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Populärvetenskaplig Introduktion

Att ändra ordningen p̊a tv̊a händelser kan ha väldigt olika effekt p̊a resul-
tatet. Exempelvis är det inte s̊a viktigt om du duschar först, och sedan borstar
tänderna, eller om du först borstar tänderna, och sedan duschar p̊a morgonen.
Å andra sidan, s̊a blir resultatet väldigt annorlunda om man knäcker ett ägg och
sedan steker det, än om man steker ägget, och sedan knäcker det. I matematiska
termer kan vi kalla den ena händelsen A och den andra händelsen B. Om först
A händer, och sedan B, s̊a kallar vi det för AB, och om de händer i den andra
ordningen s̊a kallar vi det för BA. I s̊adana fall kan vi beskriva att ordningen
spelar roll som AB 6= BA eller att den inte spelar roll som AB = BA. I matem-
atiska termer kallas A och B kommutativa om AB = BA och ickekommutativa
om AB 6= BA.

Om vi försöker beskriva detta fenomenet nogrannare f̊ar vi dock ett problem.
Om A är händelsen att knäcka ett ägg, B är händelsen att steka ägget, och C
är händelsen att koka ägget, s̊a är det tydligt att b̊ade AB 6= BA och att
AC 6= CA, men det är sv̊art att avgöra i vilket fall skillnaden p̊a ordningen är
störst. Vi kan allts̊a säga om tv̊a händelser är kommutativa eller inte, men det
är sv̊art att säga hur ickekommutativa de är.

Matematiker arbetar oftast inte med vilka händelser som helst, utan med
olika matematiska objekt. Ett exempel är matriser, som kan ses som tabeller
med tal. Matriser kan adderas och subtraheras som vanligt. De kan ocks̊a
multipliceras, men inte p̊a samma sätt som vi är vana vid. Till exempel visar
det sig att om A och B är matriser s̊a är A · B inte nödvändigtvis samma sak
som B ·A. I termer av det vi sa innan s̊a är inte alla matriser kommutativa med
varandra. För att undersöka skillnaden mellan A ·B och B ·A har matematiker
kommit p̊a vad som kallas en Lie-algebra.

Det visar sig att vissa sorters Lie-algebror är lättare att arbeta med än
andra. En grupp med Lie-algebror som är väldigt lätta att hantera kallas för
semisimpla Lie-algebror. År 1905 upptäckte matematikern Eugenio Levi ett sätt
att använda semisimpla Lie-algebror för att studera andra algebror. Hans metod
fungerar dock bara p̊a Lie-algebror som är tillräckligt sm̊a, som matematiker
kallar för ändligt dimensionella.

År 1970 studerade fysikern Miguel Virasoro en större, s̊a kallat oändligt
dimensionell, Lie-algebra. Han upptäckte att Virasoro-algebran var väldigt vik-
tig i fysik, bland annat i strängteori. I den här kandidatuppsatsen beskriver
författaren varför det inte g̊ar att använda Levis metod för att undersöka Virasoro-
algebran, och visar p̊a s̊a vis att det behövs mer avancerade metoder för att
studera den.



Abstract

In this bachelor thesis we introduce Lie algebras, and use Lie algebra coho-
mology to prove Levi’s theorem about splitting of finite dimensional Lie algebras.
We then construct the Virasoro algebra, compute its low dimensional cohomol-
ogy spaces, and use this to demonstrate why Levi’s theorem does not hold in
the infinite dimensional case.
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Introduction

The goal of this thesis is to present Levi’s theorem about splitting of finite
dimensional Lie algebras, and present an example showing that the theorem
does not hold in the infinite dimensional case. In order to do that, we will
define Lie algebras and present some important result about them. We will
then introduce the theory of Lie algebra cohomology and use it to prove Levi’s
theorem. Finally, we will construct the infinite dimensional Virasoro algebra
and show that it can’t be decomposed as in Levi’s theorem.

In the first chapter we will introduce the notion of a Lie algebra and introduce
some examples. We will also describe representations of Lie algebras, and define
the classes of solvable, nilpotent and semisimple Lie algebras.

The second chapter will build upon the first, and further extend the theory
of Lie algebras. In particular, the properties of the classes introduced in the first
chapter are studied. While the previous chapter introduced new notions, this
one aims to present some deeper results. Some notable results in this chapter
include Engel’s and Lie’s theorems, Cartan’s criterion, and the construction of
the Casimir element. The content of the first two chapters is elementary and is
included in any introductory textbook on Lie algebras. For this reason, some of
the proofs in these sections have been left out. The presentation will be based
on [2].

Going a bit more specific, chapter three introduces cohomology theory of Lie
algebras. After defining the cohomology spaces of a Lie algebra, the main part
of this chapter is dedicated to the proofs of the two Whitehead lemmas.

Having developed the cohomology machinery, chapter four is dedicated to
the main theorem of the thesis, Levi’s theorem. This theorem is proved using
techniques from chapter three. We also prove Mal’tsev-Harish-Chandra’s the-
orem, and give a practical example of the Levi decomposition. The theory in
chapter three and four is not as standard as in the previous chapters, and is
mostly based on [4].

In the final chapter we will further contextualize Levi’s theorem by providing
a counterexample if the requirement that the Lie algebra is finite dimensional
is dropped. For this, we will define the Witt algebra and use it to construct
the Virasoro algebra. We will then calculate the first and second cohomology
spaces of the Virasoro algebra, and use them to prove that the Virasoro algebra
has no Levi decomposition. While all the results of this chapter are well known,
the presentation in this paper is independent from other sources.

The article also contains an appendix containing a very technical proof for
a theorem in chapter three.

The reader is assumed to be familiar with linear algebra, and further knowl-
edge in abstract algebra can be of help. In addition, the article is not self con-
tained in that the proofs of some theorems in chapter two are omitted. There-
fore, a reader looking merely for an introduction to Lie algebras is adviced to
refer also to other texts.
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1 Lie Algebras

In this chapter we will introduce the notion of a Lie algebra and start building
some introductory theory. We will give the definition from an entirely algebraic
point of view, ignoring the connection to geometry. This is contrary to the his-
torical development, where the theory of Lie algebras was developed as a toolbox
to work with problems concerning Lie groups. Unless otherwise specified, the
content of this chapter is based on [2].

We will first introduce some notation. Let V be a vector space over a field
F . We denote the set of linear transformations from V to V by End(V ). Note
that when dim(V ) = n <∞ we can fix a basis of V and represent the elements
of End(V ) with a matrix. End(V ) then becomes a vector space over F with
dim(End(V )) = n2.

We will now give the definition of a Lie algebra.

Definition 1.1. (Lie algebra)
A Lie algebra L is a vector space over a field F equipped with a bilinear

operation L × L → L, denoted [x, y] or just [xy] for x, y ∈ L, satisfying the
following axioms:

i. [xx] = 0 ∀x ∈ L

ii. [x[yz]] + [y[zx]] + [z[xy]] = 0 ∀x, y, z ∈ L

The operation is called the bracket or the commutator and the second axiom
is called the Jacobi identity.

Analogously to other algebraic structures, a subalgebra of a Lie algebra L
is a subspace of L that is closed under the bracket. A homomorphism from the
Lie algebra L to the Lie algebra K over the same field is a linear transformation
ϕ : L→ K such that ϕ([xy]) = [ϕ(x)ϕ(y)]. A bijective homomorphism is called
an isomorphism. A homomorphism from a Lie algebra to itself is called an
endomorphism. Since these concepts can also refer to maps between vector
spaces, unless specifically noted, the notion described in this definition will be
the one used.

We will next give some examples of Lie algebras that will be important as
we proceed.

Example 1.1. (Abelian Lie algebra)
Any vector space V can trivially be made into a Lie algebra by giving it the

Lie bracket [xy] = 0 for all x, y ∈ L. A Lie algebra where the commutator is
identically zero is called abelian.

The next example is arguably the main motivation for the definition of a Lie
algebra.

Example 1.2. (General linear algebra)
Let V be a vector space and consider the space End(V ) equipped with the

following operation

[AB] = AB −BA, A,B ∈ End(V ) (1)
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This space is called the general linear algebra and is denoted by gl(V ). Any
subalgebra of gl(V ) is called a linear algebra over V . This example gives
sense to the term commutator, since it can be interpreted as describing to what
extent the two elements A and B commute. In particular, if AB = BA then the
commutator will be 0. In light of representation theory of Lie algebras, which
will be introduced below, this observation carries over also to other Lie algebras.

Example 1.3. (Special linear algebra)
Let gl(V ) be a general linear algebra and define the subalgebra sl(V ) of

all elements having trace 0. This is well defined since the trace of a linear
transformation is independent of the choice of basis and it is indeed a subalgebra
since tr(AB) = tr(BA) for all A,B ∈ End(V ). This Lie algebra is called the
special linear algebra.

Next, we will introduce the concepts of representations and modules in the
context of Lie algebras, and show that they are in fact equivalent.

Definition 1.2. (Lie algebra representation)
Let L be a Lie algebra and V a vector space, and let ϕ : L → gl(V ) be a

homomorphism. Then ϕ is called a representation. Further, if ϕ is injective
then it is called faithful.

Definition 1.3. (Module over Lie algebra)
Let L be a Lie algebra and M be a vector space over the same field F ,

equipped with an operation from L×M to M , denoted simply xm or x ·m for
x ∈ L,m ∈M , satisfying the following axioms:

i. (ax+ by)m = a(xm) + b(ym)

ii. x(am+ bn) = a(xm) + b(xn)

iii. [xy]m = x(ym)− y(xm)

for all a, b ∈ F,m, n ∈M,x, y ∈ L. M is called an L-module and the operation
is called module multiplication. If N is a subspace of M such that xn ∈ N
for all x ∈ L, n ∈ N then N is called an L-submodule of M . If M has no other
L-submodules than 0 and M itself then it is called irreducible, and if it is a
direct sum of irreducible L-modules it is called completely reducible. If M,N
are L-modules and ϕ : M → N satisfies ϕ(xm) = xϕ(m) for all x ∈ L,m ∈ M
then ϕ is called an L-homomorphism. If it is bijective it is called an L-
isomorphism.

Lemma 1.1. Let L be a Lie algebra and M be a vector space. Then there is a
representation L→ gl(M) if and only if M can be viewed as an L-module.

Proof. Let ϕ : L → gl(M) be a representation. Then we can define module
multiplication on M by xm = ϕ(x)(M). Indeed, the first two criterions are
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satisfied by linearity since all involved functions are linear transformations, and
the third condition follows from equation (1):

[xy]m = ϕ([xy])(m) = [ϕ(x)ϕ(y)](m) = ϕ(x)ϕ(y)(m)− ϕ(y)ϕ(x)(m)

= x(ym)− y(xm) (2)

Conversely, ifM is an L-module then we can define ϕ : L→ gl(M) by ϕ(x)(m) =
xm. Indeed, ϕ(x) ∈ gl(M) by condition (ii), and ϕ is a linear transformation
by condition (i). By (iii), we have that [xy]m = x(ym)−y(xm) so changing the
order of the equalities in (2) yields ϕ([xy])(m) = [ϕ(x)ϕ(y)](m), which shows
that ϕ is a homomorphism, and hence a representation.

Remark 1.1. By the construction in the proof above, the notions of L-modules
and representations of L will be used interchangeably as we proceed.

The most important example of a Lie algebra representation for us will be
the adjoint representation, which we define below.

Definition 1.4. (Adjoint representation)
Let L be a Lie algebra and x ∈ L. We define the endomorphism ad(x) : L→

L, y 7→ [xy]. Thus, we have constructed a map ad : L → gl(L), which we call
the adjoint representation.

Lemma 1.2. The adjoint representation is a representation.

Proof. We must show that the adjoint preserves the bracket. Indeed, for any
z ∈ L,

[ad(x)ad(y)](z) = ad(x)ad(y)(z)− ad(y)ad(x)(z) = [x[yz]]− [y[xz]]

= [x[yz]] + [y[zx]] = −[z[xy]] = [[xy]z] = ad([xy])(z)

as required.

There are several important classes of Lie algebras, containing some addi-
tional structure. We now turn to the definition of some of these classes.

Definition 1.5. (Ideal)
Let I be a subalgebra of a Lie algebra L such that [xy] ∈ I for all x ∈ L, y ∈ I.

Then I is called an ideal in L.

Example 1.4. (Derived algebra)
Let L be a Lie algebra. Then the derived algebra of L, which we denote

[LL], is the subalgebra generated by all commutators [xy], where x, y ∈ L. This
is clearly an ideal.

Example 1.5. (Center of Lie algebra)
Let L be a Lie algebra. Then the center

Z(L) = {x ∈ L : [xy] = 0 ∀y ∈ L}

is an ideal in L.
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Example 1.6. Let K be a subalgebra of the Lie algebra L. Then we define the
normalizer of K as

NL(K) = {x ∈ L : [xK] ⊂ K}

Then NL(K) is a subalgebra of L. Indeed, for x, y ∈ NL(K),

[[xy]K] = [x[yK]]− [y[xK]] ⊂ K

since [xK], [yK] ⊂ K. Further, NL(K) is the largest subalgebra of L containing
K as an ideal.

Analogously to other algebraic structures, ideals are used to construct quo-
tient algebras.

Definition 1.6. (Quotient algebra)
Let I be an ideal in a Lie algebra L, and define the equivalence relation x ∼ y

if and only if x− y ∈ I. Then the quotient algebra L/I is defined as the Lie
algebra of equivalence classes with the bracket defined by [x+I, y+I] = [xy]+I.
Note that this is well defined since if x− x′ ∈ I and y − y′ ∈ I, then

[xy]− [x′y′] = [xy]− [xy′] + [xy′]− [x′y′] = [x, y − y′] + [x− x′, y′] ∈ I

It might come as no surprise that analogues of the classical isomorphism
theorems hold also for Lie algebras. This is stated as an exercise in [2], but the
details will be carried out here.

Theorem 1.1. (Isomorphism theorems)
Let L,K be Lie algebras and I, J be ideals in L.

i. Let ϕ : L → K be a homomorphism. Then kerϕ is an ideal in L and
L/ kerϕ ∼= im ϕ.

ii. (I + J)/J ∼= I/(I ∩ J)

iii. Suppose that I ⊂ J . Then J/I is an ideal in L/I and (L/I)/(J/I) ∼= L/J .

Proof. i. If ϕ(x) = 0 then ϕ([xy]) = [ϕ(x)ϕ(y)] = 0 so kerϕ is indeed an
ideal in L. The function f : L/ kerϕ → im ϕ, x + kerϕ 7→ ϕ(x) is well
defined since if x− y ∈ kerϕ then

f(x)− f(y) = ϕ(x)− ϕ(y) = ϕ(x− y) = 0

Moreover, f is an isomorphism, as required.

ii. The surjective homomorphism ϕ : I+J → I/(I∩J) defined by ϕ(x+y) =
x + (I ∩ J), x ∈ I, y ∈ J is well defined since if x1 + y1 = x2 + y2 for
x1, x2 ∈ I, y1, y2 ∈ J , then I 3 x1 − x2 = y2 − y1 ∈ J so x1 − x2 ∈ I ∩ J .
Since kerϕ = J , the conclusion follows from part (i).
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iii. The surjective homomorphism ϕ : L/I → L/J, x + I 7→ x + J is well
defined, since x − y ∈ I implies x − y ∈ J . Since kerϕ = J/I, the
conclusion again follows from part (i).

Definition 1.7. (Simple Lie algebra)
A non-abelian Lie algebra L having no non-trivial ideals is called simple.

Here non-trivial means the zero ideal and L itself.

Definition 1.8. (Solvable Lie algebra)
Let L be a Lie algebra and define the derived series of ideals in the following

way: L(0) = L, L(k) = [L(k−1)L(k−1)], k = 1, 2, ... If there is some k such that
L(k) = 0 then L is called solvable.

The following is for our purposes one of the most important classes of Lie
algebras

Definition 1.9. (Semisimple Lie algebra)
A Lie algebra with no non-zero solvable ideals is called semisimple.

We will proceed to establish some properties of solvable algebras.

Theorem 1.2. Let L be a Lie algebra.

i. Let K be a subalgebra of L, and ϕ a homomorphism on L. If L is solvable
then K and ϕ(L) are solvable.

ii. Let I be a solvable ideal in L such that L/I is solvable. Then L is solvable.

iii. Let I, J be solvable ideals in L. Then I + J is a solvable ideal.

iv. L has a unique maximal solvable ideal, which we call the radical of L and
denote RadL

Proof. i. The solvability of both algebras follows by induction, since

K(k) = [K(k−1)K(k−1)] ⊂ [L(k−1)L(k−1)] = L(k)

and

(ϕ(L))(k) = [(ϕ(L))(k−1)(ϕ(L))(k−1) = [ϕ(L(k−1))ϕ(L(k−1))] = ϕ(L(k))

ii. Suppose that I(n) = 0 = (L/I)(m) and let ϕ : L→ L/I, x 7→ x+ I. Then
ϕ(L(m)) = (ϕ(L))(m) = 0 so L(m) ⊂ I. But then

L(m+n) = (L(m))(n) = I(n) = 0

so L is solvable.

iii. Note that I/(I ∩ J) is solvable by applying part (i) to the canonical ho-
momorphism I → I/(I ∩ J). But then by the third isomorphism theorem
(I + J)/J is solvable, so by part (ii) also I + J is solvable.
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iv. Suppose I is maximal sovable ideal and let J be any other solvable ideal.
Then by part (iii), I + J is solvable so by maximality of I, we find that
J ⊂ I. This shows that there is no other maximal ideal.

Another important class is defined below.

Definition 1.10. (Nilpotent Lie algebra)
Let L be a Lie algebra and define the lower central series of ideals in the

following way: L0 = L,Lk = [LLk−1], k = 1, 2, ... If there is some k such that
Lk = 0, then L is called nilpotent.

Theorem 1.3. Let L be a Lie algebra.

i. Let K be a subalgebra of L, and ϕ a homomorphism on L. If L is nilpotent
then K and ϕ(L) are also nilpotent.

ii. Suppose L/Z(L) is nilpotent. Then L is nilpotent.

iii. Let I, J be nilpotent ideals in L. Then I + J is nilpotent.

iv. Let L be nilpotent. Then L is solvable.

v. L has a unique maximal nilpotent ideal, which we call the nilradical of L.
The nilradical is included in the radical of L.

Proof. i. The proof of this part is exactly the same as the proof of Theorem
1.2 (i) by just exchanging the derived series with the lower central series.

ii. If L/Z(L) is nilpotent then Ln ⊂ Z(L) for some n. Hence,

Ln+1 = [LLn] ⊂ [LZ(L)] = 0

iii. We show that (I+J)2n ⊂ In+Jn. Indeed, using the bilinearity of the com-
mutator, (I+J)2n is generated by elements of the form [x1...[x2n−2[x2n−1x2n]]...]
where each xi is in either I or J . But then by the pigeonhole principle
each such generator contains at least n xi’s from either I or J . If we
assume it is true for I without loss of generality then since I is an ideal
this generator is included in In. Thus the nilpotency of I+J follows from
the nilpotency of I and J .

iv. This follows immediately from the fact that the derived series is a subse-
quence of the lower central series.

v. The existence of the nilradical follows from the same argument used to
prove part (iv) of Theorem 1.2. The fact that the nilradical is included in
the radical follows from part (iii).
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2 Structure of Lie algebras

In order to be able to study the theory of the later chapter, we will need to
further understand the structure of Lie algebras. In particular, we will motivate
the introduction of solvable, nilpotent and semisimple Lie algebras by discussing
far-reaching results about these particular classes. The theory that we develop
in this chapter will culminate in the definition of the Casimir element of a
representation, which will be crucial in the next chapter. Again, unless otherwise
noted, the presentation is based on [2].

Most of the results in this chapter are for our purposes auxiliary results,
interesting mostly for their use in the proofs of later results. For this reason,
in order to reduce unnecessary repetition, proofs will be omitted unless there is
some notable modification in the presentation from the one given in [2].

Throughout this chapter, and in fact for the rest of the paper, F will denote
an algebraically closed field of characteristic 0. For some results these limitations
are not strictly necessary, but since they will be needed for the theory we are
interested in, we will for simplicity make this assumption.

First of all, we will need a result from linear algebra, which can be seen as
a generalization of the Jordan canonical form.

Theorem 2.1. (Jordan-Chevalley decomposition)
Let V be a finite dimensional vector space and let x ∈ EndV . Then:

i. x can be decomposed uniquely into x = xd + xn where xd is diagonalizable
and xn is nilpotent, and xd commutes with xn.

ii. There are polynomials p, q without constant terms, such that xd = p(x)
and xn = q(x).

iii. Suppose A ⊂ B ⊂ V such that xB ⊂ A. Then xsB, xnB ⊂ A.

We will not prove this theorem here. The proof ultimately depends on the
Chinese Remainder Theorem and can be found in [2]. We remark that the proof
uses the fact that a vector space endomorphism is diagonalisable if and only if
the roots of the minimal polynomial (defined as the unique monic polynomial
p of smallest degree such that p(xd) = 0, the reader is referred to most books
on linear algebra above introductory level) are all distinct. This is only true for
vector spaces over algebraically closed fields, so this is one of the crucial points
where we need the assumptions in the beginning of the chapter. Since many of
the other results depend on this one, this requirement carries over to most of
the results that will follow.

The first theorem we will prove is Engel’s theorem. We remark that this
theorem holds for any field F , in fact without changing the proof. Hence the
assumptions above can be omitted, but since we will not need the full generality,
we will ignore these considerations. The presentation is based on [2] but has
been modified to emphasize the connection with modules and representations.
We start with some lemmas.
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Lemma 2.1. Let L be a linear algebra and x ∈ L be nilpotent as a linear
transformation. Then ad(x) is nilpotent.

Proof. Let n be such that xn = 0. We claim that ad(x)2n = 0. First of all, we
show that

ad(x)n(y) =

n∑
k=0

(−1)k
(
n

k

)
xn−kyxk (1)

Indeed, this is certainly true for n = 1, so using induction we find that

ad(x)n(y) = ad(x)

(
n−1∑
k=0

(−1)k
(
n− 1

k

)
xn−1−kyxk

)

=
n−1∑
k=0

(−1)k
(
n− 1

k

)
xn−kyxk −

n∑
k=1

(−1)k−1
(
n− 1

k − 1

)
xn−kyxk

=

n∑
k=0

(−1)k
(
n

k

)
xn−kyxk

This shows (1). Now, expanding ad(x)2n(y) as above, either 2n − k ≥ n or
k ≥ n so every term in the sum will be 0, which concludes the proof.

Lemma 2.2. Let L be a Lie algebra and M be a non-zero finite dimensional
L-module, such that every element of L acts nilpotently on M . Then there is
some non-zero m ∈M such that xm = 0 for any x ∈ L

Proof. We will use induction on the dimension of L so we start by remarking
that the lemma holds for L = 0. Let now K be a maximal proper subalgebra of
L. We show that K is an ideal in L. Note that L/K exists as a vector space,
even though it is not yet established that it is a Lie algebra. Further, L/K is a
K-module by the adjoint representation (see Lemma 1.1), where every element
of K acts nilpotently on L/K by Lemma 2.1. By the induction hypothesis, since
dimK < dimL, there is some non-zero element x ∈ L/K such that yx = 0 for
any y ∈ K. In other words, there is some x /∈ K such that [yx] ∈ K for all
y ∈ K. This means K is a proper subspace of NL(K) so by maximality of K,
NL(K) = L, which means that K is an ideal in L.

Now, take some x /∈ K. Then K + Fx is a subalgebra, since

[y1 + a1x, y2 + a2x] = [y1y2] + a1[xy1] + a2[y2x] ∈ K ⊂ K + Fx

By maximality of K, we conclude that L = K + Fx. Consider the space
W = {m ∈M : Km = 0}. Using the same induction argument as before, since
dimK < dimL we can assume that W is non-zero. Moreover, if m ∈ W then
xm ∈W for all x ∈ L. Indeed, for any z ∈ K,

zxm = xzm+ [xz]m = 0

Finally, since x defined above acts nilpotently on M , and hence also on W ,
for any non-zero m ∈ W there is some n such that xn−1v 6= 0 but xnm = 0.
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Hence, xn−1m ∈ W so it gets killed by K, and as established above it is also
killed by x. Hence, xn−1m gets killed by all of L, which concludes the proof.

We are now ready to prove Engel’s theorem

Theorem 2.2. (Engel’s Theorem)
Let L be a finite dimensional Lie algebra such that ad(x) is nilpotent for all

x ∈ L. Then L is nilpotent.

Proof. We will again use induction on dimL. Clearly the lemma holds for the
base case L = 0. We also have that adL is a Lie algebra with nilpotent elements
acting on the non-zero finite dimensional adL-module L. Hence, by Lemma 2.2
there is a non-zero x ∈ L such that ad(y)(x) = 0 for all y ∈ L. Hence, x ∈ Z(L),
so Z(L) is non-zero. Now, L/Z(L) consists of elements with nilpotent adjoints,
and dimL/Z(L) < dimL, so by the induction hypothesis, L/Z(L) is nilpotent,
but then by Theorem 1.3, L is also nilpotent.

The next theorem can be thought of as an extension of Engel’s theorem
where the nilpotency assumption is exchanged with solvability. In contrast to
Engel’s theorem, here we will need the assumptions on the field that we gave in
the start of the chapter. As before, the theorem is given here in terms of module
theory, but another formulation can be found in [2], and the proof is similar.

Lemma 2.3. Let L be a solvable finite dimensional Lie algebra and M a non-
zero finite dimensional L-module. Then there is some non-zero m ∈ M such
that m is an eigenvector of every x ∈ L, i.e. for every x ∈ L there exists some
λ ∈ F such that xm = λm.

Proof. First note that this lemma is very similar to Lemma 2.2. Thus we will
try to mimic the technique we used there. Hence, we want to use induction
on dimL. As before, the case L = 0 is trivial since every element of M will
be killed by L. To proceed, we want to find a maximal ideal and show that
it has codimension 1. While this required some work under the assumptions
of Lemma 2.2, the stronger statement of this lemma simplifies finding such an
ideal. Indeed, since L is solvable, L 6= [LL]. Hence, the quotient algebra L/[LL]
is non-zero. Since it is also abelian, every subspace of L/[LL] is an ideal. Take
an ideal K0 in L/[LL] having codimension one and consider the inverse image
K = ϕ−1(K0) where ϕ : L→ L/[LL], x 7→ x+ [LL] is the canonical map. Then
K is an ideal in L since ϕ([xy]) = [ϕ(x)ϕ(y)] ∈ K0 for x ∈ L, y ∈ K. Moreover,
the codimension of K is one, as required.

Next, K is a solvable Lie algebra of strictly smaller dimensionality than
L, so by the induction hypothesis, there is some m ∈ M and some linear map
λ : K → F such that xm = λ(x)m for all x ∈ K. We construct the L-submodule

W = {m ∈M : xm = λ(x)m ∀x ∈ K}

Note that W is at least one dimensional.
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We proceed to show that LW ⊂ W . To this end, let x ∈ L,m ∈ W, y ∈ K.
We want to show that yxm = λ(y)xm. However, note that

yxm = xym− [yx]m = xλ(y)m− λ([xy])m = λ(y)xm− λ([xy])m (2)

so we need to show that λ([xy]) = 0. For given m ∈ W and x ∈ L, define
recursively m0 = m, mk = xmk−1 and let Wk = span(m0, ...,mk). Then since
W is finite dimensional, we can pick n to be the smallest integer such that
Wn = Wn+1. Note that KWk+1 ⊂ Wk+1, since for every y ∈ K, from equation
(2)

ymk = yxmk−1 = λ(y)xmk−1 − λ([xy])mk−1 = λ(y)mk − λ([xy])mk−1 ∈Wk+1

The above equation also shows that ymk − λ(y)mk ∈ Wk, so if we take the
basis {mk}n−1k=0 for Wn then y ∈ K acts on Wn as an upper triangular matrix,
with λ(y) as every diagonal entry, so the trace of this linear transformation
will be nλ(y). Now, we can consider the action of the element [xy] ∈ K in
this way, having the trace nλ([xy]). However, both x and y map Wn to itself
under multiplication so they can both be considered as endomorphisms of the
vector space Wn. But by definition of module multiplication by the bracket of
two elements, this means that [xy] acts on Wn as the commutator of the vector
space endomorphisms corresponding to x and y, so the trace will be 0. Hence
λ([xy]) = 0 which as remarked above shows that LW ⊂W .

Now, we can write L = K + Fz, so the only thing we have left is to find an
eigenvector m ∈ W of z, but since multiplication with z is a linear map from
W to W , and the field is algebraically closed, such an eigenvector must exist.
Then m is an eigenvector of all of L, which concludes the proof.

Remark 2.1. The proof of the lemma uses both of the assumptions on the
field. Algebraic closure is required in the final step to find an eigenvalue of the
linear transformation, and characteristic zero is required in the trace argument
slightly before, since in a field of positive characteristic, nλ([xy]) = 0 does not
necessarily imply that λ([xy]) = 0. Hence, from now on, these assumptions will
be crucial for the theory.

Theorem 2.3. (Lie’s theorem)
Let L be a solvable finite dimensional Lie algebra. Then there are ideals Ik

such that dimIk = k, for k = 0, 1, ..., n = dimL, and I0 ⊂ ... ⊂ In.

Proof. Note first that L is an L-module under the adjoint representation. We
will use induction on dimL. For dimL = 1 the theorem is immediate since the
chain 0 ⊂ L satisfies the requirements. For an arbitrary dimension of L, by
Lemma 2.3 there is some non-zero y ∈ L such that xy = [xy] = λ(x)y. Hence,
Fy is a one dimensional ideal in L. We take I1 = Fy. Now, the quotient algebra
L/I1 has strictly lower dimensionality than L so by the induction hypothesis
there is a chain of ideals 0 = I ′0 ⊂ ... ⊂ I ′n−1 = L/I1 with dimI ′k = k. Then
just as in the proof of Lemma 2.3, if we let ϕ : L → L/I1, x 7→ x + I1 be the
canonical homomorphism then the preimages Ik = ϕ−1(I ′k−1) are ideals in L
such that 0 = I0 ⊂ ... ⊂ In = L and dimIk = k.
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Corollary 2.1. Let L be a solvable finite dimensional Lie algebra. Then [LL]
is nilpotent.

Proof. By Lie’s theorem, there is a chain of ideals I0 ⊂ ... ⊂ In in L such that
dimIk = k. If we take e1, ..., en to be a basis of L such that Ik = span(e1, ..., ek).
Then ad(x) can be represented as an upper triangular matrix for all x ∈ L. By
Lemma 1.2, ad([xy]) = [ad(x), ad(y)]. However, direct calculation shows that
the commutator of two upper triangular matrices is again upper triangular, with
zeroes on the diagonal. Hence, for x ∈ [LL], ad(x) is nilpotent, so by Engel’s
theorem, [LL] is nilpotent.

Corollary 2.2. Let L be a finite dimensional Lie algebra. Then [LRadL] is
nilpotent.

Proof. Let [xy] ∈ [L,RadL], with x ∈ L, y ∈ RadL. Note that

[Kx,Kx] := [RadL+ Fx,RadL+ Fx] ⊂ [RadL,RadL] + [Fx,RadL] ⊂ RadL

Hence, Kx is a solvable subalgebra. By Corollary 2.1, [KxKx] is nilpotent, so
since [xy] ∈ [KxKx], ad([xy]) is nilpotent on [KxKx]. However, for any z ∈ L,
ad2([xy])(z) ∈ [RadL,RadL] ⊂ [KxKx] so ad([xy]) is in fact nilpotent on all of
L. We can use this argument to show that any element of [L,RadL] is nilpotent.
Then Engel’s theorem asserts that [LRadL] is nilpotent.

We will now proceed to some results that will be given without proofs.
Since much of our interest further on will concern solvable or, most notably,
semisimple Lie algebras, we would like to find criterions that are easy to use
for a Lie algebra to belong to any of these classes. In order to formulate these
results, we will introduce the following notion.

Definition 2.1. (Killing form)
Let L be a Lie algebra and define the function κ : L2 → F by

κ(x, y) = Tr(ad(x)ad(y))

for x, y ∈ L. Then κ is a symmetric bilinear form which we call the Killing
form.

Definition 2.2. (Non-degenerate bilinear form)
A symmetric bilinear form β : L2 → F form is called non-degenerate if

β(x, y) = 0 for all x ∈ L implies y = 0.

We are now ready to present Cartan’s criterion for solvability.

Theorem 2.4. (Cartan’s criterion)
Let L be a finite dimensional Lie algebra. If κ(x, y) = 0 for x ∈ [LL], y ∈ L,

then L is solvable.
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The proof can be found in [2]. It is based on first finding a trace criterion for
nilpotency of the adjoint of an element in the Lie algebra, and then using the
lemma together with Engel’s theorem to show that under the assumptions of the
theorem, ad[LL] will be nilpotent. Then adL is solvable by part (iv) of Theorem
1.3. We can conclude that L is solvable by the first isomorphism theorem and
part (ii) of Theorem 1.2, since Ker(ad) = Z(L) is solvable. Worth noting is that
this means there is nothing special about the adjoint representation. It can be
exchanged with any representation ϕ as long as we add the requirement that
Kerϕ is solvable.

We proceed now to the criterion for semisimplicity. This is also sometimes
known as Cartan’s criterion.

Theorem 2.5. Let L be a finite dimensional Lie algebra. Then L is semisimple
if and only if κ is non-degenerate.

Again, for the proof, the reader is referred to [2].

Remark 2.2. The theorem above can often be used to check for semisimplicity
of finite dimensional Lie algebras in practice. Indeed, if we fix a basis {ei}ni=1 for
adL, we can consider the matrix K having κ(ei, ej) as its entry in the position
i, j. Then if x, y ∈ L we get

κ(x, y) = xTKy

The matrix K is non-degenerate if and only if κ is non-degenerate. To see this,
K being non-degenerate means Ky = 0 if and only if y = 0, and κ being non-
degenerate means xTKy = 0 for all x if and only if y = 0. However, xTKy = 0
for all x is equivalent to Ky = 0. Hence, the problem of checking semisimplicity
for a finite dimensional Lie algebra has been reduced to the familiar problem of
checking non-degeneracy of a matrix.

Next, we will state an important structure theorem for semisimple finite
dimensional Lie algebras.

Theorem 2.6. Let L be a semisimple finite dimensional Lie algebra. Then
there are simple ideals I1, ..., In in L such that L = I1⊕ ...⊕ In as vector spaces.
Further, if I is a simple ideal in L then I = Ik for some k. As a consequence,
[LL] = L, and all ideals of L can be written as a direct sum of some of the Ik’s.
In particular, all ideals in L and all homomorphic images of L are semisimple.

As before, this theorem will not be proved here, but can be found in [2].
We are now ready to introduce the Casimir element of a representation. In

what we have done so far, a very important role has been played by the adjoint
representation. However, for the cohomology theory that we will introduce in
the next chapter, we will need to consider any representation of a Lie algebra.
The Casimir element turns out to be a very helpful tool for this.

In order to construct the Casimir element, we will start with a generalization
of the Killing form.
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Definition 2.3. (Trace form)
Let L be a finite dimensional Lie algebra and ϕ a faithful representation of

L. Let β : L2 → F be the symmetric bilinear form defined by

β(x, y) = Tr(ϕ(x)ϕ(y))

for x, y ∈ L. We call β the trace form of ϕ.

We remark that the Killing form is the trace form of the adjoint representa-
tion.

Lemma 2.4. Let L be a semisimple finite dimensional Lie algebra and let ϕ be
a faithful representation of L. Then the trace form of ϕ is non-degenerate.

Proof. Note first that

β([xy], z) = Tr(ϕ([xy])ϕ(z)) = Tr([ϕ(x)ϕ(y)]ϕ(z))

= Tr(ϕ(x)ϕ(y)ϕ(z))− Tr(ϕ(y)ϕ(x)ϕ(z))

= Tr(ϕ(x)ϕ(y)ϕ(z))− Tr(ϕ(x)ϕ(z)ϕ(y))

= Tr(ϕ(x)[ϕ(y)ϕ(z)]) = Tr(ϕ(x)ϕ([yz])) = β(x, [yz])

Hence, the subspace

S = {x ∈ L : β(x, y) = 0 ∀ y ∈ L}

is an ideal, since if x ∈ S then β([xy], z) = β(x, [yz]) = 0 for all y, z ∈ L.
Further, for x ∈ [ϕ(S)ϕ(S)] and y ∈ ϕ(S), there are x′ ∈ [SS] and y′ ∈ S such
that ϕ(x′) = x and ϕ(y′) = y. Hence,

Tr(xy) = Tr(ϕ(x′)ϕ(y′)) = β(x′, y′) = 0

Hence by Cartan’s criterion, ϕ(S) is solvable, but ϕ(S) ∼= S and since L is
semisimple, we conclude that S = 0. Therefore if β(x, y) = 0 for all y ∈ L, then
x = 0, so β is nondegenerate.

Pick a basis {ei}ni=1 of L. Then there exists a unique dual basis {fi}ni=1, i.e.
a basis satisfying β(ei, fj) = δi,j .

Definition 2.4. (Casimir element)
Let L be a semisimple finite dimensional Lie algebra and let ϕ be a faithful

representation of L. Then if {ei}ni=1 and {fi}ni=1 are dual bases with respect to
the trace form of β, as described above, we define the Casimir element

cϕ =

n∑
i=1

ϕ(ei)ϕ(fi)

Lemma 2.5. The Casimir element of a representation ϕ is independent of the
choice of basis for L.
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Proof. Suppose {e′i}ni=1 is another basis, with corresponding dual basis {f ′i}ni=1.
We can write

e′i =

n∑
j=1

aijej , f ′i =

n∑
j=1

bijfj

We collect the coefficients in matrices A = (aij), B = (bij). The dual base
property gives us

δij = β(e′i, f
′
j) = β

(
n∑

k=1

aikek,

n∑
k=1

bjkfk

)
=

n∑
k=1

aikbjk

In matrix form, we can write this equation as ABT = I. Then also BTA = I
so also

δij =

n∑
k=1

akibkj

Putting this into the definition of the Casimir element with respect to the second
basis, we get

cϕ =

n∑
i=1

ϕ(e′i)ϕ(f ′i) =

n∑
i=1

ϕ

 n∑
j=1

aijej

ϕ

(
n∑

k=1

bikfk

)

=

n∑
i=1

n∑
j=1

n∑
k=1

aijbikϕ(ej)ϕ(ek) =

n∑
j=1

∑
k=1

δjkϕ(ej)ϕ(ek)

=

n∑
i=1

ϕ(ei)ϕ(fi)

which concludes the proof.

Remark 2.3. Fix some x ∈ L, and let aij , bij be the constants satisfying

[xei] =

n∑
j=1

aijej , [xfi] =

n∑
j=1

bijfj

Then

aik =

n∑
j=1

aijβ(ej , fk) = β([xei], yk) = −β([eix], yk)

= −β(xi, [xyk]) = −
n∑

j=1

bkjβ(ei, fj) = −bki

Lemma 2.6. Let L be a semisimple finite dimensional Lie algebra and let ϕ
be a faithful representation of L corresponding to the L-module M . Then the
endomorphism cϕ of M commutes with ϕ(x) for all x ∈ L. Further, Trcϕ =
dimL.
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Proof. Let x ∈ L and let aij , bij be as in Remark 2.3. Then

[ϕ(x), cϕ] =

n∑
i=1

ϕ(x)ϕ(ei)ϕ(fi)−
n∑

i=1

ϕ(ei)ϕ(fi)ϕ(x)

=

n∑
i=1

[ϕ(x)ϕ(ei)]ϕ(fi)−
n∑

i=1

ϕ(ei)[ϕ(x)ϕ(fi)]

=

n∑
i=1

ϕ([xei])ϕ(fi)−
n∑

i=1

ϕ(ei)ϕ([xfi])

=

n∑
i=1

n∑
j=1

aijϕ(ej)ϕ(fi) +

n∑
i=1

n∑
j=1

bijϕ(ei)ϕ(fj) = 0

This shows that ϕ(x) commutes with cϕ. For the second statement, we calculate

Trcϕ =

n∑
i=1

Tr(ϕ(ei)ϕ(fi)) =

n∑
i=1

β(ei, fi) = n = dimL

This proves the second statement.
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3 Lie Algebra Cohomology

In this chapter we will introduce a cohomology theory for Lie algebras. An
intuitive way to describe this theory is how Lie algebras can be understood
by studying the multilinear skew symmetric maps that can be defined on the
Lie algebra. As range for our maps, we choose a module, which motivates the
emphasis on representations in the previous chapters. In this paper we will aim
to give a concrete definition of the cohomology spaces by explicitly working with
the functions, following the presentation in [4]. We remark that the theory can
also be developed more generally using the concept of derived functors. This
connects Lie algebra cohomology to other cohomology theories. We will not
pursue this approach here, but the interested reader is referred to [1]. The main
goal of the chapter will be to prove Whiteheads two lemmas about the first two
cohomology groups. We will also generalize this result to higher dimensions.

As a setup, we will consider a Lie algebra L and an L-module M .
Before we get into the definitions, however, we will state a theorem from lin-

ear algebra that we will use below. Since the theorem is completely independent
from the theory of Lie algebras, it will not be proved in this paper. The proof is
based on the fact that a finite dimensional vector space is both noetherian and
artinian as a module, and can be found in [3].

Theorem 3.1. (Fitting Decomposition)
Let V be a finite dimensional vector space and f : V → V a linear trans-

formation. Then there are subspaces V0 and V ′ such that V = V0 ⊕ V ′, where
f(V0) ⊂ V0, f(V ′) ⊂ V ′, and the restriction of f to V0 is nilpotent while the
restriction to V ′ is bijective.

We proceed to the definitions required for the cohomology spaces.

Definition 3.1. (Cochain)
For n > 0, let f :

∏n
i=1 L → M be an n-linear skew symmetric map.

Then f is called an n-dimensional M-cochain. The vector space of all n-
dimensional M -cochains with the usual addition and scalar multiplication is de-
noted Cn(L,M) or just Cn. In the special case n = 0 we define a 0-dimensional
M -cochain as a constant function f : L → M , so that every element of L is
mapped to some fixed m ∈M .

Definition 3.2. (Coboundary)
For n ≥ 0 we define the coboundary operator d : Cn → Cn+1 by

df(x1, ..., xn+1) =

n+1∑
j=1

(−1)j+1xjf(x1, ..., x̂j , ..., xn+1)

+
∑

1≤i<j≤n+1

(−1)i+jf([xixj ], x1, ..., x̂i, ..., x̂j , ..., xn+1)

where the notation x̂j is used to indicate that xj is omitted as an argument.
We remark that in the case n = 0 the above expression is interpreted to mean

df(x) = xm, f(x) = m
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Remark 3.1. There is a slight ambiguity in the definition of the coboundary
operator above, in that we use the same notation to describe the coboundary
operators for all the different Cn. Most of the time,the dimension will be clear
from the context but to avoid ambiguity we will occasionally use the notation
dn : Cn → Cn+1 where several coboundary operators are involved.

Remark 3.2. The coboundary operator is well defined in the sense that the
image of an n-dimensional cochain is indeed an (n+1)-dimensional cochain. To
verify this, we must check that df is (n + 1)-linear and skew symmetric. The
(n + 1)-linearity is easily seen since the bracket is bilinear and f is n-linear,
which means each term in each of the sums is in fact (n+ 1)-linear.

The skew symmetry requires a bit more work. We will treat each of the
sums separately. Suppose we switch places of xi and xj . Then each term where
neither xi nor xj is omitted will switch sign, by the skew symmetry of f . For
the first sum it suffices to show that

(−1)i+1xjf(x1, ..., x̂j , ..., xi, ..., xn+1) = (−1)jxjf(x1, ..., xi, ..., x̂j , ...xn+1)

where xi is in the j:th position on the right hand side. This identity can be
seen by repeatedly shifting xi to the i:th position, each time using the skew
symmetry of f to push xi one step at a time. This will require j − i− 1 shifts,
so the coefficient (−1)i+1 will become (−1)j

For the second sum we use a similar strategy. Again, for all the terms where
none of the exchanged elements are omitted, we can use the skew symmetry of
f . Further, if the exchanged elements xi and xj are precisely the ones omitted
in the term, they both appear in the commutator in the first position, so we can
use the skew symmetry of the bracket. Hence, we are left with the case where
one of the exchanged elements is also the one being omitted. Hence, suppose xi
and xj are being exchanged, and consider the term where xj and xk are being
omitted, with j < k. We get two different cases. First, if k is not between i and
j we can use the same argument as before to shift xi one step at a time. If on
the other hand k is between i and j, one less shift will be required, but on the
other hand the order of the elements in the bracket must be switched, so the
skew symmetry still holds.

In light of the previous definition and accompanying remarks, we have con-
structed a sequence of vector spaces Cn related to each other by the linear
transformation d in the following way:

. . .
d←− Cn+1 d←− Cn d←− Cn−1 d←− . . .

We will now show that the above collection of vector spaces and linear maps
is an cochain complex, i.e. that Imdn−1 ⊂ Kerdn. This is mentioned in [4],
but is not proved there.

Theorem 3.2. The composition of two coboundary operators is identically zero,
i.e. d2 = dn+1 ◦ dn ≡ 0.
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Proof. The proof of this theorem is very technical, and has therefore been in-
cluded in the appendix.

With this result, we are ready to define the most central notion of this
chapter.

Definition 3.3. (Cohomology space)
Let f be an n-cochain. Then f is a cocycle if df = 0 and a coboundary

if f = df0 for f0 ∈ Cn−1. We denote by Zn the set of n-cocycles and by Bn

the set of n-coboundaries. By Theorem 3.1, Bn ⊂ Zn so we can define the
n-dimensional cohomology space by Hn = Zn/Bn. We remark that if we
want to specify the underlying Lie algebra L or L-module M , we will sometimes
write Hn(L,M). Note that since the B0 is not well defined by the above, we
take by definition B0 = 0.

We will investigate the cohomology spaces of low dimensionality in some
more detail.

Example 3.1. (Zeroth cohomology space)
From the final remark of the definition above, we get that H0 = Z0, so H0

is the space of all functions in f ∈ C0 such that df = 0. As we remarked above,
a function f ∈ C0 can be identified with an element m ∈ M , with f(x) = m
for all x ∈ L. Then df(x) = xm, so H0 can be identified with the subset of M
satisfying xm = 0 for all x ∈ L.

Example 3.2. (First cohomology space)
The 1-cocycles are the 1-cochains f satisfying df(x1, x2) = x1f(x2)−x2f(x1)−

f([x1x2]) = 0, that is all linear maps satisfying f([x1x2]) = x1f(x2)− x2f(x1).
Such maps are important in many circumstances, and are called derivations.
The 1-coboundaries are all functions of the form f(x) = xm for some m ∈M . In
particular, if we take M = L as an L-module under the adjoint representation,
then B1 = adL.

Definition 3.4. (Lie algebra extension)
Let L1, L2 and L be Lie algebras and suppose there are homomorphisms

f, g such that the sequence

0 −→ L2
f−→ L

g−→ L1 −→ 0

is exact, i.e Kerf = 0, Img = L1 and Imf = Kerg. Then L is called an
extension of L1 by L2.

Remark 3.3. The vector space structure of any Lie algebra extension can be
characterized as L ∼= L1 ⊕ L2. This can be seen from the above definition
by applying the first isomorphism theorem to both f and g. We obtain that
L2
∼= Imf and that L/Imf ∼= Img = L1. Putting it together, we get L ∼= Imf ⊕

L1
∼= L1 ⊕ L2. However, this isomorphism is not necessarily an isomorphism of

Lie algebras. In fact, the Lie algebra structure of an extension is not necessarily
unique.
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Theorem 3.3. (Whitehead’s first lemma)
Let L be a finite dimensional semisimple Lie algebra and M a finite dimen-

sional L-module. Then H1(L,M) = 0.

Proof. To start, we remark that H1 = 0 is equivalent to Z1 = B1, that is, every
cocycle is a coboundary. Hence, we must show that if f : L → M is a linear
map satisfying

f([xy]) = xf(y)− yf(x) (1)

then f(x) = xm for some m ∈M .
Now, let ϕ be the representation corresponding to M . In order to introduce

the Casimir operator, we need a faithful representation. Therefore, let L =
Kerϕ ⊕ L1. Note that by Theorem 2.6 L1 can be chosen to be an ideal, which
must then be semisimple, also by Theorem 2.6. Now the restriction of ϕ to
L1 will be faithful so we can construct its corresponding Casimir element cϕ.
Recall that cϕ ∈ EndM , Tr(cϕ) = dimL1 and that cϕ commutes with ϕ(x) for
x ∈ L.

We will now apply the Fitting decomposition (Theorem 3.1) on M with
respect to the linear transformation cϕ. Hence, we get a decomposition M =
M0⊕M ′ where cϕ is nilpotent on M0 and bijective on M ′. We show that M0 and
M ′ are L-submodules of M . Indeed, let x ∈ L1 and m ∈ M0. Then cnϕm = 0
for some n. Further, cnϕ(xm) = cnϕϕ(x)m = ϕ(x)cnϕm = 0 so xm ∈ M0. On the
other hand, ifm ∈M ′ then since cϕ is a vector space automorphism onM ′, there
is some m′ ∈M ′ such that m = cnϕm

′. Hence, xm = xcnϕm
′ = cnϕxm

′ ∈M ′ since
if xm′ has a part in M0 then it will be killed by cnϕ. Thus we have established
that M0 and M ′ are both L-submodules.

Now, we decompose also the function f into f = f0 +f ′, where f0 : L→M0

and f ′ : L→M ′. Since M0 and M ′ are submodules, both f0 and f ′ satisfy the
condition in equation (1). Note that if we find some m0 ∈M0 and m′ ∈M ′ such
that f0(x) = xm0 and f ′(x) = xm′, then f(x) = f0(x) + f ′(x) = xm0 + xm′ =
x(m0 +m′). Hence, the problem is reduced to the two cases when the Casimir
element is nilpotent or a vector space automorphism.

First, we will treat the nilpotent case. Since the trace of a nilpotent vector
space endomorphism is 0, dimL1 = Tr(cϕ) = 0, so L = Kerϕ and therefore
f([xy]) = xf(y) − yf(x) = 0 by the definition of module multiplication. By
Theorem 2.6 [LL] = L so f is identically zero, so trivially f(x) = x0.

We are left to verify the second case, where cϕ is a vector space automor-
phism. As in the construction of the Casimir element, take {ei}ni=1 to be a basis
of L and {fi}ni=1 to be the dual basis with respect to the trace form generated
by ϕ, with [xei] =

∑n
j=1 aijej and [xfi] =

∑n
j=1 bijfj . Define y =

∑n
i=1 fif(ei).
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Then

xy =

n∑
i=1

xfif(ei) =

n∑
i=1

fixf(ei) +

n∑
i=1

[xfi]f(ei)

=

n∑
i=1

fixf(ei) +

n∑
i=1

n∑
j=1

bijfjf(ei) =

n∑
i=1

fixf(ei)−
n∑

i=1

n∑
j=1

ajifjf(ei)

=

n∑
i=1

fixf(ei)−
n∑

j=1

fjf([xej ]) =

n∑
i=1

fieif(x) = cϕf(x)

Since cϕ commutes with ϕ(x) for x ∈ L, and since cϕ is invertible, this shows
that f(x) = xc−1ϕ y which concludes the proof.

Theorem 3.4. (Whitehead’s second lemma)
Let L be a finite dimensional semisimple Lie algebra and M a finite dimen-

sional L-module. Then H2(L,M) = 0.

Proof. Like in the proof of the first lemma, it is equivalent to show that Z2 = B2,
which we can write as a cocycle condition. So if f : L × L → M is a skew-
symmetric bilinear map satisfying

0 = xf(y, z) + yf(z, x) + zf(x, y)− f([xy], z)− f([yz], x)− f([zx], y) (2)

we must show that there is some linear map g : L→M such that

f(x, y) = xg(y)− yg(x)− g([xy]) (3)

The strategy is similar to the proof of the first lemma, i.e. we want to use the
Fitting decomposition with respect to the Casimir element of the representation
ϕ corresponding to the L-module M . Hence, just as before, we let L = Kerϕ⊕L1

where L1 is a semisimple ideal in L. Further, {ei}ni=1 and {fi}ni=1 are dual bases
with respect to the trace form of ϕ, and cϕ is the Casimir element.

Still along the lines of the previous lemma, we decompose M = M0 ⊕M ′
where cϕ is nilpotent on M0 and bijective on M ′. As shown above, M0 and M ′

are L-submodules of M , so we can decompose the function f = f0 + f ′ such
that f0 : L × L → M0, f ′ : L × L → M ′ and f0 and f ′ both satisfy equation
(2). Thus if we find functions g0 and g′ corresponding to f0 and f ′ then their
sum satisfies (3), so we are again left with the two cases where cϕ is nilpotent
or when cϕ is an automorphism.

We begin with the nilpotent case. We will reduce the problem in this case to
the conditions of Whitehead’s first lemma, and use it to construct the required
g. By the same argument as above, the representation ϕ is identically zero, so
equation (2) reduces to

0 = f([xy], z) + f([yz], x) + f([zx], y)

and equation (3) becomes

f(x, y) = −g([xy])
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Let V be the vector space of linear transformations A : L → M . We make
this into an L-module by defining multiplication as xA = −A ◦ ad(x). For
x ∈ L, denote by Ax the mapping in V defined by Ax(y) = f(x, y). Let further
h : L→ V, x 7→ Ax. Then

h([xy])− xh(y) + yh(x) = A[xy] +Ay ◦ ad(x)−Ax ◦ ad(y)

If we apply this function to any z ∈ L we obtain

(A[xy] +Ay ◦ ad(x)−Ax ◦ ad(y))(z) = f([xy], z) + f(y, [xz])− f(x, [yz])

= f([xy], z) + f([zx], y) + f([yz], x) = 0

This shows that h ∈ Z1(L, V ), but L is finite dimensional and semisimple and
V is finite dimensional, so by the first lemma, h ∈ B1(L, V ). Hence, there is
some g ∈ V such that h(x) = xg = −g ◦ ad(x). Note that

f(x, y) = Ax(y) = h(x)(y) = (xg)(y) = −(g ◦ ad(x))(y) = −g([xy])

so g satisfies (3).
We proceed to show the case when cϕ is a vector space automorphism. In

this case we will set z = fi in equation (2), then multiply by ei and sum for all
i. This will give us

0 =

n∑
i=1

eixf(y, fi) +

n∑
i=1

eiyf(fi, x) +

n∑
i=1

eifif(x, y)

−
n∑

i=1

eif([xy], fi)−
n∑

i=1

eif([yfi], x)−
n∑

i=1

eif([fix], y)

=

n∑
i=1

[eix]f(y, fi) +

n∑
i=1

xeif(y, fi) +

n∑
i=1

[eiy]f(fi, x)

+

n∑
i=1

yeif(fi, x) + cϕf(x, y)−
n∑

i=1

eif([xy], fi)

−
n∑

i=1

eif([yfi], x)−
n∑

i=1

eif([fix], y) (4)

where we used property (iii) of L-modules and the definition of the Casimir
element. Recall that [eix] =

∑n
j=1 aijej , [fix] =

∑n
j=1 bijfj where aij = −bji.

Hence,

n∑
i=1

[eix]f(y, fi) =

n∑
i=1

n∑
j=1

aijejf(y, fi) = −
n∑

j=1

ejf

(
y,

n∑
i=1

bjifi

)

=

n∑
j=1

ejf([fjx], y)
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Similarly,
n∑

i=1

[eiy]f(fi, x) =

n∑
i=1

eif([yfi], x)

Hence, four of the sums in expression (4) above cancel, and we are left with

−cϕf(x, y) = x

n∑
i=1

eif(y, fi)− y
n∑

i=1

eif(x, fi)−
n∑

i=1

eif([xy], fi) (5)

Then since cϕ is invertible, we can define the function

g(x) = −c−1ϕ

n∑
i=1

eif(x, fi)

With this function, equation (3) becomes exactly equation (5), which completes
the proof.

There is a generalization of Whitehead’s lemmas to the cohomology spaces of
higher dimensions. However, it requires some more assumptions. Conceptually,
the proof for the nilpotent case does not carry over to higher dimensions, but
the bijective case does. This theorem is stated in [4], but is not proved there.

Theorem 3.5. (Whitehead’s Theorem)
Let L be a finite dimensional semisimple Lie algebra and M a finite dimen-

sional irreducible L-module such that LM 6= 0. Then Hk(L,M) = 0 for all
k > 0.

Proof. We define cϕ, {ei}ni=1 and {fi}ni=1 like in the proof of the first or second
lemma.

We can now apply the Fitting decomposition, but as established in the proof
of the first lemma, L acts trivially on the nilpotent part of M . However, the
set {m ∈ M : Lm = 0} is a submodule so since M is irreducible and LM 6= 0,
Lm = 0 if and only if m = 0. This means that the nilpotent part of M is
identically 0, so cϕ must be a vector space automorphism on all of M . Hence,

what we need to prove is that if f :
∏k

i=1 L→ M is a k-linear skew symmetric
map such that

0 =

k+1∑
j=1

(−1)j+1xjf(x1, ..., x̂j , ..., xk+1)

+
∑

1≤i<j≤k+1

(−1)i+jf([xixj ], x1, ..., x̂i, ..., x̂j , ..., xk+1) (6)

then there is a (k − 1)-linear skew symmetric map g :
∏k−1

i=1 L→M such that

f(x1, ..., xk) =

k∑
j=1

(−1)j+1xjg(x1, ..., x̂j , ..., xk)

+
∑

1≤i<j≤k

(−1)i+jg([xixj ], x1, ..., x̂i, ..., x̂j , ..., xk) (7)
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We use a similar argument to the one in the second lemma. Indeed, if we take
xk+1 = fl in equation (6), then multiply by el and sum over l, we get

0 =

n∑
l=1

k+1∑
j=1

(−1)j+1elxjf(x1, ..., x̂j , ..., xk, fl)

+

n∑
l=1

∑
1≤i<j≤k+1

(−1)i+jelf([xixj ], x1, ..., x̂i, ..., x̂j , ..., xk, fl)

=

n∑
l=1

k∑
j=1

(−1)j+1([elxj ] + xjel)f(x1, ..., x̂j , ..., xk, fl)

+

n∑
l=1

∑
1≤i<j≤k

(−1)i+jelf([xixj ], x1, ..., x̂i, ..., x̂j , ..., xk, fl)

+ (−1)kcϕf(x1, ..., xk) +

n∑
l=1

k∑
i=1

(−1)i+k+1elf([xifl], x1, ..., x̂i, ..., xk)

Using exactly the same argument as in the second lemma, we have for each
j = 1, ..., k

n∑
l=1

(−1)j+1[elxj ]f(x1, ..., x̂j , ..., xk, fl) =

n∑
l=1

(−1)j+kelf([xjfl], x1, ..., x̂j , ..., xk)

so after cancellation we have

cϕf(x1, ..., xk) =

n∑
l=1

k∑
j=1

(−1)j+kxjelf(x1, ..., x̂j , ..., xk, fl)

+

n∑
l=1

∑
1≤i<j≤k

(−1)i+j+k+1elf([xixj ], x1, ..., x̂i, ..., x̂j , ..., xk, fl)

which is equation (7) if we take

g(x1, ..., xk−1) = (−1)k+1c−1ϕ

n∑
l=1

elf(x1, ..., xk−1, fl)

This concludes the proof.
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4 Levi’s Theorem

When studying Lie algebras, it is often useful to try to reduce the problem
to studying Lie algebras of the well understood classes that we have dicussed
before, most notably semisimple Lie algebras. One tool in this strategy is Levi’s
theorem, which allows the splitting of a finite dimensional into a direct sum
of a solvable and a semisimple subalgebra. The aim of this chapter will be
to state and prove this theorem. To this end, we will use the cohomology
theory introduced in the previous chapter. We will also prove Mal’tsev-Harish-
Chandra’s theorem which relates different Levi decompositions to one another.
The theory in this chapter is taken from [4], with minor adjustments.

We will start with an example.

Example 4.1. Consider the subalgebra L of sl(C3) consisting of linear maps
having matrices of the form a b d

c −a e
0 0 0


with respect to some fixed basis of C3. Since the composition of two maps in L
is again in L, we see that L is indeed a subalgebra since it is closed under the
commutator. Define now two subalgebras of L in the following way:

L1 =


0 0 d

0 0 e
0 0 0

 , d, e ∈ C

 , S =


a b 0
c −a 0
0 0 0

 , a, b, c ∈ C

 ∼= sl(C2)

Since L = L1 ⊕ S, the structure of L1 and S gives us information about the
structure of L. First, we claim that S is semisimple. By Theorem 2.5 it is
sufficient to check that the Killing form of S is non-degenerate. If we take as
basis elements of sl(C2)

e1 =

[
1 0
0 −1

]
, e2 =

[
0 1
0 0

]
, e3 =

[
0 0
1 0

]
then we compute

[e1e2] = 2e2, [e1e3] = −2e3, [e2e3] = e1

ad(e1) =

0 0 0
0 2 0
0 0 −2

 , ad(e2) =

 0 0 1
−2 0 0
0 0 0

 , ad(e3) =

0 −1 0
0 0 0
2 0 0


so the Killing form of S becomes

κ =

8 0 0
0 0 4
0 4 0


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which is nondegenerate, which shows the semisimplicity of S. We turn now
to L1. A simple calculation shows that L1 is an ideal. We claim now that
L1 is solvable, which would imply L1 = RadL. This can be seen easily, since
[L1L1] = 0. Thus, we have constructed a decomposition L = RadL⊕ S, where
S is semisimple. As we will see, such a decomposition can be made for every
finite dimensional Lie algebra.

Before stating Levi’s theorem, we will need a lemma.

Lemma 4.1. Let L be a finite dimensional Lie algebra and suppose S ⊂ L is a
subalgebra such that S ∼= L/RadL. Then S is semisimple and L = S ⊕ RadL.

Proof. Let I be a solvable ideal in S. Then by the given isomorphism we can
find some solvable ideal J/RadL in L/RadL, where RadL ⊂ J . By maximality
we must have RadL = J so I = 0. This proves the semisimplicity of S. Further,
S ∩ RadL is contained in RadL, so it is solvable, but it is also contained in S,
so S ∩ RadL = 0. Note that

dimL = dimRadL+ dimL/RadL = dimRadL+ dimS

This shows that L = S ⊕ RadL.

We will now proceed to show the main result of this chapter, and arguably
of the entire paper.

Theorem 4.1. (Levi’s theorem)
Let L be a finite dimensional Lie algebra. Then there is a semisimple subal-

gebra S of L such that L = RadL⊕S. The subalgebra S is called a Levi factor
of L.

Proof. We will first prove the result in the case when RadL is abelian and then
use this to show the general case. For abelian RadL, we define L = L/RadL
and denote x = x + RadL ∈ L. Note that L is semisimple by Lemma 4.1. We
make RadL into an L-module by defining the multiplication xy = [xy], which
is well defined by the assumption that RadL is abelian.

Let S be a subspace of L such that L = RadL ⊕ S. Then by the first
isomorphism theorem for vector spaces there is an isomorphism from L to S
induced by the homomorphism L→ L, x 7→ x. Let σ : L→ L be the extension
of this isomorphism to L. If x = y + z, where x ∈ L, y ∈ RadL, z ∈ S, then

σ(x) = z = x (1)

Thus, our choice of S determines a map σ satisfying equation (1). Conversely,
given a linear injective map σ : L → L that satisfies equation (1), then L =
RadL ⊕ σ(L). Indeed, by the first isomorphism theorem for vector spaces,
L ∼= σ(L), but if x ∈ RadL ∩ σ(L) then x = σ(y) for some y but y = x = 0 by
(1) so x = 0. Further, if x ∈ L, y ∈ RadL then

xy = [σ(x)y]
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Now, define the bilinear map f : L × L → RadL, (x1, x2) 7→ [σ(x1)σ(x2)] −
σ([x1x2]). This is well defined since

f(x1, x2) = [σ(x1)σ(x2)]− σ([x1x2]) = [σ(x1), σ(x2)]− [x1x2]

= [x1x2]− [x1x2] = 0

so indeed, f(x1, x2) ∈ RadL.
We will now show that f ∈ Z2(L,RadL). Indeed, f is skew symmetric since

f(x1, x2) + f(x2, x1) = f(x1 + x2, x1 + x2)

= [σ(x1 + x2)σ(x1 + x2)]− σ([x1 + x2, x1 + x2]) = 0

We are left to show the cocycle condition. Note that

[σ(x1)σ(x2)] = σ([x1x2]) + f(x1, x2)

Taking the bracket on both side with σ(x3) we obtain

[[σ(x1)σ(x2)]σ(x3)] = [σ([x1, x2])σ(x3] + [f(x1x2)σ(x3)]

= σ([[x1x2]x3]) + f([x1x2], x3) + [f(x1, x2)σ(x3)] (2)

However, recall that

[[σ(x1)σ(x2)]σ(x3)] + [[σ(x2)σ(x3)]σ(x1)] + [[σ(x3)σ(x1)]σ(x2)] = 0

and
σ([[x1x2]x3] + σ([[x2x3]x1] + σ([[x3x1]x2] = 0

Hence if we sum both sides of equation (2) over the permutations (x1, x2, x3),
(x2, x3, x1), (x3, x1, x2) we obtain

0 = f([x1x2], x3) + f([x2x3], x1) + f([x3x1], x2)

+ [f(x1, x2)σ(x3)] + [f(x2, x3)σ(x1)] + [f(x3, x1)σ(x2)]

which is the required cocycle condition with respect to the module multiplication
defined above.

Now, L is a semisimple Lie algebra and RadL is a finite dimensional L-
module, so by Whitehead’s second lemma, H2(L,RadL) = 0. Hence, f ∈
B2(L,RadL) which means there is some linear map g : L→ RadL that satisfies

f(x1, x2) = [σ(x1)g(x2)]− [σ(x2)g(x1)]− g([x1x2])

We want to find necessary and sufficient conditions for σ(L) to be a subalge-
bra. Note that if it is, then it is semisimple and the theorem is proved. Suppose
σ(L) is a subalgebra. Then [σ(x1)σ(x2)] ∈ σ(L), and since [x1, x2] ∈ L, also
σ([x1, x2]) ∈ σ(L). Hence f(x1, x2) ∈ RadL ∩ σ(L) = 0. On the other hand if
f ≡ 0 then [σ(x1)σ(x2)] = σ([x1x2]) ∈ σ(L). Thus we can conclude that σ(L)
is a subalgebra if and only if f ≡ 0.
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If σ(L) is not a subalgebra we claim that τ(L) is one, where τ = σ−g : L→
L. Then τ also has the property that

τ(x) = σ(x) + f(x) = x+ 0 = x

Therefore, as shown above, it is sufficient to check that [τ(x1)τ(x2)]−τ([x1x2]) =
0. Indeed,

[τ(x1)τ(x2)]− τ([x1x2]) = [σ(x1)− g(x1), σ(x2)− g(x2)]− σ([x1x2])

+ g([x1x2])

= [σ(x1)σ(x2)]− [σ(x1)g(x2)]− [g(x1)σ(x2)]

+ [g(x1)g(x2)]− σ([x1x2]) + g([x1x2])

= [σ(x1)σ(x2)]− σ([x1x2])− f(x1, x2) + [g(x1)g(x2)]

= [g(x1)g(x2)] = 0

Thus, taking S = τ(L) completes the proof in the abelian case.
For the general case we will use induction on dimL. Suppose (RadL)2 6= 0

and define L = L/(RadL)2. Then dimL < dimL so by the induction hypothesis
we can assume the theorem holds for the Lie algebra L. Now, RadL/(RadL)2 is
solvable by part (i) of Theorem 1.2, since it is a homomorphic image of RadL.
Further, if L1/(RadL)2 is solvable then by part (ii) of the same theorem, L1 is
also solvable. Hence, we must have that RadL = RadL/(RadL)2. By the third
isomorphism theorem, L/(RadL) ∼= L/RadL. Now, by the induction hypothesis,
as remarked above, there is a semisimple subalgebra S ⊂ L, S ∼= L/RadL. We
write S = L1/(RadL)2, with (RadL)2 ⊂ L1 ⊂ L. Since (RadL)2 ⊂ RadL
and L1/(RadL)2 ∼= L/RadL, we conclude that dimL1 < dimL. Hence by
the induction hypothesis L1 has a subalgebra S ∼= L/RadL, but this is also
a subalgebra of L, which concludes the proof.

The following corollary will be uselful below.

Corollary 4.1. Let L be a finite dimensional Lie algebra. Then the radical of
L(1) is nilpotent.

Proof. Let L = RadL⊕ S be a Levi decomposition. Then

L(1) = [LL] = [RadL⊕ S,RadL⊕ S] = [SS] + [LRadL]

Since the radical of L(1) is L(1) ∩ RadL, we get

L(1) ∩ RadL = [SS] ∩ RadL+ [LRadL] ∩ RadL = [LRadL]

However, by Corollary 2.2, [LRadL] is nilpotent, which concludes the proof.

The strength of Levi’s theorem lies in the rich theory about semisimple Lie
algebras. Since there are many results about this particular class of Lie algebras,
the fact that there is always a Levi decomposition allows this theory to some
extent to be used when studying general finite dimensional Lie algebras. A
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natural follow-up question would be whether the decomposition is unique. The
radical of a Lie algebra is always uniquely determined, as established in part (iv)
of Theorem 1.2, so the question reduces to whether the Levi factor S is unique.
In general, this is not true, but we can nevertheless give some conditions for how
different Levi components relate to one another. First, we will need a definition

Definition 4.1. Let L be a Lie algebra and x ∈ L be such that ad(x) is
nilpotent. Then we define

exp(ad(x)) =

∞∑
k=0

(ad(x))k

k!

This is well defined since the nilpotency of ad(x) means the sum will have a
finite number of terms.

Lemma 4.2. Let L be a Lie algebra and x ∈ L be such that ad(x) is nilpotent.
Then exp(ad(x)) is an automorphism of L.

Proof. We start by showing that exp(ad(x)) is a vector space isomorphism, i.e.
invertible. Take n to be the smallest integer such that (ad(x))n = 0 and let

η = exp(ad(x))− 1. Then
∑n−1

k=0(−1)k is a linear map on L and

exp(ad(x))

n−1∑
k=0

(−1)kηk = (1 + η)

n−1∑
k=0

(−1)kηk = 1 + (−1)n−1ηn = 1

so exp(ad(x)) is invertible with inverse
∑n−1

k=0(−1)kηk, and hence a vector space
automorphism. We proceed to show that exp(ad(x)) preserves the bracket. In
other words, we need to show that

exp(ad(x))([yz]) = [exp(ad(x))(y), exp(ad(x))(z)] (3)

First of all, we can rewrite the Jacobi identity as

ad(x)([yz]) = [y, ad(x)(z)] + [ad(x)(y), z]

Iterating the above equation, we get

(ad(x))m([yz]) =

m∑
k=0

m!

(k!)(m− k)!
[(ad(x))k(y), (ad(x))m−k(z)]

The above equation is sometimes referred to as the Leibniz rule. We use this
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to derive equation (3).

[exp(ad(x))(y), exp(ad(x))(z)] =

[
n−1∑
k=0

(ad(x))k(y)

k!
,

n−1∑
k=0

(ad(x))k(z)

k!

]

=

2n−2∑
m=0

m∑
k=0

[
(ad(x))k(y)

k!
,

(ad(x))n−k(z)

(n− k)!

]

=

2n−2∑
m=0

(ad(x))m([yz])

m!
=

n−1∑
m=0

(ad(x))m([yz])

m!

= exp(ad(x))([yz])

This completes the proof.

Definition 4.2. (Inner automorphism)
Let L be a Lie algebra and consider the subgroup of AutL generated by

all elements of the form exp(ad(x)) where ad(x) is nilpotent. This subgroup is
denoted IntL and its elements are called inner automorphisms.

Theorem 4.2. (Mal’tsev-Harish-Chandra’s theorem)
Let L be a finite dimensional Lie algebra and let L = S ⊕ RadL be a Levi

decomposition. If S1 ⊂ L is a semisimple subalgebra, then there is some A ∈
IntL such that A(S1) ⊂ S

Proof. Define the projections ρ : S1 → RadL and σ : S1 → S such that x =
ρ(x) + σ(x) for all x ∈ S1. Since S1 ⊂ L = S ⊕RadL, these maps exist and are
unique. Furthermore, since S1 is semisimple, Kerσ = S1 ∩ RadL = 0, so σ is
injective. Now, for x, y ∈ S1 we can expand [xy] in two different ways:

σ([xy]) + ρ([xy]) = [xy] = [σ(x)σ(y)] + [σ(x)ρ(y)] + [ρ(x)σ(y)] + [ρ(x)ρ(y)]

Since the radical is an ideal, we can thus conclude that

σ([xy]) = [σ(x)σ(y)]

and
ρ([xy]) = [σ(x)ρ(y)] + [ρ(x)σ(y)] + [ρ(x)ρ(y)] (4)

Hence, ρ([xy]) ∈ [LRadL], but by Corollary 2.2 [LRadL] is nilpotent. Thus if
we let N be the nilradical of L, then ρ([xy]) ∈ N . By Theorem 2.6 [S1S1] = S1,
so ρ(x) ∈ N for all x ∈ S1. This shows that S1 ⊂ S ⊕N .

Our goal now is to find automorphisms Ak ∈ IntL such that Ak(S1) ⊂
S ⊕ N (k+1). If we can do that then we are done since the map An ∈ IntL
satisfies An(S1) ⊂ S ⊕ N (n) = S, if we take n to be the smallest number such
that N (n) = 0, which exists since N is solvable by part (iv) of Theorem 1.3.

We construct these maps inductively. We can do this since we have already
established that S1 ⊂ S⊕N . Thus, assuming that Ak−1 maps S1 into S⊕N (k),
we can assume without loss of generality that S1 ⊂ S ⊕N (k), and construct an
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automorphism A′k mapping it into S1 ⊂ S ⊕ N (k+1). The general situation is
then also done, by taking Ak = A′k ◦Ak−1.

In order to construct the map A′k, we will use Whitehead’s first lemma.
To do that, we will need a semisimple Lie algebra and a module. For the
semisimple Lie algebra, we pick the natural choice S1. For the module first
note that we can turn N (k) into an S1-module by defining the multiplication
xm = [σ(x)m] for x ∈ S1 and m ∈ N (k). This will turn N (k+1) into an S1-
submodule, so the factor module N (k)/N (k+1) is also an S1-module with the
multiplication x(m + N (k+1)) = [σ(x)m] + N (k+1). This is the S1-module we
will apply Whitehead’s lemma on. Indeed, S1 is a semisimple Lie algebra and
N (k)/N (k+1) is a finite dimensional S1-module, so H1(S1, N

(k)/N (k+1)) = 0.
Now, for x, y ∈ S1 ⊂ S ⊕ N (k), we have that ρ([xy]) ∈ N (k) so under the

canonical homomorphism from N (k) to N (k)/N (k+1), equation (4) becomes

ρ([xy]) +N (k+1) = [σ(x)ρ(y)] + [ρ(x)σ(y)] + [ρ(x)ρ(y)] +N (k+1)

= [σ(x)ρ(y)] + [ρ(x)σ(y)] +N (k+1)

Hence, if we define f : S1 → N (k)/N (k+1), x 7→ ρ(x)+N (k+1), then the equation
above shows that f is a 1-cocycle. Thus f must be a coboundary as established
above. In other words, there is some m ∈ N (k) such that f(x) = x(m+N (k+1)),
which means that ρ(x)− [σ(x)m] ∈ N (k+1). Take now A′k = exp(ad(m)). Then
since [m[mx]] ∈ N (k+1),

A′k(x) +N (k+1) =

n∑
i=0

(ad(m))i(x)

i!
+N (k+1) = x+ [mx] +N (k+1)

= σ(x) + ρ(x) + [mσ(x)] + [mρ(x)] +N (k+1)

= σ(x) + [σ(x)m] + [mσ(x)] + [m[σ(x)m]] +N (k+1)

= σ(x) +N (k+1)

Hence, A′k maps S1 to S + N (k+1) which is exactly what we needed, as we
established before. Hence, this concludes the proof.

Corollary 4.2. Let L be a finite dimensional Lie algebra and let L = S1 ⊕
RadL = S2 ⊕ RadL be two Levi decompositions of L. Then there is an isomor-
phism A ∈ IntL between S1 and S2.

Proof. By Mal’tsev-Harish-Chandra’s theorem there is an automorphism of L
mapping S1 into S2. Since dimS1 = dimS2, this means S1 and S2 are isomor-
phic.
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5 The Virasoro Algebra

In this chapter we will introduce the Virasoro algebra, which will serve as
an example to show that the assumption about finite dimensionality in Levi’s
theorem is necessary. The Virasoro algebra will be constructed in this chapter,
relying only on the definition of the Witt algebra. This means that this chapter
will be more independent from other works, even though none of the results
presented here can be considered new. The examples provided in this chapter
will serve to illustrate the applications, but also the limits of the theory presented
in the previous chapters.

We start by defining the Witt algebra.

Definition 5.1. (Witt algebra)
Consider a vector space over C with a countable basis {dn}n∈Z. We equip

this vector space with a bilinear form defined by [dmdn] = (m − n)dm+n. The
resulting algebra is called the Witt algebra and is denoted by W .

Lemma 5.1. The Witt algebra is a Lie algebra under the bracket indicated in
the definition above.

Proof. The defined commutator is a bilinear form satisfying [xx] = 0 for all
x ∈ W . We are left to check the Jacobi identity. By bilinearity it is enough to
verify for basis elements.

[dk[dmdn]] + [dm[dndk]] + [dn[dkdm]]

= (m− n)[dkdm+n] + (n− k)[dmdn+k] + (k −m)[dndk+m]

= ((m− n)(k −m− n) + (n− k)(m− n− k) + (k −m)(n− k −m))dk+m+n

= 0

This concludes the proof.

Remark 5.1. The Witt algebra can arise in several different ways. One way,
which can serve as geometric motivation for the construction is taking the ele-
ments of the Witt algebra to be analytic vector fields on the punctured complex
plane, and choose the basis dn = −zn+1 ∂

∂z for n ∈ Z. Then taking the commu-
tator to be defined by [xy] = xy − yx we obtain

[dmdn] = zm+1 ∂

∂z
zn+1 ∂

∂z
− zn+1 ∂

∂z
zm+1 ∂

∂z

= zm+1

(
(n+ 1)zn

∂

∂z
+ zn+1 ∂

2

∂z2

)
− zn+1

(
(m+ 1)zm

∂

∂z
+ zm+1 ∂

2

∂z2

)
= −(m+ 1)zm+n+1 ∂

∂z
+ (n+ 1)zm+n+1 ∂

∂z

= (n−m)zm+n+1 ∂

∂z
= (m− n)dm+n
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which is exactly the commutator relation in the definition of the Witt algebra.
We will not discuss the details of this construction since we are avoiding the
geometric connections. Nevertheless, it can serve as a motivation for studying
the Witt algebra.

Lemma 5.2. The Witt algebra is simple. In particular, since W is not abelian,
[WW ] = W

Proof. Let I be a non-zero ideal in W . We show that dk ∈ I for some k ∈ Z.
Let 0 6= x ∈ I. Then we can write x =

∑n
i=1 aidki

for some n, where ai ∈ C
and ki ∈ Z for i = 1, ..., n. We proceed by induction on n. If n = 1 then
0 6= x = a1dk1 so dk1 ∈ I, which proves the base step. For the inductive step,
note that

[d0x]− knx =

n∑
i=1

kiaidki
−

n∑
i=1

knaidki
=

n−1∑
i=1

(ki − kn)aidki
∈ I

Further, [d0x] − knx 6= 0 since the indices ki are pairwise different. Since we
have now constructed an element in the ideal with n − 1 basis components, so
by the induction hypothesis we can find some k such that dk ∈ I. But then if
k 6= 0 then

d0 =
1

2k
[dkd−k] ∈ I

and from this we get that

dn =
1

n
[dnd0] ∈ I

for all n 6= 0. Thus we conclude that I = W .

We will now introduce a special case of Lie algebra extensions that will be
relevant in constructing the Virasoro algebra.

Definition 5.2. (Central extension)
Let the Lie algebra L be an extension of the Lie algebra L1 by the Lie algebra

L2, i.e. f and g are homomorphisms such that the sequence

0 −→ L2
f−→ L

g−→ L1 −→ 0

is exact. If Kerg ⊂ Z(L) the extension is called central.

Definition 5.3. (Graded Lie algebra)
Let L be a Lie algebra that can be decomposed as a direct sum of vector

spaces L =
⊕

k∈Z Vk, where [VmVn] ⊂ Vm+n. Then L is called a graded Lie
algebra. An element x ∈ Vn is said to be of degree n.

We will now study the central extensions of the Witt algebra by the one
dimensional Lie algebra C. Note that a one dimensional Lie algebra is always
abelian. According to Remark 4 in Chapter 3, if V is a central extension of W
by C then

V ∼= W ⊕ C ∼=
⊕
k∈Z

CLk ⊕ Cc (1)
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as vector spaces, where g : Lk 7→ dk. Thus, we must only investigate the
commutation relations on the resulting space.

Lemma 5.3. Let V be a graded central extension of W by C such that the
element c in equation (1) has grade 0 and Lk has grade k. Then there are
constants a, b ∈ C such that V has commutation relations

[LmLn] = (m− n)Lm+n + (am+ bm3)δm,−nc (2)

[cLn] = 0

for all m,n ∈ Z. Conversely, for any a, b ∈ C, the vector space in (1) equipped
with the commutator defined in (2) is a central extension of W by C

Proof. The fact that [cLn] = 0 for all n ∈ Z follows from the fact that c ∈ Z(V )
since the extension is central and Imf = Kerg. For the commutation relations
of the elements Lk, we inherit some structure from the Witt algebra. Indeed,

g([LmLn]) = [g(Lm)g(Ln)] = [dmdn] = (m− n)dm+n = (m− n)g(Lm+n)

Hence, by the first isomorphism theorem,

[LmLn]− (m− n)Lm+n ∈ Kerg = Cc

Thus, the commutation relations can be written as

[LmLn] = (m− n)Lm+n + αm,nc

By the assumptions on the gradation, using the notation of Definition 5.3, we
get that V0 = CL0 ⊕ Cc and Vk = CLk for k 6= 0. Since [LmLn] ∈ Vm+n,
we must have αm,n = 0 if m 6= −n. Thus, we are left to find the constants
αk = αk,−k. First of all, by skew symmetry we find that

αkc = [LkL−k]− 2kL0 = −[L−kLk] + (−2k)L0 = −α−kc

so αk = −α−k which means we must only investigate the sequence for k > 0.
We now apply the Jacobi identity to the elements Lm, Ln and L−m−n.

0 = [Lm[LnL−m−n]] + [Ln[L−m−nLm]] + [L−m−n[LmLn]]

= (m+ 2n)[LmL−m]− (2m+ n)[LnL−n] + (m− n)[L−m−nLm+n]

= ((m+ 2n)αm − (2m+ n)αn − (m− n)αm+n)c

This leads us to the question of solving the recurrence relation

(m+ 2n)αm − (2m+ n)αn − (m− n)αm+n = 0 (3)

We will use generating functions to solve this recurrence. In order to simplify
computations, we will first fix m = 1. Define the formal power series f(x) =
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∑∞
n=0 αnx

n. Then if we multiply equation (3) by xn and sum for n from 0 to
∞, we obtain

0 =

∞∑
n=0

(1 + 2n)α1x
n −

∞∑
n=0

(2 + n)αnx
n −

∞∑
n=0

(1− n)α1+nx
n

=
α1

1− x
+

2α1x

(1− x)2
− 2f(x)− xf ′(x)− 2f(x)

x
+ f ′(x)

=
α1(1 + x)

(1− x)2
−
(

2

x
+ 2

)
f(x)− (x− 1)f ′(x)

So we have reduced the problem to solving the differential equation(
2

x
+ 2

)
f(x) + (x− 1)f ′(x) =

α1(1 + x)

(1− x)2
(4)

We will solve this using integrating factors. If we rewrite the equation as(
2(x+ 1)

x(x− 1)

)
f(x) + f ′(x) = −α1(1 + x)

(1− x)3

then we can multiply with the integrating factor

e
∫ 2(x+1)

x(x−1)
dx = e4 log(1−x)−2 log(x) =

(1− x)4

x2

to obtain(
(1− x)4

x2
f(x)

)′
=

2(x+ 1)(x− 1)3

x3
f(x) +

(1− x)4

x2
f ′(x) = −α1(1− x2)

x2

which gives us

f(x) =
α1x(x2 − 4x+ 1)

(1− x)4
+

Cx2

(1− x)4

Now, f is analytic in a neighbourhood around 0 and has power series expansion

f(x) =

∞∑
n=0

(
α1

((
n

3

)
− 4

(
n+ 1

3

)
+

(
n+ 2

3

))
+ C

(
n+ 1

3

))
xn

=

∞∑
n=0

1

6
(Cn(n2 − 1)− 2α1n(n2 − 4))xn

Thus we can conclude that C = α2 and that

αk =
1

6
(α2n(n2 − 1)− 2α1n(n2 − 4)) =

−2α1 + α2

6
n3 +

8α1 − α2

6
n

This shows that any solution to equation (3) has the form αk = ak + bk3.
However, since we restricted the argument to the case m = 1, this solution
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might be too general. We show that this is not the case by simply substituting
this solution into equation (3), to get

(m+ 2n)(am+ bm3)− (2m+ n)(an+ bn3)− (m− n)(a(m+ n) + b(m+ n)3)

= m2(a+ bm2) + 2bm3n− n2(a+ bn2)− 2bmn3

− (m2 − n2)(a+ b(m+ n)2)

= (m2 − n2)(a+ b(m2 + n2) + 2bmn)− (m2 − n2)(a+ b(m+ n)2)

= 0 (5)

This shows also the converse part of the lemma.

Lemma 5.4. Let V1, V2 be two graded central extensions of W by C with commu-
tation relations as in Lemma 5.3, with constants a1, b1 and a2, b2, respectively.
If b1 = b2 = 0 then V1 ∼= V2. In this case, we call the extensions trivial.
Further, if b1 6= 0 6= b2 then also V1 ∼= V2.

Proof. We first show that changing the constant a yields an isomorphic Lie
algebra, that is, if b1 = b2 then V1 ∼= V2. In particular, this shows the trivial
case. Note that since isomorphism is transitive, we can assume without loss of
generality that a2 = 0. Then we can define the linear map ϕ : V1 → V2 by
ϕ(c) = c and ϕ(Lk) = Lk − 1

2a1δ0,kc. This is bijective, so we must verify that
it is a homomorphism. Indeed,

ϕ([LmLn]1) = ϕ((m− n)Lm+n + (a1m+ b1m
3)δm,−nc)

= (m− n)Lm+n − (m− n)
1

2
a1δm,−nc+ (a1m+ b1m

3)δm,−nc

= (m− n)Lm+n + b2m
3δm,−nc = [Lm −

1

2
aδ0,mc, Ln −

1

2
aδ0,nc]2

= [ϕ(Lm)ϕ(Ln)]2

as required. Thus we can from now on assume a1 = a2 = 0. We must show that
if b1 and b2 are both non-zero then V1 ∼= V2. For this, we can pick the linear
map ψ : V1 → V2 defined by ψ(Lk) = Lk and ψ(c) = b2

b1
c. Since b1 and b2 are

non-zero this is a bijective map. We show that it is a homomorphism

ψ([LmLn]1) = ψ((m− n)Lm+n + b1m
3δm,−nc)

= (m− n)Lm+n + b2m
3δm,−nc = [LmLn]2 = [ψ(Lm)ψ(Ln)]2

This concludes the proof.

This shows that the non-trivial graded (according to the assumptions of
Lemma 5.3) central extension of the Witt algebra by C is unique up to isomor-
phism. Thus, we can make the following definition.

Definition 5.4. (Virasoro algebra)
The unique non-trivial central extension from Lemma 5.4 is called the Vi-

rasoro algebra and is denoted V . In physics, it is a convention to take the
constants to be a = 1

12 and b = − 1
12 .
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In fact, as we will see below, the assumptions on the gradation of the central
extension above can be omitted. In order to see this, we will study the cohomol-
ogy spaces of the Witt algebra with respect to the one-dimensional W -module
C, where multiplication is defined trivially as WC = 0.

Lemma 5.5. H1(W,C) = 0.

Proof. Let f ∈ Z1(W,C). The 1-cocycle condition becomes

df(x, y) = xf(y)− yf(x)− f([xy]) = −f([xy]) = 0

By Lemma 5.2, this means that f ≡ 0. We conclude that Z1 = 0 so clearly
H1 = 0 as well.

Lemma 5.6. H2(W,C) is one-dimensional.

Proof. As in the previous lemma, we start by taking some f ∈ Z2(W,C), which
means f must satisfy

df(x, y, z) = xf(y, z) + yf(z, x) + zf(x, y)− f([xy], z)− f([yz], x)− f([zx], y)

= −f([xy], z)− f([yz], x)− f([zx], y) = 0 (6)

Meanwhile, a function g ∈ B2(W,C), as we saw in the proof of Lemma 5.5,
must satisfy

g(x, y) = h([xy])

where h : W → C is a linear map. In particular, the linear map h defined by

h(d0) = −1

2
f(d1, d−1), h(dk) = −1

k
f(dk, d0), k 6= 0

gives rise to the 2-coboundary g(x, y) = h([xy]). Then the 2-cocycle f ′ = f + g
differs from f only by a 2-coboundary, so f ≡ f ′ in the cohomology space
H2(W,C) with

f ′(d1, d−1) = f ′(dk, d0) = 0, k ∈ Z

Now, substituting d0, dm, dn into equation (6) with the function f ′ we obtain

0 = f ′([d0dm], dn) + f ′([dmdn], d0) + f ′([dnd0], dm)

= −mf ′(dm, dn) + nf ′(dn, dm) = (m+ n)f ′(dn, dm)

so f ′(dm, dn) = 0 unless m = −n. Further, for n > 2 we can substitute
dn−1, d1, d−n into equation (6) with the function f ′, to get

0 = f ′([dn−1d1], d−n) + f ′([d1d−n], dn−1) + f ′([d−ndn−1], d1)

= (n− 2)f ′(dn, d−n) + (1 + n)f ′(d1−n, dn−1) + (1− 2n)f ′(d−1, d1)

= (n− 2)f ′(dn, d−n) + (1 + n)f ′(d1−n, dn−1)

so by induction f ′ is uniquely determined by f ′(d2, d−2), i.e. by a single pa-
rameter. This shows that H2(W,C) is at most one-dimensional. To show that
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it is exactly one-dimensional it is sufficient to find a 2-cocycle that is not a
2-coboundary. As such, we can take for instance f defined by

f(dn, d−n) = n− n3, f(dm, dn) = 0, m 6= −n

This is indeed a skew symmetric bilinear form. We show that it satisfies equation
(6)

f([dkdm], dn) + f([dmdn], dk) + f([dndk], dm =

(k −m)f(dk+m, dn) + (m− n)f(dm+n, dk) + (n− k)f(dn+k, dm)

In order for not every term to be zero, we assume without loss of generality that
k = −m− n, so the expression above becomes

(−2m− n)f(d−n, dn) + (m− n)f(dm+n, d−m−n) + (2n+m)f(d−m, dm)

which is equal to 0 as shown in equation (5). However, if f is a 2-coboundary
then there is some linear map g : W → C such that f(x, y) = g([xy]). But then
we would have

2f(d1, d−1) = 4g(d0) = f(d2, d−2)

which is not the case. Hence, f is not a 2-coboundary, which concludes the
proof.

Remark 5.2. The above lemma serves as an example showing that Whitehead’s
second lemma does not hold in the infinite dimensional case. Indeed, the Witt
algebra is simple by Lemma 5.2 so in particular it is semisimple, and C is a
finite dimensional W -module. The only criterion that is not satisfied is finite
dimensionality of W , but it is enough for H2(W,C) to be non-zero.

Remark 5.3. The fact that the same equations show up in the proofs of Lem-
mas 5.3 and 5.6 is no coincidence. In fact, if we in Lemma 5.3 drop the require-
ments on the gradation we will get the commutation relations

[LmLn] = (m− n)Lm+n + α(Lm, Ln)c, [cLn] = 0

for all m,n ∈ Z, where α : W 2 → C is a bilinear map. Since the bracket is skew
symmetric, so is α. Hence, α is a 2-cochain. Further, by the Jacobi identity on
the commutation relations above, we get equation (6). This shows that every
central extension determines uniquely a 2-cocycle.

Lemma 5.7. Let V1, V2 be two central extensions of the Witt algebra by C
determined by the 2-cocycles α1, α2, respectively. If α1 and α2 are cohomologous,
then V1 and V2 are isomorphic.

Proof. The function g = α2 − α1 is a 2-coboundary. Then g(x, y) = h([xy]) for
some linear map h : W → C. Define the bijective map ϕ : W1 →W2 by

ϕ(Lk) = Lk + h(Lk)c, ϕ(c) = c
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We show that ϕ is a homomorphism. Indeed,

ϕ([LmLn]1) = (m− n)(Lm+n + h(Lm+n)c) + α1(Lm, Ln)c

= (m− n)Lm+n + g(Lm, Ln)c+ α1(Lm, Ln)c

= (m− n)Lm+n + α2(Lm, Ln)c = [ϕ(Lm)ϕ(Ln)]2

as required.

Lemma 5.8. The Virasoro algebra is the unique non-trivial central extension
of the Witt algebra by C, up to isomorphism.

Proof. As shown in the proof of Lemma 5.6, the cohomology space H2(W,C) is
spanned by the map defined by

α(Ln, L−n) = n− n3, α(Lm, Ln) = 0, m 6= −n

By Lemma 5.4 the extensions corresponding to these 2-cocycles are isomorphic
to the Virasoro algebra, except in the trivial case. But the 2-cocycle of any
central extension differs from one of the maps above by a 2-coboundary, so
by Lemma 5.7 any non-trivial central extension is isomorphic to the Virasoro
algebra.

Theorem 5.1. The Virasoro algebra has no Levi decomposition.

Proof. Since the Witt algebra is simple, we have that RadV = Cc which means
that W = V/RadV . If we follow the proof of Levi’s theorem, we construct the
W -module C by multiplication in V , i.e. xy = [xy] = 0 for x ∈W, y ∈ Cc. This
means that the module we are interested in is in fact the module we have been
investigating for most of this chapter. Using the fact that the radical is abelian,
we can follow the proof of Levi’s theorem perfectly. In this proof, we showed
that the existence of a Levi decomposition was equivalent to Whitehead’s second
lemma, i.e. that H2(W,C) = 0. However, according to Lemma 5.6 this is not
the case, which concludes the proof.

This final result proves what we set out to do, namely that the assumption of
finite dimensionality is crucial for Levi’s theorem to hold. This hints towards the
fact that the study of infinite dimensional Lie algebras require more involved
techniques than what is presented in this paper. With this final remark, we
conclude the article.
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Appendix

In the appendix, we will give the proof of Theorem 3.2. The proof is not
difficult, merely technical. Therefore, the reader is encouraged to check the can-
cellation, since it will most likely be easier to follow than the messy calculations
below. Nevertheless, the proof is included for completeness.

Proof. We will start by proving the 0-dimensional case. Let f ∈ C0 be given by
f(x) = m. Then as remarked above, df(x) = xm, and so we find that

d2f(x1, x2) = x1x2m− x2x1m− [x1x2]m = 0

by the definition of an L-module.
We proceed to the higher dimensional case. Let f ∈ Cn. The following

expression is a mess, but as we will see, it all cancels

d2f(x1, ..., xn+2) =

n+2∑
j=1

(−1)j+1xjdf(x1, ..., x̂j , ..., xn+2)

+
∑

1≤i<j≤n+2

(−1)i+jdf([xixj ], x1, ..., x̂i, ..., x̂j , ..., xn+2)

=
∑

1≤i<j≤n+2

(−1)i+jxjxif(x1, ..., x̂i, ..., x̂j , ..., xn+2) (1)

+
∑

1≤i<j≤n+2

(−1)i+j+1xixjf(x1, ..., x̂i, ..., x̂j , ..., xn+2) (2)

+
∑

1≤i<j<k≤n+2

(−1)i+j+k+1xkf([xixj ], x1, ..., x̂i, ..., x̂j , ..., x̂k, ...xn+2) (3)

+
∑

1≤i<j<k≤n+2

(−1)i+j+kxjf([xixk], x1, ..., x̂i, ..., x̂j , ..., x̂k, ...xn+2) (4)

+
∑

1≤i<j<k≤n+2

(−1)i+j+k+1xif([xjxk], x1, ..., x̂i, ..., x̂j , ..., x̂k, ...xn+2) (5)

+
∑

1≤i<j≤n+2

(−1)i+j [xixj ]f(x1, ..., x̂i, ..., x̂j , ..., xn+2) (6)

+
∑

1≤i<j<k≤n+2

(−1)i+j+kxkf([xixj ], x1, ..., x̂i, ..., x̂j , ..., x̂k, ...xn+2) (7)

+
∑

1≤i<j<k≤n+2

(−1)i+j+k+1xjf([xixk], x1, ..., x̂i, ..., x̂j , ..., x̂k, ...xn+2) (8)

+
∑

1≤i<j<k≤n+2

(−1)i+j+kxif([xjxk], x1, ..., x̂i, ..., x̂j , ..., x̂k, ...xn+2) (9)

+
∑

1≤i<j<k≤n+2

(−1)i+j+k+1f([[xjxk]xi], x1, ..., x̂i, ..., x̂j , ..., x̂k, ...xn+2) (10)

+
∑

1≤i<j<k≤n+2

(−1)i+j+kf([[xixk]xj ], x1, ..., x̂i, ..., x̂j , ..., x̂k, ...xn+2) (11)
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+
∑

1≤i<j<k≤n+2

(−1)i+j+k+1f([[xixj ]xk], x1, ..., x̂i, ..., x̂j , ..., x̂k, ...xn+2) (12)

+
∑

1≤i<j<k<l≤n+2

(−1)i+j+k+lf([xixj ], [xkxl], x1, ..., x̂i, ..., x̂j , ..., x̂k, ..., x̂l, ...xn+2)

(13)

+
∑

1≤i<j<k<l≤n+2

(−1)i+j+k+l+1f([xixk], [xjxl], x1, ..., x̂i, ..., x̂j , ..., x̂k, ..., x̂l, ...xn+2)

(14)

+
∑

1≤i<j<k<l≤n+2

(−1)i+j+k+lf([xixl], [xjxk], x1, ..., x̂i, ..., x̂j , ..., x̂k, ..., x̂l, ...xn+2)

(15)

+
∑

1≤i<j<k<l≤n+2

(−1)i+j+k+lf([xjxk], [xixl], x1, ..., x̂i, ..., x̂j , ..., x̂k, ..., x̂l, ...xn+2)

(16)

+
∑

1≤i<j<k<l≤n+2

(−1)i+j+k+l+1f([xjxl], [xixk], x1, ..., x̂i, ..., x̂j , ..., x̂k, ..., x̂l, ...xn+2)

(17)

+
∑

1≤i<j<k<l≤n+2

(−1)i+j+k+lf([xkxl], [xixj ], x1, ..., x̂i, ..., x̂j , ..., x̂k, ..., x̂l, ...xn+2)

(18)

From here, it is despite the mess fairly easy to see that everything cancels out.
Lines (1), (2) and (6) cancel out since xjxi − xixj = −[xixj ], lines (3), (4)
and (5) cancel lines (7), (8) and (9), lines (10), (11) and (12) cancel by the
Jacobi identity, and lines (13), (14), and (15) cancel lines (18), (17) and (16)
respectively, by skew symmetry. This concludes the proof.
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