent conservation laws. Different choices in the definition of the variables
are tested and confronted to evaluate the best way to translate thermodynamical
variables to the cellular automata framework.

• The use of the newly defined variables to study the behaviour of different rule outputs.

Subscripts are used to distinguish the quantities derived with the different approaches, to
avoid confusing the reader. The benchmark quantities have no subscript (Q), the ideal gas
quantities are written as QI and the partition function quantities are written as QZ .

2.1 Benchmark

Cellular automata lend themselves very well to the framework of statistical mechanics. The
system is a partition by construction and the state of each cell can be interpreted as an
energy state Ei. In the case of binary cellular automata, this leads to two possible energy
states per cell, namely E1 = 1 and E0 = 0. ni is the number of cells at energy Ei and the
total energy of a configuration is given by

Es =
∑
i=0,1

niEi, (2.1)

Considering that the update rules are deterministic, Ps in Eq. (1.1) could be specifically
derived for each set of rules. However, deriving the specific probabilities for each cell based
on the set of rules is exactly what one attempts to avoid by using a thermodynamical
approach. Indeed, this is what this work attempts by studying large cellular automata.
Hence the following approach is preferred.

The probability that a cell is in state i is defined as the probability that, if one picks a
random cell from the system and checks what state it is in, it is found in state i. This
probability corresponds to Pi = ni

N
, with N being the total number of cells of the system.

By assuming that each microstate at a given energy is equally likely, the expression for
entropy (1.1), can be rewritten as S = −N

∑
i Pi logPi. Following this, by observing that
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n1 = Es and n0 = N − Es, one gets

S = −
(
Es log

Es
N

+ (N − Es) log(1− Es
N

)

)
(2.2)

for a two level system. Once S and E are established, temperature can be calculated using
Eq.(1.2), leading to

T =
1

log(1− Es/N)− log(Es/N)
=

1

log(N−Es

Es
)

(2.3)

. Thus the heat capacity C is

C =
∂Es
∂T

=

(
∂T

∂Es

)−1
= − N

Es(Es −N)(log(1− Es/N)− log(Es/N))2
(2.4)

and the Helmholtz free energy A is

A = E − TS = N
log N−Es

N

log N−Es

Es

. (2.5)

The above expression for S is based on the assumption that all states at the same energy
are equally likely. This assumption is known as the principle of equal a priori probability
and it is considered to be a postulate of statistical mechanics. It is by no means obvious
that this principle is bound to hold for cellular automata as well. In any case, it is a
fundamental principle of statistical mechanics, which justifies its use in this work.

Pressure could be calculated from the Helmholtz free energy in relation to a change of
volume. In this work, the closest thing to volume/area is the number of cells so P = − ∂A

∂N
,

this leads to a complex expression for pressure with an asymptotic behaviour at Es = N/2,
which is also negative over its whole domain.

P = −N log(1− Es/N) + log(−1 +N/Es)(Es + (N − Es) log(1− Es/N))

(N − Es) log2(−1 +N/Es)
.

Alternatively, there is the option of deriving pressure from first principles, via a count of the
interactions at the boundaries instead. Namely, as the energy density of the boundaries,
which is the energy of the boundary cells divided by the number of boundary cells 4

√
N ,

so

P =
∑

i∈boundaries

Ei

4
√
N
. (2.6)

This way of defining pressure is similar to the microscopic definition of pressure in a
thermodynamical system, which takes into account the force that the molecules exert on
the boundaries of the system.

For the sake of simplicity, from the next section on, the total energy of a configuration Es
will be denoted by just E.
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2.2 Ideal gas

It is demanding to calculate temperature a posteriori as defined in (1.2). Therefore a
definition of temperature a priori TA is used as well. TA is defined in a way similar to
activity in [7] with the addition of a normalization factor 1

N
to make the variable intensive.

By analogy to the concept of the average kinetic energy of the molecules, TA is the sum of
all value changes in the automaton divided by the number of cells.

TA =
1

N

N∑
i=1

ai, (2.7)

ai =

{
1, if the state of the cell i is different from the previous generations

0, if not

The interpretation of temperature as the average kinetic energy of the molecules is valid
only for an ideal gas model. Its use raises the question of the validity of the assumption of
non-interaction in the cellular automata framework. We are going to assume that the ideal
gas model can be applied to cellular automata and verify in which cases the assumption of
non-interaction holds.

The next step would be to use established results from the ideal gas model to evaluate the
thermodynamical properties of cellular automata. With the interpretation of cells as point-
like particles, volume and particle number are essentially equivalent (or proportional), both
corresponding to N , leading to significant simplifications as shown in the quantities below.
In the framework of the ideal gas, energy can be derived from temperature as E = 3

2
NTI ,

in the case of a two-dimensional system, this should become E = NTI .

The entropy of an ideal gas is described by the Sackur-Tetrode equation as

SI = kBN log

(
V

N

(
4πm

3h2
E

N

)3/2
)

+
5

2
N,

with m being the mass and h the Planck constant and kB the Boltzmann constant. This
is obtained starting from Boltzmann’s entropy formula, SI = kB log(Ω), where Ω is the
multiplicity or number of microstates accessible to the system. From equation 2.40 in

[14], a three dimensional gas has multiplicity Ω ≈ V N (2πmE)3N/2

h3NN !(3N/2)!
, where the factor 3N

accounts for dimensions. Accordingly, to find the two-dimensional multiplicity, one can

substitute V with A (the area) and 3N with 2N , leading to Ω ≈ (2πAmE)N

(N !)2h2N
. Using Stirling’s

approximation, N ! ≈
√

2πNNNe−N one gets Ω ≈ (2πAmE)N

2πN2N+1e−2Nh2N
. At largeN , 2N+1 ≈ 2N

and (2π)N−1 ≈ (2π)N . By using these approximations and taking the logarithm one gets
the two-dimensional Sackur-Tetrode equation SI = kBN log

(
2πm
h2

AE
N2

)
+ 2N .

In our treatment, the area and the particle number correspond both to the number of cells
N , and the mass of a cell is not defined. The constants can be grouped as b = 2πm

h2
, which
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leads to SI = N log E
N

+N(2 + log(b)), we can extend b to become B = 2 + log(b), leading
to SI = N(log E

N
+B).

Here B can be treated in different ways. Generally, one can notice that it should be a large
number. The ratio between the mass of the particles and the Planck constant squared
becomes a very large number for all gases. In our treatment, it is enough to have B large
enough that the entropy is always positive. In general, B can be taken to be B = log(N).
Therefore,

SI = N(log
E

N
+ logN) = N log(E) (2.8)

The ideal gas temperature TI is obtained as TI = ∂E
∂SI

= (∂N logE
∂E

)−1 = E/N . So

TI =
E

N
(2.9)

This is a very reassuring sanity check, since it reproduces the expression E = NTI in a
rigorous way.

Similarly, the heat capacity CI = ∂E
∂TI

becomes CI = N , in accordance to the two dimen-
sional ideal gas. This is an analytical conclusion and a confirmed computational result,
the analytical result is shown as

CI =
∂E

∂T
=
∂E
∂E
∂S

=
∂E
∂E

∂N logE

=
dE

dE/N
= N. (2.10)

One could try to derive an ideal gas law for cellular automata, namely finding an analytical
expression for pressure, in different ways. A first naive approach could be to start from
PIV = NTI , and by noticing that V ∝ N , getting to an expression in the form PI ∝ TI .
Indeed PI should be a monotonously increasing function of TI . This work starts by using
PI = −∂AI

∂V
, which is interpreted as PI = −∂AI

∂N
. From here, one can use the Helmholtz free

energy, as it is commonly defined AI = E − TISI .

From the definition, using the ideal gas entropy 2.8, one gets AI = E−TIN logE, this can
be expressed in different ways using 2.9,

AI = E − E log(E) = NTI −NTI log(NTI). (2.11)

Thus,

PI = −∂AI
∂N

= TI log(NTI).
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2.3 Partition Function

By having a value for entropy and energy one can calculate the temperature with Eq. (1.2).
Thus, the partition function can be evaluated. The expression for the partition function
(1.4) in the case of binary cellular automata is very simple and it becomes

Z =
∑
s

e−Es/T =
N∑
i=0

e−i/T . (2.12)

The partition function can be useful in evaluating a whole set of other quantities, at
equilibrium. The Helmholtz free energy is AZ = −T log(Z), which can be compared to the

common definition A = E − TS. The average energy is 〈E〉 = −∂ log(Z)

∂ 1
T

= T 2 ∂ logZ
∂T

. The

variance of the energy is calculated as (∂E)2 = ∂2 log(Z)

∂2( 1
T
)

and it is useful for the heat capacity

CZ = (∂E)2

T 2 , which can be compared to the common definition C = ∂E
∂T

[13]. Entropy can
also be calculated from the partition function starting from (1.1) and (1.3), this leads to

SZ = −
∑

s Ps · (−Es/T − log(Z)) = 〈E〉
T

+ log(Z).

As above, using PZ = −∂AZ

∂N
one can use the Helmholtz free energy, as derived from the

partition function AZ = −T logZ to get to a law for pressure. From the partition function,

AZ = −T log(
N∑
i=0

e−i/T ),

for large N one can approximate the sum with an integral,

AZ ≈ −T log(

∫ N

0

e−x/Tdx) = −T log T − T log(1− e−N/T ),

which leads to the following formulation for pressure,

P1,Z = −∂AZ
∂N

≈ T 2

N − E
(
log T + log(1− (N/E − 1)−N) + 1

)
+

(N/E − 1)−N(− N
N−E − 1/T )

1− (N/E − 1)−N
.

It can also be shown (i.e. by induction) that Z corresponds to

Z =
e−N/T (e

N+1
T − 1)

e1/T − 1
, (2.13)
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Proof.

N = 1 =⇒ Z = 1 + e−1/T , Z =
e−1/T (e2/T − 1)

e1/T − 1
=

(e1/T − 1)(e−1/T + 1)

e1/T − 1
= 1 + e−1/T

N = K =⇒ Z =
K∑
i=0

e−i/T , Z =
e−K/T (e

K+1
T − 1)

e1/T − 1

N = K + 1 =⇒ Z =
K+1∑
i=0

e−i/T , Z =
e−K/T (e

K+1
T − 1)

e1/T − 1
+ e−(K+1)/T

=
e−K/T (e

K+1
T − 1) + e−(K+1)/T (e1/T − 1)

e1/T − 1

=
e1/T − e−(K+1)/T

e1/T − 1

=
e−(K+1)/T (e(K+2)/T − 1)

e1/T − 1

this expression can be used to evaluate some quantities analytically, by using log(Z) =

−N/T + log(e
N+1
T − 1) − log(e1/T − 1), for large N and N � T , the first and the second

term in the expression cancel out, leading to log(Z) = − log(e1/T −1), thus one can rewrite
the aforementioned quantities as

〈E〉 =
e1/T

e1/T − 1
, (2.14)

CZ =
e1/T

(e1/T − 1)2T 2
, (2.15)

AZ = T log(e1/T − 1), (2.16)

and similarly S and P ,

SZ =
e1/T

T (e1/T − 1)
− log(e1/T − 1) (2.17)

and

P2,Z =
log N−2E

E

(N − E) log2 N−E
E

− 1

(N − 2E) log N−E
E

, (2.18)

which has been obtained using (2.3). One can notice that the two versions of PZ disagree
with each other.
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2.4 Non-Equilibrium Thermodynamics

A final approach to the problem of the thermodynamics of cellular automata is provided by
the formalism of non-equilibrium thermodynamics, as developed by Prigogine [15]. This ap-
proach is based on the concept of local equilibrium. That is, the parts of a thermodynamic
system outside of equilibrium are individually in local thermodynamical equilibrium. This
allows to define intensive quantities as time and space-dependent, while extensive quantities
are substituted by their relative densities, so T = T (x, t), P = P (x, t), s(x, t) = S(x, t)/N
and e(x, t) = E(x, t)/N . This approach on the thermodynamics of the system assumes
that the quantities do not depend on the gradients of the system. That is, the system is
not far from equilibrium.

This work attempts to get a qualitative overview of the applicability of the postulate of
local equilibrium for some cellular automata rules by partitioning the system into boxes and
recursively compute the thermodynamical variables. There is a trade-off when choosing
the number of boxes to partition the system into. A high number of boxes gives a better
picture of locality but it is a problem in the fact that the quantities are not well defined
for small boxes since the thermodynamical limit is not reached. Vice-versa, when there are
too few boxes, each box has well defined quantities but the picture of locality is less sharp.
A good compromise is found by using 25 boxes, so that each box has 6400 cells, when using
a cellular automata of 160000 cells. The output consists of a set of local averages of the
variables over the evolution.

The hope is to get some insight into the potential of the non-equilibrium thermodynam-
ics formalism for cellular automata and eventually lay the groundwork for more detailed
studies in the future.

Another point of the use of non-equilibrium metrics is the validation of the equilibrium
approach and the principle of equal a priori probability. If all the batches in the non-
equilibrium study show similar behaviour, then it is justified to use the equilibrium ap-
proach developed here. Specifically, if the energy density has similar values across the
partition, then the principle of equal a priori probability is valid.

2.5 Classification

Regarding the temperature used in calculating the partition function, one could choose
between (2.3), (2.7) and (2.9) which have all been tested with satisfactory results, the
quantitative part of this project makes use of the temperature from the benchmark (2.3)
since it is the most fundamental definition among the three.

Finally, the rules are classified based on the validity of these three approaches, leading to
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five classes:

• Ideal cellular automaton in equilibrium (A)

• Ideal cellular automaton outside of equilibrium (B)

• Non-Ideal cellular automaton in equilibrium (C)

• Non-Ideal cellular automaton outside of equilibrium (D)

• Cellular automaton that reaches zero activity in ’short time’, less than 100 iterations
(E)

There are several uses to this classification, for example in the applications of cellular
automata. By using this classification technique one can restrict the pool of rules among
which to choose for a study. If, for instance, one would want to study non-equilibrium
behaviour, instead of having to choose among all 18150 rules, it would only need to choose
among class B and D rules.

To evaluate the equilibrium, we consider the validity of the partition function approach,
this is done by considering the coefficient of variation (the ratio between the standard
deviation and the mean) of the first 40 values of the ratio between the Helmholtz free
energy as defined from the benchmark and the partition function. If this value is smaller
than 0.1, the two values are proportional and are thus equally viable, which means that
the partition function is a good approach to the system and we thus consider it to be an
equilibrium cellular automata. The reason behind the choice of the Helmholtz free energy
is that it is the most direct metrics from the partition function, whereas expected energy
and heat capacity require derivatives.

The choice of using the first 40 values only is dictated by the relative short relaxation
time of some rules, which could lead to miss-classification if one was to consider all values.
The threshold for the coefficient of variation is chosen in a somewhat arbitrary manner.
Basically, the lower this value, the more the cellular automata is in equilibrium. The
distribution of the coefficient of variations is smooth and didn’t show any sharp trend
changes, so it had to be chosen in an arbitrary way.

To evaluate if a rule is ideal or not, we consider the variance of the ratio between (2.9)
and (2.7). This value doesn’t need to be scaled like the former because the ratio between
(2.9) and (2.7) is more stable and consistent in its output. If this value is smaller than
1, we say that the two are proportional and thus that temperature can be viewed as an
average activity. One could take the threshold to be lower for a more strict classification.
However, taking the threshold to be one shows results that are qualitatively satisfying.
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Figure 2.1: A summary of the relations between some key terms used in the thesis.

Table 1: Summary table with the approaches used in this study
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Finally, alongside the classification, we also investigate if some rules conserve the total
energy. A rule is said to be conservative if the difference between initial and final energy is
less than a standard deviation of the energy distribution throughout the evolution of the
system.

I would not be surprised if the reader was a bit confused at this point, therefore a little
diagram that explains the relation between some concepts can be found in figure 2.1.
Furthermore, the reader will find a summary of the approaches in table 1.
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3 Results

Generally, we have found that cellular automata show the same or similar thermodynami-
cal behaviour with periodic and closed boundary conditions. The results presented in this
thesis are obtained with closed boundary conditions. This choice is completely arbitrary.
The results are also scale-independent, that is they cannot be compared with each other on
the same scale, because of the different underlying assumptions in their derivation and of
the different treatment of constants and units. For some of the quantities, constants have
been disregarded and the approaches for the derivation of different quantities have been
fundamentally different. Therefore, the absolute values of the thermodynamical variables
cannot be compared, but quantities that do not depend on scaling can be used for com-
parison. A way of comparing the results is to normalize them to the same starting value
as done in fig 3.1 and fig 3.2. It is most likely possible to solve this scaling problem, but it
is non-trivial and beyond the scope of this work.

Generally, the results show some small scale fluctuations, which are a consequence of
the finite and limited size of the automata. If they were infinitely large or closer to the
thermodynamical limit, the results would be smoother.

Let us now describe the main results and behaviours for each class of rules and thermody-
namical quantity.

3.1 Benchmark

The benchmark metrics are well defined for a two-level system [13]. The results obtained
are a direct consequence of the energy state Es, this is shown in Fig. 3.3. This approach
also correctly reproduces the transition to negative temperature states for an occupation
Es > N/2, with the difference that a system at a given temperature can evolve into a system
at its negative temperature. This transition is not allowed in classical thermodynamics [13]
in the case of unbounded phase space and energy conservation. In that case, a system at
positive temperature will remain positive and a system at negative temperature will remain
negative. The transition is accessible to cellular automata because cellular automata do
not necessarily obey energy conservation. The entropy of a two-state system is maximized
at Es = N/2, So any move from that energy state will cause a decrease in entropy. If the
energy increases further, occupying more sites, the temperature is negative.

Regarding the other quantities, the Helmholtz free energy is negative at positive tempera-
ture and vice versa for all rules and it is minimized when entropy is maximized, as expected.
The heat capacity is always positive but has a somewhat unpredictable behaviour, some-
times stationary, sometimes increasing and sometimes decreasing with each time step. The
pressure is generally monotonously increasing with energy, which is a direct consequence of

17



the fact that the energy tends to distribute evenly across the grid and it offers a weak but
reassuring justification of the postulate of equal a priori probability. After all, the pressure
(2.6) is defined just as a localized energy density. A more thorough justification of the
principle of equal a priori probability is offered by the non-equilibrium approach described
in section 3.4.

3.2 Ideal gas

In the case of the ideal gas approach, we start with the same definition of energy as in the
previous section but define the other quantities as corrections to the known expressions
for the ideal gas. This leads to an entropy (2.8), which is monotonously increasing with
respect to energy and temperature taking the form of average energy.

Regarding the other quantities, the Helmholtz free energy, given the simple relationships
between the quantities, behaves in a well defined and expected way with respect to energy.
This regular behaviour is observed also for the other approaches. The heat capacity is
defined as constant. The ideal gas pressure is monotonously increasing with temperature
and energy, which is a reasonable result.

This exact behaviour is shown in 3.4 where the monotonously increasing energy leads to
monotonously increasing entropy, temperature and pressure and a decreasing Helmholtz
free energy towards equilibrium.
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3.3 Partition Function

The partition function approach is valid for equilibrium or near equilibrium cellular au-
tomata. It is fundamentally different from the previous approaches since it is based on
temperature instead of energy. It breaks down if negative temperatures are reached since
limT→0−Z(T ) =∞.

Overall, the metrics do not show very quick changes. Generally, these equilibrium rules
either oscillate around equilibrium, as shown in Fig.3.5 or reach an equilibrium state in
a slow and controlled manner, i.e., with small gradients. Specifically, this is generally
true for temperature, energy and entropy in the same way. The Helmholtz free energy is
generally negative and evolves in opposite direction than the aforementioned quantities.
Heat capacity tends to zero at low temperatures and to one at higher temperatures.

Regarding the pressure, P1,Z is only defined for positive temperatures, it is negative for a
short part at low energies and then shows a steep increase, tending to infinity for E = N/2.
This sort of behaviour is very hard, if not impossible to interpret physically. P2,Z is
negative for all energy and temperature values. Negative pressure can be hard to consider.
Negative pressure is a result that requires more theoretical interpretation for real physical
systems [16, 17]. While it is possible to interpret negative pressure for some exotic rules
as it is not ruled out by thermodynamics [18], it is not acceptable that it is the case for
a whole class of rules and especially it seems unreasonable to be the case for equilibrium
rules. Both of these pressure expressions can be therefore disregarded. A substitute can
be found with the energy density approach as used in the benchmark, or not found at all.
The latter would lead to the conclusion that pressure cannot be defined for these systems.

An example of this approach is found in fig 3.5, where all quantities oscillate around a
stable value. It is also to be said that the rule shown in the figure is perhaps one of the
most stable, which is also the reason why I choose it to display this approach. Especially
outstanding is the behaviour of the pressures, which seem mirrored around zero. This is
not a general feature of the pressure expressions but it is only displayed for some rules.
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3.4 Non-Equilibrium or Equilibrium?

We find that the energy is evenly distributed among the boxes for all rules examined, and
so is entropy. This provides a strong validation of the principle of equal a priori probability.
However, when testing the non-equilibrium approach on the rules of different classes, it is
observed that some of them deviate from thermal equilibrium. That is, the temperature
of the different boxes is different. Sometimes, when the energy of the automaton is close
to E = N/2, the measures show some boxes at positive temperature and some boxes at
negative temperature, which is expected, since the automaton is close to the temperature
transition.

For class A and C, that is equilibrium rules, there is no significant temperature gradient,
as expected. For class B and D, the results show significant localities in the temperature
distribution. This is not always the case, specifically when negative temperatures are
reached. Since the partition function breaks down, these rules have been classified as non-
equilibrium even though they have an even negative temperature distribution. An example
of the temperature distribution for a D class rule is shown in fig 3.6. The same figure is
intended as a comparison between the spatial distribution of temperature in class A and
class D cellular automata. The reader can notice how the distributions differ in that the
class A rule shown is has a very evenly distributed temperature and the class D rule shows
strong localities.

3.5 Classification

The developed program has classified the 18150 cellular automata rules considered, in the
classes described in section 2.5. The results are shown in Fig. 3.7. One can notice how
most of the rules have been classified as out of equilbrium, with the most represented
class being that of ideal cellular automata outside of equilibrium and the least represented
being that of non-ideal cellular automata in equilibrium. It is also interesting to notice the
high amount of rules that ’die out’ i.e. class E. In addition to that, 254 rules have been
found to be conservative, this doesn’t contribute to the classification, but it is helpful in
understanding the connections between physics and cellular automata and the lack thereof.
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Figure 3.1: Comparison between the variables in a cellular automata evolving according
to rule 1367-0245 (class A). All values have been normalized to the same starting point.
P1,Z is not visible in the graph, but it behaves as in figure 3.5
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Figure 3.2: Comparison between the variables in a cellular automata evolving according
to rule 2-4568 (class D). All values have been normalized to the same starting point.
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Figure 3.3: The figure shows the energy, entropy, temperature, Helmholtz free energy, heat
capacity and pressure as defined in section 2.1 for a cellular automaton with 160000 cells
evolving according to the rule 3-0178 (Class D)
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Figure 3.4: The figure shows the ideal gas metrics of energy, entropy, temperature,
Helmholtz free energy, heat capacity and pressure from section 2.2 of a cellular automaton
with 160000 cells evolving according to the rule 357-0146 (Class B)
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Figure 3.5: The figure shows the energy, entropy, temperature, Helmholtz free energy, heat
capacity and pressure from section 2.3 of a cellular automaton with 160000 cells evolving
according to the rule 1367-0245 (Class A)
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Figure 3.6: Temperature heatmap of a 160000 cells cellular automaton partitioned into 25
subdivisions and evolving according to rule 2-0468 (class D) on the left and rule 1367-0245
(class A) on the right.

Figure 3.7: Histogram showing the number of cellular automata rules belonging to each
class.
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4 Outlook

The focus of this thesis has been the exploration of the transferability of basic concepts of
equilibrium statistical mechanics to two-dimensional cellular automata. Most results come
together comprehensively in both analytical derivations and numerical implementations.
That helped define and prove a new quantitative classification scheme based on statistical
mechanics. An exception to this is pressure, for which there has not been a correspondence
among the different definitions from the partition function, regardless of the use of different
approaches. Considering the relative ease and ’beauty’ of the coherence shown by the
other quantities, it is clear that further study is needed to evaluate the shortcomings of
our approach and develop a better definition for pressure. It could be helpful to derive
pressure in other ways, without going through the Helmholtz free energy.

The principle of equal a priori probability has been successfully proven right with the non-
equilibrium approach and with the benchmark pressure. Both show an even energy density
distribution, with the former being a stronger clue than the latter.

The quantities that have been translated successfully could be useful for the simulation
and modelling of statistical mechanical systems and the understanding of the equilibrium
properties of simple cellular automata. There could be applications of these findings in
machine learning and artificial intelligence, since it is not uncommon for the field to borrow
concepts from statistical mechanics as done in [19,20].

The development of a physically derived quantitative classification scheme for two dimen-
sional cellular automata has shown to be successful. Possibly, this work provides a step
forward into more rigorous and quantitative classification systems for cellular automata.
Whereas the most popular scheme, developed by Stephen Wolfram is qualitative [1]. How-
ever, the classification scheme developed here is not directly comparable to Wolfram’s since
there is a main difference between the two approaches. Wolfram’s classification is based
on the reaction of the cellular automaton upon perturbation. In this work, the cellular
automata develop unperturbed from an initial density

There is also potential in the use of the results of this thesis and the program developed
in teaching and didactic at the undergraduate level to offer an intuitive understanding of
thermodynamical systems and quantities, which very often is lost in mathematical abstrac-
tion [21, 22]. An educator can expand the code to add widgets and offer a visualisation
of the microscopic behaviour of a two-state system (the automaton) related to the time
evolution of several thermodynamical quantities. It is clearly necessary to mention the tool
of molecular dynamics for the same kind of visualization purpose. It would then be up to
the educator to choose the most appropriate tool.

A natural next step for this project could be to take the results and methods obtained
with equilibrium statistical mechanics and expanding it to the non-equilibrium formalism.
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The following steps of this project could be a thorough development and expansion of non-
equilibrium thermodynamics methods to study systems of connected cellular automata,
subject to different sets of rules and study the non-equilibrium processes associated with
them (i.e. heat flow, diffusion and so on). Alternatively, going in the opposite direction,
a study could be done into making all the quantities coherent and using first principles
to assign relative units to them, incorporating a more rigorous expansion towards the
mathematical side. A third possible evolution of this work would consist of a study done
with similar methodologies as this one, but focused on probabilistic cellular automata and
eventually considering quantum mechanics as well. This approach would present many
challenges, among others in the conciliation between the locality of cellular automata and
the non-locality of quantum mechanics.

Generally, the classification scheme used can be applied into the prediction of the behaviour
of any model system that evolves according to local interactions, by individuating the
cellular automata rule that corresponds to the interactions that govern it.
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